1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file InstrRefBasedImpl.cpp 9 /// 10 /// This is a separate implementation of LiveDebugValues, see 11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information. 12 /// 13 /// This pass propagates variable locations between basic blocks, resolving 14 /// control flow conflicts between them. The problem is much like SSA 15 /// construction, where each DBG_VALUE instruction assigns the *value* that 16 /// a variable has, and every instruction where the variable is in scope uses 17 /// that variable. The resulting map of instruction-to-value is then translated 18 /// into a register (or spill) location for each variable over each instruction. 19 /// 20 /// This pass determines which DBG_VALUE dominates which instructions, or if 21 /// none do, where values must be merged (like PHI nodes). The added 22 /// complication is that because codegen has already finished, a PHI node may 23 /// be needed for a variable location to be correct, but no register or spill 24 /// slot merges the necessary values. In these circumstances, the variable 25 /// location is dropped. 26 /// 27 /// What makes this analysis non-trivial is loops: we cannot tell in advance 28 /// whether a variable location is live throughout a loop, or whether its 29 /// location is clobbered (or redefined by another DBG_VALUE), without 30 /// exploring all the way through. 31 /// 32 /// To make this simpler we perform two kinds of analysis. First, we identify 33 /// every value defined by every instruction (ignoring those that only move 34 /// another value), then compute a map of which values are available for each 35 /// instruction. This is stronger than a reaching-def analysis, as we create 36 /// PHI values where other values merge. 37 /// 38 /// Secondly, for each variable, we effectively re-construct SSA using each 39 /// DBG_VALUE as a def. The DBG_VALUEs read a value-number computed by the 40 /// first analysis from the location they refer to. We can then compute the 41 /// dominance frontiers of where a variable has a value, and create PHI nodes 42 /// where they merge. 43 /// This isn't precisely SSA-construction though, because the function shape 44 /// is pre-defined. If a variable location requires a PHI node, but no 45 /// PHI for the relevant values is present in the function (as computed by the 46 /// first analysis), the location must be dropped. 47 /// 48 /// Once both are complete, we can pass back over all instructions knowing: 49 /// * What _value_ each variable should contain, either defined by an 50 /// instruction or where control flow merges 51 /// * What the location of that value is (if any). 52 /// Allowing us to create appropriate live-in DBG_VALUEs, and DBG_VALUEs when 53 /// a value moves location. After this pass runs, all variable locations within 54 /// a block should be specified by DBG_VALUEs within that block, allowing 55 /// DbgEntityHistoryCalculator to focus on individual blocks. 56 /// 57 /// This pass is able to go fast because the size of the first 58 /// reaching-definition analysis is proportional to the working-set size of 59 /// the function, which the compiler tries to keep small. (It's also 60 /// proportional to the number of blocks). Additionally, we repeatedly perform 61 /// the second reaching-definition analysis with only the variables and blocks 62 /// in a single lexical scope, exploiting their locality. 63 /// 64 /// Determining where PHIs happen is trickier with this approach, and it comes 65 /// to a head in the major problem for LiveDebugValues: is a value live-through 66 /// a loop, or not? Your garden-variety dataflow analysis aims to build a set of 67 /// facts about a function, however this analysis needs to generate new value 68 /// numbers at joins. 69 /// 70 /// To do this, consider a lattice of all definition values, from instructions 71 /// and from PHIs. Each PHI is characterised by the RPO number of the block it 72 /// occurs in. Each value pair A, B can be ordered by RPO(A) < RPO(B): 73 /// with non-PHI values at the top, and any PHI value in the last block (by RPO 74 /// order) at the bottom. 75 /// 76 /// (Awkwardly: lower-down-the _lattice_ means a greater RPO _number_. Below, 77 /// "rank" always refers to the former). 78 /// 79 /// At any join, for each register, we consider: 80 /// * All incoming values, and 81 /// * The PREVIOUS live-in value at this join. 82 /// If all incoming values agree: that's the live-in value. If they do not, the 83 /// incoming values are ranked according to the partial order, and the NEXT 84 /// LOWEST rank after the PREVIOUS live-in value is picked (multiple values of 85 /// the same rank are ignored as conflicting). If there are no candidate values, 86 /// or if the rank of the live-in would be lower than the rank of the current 87 /// blocks PHIs, create a new PHI value. 88 /// 89 /// Intuitively: if it's not immediately obvious what value a join should result 90 /// in, we iteratively descend from instruction-definitions down through PHI 91 /// values, getting closer to the current block each time. If the current block 92 /// is a loop head, this ordering is effectively searching outer levels of 93 /// loops, to find a value that's live-through the current loop. 94 /// 95 /// If there is no value that's live-through this loop, a PHI is created for 96 /// this location instead. We can't use a lower-ranked PHI because by definition 97 /// it doesn't dominate the current block. We can't create a PHI value any 98 /// earlier, because we risk creating a PHI value at a location where values do 99 /// not in fact merge, thus misrepresenting the truth, and not making the true 100 /// live-through value for variable locations. 101 /// 102 /// This algorithm applies to both calculating the availability of values in 103 /// the first analysis, and the location of variables in the second. However 104 /// for the second we add an extra dimension of pain: creating a variable 105 /// location PHI is only valid if, for each incoming edge, 106 /// * There is a value for the variable on the incoming edge, and 107 /// * All the edges have that value in the same register. 108 /// Or put another way: we can only create a variable-location PHI if there is 109 /// a matching machine-location PHI, each input to which is the variables value 110 /// in the predecessor block. 111 /// 112 /// To accommodate this difference, each point on the lattice is split in 113 /// two: a "proposed" PHI and "definite" PHI. Any PHI that can immediately 114 /// have a location determined are "definite" PHIs, and no further work is 115 /// needed. Otherwise, a location that all non-backedge predecessors agree 116 /// on is picked and propagated as a "proposed" PHI value. If that PHI value 117 /// is truly live-through, it'll appear on the loop backedges on the next 118 /// dataflow iteration, after which the block live-in moves to be a "definite" 119 /// PHI. If it's not truly live-through, the variable value will be downgraded 120 /// further as we explore the lattice, or remains "proposed" and is considered 121 /// invalid once dataflow completes. 122 /// 123 /// ### Terminology 124 /// 125 /// A machine location is a register or spill slot, a value is something that's 126 /// defined by an instruction or PHI node, while a variable value is the value 127 /// assigned to a variable. A variable location is a machine location, that must 128 /// contain the appropriate variable value. A value that is a PHI node is 129 /// occasionally called an mphi. 130 /// 131 /// The first dataflow problem is the "machine value location" problem, 132 /// because we're determining which machine locations contain which values. 133 /// The "locations" are constant: what's unknown is what value they contain. 134 /// 135 /// The second dataflow problem (the one for variables) is the "variable value 136 /// problem", because it's determining what values a variable has, rather than 137 /// what location those values are placed in. Unfortunately, it's not that 138 /// simple, because producing a PHI value always involves picking a location. 139 /// This is an imperfection that we just have to accept, at least for now. 140 /// 141 /// TODO: 142 /// Overlapping fragments 143 /// Entry values 144 /// Add back DEBUG statements for debugging this 145 /// Collect statistics 146 /// 147 //===----------------------------------------------------------------------===// 148 149 #include "llvm/ADT/DenseMap.h" 150 #include "llvm/ADT/PostOrderIterator.h" 151 #include "llvm/ADT/STLExtras.h" 152 #include "llvm/ADT/SmallPtrSet.h" 153 #include "llvm/ADT/SmallSet.h" 154 #include "llvm/ADT/SmallVector.h" 155 #include "llvm/ADT/Statistic.h" 156 #include "llvm/CodeGen/LexicalScopes.h" 157 #include "llvm/CodeGen/MachineBasicBlock.h" 158 #include "llvm/CodeGen/MachineFrameInfo.h" 159 #include "llvm/CodeGen/MachineFunction.h" 160 #include "llvm/CodeGen/MachineFunctionPass.h" 161 #include "llvm/CodeGen/MachineInstr.h" 162 #include "llvm/CodeGen/MachineInstrBuilder.h" 163 #include "llvm/CodeGen/MachineInstrBundle.h" 164 #include "llvm/CodeGen/MachineMemOperand.h" 165 #include "llvm/CodeGen/MachineOperand.h" 166 #include "llvm/CodeGen/PseudoSourceValue.h" 167 #include "llvm/CodeGen/RegisterScavenging.h" 168 #include "llvm/CodeGen/TargetFrameLowering.h" 169 #include "llvm/CodeGen/TargetInstrInfo.h" 170 #include "llvm/CodeGen/TargetLowering.h" 171 #include "llvm/CodeGen/TargetPassConfig.h" 172 #include "llvm/CodeGen/TargetRegisterInfo.h" 173 #include "llvm/CodeGen/TargetSubtargetInfo.h" 174 #include "llvm/Config/llvm-config.h" 175 #include "llvm/IR/DIBuilder.h" 176 #include "llvm/IR/DebugInfoMetadata.h" 177 #include "llvm/IR/DebugLoc.h" 178 #include "llvm/IR/Function.h" 179 #include "llvm/IR/Module.h" 180 #include "llvm/InitializePasses.h" 181 #include "llvm/MC/MCRegisterInfo.h" 182 #include "llvm/Pass.h" 183 #include "llvm/Support/Casting.h" 184 #include "llvm/Support/Compiler.h" 185 #include "llvm/Support/Debug.h" 186 #include "llvm/Support/TypeSize.h" 187 #include "llvm/Support/raw_ostream.h" 188 #include "llvm/Target/TargetMachine.h" 189 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h" 190 #include <algorithm> 191 #include <cassert> 192 #include <cstdint> 193 #include <functional> 194 #include <limits.h> 195 #include <limits> 196 #include <queue> 197 #include <tuple> 198 #include <utility> 199 #include <vector> 200 201 #include "InstrRefBasedImpl.h" 202 #include "LiveDebugValues.h" 203 204 using namespace llvm; 205 using namespace LiveDebugValues; 206 207 // SSAUpdaterImple sets DEBUG_TYPE, change it. 208 #undef DEBUG_TYPE 209 #define DEBUG_TYPE "livedebugvalues" 210 211 // Act more like the VarLoc implementation, by propagating some locations too 212 // far and ignoring some transfers. 213 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden, 214 cl::desc("Act like old LiveDebugValues did"), 215 cl::init(false)); 216 217 /// Thin wrapper around an integer -- designed to give more type safety to 218 /// spill location numbers. 219 class SpillLocationNo { 220 public: 221 explicit SpillLocationNo(unsigned SpillNo) : SpillNo(SpillNo) {} 222 unsigned SpillNo; 223 unsigned id() const { return SpillNo; } 224 }; 225 226 /// Collection of DBG_VALUEs observed when traversing a block. Records each 227 /// variable and the value the DBG_VALUE refers to. Requires the machine value 228 /// location dataflow algorithm to have run already, so that values can be 229 /// identified. 230 class VLocTracker { 231 public: 232 /// Map DebugVariable to the latest Value it's defined to have. 233 /// Needs to be a MapVector because we determine order-in-the-input-MIR from 234 /// the order in this container. 235 /// We only retain the last DbgValue in each block for each variable, to 236 /// determine the blocks live-out variable value. The Vars container forms the 237 /// transfer function for this block, as part of the dataflow analysis. The 238 /// movement of values between locations inside of a block is handled at a 239 /// much later stage, in the TransferTracker class. 240 MapVector<DebugVariable, DbgValue> Vars; 241 DenseMap<DebugVariable, const DILocation *> Scopes; 242 MachineBasicBlock *MBB; 243 244 public: 245 VLocTracker() {} 246 247 void defVar(const MachineInstr &MI, const DbgValueProperties &Properties, 248 Optional<ValueIDNum> ID) { 249 assert(MI.isDebugValue() || MI.isDebugRef()); 250 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 251 MI.getDebugLoc()->getInlinedAt()); 252 DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def) 253 : DbgValue(Properties, DbgValue::Undef); 254 255 // Attempt insertion; overwrite if it's already mapped. 256 auto Result = Vars.insert(std::make_pair(Var, Rec)); 257 if (!Result.second) 258 Result.first->second = Rec; 259 Scopes[Var] = MI.getDebugLoc().get(); 260 } 261 262 void defVar(const MachineInstr &MI, const MachineOperand &MO) { 263 // Only DBG_VALUEs can define constant-valued variables. 264 assert(MI.isDebugValue()); 265 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 266 MI.getDebugLoc()->getInlinedAt()); 267 DbgValueProperties Properties(MI); 268 DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const); 269 270 // Attempt insertion; overwrite if it's already mapped. 271 auto Result = Vars.insert(std::make_pair(Var, Rec)); 272 if (!Result.second) 273 Result.first->second = Rec; 274 Scopes[Var] = MI.getDebugLoc().get(); 275 } 276 }; 277 278 /// Tracker for converting machine value locations and variable values into 279 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs 280 /// specifying block live-in locations and transfers within blocks. 281 /// 282 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker 283 /// and must be initialized with the set of variable values that are live-in to 284 /// the block. The caller then repeatedly calls process(). TransferTracker picks 285 /// out variable locations for the live-in variable values (if there _is_ a 286 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is 287 /// stepped through, transfers of values between machine locations are 288 /// identified and if profitable, a DBG_VALUE created. 289 /// 290 /// This is where debug use-before-defs would be resolved: a variable with an 291 /// unavailable value could materialize in the middle of a block, when the 292 /// value becomes available. Or, we could detect clobbers and re-specify the 293 /// variable in a backup location. (XXX these are unimplemented). 294 class TransferTracker { 295 public: 296 const TargetInstrInfo *TII; 297 const TargetLowering *TLI; 298 /// This machine location tracker is assumed to always contain the up-to-date 299 /// value mapping for all machine locations. TransferTracker only reads 300 /// information from it. (XXX make it const?) 301 MLocTracker *MTracker; 302 MachineFunction &MF; 303 bool ShouldEmitDebugEntryValues; 304 305 /// Record of all changes in variable locations at a block position. Awkwardly 306 /// we allow inserting either before or after the point: MBB != nullptr 307 /// indicates it's before, otherwise after. 308 struct Transfer { 309 MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes 310 MachineBasicBlock *MBB; /// non-null if we should insert after. 311 SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert. 312 }; 313 314 struct LocAndProperties { 315 LocIdx Loc; 316 DbgValueProperties Properties; 317 }; 318 319 /// Collection of transfers (DBG_VALUEs) to be inserted. 320 SmallVector<Transfer, 32> Transfers; 321 322 /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences 323 /// between TransferTrackers view of variable locations and MLocTrackers. For 324 /// example, MLocTracker observes all clobbers, but TransferTracker lazily 325 /// does not. 326 std::vector<ValueIDNum> VarLocs; 327 328 /// Map from LocIdxes to which DebugVariables are based that location. 329 /// Mantained while stepping through the block. Not accurate if 330 /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx]. 331 std::map<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs; 332 333 /// Map from DebugVariable to it's current location and qualifying meta 334 /// information. To be used in conjunction with ActiveMLocs to construct 335 /// enough information for the DBG_VALUEs for a particular LocIdx. 336 DenseMap<DebugVariable, LocAndProperties> ActiveVLocs; 337 338 /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection. 339 SmallVector<MachineInstr *, 4> PendingDbgValues; 340 341 /// Record of a use-before-def: created when a value that's live-in to the 342 /// current block isn't available in any machine location, but it will be 343 /// defined in this block. 344 struct UseBeforeDef { 345 /// Value of this variable, def'd in block. 346 ValueIDNum ID; 347 /// Identity of this variable. 348 DebugVariable Var; 349 /// Additional variable properties. 350 DbgValueProperties Properties; 351 }; 352 353 /// Map from instruction index (within the block) to the set of UseBeforeDefs 354 /// that become defined at that instruction. 355 DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs; 356 357 /// The set of variables that are in UseBeforeDefs and can become a location 358 /// once the relevant value is defined. An element being erased from this 359 /// collection prevents the use-before-def materializing. 360 DenseSet<DebugVariable> UseBeforeDefVariables; 361 362 const TargetRegisterInfo &TRI; 363 const BitVector &CalleeSavedRegs; 364 365 TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker, 366 MachineFunction &MF, const TargetRegisterInfo &TRI, 367 const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC) 368 : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI), 369 CalleeSavedRegs(CalleeSavedRegs) { 370 TLI = MF.getSubtarget().getTargetLowering(); 371 auto &TM = TPC.getTM<TargetMachine>(); 372 ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues(); 373 } 374 375 /// Load object with live-in variable values. \p mlocs contains the live-in 376 /// values in each machine location, while \p vlocs the live-in variable 377 /// values. This method picks variable locations for the live-in variables, 378 /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other 379 /// object fields to track variable locations as we step through the block. 380 /// FIXME: could just examine mloctracker instead of passing in \p mlocs? 381 void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs, 382 SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs, 383 unsigned NumLocs) { 384 ActiveMLocs.clear(); 385 ActiveVLocs.clear(); 386 VarLocs.clear(); 387 VarLocs.reserve(NumLocs); 388 UseBeforeDefs.clear(); 389 UseBeforeDefVariables.clear(); 390 391 auto isCalleeSaved = [&](LocIdx L) { 392 unsigned Reg = MTracker->LocIdxToLocID[L]; 393 if (Reg >= MTracker->NumRegs) 394 return false; 395 for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI) 396 if (CalleeSavedRegs.test(*RAI)) 397 return true; 398 return false; 399 }; 400 401 // Map of the preferred location for each value. 402 std::map<ValueIDNum, LocIdx> ValueToLoc; 403 404 // Produce a map of value numbers to the current machine locs they live 405 // in. When emulating VarLocBasedImpl, there should only be one 406 // location; when not, we get to pick. 407 for (auto Location : MTracker->locations()) { 408 LocIdx Idx = Location.Idx; 409 ValueIDNum &VNum = MLocs[Idx.asU64()]; 410 VarLocs.push_back(VNum); 411 auto it = ValueToLoc.find(VNum); 412 // In order of preference, pick: 413 // * Callee saved registers, 414 // * Other registers, 415 // * Spill slots. 416 if (it == ValueToLoc.end() || MTracker->isSpill(it->second) || 417 (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) { 418 // Insert, or overwrite if insertion failed. 419 auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx)); 420 if (!PrefLocRes.second) 421 PrefLocRes.first->second = Idx; 422 } 423 } 424 425 // Now map variables to their picked LocIdxes. 426 for (auto Var : VLocs) { 427 if (Var.second.Kind == DbgValue::Const) { 428 PendingDbgValues.push_back( 429 emitMOLoc(Var.second.MO, Var.first, Var.second.Properties)); 430 continue; 431 } 432 433 // If the value has no location, we can't make a variable location. 434 const ValueIDNum &Num = Var.second.ID; 435 auto ValuesPreferredLoc = ValueToLoc.find(Num); 436 if (ValuesPreferredLoc == ValueToLoc.end()) { 437 // If it's a def that occurs in this block, register it as a 438 // use-before-def to be resolved as we step through the block. 439 if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI()) 440 addUseBeforeDef(Var.first, Var.second.Properties, Num); 441 else 442 recoverAsEntryValue(Var.first, Var.second.Properties, Num); 443 continue; 444 } 445 446 LocIdx M = ValuesPreferredLoc->second; 447 auto NewValue = LocAndProperties{M, Var.second.Properties}; 448 auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue)); 449 if (!Result.second) 450 Result.first->second = NewValue; 451 ActiveMLocs[M].insert(Var.first); 452 PendingDbgValues.push_back( 453 MTracker->emitLoc(M, Var.first, Var.second.Properties)); 454 } 455 flushDbgValues(MBB.begin(), &MBB); 456 } 457 458 /// Record that \p Var has value \p ID, a value that becomes available 459 /// later in the function. 460 void addUseBeforeDef(const DebugVariable &Var, 461 const DbgValueProperties &Properties, ValueIDNum ID) { 462 UseBeforeDef UBD = {ID, Var, Properties}; 463 UseBeforeDefs[ID.getInst()].push_back(UBD); 464 UseBeforeDefVariables.insert(Var); 465 } 466 467 /// After the instruction at index \p Inst and position \p pos has been 468 /// processed, check whether it defines a variable value in a use-before-def. 469 /// If so, and the variable value hasn't changed since the start of the 470 /// block, create a DBG_VALUE. 471 void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) { 472 auto MIt = UseBeforeDefs.find(Inst); 473 if (MIt == UseBeforeDefs.end()) 474 return; 475 476 for (auto &Use : MIt->second) { 477 LocIdx L = Use.ID.getLoc(); 478 479 // If something goes very wrong, we might end up labelling a COPY 480 // instruction or similar with an instruction number, where it doesn't 481 // actually define a new value, instead it moves a value. In case this 482 // happens, discard. 483 if (MTracker->LocIdxToIDNum[L] != Use.ID) 484 continue; 485 486 // If a different debug instruction defined the variable value / location 487 // since the start of the block, don't materialize this use-before-def. 488 if (!UseBeforeDefVariables.count(Use.Var)) 489 continue; 490 491 PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties)); 492 } 493 flushDbgValues(pos, nullptr); 494 } 495 496 /// Helper to move created DBG_VALUEs into Transfers collection. 497 void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) { 498 if (PendingDbgValues.size() == 0) 499 return; 500 501 // Pick out the instruction start position. 502 MachineBasicBlock::instr_iterator BundleStart; 503 if (MBB && Pos == MBB->begin()) 504 BundleStart = MBB->instr_begin(); 505 else 506 BundleStart = getBundleStart(Pos->getIterator()); 507 508 Transfers.push_back({BundleStart, MBB, PendingDbgValues}); 509 PendingDbgValues.clear(); 510 } 511 512 bool isEntryValueVariable(const DebugVariable &Var, 513 const DIExpression *Expr) const { 514 if (!Var.getVariable()->isParameter()) 515 return false; 516 517 if (Var.getInlinedAt()) 518 return false; 519 520 if (Expr->getNumElements() > 0) 521 return false; 522 523 return true; 524 } 525 526 bool isEntryValueValue(const ValueIDNum &Val) const { 527 // Must be in entry block (block number zero), and be a PHI / live-in value. 528 if (Val.getBlock() || !Val.isPHI()) 529 return false; 530 531 // Entry values must enter in a register. 532 if (MTracker->isSpill(Val.getLoc())) 533 return false; 534 535 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 536 Register FP = TRI.getFrameRegister(MF); 537 Register Reg = MTracker->LocIdxToLocID[Val.getLoc()]; 538 return Reg != SP && Reg != FP; 539 } 540 541 bool recoverAsEntryValue(const DebugVariable &Var, DbgValueProperties &Prop, 542 const ValueIDNum &Num) { 543 // Is this variable location a candidate to be an entry value. First, 544 // should we be trying this at all? 545 if (!ShouldEmitDebugEntryValues) 546 return false; 547 548 // Is the variable appropriate for entry values (i.e., is a parameter). 549 if (!isEntryValueVariable(Var, Prop.DIExpr)) 550 return false; 551 552 // Is the value assigned to this variable still the entry value? 553 if (!isEntryValueValue(Num)) 554 return false; 555 556 // Emit a variable location using an entry value expression. 557 DIExpression *NewExpr = 558 DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue); 559 Register Reg = MTracker->LocIdxToLocID[Num.getLoc()]; 560 MachineOperand MO = MachineOperand::CreateReg(Reg, false); 561 562 PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect})); 563 return true; 564 } 565 566 /// Change a variable value after encountering a DBG_VALUE inside a block. 567 void redefVar(const MachineInstr &MI) { 568 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 569 MI.getDebugLoc()->getInlinedAt()); 570 DbgValueProperties Properties(MI); 571 572 const MachineOperand &MO = MI.getOperand(0); 573 574 // Ignore non-register locations, we don't transfer those. 575 if (!MO.isReg() || MO.getReg() == 0) { 576 auto It = ActiveVLocs.find(Var); 577 if (It != ActiveVLocs.end()) { 578 ActiveMLocs[It->second.Loc].erase(Var); 579 ActiveVLocs.erase(It); 580 } 581 // Any use-before-defs no longer apply. 582 UseBeforeDefVariables.erase(Var); 583 return; 584 } 585 586 Register Reg = MO.getReg(); 587 LocIdx NewLoc = MTracker->getRegMLoc(Reg); 588 redefVar(MI, Properties, NewLoc); 589 } 590 591 /// Handle a change in variable location within a block. Terminate the 592 /// variables current location, and record the value it now refers to, so 593 /// that we can detect location transfers later on. 594 void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties, 595 Optional<LocIdx> OptNewLoc) { 596 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 597 MI.getDebugLoc()->getInlinedAt()); 598 // Any use-before-defs no longer apply. 599 UseBeforeDefVariables.erase(Var); 600 601 // Erase any previous location, 602 auto It = ActiveVLocs.find(Var); 603 if (It != ActiveVLocs.end()) 604 ActiveMLocs[It->second.Loc].erase(Var); 605 606 // If there _is_ no new location, all we had to do was erase. 607 if (!OptNewLoc) 608 return; 609 LocIdx NewLoc = *OptNewLoc; 610 611 // Check whether our local copy of values-by-location in #VarLocs is out of 612 // date. Wipe old tracking data for the location if it's been clobbered in 613 // the meantime. 614 if (MTracker->getNumAtPos(NewLoc) != VarLocs[NewLoc.asU64()]) { 615 for (auto &P : ActiveMLocs[NewLoc]) { 616 ActiveVLocs.erase(P); 617 } 618 ActiveMLocs[NewLoc.asU64()].clear(); 619 VarLocs[NewLoc.asU64()] = MTracker->getNumAtPos(NewLoc); 620 } 621 622 ActiveMLocs[NewLoc].insert(Var); 623 if (It == ActiveVLocs.end()) { 624 ActiveVLocs.insert( 625 std::make_pair(Var, LocAndProperties{NewLoc, Properties})); 626 } else { 627 It->second.Loc = NewLoc; 628 It->second.Properties = Properties; 629 } 630 } 631 632 /// Account for a location \p mloc being clobbered. Examine the variable 633 /// locations that will be terminated: and try to recover them by using 634 /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to 635 /// explicitly terminate a location if it can't be recovered. 636 void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos, 637 bool MakeUndef = true) { 638 auto ActiveMLocIt = ActiveMLocs.find(MLoc); 639 if (ActiveMLocIt == ActiveMLocs.end()) 640 return; 641 642 // What was the old variable value? 643 ValueIDNum OldValue = VarLocs[MLoc.asU64()]; 644 VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue; 645 646 // Examine the remaining variable locations: if we can find the same value 647 // again, we can recover the location. 648 Optional<LocIdx> NewLoc = None; 649 for (auto Loc : MTracker->locations()) 650 if (Loc.Value == OldValue) 651 NewLoc = Loc.Idx; 652 653 // If there is no location, and we weren't asked to make the variable 654 // explicitly undef, then stop here. 655 if (!NewLoc && !MakeUndef) { 656 // Try and recover a few more locations with entry values. 657 for (auto &Var : ActiveMLocIt->second) { 658 auto &Prop = ActiveVLocs.find(Var)->second.Properties; 659 recoverAsEntryValue(Var, Prop, OldValue); 660 } 661 flushDbgValues(Pos, nullptr); 662 return; 663 } 664 665 // Examine all the variables based on this location. 666 DenseSet<DebugVariable> NewMLocs; 667 for (auto &Var : ActiveMLocIt->second) { 668 auto ActiveVLocIt = ActiveVLocs.find(Var); 669 // Re-state the variable location: if there's no replacement then NewLoc 670 // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE 671 // identifying the alternative location will be emitted. 672 const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr; 673 DbgValueProperties Properties(Expr, false); 674 PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties)); 675 676 // Update machine locations <=> variable locations maps. Defer updating 677 // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator. 678 if (!NewLoc) { 679 ActiveVLocs.erase(ActiveVLocIt); 680 } else { 681 ActiveVLocIt->second.Loc = *NewLoc; 682 NewMLocs.insert(Var); 683 } 684 } 685 686 // Commit any deferred ActiveMLoc changes. 687 if (!NewMLocs.empty()) 688 for (auto &Var : NewMLocs) 689 ActiveMLocs[*NewLoc].insert(Var); 690 691 // We lazily track what locations have which values; if we've found a new 692 // location for the clobbered value, remember it. 693 if (NewLoc) 694 VarLocs[NewLoc->asU64()] = OldValue; 695 696 flushDbgValues(Pos, nullptr); 697 698 ActiveMLocIt->second.clear(); 699 } 700 701 /// Transfer variables based on \p Src to be based on \p Dst. This handles 702 /// both register copies as well as spills and restores. Creates DBG_VALUEs 703 /// describing the movement. 704 void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) { 705 // Does Src still contain the value num we expect? If not, it's been 706 // clobbered in the meantime, and our variable locations are stale. 707 if (VarLocs[Src.asU64()] != MTracker->getNumAtPos(Src)) 708 return; 709 710 // assert(ActiveMLocs[Dst].size() == 0); 711 //^^^ Legitimate scenario on account of un-clobbered slot being assigned to? 712 ActiveMLocs[Dst] = ActiveMLocs[Src]; 713 VarLocs[Dst.asU64()] = VarLocs[Src.asU64()]; 714 715 // For each variable based on Src; create a location at Dst. 716 for (auto &Var : ActiveMLocs[Src]) { 717 auto ActiveVLocIt = ActiveVLocs.find(Var); 718 assert(ActiveVLocIt != ActiveVLocs.end()); 719 ActiveVLocIt->second.Loc = Dst; 720 721 MachineInstr *MI = 722 MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties); 723 PendingDbgValues.push_back(MI); 724 } 725 ActiveMLocs[Src].clear(); 726 flushDbgValues(Pos, nullptr); 727 728 // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data 729 // about the old location. 730 if (EmulateOldLDV) 731 VarLocs[Src.asU64()] = ValueIDNum::EmptyValue; 732 } 733 734 MachineInstrBuilder emitMOLoc(const MachineOperand &MO, 735 const DebugVariable &Var, 736 const DbgValueProperties &Properties) { 737 DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, 738 Var.getVariable()->getScope(), 739 const_cast<DILocation *>(Var.getInlinedAt())); 740 auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)); 741 MIB.add(MO); 742 if (Properties.Indirect) 743 MIB.addImm(0); 744 else 745 MIB.addReg(0); 746 MIB.addMetadata(Var.getVariable()); 747 MIB.addMetadata(Properties.DIExpr); 748 return MIB; 749 } 750 }; 751 752 //===----------------------------------------------------------------------===// 753 // Implementation 754 //===----------------------------------------------------------------------===// 755 756 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX}; 757 758 #ifndef NDEBUG 759 void DbgValue::dump(const MLocTracker *MTrack) const { 760 if (Kind == Const) { 761 MO.dump(); 762 } else if (Kind == NoVal) { 763 dbgs() << "NoVal(" << BlockNo << ")"; 764 } else if (Kind == Proposed) { 765 dbgs() << "VPHI(" << MTrack->IDAsString(ID) << ")"; 766 } else { 767 assert(Kind == Def); 768 dbgs() << MTrack->IDAsString(ID); 769 } 770 if (Properties.Indirect) 771 dbgs() << " indir"; 772 if (Properties.DIExpr) 773 dbgs() << " " << *Properties.DIExpr; 774 } 775 #endif 776 777 MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII, 778 const TargetRegisterInfo &TRI, 779 const TargetLowering &TLI) 780 : MF(MF), TII(TII), TRI(TRI), TLI(TLI), 781 LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) { 782 NumRegs = TRI.getNumRegs(); 783 reset(); 784 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); 785 assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure 786 787 // Always track SP. This avoids the implicit clobbering caused by regmasks 788 // from affectings its values. (LiveDebugValues disbelieves calls and 789 // regmasks that claim to clobber SP). 790 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 791 if (SP) { 792 unsigned ID = getLocID(SP, false); 793 (void)lookupOrTrackRegister(ID); 794 } 795 } 796 797 LocIdx MLocTracker::trackRegister(unsigned ID) { 798 assert(ID != 0); 799 LocIdx NewIdx = LocIdx(LocIdxToIDNum.size()); 800 LocIdxToIDNum.grow(NewIdx); 801 LocIdxToLocID.grow(NewIdx); 802 803 // Default: it's an mphi. 804 ValueIDNum ValNum = {CurBB, 0, NewIdx}; 805 // Was this reg ever touched by a regmask? 806 for (const auto &MaskPair : reverse(Masks)) { 807 if (MaskPair.first->clobbersPhysReg(ID)) { 808 // There was an earlier def we skipped. 809 ValNum = {CurBB, MaskPair.second, NewIdx}; 810 break; 811 } 812 } 813 814 LocIdxToIDNum[NewIdx] = ValNum; 815 LocIdxToLocID[NewIdx] = ID; 816 return NewIdx; 817 } 818 819 void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB, 820 unsigned InstID) { 821 // Ensure SP exists, so that we don't override it later. 822 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 823 824 // Def any register we track have that isn't preserved. The regmask 825 // terminates the liveness of a register, meaning its value can't be 826 // relied upon -- we represent this by giving it a new value. 827 for (auto Location : locations()) { 828 unsigned ID = LocIdxToLocID[Location.Idx]; 829 // Don't clobber SP, even if the mask says it's clobbered. 830 if (ID < NumRegs && ID != SP && MO->clobbersPhysReg(ID)) 831 defReg(ID, CurBB, InstID); 832 } 833 Masks.push_back(std::make_pair(MO, InstID)); 834 } 835 836 LocIdx MLocTracker::getOrTrackSpillLoc(SpillLoc L) { 837 unsigned SpillID = SpillLocs.idFor(L); 838 if (SpillID == 0) { 839 SpillID = SpillLocs.insert(L); 840 unsigned L = getLocID(SpillID, true); 841 LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx 842 LocIdxToIDNum.grow(Idx); 843 LocIdxToLocID.grow(Idx); 844 LocIDToLocIdx.push_back(Idx); 845 LocIdxToLocID[Idx] = L; 846 return Idx; 847 } else { 848 unsigned L = getLocID(SpillID, true); 849 LocIdx Idx = LocIDToLocIdx[L]; 850 return Idx; 851 } 852 } 853 854 std::string MLocTracker::LocIdxToName(LocIdx Idx) const { 855 unsigned ID = LocIdxToLocID[Idx]; 856 if (ID >= NumRegs) 857 return Twine("slot ").concat(Twine(ID - NumRegs)).str(); 858 else 859 return TRI.getRegAsmName(ID).str(); 860 } 861 862 std::string MLocTracker::IDAsString(const ValueIDNum &Num) const { 863 std::string DefName = LocIdxToName(Num.getLoc()); 864 return Num.asString(DefName); 865 } 866 867 #ifndef NDEBUG 868 LLVM_DUMP_METHOD void MLocTracker::dump() { 869 for (auto Location : locations()) { 870 std::string MLocName = LocIdxToName(Location.Value.getLoc()); 871 std::string DefName = Location.Value.asString(MLocName); 872 dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n"; 873 } 874 } 875 876 LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() { 877 for (auto Location : locations()) { 878 std::string foo = LocIdxToName(Location.Idx); 879 dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n"; 880 } 881 } 882 #endif 883 884 MachineInstrBuilder MLocTracker::emitLoc(Optional<LocIdx> MLoc, 885 const DebugVariable &Var, 886 const DbgValueProperties &Properties) { 887 DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, 888 Var.getVariable()->getScope(), 889 const_cast<DILocation *>(Var.getInlinedAt())); 890 auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE)); 891 892 const DIExpression *Expr = Properties.DIExpr; 893 if (!MLoc) { 894 // No location -> DBG_VALUE $noreg 895 MIB.addReg(0); 896 MIB.addReg(0); 897 } else if (LocIdxToLocID[*MLoc] >= NumRegs) { 898 unsigned LocID = LocIdxToLocID[*MLoc]; 899 const SpillLoc &Spill = SpillLocs[LocID - NumRegs + 1]; 900 901 auto *TRI = MF.getSubtarget().getRegisterInfo(); 902 Expr = TRI->prependOffsetExpression(Expr, DIExpression::ApplyOffset, 903 Spill.SpillOffset); 904 unsigned Base = Spill.SpillBase; 905 MIB.addReg(Base); 906 MIB.addImm(0); 907 } else { 908 unsigned LocID = LocIdxToLocID[*MLoc]; 909 MIB.addReg(LocID); 910 if (Properties.Indirect) 911 MIB.addImm(0); 912 else 913 MIB.addReg(0); 914 } 915 916 MIB.addMetadata(Var.getVariable()); 917 MIB.addMetadata(Expr); 918 return MIB; 919 } 920 921 /// Default construct and initialize the pass. 922 InstrRefBasedLDV::InstrRefBasedLDV() {} 923 924 bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const { 925 unsigned Reg = MTracker->LocIdxToLocID[L]; 926 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 927 if (CalleeSavedRegs.test(*RAI)) 928 return true; 929 return false; 930 } 931 932 //===----------------------------------------------------------------------===// 933 // Debug Range Extension Implementation 934 //===----------------------------------------------------------------------===// 935 936 #ifndef NDEBUG 937 // Something to restore in the future. 938 // void InstrRefBasedLDV::printVarLocInMBB(..) 939 #endif 940 941 SpillLoc 942 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { 943 assert(MI.hasOneMemOperand() && 944 "Spill instruction does not have exactly one memory operand?"); 945 auto MMOI = MI.memoperands_begin(); 946 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 947 assert(PVal->kind() == PseudoSourceValue::FixedStack && 948 "Inconsistent memory operand in spill instruction"); 949 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); 950 const MachineBasicBlock *MBB = MI.getParent(); 951 Register Reg; 952 StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); 953 return {Reg, Offset}; 954 } 955 956 /// End all previous ranges related to @MI and start a new range from @MI 957 /// if it is a DBG_VALUE instr. 958 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) { 959 if (!MI.isDebugValue()) 960 return false; 961 962 const DILocalVariable *Var = MI.getDebugVariable(); 963 const DIExpression *Expr = MI.getDebugExpression(); 964 const DILocation *DebugLoc = MI.getDebugLoc(); 965 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 966 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 967 "Expected inlined-at fields to agree"); 968 969 DebugVariable V(Var, Expr, InlinedAt); 970 DbgValueProperties Properties(MI); 971 972 // If there are no instructions in this lexical scope, do no location tracking 973 // at all, this variable shouldn't get a legitimate location range. 974 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); 975 if (Scope == nullptr) 976 return true; // handled it; by doing nothing 977 978 // For now, ignore DBG_VALUE_LISTs when extending ranges. Allow it to 979 // contribute to locations in this block, but don't propagate further. 980 // Interpret it like a DBG_VALUE $noreg. 981 if (MI.isDebugValueList()) { 982 if (VTracker) 983 VTracker->defVar(MI, Properties, None); 984 if (TTracker) 985 TTracker->redefVar(MI, Properties, None); 986 return true; 987 } 988 989 const MachineOperand &MO = MI.getOperand(0); 990 991 // MLocTracker needs to know that this register is read, even if it's only 992 // read by a debug inst. 993 if (MO.isReg() && MO.getReg() != 0) 994 (void)MTracker->readReg(MO.getReg()); 995 996 // If we're preparing for the second analysis (variables), the machine value 997 // locations are already solved, and we report this DBG_VALUE and the value 998 // it refers to to VLocTracker. 999 if (VTracker) { 1000 if (MO.isReg()) { 1001 // Feed defVar the new variable location, or if this is a 1002 // DBG_VALUE $noreg, feed defVar None. 1003 if (MO.getReg()) 1004 VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg())); 1005 else 1006 VTracker->defVar(MI, Properties, None); 1007 } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() || 1008 MI.getOperand(0).isCImm()) { 1009 VTracker->defVar(MI, MI.getOperand(0)); 1010 } 1011 } 1012 1013 // If performing final tracking of transfers, report this variable definition 1014 // to the TransferTracker too. 1015 if (TTracker) 1016 TTracker->redefVar(MI); 1017 return true; 1018 } 1019 1020 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI, 1021 ValueIDNum **MLiveOuts, 1022 ValueIDNum **MLiveIns) { 1023 if (!MI.isDebugRef()) 1024 return false; 1025 1026 // Only handle this instruction when we are building the variable value 1027 // transfer function. 1028 if (!VTracker) 1029 return false; 1030 1031 unsigned InstNo = MI.getOperand(0).getImm(); 1032 unsigned OpNo = MI.getOperand(1).getImm(); 1033 1034 const DILocalVariable *Var = MI.getDebugVariable(); 1035 const DIExpression *Expr = MI.getDebugExpression(); 1036 const DILocation *DebugLoc = MI.getDebugLoc(); 1037 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 1038 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 1039 "Expected inlined-at fields to agree"); 1040 1041 DebugVariable V(Var, Expr, InlinedAt); 1042 1043 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); 1044 if (Scope == nullptr) 1045 return true; // Handled by doing nothing. This variable is never in scope. 1046 1047 const MachineFunction &MF = *MI.getParent()->getParent(); 1048 1049 // Various optimizations may have happened to the value during codegen, 1050 // recorded in the value substitution table. Apply any substitutions to 1051 // the instruction / operand number in this DBG_INSTR_REF, and collect 1052 // any subregister extractions performed during optimization. 1053 1054 // Create dummy substitution with Src set, for lookup. 1055 auto SoughtSub = 1056 MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0); 1057 1058 SmallVector<unsigned, 4> SeenSubregs; 1059 auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub); 1060 while (LowerBoundIt != MF.DebugValueSubstitutions.end() && 1061 LowerBoundIt->Src == SoughtSub.Src) { 1062 std::tie(InstNo, OpNo) = LowerBoundIt->Dest; 1063 SoughtSub.Src = LowerBoundIt->Dest; 1064 if (unsigned Subreg = LowerBoundIt->Subreg) 1065 SeenSubregs.push_back(Subreg); 1066 LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub); 1067 } 1068 1069 // Default machine value number is <None> -- if no instruction defines 1070 // the corresponding value, it must have been optimized out. 1071 Optional<ValueIDNum> NewID = None; 1072 1073 // Try to lookup the instruction number, and find the machine value number 1074 // that it defines. It could be an instruction, or a PHI. 1075 auto InstrIt = DebugInstrNumToInstr.find(InstNo); 1076 auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(), 1077 DebugPHINumToValue.end(), InstNo); 1078 if (InstrIt != DebugInstrNumToInstr.end()) { 1079 const MachineInstr &TargetInstr = *InstrIt->second.first; 1080 uint64_t BlockNo = TargetInstr.getParent()->getNumber(); 1081 1082 // Pick out the designated operand. 1083 assert(OpNo < TargetInstr.getNumOperands()); 1084 const MachineOperand &MO = TargetInstr.getOperand(OpNo); 1085 1086 // Today, this can only be a register. 1087 assert(MO.isReg() && MO.isDef()); 1088 1089 unsigned LocID = MTracker->getLocID(MO.getReg(), false); 1090 LocIdx L = MTracker->LocIDToLocIdx[LocID]; 1091 NewID = ValueIDNum(BlockNo, InstrIt->second.second, L); 1092 } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) { 1093 // It's actually a PHI value. Which value it is might not be obvious, use 1094 // the resolver helper to find out. 1095 NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns, 1096 MI, InstNo); 1097 } 1098 1099 // Apply any subregister extractions, in reverse. We might have seen code 1100 // like this: 1101 // CALL64 @foo, implicit-def $rax 1102 // %0:gr64 = COPY $rax 1103 // %1:gr32 = COPY %0.sub_32bit 1104 // %2:gr16 = COPY %1.sub_16bit 1105 // %3:gr8 = COPY %2.sub_8bit 1106 // In which case each copy would have been recorded as a substitution with 1107 // a subregister qualifier. Apply those qualifiers now. 1108 if (NewID && !SeenSubregs.empty()) { 1109 unsigned Offset = 0; 1110 unsigned Size = 0; 1111 1112 // Look at each subregister that we passed through, and progressively 1113 // narrow in, accumulating any offsets that occur. Substitutions should 1114 // only ever be the same or narrower width than what they read from; 1115 // iterate in reverse order so that we go from wide to small. 1116 for (unsigned Subreg : reverse(SeenSubregs)) { 1117 unsigned ThisSize = TRI->getSubRegIdxSize(Subreg); 1118 unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg); 1119 Offset += ThisOffset; 1120 Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize); 1121 } 1122 1123 // If that worked, look for an appropriate subregister with the register 1124 // where the define happens. Don't look at values that were defined during 1125 // a stack write: we can't currently express register locations within 1126 // spills. 1127 LocIdx L = NewID->getLoc(); 1128 if (NewID && !MTracker->isSpill(L)) { 1129 // Find the register class for the register where this def happened. 1130 // FIXME: no index for this? 1131 Register Reg = MTracker->LocIdxToLocID[L]; 1132 const TargetRegisterClass *TRC = nullptr; 1133 for (auto *TRCI : TRI->regclasses()) 1134 if (TRCI->contains(Reg)) 1135 TRC = TRCI; 1136 assert(TRC && "Couldn't find target register class?"); 1137 1138 // If the register we have isn't the right size or in the right place, 1139 // Try to find a subregister inside it. 1140 unsigned MainRegSize = TRI->getRegSizeInBits(*TRC); 1141 if (Size != MainRegSize || Offset) { 1142 // Enumerate all subregisters, searching. 1143 Register NewReg = 0; 1144 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) { 1145 unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI); 1146 unsigned SubregSize = TRI->getSubRegIdxSize(Subreg); 1147 unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg); 1148 if (SubregSize == Size && SubregOffset == Offset) { 1149 NewReg = *SRI; 1150 break; 1151 } 1152 } 1153 1154 // If we didn't find anything: there's no way to express our value. 1155 if (!NewReg) { 1156 NewID = None; 1157 } else { 1158 // Re-state the value as being defined within the subregister 1159 // that we found. 1160 LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg); 1161 NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc); 1162 } 1163 } 1164 } else { 1165 // If we can't handle subregisters, unset the new value. 1166 NewID = None; 1167 } 1168 } 1169 1170 // We, we have a value number or None. Tell the variable value tracker about 1171 // it. The rest of this LiveDebugValues implementation acts exactly the same 1172 // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that 1173 // aren't immediately available). 1174 DbgValueProperties Properties(Expr, false); 1175 VTracker->defVar(MI, Properties, NewID); 1176 1177 // If we're on the final pass through the function, decompose this INSTR_REF 1178 // into a plain DBG_VALUE. 1179 if (!TTracker) 1180 return true; 1181 1182 // Pick a location for the machine value number, if such a location exists. 1183 // (This information could be stored in TransferTracker to make it faster). 1184 Optional<LocIdx> FoundLoc = None; 1185 for (auto Location : MTracker->locations()) { 1186 LocIdx CurL = Location.Idx; 1187 ValueIDNum ID = MTracker->LocIdxToIDNum[CurL]; 1188 if (NewID && ID == NewID) { 1189 // If this is the first location with that value, pick it. Otherwise, 1190 // consider whether it's a "longer term" location. 1191 if (!FoundLoc) { 1192 FoundLoc = CurL; 1193 continue; 1194 } 1195 1196 if (MTracker->isSpill(CurL)) 1197 FoundLoc = CurL; // Spills are a longer term location. 1198 else if (!MTracker->isSpill(*FoundLoc) && 1199 !MTracker->isSpill(CurL) && 1200 !isCalleeSaved(*FoundLoc) && 1201 isCalleeSaved(CurL)) 1202 FoundLoc = CurL; // Callee saved regs are longer term than normal. 1203 } 1204 } 1205 1206 // Tell transfer tracker that the variable value has changed. 1207 TTracker->redefVar(MI, Properties, FoundLoc); 1208 1209 // If there was a value with no location; but the value is defined in a 1210 // later instruction in this block, this is a block-local use-before-def. 1211 if (!FoundLoc && NewID && NewID->getBlock() == CurBB && 1212 NewID->getInst() > CurInst) 1213 TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID); 1214 1215 // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant. 1216 // This DBG_VALUE is potentially a $noreg / undefined location, if 1217 // FoundLoc is None. 1218 // (XXX -- could morph the DBG_INSTR_REF in the future). 1219 MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties); 1220 TTracker->PendingDbgValues.push_back(DbgMI); 1221 TTracker->flushDbgValues(MI.getIterator(), nullptr); 1222 return true; 1223 } 1224 1225 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) { 1226 if (!MI.isDebugPHI()) 1227 return false; 1228 1229 // Analyse these only when solving the machine value location problem. 1230 if (VTracker || TTracker) 1231 return true; 1232 1233 // First operand is the value location, either a stack slot or register. 1234 // Second is the debug instruction number of the original PHI. 1235 const MachineOperand &MO = MI.getOperand(0); 1236 unsigned InstrNum = MI.getOperand(1).getImm(); 1237 1238 if (MO.isReg()) { 1239 // The value is whatever's currently in the register. Read and record it, 1240 // to be analysed later. 1241 Register Reg = MO.getReg(); 1242 ValueIDNum Num = MTracker->readReg(Reg); 1243 auto PHIRec = DebugPHIRecord( 1244 {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)}); 1245 DebugPHINumToValue.push_back(PHIRec); 1246 1247 // Subsequent register operations, or variable locations, might occur for 1248 // any of the subregisters of this DBG_PHIs operand. Ensure that all 1249 // registers aliasing this register are tracked. 1250 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1251 MTracker->lookupOrTrackRegister(*RAI); 1252 } else { 1253 // The value is whatever's in this stack slot. 1254 assert(MO.isFI()); 1255 unsigned FI = MO.getIndex(); 1256 1257 // If the stack slot is dead, then this was optimized away. 1258 // FIXME: stack slot colouring should account for slots that get merged. 1259 if (MFI->isDeadObjectIndex(FI)) 1260 return true; 1261 1262 // Identify this spill slot. 1263 Register Base; 1264 StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base); 1265 SpillLoc SL = {Base, Offs}; 1266 Optional<ValueIDNum> Num = MTracker->readSpill(SL); 1267 1268 if (!Num) 1269 // Nothing ever writes to this slot. Curious, but nothing we can do. 1270 return true; 1271 1272 // Record this DBG_PHI for later analysis. 1273 auto DbgPHI = DebugPHIRecord( 1274 {InstrNum, MI.getParent(), *Num, *MTracker->getSpillMLoc(SL)}); 1275 DebugPHINumToValue.push_back(DbgPHI); 1276 } 1277 1278 return true; 1279 } 1280 1281 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) { 1282 // Meta Instructions do not affect the debug liveness of any register they 1283 // define. 1284 if (MI.isImplicitDef()) { 1285 // Except when there's an implicit def, and the location it's defining has 1286 // no value number. The whole point of an implicit def is to announce that 1287 // the register is live, without be specific about it's value. So define 1288 // a value if there isn't one already. 1289 ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg()); 1290 // Has a legitimate value -> ignore the implicit def. 1291 if (Num.getLoc() != 0) 1292 return; 1293 // Otherwise, def it here. 1294 } else if (MI.isMetaInstruction()) 1295 return; 1296 1297 MachineFunction *MF = MI.getMF(); 1298 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1299 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 1300 1301 // Find the regs killed by MI, and find regmasks of preserved regs. 1302 // Max out the number of statically allocated elements in `DeadRegs`, as this 1303 // prevents fallback to std::set::count() operations. 1304 SmallSet<uint32_t, 32> DeadRegs; 1305 SmallVector<const uint32_t *, 4> RegMasks; 1306 SmallVector<const MachineOperand *, 4> RegMaskPtrs; 1307 for (const MachineOperand &MO : MI.operands()) { 1308 // Determine whether the operand is a register def. 1309 if (MO.isReg() && MO.isDef() && MO.getReg() && 1310 Register::isPhysicalRegister(MO.getReg()) && 1311 !(MI.isCall() && MO.getReg() == SP)) { 1312 // Remove ranges of all aliased registers. 1313 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1314 // FIXME: Can we break out of this loop early if no insertion occurs? 1315 DeadRegs.insert(*RAI); 1316 } else if (MO.isRegMask()) { 1317 RegMasks.push_back(MO.getRegMask()); 1318 RegMaskPtrs.push_back(&MO); 1319 } 1320 } 1321 1322 // Tell MLocTracker about all definitions, of regmasks and otherwise. 1323 for (uint32_t DeadReg : DeadRegs) 1324 MTracker->defReg(DeadReg, CurBB, CurInst); 1325 1326 for (auto *MO : RegMaskPtrs) 1327 MTracker->writeRegMask(MO, CurBB, CurInst); 1328 1329 if (!TTracker) 1330 return; 1331 1332 // When committing variable values to locations: tell transfer tracker that 1333 // we've clobbered things. It may be able to recover the variable from a 1334 // different location. 1335 1336 // Inform TTracker about any direct clobbers. 1337 for (uint32_t DeadReg : DeadRegs) { 1338 LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg); 1339 TTracker->clobberMloc(Loc, MI.getIterator(), false); 1340 } 1341 1342 // Look for any clobbers performed by a register mask. Only test locations 1343 // that are actually being tracked. 1344 for (auto L : MTracker->locations()) { 1345 // Stack locations can't be clobbered by regmasks. 1346 if (MTracker->isSpill(L.Idx)) 1347 continue; 1348 1349 Register Reg = MTracker->LocIdxToLocID[L.Idx]; 1350 for (auto *MO : RegMaskPtrs) 1351 if (MO->clobbersPhysReg(Reg)) 1352 TTracker->clobberMloc(L.Idx, MI.getIterator(), false); 1353 } 1354 } 1355 1356 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) { 1357 ValueIDNum SrcValue = MTracker->readReg(SrcRegNum); 1358 1359 MTracker->setReg(DstRegNum, SrcValue); 1360 1361 // In all circumstances, re-def the super registers. It's definitely a new 1362 // value now. This doesn't uniquely identify the composition of subregs, for 1363 // example, two identical values in subregisters composed in different 1364 // places would not get equal value numbers. 1365 for (MCSuperRegIterator SRI(DstRegNum, TRI); SRI.isValid(); ++SRI) 1366 MTracker->defReg(*SRI, CurBB, CurInst); 1367 1368 // If we're emulating VarLocBasedImpl, just define all the subregisters. 1369 // DBG_VALUEs of them will expect to be tracked from the DBG_VALUE, not 1370 // through prior copies. 1371 if (EmulateOldLDV) { 1372 for (MCSubRegIndexIterator DRI(DstRegNum, TRI); DRI.isValid(); ++DRI) 1373 MTracker->defReg(DRI.getSubReg(), CurBB, CurInst); 1374 return; 1375 } 1376 1377 // Otherwise, actually copy subregisters from one location to another. 1378 // XXX: in addition, any subregisters of DstRegNum that don't line up with 1379 // the source register should be def'd. 1380 for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) { 1381 unsigned SrcSubReg = SRI.getSubReg(); 1382 unsigned SubRegIdx = SRI.getSubRegIndex(); 1383 unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx); 1384 if (!DstSubReg) 1385 continue; 1386 1387 // Do copy. There are two matching subregisters, the source value should 1388 // have been def'd when the super-reg was, the latter might not be tracked 1389 // yet. 1390 // This will force SrcSubReg to be tracked, if it isn't yet. 1391 (void)MTracker->readReg(SrcSubReg); 1392 LocIdx SrcL = MTracker->getRegMLoc(SrcSubReg); 1393 assert(SrcL.asU64()); 1394 (void)MTracker->readReg(DstSubReg); 1395 LocIdx DstL = MTracker->getRegMLoc(DstSubReg); 1396 assert(DstL.asU64()); 1397 (void)DstL; 1398 ValueIDNum CpyValue = {SrcValue.getBlock(), SrcValue.getInst(), SrcL}; 1399 1400 MTracker->setReg(DstSubReg, CpyValue); 1401 } 1402 } 1403 1404 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI, 1405 MachineFunction *MF) { 1406 // TODO: Handle multiple stores folded into one. 1407 if (!MI.hasOneMemOperand()) 1408 return false; 1409 1410 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) 1411 return false; // This is not a spill instruction, since no valid size was 1412 // returned from either function. 1413 1414 return true; 1415 } 1416 1417 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI, 1418 MachineFunction *MF, unsigned &Reg) { 1419 if (!isSpillInstruction(MI, MF)) 1420 return false; 1421 1422 int FI; 1423 Reg = TII->isStoreToStackSlotPostFE(MI, FI); 1424 return Reg != 0; 1425 } 1426 1427 Optional<SpillLoc> 1428 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI, 1429 MachineFunction *MF, unsigned &Reg) { 1430 if (!MI.hasOneMemOperand()) 1431 return None; 1432 1433 // FIXME: Handle folded restore instructions with more than one memory 1434 // operand. 1435 if (MI.getRestoreSize(TII)) { 1436 Reg = MI.getOperand(0).getReg(); 1437 return extractSpillBaseRegAndOffset(MI); 1438 } 1439 return None; 1440 } 1441 1442 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) { 1443 // XXX -- it's too difficult to implement VarLocBasedImpl's stack location 1444 // limitations under the new model. Therefore, when comparing them, compare 1445 // versions that don't attempt spills or restores at all. 1446 if (EmulateOldLDV) 1447 return false; 1448 1449 MachineFunction *MF = MI.getMF(); 1450 unsigned Reg; 1451 Optional<SpillLoc> Loc; 1452 1453 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); 1454 1455 // First, if there are any DBG_VALUEs pointing at a spill slot that is 1456 // written to, terminate that variable location. The value in memory 1457 // will have changed. DbgEntityHistoryCalculator doesn't try to detect this. 1458 if (isSpillInstruction(MI, MF)) { 1459 Loc = extractSpillBaseRegAndOffset(MI); 1460 1461 if (TTracker) { 1462 Optional<LocIdx> MLoc = MTracker->getSpillMLoc(*Loc); 1463 if (MLoc) { 1464 // Un-set this location before clobbering, so that we don't salvage 1465 // the variable location back to the same place. 1466 MTracker->setMLoc(*MLoc, ValueIDNum::EmptyValue); 1467 TTracker->clobberMloc(*MLoc, MI.getIterator()); 1468 } 1469 } 1470 } 1471 1472 // Try to recognise spill and restore instructions that may transfer a value. 1473 if (isLocationSpill(MI, MF, Reg)) { 1474 Loc = extractSpillBaseRegAndOffset(MI); 1475 auto ValueID = MTracker->readReg(Reg); 1476 1477 // If the location is empty, produce a phi, signify it's the live-in value. 1478 if (ValueID.getLoc() == 0) 1479 ValueID = {CurBB, 0, MTracker->getRegMLoc(Reg)}; 1480 1481 MTracker->setSpill(*Loc, ValueID); 1482 auto OptSpillLocIdx = MTracker->getSpillMLoc(*Loc); 1483 assert(OptSpillLocIdx && "Spill slot set but has no LocIdx?"); 1484 LocIdx SpillLocIdx = *OptSpillLocIdx; 1485 1486 // Tell TransferTracker about this spill, produce DBG_VALUEs for it. 1487 if (TTracker) 1488 TTracker->transferMlocs(MTracker->getRegMLoc(Reg), SpillLocIdx, 1489 MI.getIterator()); 1490 } else { 1491 if (!(Loc = isRestoreInstruction(MI, MF, Reg))) 1492 return false; 1493 1494 // Is there a value to be restored? 1495 auto OptValueID = MTracker->readSpill(*Loc); 1496 if (OptValueID) { 1497 ValueIDNum ValueID = *OptValueID; 1498 LocIdx SpillLocIdx = *MTracker->getSpillMLoc(*Loc); 1499 // XXX -- can we recover sub-registers of this value? Until we can, first 1500 // overwrite all defs of the register being restored to. 1501 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1502 MTracker->defReg(*RAI, CurBB, CurInst); 1503 1504 // Now override the reg we're restoring to. 1505 MTracker->setReg(Reg, ValueID); 1506 1507 // Report this restore to the transfer tracker too. 1508 if (TTracker) 1509 TTracker->transferMlocs(SpillLocIdx, MTracker->getRegMLoc(Reg), 1510 MI.getIterator()); 1511 } else { 1512 // There isn't anything in the location; not clear if this is a code path 1513 // that still runs. Def this register anyway just in case. 1514 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1515 MTracker->defReg(*RAI, CurBB, CurInst); 1516 1517 // Force the spill slot to be tracked. 1518 LocIdx L = MTracker->getOrTrackSpillLoc(*Loc); 1519 1520 // Set the restored value to be a machine phi number, signifying that it's 1521 // whatever the spills live-in value is in this block. Definitely has 1522 // a LocIdx due to the setSpill above. 1523 ValueIDNum ValueID = {CurBB, 0, L}; 1524 MTracker->setReg(Reg, ValueID); 1525 MTracker->setSpill(*Loc, ValueID); 1526 } 1527 } 1528 return true; 1529 } 1530 1531 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) { 1532 auto DestSrc = TII->isCopyInstr(MI); 1533 if (!DestSrc) 1534 return false; 1535 1536 const MachineOperand *DestRegOp = DestSrc->Destination; 1537 const MachineOperand *SrcRegOp = DestSrc->Source; 1538 1539 auto isCalleeSavedReg = [&](unsigned Reg) { 1540 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1541 if (CalleeSavedRegs.test(*RAI)) 1542 return true; 1543 return false; 1544 }; 1545 1546 Register SrcReg = SrcRegOp->getReg(); 1547 Register DestReg = DestRegOp->getReg(); 1548 1549 // Ignore identity copies. Yep, these make it as far as LiveDebugValues. 1550 if (SrcReg == DestReg) 1551 return true; 1552 1553 // For emulating VarLocBasedImpl: 1554 // We want to recognize instructions where destination register is callee 1555 // saved register. If register that could be clobbered by the call is 1556 // included, there would be a great chance that it is going to be clobbered 1557 // soon. It is more likely that previous register, which is callee saved, is 1558 // going to stay unclobbered longer, even if it is killed. 1559 // 1560 // For InstrRefBasedImpl, we can track multiple locations per value, so 1561 // ignore this condition. 1562 if (EmulateOldLDV && !isCalleeSavedReg(DestReg)) 1563 return false; 1564 1565 // InstrRefBasedImpl only followed killing copies. 1566 if (EmulateOldLDV && !SrcRegOp->isKill()) 1567 return false; 1568 1569 // Copy MTracker info, including subregs if available. 1570 InstrRefBasedLDV::performCopy(SrcReg, DestReg); 1571 1572 // Only produce a transfer of DBG_VALUE within a block where old LDV 1573 // would have. We might make use of the additional value tracking in some 1574 // other way, later. 1575 if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill()) 1576 TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg), 1577 MTracker->getRegMLoc(DestReg), MI.getIterator()); 1578 1579 // VarLocBasedImpl would quit tracking the old location after copying. 1580 if (EmulateOldLDV && SrcReg != DestReg) 1581 MTracker->defReg(SrcReg, CurBB, CurInst); 1582 1583 // Finally, the copy might have clobbered variables based on the destination 1584 // register. Tell TTracker about it, in case a backup location exists. 1585 if (TTracker) { 1586 for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) { 1587 LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI); 1588 TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false); 1589 } 1590 } 1591 1592 return true; 1593 } 1594 1595 /// Accumulate a mapping between each DILocalVariable fragment and other 1596 /// fragments of that DILocalVariable which overlap. This reduces work during 1597 /// the data-flow stage from "Find any overlapping fragments" to "Check if the 1598 /// known-to-overlap fragments are present". 1599 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for 1600 /// fragment usage. 1601 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) { 1602 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), 1603 MI.getDebugLoc()->getInlinedAt()); 1604 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); 1605 1606 // If this is the first sighting of this variable, then we are guaranteed 1607 // there are currently no overlapping fragments either. Initialize the set 1608 // of seen fragments, record no overlaps for the current one, and return. 1609 auto SeenIt = SeenFragments.find(MIVar.getVariable()); 1610 if (SeenIt == SeenFragments.end()) { 1611 SmallSet<FragmentInfo, 4> OneFragment; 1612 OneFragment.insert(ThisFragment); 1613 SeenFragments.insert({MIVar.getVariable(), OneFragment}); 1614 1615 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1616 return; 1617 } 1618 1619 // If this particular Variable/Fragment pair already exists in the overlap 1620 // map, it has already been accounted for. 1621 auto IsInOLapMap = 1622 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1623 if (!IsInOLapMap.second) 1624 return; 1625 1626 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; 1627 auto &AllSeenFragments = SeenIt->second; 1628 1629 // Otherwise, examine all other seen fragments for this variable, with "this" 1630 // fragment being a previously unseen fragment. Record any pair of 1631 // overlapping fragments. 1632 for (auto &ASeenFragment : AllSeenFragments) { 1633 // Does this previously seen fragment overlap? 1634 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { 1635 // Yes: Mark the current fragment as being overlapped. 1636 ThisFragmentsOverlaps.push_back(ASeenFragment); 1637 // Mark the previously seen fragment as being overlapped by the current 1638 // one. 1639 auto ASeenFragmentsOverlaps = 1640 OverlapFragments.find({MIVar.getVariable(), ASeenFragment}); 1641 assert(ASeenFragmentsOverlaps != OverlapFragments.end() && 1642 "Previously seen var fragment has no vector of overlaps"); 1643 ASeenFragmentsOverlaps->second.push_back(ThisFragment); 1644 } 1645 } 1646 1647 AllSeenFragments.insert(ThisFragment); 1648 } 1649 1650 void InstrRefBasedLDV::process(MachineInstr &MI, ValueIDNum **MLiveOuts, 1651 ValueIDNum **MLiveIns) { 1652 // Try to interpret an MI as a debug or transfer instruction. Only if it's 1653 // none of these should we interpret it's register defs as new value 1654 // definitions. 1655 if (transferDebugValue(MI)) 1656 return; 1657 if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns)) 1658 return; 1659 if (transferDebugPHI(MI)) 1660 return; 1661 if (transferRegisterCopy(MI)) 1662 return; 1663 if (transferSpillOrRestoreInst(MI)) 1664 return; 1665 transferRegisterDef(MI); 1666 } 1667 1668 void InstrRefBasedLDV::produceMLocTransferFunction( 1669 MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer, 1670 unsigned MaxNumBlocks) { 1671 // Because we try to optimize around register mask operands by ignoring regs 1672 // that aren't currently tracked, we set up something ugly for later: RegMask 1673 // operands that are seen earlier than the first use of a register, still need 1674 // to clobber that register in the transfer function. But this information 1675 // isn't actively recorded. Instead, we track each RegMask used in each block, 1676 // and accumulated the clobbered but untracked registers in each block into 1677 // the following bitvector. Later, if new values are tracked, we can add 1678 // appropriate clobbers. 1679 SmallVector<BitVector, 32> BlockMasks; 1680 BlockMasks.resize(MaxNumBlocks); 1681 1682 // Reserve one bit per register for the masks described above. 1683 unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs()); 1684 for (auto &BV : BlockMasks) 1685 BV.resize(TRI->getNumRegs(), true); 1686 1687 // Step through all instructions and inhale the transfer function. 1688 for (auto &MBB : MF) { 1689 // Object fields that are read by trackers to know where we are in the 1690 // function. 1691 CurBB = MBB.getNumber(); 1692 CurInst = 1; 1693 1694 // Set all machine locations to a PHI value. For transfer function 1695 // production only, this signifies the live-in value to the block. 1696 MTracker->reset(); 1697 MTracker->setMPhis(CurBB); 1698 1699 // Step through each instruction in this block. 1700 for (auto &MI : MBB) { 1701 process(MI); 1702 // Also accumulate fragment map. 1703 if (MI.isDebugValue()) 1704 accumulateFragmentMap(MI); 1705 1706 // Create a map from the instruction number (if present) to the 1707 // MachineInstr and its position. 1708 if (uint64_t InstrNo = MI.peekDebugInstrNum()) { 1709 auto InstrAndPos = std::make_pair(&MI, CurInst); 1710 auto InsertResult = 1711 DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos)); 1712 1713 // There should never be duplicate instruction numbers. 1714 assert(InsertResult.second); 1715 (void)InsertResult; 1716 } 1717 1718 ++CurInst; 1719 } 1720 1721 // Produce the transfer function, a map of machine location to new value. If 1722 // any machine location has the live-in phi value from the start of the 1723 // block, it's live-through and doesn't need recording in the transfer 1724 // function. 1725 for (auto Location : MTracker->locations()) { 1726 LocIdx Idx = Location.Idx; 1727 ValueIDNum &P = Location.Value; 1728 if (P.isPHI() && P.getLoc() == Idx.asU64()) 1729 continue; 1730 1731 // Insert-or-update. 1732 auto &TransferMap = MLocTransfer[CurBB]; 1733 auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P)); 1734 if (!Result.second) 1735 Result.first->second = P; 1736 } 1737 1738 // Accumulate any bitmask operands into the clobberred reg mask for this 1739 // block. 1740 for (auto &P : MTracker->Masks) { 1741 BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords); 1742 } 1743 } 1744 1745 // Compute a bitvector of all the registers that are tracked in this block. 1746 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 1747 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 1748 BitVector UsedRegs(TRI->getNumRegs()); 1749 for (auto Location : MTracker->locations()) { 1750 unsigned ID = MTracker->LocIdxToLocID[Location.Idx]; 1751 if (ID >= TRI->getNumRegs() || ID == SP) 1752 continue; 1753 UsedRegs.set(ID); 1754 } 1755 1756 // Check that any regmask-clobber of a register that gets tracked, is not 1757 // live-through in the transfer function. It needs to be clobbered at the 1758 // very least. 1759 for (unsigned int I = 0; I < MaxNumBlocks; ++I) { 1760 BitVector &BV = BlockMasks[I]; 1761 BV.flip(); 1762 BV &= UsedRegs; 1763 // This produces all the bits that we clobber, but also use. Check that 1764 // they're all clobbered or at least set in the designated transfer 1765 // elem. 1766 for (unsigned Bit : BV.set_bits()) { 1767 unsigned ID = MTracker->getLocID(Bit, false); 1768 LocIdx Idx = MTracker->LocIDToLocIdx[ID]; 1769 auto &TransferMap = MLocTransfer[I]; 1770 1771 // Install a value representing the fact that this location is effectively 1772 // written to in this block. As there's no reserved value, instead use 1773 // a value number that is never generated. Pick the value number for the 1774 // first instruction in the block, def'ing this location, which we know 1775 // this block never used anyway. 1776 ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx); 1777 auto Result = 1778 TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum)); 1779 if (!Result.second) { 1780 ValueIDNum &ValueID = Result.first->second; 1781 if (ValueID.getBlock() == I && ValueID.isPHI()) 1782 // It was left as live-through. Set it to clobbered. 1783 ValueID = NotGeneratedNum; 1784 } 1785 } 1786 } 1787 } 1788 1789 std::tuple<bool, bool> 1790 InstrRefBasedLDV::mlocJoin(MachineBasicBlock &MBB, 1791 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1792 ValueIDNum **OutLocs, ValueIDNum *InLocs) { 1793 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 1794 bool Changed = false; 1795 bool DowngradeOccurred = false; 1796 1797 // Collect predecessors that have been visited. Anything that hasn't been 1798 // visited yet is a backedge on the first iteration, and the meet of it's 1799 // lattice value for all locations will be unaffected. 1800 SmallVector<const MachineBasicBlock *, 8> BlockOrders; 1801 for (auto Pred : MBB.predecessors()) { 1802 if (Visited.count(Pred)) { 1803 BlockOrders.push_back(Pred); 1804 } 1805 } 1806 1807 // Visit predecessors in RPOT order. 1808 auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) { 1809 return BBToOrder.find(A)->second < BBToOrder.find(B)->second; 1810 }; 1811 llvm::sort(BlockOrders, Cmp); 1812 1813 // Skip entry block. 1814 if (BlockOrders.size() == 0) 1815 return std::tuple<bool, bool>(false, false); 1816 1817 // Step through all machine locations, then look at each predecessor and 1818 // detect disagreements. 1819 unsigned ThisBlockRPO = BBToOrder.find(&MBB)->second; 1820 for (auto Location : MTracker->locations()) { 1821 LocIdx Idx = Location.Idx; 1822 // Pick out the first predecessors live-out value for this location. It's 1823 // guaranteed to be not a backedge, as we order by RPO. 1824 ValueIDNum BaseVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()]; 1825 1826 // Some flags for whether there's a disagreement, and whether it's a 1827 // disagreement with a backedge or not. 1828 bool Disagree = false; 1829 bool NonBackEdgeDisagree = false; 1830 1831 // Loop around everything that wasn't 'base'. 1832 for (unsigned int I = 1; I < BlockOrders.size(); ++I) { 1833 auto *MBB = BlockOrders[I]; 1834 if (BaseVal != OutLocs[MBB->getNumber()][Idx.asU64()]) { 1835 // Live-out of a predecessor disagrees with the first predecessor. 1836 Disagree = true; 1837 1838 // Test whether it's a disagreemnt in the backedges or not. 1839 if (BBToOrder.find(MBB)->second < ThisBlockRPO) // might be self b/e 1840 NonBackEdgeDisagree = true; 1841 } 1842 } 1843 1844 bool OverRide = false; 1845 if (Disagree && !NonBackEdgeDisagree) { 1846 // Only the backedges disagree. Consider demoting the livein 1847 // lattice value, as per the file level comment. The value we consider 1848 // demoting to is the value that the non-backedge predecessors agree on. 1849 // The order of values is that non-PHIs are \top, a PHI at this block 1850 // \bot, and phis between the two are ordered by their RPO number. 1851 // If there's no agreement, or we've already demoted to this PHI value 1852 // before, replace with a PHI value at this block. 1853 1854 // Calculate order numbers: zero means normal def, nonzero means RPO 1855 // number. 1856 unsigned BaseBlockRPONum = BBNumToRPO[BaseVal.getBlock()] + 1; 1857 if (!BaseVal.isPHI()) 1858 BaseBlockRPONum = 0; 1859 1860 ValueIDNum &InLocID = InLocs[Idx.asU64()]; 1861 unsigned InLocRPONum = BBNumToRPO[InLocID.getBlock()] + 1; 1862 if (!InLocID.isPHI()) 1863 InLocRPONum = 0; 1864 1865 // Should we ignore the disagreeing backedges, and override with the 1866 // value the other predecessors agree on (in "base")? 1867 unsigned ThisBlockRPONum = BBNumToRPO[MBB.getNumber()] + 1; 1868 if (BaseBlockRPONum > InLocRPONum && BaseBlockRPONum < ThisBlockRPONum) { 1869 // Override. 1870 OverRide = true; 1871 DowngradeOccurred = true; 1872 } 1873 } 1874 // else: if we disagree in the non-backedges, then this is definitely 1875 // a control flow merge where different values merge. Make it a PHI. 1876 1877 // Generate a phi... 1878 ValueIDNum PHI = {(uint64_t)MBB.getNumber(), 0, Idx}; 1879 ValueIDNum NewVal = (Disagree && !OverRide) ? PHI : BaseVal; 1880 if (InLocs[Idx.asU64()] != NewVal) { 1881 Changed |= true; 1882 InLocs[Idx.asU64()] = NewVal; 1883 } 1884 } 1885 1886 // TODO: Reimplement NumInserted and NumRemoved. 1887 return std::tuple<bool, bool>(Changed, DowngradeOccurred); 1888 } 1889 1890 void InstrRefBasedLDV::mlocDataflow( 1891 ValueIDNum **MInLocs, ValueIDNum **MOutLocs, 1892 SmallVectorImpl<MLocTransferMap> &MLocTransfer) { 1893 std::priority_queue<unsigned int, std::vector<unsigned int>, 1894 std::greater<unsigned int>> 1895 Worklist, Pending; 1896 1897 // We track what is on the current and pending worklist to avoid inserting 1898 // the same thing twice. We could avoid this with a custom priority queue, 1899 // but this is probably not worth it. 1900 SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist; 1901 1902 // Initialize worklist with every block to be visited. 1903 for (unsigned int I = 0; I < BBToOrder.size(); ++I) { 1904 Worklist.push(I); 1905 OnWorklist.insert(OrderToBB[I]); 1906 } 1907 1908 MTracker->reset(); 1909 1910 // Set inlocs for entry block -- each as a PHI at the entry block. Represents 1911 // the incoming value to the function. 1912 MTracker->setMPhis(0); 1913 for (auto Location : MTracker->locations()) 1914 MInLocs[0][Location.Idx.asU64()] = Location.Value; 1915 1916 SmallPtrSet<const MachineBasicBlock *, 16> Visited; 1917 while (!Worklist.empty() || !Pending.empty()) { 1918 // Vector for storing the evaluated block transfer function. 1919 SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap; 1920 1921 while (!Worklist.empty()) { 1922 MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; 1923 CurBB = MBB->getNumber(); 1924 Worklist.pop(); 1925 1926 // Join the values in all predecessor blocks. 1927 bool InLocsChanged, DowngradeOccurred; 1928 std::tie(InLocsChanged, DowngradeOccurred) = 1929 mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]); 1930 InLocsChanged |= Visited.insert(MBB).second; 1931 1932 // If a downgrade occurred, book us in for re-examination on the next 1933 // iteration. 1934 if (DowngradeOccurred && OnPending.insert(MBB).second) 1935 Pending.push(BBToOrder[MBB]); 1936 1937 // Don't examine transfer function if we've visited this loc at least 1938 // once, and inlocs haven't changed. 1939 if (!InLocsChanged) 1940 continue; 1941 1942 // Load the current set of live-ins into MLocTracker. 1943 MTracker->loadFromArray(MInLocs[CurBB], CurBB); 1944 1945 // Each element of the transfer function can be a new def, or a read of 1946 // a live-in value. Evaluate each element, and store to "ToRemap". 1947 ToRemap.clear(); 1948 for (auto &P : MLocTransfer[CurBB]) { 1949 if (P.second.getBlock() == CurBB && P.second.isPHI()) { 1950 // This is a movement of whatever was live in. Read it. 1951 ValueIDNum NewID = MTracker->getNumAtPos(P.second.getLoc()); 1952 ToRemap.push_back(std::make_pair(P.first, NewID)); 1953 } else { 1954 // It's a def. Just set it. 1955 assert(P.second.getBlock() == CurBB); 1956 ToRemap.push_back(std::make_pair(P.first, P.second)); 1957 } 1958 } 1959 1960 // Commit the transfer function changes into mloc tracker, which 1961 // transforms the contents of the MLocTracker into the live-outs. 1962 for (auto &P : ToRemap) 1963 MTracker->setMLoc(P.first, P.second); 1964 1965 // Now copy out-locs from mloc tracker into out-loc vector, checking 1966 // whether changes have occurred. These changes can have come from both 1967 // the transfer function, and mlocJoin. 1968 bool OLChanged = false; 1969 for (auto Location : MTracker->locations()) { 1970 OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value; 1971 MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value; 1972 } 1973 1974 MTracker->reset(); 1975 1976 // No need to examine successors again if out-locs didn't change. 1977 if (!OLChanged) 1978 continue; 1979 1980 // All successors should be visited: put any back-edges on the pending 1981 // list for the next dataflow iteration, and any other successors to be 1982 // visited this iteration, if they're not going to be already. 1983 for (auto s : MBB->successors()) { 1984 // Does branching to this successor represent a back-edge? 1985 if (BBToOrder[s] > BBToOrder[MBB]) { 1986 // No: visit it during this dataflow iteration. 1987 if (OnWorklist.insert(s).second) 1988 Worklist.push(BBToOrder[s]); 1989 } else { 1990 // Yes: visit it on the next iteration. 1991 if (OnPending.insert(s).second) 1992 Pending.push(BBToOrder[s]); 1993 } 1994 } 1995 } 1996 1997 Worklist.swap(Pending); 1998 std::swap(OnPending, OnWorklist); 1999 OnPending.clear(); 2000 // At this point, pending must be empty, since it was just the empty 2001 // worklist 2002 assert(Pending.empty() && "Pending should be empty"); 2003 } 2004 2005 // Once all the live-ins don't change on mlocJoin(), we've reached a 2006 // fixedpoint. 2007 } 2008 2009 bool InstrRefBasedLDV::vlocDowngradeLattice( 2010 const MachineBasicBlock &MBB, const DbgValue &OldLiveInLocation, 2011 const SmallVectorImpl<InValueT> &Values, unsigned CurBlockRPONum) { 2012 // Ranking value preference: see file level comment, the highest rank is 2013 // a plain def, followed by PHI values in reverse post-order. Numerically, 2014 // we assign all defs the rank '0', all PHIs their blocks RPO number plus 2015 // one, and consider the lowest value the highest ranked. 2016 int OldLiveInRank = BBNumToRPO[OldLiveInLocation.ID.getBlock()] + 1; 2017 if (!OldLiveInLocation.ID.isPHI()) 2018 OldLiveInRank = 0; 2019 2020 // Allow any unresolvable conflict to be over-ridden. 2021 if (OldLiveInLocation.Kind == DbgValue::NoVal) { 2022 // Although if it was an unresolvable conflict from _this_ block, then 2023 // all other seeking of downgrades and PHIs must have failed before hand. 2024 if (OldLiveInLocation.BlockNo == (unsigned)MBB.getNumber()) 2025 return false; 2026 OldLiveInRank = INT_MIN; 2027 } 2028 2029 auto &InValue = *Values[0].second; 2030 2031 if (InValue.Kind == DbgValue::Const || InValue.Kind == DbgValue::NoVal) 2032 return false; 2033 2034 unsigned ThisRPO = BBNumToRPO[InValue.ID.getBlock()]; 2035 int ThisRank = ThisRPO + 1; 2036 if (!InValue.ID.isPHI()) 2037 ThisRank = 0; 2038 2039 // Too far down the lattice? 2040 if (ThisRPO >= CurBlockRPONum) 2041 return false; 2042 2043 // Higher in the lattice than what we've already explored? 2044 if (ThisRank <= OldLiveInRank) 2045 return false; 2046 2047 return true; 2048 } 2049 2050 std::tuple<Optional<ValueIDNum>, bool> InstrRefBasedLDV::pickVPHILoc( 2051 MachineBasicBlock &MBB, const DebugVariable &Var, const LiveIdxT &LiveOuts, 2052 ValueIDNum **MOutLocs, ValueIDNum **MInLocs, 2053 const SmallVectorImpl<MachineBasicBlock *> &BlockOrders) { 2054 // Collect a set of locations from predecessor where its live-out value can 2055 // be found. 2056 SmallVector<SmallVector<LocIdx, 4>, 8> Locs; 2057 unsigned NumLocs = MTracker->getNumLocs(); 2058 unsigned BackEdgesStart = 0; 2059 2060 for (auto p : BlockOrders) { 2061 // Pick out where backedges start in the list of predecessors. Relies on 2062 // BlockOrders being sorted by RPO. 2063 if (BBToOrder[p] < BBToOrder[&MBB]) 2064 ++BackEdgesStart; 2065 2066 // For each predecessor, create a new set of locations. 2067 Locs.resize(Locs.size() + 1); 2068 unsigned ThisBBNum = p->getNumber(); 2069 auto LiveOutMap = LiveOuts.find(p); 2070 if (LiveOutMap == LiveOuts.end()) 2071 // This predecessor isn't in scope, it must have no live-in/live-out 2072 // locations. 2073 continue; 2074 2075 auto It = LiveOutMap->second->find(Var); 2076 if (It == LiveOutMap->second->end()) 2077 // There's no value recorded for this variable in this predecessor, 2078 // leave an empty set of locations. 2079 continue; 2080 2081 const DbgValue &OutVal = It->second; 2082 2083 if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal) 2084 // Consts and no-values cannot have locations we can join on. 2085 continue; 2086 2087 assert(OutVal.Kind == DbgValue::Proposed || OutVal.Kind == DbgValue::Def); 2088 ValueIDNum ValToLookFor = OutVal.ID; 2089 2090 // Search the live-outs of the predecessor for the specified value. 2091 for (unsigned int I = 0; I < NumLocs; ++I) { 2092 if (MOutLocs[ThisBBNum][I] == ValToLookFor) 2093 Locs.back().push_back(LocIdx(I)); 2094 } 2095 } 2096 2097 // If there were no locations at all, return an empty result. 2098 if (Locs.empty()) 2099 return std::tuple<Optional<ValueIDNum>, bool>(None, false); 2100 2101 // Lambda for seeking a common location within a range of location-sets. 2102 using LocsIt = SmallVector<SmallVector<LocIdx, 4>, 8>::iterator; 2103 auto SeekLocation = 2104 [&Locs](llvm::iterator_range<LocsIt> SearchRange) -> Optional<LocIdx> { 2105 // Starting with the first set of locations, take the intersection with 2106 // subsequent sets. 2107 SmallVector<LocIdx, 4> base = Locs[0]; 2108 for (auto &S : SearchRange) { 2109 SmallVector<LocIdx, 4> new_base; 2110 std::set_intersection(base.begin(), base.end(), S.begin(), S.end(), 2111 std::inserter(new_base, new_base.begin())); 2112 base = new_base; 2113 } 2114 if (base.empty()) 2115 return None; 2116 2117 // We now have a set of LocIdxes that contain the right output value in 2118 // each of the predecessors. Pick the lowest; if there's a register loc, 2119 // that'll be it. 2120 return *base.begin(); 2121 }; 2122 2123 // Search for a common location for all predecessors. If we can't, then fall 2124 // back to only finding a common location between non-backedge predecessors. 2125 bool ValidForAllLocs = true; 2126 auto TheLoc = SeekLocation(Locs); 2127 if (!TheLoc) { 2128 ValidForAllLocs = false; 2129 TheLoc = 2130 SeekLocation(make_range(Locs.begin(), Locs.begin() + BackEdgesStart)); 2131 } 2132 2133 if (!TheLoc) 2134 return std::tuple<Optional<ValueIDNum>, bool>(None, false); 2135 2136 // Return a PHI-value-number for the found location. 2137 LocIdx L = *TheLoc; 2138 ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L}; 2139 return std::tuple<Optional<ValueIDNum>, bool>(PHIVal, ValidForAllLocs); 2140 } 2141 2142 std::tuple<bool, bool> InstrRefBasedLDV::vlocJoin( 2143 MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs, 2144 SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, unsigned BBNum, 2145 const SmallSet<DebugVariable, 4> &AllVars, ValueIDNum **MOutLocs, 2146 ValueIDNum **MInLocs, 2147 SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks, 2148 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, 2149 DenseMap<DebugVariable, DbgValue> &InLocsT) { 2150 bool DowngradeOccurred = false; 2151 2152 // To emulate VarLocBasedImpl, process this block if it's not in scope but 2153 // _does_ assign a variable value. No live-ins for this scope are transferred 2154 // in though, so we can return immediately. 2155 if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB)) { 2156 if (VLOCVisited) 2157 return std::tuple<bool, bool>(true, false); 2158 return std::tuple<bool, bool>(false, false); 2159 } 2160 2161 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 2162 bool Changed = false; 2163 2164 // Find any live-ins computed in a prior iteration. 2165 auto ILSIt = VLOCInLocs.find(&MBB); 2166 assert(ILSIt != VLOCInLocs.end()); 2167 auto &ILS = *ILSIt->second; 2168 2169 // Order predecessors by RPOT order, for exploring them in that order. 2170 SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors()); 2171 2172 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 2173 return BBToOrder[A] < BBToOrder[B]; 2174 }; 2175 2176 llvm::sort(BlockOrders, Cmp); 2177 2178 unsigned CurBlockRPONum = BBToOrder[&MBB]; 2179 2180 // Force a re-visit to loop heads in the first dataflow iteration. 2181 // FIXME: if we could "propose" Const values this wouldn't be needed, 2182 // because they'd need to be confirmed before being emitted. 2183 if (!BlockOrders.empty() && 2184 BBToOrder[BlockOrders[BlockOrders.size() - 1]] >= CurBlockRPONum && 2185 VLOCVisited) 2186 DowngradeOccurred = true; 2187 2188 auto ConfirmValue = [&InLocsT](const DebugVariable &DV, DbgValue VR) { 2189 auto Result = InLocsT.insert(std::make_pair(DV, VR)); 2190 (void)Result; 2191 assert(Result.second); 2192 }; 2193 2194 auto ConfirmNoVal = [&ConfirmValue, &MBB](const DebugVariable &Var, const DbgValueProperties &Properties) { 2195 DbgValue NoLocPHIVal(MBB.getNumber(), Properties, DbgValue::NoVal); 2196 2197 ConfirmValue(Var, NoLocPHIVal); 2198 }; 2199 2200 // Attempt to join the values for each variable. 2201 for (auto &Var : AllVars) { 2202 // Collect all the DbgValues for this variable. 2203 SmallVector<InValueT, 8> Values; 2204 bool Bail = false; 2205 unsigned BackEdgesStart = 0; 2206 for (auto p : BlockOrders) { 2207 // If the predecessor isn't in scope / to be explored, we'll never be 2208 // able to join any locations. 2209 if (!BlocksToExplore.contains(p)) { 2210 Bail = true; 2211 break; 2212 } 2213 2214 // Don't attempt to handle unvisited predecessors: they're implicitly 2215 // "unknown"s in the lattice. 2216 if (VLOCVisited && !VLOCVisited->count(p)) 2217 continue; 2218 2219 // If the predecessors OutLocs is absent, there's not much we can do. 2220 auto OL = VLOCOutLocs.find(p); 2221 if (OL == VLOCOutLocs.end()) { 2222 Bail = true; 2223 break; 2224 } 2225 2226 // No live-out value for this predecessor also means we can't produce 2227 // a joined value. 2228 auto VIt = OL->second->find(Var); 2229 if (VIt == OL->second->end()) { 2230 Bail = true; 2231 break; 2232 } 2233 2234 // Keep track of where back-edges begin in the Values vector. Relies on 2235 // BlockOrders being sorted by RPO. 2236 unsigned ThisBBRPONum = BBToOrder[p]; 2237 if (ThisBBRPONum < CurBlockRPONum) 2238 ++BackEdgesStart; 2239 2240 Values.push_back(std::make_pair(p, &VIt->second)); 2241 } 2242 2243 // If there were no values, or one of the predecessors couldn't have a 2244 // value, then give up immediately. It's not safe to produce a live-in 2245 // value. 2246 if (Bail || Values.size() == 0) 2247 continue; 2248 2249 // Enumeration identifying the current state of the predecessors values. 2250 enum { 2251 Unset = 0, 2252 Agreed, // All preds agree on the variable value. 2253 PropDisagree, // All preds agree, but the value kind is Proposed in some. 2254 BEDisagree, // Only back-edges disagree on variable value. 2255 PHINeeded, // Non-back-edge predecessors have conflicing values. 2256 NoSolution // Conflicting Value metadata makes solution impossible. 2257 } OurState = Unset; 2258 2259 // All (non-entry) blocks have at least one non-backedge predecessor. 2260 // Pick the variable value from the first of these, to compare against 2261 // all others. 2262 const DbgValue &FirstVal = *Values[0].second; 2263 const ValueIDNum &FirstID = FirstVal.ID; 2264 2265 // Scan for variable values that can't be resolved: if they have different 2266 // DIExpressions, different indirectness, or are mixed constants / 2267 // non-constants. 2268 for (auto &V : Values) { 2269 if (V.second->Properties != FirstVal.Properties) 2270 OurState = NoSolution; 2271 if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const) 2272 OurState = NoSolution; 2273 } 2274 2275 // Flags diagnosing _how_ the values disagree. 2276 bool NonBackEdgeDisagree = false; 2277 bool DisagreeOnPHINess = false; 2278 bool IDDisagree = false; 2279 bool Disagree = false; 2280 if (OurState == Unset) { 2281 for (auto &V : Values) { 2282 if (*V.second == FirstVal) 2283 continue; // No disagreement. 2284 2285 Disagree = true; 2286 2287 // Flag whether the value number actually diagrees. 2288 if (V.second->ID != FirstID) 2289 IDDisagree = true; 2290 2291 // Distinguish whether disagreement happens in backedges or not. 2292 // Relies on Values (and BlockOrders) being sorted by RPO. 2293 unsigned ThisBBRPONum = BBToOrder[V.first]; 2294 if (ThisBBRPONum < CurBlockRPONum) 2295 NonBackEdgeDisagree = true; 2296 2297 // Is there a difference in whether the value is definite or only 2298 // proposed? 2299 if (V.second->Kind != FirstVal.Kind && 2300 (V.second->Kind == DbgValue::Proposed || 2301 V.second->Kind == DbgValue::Def) && 2302 (FirstVal.Kind == DbgValue::Proposed || 2303 FirstVal.Kind == DbgValue::Def)) 2304 DisagreeOnPHINess = true; 2305 } 2306 2307 // Collect those flags together and determine an overall state for 2308 // what extend the predecessors agree on a live-in value. 2309 if (!Disagree) 2310 OurState = Agreed; 2311 else if (!IDDisagree && DisagreeOnPHINess) 2312 OurState = PropDisagree; 2313 else if (!NonBackEdgeDisagree) 2314 OurState = BEDisagree; 2315 else 2316 OurState = PHINeeded; 2317 } 2318 2319 // An extra indicator: if we only disagree on whether the value is a 2320 // Def, or proposed, then also flag whether that disagreement happens 2321 // in backedges only. 2322 bool PropOnlyInBEs = Disagree && !IDDisagree && DisagreeOnPHINess && 2323 !NonBackEdgeDisagree && FirstVal.Kind == DbgValue::Def; 2324 2325 const auto &Properties = FirstVal.Properties; 2326 2327 auto OldLiveInIt = ILS.find(Var); 2328 const DbgValue *OldLiveInLocation = 2329 (OldLiveInIt != ILS.end()) ? &OldLiveInIt->second : nullptr; 2330 2331 bool OverRide = false; 2332 if (OurState == BEDisagree && OldLiveInLocation) { 2333 // Only backedges disagree: we can consider downgrading. If there was a 2334 // previous live-in value, use it to work out whether the current 2335 // incoming value represents a lattice downgrade or not. 2336 OverRide = 2337 vlocDowngradeLattice(MBB, *OldLiveInLocation, Values, CurBlockRPONum); 2338 } 2339 2340 // Use the current state of predecessor agreement and other flags to work 2341 // out what to do next. Possibilities include: 2342 // * Accept a value all predecessors agree on, or accept one that 2343 // represents a step down the exploration lattice, 2344 // * Use a PHI value number, if one can be found, 2345 // * Propose a PHI value number, and see if it gets confirmed later, 2346 // * Emit a 'NoVal' value, indicating we couldn't resolve anything. 2347 if (OurState == Agreed) { 2348 // Easiest solution: all predecessors agree on the variable value. 2349 ConfirmValue(Var, FirstVal); 2350 } else if (OurState == BEDisagree && OverRide) { 2351 // Only backedges disagree, and the other predecessors have produced 2352 // a new live-in value further down the exploration lattice. 2353 DowngradeOccurred = true; 2354 ConfirmValue(Var, FirstVal); 2355 } else if (OurState == PropDisagree) { 2356 // Predecessors agree on value, but some say it's only a proposed value. 2357 // Propagate it as proposed: unless it was proposed in this block, in 2358 // which case we're able to confirm the value. 2359 if (FirstID.getBlock() == (uint64_t)MBB.getNumber() && FirstID.isPHI()) { 2360 ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def)); 2361 } else if (PropOnlyInBEs) { 2362 // If only backedges disagree, a higher (in RPO) block confirmed this 2363 // location, and we need to propagate it into this loop. 2364 ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def)); 2365 } else { 2366 // Otherwise; a Def meeting a Proposed is still a Proposed. 2367 ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Proposed)); 2368 } 2369 } else if ((OurState == PHINeeded || OurState == BEDisagree)) { 2370 // Predecessors disagree and can't be downgraded: this can only be 2371 // solved with a PHI. Use pickVPHILoc to go look for one. 2372 Optional<ValueIDNum> VPHI; 2373 bool AllEdgesVPHI = false; 2374 std::tie(VPHI, AllEdgesVPHI) = 2375 pickVPHILoc(MBB, Var, VLOCOutLocs, MOutLocs, MInLocs, BlockOrders); 2376 2377 if (VPHI && AllEdgesVPHI) { 2378 // There's a PHI value that's valid for all predecessors -- we can use 2379 // it. If any of the non-backedge predecessors have proposed values 2380 // though, this PHI is also only proposed, until the predecessors are 2381 // confirmed. 2382 DbgValue::KindT K = DbgValue::Def; 2383 for (unsigned int I = 0; I < BackEdgesStart; ++I) 2384 if (Values[I].second->Kind == DbgValue::Proposed) 2385 K = DbgValue::Proposed; 2386 2387 ConfirmValue(Var, DbgValue(*VPHI, Properties, K)); 2388 } else if (VPHI) { 2389 // There's a PHI value, but it's only legal for backedges. Leave this 2390 // as a proposed PHI value: it might come back on the backedges, 2391 // and allow us to confirm it in the future. 2392 DbgValue NoBEValue = DbgValue(*VPHI, Properties, DbgValue::Proposed); 2393 ConfirmValue(Var, NoBEValue); 2394 } else { 2395 ConfirmNoVal(Var, Properties); 2396 } 2397 } else { 2398 // Otherwise: we don't know. Emit a "phi but no real loc" phi. 2399 ConfirmNoVal(Var, Properties); 2400 } 2401 } 2402 2403 // Store newly calculated in-locs into VLOCInLocs, if they've changed. 2404 Changed = ILS != InLocsT; 2405 if (Changed) 2406 ILS = InLocsT; 2407 2408 return std::tuple<bool, bool>(Changed, DowngradeOccurred); 2409 } 2410 2411 void InstrRefBasedLDV::vlocDataflow( 2412 const LexicalScope *Scope, const DILocation *DILoc, 2413 const SmallSet<DebugVariable, 4> &VarsWeCareAbout, 2414 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output, 2415 ValueIDNum **MOutLocs, ValueIDNum **MInLocs, 2416 SmallVectorImpl<VLocTracker> &AllTheVLocs) { 2417 // This method is much like mlocDataflow: but focuses on a single 2418 // LexicalScope at a time. Pick out a set of blocks and variables that are 2419 // to have their value assignments solved, then run our dataflow algorithm 2420 // until a fixedpoint is reached. 2421 std::priority_queue<unsigned int, std::vector<unsigned int>, 2422 std::greater<unsigned int>> 2423 Worklist, Pending; 2424 SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending; 2425 2426 // The set of blocks we'll be examining. 2427 SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore; 2428 2429 // The order in which to examine them (RPO). 2430 SmallVector<MachineBasicBlock *, 8> BlockOrders; 2431 2432 // RPO ordering function. 2433 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 2434 return BBToOrder[A] < BBToOrder[B]; 2435 }; 2436 2437 LS.getMachineBasicBlocks(DILoc, BlocksToExplore); 2438 2439 // A separate container to distinguish "blocks we're exploring" versus 2440 // "blocks that are potentially in scope. See comment at start of vlocJoin. 2441 SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore; 2442 2443 // Old LiveDebugValues tracks variable locations that come out of blocks 2444 // not in scope, where DBG_VALUEs occur. This is something we could 2445 // legitimately ignore, but lets allow it for now. 2446 if (EmulateOldLDV) 2447 BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end()); 2448 2449 // We also need to propagate variable values through any artificial blocks 2450 // that immediately follow blocks in scope. 2451 DenseSet<const MachineBasicBlock *> ToAdd; 2452 2453 // Helper lambda: For a given block in scope, perform a depth first search 2454 // of all the artificial successors, adding them to the ToAdd collection. 2455 auto AccumulateArtificialBlocks = 2456 [this, &ToAdd, &BlocksToExplore, 2457 &InScopeBlocks](const MachineBasicBlock *MBB) { 2458 // Depth-first-search state: each node is a block and which successor 2459 // we're currently exploring. 2460 SmallVector<std::pair<const MachineBasicBlock *, 2461 MachineBasicBlock::const_succ_iterator>, 2462 8> 2463 DFS; 2464 2465 // Find any artificial successors not already tracked. 2466 for (auto *succ : MBB->successors()) { 2467 if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ)) 2468 continue; 2469 if (!ArtificialBlocks.count(succ)) 2470 continue; 2471 DFS.push_back(std::make_pair(succ, succ->succ_begin())); 2472 ToAdd.insert(succ); 2473 } 2474 2475 // Search all those blocks, depth first. 2476 while (!DFS.empty()) { 2477 const MachineBasicBlock *CurBB = DFS.back().first; 2478 MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second; 2479 // Walk back if we've explored this blocks successors to the end. 2480 if (CurSucc == CurBB->succ_end()) { 2481 DFS.pop_back(); 2482 continue; 2483 } 2484 2485 // If the current successor is artificial and unexplored, descend into 2486 // it. 2487 if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) { 2488 DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin())); 2489 ToAdd.insert(*CurSucc); 2490 continue; 2491 } 2492 2493 ++CurSucc; 2494 } 2495 }; 2496 2497 // Search in-scope blocks and those containing a DBG_VALUE from this scope 2498 // for artificial successors. 2499 for (auto *MBB : BlocksToExplore) 2500 AccumulateArtificialBlocks(MBB); 2501 for (auto *MBB : InScopeBlocks) 2502 AccumulateArtificialBlocks(MBB); 2503 2504 BlocksToExplore.insert(ToAdd.begin(), ToAdd.end()); 2505 InScopeBlocks.insert(ToAdd.begin(), ToAdd.end()); 2506 2507 // Single block scope: not interesting! No propagation at all. Note that 2508 // this could probably go above ArtificialBlocks without damage, but 2509 // that then produces output differences from original-live-debug-values, 2510 // which propagates from a single block into many artificial ones. 2511 if (BlocksToExplore.size() == 1) 2512 return; 2513 2514 // Picks out relevants blocks RPO order and sort them. 2515 for (auto *MBB : BlocksToExplore) 2516 BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB)); 2517 2518 llvm::sort(BlockOrders, Cmp); 2519 unsigned NumBlocks = BlockOrders.size(); 2520 2521 // Allocate some vectors for storing the live ins and live outs. Large. 2522 SmallVector<DenseMap<DebugVariable, DbgValue>, 32> LiveIns, LiveOuts; 2523 LiveIns.resize(NumBlocks); 2524 LiveOuts.resize(NumBlocks); 2525 2526 // Produce by-MBB indexes of live-in/live-outs, to ease lookup within 2527 // vlocJoin. 2528 LiveIdxT LiveOutIdx, LiveInIdx; 2529 LiveOutIdx.reserve(NumBlocks); 2530 LiveInIdx.reserve(NumBlocks); 2531 for (unsigned I = 0; I < NumBlocks; ++I) { 2532 LiveOutIdx[BlockOrders[I]] = &LiveOuts[I]; 2533 LiveInIdx[BlockOrders[I]] = &LiveIns[I]; 2534 } 2535 2536 for (auto *MBB : BlockOrders) { 2537 Worklist.push(BBToOrder[MBB]); 2538 OnWorklist.insert(MBB); 2539 } 2540 2541 // Iterate over all the blocks we selected, propagating variable values. 2542 bool FirstTrip = true; 2543 SmallPtrSet<const MachineBasicBlock *, 16> VLOCVisited; 2544 while (!Worklist.empty() || !Pending.empty()) { 2545 while (!Worklist.empty()) { 2546 auto *MBB = OrderToBB[Worklist.top()]; 2547 CurBB = MBB->getNumber(); 2548 Worklist.pop(); 2549 2550 DenseMap<DebugVariable, DbgValue> JoinedInLocs; 2551 2552 // Join values from predecessors. Updates LiveInIdx, and writes output 2553 // into JoinedInLocs. 2554 bool InLocsChanged, DowngradeOccurred; 2555 std::tie(InLocsChanged, DowngradeOccurred) = vlocJoin( 2556 *MBB, LiveOutIdx, LiveInIdx, (FirstTrip) ? &VLOCVisited : nullptr, 2557 CurBB, VarsWeCareAbout, MOutLocs, MInLocs, InScopeBlocks, 2558 BlocksToExplore, JoinedInLocs); 2559 2560 bool FirstVisit = VLOCVisited.insert(MBB).second; 2561 2562 // Always explore transfer function if inlocs changed, or if we've not 2563 // visited this block before. 2564 InLocsChanged |= FirstVisit; 2565 2566 // If a downgrade occurred, book us in for re-examination on the next 2567 // iteration. 2568 if (DowngradeOccurred && OnPending.insert(MBB).second) 2569 Pending.push(BBToOrder[MBB]); 2570 2571 if (!InLocsChanged) 2572 continue; 2573 2574 // Do transfer function. 2575 auto &VTracker = AllTheVLocs[MBB->getNumber()]; 2576 for (auto &Transfer : VTracker.Vars) { 2577 // Is this var we're mangling in this scope? 2578 if (VarsWeCareAbout.count(Transfer.first)) { 2579 // Erase on empty transfer (DBG_VALUE $noreg). 2580 if (Transfer.second.Kind == DbgValue::Undef) { 2581 JoinedInLocs.erase(Transfer.first); 2582 } else { 2583 // Insert new variable value; or overwrite. 2584 auto NewValuePair = std::make_pair(Transfer.first, Transfer.second); 2585 auto Result = JoinedInLocs.insert(NewValuePair); 2586 if (!Result.second) 2587 Result.first->second = Transfer.second; 2588 } 2589 } 2590 } 2591 2592 // Did the live-out locations change? 2593 bool OLChanged = JoinedInLocs != *LiveOutIdx[MBB]; 2594 2595 // If they haven't changed, there's no need to explore further. 2596 if (!OLChanged) 2597 continue; 2598 2599 // Commit to the live-out record. 2600 *LiveOutIdx[MBB] = JoinedInLocs; 2601 2602 // We should visit all successors. Ensure we'll visit any non-backedge 2603 // successors during this dataflow iteration; book backedge successors 2604 // to be visited next time around. 2605 for (auto s : MBB->successors()) { 2606 // Ignore out of scope / not-to-be-explored successors. 2607 if (LiveInIdx.find(s) == LiveInIdx.end()) 2608 continue; 2609 2610 if (BBToOrder[s] > BBToOrder[MBB]) { 2611 if (OnWorklist.insert(s).second) 2612 Worklist.push(BBToOrder[s]); 2613 } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) { 2614 Pending.push(BBToOrder[s]); 2615 } 2616 } 2617 } 2618 Worklist.swap(Pending); 2619 std::swap(OnWorklist, OnPending); 2620 OnPending.clear(); 2621 assert(Pending.empty()); 2622 FirstTrip = false; 2623 } 2624 2625 // Dataflow done. Now what? Save live-ins. Ignore any that are still marked 2626 // as being variable-PHIs, because those did not have their machine-PHI 2627 // value confirmed. Such variable values are places that could have been 2628 // PHIs, but are not. 2629 for (auto *MBB : BlockOrders) { 2630 auto &VarMap = *LiveInIdx[MBB]; 2631 for (auto &P : VarMap) { 2632 if (P.second.Kind == DbgValue::Proposed || 2633 P.second.Kind == DbgValue::NoVal) 2634 continue; 2635 Output[MBB->getNumber()].push_back(P); 2636 } 2637 } 2638 2639 BlockOrders.clear(); 2640 BlocksToExplore.clear(); 2641 } 2642 2643 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2644 void InstrRefBasedLDV::dump_mloc_transfer( 2645 const MLocTransferMap &mloc_transfer) const { 2646 for (auto &P : mloc_transfer) { 2647 std::string foo = MTracker->LocIdxToName(P.first); 2648 std::string bar = MTracker->IDAsString(P.second); 2649 dbgs() << "Loc " << foo << " --> " << bar << "\n"; 2650 } 2651 } 2652 #endif 2653 2654 void InstrRefBasedLDV::emitLocations( 2655 MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MOutLocs, 2656 ValueIDNum **MInLocs, DenseMap<DebugVariable, unsigned> &AllVarsNumbering, 2657 const TargetPassConfig &TPC) { 2658 TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC); 2659 unsigned NumLocs = MTracker->getNumLocs(); 2660 2661 // For each block, load in the machine value locations and variable value 2662 // live-ins, then step through each instruction in the block. New DBG_VALUEs 2663 // to be inserted will be created along the way. 2664 for (MachineBasicBlock &MBB : MF) { 2665 unsigned bbnum = MBB.getNumber(); 2666 MTracker->reset(); 2667 MTracker->loadFromArray(MInLocs[bbnum], bbnum); 2668 TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()], 2669 NumLocs); 2670 2671 CurBB = bbnum; 2672 CurInst = 1; 2673 for (auto &MI : MBB) { 2674 process(MI, MOutLocs, MInLocs); 2675 TTracker->checkInstForNewValues(CurInst, MI.getIterator()); 2676 ++CurInst; 2677 } 2678 } 2679 2680 // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer 2681 // in DWARF in different orders. Use the order that they appear when walking 2682 // through each block / each instruction, stored in AllVarsNumbering. 2683 auto OrderDbgValues = [&](const MachineInstr *A, 2684 const MachineInstr *B) -> bool { 2685 DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(), 2686 A->getDebugLoc()->getInlinedAt()); 2687 DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(), 2688 B->getDebugLoc()->getInlinedAt()); 2689 return AllVarsNumbering.find(VarA)->second < 2690 AllVarsNumbering.find(VarB)->second; 2691 }; 2692 2693 // Go through all the transfers recorded in the TransferTracker -- this is 2694 // both the live-ins to a block, and any movements of values that happen 2695 // in the middle. 2696 for (auto &P : TTracker->Transfers) { 2697 // Sort them according to appearance order. 2698 llvm::sort(P.Insts, OrderDbgValues); 2699 // Insert either before or after the designated point... 2700 if (P.MBB) { 2701 MachineBasicBlock &MBB = *P.MBB; 2702 for (auto *MI : P.Insts) { 2703 MBB.insert(P.Pos, MI); 2704 } 2705 } else { 2706 // Terminators, like tail calls, can clobber things. Don't try and place 2707 // transfers after them. 2708 if (P.Pos->isTerminator()) 2709 continue; 2710 2711 MachineBasicBlock &MBB = *P.Pos->getParent(); 2712 for (auto *MI : P.Insts) { 2713 MBB.insertAfterBundle(P.Pos, MI); 2714 } 2715 } 2716 } 2717 } 2718 2719 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) { 2720 // Build some useful data structures. 2721 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { 2722 if (const DebugLoc &DL = MI.getDebugLoc()) 2723 return DL.getLine() != 0; 2724 return false; 2725 }; 2726 // Collect a set of all the artificial blocks. 2727 for (auto &MBB : MF) 2728 if (none_of(MBB.instrs(), hasNonArtificialLocation)) 2729 ArtificialBlocks.insert(&MBB); 2730 2731 // Compute mappings of block <=> RPO order. 2732 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 2733 unsigned int RPONumber = 0; 2734 for (MachineBasicBlock *MBB : RPOT) { 2735 OrderToBB[RPONumber] = MBB; 2736 BBToOrder[MBB] = RPONumber; 2737 BBNumToRPO[MBB->getNumber()] = RPONumber; 2738 ++RPONumber; 2739 } 2740 2741 // Order value substitutions by their "source" operand pair, for quick lookup. 2742 llvm::sort(MF.DebugValueSubstitutions); 2743 2744 #ifdef EXPENSIVE_CHECKS 2745 // As an expensive check, test whether there are any duplicate substitution 2746 // sources in the collection. 2747 if (MF.DebugValueSubstitutions.size() > 2) { 2748 for (auto It = MF.DebugValueSubstitutions.begin(); 2749 It != std::prev(MF.DebugValueSubstitutions.end()); ++It) { 2750 assert(It->Src != std::next(It)->Src && "Duplicate variable location " 2751 "substitution seen"); 2752 } 2753 } 2754 #endif 2755 } 2756 2757 /// Calculate the liveness information for the given machine function and 2758 /// extend ranges across basic blocks. 2759 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC, 2760 unsigned InputBBLimit, 2761 unsigned InputDbgValLimit) { 2762 // No subprogram means this function contains no debuginfo. 2763 if (!MF.getFunction().getSubprogram()) 2764 return false; 2765 2766 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); 2767 this->TPC = TPC; 2768 2769 TRI = MF.getSubtarget().getRegisterInfo(); 2770 TII = MF.getSubtarget().getInstrInfo(); 2771 TFI = MF.getSubtarget().getFrameLowering(); 2772 TFI->getCalleeSaves(MF, CalleeSavedRegs); 2773 MFI = &MF.getFrameInfo(); 2774 LS.initialize(MF); 2775 2776 MTracker = 2777 new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering()); 2778 VTracker = nullptr; 2779 TTracker = nullptr; 2780 2781 SmallVector<MLocTransferMap, 32> MLocTransfer; 2782 SmallVector<VLocTracker, 8> vlocs; 2783 LiveInsT SavedLiveIns; 2784 2785 int MaxNumBlocks = -1; 2786 for (auto &MBB : MF) 2787 MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks); 2788 assert(MaxNumBlocks >= 0); 2789 ++MaxNumBlocks; 2790 2791 MLocTransfer.resize(MaxNumBlocks); 2792 vlocs.resize(MaxNumBlocks); 2793 SavedLiveIns.resize(MaxNumBlocks); 2794 2795 initialSetup(MF); 2796 2797 produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks); 2798 2799 // Allocate and initialize two array-of-arrays for the live-in and live-out 2800 // machine values. The outer dimension is the block number; while the inner 2801 // dimension is a LocIdx from MLocTracker. 2802 ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks]; 2803 ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks]; 2804 unsigned NumLocs = MTracker->getNumLocs(); 2805 for (int i = 0; i < MaxNumBlocks; ++i) { 2806 MOutLocs[i] = new ValueIDNum[NumLocs]; 2807 MInLocs[i] = new ValueIDNum[NumLocs]; 2808 } 2809 2810 // Solve the machine value dataflow problem using the MLocTransfer function, 2811 // storing the computed live-ins / live-outs into the array-of-arrays. We use 2812 // both live-ins and live-outs for decision making in the variable value 2813 // dataflow problem. 2814 mlocDataflow(MInLocs, MOutLocs, MLocTransfer); 2815 2816 // Patch up debug phi numbers, turning unknown block-live-in values into 2817 // either live-through machine values, or PHIs. 2818 for (auto &DBG_PHI : DebugPHINumToValue) { 2819 // Identify unresolved block-live-ins. 2820 ValueIDNum &Num = DBG_PHI.ValueRead; 2821 if (!Num.isPHI()) 2822 continue; 2823 2824 unsigned BlockNo = Num.getBlock(); 2825 LocIdx LocNo = Num.getLoc(); 2826 Num = MInLocs[BlockNo][LocNo.asU64()]; 2827 } 2828 // Later, we'll be looking up ranges of instruction numbers. 2829 llvm::sort(DebugPHINumToValue); 2830 2831 // Walk back through each block / instruction, collecting DBG_VALUE 2832 // instructions and recording what machine value their operands refer to. 2833 for (auto &OrderPair : OrderToBB) { 2834 MachineBasicBlock &MBB = *OrderPair.second; 2835 CurBB = MBB.getNumber(); 2836 VTracker = &vlocs[CurBB]; 2837 VTracker->MBB = &MBB; 2838 MTracker->loadFromArray(MInLocs[CurBB], CurBB); 2839 CurInst = 1; 2840 for (auto &MI : MBB) { 2841 process(MI, MOutLocs, MInLocs); 2842 ++CurInst; 2843 } 2844 MTracker->reset(); 2845 } 2846 2847 // Number all variables in the order that they appear, to be used as a stable 2848 // insertion order later. 2849 DenseMap<DebugVariable, unsigned> AllVarsNumbering; 2850 2851 // Map from one LexicalScope to all the variables in that scope. 2852 DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars; 2853 2854 // Map from One lexical scope to all blocks in that scope. 2855 DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>> 2856 ScopeToBlocks; 2857 2858 // Store a DILocation that describes a scope. 2859 DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation; 2860 2861 // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise 2862 // the order is unimportant, it just has to be stable. 2863 unsigned VarAssignCount = 0; 2864 for (unsigned int I = 0; I < OrderToBB.size(); ++I) { 2865 auto *MBB = OrderToBB[I]; 2866 auto *VTracker = &vlocs[MBB->getNumber()]; 2867 // Collect each variable with a DBG_VALUE in this block. 2868 for (auto &idx : VTracker->Vars) { 2869 const auto &Var = idx.first; 2870 const DILocation *ScopeLoc = VTracker->Scopes[Var]; 2871 assert(ScopeLoc != nullptr); 2872 auto *Scope = LS.findLexicalScope(ScopeLoc); 2873 2874 // No insts in scope -> shouldn't have been recorded. 2875 assert(Scope != nullptr); 2876 2877 AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size())); 2878 ScopeToVars[Scope].insert(Var); 2879 ScopeToBlocks[Scope].insert(VTracker->MBB); 2880 ScopeToDILocation[Scope] = ScopeLoc; 2881 ++VarAssignCount; 2882 } 2883 } 2884 2885 bool Changed = false; 2886 2887 // If we have an extremely large number of variable assignments and blocks, 2888 // bail out at this point. We've burnt some time doing analysis already, 2889 // however we should cut our losses. 2890 if ((unsigned)MaxNumBlocks > InputBBLimit && 2891 VarAssignCount > InputDbgValLimit) { 2892 LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName() 2893 << " has " << MaxNumBlocks << " basic blocks and " 2894 << VarAssignCount 2895 << " variable assignments, exceeding limits.\n"); 2896 } else { 2897 // Compute the extended ranges, iterating over scopes. There might be 2898 // something to be said for ordering them by size/locality, but that's for 2899 // the future. For each scope, solve the variable value problem, producing 2900 // a map of variables to values in SavedLiveIns. 2901 for (auto &P : ScopeToVars) { 2902 vlocDataflow(P.first, ScopeToDILocation[P.first], P.second, 2903 ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs, 2904 vlocs); 2905 } 2906 2907 // Using the computed value locations and variable values for each block, 2908 // create the DBG_VALUE instructions representing the extended variable 2909 // locations. 2910 emitLocations(MF, SavedLiveIns, MOutLocs, MInLocs, AllVarsNumbering, *TPC); 2911 2912 // Did we actually make any changes? If we created any DBG_VALUEs, then yes. 2913 Changed = TTracker->Transfers.size() != 0; 2914 } 2915 2916 // Common clean-up of memory. 2917 for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) { 2918 delete[] MOutLocs[Idx]; 2919 delete[] MInLocs[Idx]; 2920 } 2921 delete[] MOutLocs; 2922 delete[] MInLocs; 2923 2924 delete MTracker; 2925 delete TTracker; 2926 MTracker = nullptr; 2927 VTracker = nullptr; 2928 TTracker = nullptr; 2929 2930 ArtificialBlocks.clear(); 2931 OrderToBB.clear(); 2932 BBToOrder.clear(); 2933 BBNumToRPO.clear(); 2934 DebugInstrNumToInstr.clear(); 2935 DebugPHINumToValue.clear(); 2936 2937 return Changed; 2938 } 2939 2940 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() { 2941 return new InstrRefBasedLDV(); 2942 } 2943 2944 namespace { 2945 class LDVSSABlock; 2946 class LDVSSAUpdater; 2947 2948 // Pick a type to identify incoming block values as we construct SSA. We 2949 // can't use anything more robust than an integer unfortunately, as SSAUpdater 2950 // expects to zero-initialize the type. 2951 typedef uint64_t BlockValueNum; 2952 2953 /// Represents an SSA PHI node for the SSA updater class. Contains the block 2954 /// this PHI is in, the value number it would have, and the expected incoming 2955 /// values from parent blocks. 2956 class LDVSSAPhi { 2957 public: 2958 SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues; 2959 LDVSSABlock *ParentBlock; 2960 BlockValueNum PHIValNum; 2961 LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock) 2962 : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {} 2963 2964 LDVSSABlock *getParent() { return ParentBlock; } 2965 }; 2966 2967 /// Thin wrapper around a block predecessor iterator. Only difference from a 2968 /// normal block iterator is that it dereferences to an LDVSSABlock. 2969 class LDVSSABlockIterator { 2970 public: 2971 MachineBasicBlock::pred_iterator PredIt; 2972 LDVSSAUpdater &Updater; 2973 2974 LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt, 2975 LDVSSAUpdater &Updater) 2976 : PredIt(PredIt), Updater(Updater) {} 2977 2978 bool operator!=(const LDVSSABlockIterator &OtherIt) const { 2979 return OtherIt.PredIt != PredIt; 2980 } 2981 2982 LDVSSABlockIterator &operator++() { 2983 ++PredIt; 2984 return *this; 2985 } 2986 2987 LDVSSABlock *operator*(); 2988 }; 2989 2990 /// Thin wrapper around a block for SSA Updater interface. Necessary because 2991 /// we need to track the PHI value(s) that we may have observed as necessary 2992 /// in this block. 2993 class LDVSSABlock { 2994 public: 2995 MachineBasicBlock &BB; 2996 LDVSSAUpdater &Updater; 2997 using PHIListT = SmallVector<LDVSSAPhi, 1>; 2998 /// List of PHIs in this block. There should only ever be one. 2999 PHIListT PHIList; 3000 3001 LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater) 3002 : BB(BB), Updater(Updater) {} 3003 3004 LDVSSABlockIterator succ_begin() { 3005 return LDVSSABlockIterator(BB.succ_begin(), Updater); 3006 } 3007 3008 LDVSSABlockIterator succ_end() { 3009 return LDVSSABlockIterator(BB.succ_end(), Updater); 3010 } 3011 3012 /// SSAUpdater has requested a PHI: create that within this block record. 3013 LDVSSAPhi *newPHI(BlockValueNum Value) { 3014 PHIList.emplace_back(Value, this); 3015 return &PHIList.back(); 3016 } 3017 3018 /// SSAUpdater wishes to know what PHIs already exist in this block. 3019 PHIListT &phis() { return PHIList; } 3020 }; 3021 3022 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values 3023 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to 3024 // SSAUpdaterTraits<LDVSSAUpdater>. 3025 class LDVSSAUpdater { 3026 public: 3027 /// Map of value numbers to PHI records. 3028 DenseMap<BlockValueNum, LDVSSAPhi *> PHIs; 3029 /// Map of which blocks generate Undef values -- blocks that are not 3030 /// dominated by any Def. 3031 DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap; 3032 /// Map of machine blocks to our own records of them. 3033 DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap; 3034 /// Machine location where any PHI must occur. 3035 LocIdx Loc; 3036 /// Table of live-in machine value numbers for blocks / locations. 3037 ValueIDNum **MLiveIns; 3038 3039 LDVSSAUpdater(LocIdx L, ValueIDNum **MLiveIns) : Loc(L), MLiveIns(MLiveIns) {} 3040 3041 void reset() { 3042 for (auto &Block : BlockMap) 3043 delete Block.second; 3044 3045 PHIs.clear(); 3046 UndefMap.clear(); 3047 BlockMap.clear(); 3048 } 3049 3050 ~LDVSSAUpdater() { reset(); } 3051 3052 /// For a given MBB, create a wrapper block for it. Stores it in the 3053 /// LDVSSAUpdater block map. 3054 LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) { 3055 auto it = BlockMap.find(BB); 3056 if (it == BlockMap.end()) { 3057 BlockMap[BB] = new LDVSSABlock(*BB, *this); 3058 it = BlockMap.find(BB); 3059 } 3060 return it->second; 3061 } 3062 3063 /// Find the live-in value number for the given block. Looks up the value at 3064 /// the PHI location on entry. 3065 BlockValueNum getValue(LDVSSABlock *LDVBB) { 3066 return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64(); 3067 } 3068 }; 3069 3070 LDVSSABlock *LDVSSABlockIterator::operator*() { 3071 return Updater.getSSALDVBlock(*PredIt); 3072 } 3073 3074 #ifndef NDEBUG 3075 3076 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) { 3077 out << "SSALDVPHI " << PHI.PHIValNum; 3078 return out; 3079 } 3080 3081 #endif 3082 3083 } // namespace 3084 3085 namespace llvm { 3086 3087 /// Template specialization to give SSAUpdater access to CFG and value 3088 /// information. SSAUpdater calls methods in these traits, passing in the 3089 /// LDVSSAUpdater object, to learn about blocks and the values they define. 3090 /// It also provides methods to create PHI nodes and track them. 3091 template <> class SSAUpdaterTraits<LDVSSAUpdater> { 3092 public: 3093 using BlkT = LDVSSABlock; 3094 using ValT = BlockValueNum; 3095 using PhiT = LDVSSAPhi; 3096 using BlkSucc_iterator = LDVSSABlockIterator; 3097 3098 // Methods to access block successors -- dereferencing to our wrapper class. 3099 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); } 3100 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); } 3101 3102 /// Iterator for PHI operands. 3103 class PHI_iterator { 3104 private: 3105 LDVSSAPhi *PHI; 3106 unsigned Idx; 3107 3108 public: 3109 explicit PHI_iterator(LDVSSAPhi *P) // begin iterator 3110 : PHI(P), Idx(0) {} 3111 PHI_iterator(LDVSSAPhi *P, bool) // end iterator 3112 : PHI(P), Idx(PHI->IncomingValues.size()) {} 3113 3114 PHI_iterator &operator++() { 3115 Idx++; 3116 return *this; 3117 } 3118 bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; } 3119 bool operator!=(const PHI_iterator &X) const { return !operator==(X); } 3120 3121 BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; } 3122 3123 LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; } 3124 }; 3125 3126 static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } 3127 3128 static inline PHI_iterator PHI_end(PhiT *PHI) { 3129 return PHI_iterator(PHI, true); 3130 } 3131 3132 /// FindPredecessorBlocks - Put the predecessors of BB into the Preds 3133 /// vector. 3134 static void FindPredecessorBlocks(LDVSSABlock *BB, 3135 SmallVectorImpl<LDVSSABlock *> *Preds) { 3136 for (MachineBasicBlock::pred_iterator PI = BB->BB.pred_begin(), 3137 E = BB->BB.pred_end(); 3138 PI != E; ++PI) 3139 Preds->push_back(BB->Updater.getSSALDVBlock(*PI)); 3140 } 3141 3142 /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new 3143 /// register. For LiveDebugValues, represents a block identified as not having 3144 /// any DBG_PHI predecessors. 3145 static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) { 3146 // Create a value number for this block -- it needs to be unique and in the 3147 // "undef" collection, so that we know it's not real. Use a number 3148 // representing a PHI into this block. 3149 BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64(); 3150 Updater->UndefMap[&BB->BB] = Num; 3151 return Num; 3152 } 3153 3154 /// CreateEmptyPHI - Create a (representation of a) PHI in the given block. 3155 /// SSAUpdater will populate it with information about incoming values. The 3156 /// value number of this PHI is whatever the machine value number problem 3157 /// solution determined it to be. This includes non-phi values if SSAUpdater 3158 /// tries to create a PHI where the incoming values are identical. 3159 static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds, 3160 LDVSSAUpdater *Updater) { 3161 BlockValueNum PHIValNum = Updater->getValue(BB); 3162 LDVSSAPhi *PHI = BB->newPHI(PHIValNum); 3163 Updater->PHIs[PHIValNum] = PHI; 3164 return PHIValNum; 3165 } 3166 3167 /// AddPHIOperand - Add the specified value as an operand of the PHI for 3168 /// the specified predecessor block. 3169 static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) { 3170 PHI->IncomingValues.push_back(std::make_pair(Pred, Val)); 3171 } 3172 3173 /// ValueIsPHI - Check if the instruction that defines the specified value 3174 /// is a PHI instruction. 3175 static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) { 3176 auto PHIIt = Updater->PHIs.find(Val); 3177 if (PHIIt == Updater->PHIs.end()) 3178 return nullptr; 3179 return PHIIt->second; 3180 } 3181 3182 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source 3183 /// operands, i.e., it was just added. 3184 static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) { 3185 LDVSSAPhi *PHI = ValueIsPHI(Val, Updater); 3186 if (PHI && PHI->IncomingValues.size() == 0) 3187 return PHI; 3188 return nullptr; 3189 } 3190 3191 /// GetPHIValue - For the specified PHI instruction, return the value 3192 /// that it defines. 3193 static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; } 3194 }; 3195 3196 } // end namespace llvm 3197 3198 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(MachineFunction &MF, 3199 ValueIDNum **MLiveOuts, 3200 ValueIDNum **MLiveIns, 3201 MachineInstr &Here, 3202 uint64_t InstrNum) { 3203 // Pick out records of DBG_PHI instructions that have been observed. If there 3204 // are none, then we cannot compute a value number. 3205 auto RangePair = std::equal_range(DebugPHINumToValue.begin(), 3206 DebugPHINumToValue.end(), InstrNum); 3207 auto LowerIt = RangePair.first; 3208 auto UpperIt = RangePair.second; 3209 3210 // No DBG_PHI means there can be no location. 3211 if (LowerIt == UpperIt) 3212 return None; 3213 3214 // If there's only one DBG_PHI, then that is our value number. 3215 if (std::distance(LowerIt, UpperIt) == 1) 3216 return LowerIt->ValueRead; 3217 3218 auto DBGPHIRange = make_range(LowerIt, UpperIt); 3219 3220 // Pick out the location (physreg, slot) where any PHIs must occur. It's 3221 // technically possible for us to merge values in different registers in each 3222 // block, but highly unlikely that LLVM will generate such code after register 3223 // allocation. 3224 LocIdx Loc = LowerIt->ReadLoc; 3225 3226 // We have several DBG_PHIs, and a use position (the Here inst). All each 3227 // DBG_PHI does is identify a value at a program position. We can treat each 3228 // DBG_PHI like it's a Def of a value, and the use position is a Use of a 3229 // value, just like SSA. We use the bulk-standard LLVM SSA updater class to 3230 // determine which Def is used at the Use, and any PHIs that happen along 3231 // the way. 3232 // Adapted LLVM SSA Updater: 3233 LDVSSAUpdater Updater(Loc, MLiveIns); 3234 // Map of which Def or PHI is the current value in each block. 3235 DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues; 3236 // Set of PHIs that we have created along the way. 3237 SmallVector<LDVSSAPhi *, 8> CreatedPHIs; 3238 3239 // Each existing DBG_PHI is a Def'd value under this model. Record these Defs 3240 // for the SSAUpdater. 3241 for (const auto &DBG_PHI : DBGPHIRange) { 3242 LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB); 3243 const ValueIDNum &Num = DBG_PHI.ValueRead; 3244 AvailableValues.insert(std::make_pair(Block, Num.asU64())); 3245 } 3246 3247 LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent()); 3248 const auto &AvailIt = AvailableValues.find(HereBlock); 3249 if (AvailIt != AvailableValues.end()) { 3250 // Actually, we already know what the value is -- the Use is in the same 3251 // block as the Def. 3252 return ValueIDNum::fromU64(AvailIt->second); 3253 } 3254 3255 // Otherwise, we must use the SSA Updater. It will identify the value number 3256 // that we are to use, and the PHIs that must happen along the way. 3257 SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs); 3258 BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent())); 3259 ValueIDNum Result = ValueIDNum::fromU64(ResultInt); 3260 3261 // We have the number for a PHI, or possibly live-through value, to be used 3262 // at this Use. There are a number of things we have to check about it though: 3263 // * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this 3264 // Use was not completely dominated by DBG_PHIs and we should abort. 3265 // * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that 3266 // we've left SSA form. Validate that the inputs to each PHI are the 3267 // expected values. 3268 // * Is a PHI we've created actually a merging of values, or are all the 3269 // predecessor values the same, leading to a non-PHI machine value number? 3270 // (SSAUpdater doesn't know that either). Remap validated PHIs into the 3271 // the ValidatedValues collection below to sort this out. 3272 DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues; 3273 3274 // Define all the input DBG_PHI values in ValidatedValues. 3275 for (const auto &DBG_PHI : DBGPHIRange) { 3276 LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB); 3277 const ValueIDNum &Num = DBG_PHI.ValueRead; 3278 ValidatedValues.insert(std::make_pair(Block, Num)); 3279 } 3280 3281 // Sort PHIs to validate into RPO-order. 3282 SmallVector<LDVSSAPhi *, 8> SortedPHIs; 3283 for (auto &PHI : CreatedPHIs) 3284 SortedPHIs.push_back(PHI); 3285 3286 std::sort( 3287 SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) { 3288 return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB]; 3289 }); 3290 3291 for (auto &PHI : SortedPHIs) { 3292 ValueIDNum ThisBlockValueNum = 3293 MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()]; 3294 3295 // Are all these things actually defined? 3296 for (auto &PHIIt : PHI->IncomingValues) { 3297 // Any undef input means DBG_PHIs didn't dominate the use point. 3298 if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end()) 3299 return None; 3300 3301 ValueIDNum ValueToCheck; 3302 ValueIDNum *BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()]; 3303 3304 auto VVal = ValidatedValues.find(PHIIt.first); 3305 if (VVal == ValidatedValues.end()) { 3306 // We cross a loop, and this is a backedge. LLVMs tail duplication 3307 // happens so late that DBG_PHI instructions should not be able to 3308 // migrate into loops -- meaning we can only be live-through this 3309 // loop. 3310 ValueToCheck = ThisBlockValueNum; 3311 } else { 3312 // Does the block have as a live-out, in the location we're examining, 3313 // the value that we expect? If not, it's been moved or clobbered. 3314 ValueToCheck = VVal->second; 3315 } 3316 3317 if (BlockLiveOuts[Loc.asU64()] != ValueToCheck) 3318 return None; 3319 } 3320 3321 // Record this value as validated. 3322 ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum}); 3323 } 3324 3325 // All the PHIs are valid: we can return what the SSAUpdater said our value 3326 // number was. 3327 return Result; 3328 } 3329