1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file InstrRefBasedImpl.cpp
9 ///
10 /// This is a separate implementation of LiveDebugValues, see
11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
12 ///
13 /// This pass propagates variable locations between basic blocks, resolving
14 /// control flow conflicts between them. The problem is SSA construction, where
15 /// each debug instruction assigns the *value* that a variable has, and every
16 /// instruction where the variable is in scope uses that variable. The resulting
17 /// map of instruction-to-value is then translated into a register (or spill)
18 /// location for each variable over each instruction.
19 ///
20 /// The primary difference from normal SSA construction is that we cannot
21 /// _create_ PHI values that contain variable values. CodeGen has already
22 /// completed, and we can't alter it just to make debug-info complete. Thus:
23 /// we can identify function positions where we would like a PHI value for a
24 /// variable, but must search the MachineFunction to see whether such a PHI is
25 /// available. If no such PHI exists, the variable location must be dropped.
26 ///
27 /// To achieve this, we perform two kinds of analysis. First, we identify
28 /// every value defined by every instruction (ignoring those that only move
29 /// another value), then re-compute an SSA-form representation of the
30 /// MachineFunction, using value propagation to eliminate any un-necessary
31 /// PHI values. This gives us a map of every value computed in the function,
32 /// and its location within the register file / stack.
33 ///
34 /// Secondly, for each variable we perform the same analysis, where each debug
35 /// instruction is considered a def, and every instruction where the variable
36 /// is in lexical scope as a use. Value propagation is used again to eliminate
37 /// any un-necessary PHIs. This gives us a map of each variable to the value
38 /// it should have in a block.
39 ///
40 /// Once both are complete, we have two maps for each block:
41 ///  * Variables to the values they should have,
42 ///  * Values to the register / spill slot they are located in.
43 /// After which we can marry-up variable values with a location, and emit
44 /// DBG_VALUE instructions specifying those locations. Variable locations may
45 /// be dropped in this process due to the desired variable value not being
46 /// resident in any machine location, or because there is no PHI value in any
47 /// location that accurately represents the desired value.  The building of
48 /// location lists for each block is left to DbgEntityHistoryCalculator.
49 ///
50 /// This pass is kept efficient because the size of the first SSA problem
51 /// is proportional to the working-set size of the function, which the compiler
52 /// tries to keep small. (It's also proportional to the number of blocks).
53 /// Additionally, we repeatedly perform the second SSA problem analysis with
54 /// only the variables and blocks in a single lexical scope, exploiting their
55 /// locality.
56 ///
57 /// ### Terminology
58 ///
59 /// A machine location is a register or spill slot, a value is something that's
60 /// defined by an instruction or PHI node, while a variable value is the value
61 /// assigned to a variable. A variable location is a machine location, that must
62 /// contain the appropriate variable value. A value that is a PHI node is
63 /// occasionally called an mphi.
64 ///
65 /// The first SSA problem is the "machine value location" problem,
66 /// because we're determining which machine locations contain which values.
67 /// The "locations" are constant: what's unknown is what value they contain.
68 ///
69 /// The second SSA problem (the one for variables) is the "variable value
70 /// problem", because it's determining what values a variable has, rather than
71 /// what location those values are placed in.
72 ///
73 /// TODO:
74 ///   Overlapping fragments
75 ///   Entry values
76 ///   Add back DEBUG statements for debugging this
77 ///   Collect statistics
78 ///
79 //===----------------------------------------------------------------------===//
80 
81 #include "llvm/ADT/DenseMap.h"
82 #include "llvm/ADT/PostOrderIterator.h"
83 #include "llvm/ADT/STLExtras.h"
84 #include "llvm/ADT/SmallPtrSet.h"
85 #include "llvm/ADT/SmallSet.h"
86 #include "llvm/ADT/SmallVector.h"
87 #include "llvm/ADT/Statistic.h"
88 #include "llvm/Analysis/IteratedDominanceFrontier.h"
89 #include "llvm/CodeGen/LexicalScopes.h"
90 #include "llvm/CodeGen/MachineBasicBlock.h"
91 #include "llvm/CodeGen/MachineDominators.h"
92 #include "llvm/CodeGen/MachineFrameInfo.h"
93 #include "llvm/CodeGen/MachineFunction.h"
94 #include "llvm/CodeGen/MachineFunctionPass.h"
95 #include "llvm/CodeGen/MachineInstr.h"
96 #include "llvm/CodeGen/MachineInstrBuilder.h"
97 #include "llvm/CodeGen/MachineInstrBundle.h"
98 #include "llvm/CodeGen/MachineMemOperand.h"
99 #include "llvm/CodeGen/MachineOperand.h"
100 #include "llvm/CodeGen/PseudoSourceValue.h"
101 #include "llvm/CodeGen/RegisterScavenging.h"
102 #include "llvm/CodeGen/TargetFrameLowering.h"
103 #include "llvm/CodeGen/TargetInstrInfo.h"
104 #include "llvm/CodeGen/TargetLowering.h"
105 #include "llvm/CodeGen/TargetPassConfig.h"
106 #include "llvm/CodeGen/TargetRegisterInfo.h"
107 #include "llvm/CodeGen/TargetSubtargetInfo.h"
108 #include "llvm/Config/llvm-config.h"
109 #include "llvm/IR/DIBuilder.h"
110 #include "llvm/IR/DebugInfoMetadata.h"
111 #include "llvm/IR/DebugLoc.h"
112 #include "llvm/IR/Function.h"
113 #include "llvm/IR/Module.h"
114 #include "llvm/InitializePasses.h"
115 #include "llvm/MC/MCRegisterInfo.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/Compiler.h"
119 #include "llvm/Support/Debug.h"
120 #include "llvm/Support/TypeSize.h"
121 #include "llvm/Support/raw_ostream.h"
122 #include "llvm/Target/TargetMachine.h"
123 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
124 #include <algorithm>
125 #include <cassert>
126 #include <cstdint>
127 #include <functional>
128 #include <limits.h>
129 #include <limits>
130 #include <queue>
131 #include <tuple>
132 #include <utility>
133 #include <vector>
134 
135 #include "InstrRefBasedImpl.h"
136 #include "LiveDebugValues.h"
137 
138 using namespace llvm;
139 using namespace LiveDebugValues;
140 
141 // SSAUpdaterImple sets DEBUG_TYPE, change it.
142 #undef DEBUG_TYPE
143 #define DEBUG_TYPE "livedebugvalues"
144 
145 // Act more like the VarLoc implementation, by propagating some locations too
146 // far and ignoring some transfers.
147 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
148                                    cl::desc("Act like old LiveDebugValues did"),
149                                    cl::init(false));
150 
151 /// Thin wrapper around an integer -- designed to give more type safety to
152 /// spill location numbers.
153 class SpillLocationNo {
154 public:
155   explicit SpillLocationNo(unsigned SpillNo) : SpillNo(SpillNo) {}
156   unsigned SpillNo;
157   unsigned id() const { return SpillNo; }
158 };
159 
160 /// Collection of DBG_VALUEs observed when traversing a block. Records each
161 /// variable and the value the DBG_VALUE refers to. Requires the machine value
162 /// location dataflow algorithm to have run already, so that values can be
163 /// identified.
164 class VLocTracker {
165 public:
166   /// Map DebugVariable to the latest Value it's defined to have.
167   /// Needs to be a MapVector because we determine order-in-the-input-MIR from
168   /// the order in this container.
169   /// We only retain the last DbgValue in each block for each variable, to
170   /// determine the blocks live-out variable value. The Vars container forms the
171   /// transfer function for this block, as part of the dataflow analysis. The
172   /// movement of values between locations inside of a block is handled at a
173   /// much later stage, in the TransferTracker class.
174   MapVector<DebugVariable, DbgValue> Vars;
175   DenseMap<DebugVariable, const DILocation *> Scopes;
176   MachineBasicBlock *MBB;
177 
178 public:
179   VLocTracker() {}
180 
181   void defVar(const MachineInstr &MI, const DbgValueProperties &Properties,
182               Optional<ValueIDNum> ID) {
183     assert(MI.isDebugValue() || MI.isDebugRef());
184     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
185                       MI.getDebugLoc()->getInlinedAt());
186     DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def)
187                         : DbgValue(Properties, DbgValue::Undef);
188 
189     // Attempt insertion; overwrite if it's already mapped.
190     auto Result = Vars.insert(std::make_pair(Var, Rec));
191     if (!Result.second)
192       Result.first->second = Rec;
193     Scopes[Var] = MI.getDebugLoc().get();
194   }
195 
196   void defVar(const MachineInstr &MI, const MachineOperand &MO) {
197     // Only DBG_VALUEs can define constant-valued variables.
198     assert(MI.isDebugValue());
199     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
200                       MI.getDebugLoc()->getInlinedAt());
201     DbgValueProperties Properties(MI);
202     DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const);
203 
204     // Attempt insertion; overwrite if it's already mapped.
205     auto Result = Vars.insert(std::make_pair(Var, Rec));
206     if (!Result.second)
207       Result.first->second = Rec;
208     Scopes[Var] = MI.getDebugLoc().get();
209   }
210 };
211 
212 /// Tracker for converting machine value locations and variable values into
213 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
214 /// specifying block live-in locations and transfers within blocks.
215 ///
216 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
217 /// and must be initialized with the set of variable values that are live-in to
218 /// the block. The caller then repeatedly calls process(). TransferTracker picks
219 /// out variable locations for the live-in variable values (if there _is_ a
220 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is
221 /// stepped through, transfers of values between machine locations are
222 /// identified and if profitable, a DBG_VALUE created.
223 ///
224 /// This is where debug use-before-defs would be resolved: a variable with an
225 /// unavailable value could materialize in the middle of a block, when the
226 /// value becomes available. Or, we could detect clobbers and re-specify the
227 /// variable in a backup location. (XXX these are unimplemented).
228 class TransferTracker {
229 public:
230   const TargetInstrInfo *TII;
231   const TargetLowering *TLI;
232   /// This machine location tracker is assumed to always contain the up-to-date
233   /// value mapping for all machine locations. TransferTracker only reads
234   /// information from it. (XXX make it const?)
235   MLocTracker *MTracker;
236   MachineFunction &MF;
237   bool ShouldEmitDebugEntryValues;
238 
239   /// Record of all changes in variable locations at a block position. Awkwardly
240   /// we allow inserting either before or after the point: MBB != nullptr
241   /// indicates it's before, otherwise after.
242   struct Transfer {
243     MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
244     MachineBasicBlock *MBB; /// non-null if we should insert after.
245     SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
246   };
247 
248   struct LocAndProperties {
249     LocIdx Loc;
250     DbgValueProperties Properties;
251   };
252 
253   /// Collection of transfers (DBG_VALUEs) to be inserted.
254   SmallVector<Transfer, 32> Transfers;
255 
256   /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
257   /// between TransferTrackers view of variable locations and MLocTrackers. For
258   /// example, MLocTracker observes all clobbers, but TransferTracker lazily
259   /// does not.
260   std::vector<ValueIDNum> VarLocs;
261 
262   /// Map from LocIdxes to which DebugVariables are based that location.
263   /// Mantained while stepping through the block. Not accurate if
264   /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
265   std::map<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
266 
267   /// Map from DebugVariable to it's current location and qualifying meta
268   /// information. To be used in conjunction with ActiveMLocs to construct
269   /// enough information for the DBG_VALUEs for a particular LocIdx.
270   DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;
271 
272   /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
273   SmallVector<MachineInstr *, 4> PendingDbgValues;
274 
275   /// Record of a use-before-def: created when a value that's live-in to the
276   /// current block isn't available in any machine location, but it will be
277   /// defined in this block.
278   struct UseBeforeDef {
279     /// Value of this variable, def'd in block.
280     ValueIDNum ID;
281     /// Identity of this variable.
282     DebugVariable Var;
283     /// Additional variable properties.
284     DbgValueProperties Properties;
285   };
286 
287   /// Map from instruction index (within the block) to the set of UseBeforeDefs
288   /// that become defined at that instruction.
289   DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
290 
291   /// The set of variables that are in UseBeforeDefs and can become a location
292   /// once the relevant value is defined. An element being erased from this
293   /// collection prevents the use-before-def materializing.
294   DenseSet<DebugVariable> UseBeforeDefVariables;
295 
296   const TargetRegisterInfo &TRI;
297   const BitVector &CalleeSavedRegs;
298 
299   TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
300                   MachineFunction &MF, const TargetRegisterInfo &TRI,
301                   const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
302       : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
303         CalleeSavedRegs(CalleeSavedRegs) {
304     TLI = MF.getSubtarget().getTargetLowering();
305     auto &TM = TPC.getTM<TargetMachine>();
306     ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
307   }
308 
309   /// Load object with live-in variable values. \p mlocs contains the live-in
310   /// values in each machine location, while \p vlocs the live-in variable
311   /// values. This method picks variable locations for the live-in variables,
312   /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
313   /// object fields to track variable locations as we step through the block.
314   /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
315   void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs,
316                   SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
317                   unsigned NumLocs) {
318     ActiveMLocs.clear();
319     ActiveVLocs.clear();
320     VarLocs.clear();
321     VarLocs.reserve(NumLocs);
322     UseBeforeDefs.clear();
323     UseBeforeDefVariables.clear();
324 
325     auto isCalleeSaved = [&](LocIdx L) {
326       unsigned Reg = MTracker->LocIdxToLocID[L];
327       if (Reg >= MTracker->NumRegs)
328         return false;
329       for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
330         if (CalleeSavedRegs.test(*RAI))
331           return true;
332       return false;
333     };
334 
335     // Map of the preferred location for each value.
336     std::map<ValueIDNum, LocIdx> ValueToLoc;
337 
338     // Produce a map of value numbers to the current machine locs they live
339     // in. When emulating VarLocBasedImpl, there should only be one
340     // location; when not, we get to pick.
341     for (auto Location : MTracker->locations()) {
342       LocIdx Idx = Location.Idx;
343       ValueIDNum &VNum = MLocs[Idx.asU64()];
344       VarLocs.push_back(VNum);
345       auto it = ValueToLoc.find(VNum);
346       // In order of preference, pick:
347       //  * Callee saved registers,
348       //  * Other registers,
349       //  * Spill slots.
350       if (it == ValueToLoc.end() || MTracker->isSpill(it->second) ||
351           (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) {
352         // Insert, or overwrite if insertion failed.
353         auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx));
354         if (!PrefLocRes.second)
355           PrefLocRes.first->second = Idx;
356       }
357     }
358 
359     // Now map variables to their picked LocIdxes.
360     for (auto Var : VLocs) {
361       if (Var.second.Kind == DbgValue::Const) {
362         PendingDbgValues.push_back(
363             emitMOLoc(Var.second.MO, Var.first, Var.second.Properties));
364         continue;
365       }
366 
367       // If the value has no location, we can't make a variable location.
368       const ValueIDNum &Num = Var.second.ID;
369       auto ValuesPreferredLoc = ValueToLoc.find(Num);
370       if (ValuesPreferredLoc == ValueToLoc.end()) {
371         // If it's a def that occurs in this block, register it as a
372         // use-before-def to be resolved as we step through the block.
373         if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI())
374           addUseBeforeDef(Var.first, Var.second.Properties, Num);
375         else
376           recoverAsEntryValue(Var.first, Var.second.Properties, Num);
377         continue;
378       }
379 
380       LocIdx M = ValuesPreferredLoc->second;
381       auto NewValue = LocAndProperties{M, Var.second.Properties};
382       auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
383       if (!Result.second)
384         Result.first->second = NewValue;
385       ActiveMLocs[M].insert(Var.first);
386       PendingDbgValues.push_back(
387           MTracker->emitLoc(M, Var.first, Var.second.Properties));
388     }
389     flushDbgValues(MBB.begin(), &MBB);
390   }
391 
392   /// Record that \p Var has value \p ID, a value that becomes available
393   /// later in the function.
394   void addUseBeforeDef(const DebugVariable &Var,
395                        const DbgValueProperties &Properties, ValueIDNum ID) {
396     UseBeforeDef UBD = {ID, Var, Properties};
397     UseBeforeDefs[ID.getInst()].push_back(UBD);
398     UseBeforeDefVariables.insert(Var);
399   }
400 
401   /// After the instruction at index \p Inst and position \p pos has been
402   /// processed, check whether it defines a variable value in a use-before-def.
403   /// If so, and the variable value hasn't changed since the start of the
404   /// block, create a DBG_VALUE.
405   void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
406     auto MIt = UseBeforeDefs.find(Inst);
407     if (MIt == UseBeforeDefs.end())
408       return;
409 
410     for (auto &Use : MIt->second) {
411       LocIdx L = Use.ID.getLoc();
412 
413       // If something goes very wrong, we might end up labelling a COPY
414       // instruction or similar with an instruction number, where it doesn't
415       // actually define a new value, instead it moves a value. In case this
416       // happens, discard.
417       if (MTracker->LocIdxToIDNum[L] != Use.ID)
418         continue;
419 
420       // If a different debug instruction defined the variable value / location
421       // since the start of the block, don't materialize this use-before-def.
422       if (!UseBeforeDefVariables.count(Use.Var))
423         continue;
424 
425       PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties));
426     }
427     flushDbgValues(pos, nullptr);
428   }
429 
430   /// Helper to move created DBG_VALUEs into Transfers collection.
431   void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
432     if (PendingDbgValues.size() == 0)
433       return;
434 
435     // Pick out the instruction start position.
436     MachineBasicBlock::instr_iterator BundleStart;
437     if (MBB && Pos == MBB->begin())
438       BundleStart = MBB->instr_begin();
439     else
440       BundleStart = getBundleStart(Pos->getIterator());
441 
442     Transfers.push_back({BundleStart, MBB, PendingDbgValues});
443     PendingDbgValues.clear();
444   }
445 
446   bool isEntryValueVariable(const DebugVariable &Var,
447                             const DIExpression *Expr) const {
448     if (!Var.getVariable()->isParameter())
449       return false;
450 
451     if (Var.getInlinedAt())
452       return false;
453 
454     if (Expr->getNumElements() > 0)
455       return false;
456 
457     return true;
458   }
459 
460   bool isEntryValueValue(const ValueIDNum &Val) const {
461     // Must be in entry block (block number zero), and be a PHI / live-in value.
462     if (Val.getBlock() || !Val.isPHI())
463       return false;
464 
465     // Entry values must enter in a register.
466     if (MTracker->isSpill(Val.getLoc()))
467       return false;
468 
469     Register SP = TLI->getStackPointerRegisterToSaveRestore();
470     Register FP = TRI.getFrameRegister(MF);
471     Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
472     return Reg != SP && Reg != FP;
473   }
474 
475   bool recoverAsEntryValue(const DebugVariable &Var, DbgValueProperties &Prop,
476                            const ValueIDNum &Num) {
477     // Is this variable location a candidate to be an entry value. First,
478     // should we be trying this at all?
479     if (!ShouldEmitDebugEntryValues)
480       return false;
481 
482     // Is the variable appropriate for entry values (i.e., is a parameter).
483     if (!isEntryValueVariable(Var, Prop.DIExpr))
484       return false;
485 
486     // Is the value assigned to this variable still the entry value?
487     if (!isEntryValueValue(Num))
488       return false;
489 
490     // Emit a variable location using an entry value expression.
491     DIExpression *NewExpr =
492         DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue);
493     Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
494     MachineOperand MO = MachineOperand::CreateReg(Reg, false);
495 
496     PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect}));
497     return true;
498   }
499 
500   /// Change a variable value after encountering a DBG_VALUE inside a block.
501   void redefVar(const MachineInstr &MI) {
502     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
503                       MI.getDebugLoc()->getInlinedAt());
504     DbgValueProperties Properties(MI);
505 
506     const MachineOperand &MO = MI.getOperand(0);
507 
508     // Ignore non-register locations, we don't transfer those.
509     if (!MO.isReg() || MO.getReg() == 0) {
510       auto It = ActiveVLocs.find(Var);
511       if (It != ActiveVLocs.end()) {
512         ActiveMLocs[It->second.Loc].erase(Var);
513         ActiveVLocs.erase(It);
514      }
515       // Any use-before-defs no longer apply.
516       UseBeforeDefVariables.erase(Var);
517       return;
518     }
519 
520     Register Reg = MO.getReg();
521     LocIdx NewLoc = MTracker->getRegMLoc(Reg);
522     redefVar(MI, Properties, NewLoc);
523   }
524 
525   /// Handle a change in variable location within a block. Terminate the
526   /// variables current location, and record the value it now refers to, so
527   /// that we can detect location transfers later on.
528   void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
529                 Optional<LocIdx> OptNewLoc) {
530     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
531                       MI.getDebugLoc()->getInlinedAt());
532     // Any use-before-defs no longer apply.
533     UseBeforeDefVariables.erase(Var);
534 
535     // Erase any previous location,
536     auto It = ActiveVLocs.find(Var);
537     if (It != ActiveVLocs.end())
538       ActiveMLocs[It->second.Loc].erase(Var);
539 
540     // If there _is_ no new location, all we had to do was erase.
541     if (!OptNewLoc)
542       return;
543     LocIdx NewLoc = *OptNewLoc;
544 
545     // Check whether our local copy of values-by-location in #VarLocs is out of
546     // date. Wipe old tracking data for the location if it's been clobbered in
547     // the meantime.
548     if (MTracker->getNumAtPos(NewLoc) != VarLocs[NewLoc.asU64()]) {
549       for (auto &P : ActiveMLocs[NewLoc]) {
550         ActiveVLocs.erase(P);
551       }
552       ActiveMLocs[NewLoc.asU64()].clear();
553       VarLocs[NewLoc.asU64()] = MTracker->getNumAtPos(NewLoc);
554     }
555 
556     ActiveMLocs[NewLoc].insert(Var);
557     if (It == ActiveVLocs.end()) {
558       ActiveVLocs.insert(
559           std::make_pair(Var, LocAndProperties{NewLoc, Properties}));
560     } else {
561       It->second.Loc = NewLoc;
562       It->second.Properties = Properties;
563     }
564   }
565 
566   /// Account for a location \p mloc being clobbered. Examine the variable
567   /// locations that will be terminated: and try to recover them by using
568   /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
569   /// explicitly terminate a location if it can't be recovered.
570   void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
571                    bool MakeUndef = true) {
572     auto ActiveMLocIt = ActiveMLocs.find(MLoc);
573     if (ActiveMLocIt == ActiveMLocs.end())
574       return;
575 
576     // What was the old variable value?
577     ValueIDNum OldValue = VarLocs[MLoc.asU64()];
578     VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
579 
580     // Examine the remaining variable locations: if we can find the same value
581     // again, we can recover the location.
582     Optional<LocIdx> NewLoc = None;
583     for (auto Loc : MTracker->locations())
584       if (Loc.Value == OldValue)
585         NewLoc = Loc.Idx;
586 
587     // If there is no location, and we weren't asked to make the variable
588     // explicitly undef, then stop here.
589     if (!NewLoc && !MakeUndef) {
590       // Try and recover a few more locations with entry values.
591       for (auto &Var : ActiveMLocIt->second) {
592         auto &Prop = ActiveVLocs.find(Var)->second.Properties;
593         recoverAsEntryValue(Var, Prop, OldValue);
594       }
595       flushDbgValues(Pos, nullptr);
596       return;
597     }
598 
599     // Examine all the variables based on this location.
600     DenseSet<DebugVariable> NewMLocs;
601     for (auto &Var : ActiveMLocIt->second) {
602       auto ActiveVLocIt = ActiveVLocs.find(Var);
603       // Re-state the variable location: if there's no replacement then NewLoc
604       // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE
605       // identifying the alternative location will be emitted.
606       const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr;
607       DbgValueProperties Properties(Expr, false);
608       PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties));
609 
610       // Update machine locations <=> variable locations maps. Defer updating
611       // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator.
612       if (!NewLoc) {
613         ActiveVLocs.erase(ActiveVLocIt);
614       } else {
615         ActiveVLocIt->second.Loc = *NewLoc;
616         NewMLocs.insert(Var);
617       }
618     }
619 
620     // Commit any deferred ActiveMLoc changes.
621     if (!NewMLocs.empty())
622       for (auto &Var : NewMLocs)
623         ActiveMLocs[*NewLoc].insert(Var);
624 
625     // We lazily track what locations have which values; if we've found a new
626     // location for the clobbered value, remember it.
627     if (NewLoc)
628       VarLocs[NewLoc->asU64()] = OldValue;
629 
630     flushDbgValues(Pos, nullptr);
631 
632     ActiveMLocIt->second.clear();
633   }
634 
635   /// Transfer variables based on \p Src to be based on \p Dst. This handles
636   /// both register copies as well as spills and restores. Creates DBG_VALUEs
637   /// describing the movement.
638   void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
639     // Does Src still contain the value num we expect? If not, it's been
640     // clobbered in the meantime, and our variable locations are stale.
641     if (VarLocs[Src.asU64()] != MTracker->getNumAtPos(Src))
642       return;
643 
644     // assert(ActiveMLocs[Dst].size() == 0);
645     //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
646     ActiveMLocs[Dst] = ActiveMLocs[Src];
647     VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
648 
649     // For each variable based on Src; create a location at Dst.
650     for (auto &Var : ActiveMLocs[Src]) {
651       auto ActiveVLocIt = ActiveVLocs.find(Var);
652       assert(ActiveVLocIt != ActiveVLocs.end());
653       ActiveVLocIt->second.Loc = Dst;
654 
655       MachineInstr *MI =
656           MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
657       PendingDbgValues.push_back(MI);
658     }
659     ActiveMLocs[Src].clear();
660     flushDbgValues(Pos, nullptr);
661 
662     // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
663     // about the old location.
664     if (EmulateOldLDV)
665       VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
666   }
667 
668   MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
669                                 const DebugVariable &Var,
670                                 const DbgValueProperties &Properties) {
671     DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
672                                   Var.getVariable()->getScope(),
673                                   const_cast<DILocation *>(Var.getInlinedAt()));
674     auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
675     MIB.add(MO);
676     if (Properties.Indirect)
677       MIB.addImm(0);
678     else
679       MIB.addReg(0);
680     MIB.addMetadata(Var.getVariable());
681     MIB.addMetadata(Properties.DIExpr);
682     return MIB;
683   }
684 };
685 
686 //===----------------------------------------------------------------------===//
687 //            Implementation
688 //===----------------------------------------------------------------------===//
689 
690 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
691 
692 #ifndef NDEBUG
693 void DbgValue::dump(const MLocTracker *MTrack) const {
694   if (Kind == Const) {
695     MO.dump();
696   } else if (Kind == NoVal) {
697     dbgs() << "NoVal(" << BlockNo << ")";
698   } else if (Kind == Proposed) {
699     dbgs() << "VPHI(" << MTrack->IDAsString(ID) << ")";
700   } else {
701     assert(Kind == Def);
702     dbgs() << MTrack->IDAsString(ID);
703   }
704   if (Properties.Indirect)
705     dbgs() << " indir";
706   if (Properties.DIExpr)
707     dbgs() << " " << *Properties.DIExpr;
708 }
709 #endif
710 
711 MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
712                          const TargetRegisterInfo &TRI,
713                          const TargetLowering &TLI)
714     : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
715       LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) {
716   NumRegs = TRI.getNumRegs();
717   reset();
718   LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
719   assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
720 
721   // Always track SP. This avoids the implicit clobbering caused by regmasks
722   // from affectings its values. (LiveDebugValues disbelieves calls and
723   // regmasks that claim to clobber SP).
724   Register SP = TLI.getStackPointerRegisterToSaveRestore();
725   if (SP) {
726     unsigned ID = getLocID(SP, false);
727     (void)lookupOrTrackRegister(ID);
728   }
729 }
730 
731 LocIdx MLocTracker::trackRegister(unsigned ID) {
732   assert(ID != 0);
733   LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
734   LocIdxToIDNum.grow(NewIdx);
735   LocIdxToLocID.grow(NewIdx);
736 
737   // Default: it's an mphi.
738   ValueIDNum ValNum = {CurBB, 0, NewIdx};
739   // Was this reg ever touched by a regmask?
740   for (const auto &MaskPair : reverse(Masks)) {
741     if (MaskPair.first->clobbersPhysReg(ID)) {
742       // There was an earlier def we skipped.
743       ValNum = {CurBB, MaskPair.second, NewIdx};
744       break;
745     }
746   }
747 
748   LocIdxToIDNum[NewIdx] = ValNum;
749   LocIdxToLocID[NewIdx] = ID;
750   return NewIdx;
751 }
752 
753 void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB,
754                                unsigned InstID) {
755   // Ensure SP exists, so that we don't override it later.
756   Register SP = TLI.getStackPointerRegisterToSaveRestore();
757 
758   // Def any register we track have that isn't preserved. The regmask
759   // terminates the liveness of a register, meaning its value can't be
760   // relied upon -- we represent this by giving it a new value.
761   for (auto Location : locations()) {
762     unsigned ID = LocIdxToLocID[Location.Idx];
763     // Don't clobber SP, even if the mask says it's clobbered.
764     if (ID < NumRegs && ID != SP && MO->clobbersPhysReg(ID))
765       defReg(ID, CurBB, InstID);
766   }
767   Masks.push_back(std::make_pair(MO, InstID));
768 }
769 
770 LocIdx MLocTracker::getOrTrackSpillLoc(SpillLoc L) {
771   unsigned SpillID = SpillLocs.idFor(L);
772   if (SpillID == 0) {
773     SpillID = SpillLocs.insert(L);
774     unsigned L = getLocID(SpillID, true);
775     LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
776     LocIdxToIDNum.grow(Idx);
777     LocIdxToLocID.grow(Idx);
778     LocIDToLocIdx.push_back(Idx);
779     LocIdxToLocID[Idx] = L;
780     return Idx;
781   } else {
782     unsigned L = getLocID(SpillID, true);
783     LocIdx Idx = LocIDToLocIdx[L];
784     return Idx;
785   }
786 }
787 
788 std::string MLocTracker::LocIdxToName(LocIdx Idx) const {
789   unsigned ID = LocIdxToLocID[Idx];
790   if (ID >= NumRegs)
791     return Twine("slot ").concat(Twine(ID - NumRegs)).str();
792   else
793     return TRI.getRegAsmName(ID).str();
794 }
795 
796 std::string MLocTracker::IDAsString(const ValueIDNum &Num) const {
797   std::string DefName = LocIdxToName(Num.getLoc());
798   return Num.asString(DefName);
799 }
800 
801 #ifndef NDEBUG
802 LLVM_DUMP_METHOD void MLocTracker::dump() {
803   for (auto Location : locations()) {
804     std::string MLocName = LocIdxToName(Location.Value.getLoc());
805     std::string DefName = Location.Value.asString(MLocName);
806     dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
807   }
808 }
809 
810 LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() {
811   for (auto Location : locations()) {
812     std::string foo = LocIdxToName(Location.Idx);
813     dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
814   }
815 }
816 #endif
817 
818 MachineInstrBuilder MLocTracker::emitLoc(Optional<LocIdx> MLoc,
819                                          const DebugVariable &Var,
820                                          const DbgValueProperties &Properties) {
821   DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
822                                 Var.getVariable()->getScope(),
823                                 const_cast<DILocation *>(Var.getInlinedAt()));
824   auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));
825 
826   const DIExpression *Expr = Properties.DIExpr;
827   if (!MLoc) {
828     // No location -> DBG_VALUE $noreg
829     MIB.addReg(0);
830     MIB.addReg(0);
831   } else if (LocIdxToLocID[*MLoc] >= NumRegs) {
832     unsigned LocID = LocIdxToLocID[*MLoc];
833     const SpillLoc &Spill = SpillLocs[LocID - NumRegs + 1];
834 
835     auto *TRI = MF.getSubtarget().getRegisterInfo();
836     Expr = TRI->prependOffsetExpression(Expr, DIExpression::ApplyOffset,
837                                         Spill.SpillOffset);
838     unsigned Base = Spill.SpillBase;
839     MIB.addReg(Base);
840     MIB.addImm(0);
841   } else {
842     unsigned LocID = LocIdxToLocID[*MLoc];
843     MIB.addReg(LocID);
844     if (Properties.Indirect)
845       MIB.addImm(0);
846     else
847       MIB.addReg(0);
848   }
849 
850   MIB.addMetadata(Var.getVariable());
851   MIB.addMetadata(Expr);
852   return MIB;
853 }
854 
855 /// Default construct and initialize the pass.
856 InstrRefBasedLDV::InstrRefBasedLDV() {}
857 
858 bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const {
859   unsigned Reg = MTracker->LocIdxToLocID[L];
860   for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
861     if (CalleeSavedRegs.test(*RAI))
862       return true;
863   return false;
864 }
865 
866 //===----------------------------------------------------------------------===//
867 //            Debug Range Extension Implementation
868 //===----------------------------------------------------------------------===//
869 
870 #ifndef NDEBUG
871 // Something to restore in the future.
872 // void InstrRefBasedLDV::printVarLocInMBB(..)
873 #endif
874 
875 SpillLoc
876 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
877   assert(MI.hasOneMemOperand() &&
878          "Spill instruction does not have exactly one memory operand?");
879   auto MMOI = MI.memoperands_begin();
880   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
881   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
882          "Inconsistent memory operand in spill instruction");
883   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
884   const MachineBasicBlock *MBB = MI.getParent();
885   Register Reg;
886   StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
887   return {Reg, Offset};
888 }
889 
890 /// End all previous ranges related to @MI and start a new range from @MI
891 /// if it is a DBG_VALUE instr.
892 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
893   if (!MI.isDebugValue())
894     return false;
895 
896   const DILocalVariable *Var = MI.getDebugVariable();
897   const DIExpression *Expr = MI.getDebugExpression();
898   const DILocation *DebugLoc = MI.getDebugLoc();
899   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
900   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
901          "Expected inlined-at fields to agree");
902 
903   DebugVariable V(Var, Expr, InlinedAt);
904   DbgValueProperties Properties(MI);
905 
906   // If there are no instructions in this lexical scope, do no location tracking
907   // at all, this variable shouldn't get a legitimate location range.
908   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
909   if (Scope == nullptr)
910     return true; // handled it; by doing nothing
911 
912   // For now, ignore DBG_VALUE_LISTs when extending ranges. Allow it to
913   // contribute to locations in this block, but don't propagate further.
914   // Interpret it like a DBG_VALUE $noreg.
915   if (MI.isDebugValueList()) {
916     if (VTracker)
917       VTracker->defVar(MI, Properties, None);
918     if (TTracker)
919       TTracker->redefVar(MI, Properties, None);
920     return true;
921   }
922 
923   const MachineOperand &MO = MI.getOperand(0);
924 
925   // MLocTracker needs to know that this register is read, even if it's only
926   // read by a debug inst.
927   if (MO.isReg() && MO.getReg() != 0)
928     (void)MTracker->readReg(MO.getReg());
929 
930   // If we're preparing for the second analysis (variables), the machine value
931   // locations are already solved, and we report this DBG_VALUE and the value
932   // it refers to to VLocTracker.
933   if (VTracker) {
934     if (MO.isReg()) {
935       // Feed defVar the new variable location, or if this is a
936       // DBG_VALUE $noreg, feed defVar None.
937       if (MO.getReg())
938         VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg()));
939       else
940         VTracker->defVar(MI, Properties, None);
941     } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
942                MI.getOperand(0).isCImm()) {
943       VTracker->defVar(MI, MI.getOperand(0));
944     }
945   }
946 
947   // If performing final tracking of transfers, report this variable definition
948   // to the TransferTracker too.
949   if (TTracker)
950     TTracker->redefVar(MI);
951   return true;
952 }
953 
954 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
955                                              ValueIDNum **MLiveOuts,
956                                              ValueIDNum **MLiveIns) {
957   if (!MI.isDebugRef())
958     return false;
959 
960   // Only handle this instruction when we are building the variable value
961   // transfer function.
962   if (!VTracker)
963     return false;
964 
965   unsigned InstNo = MI.getOperand(0).getImm();
966   unsigned OpNo = MI.getOperand(1).getImm();
967 
968   const DILocalVariable *Var = MI.getDebugVariable();
969   const DIExpression *Expr = MI.getDebugExpression();
970   const DILocation *DebugLoc = MI.getDebugLoc();
971   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
972   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
973          "Expected inlined-at fields to agree");
974 
975   DebugVariable V(Var, Expr, InlinedAt);
976 
977   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
978   if (Scope == nullptr)
979     return true; // Handled by doing nothing. This variable is never in scope.
980 
981   const MachineFunction &MF = *MI.getParent()->getParent();
982 
983   // Various optimizations may have happened to the value during codegen,
984   // recorded in the value substitution table. Apply any substitutions to
985   // the instruction / operand number in this DBG_INSTR_REF, and collect
986   // any subregister extractions performed during optimization.
987 
988   // Create dummy substitution with Src set, for lookup.
989   auto SoughtSub =
990       MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0);
991 
992   SmallVector<unsigned, 4> SeenSubregs;
993   auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
994   while (LowerBoundIt != MF.DebugValueSubstitutions.end() &&
995          LowerBoundIt->Src == SoughtSub.Src) {
996     std::tie(InstNo, OpNo) = LowerBoundIt->Dest;
997     SoughtSub.Src = LowerBoundIt->Dest;
998     if (unsigned Subreg = LowerBoundIt->Subreg)
999       SeenSubregs.push_back(Subreg);
1000     LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1001   }
1002 
1003   // Default machine value number is <None> -- if no instruction defines
1004   // the corresponding value, it must have been optimized out.
1005   Optional<ValueIDNum> NewID = None;
1006 
1007   // Try to lookup the instruction number, and find the machine value number
1008   // that it defines. It could be an instruction, or a PHI.
1009   auto InstrIt = DebugInstrNumToInstr.find(InstNo);
1010   auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(),
1011                                 DebugPHINumToValue.end(), InstNo);
1012   if (InstrIt != DebugInstrNumToInstr.end()) {
1013     const MachineInstr &TargetInstr = *InstrIt->second.first;
1014     uint64_t BlockNo = TargetInstr.getParent()->getNumber();
1015 
1016     // Pick out the designated operand.
1017     assert(OpNo < TargetInstr.getNumOperands());
1018     const MachineOperand &MO = TargetInstr.getOperand(OpNo);
1019 
1020     // Today, this can only be a register.
1021     assert(MO.isReg() && MO.isDef());
1022 
1023     unsigned LocID = MTracker->getLocID(MO.getReg(), false);
1024     LocIdx L = MTracker->LocIDToLocIdx[LocID];
1025     NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
1026   } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
1027     // It's actually a PHI value. Which value it is might not be obvious, use
1028     // the resolver helper to find out.
1029     NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns,
1030                            MI, InstNo);
1031   }
1032 
1033   // Apply any subregister extractions, in reverse. We might have seen code
1034   // like this:
1035   //    CALL64 @foo, implicit-def $rax
1036   //    %0:gr64 = COPY $rax
1037   //    %1:gr32 = COPY %0.sub_32bit
1038   //    %2:gr16 = COPY %1.sub_16bit
1039   //    %3:gr8  = COPY %2.sub_8bit
1040   // In which case each copy would have been recorded as a substitution with
1041   // a subregister qualifier. Apply those qualifiers now.
1042   if (NewID && !SeenSubregs.empty()) {
1043     unsigned Offset = 0;
1044     unsigned Size = 0;
1045 
1046     // Look at each subregister that we passed through, and progressively
1047     // narrow in, accumulating any offsets that occur. Substitutions should
1048     // only ever be the same or narrower width than what they read from;
1049     // iterate in reverse order so that we go from wide to small.
1050     for (unsigned Subreg : reverse(SeenSubregs)) {
1051       unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
1052       unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
1053       Offset += ThisOffset;
1054       Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
1055     }
1056 
1057     // If that worked, look for an appropriate subregister with the register
1058     // where the define happens. Don't look at values that were defined during
1059     // a stack write: we can't currently express register locations within
1060     // spills.
1061     LocIdx L = NewID->getLoc();
1062     if (NewID && !MTracker->isSpill(L)) {
1063       // Find the register class for the register where this def happened.
1064       // FIXME: no index for this?
1065       Register Reg = MTracker->LocIdxToLocID[L];
1066       const TargetRegisterClass *TRC = nullptr;
1067       for (auto *TRCI : TRI->regclasses())
1068         if (TRCI->contains(Reg))
1069           TRC = TRCI;
1070       assert(TRC && "Couldn't find target register class?");
1071 
1072       // If the register we have isn't the right size or in the right place,
1073       // Try to find a subregister inside it.
1074       unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
1075       if (Size != MainRegSize || Offset) {
1076         // Enumerate all subregisters, searching.
1077         Register NewReg = 0;
1078         for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1079           unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1080           unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
1081           unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
1082           if (SubregSize == Size && SubregOffset == Offset) {
1083             NewReg = *SRI;
1084             break;
1085           }
1086         }
1087 
1088         // If we didn't find anything: there's no way to express our value.
1089         if (!NewReg) {
1090           NewID = None;
1091         } else {
1092           // Re-state the value as being defined within the subregister
1093           // that we found.
1094           LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
1095           NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
1096         }
1097       }
1098     } else {
1099       // If we can't handle subregisters, unset the new value.
1100       NewID = None;
1101     }
1102   }
1103 
1104   // We, we have a value number or None. Tell the variable value tracker about
1105   // it. The rest of this LiveDebugValues implementation acts exactly the same
1106   // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that
1107   // aren't immediately available).
1108   DbgValueProperties Properties(Expr, false);
1109   VTracker->defVar(MI, Properties, NewID);
1110 
1111   // If we're on the final pass through the function, decompose this INSTR_REF
1112   // into a plain DBG_VALUE.
1113   if (!TTracker)
1114     return true;
1115 
1116   // Pick a location for the machine value number, if such a location exists.
1117   // (This information could be stored in TransferTracker to make it faster).
1118   Optional<LocIdx> FoundLoc = None;
1119   for (auto Location : MTracker->locations()) {
1120     LocIdx CurL = Location.Idx;
1121     ValueIDNum ID = MTracker->LocIdxToIDNum[CurL];
1122     if (NewID && ID == NewID) {
1123       // If this is the first location with that value, pick it. Otherwise,
1124       // consider whether it's a "longer term" location.
1125       if (!FoundLoc) {
1126         FoundLoc = CurL;
1127         continue;
1128       }
1129 
1130       if (MTracker->isSpill(CurL))
1131         FoundLoc = CurL; // Spills are a longer term location.
1132       else if (!MTracker->isSpill(*FoundLoc) &&
1133                !MTracker->isSpill(CurL) &&
1134                !isCalleeSaved(*FoundLoc) &&
1135                isCalleeSaved(CurL))
1136         FoundLoc = CurL; // Callee saved regs are longer term than normal.
1137     }
1138   }
1139 
1140   // Tell transfer tracker that the variable value has changed.
1141   TTracker->redefVar(MI, Properties, FoundLoc);
1142 
1143   // If there was a value with no location; but the value is defined in a
1144   // later instruction in this block, this is a block-local use-before-def.
1145   if (!FoundLoc && NewID && NewID->getBlock() == CurBB &&
1146       NewID->getInst() > CurInst)
1147     TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID);
1148 
1149   // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
1150   // This DBG_VALUE is potentially a $noreg / undefined location, if
1151   // FoundLoc is None.
1152   // (XXX -- could morph the DBG_INSTR_REF in the future).
1153   MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties);
1154   TTracker->PendingDbgValues.push_back(DbgMI);
1155   TTracker->flushDbgValues(MI.getIterator(), nullptr);
1156   return true;
1157 }
1158 
1159 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
1160   if (!MI.isDebugPHI())
1161     return false;
1162 
1163   // Analyse these only when solving the machine value location problem.
1164   if (VTracker || TTracker)
1165     return true;
1166 
1167   // First operand is the value location, either a stack slot or register.
1168   // Second is the debug instruction number of the original PHI.
1169   const MachineOperand &MO = MI.getOperand(0);
1170   unsigned InstrNum = MI.getOperand(1).getImm();
1171 
1172   if (MO.isReg()) {
1173     // The value is whatever's currently in the register. Read and record it,
1174     // to be analysed later.
1175     Register Reg = MO.getReg();
1176     ValueIDNum Num = MTracker->readReg(Reg);
1177     auto PHIRec = DebugPHIRecord(
1178         {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
1179     DebugPHINumToValue.push_back(PHIRec);
1180 
1181     // Subsequent register operations, or variable locations, might occur for
1182     // any of the subregisters of this DBG_PHIs operand. Ensure that all
1183     // registers aliasing this register are tracked.
1184     for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1185       MTracker->lookupOrTrackRegister(*RAI);
1186   } else {
1187     // The value is whatever's in this stack slot.
1188     assert(MO.isFI());
1189     unsigned FI = MO.getIndex();
1190 
1191     // If the stack slot is dead, then this was optimized away.
1192     // FIXME: stack slot colouring should account for slots that get merged.
1193     if (MFI->isDeadObjectIndex(FI))
1194       return true;
1195 
1196     // Identify this spill slot.
1197     Register Base;
1198     StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
1199     SpillLoc SL = {Base, Offs};
1200     Optional<ValueIDNum> Num = MTracker->readSpill(SL);
1201 
1202     if (!Num)
1203       // Nothing ever writes to this slot. Curious, but nothing we can do.
1204       return true;
1205 
1206     // Record this DBG_PHI for later analysis.
1207     auto DbgPHI = DebugPHIRecord(
1208         {InstrNum, MI.getParent(), *Num, *MTracker->getSpillMLoc(SL)});
1209     DebugPHINumToValue.push_back(DbgPHI);
1210   }
1211 
1212   return true;
1213 }
1214 
1215 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
1216   // Meta Instructions do not affect the debug liveness of any register they
1217   // define.
1218   if (MI.isImplicitDef()) {
1219     // Except when there's an implicit def, and the location it's defining has
1220     // no value number. The whole point of an implicit def is to announce that
1221     // the register is live, without be specific about it's value. So define
1222     // a value if there isn't one already.
1223     ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
1224     // Has a legitimate value -> ignore the implicit def.
1225     if (Num.getLoc() != 0)
1226       return;
1227     // Otherwise, def it here.
1228   } else if (MI.isMetaInstruction())
1229     return;
1230 
1231   MachineFunction *MF = MI.getMF();
1232   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1233   Register SP = TLI->getStackPointerRegisterToSaveRestore();
1234 
1235   // Find the regs killed by MI, and find regmasks of preserved regs.
1236   // Max out the number of statically allocated elements in `DeadRegs`, as this
1237   // prevents fallback to std::set::count() operations.
1238   SmallSet<uint32_t, 32> DeadRegs;
1239   SmallVector<const uint32_t *, 4> RegMasks;
1240   SmallVector<const MachineOperand *, 4> RegMaskPtrs;
1241   for (const MachineOperand &MO : MI.operands()) {
1242     // Determine whether the operand is a register def.
1243     if (MO.isReg() && MO.isDef() && MO.getReg() &&
1244         Register::isPhysicalRegister(MO.getReg()) &&
1245         !(MI.isCall() && MO.getReg() == SP)) {
1246       // Remove ranges of all aliased registers.
1247       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1248         // FIXME: Can we break out of this loop early if no insertion occurs?
1249         DeadRegs.insert(*RAI);
1250     } else if (MO.isRegMask()) {
1251       RegMasks.push_back(MO.getRegMask());
1252       RegMaskPtrs.push_back(&MO);
1253     }
1254   }
1255 
1256   // Tell MLocTracker about all definitions, of regmasks and otherwise.
1257   for (uint32_t DeadReg : DeadRegs)
1258     MTracker->defReg(DeadReg, CurBB, CurInst);
1259 
1260   for (auto *MO : RegMaskPtrs)
1261     MTracker->writeRegMask(MO, CurBB, CurInst);
1262 
1263   if (!TTracker)
1264     return;
1265 
1266   // When committing variable values to locations: tell transfer tracker that
1267   // we've clobbered things. It may be able to recover the variable from a
1268   // different location.
1269 
1270   // Inform TTracker about any direct clobbers.
1271   for (uint32_t DeadReg : DeadRegs) {
1272     LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
1273     TTracker->clobberMloc(Loc, MI.getIterator(), false);
1274   }
1275 
1276   // Look for any clobbers performed by a register mask. Only test locations
1277   // that are actually being tracked.
1278   for (auto L : MTracker->locations()) {
1279     // Stack locations can't be clobbered by regmasks.
1280     if (MTracker->isSpill(L.Idx))
1281       continue;
1282 
1283     Register Reg = MTracker->LocIdxToLocID[L.Idx];
1284     for (auto *MO : RegMaskPtrs)
1285       if (MO->clobbersPhysReg(Reg))
1286         TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
1287   }
1288 }
1289 
1290 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
1291   ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
1292 
1293   MTracker->setReg(DstRegNum, SrcValue);
1294 
1295   // In all circumstances, re-def the super registers. It's definitely a new
1296   // value now. This doesn't uniquely identify the composition of subregs, for
1297   // example, two identical values in subregisters composed in different
1298   // places would not get equal value numbers.
1299   for (MCSuperRegIterator SRI(DstRegNum, TRI); SRI.isValid(); ++SRI)
1300     MTracker->defReg(*SRI, CurBB, CurInst);
1301 
1302   // If we're emulating VarLocBasedImpl, just define all the subregisters.
1303   // DBG_VALUEs of them will expect to be tracked from the DBG_VALUE, not
1304   // through prior copies.
1305   if (EmulateOldLDV) {
1306     for (MCSubRegIndexIterator DRI(DstRegNum, TRI); DRI.isValid(); ++DRI)
1307       MTracker->defReg(DRI.getSubReg(), CurBB, CurInst);
1308     return;
1309   }
1310 
1311   // Otherwise, actually copy subregisters from one location to another.
1312   // XXX: in addition, any subregisters of DstRegNum that don't line up with
1313   // the source register should be def'd.
1314   for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
1315     unsigned SrcSubReg = SRI.getSubReg();
1316     unsigned SubRegIdx = SRI.getSubRegIndex();
1317     unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
1318     if (!DstSubReg)
1319       continue;
1320 
1321     // Do copy. There are two matching subregisters, the source value should
1322     // have been def'd when the super-reg was, the latter might not be tracked
1323     // yet.
1324     // This will force SrcSubReg to be tracked, if it isn't yet.
1325     (void)MTracker->readReg(SrcSubReg);
1326     LocIdx SrcL = MTracker->getRegMLoc(SrcSubReg);
1327     assert(SrcL.asU64());
1328     (void)MTracker->readReg(DstSubReg);
1329     LocIdx DstL = MTracker->getRegMLoc(DstSubReg);
1330     assert(DstL.asU64());
1331     (void)DstL;
1332     ValueIDNum CpyValue = {SrcValue.getBlock(), SrcValue.getInst(), SrcL};
1333 
1334     MTracker->setReg(DstSubReg, CpyValue);
1335   }
1336 }
1337 
1338 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
1339                                           MachineFunction *MF) {
1340   // TODO: Handle multiple stores folded into one.
1341   if (!MI.hasOneMemOperand())
1342     return false;
1343 
1344   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1345     return false; // This is not a spill instruction, since no valid size was
1346                   // returned from either function.
1347 
1348   return true;
1349 }
1350 
1351 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
1352                                        MachineFunction *MF, unsigned &Reg) {
1353   if (!isSpillInstruction(MI, MF))
1354     return false;
1355 
1356   int FI;
1357   Reg = TII->isStoreToStackSlotPostFE(MI, FI);
1358   return Reg != 0;
1359 }
1360 
1361 Optional<SpillLoc>
1362 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1363                                        MachineFunction *MF, unsigned &Reg) {
1364   if (!MI.hasOneMemOperand())
1365     return None;
1366 
1367   // FIXME: Handle folded restore instructions with more than one memory
1368   // operand.
1369   if (MI.getRestoreSize(TII)) {
1370     Reg = MI.getOperand(0).getReg();
1371     return extractSpillBaseRegAndOffset(MI);
1372   }
1373   return None;
1374 }
1375 
1376 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
1377   // XXX -- it's too difficult to implement VarLocBasedImpl's  stack location
1378   // limitations under the new model. Therefore, when comparing them, compare
1379   // versions that don't attempt spills or restores at all.
1380   if (EmulateOldLDV)
1381     return false;
1382 
1383   MachineFunction *MF = MI.getMF();
1384   unsigned Reg;
1385   Optional<SpillLoc> Loc;
1386 
1387   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
1388 
1389   // First, if there are any DBG_VALUEs pointing at a spill slot that is
1390   // written to, terminate that variable location. The value in memory
1391   // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
1392   if (isSpillInstruction(MI, MF)) {
1393     Loc = extractSpillBaseRegAndOffset(MI);
1394 
1395     if (TTracker) {
1396       Optional<LocIdx> MLoc = MTracker->getSpillMLoc(*Loc);
1397       if (MLoc) {
1398         // Un-set this location before clobbering, so that we don't salvage
1399         // the variable location back to the same place.
1400         MTracker->setMLoc(*MLoc, ValueIDNum::EmptyValue);
1401         TTracker->clobberMloc(*MLoc, MI.getIterator());
1402       }
1403     }
1404   }
1405 
1406   // Try to recognise spill and restore instructions that may transfer a value.
1407   if (isLocationSpill(MI, MF, Reg)) {
1408     Loc = extractSpillBaseRegAndOffset(MI);
1409     auto ValueID = MTracker->readReg(Reg);
1410 
1411     // If the location is empty, produce a phi, signify it's the live-in value.
1412     if (ValueID.getLoc() == 0)
1413       ValueID = {CurBB, 0, MTracker->getRegMLoc(Reg)};
1414 
1415     MTracker->setSpill(*Loc, ValueID);
1416     auto OptSpillLocIdx = MTracker->getSpillMLoc(*Loc);
1417     assert(OptSpillLocIdx && "Spill slot set but has no LocIdx?");
1418     LocIdx SpillLocIdx = *OptSpillLocIdx;
1419 
1420     // Tell TransferTracker about this spill, produce DBG_VALUEs for it.
1421     if (TTracker)
1422       TTracker->transferMlocs(MTracker->getRegMLoc(Reg), SpillLocIdx,
1423                               MI.getIterator());
1424   } else {
1425     if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
1426       return false;
1427 
1428     // Is there a value to be restored?
1429     auto OptValueID = MTracker->readSpill(*Loc);
1430     if (OptValueID) {
1431       ValueIDNum ValueID = *OptValueID;
1432       LocIdx SpillLocIdx = *MTracker->getSpillMLoc(*Loc);
1433       // XXX -- can we recover sub-registers of this value? Until we can, first
1434       // overwrite all defs of the register being restored to.
1435       for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1436         MTracker->defReg(*RAI, CurBB, CurInst);
1437 
1438       // Now override the reg we're restoring to.
1439       MTracker->setReg(Reg, ValueID);
1440 
1441       // Report this restore to the transfer tracker too.
1442       if (TTracker)
1443         TTracker->transferMlocs(SpillLocIdx, MTracker->getRegMLoc(Reg),
1444                                 MI.getIterator());
1445     } else {
1446       // There isn't anything in the location; not clear if this is a code path
1447       // that still runs. Def this register anyway just in case.
1448       for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1449         MTracker->defReg(*RAI, CurBB, CurInst);
1450 
1451       // Force the spill slot to be tracked.
1452       LocIdx L = MTracker->getOrTrackSpillLoc(*Loc);
1453 
1454       // Set the restored value to be a machine phi number, signifying that it's
1455       // whatever the spills live-in value is in this block. Definitely has
1456       // a LocIdx due to the setSpill above.
1457       ValueIDNum ValueID = {CurBB, 0, L};
1458       MTracker->setReg(Reg, ValueID);
1459       MTracker->setSpill(*Loc, ValueID);
1460     }
1461   }
1462   return true;
1463 }
1464 
1465 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
1466   auto DestSrc = TII->isCopyInstr(MI);
1467   if (!DestSrc)
1468     return false;
1469 
1470   const MachineOperand *DestRegOp = DestSrc->Destination;
1471   const MachineOperand *SrcRegOp = DestSrc->Source;
1472 
1473   auto isCalleeSavedReg = [&](unsigned Reg) {
1474     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1475       if (CalleeSavedRegs.test(*RAI))
1476         return true;
1477     return false;
1478   };
1479 
1480   Register SrcReg = SrcRegOp->getReg();
1481   Register DestReg = DestRegOp->getReg();
1482 
1483   // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
1484   if (SrcReg == DestReg)
1485     return true;
1486 
1487   // For emulating VarLocBasedImpl:
1488   // We want to recognize instructions where destination register is callee
1489   // saved register. If register that could be clobbered by the call is
1490   // included, there would be a great chance that it is going to be clobbered
1491   // soon. It is more likely that previous register, which is callee saved, is
1492   // going to stay unclobbered longer, even if it is killed.
1493   //
1494   // For InstrRefBasedImpl, we can track multiple locations per value, so
1495   // ignore this condition.
1496   if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
1497     return false;
1498 
1499   // InstrRefBasedImpl only followed killing copies.
1500   if (EmulateOldLDV && !SrcRegOp->isKill())
1501     return false;
1502 
1503   // Copy MTracker info, including subregs if available.
1504   InstrRefBasedLDV::performCopy(SrcReg, DestReg);
1505 
1506   // Only produce a transfer of DBG_VALUE within a block where old LDV
1507   // would have. We might make use of the additional value tracking in some
1508   // other way, later.
1509   if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
1510     TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
1511                             MTracker->getRegMLoc(DestReg), MI.getIterator());
1512 
1513   // VarLocBasedImpl would quit tracking the old location after copying.
1514   if (EmulateOldLDV && SrcReg != DestReg)
1515     MTracker->defReg(SrcReg, CurBB, CurInst);
1516 
1517   // Finally, the copy might have clobbered variables based on the destination
1518   // register. Tell TTracker about it, in case a backup location exists.
1519   if (TTracker) {
1520     for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
1521       LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
1522       TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false);
1523     }
1524   }
1525 
1526   return true;
1527 }
1528 
1529 /// Accumulate a mapping between each DILocalVariable fragment and other
1530 /// fragments of that DILocalVariable which overlap. This reduces work during
1531 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
1532 /// known-to-overlap fragments are present".
1533 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
1534 ///           fragment usage.
1535 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
1536   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
1537                       MI.getDebugLoc()->getInlinedAt());
1538   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
1539 
1540   // If this is the first sighting of this variable, then we are guaranteed
1541   // there are currently no overlapping fragments either. Initialize the set
1542   // of seen fragments, record no overlaps for the current one, and return.
1543   auto SeenIt = SeenFragments.find(MIVar.getVariable());
1544   if (SeenIt == SeenFragments.end()) {
1545     SmallSet<FragmentInfo, 4> OneFragment;
1546     OneFragment.insert(ThisFragment);
1547     SeenFragments.insert({MIVar.getVariable(), OneFragment});
1548 
1549     OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1550     return;
1551   }
1552 
1553   // If this particular Variable/Fragment pair already exists in the overlap
1554   // map, it has already been accounted for.
1555   auto IsInOLapMap =
1556       OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1557   if (!IsInOLapMap.second)
1558     return;
1559 
1560   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
1561   auto &AllSeenFragments = SeenIt->second;
1562 
1563   // Otherwise, examine all other seen fragments for this variable, with "this"
1564   // fragment being a previously unseen fragment. Record any pair of
1565   // overlapping fragments.
1566   for (auto &ASeenFragment : AllSeenFragments) {
1567     // Does this previously seen fragment overlap?
1568     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
1569       // Yes: Mark the current fragment as being overlapped.
1570       ThisFragmentsOverlaps.push_back(ASeenFragment);
1571       // Mark the previously seen fragment as being overlapped by the current
1572       // one.
1573       auto ASeenFragmentsOverlaps =
1574           OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
1575       assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
1576              "Previously seen var fragment has no vector of overlaps");
1577       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
1578     }
1579   }
1580 
1581   AllSeenFragments.insert(ThisFragment);
1582 }
1583 
1584 void InstrRefBasedLDV::process(MachineInstr &MI, ValueIDNum **MLiveOuts,
1585                                ValueIDNum **MLiveIns) {
1586   // Try to interpret an MI as a debug or transfer instruction. Only if it's
1587   // none of these should we interpret it's register defs as new value
1588   // definitions.
1589   if (transferDebugValue(MI))
1590     return;
1591   if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
1592     return;
1593   if (transferDebugPHI(MI))
1594     return;
1595   if (transferRegisterCopy(MI))
1596     return;
1597   if (transferSpillOrRestoreInst(MI))
1598     return;
1599   transferRegisterDef(MI);
1600 }
1601 
1602 void InstrRefBasedLDV::produceMLocTransferFunction(
1603     MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
1604     unsigned MaxNumBlocks) {
1605   // Because we try to optimize around register mask operands by ignoring regs
1606   // that aren't currently tracked, we set up something ugly for later: RegMask
1607   // operands that are seen earlier than the first use of a register, still need
1608   // to clobber that register in the transfer function. But this information
1609   // isn't actively recorded. Instead, we track each RegMask used in each block,
1610   // and accumulated the clobbered but untracked registers in each block into
1611   // the following bitvector. Later, if new values are tracked, we can add
1612   // appropriate clobbers.
1613   SmallVector<BitVector, 32> BlockMasks;
1614   BlockMasks.resize(MaxNumBlocks);
1615 
1616   // Reserve one bit per register for the masks described above.
1617   unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
1618   for (auto &BV : BlockMasks)
1619     BV.resize(TRI->getNumRegs(), true);
1620 
1621   // Step through all instructions and inhale the transfer function.
1622   for (auto &MBB : MF) {
1623     // Object fields that are read by trackers to know where we are in the
1624     // function.
1625     CurBB = MBB.getNumber();
1626     CurInst = 1;
1627 
1628     // Set all machine locations to a PHI value. For transfer function
1629     // production only, this signifies the live-in value to the block.
1630     MTracker->reset();
1631     MTracker->setMPhis(CurBB);
1632 
1633     // Step through each instruction in this block.
1634     for (auto &MI : MBB) {
1635       process(MI);
1636       // Also accumulate fragment map.
1637       if (MI.isDebugValue())
1638         accumulateFragmentMap(MI);
1639 
1640       // Create a map from the instruction number (if present) to the
1641       // MachineInstr and its position.
1642       if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
1643         auto InstrAndPos = std::make_pair(&MI, CurInst);
1644         auto InsertResult =
1645             DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
1646 
1647         // There should never be duplicate instruction numbers.
1648         assert(InsertResult.second);
1649         (void)InsertResult;
1650       }
1651 
1652       ++CurInst;
1653     }
1654 
1655     // Produce the transfer function, a map of machine location to new value. If
1656     // any machine location has the live-in phi value from the start of the
1657     // block, it's live-through and doesn't need recording in the transfer
1658     // function.
1659     for (auto Location : MTracker->locations()) {
1660       LocIdx Idx = Location.Idx;
1661       ValueIDNum &P = Location.Value;
1662       if (P.isPHI() && P.getLoc() == Idx.asU64())
1663         continue;
1664 
1665       // Insert-or-update.
1666       auto &TransferMap = MLocTransfer[CurBB];
1667       auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
1668       if (!Result.second)
1669         Result.first->second = P;
1670     }
1671 
1672     // Accumulate any bitmask operands into the clobberred reg mask for this
1673     // block.
1674     for (auto &P : MTracker->Masks) {
1675       BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
1676     }
1677   }
1678 
1679   // Compute a bitvector of all the registers that are tracked in this block.
1680   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
1681   Register SP = TLI->getStackPointerRegisterToSaveRestore();
1682   BitVector UsedRegs(TRI->getNumRegs());
1683   for (auto Location : MTracker->locations()) {
1684     unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
1685     if (ID >= TRI->getNumRegs() || ID == SP)
1686       continue;
1687     UsedRegs.set(ID);
1688   }
1689 
1690   // Check that any regmask-clobber of a register that gets tracked, is not
1691   // live-through in the transfer function. It needs to be clobbered at the
1692   // very least.
1693   for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
1694     BitVector &BV = BlockMasks[I];
1695     BV.flip();
1696     BV &= UsedRegs;
1697     // This produces all the bits that we clobber, but also use. Check that
1698     // they're all clobbered or at least set in the designated transfer
1699     // elem.
1700     for (unsigned Bit : BV.set_bits()) {
1701       unsigned ID = MTracker->getLocID(Bit, false);
1702       LocIdx Idx = MTracker->LocIDToLocIdx[ID];
1703       auto &TransferMap = MLocTransfer[I];
1704 
1705       // Install a value representing the fact that this location is effectively
1706       // written to in this block. As there's no reserved value, instead use
1707       // a value number that is never generated. Pick the value number for the
1708       // first instruction in the block, def'ing this location, which we know
1709       // this block never used anyway.
1710       ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
1711       auto Result =
1712         TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
1713       if (!Result.second) {
1714         ValueIDNum &ValueID = Result.first->second;
1715         if (ValueID.getBlock() == I && ValueID.isPHI())
1716           // It was left as live-through. Set it to clobbered.
1717           ValueID = NotGeneratedNum;
1718       }
1719     }
1720   }
1721 }
1722 
1723 bool InstrRefBasedLDV::mlocJoin(
1724     MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1725     ValueIDNum **OutLocs, ValueIDNum *InLocs) {
1726   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
1727   bool Changed = false;
1728 
1729   // Handle value-propagation when control flow merges on entry to a block. For
1730   // any location without a PHI already placed, the location has the same value
1731   // as its predecessors. If a PHI is placed, test to see whether it's now a
1732   // redundant PHI that we can eliminate.
1733 
1734   SmallVector<const MachineBasicBlock *, 8> BlockOrders;
1735   for (auto Pred : MBB.predecessors())
1736     BlockOrders.push_back(Pred);
1737 
1738   // Visit predecessors in RPOT order.
1739   auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
1740     return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
1741   };
1742   llvm::sort(BlockOrders, Cmp);
1743 
1744   // Skip entry block.
1745   if (BlockOrders.size() == 0)
1746     return false;
1747 
1748   // Step through all machine locations, look at each predecessor and test
1749   // whether we can eliminate redundant PHIs.
1750   for (auto Location : MTracker->locations()) {
1751     LocIdx Idx = Location.Idx;
1752 
1753     // Pick out the first predecessors live-out value for this location. It's
1754     // guaranteed to not be a backedge, as we order by RPO.
1755     ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
1756 
1757     // If we've already eliminated a PHI here, do no further checking, just
1758     // propagate the first live-in value into this block.
1759     if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) {
1760       if (InLocs[Idx.asU64()] != FirstVal) {
1761         InLocs[Idx.asU64()] = FirstVal;
1762         Changed |= true;
1763       }
1764       continue;
1765     }
1766 
1767     // We're now examining a PHI to see whether it's un-necessary. Loop around
1768     // the other live-in values and test whether they're all the same.
1769     bool Disagree = false;
1770     for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
1771       const MachineBasicBlock *PredMBB = BlockOrders[I];
1772       const ValueIDNum &PredLiveOut =
1773           OutLocs[PredMBB->getNumber()][Idx.asU64()];
1774 
1775       // Incoming values agree, continue trying to eliminate this PHI.
1776       if (FirstVal == PredLiveOut)
1777         continue;
1778 
1779       // We can also accept a PHI value that feeds back into itself.
1780       if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx))
1781         continue;
1782 
1783       // Live-out of a predecessor disagrees with the first predecessor.
1784       Disagree = true;
1785     }
1786 
1787     // No disagreement? No PHI. Otherwise, leave the PHI in live-ins.
1788     if (!Disagree) {
1789       InLocs[Idx.asU64()] = FirstVal;
1790       Changed |= true;
1791     }
1792   }
1793 
1794   // TODO: Reimplement NumInserted and NumRemoved.
1795   return Changed;
1796 }
1797 
1798 void InstrRefBasedLDV::buildMLocValueMap(
1799     MachineFunction &MF, ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
1800     SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
1801   std::priority_queue<unsigned int, std::vector<unsigned int>,
1802                       std::greater<unsigned int>>
1803       Worklist, Pending;
1804 
1805   // We track what is on the current and pending worklist to avoid inserting
1806   // the same thing twice. We could avoid this with a custom priority queue,
1807   // but this is probably not worth it.
1808   SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
1809 
1810   // Initialize worklist with every block to be visited. Also produce list of
1811   // all blocks.
1812   SmallPtrSet<MachineBasicBlock *, 32> AllBlocks;
1813   for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
1814     Worklist.push(I);
1815     OnWorklist.insert(OrderToBB[I]);
1816     AllBlocks.insert(OrderToBB[I]);
1817   }
1818 
1819   // Initialize entry block to PHIs. These represent arguments.
1820   for (auto Location : MTracker->locations())
1821     MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx);
1822 
1823   MTracker->reset();
1824 
1825   // Start by placing PHIs, using the usual SSA constructor algorithm. Consider
1826   // any machine-location that isn't live-through a block to be def'd in that
1827   // block.
1828   for (auto Location : MTracker->locations()) {
1829     // Collect the set of defs.
1830     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
1831     for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
1832       MachineBasicBlock *MBB = OrderToBB[I];
1833       const auto &TransferFunc = MLocTransfer[MBB->getNumber()];
1834       if (TransferFunc.find(Location.Idx) != TransferFunc.end())
1835         DefBlocks.insert(MBB);
1836     }
1837 
1838     // The entry block defs the location too: it's the live-in / argument value.
1839     // Only insert if there are other defs though; everything is trivially live
1840     // through otherwise.
1841     if (!DefBlocks.empty())
1842       DefBlocks.insert(&*MF.begin());
1843 
1844     // Ask the SSA construction algorithm where we should put PHIs.
1845     SmallVector<MachineBasicBlock *, 32> PHIBlocks;
1846     BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks);
1847 
1848     // Install those PHI values into the live-in value array.
1849     for (const MachineBasicBlock *MBB : PHIBlocks) {
1850       MInLocs[MBB->getNumber()][Location.Idx.asU64()] =
1851           ValueIDNum(MBB->getNumber(), 0, Location.Idx);
1852     }
1853   }
1854 
1855   // Propagate values to eliminate redundant PHIs. At the same time, this
1856   // produces the table of Block x Location => Value for the entry to each
1857   // block.
1858   // The kind of PHIs we can eliminate are, for example, where one path in a
1859   // conditional spills and restores a register, and the register still has
1860   // the same value once control flow joins, unbeknowns to the PHI placement
1861   // code. Propagating values allows us to identify such un-necessary PHIs and
1862   // remove them.
1863   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
1864   while (!Worklist.empty() || !Pending.empty()) {
1865     // Vector for storing the evaluated block transfer function.
1866     SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
1867 
1868     while (!Worklist.empty()) {
1869       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
1870       CurBB = MBB->getNumber();
1871       Worklist.pop();
1872 
1873       // Join the values in all predecessor blocks.
1874       bool InLocsChanged;
1875       InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
1876       InLocsChanged |= Visited.insert(MBB).second;
1877 
1878       // Don't examine transfer function if we've visited this loc at least
1879       // once, and inlocs haven't changed.
1880       if (!InLocsChanged)
1881         continue;
1882 
1883       // Load the current set of live-ins into MLocTracker.
1884       MTracker->loadFromArray(MInLocs[CurBB], CurBB);
1885 
1886       // Each element of the transfer function can be a new def, or a read of
1887       // a live-in value. Evaluate each element, and store to "ToRemap".
1888       ToRemap.clear();
1889       for (auto &P : MLocTransfer[CurBB]) {
1890         if (P.second.getBlock() == CurBB && P.second.isPHI()) {
1891           // This is a movement of whatever was live in. Read it.
1892           ValueIDNum NewID = MTracker->getNumAtPos(P.second.getLoc());
1893           ToRemap.push_back(std::make_pair(P.first, NewID));
1894         } else {
1895           // It's a def. Just set it.
1896           assert(P.second.getBlock() == CurBB);
1897           ToRemap.push_back(std::make_pair(P.first, P.second));
1898         }
1899       }
1900 
1901       // Commit the transfer function changes into mloc tracker, which
1902       // transforms the contents of the MLocTracker into the live-outs.
1903       for (auto &P : ToRemap)
1904         MTracker->setMLoc(P.first, P.second);
1905 
1906       // Now copy out-locs from mloc tracker into out-loc vector, checking
1907       // whether changes have occurred. These changes can have come from both
1908       // the transfer function, and mlocJoin.
1909       bool OLChanged = false;
1910       for (auto Location : MTracker->locations()) {
1911         OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
1912         MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
1913       }
1914 
1915       MTracker->reset();
1916 
1917       // No need to examine successors again if out-locs didn't change.
1918       if (!OLChanged)
1919         continue;
1920 
1921       // All successors should be visited: put any back-edges on the pending
1922       // list for the next pass-through, and any other successors to be
1923       // visited this pass, if they're not going to be already.
1924       for (auto s : MBB->successors()) {
1925         // Does branching to this successor represent a back-edge?
1926         if (BBToOrder[s] > BBToOrder[MBB]) {
1927           // No: visit it during this dataflow iteration.
1928           if (OnWorklist.insert(s).second)
1929             Worklist.push(BBToOrder[s]);
1930         } else {
1931           // Yes: visit it on the next iteration.
1932           if (OnPending.insert(s).second)
1933             Pending.push(BBToOrder[s]);
1934         }
1935       }
1936     }
1937 
1938     Worklist.swap(Pending);
1939     std::swap(OnPending, OnWorklist);
1940     OnPending.clear();
1941     // At this point, pending must be empty, since it was just the empty
1942     // worklist
1943     assert(Pending.empty() && "Pending should be empty");
1944   }
1945 
1946   // Once all the live-ins don't change on mlocJoin(), we've eliminated all
1947   // redundant PHIs.
1948 }
1949 
1950 // Boilerplate for feeding MachineBasicBlocks into IDF calculator. Provide
1951 // template specialisations for graph traits and a successor enumerator.
1952 namespace llvm {
1953 template <> struct GraphTraits<MachineBasicBlock> {
1954   using NodeRef = MachineBasicBlock *;
1955   using ChildIteratorType = MachineBasicBlock::succ_iterator;
1956 
1957   static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
1958   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
1959   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
1960 };
1961 
1962 template <> struct GraphTraits<const MachineBasicBlock> {
1963   using NodeRef = const MachineBasicBlock *;
1964   using ChildIteratorType = MachineBasicBlock::const_succ_iterator;
1965 
1966   static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
1967   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
1968   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
1969 };
1970 
1971 using MachineDomTreeBase = DomTreeBase<MachineBasicBlock>::NodeType;
1972 using MachineDomTreeChildGetter =
1973     typename IDFCalculatorDetail::ChildrenGetterTy<MachineDomTreeBase, false>;
1974 
1975 template <>
1976 typename MachineDomTreeChildGetter::ChildrenTy
1977 MachineDomTreeChildGetter::get(const NodeRef &N) {
1978   return {N->succ_begin(), N->succ_end()};
1979 }
1980 } // namespace llvm
1981 
1982 void InstrRefBasedLDV::BlockPHIPlacement(
1983     const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
1984     const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
1985     SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) {
1986   // Apply IDF calculator to the designated set of location defs, storing
1987   // required PHIs into PHIBlocks. Uses the dominator tree stored in the
1988   // InstrRefBasedLDV object.
1989   IDFCalculatorDetail::ChildrenGetterTy<MachineDomTreeBase, false> foo;
1990   IDFCalculatorBase<MachineDomTreeBase, false> IDF(DomTree->getBase(), foo);
1991 
1992   IDF.setLiveInBlocks(AllBlocks);
1993   IDF.setDefiningBlocks(DefBlocks);
1994   IDF.calculate(PHIBlocks);
1995 }
1996 
1997 bool InstrRefBasedLDV::vlocDowngradeLattice(
1998     const MachineBasicBlock &MBB, const DbgValue &OldLiveInLocation,
1999     const SmallVectorImpl<InValueT> &Values, unsigned CurBlockRPONum) {
2000   // Ranking value preference: see file level comment, the highest rank is
2001   // a plain def, followed by PHI values in reverse post-order. Numerically,
2002   // we assign all defs the rank '0', all PHIs their blocks RPO number plus
2003   // one, and consider the lowest value the highest ranked.
2004   int OldLiveInRank = BBNumToRPO[OldLiveInLocation.ID.getBlock()] + 1;
2005   if (!OldLiveInLocation.ID.isPHI())
2006     OldLiveInRank = 0;
2007 
2008   // Allow any unresolvable conflict to be over-ridden.
2009   if (OldLiveInLocation.Kind == DbgValue::NoVal) {
2010     // Although if it was an unresolvable conflict from _this_ block, then
2011     // all other seeking of downgrades and PHIs must have failed before hand.
2012     if (OldLiveInLocation.BlockNo == (unsigned)MBB.getNumber())
2013       return false;
2014     OldLiveInRank = INT_MIN;
2015   }
2016 
2017   auto &InValue = *Values[0].second;
2018 
2019   if (InValue.Kind == DbgValue::Const || InValue.Kind == DbgValue::NoVal)
2020     return false;
2021 
2022   unsigned ThisRPO = BBNumToRPO[InValue.ID.getBlock()];
2023   int ThisRank = ThisRPO + 1;
2024   if (!InValue.ID.isPHI())
2025     ThisRank = 0;
2026 
2027   // Too far down the lattice?
2028   if (ThisRPO >= CurBlockRPONum)
2029     return false;
2030 
2031   // Higher in the lattice than what we've already explored?
2032   if (ThisRank <= OldLiveInRank)
2033     return false;
2034 
2035   return true;
2036 }
2037 
2038 std::tuple<Optional<ValueIDNum>, bool> InstrRefBasedLDV::pickVPHILoc(
2039     MachineBasicBlock &MBB, const DebugVariable &Var, const LiveIdxT &LiveOuts,
2040     ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
2041     const SmallVectorImpl<MachineBasicBlock *> &BlockOrders) {
2042   // Collect a set of locations from predecessor where its live-out value can
2043   // be found.
2044   SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
2045   unsigned NumLocs = MTracker->getNumLocs();
2046   unsigned BackEdgesStart = 0;
2047 
2048   for (auto p : BlockOrders) {
2049     // Pick out where backedges start in the list of predecessors. Relies on
2050     // BlockOrders being sorted by RPO.
2051     if (BBToOrder[p] < BBToOrder[&MBB])
2052       ++BackEdgesStart;
2053 
2054     // For each predecessor, create a new set of locations.
2055     Locs.resize(Locs.size() + 1);
2056     unsigned ThisBBNum = p->getNumber();
2057     auto LiveOutMap = LiveOuts.find(p);
2058     if (LiveOutMap == LiveOuts.end())
2059       // This predecessor isn't in scope, it must have no live-in/live-out
2060       // locations.
2061       continue;
2062 
2063     auto It = LiveOutMap->second->find(Var);
2064     if (It == LiveOutMap->second->end())
2065       // There's no value recorded for this variable in this predecessor,
2066       // leave an empty set of locations.
2067       continue;
2068 
2069     const DbgValue &OutVal = It->second;
2070 
2071     if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
2072       // Consts and no-values cannot have locations we can join on.
2073       continue;
2074 
2075     assert(OutVal.Kind == DbgValue::Proposed || OutVal.Kind == DbgValue::Def);
2076     ValueIDNum ValToLookFor = OutVal.ID;
2077 
2078     // Search the live-outs of the predecessor for the specified value.
2079     for (unsigned int I = 0; I < NumLocs; ++I) {
2080       if (MOutLocs[ThisBBNum][I] == ValToLookFor)
2081         Locs.back().push_back(LocIdx(I));
2082     }
2083   }
2084 
2085   // If there were no locations at all, return an empty result.
2086   if (Locs.empty())
2087     return std::tuple<Optional<ValueIDNum>, bool>(None, false);
2088 
2089   // Lambda for seeking a common location within a range of location-sets.
2090   using LocsIt = SmallVector<SmallVector<LocIdx, 4>, 8>::iterator;
2091   auto SeekLocation =
2092       [&Locs](llvm::iterator_range<LocsIt> SearchRange) -> Optional<LocIdx> {
2093     // Starting with the first set of locations, take the intersection with
2094     // subsequent sets.
2095     SmallVector<LocIdx, 4> base = Locs[0];
2096     for (auto &S : SearchRange) {
2097       SmallVector<LocIdx, 4> new_base;
2098       std::set_intersection(base.begin(), base.end(), S.begin(), S.end(),
2099                             std::inserter(new_base, new_base.begin()));
2100       base = new_base;
2101     }
2102     if (base.empty())
2103       return None;
2104 
2105     // We now have a set of LocIdxes that contain the right output value in
2106     // each of the predecessors. Pick the lowest; if there's a register loc,
2107     // that'll be it.
2108     return *base.begin();
2109   };
2110 
2111   // Search for a common location for all predecessors. If we can't, then fall
2112   // back to only finding a common location between non-backedge predecessors.
2113   bool ValidForAllLocs = true;
2114   auto TheLoc = SeekLocation(Locs);
2115   if (!TheLoc) {
2116     ValidForAllLocs = false;
2117     TheLoc =
2118         SeekLocation(make_range(Locs.begin(), Locs.begin() + BackEdgesStart));
2119   }
2120 
2121   if (!TheLoc)
2122     return std::tuple<Optional<ValueIDNum>, bool>(None, false);
2123 
2124   // Return a PHI-value-number for the found location.
2125   LocIdx L = *TheLoc;
2126   ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
2127   return std::tuple<Optional<ValueIDNum>, bool>(PHIVal, ValidForAllLocs);
2128 }
2129 
2130 std::tuple<bool, bool> InstrRefBasedLDV::vlocJoin(
2131     MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs,
2132     SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, unsigned BBNum,
2133     const SmallSet<DebugVariable, 4> &AllVars, ValueIDNum **MOutLocs,
2134     ValueIDNum **MInLocs,
2135     SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
2136     SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
2137     DenseMap<DebugVariable, DbgValue> &InLocsT) {
2138   bool DowngradeOccurred = false;
2139 
2140   // To emulate VarLocBasedImpl, process this block if it's not in scope but
2141   // _does_ assign a variable value. No live-ins for this scope are transferred
2142   // in though, so we can return immediately.
2143   if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB)) {
2144     if (VLOCVisited)
2145       return std::tuple<bool, bool>(true, false);
2146     return std::tuple<bool, bool>(false, false);
2147   }
2148 
2149   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2150   bool Changed = false;
2151 
2152   // Find any live-ins computed in a prior iteration.
2153   auto ILSIt = VLOCInLocs.find(&MBB);
2154   assert(ILSIt != VLOCInLocs.end());
2155   auto &ILS = *ILSIt->second;
2156 
2157   // Order predecessors by RPOT order, for exploring them in that order.
2158   SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
2159 
2160   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2161     return BBToOrder[A] < BBToOrder[B];
2162   };
2163 
2164   llvm::sort(BlockOrders, Cmp);
2165 
2166   unsigned CurBlockRPONum = BBToOrder[&MBB];
2167 
2168   // Force a re-visit to loop heads in the first dataflow iteration.
2169   // FIXME: if we could "propose" Const values this wouldn't be needed,
2170   // because they'd need to be confirmed before being emitted.
2171   if (!BlockOrders.empty() &&
2172       BBToOrder[BlockOrders[BlockOrders.size() - 1]] >= CurBlockRPONum &&
2173       VLOCVisited)
2174     DowngradeOccurred = true;
2175 
2176   auto ConfirmValue = [&InLocsT](const DebugVariable &DV, DbgValue VR) {
2177     auto Result = InLocsT.insert(std::make_pair(DV, VR));
2178     (void)Result;
2179     assert(Result.second);
2180   };
2181 
2182   auto ConfirmNoVal = [&ConfirmValue, &MBB](const DebugVariable &Var, const DbgValueProperties &Properties) {
2183     DbgValue NoLocPHIVal(MBB.getNumber(), Properties, DbgValue::NoVal);
2184 
2185     ConfirmValue(Var, NoLocPHIVal);
2186   };
2187 
2188   // Attempt to join the values for each variable.
2189   for (auto &Var : AllVars) {
2190     // Collect all the DbgValues for this variable.
2191     SmallVector<InValueT, 8> Values;
2192     bool Bail = false;
2193     unsigned BackEdgesStart = 0;
2194     for (auto p : BlockOrders) {
2195       // If the predecessor isn't in scope / to be explored, we'll never be
2196       // able to join any locations.
2197       if (!BlocksToExplore.contains(p)) {
2198         Bail = true;
2199         break;
2200       }
2201 
2202       // Don't attempt to handle unvisited predecessors: they're implicitly
2203       // "unknown"s in the lattice.
2204       if (VLOCVisited && !VLOCVisited->count(p))
2205         continue;
2206 
2207       // If the predecessors OutLocs is absent, there's not much we can do.
2208       auto OL = VLOCOutLocs.find(p);
2209       if (OL == VLOCOutLocs.end()) {
2210         Bail = true;
2211         break;
2212       }
2213 
2214       // No live-out value for this predecessor also means we can't produce
2215       // a joined value.
2216       auto VIt = OL->second->find(Var);
2217       if (VIt == OL->second->end()) {
2218         Bail = true;
2219         break;
2220       }
2221 
2222       // Keep track of where back-edges begin in the Values vector. Relies on
2223       // BlockOrders being sorted by RPO.
2224       unsigned ThisBBRPONum = BBToOrder[p];
2225       if (ThisBBRPONum < CurBlockRPONum)
2226         ++BackEdgesStart;
2227 
2228       Values.push_back(std::make_pair(p, &VIt->second));
2229     }
2230 
2231     // If there were no values, or one of the predecessors couldn't have a
2232     // value, then give up immediately. It's not safe to produce a live-in
2233     // value.
2234     if (Bail || Values.size() == 0)
2235       continue;
2236 
2237     // Enumeration identifying the current state of the predecessors values.
2238     enum {
2239       Unset = 0,
2240       Agreed,       // All preds agree on the variable value.
2241       PropDisagree, // All preds agree, but the value kind is Proposed in some.
2242       BEDisagree,   // Only back-edges disagree on variable value.
2243       PHINeeded,    // Non-back-edge predecessors have conflicing values.
2244       NoSolution    // Conflicting Value metadata makes solution impossible.
2245     } OurState = Unset;
2246 
2247     // All (non-entry) blocks have at least one non-backedge predecessor.
2248     // Pick the variable value from the first of these, to compare against
2249     // all others.
2250     const DbgValue &FirstVal = *Values[0].second;
2251     const ValueIDNum &FirstID = FirstVal.ID;
2252 
2253     // Scan for variable values that can't be resolved: if they have different
2254     // DIExpressions, different indirectness, or are mixed constants /
2255     // non-constants.
2256     for (auto &V : Values) {
2257       if (V.second->Properties != FirstVal.Properties)
2258         OurState = NoSolution;
2259       if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
2260         OurState = NoSolution;
2261     }
2262 
2263     // Flags diagnosing _how_ the values disagree.
2264     bool NonBackEdgeDisagree = false;
2265     bool DisagreeOnPHINess = false;
2266     bool IDDisagree = false;
2267     bool Disagree = false;
2268     if (OurState == Unset) {
2269       for (auto &V : Values) {
2270         if (*V.second == FirstVal)
2271           continue; // No disagreement.
2272 
2273         Disagree = true;
2274 
2275         // Flag whether the value number actually diagrees.
2276         if (V.second->ID != FirstID)
2277           IDDisagree = true;
2278 
2279         // Distinguish whether disagreement happens in backedges or not.
2280         // Relies on Values (and BlockOrders) being sorted by RPO.
2281         unsigned ThisBBRPONum = BBToOrder[V.first];
2282         if (ThisBBRPONum < CurBlockRPONum)
2283           NonBackEdgeDisagree = true;
2284 
2285         // Is there a difference in whether the value is definite or only
2286         // proposed?
2287         if (V.second->Kind != FirstVal.Kind &&
2288             (V.second->Kind == DbgValue::Proposed ||
2289              V.second->Kind == DbgValue::Def) &&
2290             (FirstVal.Kind == DbgValue::Proposed ||
2291              FirstVal.Kind == DbgValue::Def))
2292           DisagreeOnPHINess = true;
2293       }
2294 
2295       // Collect those flags together and determine an overall state for
2296       // what extend the predecessors agree on a live-in value.
2297       if (!Disagree)
2298         OurState = Agreed;
2299       else if (!IDDisagree && DisagreeOnPHINess)
2300         OurState = PropDisagree;
2301       else if (!NonBackEdgeDisagree)
2302         OurState = BEDisagree;
2303       else
2304         OurState = PHINeeded;
2305     }
2306 
2307     // An extra indicator: if we only disagree on whether the value is a
2308     // Def, or proposed, then also flag whether that disagreement happens
2309     // in backedges only.
2310     bool PropOnlyInBEs = Disagree && !IDDisagree && DisagreeOnPHINess &&
2311                          !NonBackEdgeDisagree && FirstVal.Kind == DbgValue::Def;
2312 
2313     const auto &Properties = FirstVal.Properties;
2314 
2315     auto OldLiveInIt = ILS.find(Var);
2316     const DbgValue *OldLiveInLocation =
2317         (OldLiveInIt != ILS.end()) ? &OldLiveInIt->second : nullptr;
2318 
2319     bool OverRide = false;
2320     if (OurState == BEDisagree && OldLiveInLocation) {
2321       // Only backedges disagree: we can consider downgrading. If there was a
2322       // previous live-in value, use it to work out whether the current
2323       // incoming value represents a lattice downgrade or not.
2324       OverRide =
2325           vlocDowngradeLattice(MBB, *OldLiveInLocation, Values, CurBlockRPONum);
2326     }
2327 
2328     // Use the current state of predecessor agreement and other flags to work
2329     // out what to do next. Possibilities include:
2330     //  * Accept a value all predecessors agree on, or accept one that
2331     //    represents a step down the exploration lattice,
2332     //  * Use a PHI value number, if one can be found,
2333     //  * Propose a PHI value number, and see if it gets confirmed later,
2334     //  * Emit a 'NoVal' value, indicating we couldn't resolve anything.
2335     if (OurState == Agreed) {
2336       // Easiest solution: all predecessors agree on the variable value.
2337       ConfirmValue(Var, FirstVal);
2338     } else if (OurState == BEDisagree && OverRide) {
2339       // Only backedges disagree, and the other predecessors have produced
2340       // a new live-in value further down the exploration lattice.
2341       DowngradeOccurred = true;
2342       ConfirmValue(Var, FirstVal);
2343     } else if (OurState == PropDisagree) {
2344       // Predecessors agree on value, but some say it's only a proposed value.
2345       // Propagate it as proposed: unless it was proposed in this block, in
2346       // which case we're able to confirm the value.
2347       if (FirstID.getBlock() == (uint64_t)MBB.getNumber() && FirstID.isPHI()) {
2348         ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def));
2349       } else if (PropOnlyInBEs) {
2350         // If only backedges disagree, a higher (in RPO) block confirmed this
2351         // location, and we need to propagate it into this loop.
2352         ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def));
2353       } else {
2354         // Otherwise; a Def meeting a Proposed is still a Proposed.
2355         ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Proposed));
2356       }
2357     } else if ((OurState == PHINeeded || OurState == BEDisagree)) {
2358       // Predecessors disagree and can't be downgraded: this can only be
2359       // solved with a PHI. Use pickVPHILoc to go look for one.
2360       Optional<ValueIDNum> VPHI;
2361       bool AllEdgesVPHI = false;
2362       std::tie(VPHI, AllEdgesVPHI) =
2363           pickVPHILoc(MBB, Var, VLOCOutLocs, MOutLocs, MInLocs, BlockOrders);
2364 
2365       if (VPHI && AllEdgesVPHI) {
2366         // There's a PHI value that's valid for all predecessors -- we can use
2367         // it. If any of the non-backedge predecessors have proposed values
2368         // though, this PHI is also only proposed, until the predecessors are
2369         // confirmed.
2370         DbgValue::KindT K = DbgValue::Def;
2371         for (unsigned int I = 0; I < BackEdgesStart; ++I)
2372           if (Values[I].second->Kind == DbgValue::Proposed)
2373             K = DbgValue::Proposed;
2374 
2375         ConfirmValue(Var, DbgValue(*VPHI, Properties, K));
2376       } else if (VPHI) {
2377         // There's a PHI value, but it's only legal for backedges. Leave this
2378         // as a proposed PHI value: it might come back on the backedges,
2379         // and allow us to confirm it in the future.
2380         DbgValue NoBEValue = DbgValue(*VPHI, Properties, DbgValue::Proposed);
2381         ConfirmValue(Var, NoBEValue);
2382       } else {
2383         ConfirmNoVal(Var, Properties);
2384       }
2385     } else {
2386       // Otherwise: we don't know. Emit a "phi but no real loc" phi.
2387       ConfirmNoVal(Var, Properties);
2388     }
2389   }
2390 
2391   // Store newly calculated in-locs into VLOCInLocs, if they've changed.
2392   Changed = ILS != InLocsT;
2393   if (Changed)
2394     ILS = InLocsT;
2395 
2396   return std::tuple<bool, bool>(Changed, DowngradeOccurred);
2397 }
2398 
2399 void InstrRefBasedLDV::vlocDataflow(
2400     const LexicalScope *Scope, const DILocation *DILoc,
2401     const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
2402     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
2403     ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
2404     SmallVectorImpl<VLocTracker> &AllTheVLocs) {
2405   // This method is much like mlocDataflow: but focuses on a single
2406   // LexicalScope at a time. Pick out a set of blocks and variables that are
2407   // to have their value assignments solved, then run our dataflow algorithm
2408   // until a fixedpoint is reached.
2409   std::priority_queue<unsigned int, std::vector<unsigned int>,
2410                       std::greater<unsigned int>>
2411       Worklist, Pending;
2412   SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
2413 
2414   // The set of blocks we'll be examining.
2415   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
2416 
2417   // The order in which to examine them (RPO).
2418   SmallVector<MachineBasicBlock *, 8> BlockOrders;
2419 
2420   // RPO ordering function.
2421   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2422     return BBToOrder[A] < BBToOrder[B];
2423   };
2424 
2425   LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
2426 
2427   // A separate container to distinguish "blocks we're exploring" versus
2428   // "blocks that are potentially in scope. See comment at start of vlocJoin.
2429   SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore;
2430 
2431   // Old LiveDebugValues tracks variable locations that come out of blocks
2432   // not in scope, where DBG_VALUEs occur. This is something we could
2433   // legitimately ignore, but lets allow it for now.
2434   if (EmulateOldLDV)
2435     BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
2436 
2437   // We also need to propagate variable values through any artificial blocks
2438   // that immediately follow blocks in scope.
2439   DenseSet<const MachineBasicBlock *> ToAdd;
2440 
2441   // Helper lambda: For a given block in scope, perform a depth first search
2442   // of all the artificial successors, adding them to the ToAdd collection.
2443   auto AccumulateArtificialBlocks =
2444       [this, &ToAdd, &BlocksToExplore,
2445        &InScopeBlocks](const MachineBasicBlock *MBB) {
2446         // Depth-first-search state: each node is a block and which successor
2447         // we're currently exploring.
2448         SmallVector<std::pair<const MachineBasicBlock *,
2449                               MachineBasicBlock::const_succ_iterator>,
2450                     8>
2451             DFS;
2452 
2453         // Find any artificial successors not already tracked.
2454         for (auto *succ : MBB->successors()) {
2455           if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ))
2456             continue;
2457           if (!ArtificialBlocks.count(succ))
2458             continue;
2459           DFS.push_back(std::make_pair(succ, succ->succ_begin()));
2460           ToAdd.insert(succ);
2461         }
2462 
2463         // Search all those blocks, depth first.
2464         while (!DFS.empty()) {
2465           const MachineBasicBlock *CurBB = DFS.back().first;
2466           MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
2467           // Walk back if we've explored this blocks successors to the end.
2468           if (CurSucc == CurBB->succ_end()) {
2469             DFS.pop_back();
2470             continue;
2471           }
2472 
2473           // If the current successor is artificial and unexplored, descend into
2474           // it.
2475           if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
2476             DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin()));
2477             ToAdd.insert(*CurSucc);
2478             continue;
2479           }
2480 
2481           ++CurSucc;
2482         }
2483       };
2484 
2485   // Search in-scope blocks and those containing a DBG_VALUE from this scope
2486   // for artificial successors.
2487   for (auto *MBB : BlocksToExplore)
2488     AccumulateArtificialBlocks(MBB);
2489   for (auto *MBB : InScopeBlocks)
2490     AccumulateArtificialBlocks(MBB);
2491 
2492   BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
2493   InScopeBlocks.insert(ToAdd.begin(), ToAdd.end());
2494 
2495   // Single block scope: not interesting! No propagation at all. Note that
2496   // this could probably go above ArtificialBlocks without damage, but
2497   // that then produces output differences from original-live-debug-values,
2498   // which propagates from a single block into many artificial ones.
2499   if (BlocksToExplore.size() == 1)
2500     return;
2501 
2502   // Picks out relevants blocks RPO order and sort them.
2503   for (auto *MBB : BlocksToExplore)
2504     BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
2505 
2506   llvm::sort(BlockOrders, Cmp);
2507   unsigned NumBlocks = BlockOrders.size();
2508 
2509   // Allocate some vectors for storing the live ins and live outs. Large.
2510   SmallVector<DenseMap<DebugVariable, DbgValue>, 32> LiveIns, LiveOuts;
2511   LiveIns.resize(NumBlocks);
2512   LiveOuts.resize(NumBlocks);
2513 
2514   // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
2515   // vlocJoin.
2516   LiveIdxT LiveOutIdx, LiveInIdx;
2517   LiveOutIdx.reserve(NumBlocks);
2518   LiveInIdx.reserve(NumBlocks);
2519   for (unsigned I = 0; I < NumBlocks; ++I) {
2520     LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
2521     LiveInIdx[BlockOrders[I]] = &LiveIns[I];
2522   }
2523 
2524   for (auto *MBB : BlockOrders) {
2525     Worklist.push(BBToOrder[MBB]);
2526     OnWorklist.insert(MBB);
2527   }
2528 
2529   // Iterate over all the blocks we selected, propagating variable values.
2530   bool FirstTrip = true;
2531   SmallPtrSet<const MachineBasicBlock *, 16> VLOCVisited;
2532   while (!Worklist.empty() || !Pending.empty()) {
2533     while (!Worklist.empty()) {
2534       auto *MBB = OrderToBB[Worklist.top()];
2535       CurBB = MBB->getNumber();
2536       Worklist.pop();
2537 
2538       DenseMap<DebugVariable, DbgValue> JoinedInLocs;
2539 
2540       // Join values from predecessors. Updates LiveInIdx, and writes output
2541       // into JoinedInLocs.
2542       bool InLocsChanged, DowngradeOccurred;
2543       std::tie(InLocsChanged, DowngradeOccurred) = vlocJoin(
2544           *MBB, LiveOutIdx, LiveInIdx, (FirstTrip) ? &VLOCVisited : nullptr,
2545           CurBB, VarsWeCareAbout, MOutLocs, MInLocs, InScopeBlocks,
2546           BlocksToExplore, JoinedInLocs);
2547 
2548       bool FirstVisit = VLOCVisited.insert(MBB).second;
2549 
2550       // Always explore transfer function if inlocs changed, or if we've not
2551       // visited this block before.
2552       InLocsChanged |= FirstVisit;
2553 
2554       // If a downgrade occurred, book us in for re-examination on the next
2555       // iteration.
2556       if (DowngradeOccurred && OnPending.insert(MBB).second)
2557         Pending.push(BBToOrder[MBB]);
2558 
2559       if (!InLocsChanged)
2560         continue;
2561 
2562       // Do transfer function.
2563       auto &VTracker = AllTheVLocs[MBB->getNumber()];
2564       for (auto &Transfer : VTracker.Vars) {
2565         // Is this var we're mangling in this scope?
2566         if (VarsWeCareAbout.count(Transfer.first)) {
2567           // Erase on empty transfer (DBG_VALUE $noreg).
2568           if (Transfer.second.Kind == DbgValue::Undef) {
2569             JoinedInLocs.erase(Transfer.first);
2570           } else {
2571             // Insert new variable value; or overwrite.
2572             auto NewValuePair = std::make_pair(Transfer.first, Transfer.second);
2573             auto Result = JoinedInLocs.insert(NewValuePair);
2574             if (!Result.second)
2575               Result.first->second = Transfer.second;
2576           }
2577         }
2578       }
2579 
2580       // Did the live-out locations change?
2581       bool OLChanged = JoinedInLocs != *LiveOutIdx[MBB];
2582 
2583       // If they haven't changed, there's no need to explore further.
2584       if (!OLChanged)
2585         continue;
2586 
2587       // Commit to the live-out record.
2588       *LiveOutIdx[MBB] = JoinedInLocs;
2589 
2590       // We should visit all successors. Ensure we'll visit any non-backedge
2591       // successors during this dataflow iteration; book backedge successors
2592       // to be visited next time around.
2593       for (auto s : MBB->successors()) {
2594         // Ignore out of scope / not-to-be-explored successors.
2595         if (LiveInIdx.find(s) == LiveInIdx.end())
2596           continue;
2597 
2598         if (BBToOrder[s] > BBToOrder[MBB]) {
2599           if (OnWorklist.insert(s).second)
2600             Worklist.push(BBToOrder[s]);
2601         } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
2602           Pending.push(BBToOrder[s]);
2603         }
2604       }
2605     }
2606     Worklist.swap(Pending);
2607     std::swap(OnWorklist, OnPending);
2608     OnPending.clear();
2609     assert(Pending.empty());
2610     FirstTrip = false;
2611   }
2612 
2613   // Dataflow done. Now what? Save live-ins. Ignore any that are still marked
2614   // as being variable-PHIs, because those did not have their machine-PHI
2615   // value confirmed. Such variable values are places that could have been
2616   // PHIs, but are not.
2617   for (auto *MBB : BlockOrders) {
2618     auto &VarMap = *LiveInIdx[MBB];
2619     for (auto &P : VarMap) {
2620       if (P.second.Kind == DbgValue::Proposed ||
2621           P.second.Kind == DbgValue::NoVal)
2622         continue;
2623       Output[MBB->getNumber()].push_back(P);
2624     }
2625   }
2626 
2627   BlockOrders.clear();
2628   BlocksToExplore.clear();
2629 }
2630 
2631 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2632 void InstrRefBasedLDV::dump_mloc_transfer(
2633     const MLocTransferMap &mloc_transfer) const {
2634   for (auto &P : mloc_transfer) {
2635     std::string foo = MTracker->LocIdxToName(P.first);
2636     std::string bar = MTracker->IDAsString(P.second);
2637     dbgs() << "Loc " << foo << " --> " << bar << "\n";
2638   }
2639 }
2640 #endif
2641 
2642 void InstrRefBasedLDV::emitLocations(
2643     MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MOutLocs,
2644     ValueIDNum **MInLocs, DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
2645     const TargetPassConfig &TPC) {
2646   TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC);
2647   unsigned NumLocs = MTracker->getNumLocs();
2648 
2649   // For each block, load in the machine value locations and variable value
2650   // live-ins, then step through each instruction in the block. New DBG_VALUEs
2651   // to be inserted will be created along the way.
2652   for (MachineBasicBlock &MBB : MF) {
2653     unsigned bbnum = MBB.getNumber();
2654     MTracker->reset();
2655     MTracker->loadFromArray(MInLocs[bbnum], bbnum);
2656     TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()],
2657                          NumLocs);
2658 
2659     CurBB = bbnum;
2660     CurInst = 1;
2661     for (auto &MI : MBB) {
2662       process(MI, MOutLocs, MInLocs);
2663       TTracker->checkInstForNewValues(CurInst, MI.getIterator());
2664       ++CurInst;
2665     }
2666   }
2667 
2668   // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer
2669   // in DWARF in different orders. Use the order that they appear when walking
2670   // through each block / each instruction, stored in AllVarsNumbering.
2671   auto OrderDbgValues = [&](const MachineInstr *A,
2672                             const MachineInstr *B) -> bool {
2673     DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(),
2674                        A->getDebugLoc()->getInlinedAt());
2675     DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(),
2676                        B->getDebugLoc()->getInlinedAt());
2677     return AllVarsNumbering.find(VarA)->second <
2678            AllVarsNumbering.find(VarB)->second;
2679   };
2680 
2681   // Go through all the transfers recorded in the TransferTracker -- this is
2682   // both the live-ins to a block, and any movements of values that happen
2683   // in the middle.
2684   for (auto &P : TTracker->Transfers) {
2685     // Sort them according to appearance order.
2686     llvm::sort(P.Insts, OrderDbgValues);
2687     // Insert either before or after the designated point...
2688     if (P.MBB) {
2689       MachineBasicBlock &MBB = *P.MBB;
2690       for (auto *MI : P.Insts) {
2691         MBB.insert(P.Pos, MI);
2692       }
2693     } else {
2694       // Terminators, like tail calls, can clobber things. Don't try and place
2695       // transfers after them.
2696       if (P.Pos->isTerminator())
2697         continue;
2698 
2699       MachineBasicBlock &MBB = *P.Pos->getParent();
2700       for (auto *MI : P.Insts) {
2701         MBB.insertAfterBundle(P.Pos, MI);
2702       }
2703     }
2704   }
2705 }
2706 
2707 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
2708   // Build some useful data structures.
2709   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
2710     if (const DebugLoc &DL = MI.getDebugLoc())
2711       return DL.getLine() != 0;
2712     return false;
2713   };
2714   // Collect a set of all the artificial blocks.
2715   for (auto &MBB : MF)
2716     if (none_of(MBB.instrs(), hasNonArtificialLocation))
2717       ArtificialBlocks.insert(&MBB);
2718 
2719   // Compute mappings of block <=> RPO order.
2720   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
2721   unsigned int RPONumber = 0;
2722   for (MachineBasicBlock *MBB : RPOT) {
2723     OrderToBB[RPONumber] = MBB;
2724     BBToOrder[MBB] = RPONumber;
2725     BBNumToRPO[MBB->getNumber()] = RPONumber;
2726     ++RPONumber;
2727   }
2728 
2729   // Order value substitutions by their "source" operand pair, for quick lookup.
2730   llvm::sort(MF.DebugValueSubstitutions);
2731 
2732 #ifdef EXPENSIVE_CHECKS
2733   // As an expensive check, test whether there are any duplicate substitution
2734   // sources in the collection.
2735   if (MF.DebugValueSubstitutions.size() > 2) {
2736     for (auto It = MF.DebugValueSubstitutions.begin();
2737          It != std::prev(MF.DebugValueSubstitutions.end()); ++It) {
2738       assert(It->Src != std::next(It)->Src && "Duplicate variable location "
2739                                               "substitution seen");
2740     }
2741   }
2742 #endif
2743 }
2744 
2745 /// Calculate the liveness information for the given machine function and
2746 /// extend ranges across basic blocks.
2747 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
2748                                     MachineDominatorTree *DomTree,
2749                                     TargetPassConfig *TPC,
2750                                     unsigned InputBBLimit,
2751                                     unsigned InputDbgValLimit) {
2752   // No subprogram means this function contains no debuginfo.
2753   if (!MF.getFunction().getSubprogram())
2754     return false;
2755 
2756   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
2757   this->TPC = TPC;
2758 
2759   this->DomTree = DomTree;
2760   TRI = MF.getSubtarget().getRegisterInfo();
2761   TII = MF.getSubtarget().getInstrInfo();
2762   TFI = MF.getSubtarget().getFrameLowering();
2763   TFI->getCalleeSaves(MF, CalleeSavedRegs);
2764   MFI = &MF.getFrameInfo();
2765   LS.initialize(MF);
2766 
2767   MTracker =
2768       new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
2769   VTracker = nullptr;
2770   TTracker = nullptr;
2771 
2772   SmallVector<MLocTransferMap, 32> MLocTransfer;
2773   SmallVector<VLocTracker, 8> vlocs;
2774   LiveInsT SavedLiveIns;
2775 
2776   int MaxNumBlocks = -1;
2777   for (auto &MBB : MF)
2778     MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
2779   assert(MaxNumBlocks >= 0);
2780   ++MaxNumBlocks;
2781 
2782   MLocTransfer.resize(MaxNumBlocks);
2783   vlocs.resize(MaxNumBlocks);
2784   SavedLiveIns.resize(MaxNumBlocks);
2785 
2786   initialSetup(MF);
2787 
2788   produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
2789 
2790   // Allocate and initialize two array-of-arrays for the live-in and live-out
2791   // machine values. The outer dimension is the block number; while the inner
2792   // dimension is a LocIdx from MLocTracker.
2793   ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks];
2794   ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks];
2795   unsigned NumLocs = MTracker->getNumLocs();
2796   for (int i = 0; i < MaxNumBlocks; ++i) {
2797     // These all auto-initialize to ValueIDNum::EmptyValue
2798     MOutLocs[i] = new ValueIDNum[NumLocs];
2799     MInLocs[i] = new ValueIDNum[NumLocs];
2800   }
2801 
2802   // Solve the machine value dataflow problem using the MLocTransfer function,
2803   // storing the computed live-ins / live-outs into the array-of-arrays. We use
2804   // both live-ins and live-outs for decision making in the variable value
2805   // dataflow problem.
2806   buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer);
2807 
2808   // Patch up debug phi numbers, turning unknown block-live-in values into
2809   // either live-through machine values, or PHIs.
2810   for (auto &DBG_PHI : DebugPHINumToValue) {
2811     // Identify unresolved block-live-ins.
2812     ValueIDNum &Num = DBG_PHI.ValueRead;
2813     if (!Num.isPHI())
2814       continue;
2815 
2816     unsigned BlockNo = Num.getBlock();
2817     LocIdx LocNo = Num.getLoc();
2818     Num = MInLocs[BlockNo][LocNo.asU64()];
2819   }
2820   // Later, we'll be looking up ranges of instruction numbers.
2821   llvm::sort(DebugPHINumToValue);
2822 
2823   // Walk back through each block / instruction, collecting DBG_VALUE
2824   // instructions and recording what machine value their operands refer to.
2825   for (auto &OrderPair : OrderToBB) {
2826     MachineBasicBlock &MBB = *OrderPair.second;
2827     CurBB = MBB.getNumber();
2828     VTracker = &vlocs[CurBB];
2829     VTracker->MBB = &MBB;
2830     MTracker->loadFromArray(MInLocs[CurBB], CurBB);
2831     CurInst = 1;
2832     for (auto &MI : MBB) {
2833       process(MI, MOutLocs, MInLocs);
2834       ++CurInst;
2835     }
2836     MTracker->reset();
2837   }
2838 
2839   // Number all variables in the order that they appear, to be used as a stable
2840   // insertion order later.
2841   DenseMap<DebugVariable, unsigned> AllVarsNumbering;
2842 
2843   // Map from one LexicalScope to all the variables in that scope.
2844   DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars;
2845 
2846   // Map from One lexical scope to all blocks in that scope.
2847   DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>
2848       ScopeToBlocks;
2849 
2850   // Store a DILocation that describes a scope.
2851   DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation;
2852 
2853   // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
2854   // the order is unimportant, it just has to be stable.
2855   unsigned VarAssignCount = 0;
2856   for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
2857     auto *MBB = OrderToBB[I];
2858     auto *VTracker = &vlocs[MBB->getNumber()];
2859     // Collect each variable with a DBG_VALUE in this block.
2860     for (auto &idx : VTracker->Vars) {
2861       const auto &Var = idx.first;
2862       const DILocation *ScopeLoc = VTracker->Scopes[Var];
2863       assert(ScopeLoc != nullptr);
2864       auto *Scope = LS.findLexicalScope(ScopeLoc);
2865 
2866       // No insts in scope -> shouldn't have been recorded.
2867       assert(Scope != nullptr);
2868 
2869       AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
2870       ScopeToVars[Scope].insert(Var);
2871       ScopeToBlocks[Scope].insert(VTracker->MBB);
2872       ScopeToDILocation[Scope] = ScopeLoc;
2873       ++VarAssignCount;
2874     }
2875   }
2876 
2877   bool Changed = false;
2878 
2879   // If we have an extremely large number of variable assignments and blocks,
2880   // bail out at this point. We've burnt some time doing analysis already,
2881   // however we should cut our losses.
2882   if ((unsigned)MaxNumBlocks > InputBBLimit &&
2883       VarAssignCount > InputDbgValLimit) {
2884     LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName()
2885                       << " has " << MaxNumBlocks << " basic blocks and "
2886                       << VarAssignCount
2887                       << " variable assignments, exceeding limits.\n");
2888   } else {
2889     // Compute the extended ranges, iterating over scopes. There might be
2890     // something to be said for ordering them by size/locality, but that's for
2891     // the future. For each scope, solve the variable value problem, producing
2892     // a map of variables to values in SavedLiveIns.
2893     for (auto &P : ScopeToVars) {
2894       vlocDataflow(P.first, ScopeToDILocation[P.first], P.second,
2895                    ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs,
2896                    vlocs);
2897     }
2898 
2899     // Using the computed value locations and variable values for each block,
2900     // create the DBG_VALUE instructions representing the extended variable
2901     // locations.
2902     emitLocations(MF, SavedLiveIns, MOutLocs, MInLocs, AllVarsNumbering, *TPC);
2903 
2904     // Did we actually make any changes? If we created any DBG_VALUEs, then yes.
2905     Changed = TTracker->Transfers.size() != 0;
2906   }
2907 
2908   // Common clean-up of memory.
2909   for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) {
2910     delete[] MOutLocs[Idx];
2911     delete[] MInLocs[Idx];
2912   }
2913   delete[] MOutLocs;
2914   delete[] MInLocs;
2915 
2916   delete MTracker;
2917   delete TTracker;
2918   MTracker = nullptr;
2919   VTracker = nullptr;
2920   TTracker = nullptr;
2921 
2922   ArtificialBlocks.clear();
2923   OrderToBB.clear();
2924   BBToOrder.clear();
2925   BBNumToRPO.clear();
2926   DebugInstrNumToInstr.clear();
2927   DebugPHINumToValue.clear();
2928 
2929   return Changed;
2930 }
2931 
2932 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
2933   return new InstrRefBasedLDV();
2934 }
2935 
2936 namespace {
2937 class LDVSSABlock;
2938 class LDVSSAUpdater;
2939 
2940 // Pick a type to identify incoming block values as we construct SSA. We
2941 // can't use anything more robust than an integer unfortunately, as SSAUpdater
2942 // expects to zero-initialize the type.
2943 typedef uint64_t BlockValueNum;
2944 
2945 /// Represents an SSA PHI node for the SSA updater class. Contains the block
2946 /// this PHI is in, the value number it would have, and the expected incoming
2947 /// values from parent blocks.
2948 class LDVSSAPhi {
2949 public:
2950   SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
2951   LDVSSABlock *ParentBlock;
2952   BlockValueNum PHIValNum;
2953   LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
2954       : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
2955 
2956   LDVSSABlock *getParent() { return ParentBlock; }
2957 };
2958 
2959 /// Thin wrapper around a block predecessor iterator. Only difference from a
2960 /// normal block iterator is that it dereferences to an LDVSSABlock.
2961 class LDVSSABlockIterator {
2962 public:
2963   MachineBasicBlock::pred_iterator PredIt;
2964   LDVSSAUpdater &Updater;
2965 
2966   LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
2967                       LDVSSAUpdater &Updater)
2968       : PredIt(PredIt), Updater(Updater) {}
2969 
2970   bool operator!=(const LDVSSABlockIterator &OtherIt) const {
2971     return OtherIt.PredIt != PredIt;
2972   }
2973 
2974   LDVSSABlockIterator &operator++() {
2975     ++PredIt;
2976     return *this;
2977   }
2978 
2979   LDVSSABlock *operator*();
2980 };
2981 
2982 /// Thin wrapper around a block for SSA Updater interface. Necessary because
2983 /// we need to track the PHI value(s) that we may have observed as necessary
2984 /// in this block.
2985 class LDVSSABlock {
2986 public:
2987   MachineBasicBlock &BB;
2988   LDVSSAUpdater &Updater;
2989   using PHIListT = SmallVector<LDVSSAPhi, 1>;
2990   /// List of PHIs in this block. There should only ever be one.
2991   PHIListT PHIList;
2992 
2993   LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
2994       : BB(BB), Updater(Updater) {}
2995 
2996   LDVSSABlockIterator succ_begin() {
2997     return LDVSSABlockIterator(BB.succ_begin(), Updater);
2998   }
2999 
3000   LDVSSABlockIterator succ_end() {
3001     return LDVSSABlockIterator(BB.succ_end(), Updater);
3002   }
3003 
3004   /// SSAUpdater has requested a PHI: create that within this block record.
3005   LDVSSAPhi *newPHI(BlockValueNum Value) {
3006     PHIList.emplace_back(Value, this);
3007     return &PHIList.back();
3008   }
3009 
3010   /// SSAUpdater wishes to know what PHIs already exist in this block.
3011   PHIListT &phis() { return PHIList; }
3012 };
3013 
3014 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
3015 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
3016 // SSAUpdaterTraits<LDVSSAUpdater>.
3017 class LDVSSAUpdater {
3018 public:
3019   /// Map of value numbers to PHI records.
3020   DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
3021   /// Map of which blocks generate Undef values -- blocks that are not
3022   /// dominated by any Def.
3023   DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
3024   /// Map of machine blocks to our own records of them.
3025   DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
3026   /// Machine location where any PHI must occur.
3027   LocIdx Loc;
3028   /// Table of live-in machine value numbers for blocks / locations.
3029   ValueIDNum **MLiveIns;
3030 
3031   LDVSSAUpdater(LocIdx L, ValueIDNum **MLiveIns) : Loc(L), MLiveIns(MLiveIns) {}
3032 
3033   void reset() {
3034     for (auto &Block : BlockMap)
3035       delete Block.second;
3036 
3037     PHIs.clear();
3038     UndefMap.clear();
3039     BlockMap.clear();
3040   }
3041 
3042   ~LDVSSAUpdater() { reset(); }
3043 
3044   /// For a given MBB, create a wrapper block for it. Stores it in the
3045   /// LDVSSAUpdater block map.
3046   LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
3047     auto it = BlockMap.find(BB);
3048     if (it == BlockMap.end()) {
3049       BlockMap[BB] = new LDVSSABlock(*BB, *this);
3050       it = BlockMap.find(BB);
3051     }
3052     return it->second;
3053   }
3054 
3055   /// Find the live-in value number for the given block. Looks up the value at
3056   /// the PHI location on entry.
3057   BlockValueNum getValue(LDVSSABlock *LDVBB) {
3058     return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64();
3059   }
3060 };
3061 
3062 LDVSSABlock *LDVSSABlockIterator::operator*() {
3063   return Updater.getSSALDVBlock(*PredIt);
3064 }
3065 
3066 #ifndef NDEBUG
3067 
3068 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
3069   out << "SSALDVPHI " << PHI.PHIValNum;
3070   return out;
3071 }
3072 
3073 #endif
3074 
3075 } // namespace
3076 
3077 namespace llvm {
3078 
3079 /// Template specialization to give SSAUpdater access to CFG and value
3080 /// information. SSAUpdater calls methods in these traits, passing in the
3081 /// LDVSSAUpdater object, to learn about blocks and the values they define.
3082 /// It also provides methods to create PHI nodes and track them.
3083 template <> class SSAUpdaterTraits<LDVSSAUpdater> {
3084 public:
3085   using BlkT = LDVSSABlock;
3086   using ValT = BlockValueNum;
3087   using PhiT = LDVSSAPhi;
3088   using BlkSucc_iterator = LDVSSABlockIterator;
3089 
3090   // Methods to access block successors -- dereferencing to our wrapper class.
3091   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
3092   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
3093 
3094   /// Iterator for PHI operands.
3095   class PHI_iterator {
3096   private:
3097     LDVSSAPhi *PHI;
3098     unsigned Idx;
3099 
3100   public:
3101     explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
3102         : PHI(P), Idx(0) {}
3103     PHI_iterator(LDVSSAPhi *P, bool) // end iterator
3104         : PHI(P), Idx(PHI->IncomingValues.size()) {}
3105 
3106     PHI_iterator &operator++() {
3107       Idx++;
3108       return *this;
3109     }
3110     bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
3111     bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
3112 
3113     BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
3114 
3115     LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
3116   };
3117 
3118   static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
3119 
3120   static inline PHI_iterator PHI_end(PhiT *PHI) {
3121     return PHI_iterator(PHI, true);
3122   }
3123 
3124   /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
3125   /// vector.
3126   static void FindPredecessorBlocks(LDVSSABlock *BB,
3127                                     SmallVectorImpl<LDVSSABlock *> *Preds) {
3128     for (MachineBasicBlock::pred_iterator PI = BB->BB.pred_begin(),
3129                                           E = BB->BB.pred_end();
3130          PI != E; ++PI)
3131       Preds->push_back(BB->Updater.getSSALDVBlock(*PI));
3132   }
3133 
3134   /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
3135   /// register. For LiveDebugValues, represents a block identified as not having
3136   /// any DBG_PHI predecessors.
3137   static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
3138     // Create a value number for this block -- it needs to be unique and in the
3139     // "undef" collection, so that we know it's not real. Use a number
3140     // representing a PHI into this block.
3141     BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
3142     Updater->UndefMap[&BB->BB] = Num;
3143     return Num;
3144   }
3145 
3146   /// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
3147   /// SSAUpdater will populate it with information about incoming values. The
3148   /// value number of this PHI is whatever the  machine value number problem
3149   /// solution determined it to be. This includes non-phi values if SSAUpdater
3150   /// tries to create a PHI where the incoming values are identical.
3151   static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
3152                                    LDVSSAUpdater *Updater) {
3153     BlockValueNum PHIValNum = Updater->getValue(BB);
3154     LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
3155     Updater->PHIs[PHIValNum] = PHI;
3156     return PHIValNum;
3157   }
3158 
3159   /// AddPHIOperand - Add the specified value as an operand of the PHI for
3160   /// the specified predecessor block.
3161   static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
3162     PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
3163   }
3164 
3165   /// ValueIsPHI - Check if the instruction that defines the specified value
3166   /// is a PHI instruction.
3167   static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3168     auto PHIIt = Updater->PHIs.find(Val);
3169     if (PHIIt == Updater->PHIs.end())
3170       return nullptr;
3171     return PHIIt->second;
3172   }
3173 
3174   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
3175   /// operands, i.e., it was just added.
3176   static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3177     LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
3178     if (PHI && PHI->IncomingValues.size() == 0)
3179       return PHI;
3180     return nullptr;
3181   }
3182 
3183   /// GetPHIValue - For the specified PHI instruction, return the value
3184   /// that it defines.
3185   static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
3186 };
3187 
3188 } // end namespace llvm
3189 
3190 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(MachineFunction &MF,
3191                                                       ValueIDNum **MLiveOuts,
3192                                                       ValueIDNum **MLiveIns,
3193                                                       MachineInstr &Here,
3194                                                       uint64_t InstrNum) {
3195   // Pick out records of DBG_PHI instructions that have been observed. If there
3196   // are none, then we cannot compute a value number.
3197   auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
3198                                     DebugPHINumToValue.end(), InstrNum);
3199   auto LowerIt = RangePair.first;
3200   auto UpperIt = RangePair.second;
3201 
3202   // No DBG_PHI means there can be no location.
3203   if (LowerIt == UpperIt)
3204     return None;
3205 
3206   // If there's only one DBG_PHI, then that is our value number.
3207   if (std::distance(LowerIt, UpperIt) == 1)
3208     return LowerIt->ValueRead;
3209 
3210   auto DBGPHIRange = make_range(LowerIt, UpperIt);
3211 
3212   // Pick out the location (physreg, slot) where any PHIs must occur. It's
3213   // technically possible for us to merge values in different registers in each
3214   // block, but highly unlikely that LLVM will generate such code after register
3215   // allocation.
3216   LocIdx Loc = LowerIt->ReadLoc;
3217 
3218   // We have several DBG_PHIs, and a use position (the Here inst). All each
3219   // DBG_PHI does is identify a value at a program position. We can treat each
3220   // DBG_PHI like it's a Def of a value, and the use position is a Use of a
3221   // value, just like SSA. We use the bulk-standard LLVM SSA updater class to
3222   // determine which Def is used at the Use, and any PHIs that happen along
3223   // the way.
3224   // Adapted LLVM SSA Updater:
3225   LDVSSAUpdater Updater(Loc, MLiveIns);
3226   // Map of which Def or PHI is the current value in each block.
3227   DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
3228   // Set of PHIs that we have created along the way.
3229   SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
3230 
3231   // Each existing DBG_PHI is a Def'd value under this model. Record these Defs
3232   // for the SSAUpdater.
3233   for (const auto &DBG_PHI : DBGPHIRange) {
3234     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3235     const ValueIDNum &Num = DBG_PHI.ValueRead;
3236     AvailableValues.insert(std::make_pair(Block, Num.asU64()));
3237   }
3238 
3239   LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
3240   const auto &AvailIt = AvailableValues.find(HereBlock);
3241   if (AvailIt != AvailableValues.end()) {
3242     // Actually, we already know what the value is -- the Use is in the same
3243     // block as the Def.
3244     return ValueIDNum::fromU64(AvailIt->second);
3245   }
3246 
3247   // Otherwise, we must use the SSA Updater. It will identify the value number
3248   // that we are to use, and the PHIs that must happen along the way.
3249   SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
3250   BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
3251   ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
3252 
3253   // We have the number for a PHI, or possibly live-through value, to be used
3254   // at this Use. There are a number of things we have to check about it though:
3255   //  * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
3256   //    Use was not completely dominated by DBG_PHIs and we should abort.
3257   //  * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
3258   //    we've left SSA form. Validate that the inputs to each PHI are the
3259   //    expected values.
3260   //  * Is a PHI we've created actually a merging of values, or are all the
3261   //    predecessor values the same, leading to a non-PHI machine value number?
3262   //    (SSAUpdater doesn't know that either). Remap validated PHIs into the
3263   //    the ValidatedValues collection below to sort this out.
3264   DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
3265 
3266   // Define all the input DBG_PHI values in ValidatedValues.
3267   for (const auto &DBG_PHI : DBGPHIRange) {
3268     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3269     const ValueIDNum &Num = DBG_PHI.ValueRead;
3270     ValidatedValues.insert(std::make_pair(Block, Num));
3271   }
3272 
3273   // Sort PHIs to validate into RPO-order.
3274   SmallVector<LDVSSAPhi *, 8> SortedPHIs;
3275   for (auto &PHI : CreatedPHIs)
3276     SortedPHIs.push_back(PHI);
3277 
3278   std::sort(
3279       SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) {
3280         return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
3281       });
3282 
3283   for (auto &PHI : SortedPHIs) {
3284     ValueIDNum ThisBlockValueNum =
3285         MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()];
3286 
3287     // Are all these things actually defined?
3288     for (auto &PHIIt : PHI->IncomingValues) {
3289       // Any undef input means DBG_PHIs didn't dominate the use point.
3290       if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end())
3291         return None;
3292 
3293       ValueIDNum ValueToCheck;
3294       ValueIDNum *BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()];
3295 
3296       auto VVal = ValidatedValues.find(PHIIt.first);
3297       if (VVal == ValidatedValues.end()) {
3298         // We cross a loop, and this is a backedge. LLVMs tail duplication
3299         // happens so late that DBG_PHI instructions should not be able to
3300         // migrate into loops -- meaning we can only be live-through this
3301         // loop.
3302         ValueToCheck = ThisBlockValueNum;
3303       } else {
3304         // Does the block have as a live-out, in the location we're examining,
3305         // the value that we expect? If not, it's been moved or clobbered.
3306         ValueToCheck = VVal->second;
3307       }
3308 
3309       if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
3310         return None;
3311     }
3312 
3313     // Record this value as validated.
3314     ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
3315   }
3316 
3317   // All the PHIs are valid: we can return what the SSAUpdater said our value
3318   // number was.
3319   return Result;
3320 }
3321