1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file InstrRefBasedImpl.cpp 9 /// 10 /// This is a separate implementation of LiveDebugValues, see 11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information. 12 /// 13 /// This pass propagates variable locations between basic blocks, resolving 14 /// control flow conflicts between them. The problem is SSA construction, where 15 /// each debug instruction assigns the *value* that a variable has, and every 16 /// instruction where the variable is in scope uses that variable. The resulting 17 /// map of instruction-to-value is then translated into a register (or spill) 18 /// location for each variable over each instruction. 19 /// 20 /// The primary difference from normal SSA construction is that we cannot 21 /// _create_ PHI values that contain variable values. CodeGen has already 22 /// completed, and we can't alter it just to make debug-info complete. Thus: 23 /// we can identify function positions where we would like a PHI value for a 24 /// variable, but must search the MachineFunction to see whether such a PHI is 25 /// available. If no such PHI exists, the variable location must be dropped. 26 /// 27 /// To achieve this, we perform two kinds of analysis. First, we identify 28 /// every value defined by every instruction (ignoring those that only move 29 /// another value), then re-compute an SSA-form representation of the 30 /// MachineFunction, using value propagation to eliminate any un-necessary 31 /// PHI values. This gives us a map of every value computed in the function, 32 /// and its location within the register file / stack. 33 /// 34 /// Secondly, for each variable we perform the same analysis, where each debug 35 /// instruction is considered a def, and every instruction where the variable 36 /// is in lexical scope as a use. Value propagation is used again to eliminate 37 /// any un-necessary PHIs. This gives us a map of each variable to the value 38 /// it should have in a block. 39 /// 40 /// Once both are complete, we have two maps for each block: 41 /// * Variables to the values they should have, 42 /// * Values to the register / spill slot they are located in. 43 /// After which we can marry-up variable values with a location, and emit 44 /// DBG_VALUE instructions specifying those locations. Variable locations may 45 /// be dropped in this process due to the desired variable value not being 46 /// resident in any machine location, or because there is no PHI value in any 47 /// location that accurately represents the desired value. The building of 48 /// location lists for each block is left to DbgEntityHistoryCalculator. 49 /// 50 /// This pass is kept efficient because the size of the first SSA problem 51 /// is proportional to the working-set size of the function, which the compiler 52 /// tries to keep small. (It's also proportional to the number of blocks). 53 /// Additionally, we repeatedly perform the second SSA problem analysis with 54 /// only the variables and blocks in a single lexical scope, exploiting their 55 /// locality. 56 /// 57 /// ### Terminology 58 /// 59 /// A machine location is a register or spill slot, a value is something that's 60 /// defined by an instruction or PHI node, while a variable value is the value 61 /// assigned to a variable. A variable location is a machine location, that must 62 /// contain the appropriate variable value. A value that is a PHI node is 63 /// occasionally called an mphi. 64 /// 65 /// The first SSA problem is the "machine value location" problem, 66 /// because we're determining which machine locations contain which values. 67 /// The "locations" are constant: what's unknown is what value they contain. 68 /// 69 /// The second SSA problem (the one for variables) is the "variable value 70 /// problem", because it's determining what values a variable has, rather than 71 /// what location those values are placed in. 72 /// 73 /// TODO: 74 /// Overlapping fragments 75 /// Entry values 76 /// Add back DEBUG statements for debugging this 77 /// Collect statistics 78 /// 79 //===----------------------------------------------------------------------===// 80 81 #include "llvm/ADT/DenseMap.h" 82 #include "llvm/ADT/PostOrderIterator.h" 83 #include "llvm/ADT/STLExtras.h" 84 #include "llvm/ADT/SmallPtrSet.h" 85 #include "llvm/ADT/SmallSet.h" 86 #include "llvm/ADT/SmallVector.h" 87 #include "llvm/ADT/Statistic.h" 88 #include "llvm/Analysis/IteratedDominanceFrontier.h" 89 #include "llvm/CodeGen/LexicalScopes.h" 90 #include "llvm/CodeGen/MachineBasicBlock.h" 91 #include "llvm/CodeGen/MachineDominators.h" 92 #include "llvm/CodeGen/MachineFrameInfo.h" 93 #include "llvm/CodeGen/MachineFunction.h" 94 #include "llvm/CodeGen/MachineFunctionPass.h" 95 #include "llvm/CodeGen/MachineInstr.h" 96 #include "llvm/CodeGen/MachineInstrBuilder.h" 97 #include "llvm/CodeGen/MachineInstrBundle.h" 98 #include "llvm/CodeGen/MachineMemOperand.h" 99 #include "llvm/CodeGen/MachineOperand.h" 100 #include "llvm/CodeGen/PseudoSourceValue.h" 101 #include "llvm/CodeGen/RegisterScavenging.h" 102 #include "llvm/CodeGen/TargetFrameLowering.h" 103 #include "llvm/CodeGen/TargetInstrInfo.h" 104 #include "llvm/CodeGen/TargetLowering.h" 105 #include "llvm/CodeGen/TargetPassConfig.h" 106 #include "llvm/CodeGen/TargetRegisterInfo.h" 107 #include "llvm/CodeGen/TargetSubtargetInfo.h" 108 #include "llvm/Config/llvm-config.h" 109 #include "llvm/IR/DIBuilder.h" 110 #include "llvm/IR/DebugInfoMetadata.h" 111 #include "llvm/IR/DebugLoc.h" 112 #include "llvm/IR/Function.h" 113 #include "llvm/IR/Module.h" 114 #include "llvm/InitializePasses.h" 115 #include "llvm/MC/MCRegisterInfo.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/Compiler.h" 119 #include "llvm/Support/Debug.h" 120 #include "llvm/Support/TypeSize.h" 121 #include "llvm/Support/raw_ostream.h" 122 #include "llvm/Target/TargetMachine.h" 123 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h" 124 #include <algorithm> 125 #include <cassert> 126 #include <cstdint> 127 #include <functional> 128 #include <limits.h> 129 #include <limits> 130 #include <queue> 131 #include <tuple> 132 #include <utility> 133 #include <vector> 134 135 #include "InstrRefBasedImpl.h" 136 #include "LiveDebugValues.h" 137 138 using namespace llvm; 139 using namespace LiveDebugValues; 140 141 // SSAUpdaterImple sets DEBUG_TYPE, change it. 142 #undef DEBUG_TYPE 143 #define DEBUG_TYPE "livedebugvalues" 144 145 // Act more like the VarLoc implementation, by propagating some locations too 146 // far and ignoring some transfers. 147 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden, 148 cl::desc("Act like old LiveDebugValues did"), 149 cl::init(false)); 150 151 /// Tracker for converting machine value locations and variable values into 152 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs 153 /// specifying block live-in locations and transfers within blocks. 154 /// 155 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker 156 /// and must be initialized with the set of variable values that are live-in to 157 /// the block. The caller then repeatedly calls process(). TransferTracker picks 158 /// out variable locations for the live-in variable values (if there _is_ a 159 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is 160 /// stepped through, transfers of values between machine locations are 161 /// identified and if profitable, a DBG_VALUE created. 162 /// 163 /// This is where debug use-before-defs would be resolved: a variable with an 164 /// unavailable value could materialize in the middle of a block, when the 165 /// value becomes available. Or, we could detect clobbers and re-specify the 166 /// variable in a backup location. (XXX these are unimplemented). 167 class TransferTracker { 168 public: 169 const TargetInstrInfo *TII; 170 const TargetLowering *TLI; 171 /// This machine location tracker is assumed to always contain the up-to-date 172 /// value mapping for all machine locations. TransferTracker only reads 173 /// information from it. (XXX make it const?) 174 MLocTracker *MTracker; 175 MachineFunction &MF; 176 bool ShouldEmitDebugEntryValues; 177 178 /// Record of all changes in variable locations at a block position. Awkwardly 179 /// we allow inserting either before or after the point: MBB != nullptr 180 /// indicates it's before, otherwise after. 181 struct Transfer { 182 MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes 183 MachineBasicBlock *MBB; /// non-null if we should insert after. 184 SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert. 185 }; 186 187 struct LocAndProperties { 188 LocIdx Loc; 189 DbgValueProperties Properties; 190 }; 191 192 /// Collection of transfers (DBG_VALUEs) to be inserted. 193 SmallVector<Transfer, 32> Transfers; 194 195 /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences 196 /// between TransferTrackers view of variable locations and MLocTrackers. For 197 /// example, MLocTracker observes all clobbers, but TransferTracker lazily 198 /// does not. 199 std::vector<ValueIDNum> VarLocs; 200 201 /// Map from LocIdxes to which DebugVariables are based that location. 202 /// Mantained while stepping through the block. Not accurate if 203 /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx]. 204 std::map<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs; 205 206 /// Map from DebugVariable to it's current location and qualifying meta 207 /// information. To be used in conjunction with ActiveMLocs to construct 208 /// enough information for the DBG_VALUEs for a particular LocIdx. 209 DenseMap<DebugVariable, LocAndProperties> ActiveVLocs; 210 211 /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection. 212 SmallVector<MachineInstr *, 4> PendingDbgValues; 213 214 /// Record of a use-before-def: created when a value that's live-in to the 215 /// current block isn't available in any machine location, but it will be 216 /// defined in this block. 217 struct UseBeforeDef { 218 /// Value of this variable, def'd in block. 219 ValueIDNum ID; 220 /// Identity of this variable. 221 DebugVariable Var; 222 /// Additional variable properties. 223 DbgValueProperties Properties; 224 }; 225 226 /// Map from instruction index (within the block) to the set of UseBeforeDefs 227 /// that become defined at that instruction. 228 DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs; 229 230 /// The set of variables that are in UseBeforeDefs and can become a location 231 /// once the relevant value is defined. An element being erased from this 232 /// collection prevents the use-before-def materializing. 233 DenseSet<DebugVariable> UseBeforeDefVariables; 234 235 const TargetRegisterInfo &TRI; 236 const BitVector &CalleeSavedRegs; 237 238 TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker, 239 MachineFunction &MF, const TargetRegisterInfo &TRI, 240 const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC) 241 : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI), 242 CalleeSavedRegs(CalleeSavedRegs) { 243 TLI = MF.getSubtarget().getTargetLowering(); 244 auto &TM = TPC.getTM<TargetMachine>(); 245 ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues(); 246 } 247 248 /// Load object with live-in variable values. \p mlocs contains the live-in 249 /// values in each machine location, while \p vlocs the live-in variable 250 /// values. This method picks variable locations for the live-in variables, 251 /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other 252 /// object fields to track variable locations as we step through the block. 253 /// FIXME: could just examine mloctracker instead of passing in \p mlocs? 254 void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs, 255 SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs, 256 unsigned NumLocs) { 257 ActiveMLocs.clear(); 258 ActiveVLocs.clear(); 259 VarLocs.clear(); 260 VarLocs.reserve(NumLocs); 261 UseBeforeDefs.clear(); 262 UseBeforeDefVariables.clear(); 263 264 auto isCalleeSaved = [&](LocIdx L) { 265 unsigned Reg = MTracker->LocIdxToLocID[L]; 266 if (Reg >= MTracker->NumRegs) 267 return false; 268 for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI) 269 if (CalleeSavedRegs.test(*RAI)) 270 return true; 271 return false; 272 }; 273 274 // Map of the preferred location for each value. 275 std::map<ValueIDNum, LocIdx> ValueToLoc; 276 277 // Produce a map of value numbers to the current machine locs they live 278 // in. When emulating VarLocBasedImpl, there should only be one 279 // location; when not, we get to pick. 280 for (auto Location : MTracker->locations()) { 281 LocIdx Idx = Location.Idx; 282 ValueIDNum &VNum = MLocs[Idx.asU64()]; 283 VarLocs.push_back(VNum); 284 auto it = ValueToLoc.find(VNum); 285 // In order of preference, pick: 286 // * Callee saved registers, 287 // * Other registers, 288 // * Spill slots. 289 if (it == ValueToLoc.end() || MTracker->isSpill(it->second) || 290 (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) { 291 // Insert, or overwrite if insertion failed. 292 auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx)); 293 if (!PrefLocRes.second) 294 PrefLocRes.first->second = Idx; 295 } 296 } 297 298 // Now map variables to their picked LocIdxes. 299 for (auto Var : VLocs) { 300 if (Var.second.Kind == DbgValue::Const) { 301 PendingDbgValues.push_back( 302 emitMOLoc(*Var.second.MO, Var.first, Var.second.Properties)); 303 continue; 304 } 305 306 // If the value has no location, we can't make a variable location. 307 const ValueIDNum &Num = Var.second.ID; 308 auto ValuesPreferredLoc = ValueToLoc.find(Num); 309 if (ValuesPreferredLoc == ValueToLoc.end()) { 310 // If it's a def that occurs in this block, register it as a 311 // use-before-def to be resolved as we step through the block. 312 if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI()) 313 addUseBeforeDef(Var.first, Var.second.Properties, Num); 314 else 315 recoverAsEntryValue(Var.first, Var.second.Properties, Num); 316 continue; 317 } 318 319 LocIdx M = ValuesPreferredLoc->second; 320 auto NewValue = LocAndProperties{M, Var.second.Properties}; 321 auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue)); 322 if (!Result.second) 323 Result.first->second = NewValue; 324 ActiveMLocs[M].insert(Var.first); 325 PendingDbgValues.push_back( 326 MTracker->emitLoc(M, Var.first, Var.second.Properties)); 327 } 328 flushDbgValues(MBB.begin(), &MBB); 329 } 330 331 /// Record that \p Var has value \p ID, a value that becomes available 332 /// later in the function. 333 void addUseBeforeDef(const DebugVariable &Var, 334 const DbgValueProperties &Properties, ValueIDNum ID) { 335 UseBeforeDef UBD = {ID, Var, Properties}; 336 UseBeforeDefs[ID.getInst()].push_back(UBD); 337 UseBeforeDefVariables.insert(Var); 338 } 339 340 /// After the instruction at index \p Inst and position \p pos has been 341 /// processed, check whether it defines a variable value in a use-before-def. 342 /// If so, and the variable value hasn't changed since the start of the 343 /// block, create a DBG_VALUE. 344 void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) { 345 auto MIt = UseBeforeDefs.find(Inst); 346 if (MIt == UseBeforeDefs.end()) 347 return; 348 349 for (auto &Use : MIt->second) { 350 LocIdx L = Use.ID.getLoc(); 351 352 // If something goes very wrong, we might end up labelling a COPY 353 // instruction or similar with an instruction number, where it doesn't 354 // actually define a new value, instead it moves a value. In case this 355 // happens, discard. 356 if (MTracker->readMLoc(L) != Use.ID) 357 continue; 358 359 // If a different debug instruction defined the variable value / location 360 // since the start of the block, don't materialize this use-before-def. 361 if (!UseBeforeDefVariables.count(Use.Var)) 362 continue; 363 364 PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties)); 365 } 366 flushDbgValues(pos, nullptr); 367 } 368 369 /// Helper to move created DBG_VALUEs into Transfers collection. 370 void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) { 371 if (PendingDbgValues.size() == 0) 372 return; 373 374 // Pick out the instruction start position. 375 MachineBasicBlock::instr_iterator BundleStart; 376 if (MBB && Pos == MBB->begin()) 377 BundleStart = MBB->instr_begin(); 378 else 379 BundleStart = getBundleStart(Pos->getIterator()); 380 381 Transfers.push_back({BundleStart, MBB, PendingDbgValues}); 382 PendingDbgValues.clear(); 383 } 384 385 bool isEntryValueVariable(const DebugVariable &Var, 386 const DIExpression *Expr) const { 387 if (!Var.getVariable()->isParameter()) 388 return false; 389 390 if (Var.getInlinedAt()) 391 return false; 392 393 if (Expr->getNumElements() > 0) 394 return false; 395 396 return true; 397 } 398 399 bool isEntryValueValue(const ValueIDNum &Val) const { 400 // Must be in entry block (block number zero), and be a PHI / live-in value. 401 if (Val.getBlock() || !Val.isPHI()) 402 return false; 403 404 // Entry values must enter in a register. 405 if (MTracker->isSpill(Val.getLoc())) 406 return false; 407 408 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 409 Register FP = TRI.getFrameRegister(MF); 410 Register Reg = MTracker->LocIdxToLocID[Val.getLoc()]; 411 return Reg != SP && Reg != FP; 412 } 413 414 bool recoverAsEntryValue(const DebugVariable &Var, DbgValueProperties &Prop, 415 const ValueIDNum &Num) { 416 // Is this variable location a candidate to be an entry value. First, 417 // should we be trying this at all? 418 if (!ShouldEmitDebugEntryValues) 419 return false; 420 421 // Is the variable appropriate for entry values (i.e., is a parameter). 422 if (!isEntryValueVariable(Var, Prop.DIExpr)) 423 return false; 424 425 // Is the value assigned to this variable still the entry value? 426 if (!isEntryValueValue(Num)) 427 return false; 428 429 // Emit a variable location using an entry value expression. 430 DIExpression *NewExpr = 431 DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue); 432 Register Reg = MTracker->LocIdxToLocID[Num.getLoc()]; 433 MachineOperand MO = MachineOperand::CreateReg(Reg, false); 434 435 PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect})); 436 return true; 437 } 438 439 /// Change a variable value after encountering a DBG_VALUE inside a block. 440 void redefVar(const MachineInstr &MI) { 441 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 442 MI.getDebugLoc()->getInlinedAt()); 443 DbgValueProperties Properties(MI); 444 445 const MachineOperand &MO = MI.getOperand(0); 446 447 // Ignore non-register locations, we don't transfer those. 448 if (!MO.isReg() || MO.getReg() == 0) { 449 auto It = ActiveVLocs.find(Var); 450 if (It != ActiveVLocs.end()) { 451 ActiveMLocs[It->second.Loc].erase(Var); 452 ActiveVLocs.erase(It); 453 } 454 // Any use-before-defs no longer apply. 455 UseBeforeDefVariables.erase(Var); 456 return; 457 } 458 459 Register Reg = MO.getReg(); 460 LocIdx NewLoc = MTracker->getRegMLoc(Reg); 461 redefVar(MI, Properties, NewLoc); 462 } 463 464 /// Handle a change in variable location within a block. Terminate the 465 /// variables current location, and record the value it now refers to, so 466 /// that we can detect location transfers later on. 467 void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties, 468 Optional<LocIdx> OptNewLoc) { 469 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 470 MI.getDebugLoc()->getInlinedAt()); 471 // Any use-before-defs no longer apply. 472 UseBeforeDefVariables.erase(Var); 473 474 // Erase any previous location, 475 auto It = ActiveVLocs.find(Var); 476 if (It != ActiveVLocs.end()) 477 ActiveMLocs[It->second.Loc].erase(Var); 478 479 // If there _is_ no new location, all we had to do was erase. 480 if (!OptNewLoc) 481 return; 482 LocIdx NewLoc = *OptNewLoc; 483 484 // Check whether our local copy of values-by-location in #VarLocs is out of 485 // date. Wipe old tracking data for the location if it's been clobbered in 486 // the meantime. 487 if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) { 488 for (auto &P : ActiveMLocs[NewLoc]) { 489 ActiveVLocs.erase(P); 490 } 491 ActiveMLocs[NewLoc.asU64()].clear(); 492 VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc); 493 } 494 495 ActiveMLocs[NewLoc].insert(Var); 496 if (It == ActiveVLocs.end()) { 497 ActiveVLocs.insert( 498 std::make_pair(Var, LocAndProperties{NewLoc, Properties})); 499 } else { 500 It->second.Loc = NewLoc; 501 It->second.Properties = Properties; 502 } 503 } 504 505 /// Account for a location \p mloc being clobbered. Examine the variable 506 /// locations that will be terminated: and try to recover them by using 507 /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to 508 /// explicitly terminate a location if it can't be recovered. 509 void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos, 510 bool MakeUndef = true) { 511 auto ActiveMLocIt = ActiveMLocs.find(MLoc); 512 if (ActiveMLocIt == ActiveMLocs.end()) 513 return; 514 515 // What was the old variable value? 516 ValueIDNum OldValue = VarLocs[MLoc.asU64()]; 517 VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue; 518 519 // Examine the remaining variable locations: if we can find the same value 520 // again, we can recover the location. 521 Optional<LocIdx> NewLoc = None; 522 for (auto Loc : MTracker->locations()) 523 if (Loc.Value == OldValue) 524 NewLoc = Loc.Idx; 525 526 // If there is no location, and we weren't asked to make the variable 527 // explicitly undef, then stop here. 528 if (!NewLoc && !MakeUndef) { 529 // Try and recover a few more locations with entry values. 530 for (auto &Var : ActiveMLocIt->second) { 531 auto &Prop = ActiveVLocs.find(Var)->second.Properties; 532 recoverAsEntryValue(Var, Prop, OldValue); 533 } 534 flushDbgValues(Pos, nullptr); 535 return; 536 } 537 538 // Examine all the variables based on this location. 539 DenseSet<DebugVariable> NewMLocs; 540 for (auto &Var : ActiveMLocIt->second) { 541 auto ActiveVLocIt = ActiveVLocs.find(Var); 542 // Re-state the variable location: if there's no replacement then NewLoc 543 // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE 544 // identifying the alternative location will be emitted. 545 const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr; 546 DbgValueProperties Properties(Expr, false); 547 PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties)); 548 549 // Update machine locations <=> variable locations maps. Defer updating 550 // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator. 551 if (!NewLoc) { 552 ActiveVLocs.erase(ActiveVLocIt); 553 } else { 554 ActiveVLocIt->second.Loc = *NewLoc; 555 NewMLocs.insert(Var); 556 } 557 } 558 559 // Commit any deferred ActiveMLoc changes. 560 if (!NewMLocs.empty()) 561 for (auto &Var : NewMLocs) 562 ActiveMLocs[*NewLoc].insert(Var); 563 564 // We lazily track what locations have which values; if we've found a new 565 // location for the clobbered value, remember it. 566 if (NewLoc) 567 VarLocs[NewLoc->asU64()] = OldValue; 568 569 flushDbgValues(Pos, nullptr); 570 571 ActiveMLocIt->second.clear(); 572 } 573 574 /// Transfer variables based on \p Src to be based on \p Dst. This handles 575 /// both register copies as well as spills and restores. Creates DBG_VALUEs 576 /// describing the movement. 577 void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) { 578 // Does Src still contain the value num we expect? If not, it's been 579 // clobbered in the meantime, and our variable locations are stale. 580 if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src)) 581 return; 582 583 // assert(ActiveMLocs[Dst].size() == 0); 584 //^^^ Legitimate scenario on account of un-clobbered slot being assigned to? 585 ActiveMLocs[Dst] = ActiveMLocs[Src]; 586 VarLocs[Dst.asU64()] = VarLocs[Src.asU64()]; 587 588 // For each variable based on Src; create a location at Dst. 589 for (auto &Var : ActiveMLocs[Src]) { 590 auto ActiveVLocIt = ActiveVLocs.find(Var); 591 assert(ActiveVLocIt != ActiveVLocs.end()); 592 ActiveVLocIt->second.Loc = Dst; 593 594 MachineInstr *MI = 595 MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties); 596 PendingDbgValues.push_back(MI); 597 } 598 ActiveMLocs[Src].clear(); 599 flushDbgValues(Pos, nullptr); 600 601 // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data 602 // about the old location. 603 if (EmulateOldLDV) 604 VarLocs[Src.asU64()] = ValueIDNum::EmptyValue; 605 } 606 607 MachineInstrBuilder emitMOLoc(const MachineOperand &MO, 608 const DebugVariable &Var, 609 const DbgValueProperties &Properties) { 610 DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, 611 Var.getVariable()->getScope(), 612 const_cast<DILocation *>(Var.getInlinedAt())); 613 auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)); 614 MIB.add(MO); 615 if (Properties.Indirect) 616 MIB.addImm(0); 617 else 618 MIB.addReg(0); 619 MIB.addMetadata(Var.getVariable()); 620 MIB.addMetadata(Properties.DIExpr); 621 return MIB; 622 } 623 }; 624 625 //===----------------------------------------------------------------------===// 626 // Implementation 627 //===----------------------------------------------------------------------===// 628 629 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX}; 630 631 #ifndef NDEBUG 632 void DbgValue::dump(const MLocTracker *MTrack) const { 633 if (Kind == Const) { 634 MO->dump(); 635 } else if (Kind == NoVal) { 636 dbgs() << "NoVal(" << BlockNo << ")"; 637 } else if (Kind == VPHI) { 638 dbgs() << "VPHI(" << BlockNo << "," << MTrack->IDAsString(ID) << ")"; 639 } else { 640 assert(Kind == Def); 641 dbgs() << MTrack->IDAsString(ID); 642 } 643 if (Properties.Indirect) 644 dbgs() << " indir"; 645 if (Properties.DIExpr) 646 dbgs() << " " << *Properties.DIExpr; 647 } 648 #endif 649 650 MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII, 651 const TargetRegisterInfo &TRI, 652 const TargetLowering &TLI) 653 : MF(MF), TII(TII), TRI(TRI), TLI(TLI), 654 LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) { 655 NumRegs = TRI.getNumRegs(); 656 reset(); 657 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); 658 assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure 659 660 // Always track SP. This avoids the implicit clobbering caused by regmasks 661 // from affectings its values. (LiveDebugValues disbelieves calls and 662 // regmasks that claim to clobber SP). 663 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 664 if (SP) { 665 unsigned ID = getLocID(SP); 666 (void)lookupOrTrackRegister(ID); 667 668 for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI) 669 SPAliases.insert(*RAI); 670 } 671 672 // Build some common stack positions -- full registers being spilt to the 673 // stack. 674 StackSlotIdxes.insert({{8, 0}, 0}); 675 StackSlotIdxes.insert({{16, 0}, 1}); 676 StackSlotIdxes.insert({{32, 0}, 2}); 677 StackSlotIdxes.insert({{64, 0}, 3}); 678 StackSlotIdxes.insert({{128, 0}, 4}); 679 StackSlotIdxes.insert({{256, 0}, 5}); 680 StackSlotIdxes.insert({{512, 0}, 6}); 681 682 // Traverse all the subregister idxes, and ensure there's an index for them. 683 // Duplicates are no problem: we're interested in their position in the 684 // stack slot, we don't want to type the slot. 685 for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) { 686 unsigned Size = TRI.getSubRegIdxSize(I); 687 unsigned Offs = TRI.getSubRegIdxOffset(I); 688 unsigned Idx = StackSlotIdxes.size(); 689 690 // Some subregs have -1, -2 and so forth fed into their fields, to mean 691 // special backend things. Ignore those. 692 if (Size > 60000 || Offs > 60000) 693 continue; 694 695 StackSlotIdxes.insert({{Size, Offs}, Idx}); 696 } 697 698 for (auto &Idx : StackSlotIdxes) 699 StackIdxesToPos[Idx.second] = Idx.first; 700 701 NumSlotIdxes = StackSlotIdxes.size(); 702 } 703 704 LocIdx MLocTracker::trackRegister(unsigned ID) { 705 assert(ID != 0); 706 LocIdx NewIdx = LocIdx(LocIdxToIDNum.size()); 707 LocIdxToIDNum.grow(NewIdx); 708 LocIdxToLocID.grow(NewIdx); 709 710 // Default: it's an mphi. 711 ValueIDNum ValNum = {CurBB, 0, NewIdx}; 712 // Was this reg ever touched by a regmask? 713 for (const auto &MaskPair : reverse(Masks)) { 714 if (MaskPair.first->clobbersPhysReg(ID)) { 715 // There was an earlier def we skipped. 716 ValNum = {CurBB, MaskPair.second, NewIdx}; 717 break; 718 } 719 } 720 721 LocIdxToIDNum[NewIdx] = ValNum; 722 LocIdxToLocID[NewIdx] = ID; 723 return NewIdx; 724 } 725 726 void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB, 727 unsigned InstID) { 728 // Def any register we track have that isn't preserved. The regmask 729 // terminates the liveness of a register, meaning its value can't be 730 // relied upon -- we represent this by giving it a new value. 731 for (auto Location : locations()) { 732 unsigned ID = LocIdxToLocID[Location.Idx]; 733 // Don't clobber SP, even if the mask says it's clobbered. 734 if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID)) 735 defReg(ID, CurBB, InstID); 736 } 737 Masks.push_back(std::make_pair(MO, InstID)); 738 } 739 740 SpillLocationNo MLocTracker::getOrTrackSpillLoc(SpillLoc L) { 741 SpillLocationNo SpillID(SpillLocs.idFor(L)); 742 if (SpillID.id() == 0) { 743 // Spill location is untracked: create record for this one, and all 744 // subregister slots too. 745 SpillID = SpillLocationNo(SpillLocs.insert(L)); 746 for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) { 747 unsigned L = getSpillIDWithIdx(SpillID, StackIdx); 748 LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx 749 LocIdxToIDNum.grow(Idx); 750 LocIdxToLocID.grow(Idx); 751 LocIDToLocIdx.push_back(Idx); 752 LocIdxToLocID[Idx] = L; 753 // Initialize to PHI value; corresponds to the location's live-in value 754 // during transfer function construction. 755 LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx); 756 } 757 } 758 return SpillID; 759 } 760 761 std::string MLocTracker::LocIdxToName(LocIdx Idx) const { 762 unsigned ID = LocIdxToLocID[Idx]; 763 if (ID >= NumRegs) { 764 StackSlotPos Pos = locIDToSpillIdx(ID); 765 ID -= NumRegs; 766 unsigned Slot = ID / NumSlotIdxes; 767 return Twine("slot ") 768 .concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first) 769 .concat(Twine(" offs ").concat(Twine(Pos.second)))))) 770 .str(); 771 } else { 772 return TRI.getRegAsmName(ID).str(); 773 } 774 } 775 776 std::string MLocTracker::IDAsString(const ValueIDNum &Num) const { 777 std::string DefName = LocIdxToName(Num.getLoc()); 778 return Num.asString(DefName); 779 } 780 781 #ifndef NDEBUG 782 LLVM_DUMP_METHOD void MLocTracker::dump() { 783 for (auto Location : locations()) { 784 std::string MLocName = LocIdxToName(Location.Value.getLoc()); 785 std::string DefName = Location.Value.asString(MLocName); 786 dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n"; 787 } 788 } 789 790 LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() { 791 for (auto Location : locations()) { 792 std::string foo = LocIdxToName(Location.Idx); 793 dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n"; 794 } 795 } 796 #endif 797 798 MachineInstrBuilder MLocTracker::emitLoc(Optional<LocIdx> MLoc, 799 const DebugVariable &Var, 800 const DbgValueProperties &Properties) { 801 DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, 802 Var.getVariable()->getScope(), 803 const_cast<DILocation *>(Var.getInlinedAt())); 804 auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE)); 805 806 const DIExpression *Expr = Properties.DIExpr; 807 if (!MLoc) { 808 // No location -> DBG_VALUE $noreg 809 MIB.addReg(0); 810 MIB.addReg(0); 811 } else if (LocIdxToLocID[*MLoc] >= NumRegs) { 812 unsigned LocID = LocIdxToLocID[*MLoc]; 813 SpillLocationNo SpillID = locIDToSpill(LocID); 814 StackSlotPos StackIdx = locIDToSpillIdx(LocID); 815 unsigned short Offset = StackIdx.second; 816 817 // TODO: support variables that are located in spill slots, with non-zero 818 // offsets from the start of the spill slot. It would require some more 819 // complex DIExpression calculations. This doesn't seem to be produced by 820 // LLVM right now, so don't try and support it. 821 // Accept no-subregister slots and subregisters where the offset is zero. 822 // The consumer should already have type information to work out how large 823 // the variable is. 824 if (Offset == 0) { 825 const SpillLoc &Spill = SpillLocs[SpillID.id()]; 826 Expr = TRI.prependOffsetExpression(Expr, DIExpression::ApplyOffset, 827 Spill.SpillOffset); 828 unsigned Base = Spill.SpillBase; 829 MIB.addReg(Base); 830 MIB.addImm(0); 831 } else { 832 // This is a stack location with a weird subregister offset: emit an undef 833 // DBG_VALUE instead. 834 MIB.addReg(0); 835 MIB.addReg(0); 836 } 837 } else { 838 // Non-empty, non-stack slot, must be a plain register. 839 unsigned LocID = LocIdxToLocID[*MLoc]; 840 MIB.addReg(LocID); 841 if (Properties.Indirect) 842 MIB.addImm(0); 843 else 844 MIB.addReg(0); 845 } 846 847 MIB.addMetadata(Var.getVariable()); 848 MIB.addMetadata(Expr); 849 return MIB; 850 } 851 852 /// Default construct and initialize the pass. 853 InstrRefBasedLDV::InstrRefBasedLDV() {} 854 855 bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const { 856 unsigned Reg = MTracker->LocIdxToLocID[L]; 857 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 858 if (CalleeSavedRegs.test(*RAI)) 859 return true; 860 return false; 861 } 862 863 //===----------------------------------------------------------------------===// 864 // Debug Range Extension Implementation 865 //===----------------------------------------------------------------------===// 866 867 #ifndef NDEBUG 868 // Something to restore in the future. 869 // void InstrRefBasedLDV::printVarLocInMBB(..) 870 #endif 871 872 SpillLocationNo 873 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { 874 assert(MI.hasOneMemOperand() && 875 "Spill instruction does not have exactly one memory operand?"); 876 auto MMOI = MI.memoperands_begin(); 877 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 878 assert(PVal->kind() == PseudoSourceValue::FixedStack && 879 "Inconsistent memory operand in spill instruction"); 880 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); 881 const MachineBasicBlock *MBB = MI.getParent(); 882 Register Reg; 883 StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); 884 return MTracker->getOrTrackSpillLoc({Reg, Offset}); 885 } 886 887 Optional<LocIdx> InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) { 888 SpillLocationNo SpillLoc = extractSpillBaseRegAndOffset(MI); 889 890 // Where in the stack slot is this value defined -- i.e., what size of value 891 // is this? An important question, because it could be loaded into a register 892 // from the stack at some point. Happily the memory operand will tell us 893 // the size written to the stack. 894 auto *MemOperand = *MI.memoperands_begin(); 895 unsigned SizeInBits = MemOperand->getSizeInBits(); 896 897 // Find that position in the stack indexes we're tracking. 898 auto IdxIt = MTracker->StackSlotIdxes.find({SizeInBits, 0}); 899 if (IdxIt == MTracker->StackSlotIdxes.end()) 900 // That index is not tracked. This is suprising, and unlikely to ever 901 // occur, but the safe action is to indicate the variable is optimised out. 902 return None; 903 904 unsigned SpillID = MTracker->getSpillIDWithIdx(SpillLoc, IdxIt->second); 905 return MTracker->getSpillMLoc(SpillID); 906 } 907 908 /// End all previous ranges related to @MI and start a new range from @MI 909 /// if it is a DBG_VALUE instr. 910 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) { 911 if (!MI.isDebugValue()) 912 return false; 913 914 const DILocalVariable *Var = MI.getDebugVariable(); 915 const DIExpression *Expr = MI.getDebugExpression(); 916 const DILocation *DebugLoc = MI.getDebugLoc(); 917 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 918 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 919 "Expected inlined-at fields to agree"); 920 921 DebugVariable V(Var, Expr, InlinedAt); 922 DbgValueProperties Properties(MI); 923 924 // If there are no instructions in this lexical scope, do no location tracking 925 // at all, this variable shouldn't get a legitimate location range. 926 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); 927 if (Scope == nullptr) 928 return true; // handled it; by doing nothing 929 930 // For now, ignore DBG_VALUE_LISTs when extending ranges. Allow it to 931 // contribute to locations in this block, but don't propagate further. 932 // Interpret it like a DBG_VALUE $noreg. 933 if (MI.isDebugValueList()) { 934 if (VTracker) 935 VTracker->defVar(MI, Properties, None); 936 if (TTracker) 937 TTracker->redefVar(MI, Properties, None); 938 return true; 939 } 940 941 const MachineOperand &MO = MI.getOperand(0); 942 943 // MLocTracker needs to know that this register is read, even if it's only 944 // read by a debug inst. 945 if (MO.isReg() && MO.getReg() != 0) 946 (void)MTracker->readReg(MO.getReg()); 947 948 // If we're preparing for the second analysis (variables), the machine value 949 // locations are already solved, and we report this DBG_VALUE and the value 950 // it refers to to VLocTracker. 951 if (VTracker) { 952 if (MO.isReg()) { 953 // Feed defVar the new variable location, or if this is a 954 // DBG_VALUE $noreg, feed defVar None. 955 if (MO.getReg()) 956 VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg())); 957 else 958 VTracker->defVar(MI, Properties, None); 959 } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() || 960 MI.getOperand(0).isCImm()) { 961 VTracker->defVar(MI, MI.getOperand(0)); 962 } 963 } 964 965 // If performing final tracking of transfers, report this variable definition 966 // to the TransferTracker too. 967 if (TTracker) 968 TTracker->redefVar(MI); 969 return true; 970 } 971 972 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI, 973 ValueIDNum **MLiveOuts, 974 ValueIDNum **MLiveIns) { 975 if (!MI.isDebugRef()) 976 return false; 977 978 // Only handle this instruction when we are building the variable value 979 // transfer function. 980 if (!VTracker) 981 return false; 982 983 unsigned InstNo = MI.getOperand(0).getImm(); 984 unsigned OpNo = MI.getOperand(1).getImm(); 985 986 const DILocalVariable *Var = MI.getDebugVariable(); 987 const DIExpression *Expr = MI.getDebugExpression(); 988 const DILocation *DebugLoc = MI.getDebugLoc(); 989 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 990 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 991 "Expected inlined-at fields to agree"); 992 993 DebugVariable V(Var, Expr, InlinedAt); 994 995 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); 996 if (Scope == nullptr) 997 return true; // Handled by doing nothing. This variable is never in scope. 998 999 const MachineFunction &MF = *MI.getParent()->getParent(); 1000 1001 // Various optimizations may have happened to the value during codegen, 1002 // recorded in the value substitution table. Apply any substitutions to 1003 // the instruction / operand number in this DBG_INSTR_REF, and collect 1004 // any subregister extractions performed during optimization. 1005 1006 // Create dummy substitution with Src set, for lookup. 1007 auto SoughtSub = 1008 MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0); 1009 1010 SmallVector<unsigned, 4> SeenSubregs; 1011 auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub); 1012 while (LowerBoundIt != MF.DebugValueSubstitutions.end() && 1013 LowerBoundIt->Src == SoughtSub.Src) { 1014 std::tie(InstNo, OpNo) = LowerBoundIt->Dest; 1015 SoughtSub.Src = LowerBoundIt->Dest; 1016 if (unsigned Subreg = LowerBoundIt->Subreg) 1017 SeenSubregs.push_back(Subreg); 1018 LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub); 1019 } 1020 1021 // Default machine value number is <None> -- if no instruction defines 1022 // the corresponding value, it must have been optimized out. 1023 Optional<ValueIDNum> NewID = None; 1024 1025 // Try to lookup the instruction number, and find the machine value number 1026 // that it defines. It could be an instruction, or a PHI. 1027 auto InstrIt = DebugInstrNumToInstr.find(InstNo); 1028 auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(), 1029 DebugPHINumToValue.end(), InstNo); 1030 if (InstrIt != DebugInstrNumToInstr.end()) { 1031 const MachineInstr &TargetInstr = *InstrIt->second.first; 1032 uint64_t BlockNo = TargetInstr.getParent()->getNumber(); 1033 1034 // Pick out the designated operand. It might be a memory reference, if 1035 // a register def was folded into a stack store. 1036 if (OpNo == MachineFunction::DebugOperandMemNumber && 1037 TargetInstr.hasOneMemOperand()) { 1038 Optional<LocIdx> L = findLocationForMemOperand(TargetInstr); 1039 if (L) 1040 NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L); 1041 } else if (OpNo != MachineFunction::DebugOperandMemNumber) { 1042 assert(OpNo < TargetInstr.getNumOperands()); 1043 const MachineOperand &MO = TargetInstr.getOperand(OpNo); 1044 1045 // Today, this can only be a register. 1046 assert(MO.isReg() && MO.isDef()); 1047 1048 unsigned LocID = MTracker->getLocID(MO.getReg()); 1049 LocIdx L = MTracker->LocIDToLocIdx[LocID]; 1050 NewID = ValueIDNum(BlockNo, InstrIt->second.second, L); 1051 } 1052 // else: NewID is left as None. 1053 } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) { 1054 // It's actually a PHI value. Which value it is might not be obvious, use 1055 // the resolver helper to find out. 1056 NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns, 1057 MI, InstNo); 1058 } 1059 1060 // Apply any subregister extractions, in reverse. We might have seen code 1061 // like this: 1062 // CALL64 @foo, implicit-def $rax 1063 // %0:gr64 = COPY $rax 1064 // %1:gr32 = COPY %0.sub_32bit 1065 // %2:gr16 = COPY %1.sub_16bit 1066 // %3:gr8 = COPY %2.sub_8bit 1067 // In which case each copy would have been recorded as a substitution with 1068 // a subregister qualifier. Apply those qualifiers now. 1069 if (NewID && !SeenSubregs.empty()) { 1070 unsigned Offset = 0; 1071 unsigned Size = 0; 1072 1073 // Look at each subregister that we passed through, and progressively 1074 // narrow in, accumulating any offsets that occur. Substitutions should 1075 // only ever be the same or narrower width than what they read from; 1076 // iterate in reverse order so that we go from wide to small. 1077 for (unsigned Subreg : reverse(SeenSubregs)) { 1078 unsigned ThisSize = TRI->getSubRegIdxSize(Subreg); 1079 unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg); 1080 Offset += ThisOffset; 1081 Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize); 1082 } 1083 1084 // If that worked, look for an appropriate subregister with the register 1085 // where the define happens. Don't look at values that were defined during 1086 // a stack write: we can't currently express register locations within 1087 // spills. 1088 LocIdx L = NewID->getLoc(); 1089 if (NewID && !MTracker->isSpill(L)) { 1090 // Find the register class for the register where this def happened. 1091 // FIXME: no index for this? 1092 Register Reg = MTracker->LocIdxToLocID[L]; 1093 const TargetRegisterClass *TRC = nullptr; 1094 for (auto *TRCI : TRI->regclasses()) 1095 if (TRCI->contains(Reg)) 1096 TRC = TRCI; 1097 assert(TRC && "Couldn't find target register class?"); 1098 1099 // If the register we have isn't the right size or in the right place, 1100 // Try to find a subregister inside it. 1101 unsigned MainRegSize = TRI->getRegSizeInBits(*TRC); 1102 if (Size != MainRegSize || Offset) { 1103 // Enumerate all subregisters, searching. 1104 Register NewReg = 0; 1105 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) { 1106 unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI); 1107 unsigned SubregSize = TRI->getSubRegIdxSize(Subreg); 1108 unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg); 1109 if (SubregSize == Size && SubregOffset == Offset) { 1110 NewReg = *SRI; 1111 break; 1112 } 1113 } 1114 1115 // If we didn't find anything: there's no way to express our value. 1116 if (!NewReg) { 1117 NewID = None; 1118 } else { 1119 // Re-state the value as being defined within the subregister 1120 // that we found. 1121 LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg); 1122 NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc); 1123 } 1124 } 1125 } else { 1126 // If we can't handle subregisters, unset the new value. 1127 NewID = None; 1128 } 1129 } 1130 1131 // We, we have a value number or None. Tell the variable value tracker about 1132 // it. The rest of this LiveDebugValues implementation acts exactly the same 1133 // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that 1134 // aren't immediately available). 1135 DbgValueProperties Properties(Expr, false); 1136 VTracker->defVar(MI, Properties, NewID); 1137 1138 // If we're on the final pass through the function, decompose this INSTR_REF 1139 // into a plain DBG_VALUE. 1140 if (!TTracker) 1141 return true; 1142 1143 // Pick a location for the machine value number, if such a location exists. 1144 // (This information could be stored in TransferTracker to make it faster). 1145 Optional<LocIdx> FoundLoc = None; 1146 for (auto Location : MTracker->locations()) { 1147 LocIdx CurL = Location.Idx; 1148 ValueIDNum ID = MTracker->readMLoc(CurL); 1149 if (NewID && ID == NewID) { 1150 // If this is the first location with that value, pick it. Otherwise, 1151 // consider whether it's a "longer term" location. 1152 if (!FoundLoc) { 1153 FoundLoc = CurL; 1154 continue; 1155 } 1156 1157 if (MTracker->isSpill(CurL)) 1158 FoundLoc = CurL; // Spills are a longer term location. 1159 else if (!MTracker->isSpill(*FoundLoc) && 1160 !MTracker->isSpill(CurL) && 1161 !isCalleeSaved(*FoundLoc) && 1162 isCalleeSaved(CurL)) 1163 FoundLoc = CurL; // Callee saved regs are longer term than normal. 1164 } 1165 } 1166 1167 // Tell transfer tracker that the variable value has changed. 1168 TTracker->redefVar(MI, Properties, FoundLoc); 1169 1170 // If there was a value with no location; but the value is defined in a 1171 // later instruction in this block, this is a block-local use-before-def. 1172 if (!FoundLoc && NewID && NewID->getBlock() == CurBB && 1173 NewID->getInst() > CurInst) 1174 TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID); 1175 1176 // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant. 1177 // This DBG_VALUE is potentially a $noreg / undefined location, if 1178 // FoundLoc is None. 1179 // (XXX -- could morph the DBG_INSTR_REF in the future). 1180 MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties); 1181 TTracker->PendingDbgValues.push_back(DbgMI); 1182 TTracker->flushDbgValues(MI.getIterator(), nullptr); 1183 return true; 1184 } 1185 1186 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) { 1187 if (!MI.isDebugPHI()) 1188 return false; 1189 1190 // Analyse these only when solving the machine value location problem. 1191 if (VTracker || TTracker) 1192 return true; 1193 1194 // First operand is the value location, either a stack slot or register. 1195 // Second is the debug instruction number of the original PHI. 1196 const MachineOperand &MO = MI.getOperand(0); 1197 unsigned InstrNum = MI.getOperand(1).getImm(); 1198 1199 if (MO.isReg()) { 1200 // The value is whatever's currently in the register. Read and record it, 1201 // to be analysed later. 1202 Register Reg = MO.getReg(); 1203 ValueIDNum Num = MTracker->readReg(Reg); 1204 auto PHIRec = DebugPHIRecord( 1205 {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)}); 1206 DebugPHINumToValue.push_back(PHIRec); 1207 1208 // Ensure this register is tracked. 1209 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1210 MTracker->lookupOrTrackRegister(*RAI); 1211 } else { 1212 // The value is whatever's in this stack slot. 1213 assert(MO.isFI()); 1214 unsigned FI = MO.getIndex(); 1215 1216 // If the stack slot is dead, then this was optimized away. 1217 // FIXME: stack slot colouring should account for slots that get merged. 1218 if (MFI->isDeadObjectIndex(FI)) 1219 return true; 1220 1221 // Identify this spill slot, ensure it's tracked. 1222 Register Base; 1223 StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base); 1224 SpillLoc SL = {Base, Offs}; 1225 SpillLocationNo SpillNo = MTracker->getOrTrackSpillLoc(SL); 1226 1227 // Problem: what value should we extract from the stack? LLVM does not 1228 // record what size the last store to the slot was, and it would become 1229 // sketchy after stack slot colouring anyway. Take a look at what values 1230 // are stored on the stack, and pick the largest one that wasn't def'd 1231 // by a spill (i.e., the value most likely to have been def'd in a register 1232 // and then spilt. 1233 std::array<unsigned, 4> CandidateSizes = {64, 32, 16, 8}; 1234 Optional<ValueIDNum> Result = None; 1235 Optional<LocIdx> SpillLoc = None; 1236 for (unsigned int I = 0; I < CandidateSizes.size(); ++I) { 1237 unsigned SpillID = MTracker->getLocID(SpillNo, {CandidateSizes[I], 0}); 1238 SpillLoc = MTracker->getSpillMLoc(SpillID); 1239 ValueIDNum Val = MTracker->readMLoc(*SpillLoc); 1240 // If this value was defined in it's own position, then it was probably 1241 // an aliasing index of a small value that was spilt. 1242 if (Val.getLoc() != SpillLoc->asU64()) { 1243 Result = Val; 1244 break; 1245 } 1246 } 1247 1248 // If we didn't find anything, we're probably looking at a PHI, or a memory 1249 // store folded into an instruction. FIXME: Take a guess that's it's 64 1250 // bits. This isn't ideal, but tracking the size that the spill is 1251 // "supposed" to be is more complex, and benefits a small number of 1252 // locations. 1253 if (!Result) { 1254 unsigned SpillID = MTracker->getLocID(SpillNo, {64, 0}); 1255 SpillLoc = MTracker->getSpillMLoc(SpillID); 1256 Result = MTracker->readMLoc(*SpillLoc); 1257 } 1258 1259 // Record this DBG_PHI for later analysis. 1260 auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), *Result, *SpillLoc}); 1261 DebugPHINumToValue.push_back(DbgPHI); 1262 } 1263 1264 return true; 1265 } 1266 1267 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) { 1268 // Meta Instructions do not affect the debug liveness of any register they 1269 // define. 1270 if (MI.isImplicitDef()) { 1271 // Except when there's an implicit def, and the location it's defining has 1272 // no value number. The whole point of an implicit def is to announce that 1273 // the register is live, without be specific about it's value. So define 1274 // a value if there isn't one already. 1275 ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg()); 1276 // Has a legitimate value -> ignore the implicit def. 1277 if (Num.getLoc() != 0) 1278 return; 1279 // Otherwise, def it here. 1280 } else if (MI.isMetaInstruction()) 1281 return; 1282 1283 // Find the regs killed by MI, and find regmasks of preserved regs. 1284 // Max out the number of statically allocated elements in `DeadRegs`, as this 1285 // prevents fallback to std::set::count() operations. 1286 SmallSet<uint32_t, 32> DeadRegs; 1287 SmallVector<const uint32_t *, 4> RegMasks; 1288 SmallVector<const MachineOperand *, 4> RegMaskPtrs; 1289 for (const MachineOperand &MO : MI.operands()) { 1290 // Determine whether the operand is a register def. 1291 if (MO.isReg() && MO.isDef() && MO.getReg() && 1292 Register::isPhysicalRegister(MO.getReg()) && 1293 !(MI.isCall() && MTracker->SPAliases.count(MO.getReg()))) { 1294 // Remove ranges of all aliased registers. 1295 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1296 // FIXME: Can we break out of this loop early if no insertion occurs? 1297 DeadRegs.insert(*RAI); 1298 } else if (MO.isRegMask()) { 1299 RegMasks.push_back(MO.getRegMask()); 1300 RegMaskPtrs.push_back(&MO); 1301 } 1302 } 1303 1304 // Tell MLocTracker about all definitions, of regmasks and otherwise. 1305 for (uint32_t DeadReg : DeadRegs) 1306 MTracker->defReg(DeadReg, CurBB, CurInst); 1307 1308 for (auto *MO : RegMaskPtrs) 1309 MTracker->writeRegMask(MO, CurBB, CurInst); 1310 1311 // If this instruction writes to a spill slot, def that slot. 1312 if (hasFoldedStackStore(MI)) { 1313 SpillLocationNo SpillNo = extractSpillBaseRegAndOffset(MI); 1314 for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) { 1315 unsigned SpillID = MTracker->getSpillIDWithIdx(SpillNo, I); 1316 LocIdx L = MTracker->getSpillMLoc(SpillID); 1317 MTracker->setMLoc(L, ValueIDNum(CurBB, CurInst, L)); 1318 } 1319 } 1320 1321 if (!TTracker) 1322 return; 1323 1324 // When committing variable values to locations: tell transfer tracker that 1325 // we've clobbered things. It may be able to recover the variable from a 1326 // different location. 1327 1328 // Inform TTracker about any direct clobbers. 1329 for (uint32_t DeadReg : DeadRegs) { 1330 LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg); 1331 TTracker->clobberMloc(Loc, MI.getIterator(), false); 1332 } 1333 1334 // Look for any clobbers performed by a register mask. Only test locations 1335 // that are actually being tracked. 1336 for (auto L : MTracker->locations()) { 1337 // Stack locations can't be clobbered by regmasks. 1338 if (MTracker->isSpill(L.Idx)) 1339 continue; 1340 1341 Register Reg = MTracker->LocIdxToLocID[L.Idx]; 1342 for (auto *MO : RegMaskPtrs) 1343 if (MO->clobbersPhysReg(Reg)) 1344 TTracker->clobberMloc(L.Idx, MI.getIterator(), false); 1345 } 1346 1347 // Tell TTracker about any folded stack store. 1348 if (hasFoldedStackStore(MI)) { 1349 SpillLocationNo SpillNo = extractSpillBaseRegAndOffset(MI); 1350 for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) { 1351 unsigned SpillID = MTracker->getSpillIDWithIdx(SpillNo, I); 1352 LocIdx L = MTracker->getSpillMLoc(SpillID); 1353 TTracker->clobberMloc(L, MI.getIterator(), true); 1354 } 1355 } 1356 } 1357 1358 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) { 1359 // In all circumstances, re-def all aliases. It's definitely a new value now. 1360 for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI) 1361 MTracker->defReg(*RAI, CurBB, CurInst); 1362 1363 ValueIDNum SrcValue = MTracker->readReg(SrcRegNum); 1364 MTracker->setReg(DstRegNum, SrcValue); 1365 1366 // Copy subregisters from one location to another. 1367 for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) { 1368 unsigned SrcSubReg = SRI.getSubReg(); 1369 unsigned SubRegIdx = SRI.getSubRegIndex(); 1370 unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx); 1371 if (!DstSubReg) 1372 continue; 1373 1374 // Do copy. There are two matching subregisters, the source value should 1375 // have been def'd when the super-reg was, the latter might not be tracked 1376 // yet. 1377 // This will force SrcSubReg to be tracked, if it isn't yet. Will read 1378 // mphi values if it wasn't tracked. 1379 LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg); 1380 LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg); 1381 (void)SrcL; 1382 (void)DstL; 1383 ValueIDNum CpyValue = MTracker->readReg(SrcSubReg); 1384 1385 MTracker->setReg(DstSubReg, CpyValue); 1386 } 1387 } 1388 1389 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI, 1390 MachineFunction *MF) { 1391 // TODO: Handle multiple stores folded into one. 1392 if (!MI.hasOneMemOperand()) 1393 return false; 1394 1395 // Reject any memory operand that's aliased -- we can't guarantee its value. 1396 auto MMOI = MI.memoperands_begin(); 1397 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 1398 if (PVal->isAliased(MFI)) 1399 return false; 1400 1401 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) 1402 return false; // This is not a spill instruction, since no valid size was 1403 // returned from either function. 1404 1405 return true; 1406 } 1407 1408 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI, 1409 MachineFunction *MF, unsigned &Reg) { 1410 if (!isSpillInstruction(MI, MF)) 1411 return false; 1412 1413 int FI; 1414 Reg = TII->isStoreToStackSlotPostFE(MI, FI); 1415 return Reg != 0; 1416 } 1417 1418 Optional<SpillLocationNo> 1419 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI, 1420 MachineFunction *MF, unsigned &Reg) { 1421 if (!MI.hasOneMemOperand()) 1422 return None; 1423 1424 // FIXME: Handle folded restore instructions with more than one memory 1425 // operand. 1426 if (MI.getRestoreSize(TII)) { 1427 Reg = MI.getOperand(0).getReg(); 1428 return extractSpillBaseRegAndOffset(MI); 1429 } 1430 return None; 1431 } 1432 1433 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) { 1434 // XXX -- it's too difficult to implement VarLocBasedImpl's stack location 1435 // limitations under the new model. Therefore, when comparing them, compare 1436 // versions that don't attempt spills or restores at all. 1437 if (EmulateOldLDV) 1438 return false; 1439 1440 // Strictly limit ourselves to plain loads and stores, not all instructions 1441 // that can access the stack. 1442 int DummyFI = -1; 1443 if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) && 1444 !TII->isLoadFromStackSlotPostFE(MI, DummyFI)) 1445 return false; 1446 1447 MachineFunction *MF = MI.getMF(); 1448 unsigned Reg; 1449 1450 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); 1451 1452 // Strictly limit ourselves to plain loads and stores, not all instructions 1453 // that can access the stack. 1454 int FIDummy; 1455 if (!TII->isStoreToStackSlotPostFE(MI, FIDummy) && 1456 !TII->isLoadFromStackSlotPostFE(MI, FIDummy)) 1457 return false; 1458 1459 // First, if there are any DBG_VALUEs pointing at a spill slot that is 1460 // written to, terminate that variable location. The value in memory 1461 // will have changed. DbgEntityHistoryCalculator doesn't try to detect this. 1462 if (isSpillInstruction(MI, MF)) { 1463 SpillLocationNo Loc = extractSpillBaseRegAndOffset(MI); 1464 1465 // Un-set this location and clobber, so that earlier locations don't 1466 // continue past this store. 1467 for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) { 1468 unsigned SpillID = MTracker->getSpillIDWithIdx(Loc, SlotIdx); 1469 Optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID); 1470 if (!MLoc) 1471 continue; 1472 1473 // We need to over-write the stack slot with something (here, a def at 1474 // this instruction) to ensure no values are preserved in this stack slot 1475 // after the spill. It also prevents TTracker from trying to recover the 1476 // location and re-installing it in the same place. 1477 ValueIDNum Def(CurBB, CurInst, *MLoc); 1478 MTracker->setMLoc(*MLoc, Def); 1479 if (TTracker) 1480 TTracker->clobberMloc(*MLoc, MI.getIterator()); 1481 } 1482 } 1483 1484 // Try to recognise spill and restore instructions that may transfer a value. 1485 if (isLocationSpill(MI, MF, Reg)) { 1486 SpillLocationNo Loc = extractSpillBaseRegAndOffset(MI); 1487 1488 auto DoTransfer = [&](Register SrcReg, unsigned SpillID) { 1489 auto ReadValue = MTracker->readReg(SrcReg); 1490 LocIdx DstLoc = MTracker->getSpillMLoc(SpillID); 1491 MTracker->setMLoc(DstLoc, ReadValue); 1492 1493 if (TTracker) { 1494 LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg); 1495 TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator()); 1496 } 1497 }; 1498 1499 // Then, transfer subreg bits. 1500 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) { 1501 // Ensure this reg is tracked, 1502 (void)MTracker->lookupOrTrackRegister(*SRI); 1503 unsigned SubregIdx = TRI->getSubRegIndex(Reg, *SRI); 1504 unsigned SpillID = MTracker->getLocID(Loc, SubregIdx); 1505 DoTransfer(*SRI, SpillID); 1506 } 1507 1508 // Directly lookup size of main source reg, and transfer. 1509 unsigned Size = TRI->getRegSizeInBits(Reg, *MRI); 1510 unsigned SpillID = MTracker->getLocID(Loc, {Size, 0}); 1511 DoTransfer(Reg, SpillID); 1512 } else { 1513 Optional<SpillLocationNo> OptLoc = isRestoreInstruction(MI, MF, Reg); 1514 if (!OptLoc) 1515 return false; 1516 SpillLocationNo Loc = *OptLoc; 1517 1518 // Assumption: we're reading from the base of the stack slot, not some 1519 // offset into it. It seems very unlikely LLVM would ever generate 1520 // restores where this wasn't true. This then becomes a question of what 1521 // subregisters in the destination register line up with positions in the 1522 // stack slot. 1523 1524 // Def all registers that alias the destination. 1525 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1526 MTracker->defReg(*RAI, CurBB, CurInst); 1527 1528 // Now find subregisters within the destination register, and load values 1529 // from stack slot positions. 1530 auto DoTransfer = [&](Register DestReg, unsigned SpillID) { 1531 LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID); 1532 auto ReadValue = MTracker->readMLoc(SrcIdx); 1533 MTracker->setReg(DestReg, ReadValue); 1534 1535 if (TTracker) { 1536 LocIdx DstLoc = MTracker->getRegMLoc(DestReg); 1537 TTracker->transferMlocs(SrcIdx, DstLoc, MI.getIterator()); 1538 } 1539 }; 1540 1541 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) { 1542 unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI); 1543 unsigned SpillID = MTracker->getLocID(Loc, Subreg); 1544 DoTransfer(*SRI, SpillID); 1545 } 1546 1547 // Directly look up this registers slot idx by size, and transfer. 1548 unsigned Size = TRI->getRegSizeInBits(Reg, *MRI); 1549 unsigned SpillID = MTracker->getLocID(Loc, {Size, 0}); 1550 DoTransfer(Reg, SpillID); 1551 } 1552 return true; 1553 } 1554 1555 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) { 1556 auto DestSrc = TII->isCopyInstr(MI); 1557 if (!DestSrc) 1558 return false; 1559 1560 const MachineOperand *DestRegOp = DestSrc->Destination; 1561 const MachineOperand *SrcRegOp = DestSrc->Source; 1562 1563 auto isCalleeSavedReg = [&](unsigned Reg) { 1564 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1565 if (CalleeSavedRegs.test(*RAI)) 1566 return true; 1567 return false; 1568 }; 1569 1570 Register SrcReg = SrcRegOp->getReg(); 1571 Register DestReg = DestRegOp->getReg(); 1572 1573 // Ignore identity copies. Yep, these make it as far as LiveDebugValues. 1574 if (SrcReg == DestReg) 1575 return true; 1576 1577 // For emulating VarLocBasedImpl: 1578 // We want to recognize instructions where destination register is callee 1579 // saved register. If register that could be clobbered by the call is 1580 // included, there would be a great chance that it is going to be clobbered 1581 // soon. It is more likely that previous register, which is callee saved, is 1582 // going to stay unclobbered longer, even if it is killed. 1583 // 1584 // For InstrRefBasedImpl, we can track multiple locations per value, so 1585 // ignore this condition. 1586 if (EmulateOldLDV && !isCalleeSavedReg(DestReg)) 1587 return false; 1588 1589 // InstrRefBasedImpl only followed killing copies. 1590 if (EmulateOldLDV && !SrcRegOp->isKill()) 1591 return false; 1592 1593 // Copy MTracker info, including subregs if available. 1594 InstrRefBasedLDV::performCopy(SrcReg, DestReg); 1595 1596 // Only produce a transfer of DBG_VALUE within a block where old LDV 1597 // would have. We might make use of the additional value tracking in some 1598 // other way, later. 1599 if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill()) 1600 TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg), 1601 MTracker->getRegMLoc(DestReg), MI.getIterator()); 1602 1603 // VarLocBasedImpl would quit tracking the old location after copying. 1604 if (EmulateOldLDV && SrcReg != DestReg) 1605 MTracker->defReg(SrcReg, CurBB, CurInst); 1606 1607 // Finally, the copy might have clobbered variables based on the destination 1608 // register. Tell TTracker about it, in case a backup location exists. 1609 if (TTracker) { 1610 for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) { 1611 LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI); 1612 TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false); 1613 } 1614 } 1615 1616 return true; 1617 } 1618 1619 /// Accumulate a mapping between each DILocalVariable fragment and other 1620 /// fragments of that DILocalVariable which overlap. This reduces work during 1621 /// the data-flow stage from "Find any overlapping fragments" to "Check if the 1622 /// known-to-overlap fragments are present". 1623 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for 1624 /// fragment usage. 1625 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) { 1626 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), 1627 MI.getDebugLoc()->getInlinedAt()); 1628 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); 1629 1630 // If this is the first sighting of this variable, then we are guaranteed 1631 // there are currently no overlapping fragments either. Initialize the set 1632 // of seen fragments, record no overlaps for the current one, and return. 1633 auto SeenIt = SeenFragments.find(MIVar.getVariable()); 1634 if (SeenIt == SeenFragments.end()) { 1635 SmallSet<FragmentInfo, 4> OneFragment; 1636 OneFragment.insert(ThisFragment); 1637 SeenFragments.insert({MIVar.getVariable(), OneFragment}); 1638 1639 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1640 return; 1641 } 1642 1643 // If this particular Variable/Fragment pair already exists in the overlap 1644 // map, it has already been accounted for. 1645 auto IsInOLapMap = 1646 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1647 if (!IsInOLapMap.second) 1648 return; 1649 1650 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; 1651 auto &AllSeenFragments = SeenIt->second; 1652 1653 // Otherwise, examine all other seen fragments for this variable, with "this" 1654 // fragment being a previously unseen fragment. Record any pair of 1655 // overlapping fragments. 1656 for (auto &ASeenFragment : AllSeenFragments) { 1657 // Does this previously seen fragment overlap? 1658 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { 1659 // Yes: Mark the current fragment as being overlapped. 1660 ThisFragmentsOverlaps.push_back(ASeenFragment); 1661 // Mark the previously seen fragment as being overlapped by the current 1662 // one. 1663 auto ASeenFragmentsOverlaps = 1664 OverlapFragments.find({MIVar.getVariable(), ASeenFragment}); 1665 assert(ASeenFragmentsOverlaps != OverlapFragments.end() && 1666 "Previously seen var fragment has no vector of overlaps"); 1667 ASeenFragmentsOverlaps->second.push_back(ThisFragment); 1668 } 1669 } 1670 1671 AllSeenFragments.insert(ThisFragment); 1672 } 1673 1674 void InstrRefBasedLDV::process(MachineInstr &MI, ValueIDNum **MLiveOuts, 1675 ValueIDNum **MLiveIns) { 1676 // Try to interpret an MI as a debug or transfer instruction. Only if it's 1677 // none of these should we interpret it's register defs as new value 1678 // definitions. 1679 if (transferDebugValue(MI)) 1680 return; 1681 if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns)) 1682 return; 1683 if (transferDebugPHI(MI)) 1684 return; 1685 if (transferRegisterCopy(MI)) 1686 return; 1687 if (transferSpillOrRestoreInst(MI)) 1688 return; 1689 transferRegisterDef(MI); 1690 } 1691 1692 void InstrRefBasedLDV::produceMLocTransferFunction( 1693 MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer, 1694 unsigned MaxNumBlocks) { 1695 // Because we try to optimize around register mask operands by ignoring regs 1696 // that aren't currently tracked, we set up something ugly for later: RegMask 1697 // operands that are seen earlier than the first use of a register, still need 1698 // to clobber that register in the transfer function. But this information 1699 // isn't actively recorded. Instead, we track each RegMask used in each block, 1700 // and accumulated the clobbered but untracked registers in each block into 1701 // the following bitvector. Later, if new values are tracked, we can add 1702 // appropriate clobbers. 1703 SmallVector<BitVector, 32> BlockMasks; 1704 BlockMasks.resize(MaxNumBlocks); 1705 1706 // Reserve one bit per register for the masks described above. 1707 unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs()); 1708 for (auto &BV : BlockMasks) 1709 BV.resize(TRI->getNumRegs(), true); 1710 1711 // Step through all instructions and inhale the transfer function. 1712 for (auto &MBB : MF) { 1713 // Object fields that are read by trackers to know where we are in the 1714 // function. 1715 CurBB = MBB.getNumber(); 1716 CurInst = 1; 1717 1718 // Set all machine locations to a PHI value. For transfer function 1719 // production only, this signifies the live-in value to the block. 1720 MTracker->reset(); 1721 MTracker->setMPhis(CurBB); 1722 1723 // Step through each instruction in this block. 1724 for (auto &MI : MBB) { 1725 process(MI); 1726 // Also accumulate fragment map. 1727 if (MI.isDebugValue()) 1728 accumulateFragmentMap(MI); 1729 1730 // Create a map from the instruction number (if present) to the 1731 // MachineInstr and its position. 1732 if (uint64_t InstrNo = MI.peekDebugInstrNum()) { 1733 auto InstrAndPos = std::make_pair(&MI, CurInst); 1734 auto InsertResult = 1735 DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos)); 1736 1737 // There should never be duplicate instruction numbers. 1738 assert(InsertResult.second); 1739 (void)InsertResult; 1740 } 1741 1742 ++CurInst; 1743 } 1744 1745 // Produce the transfer function, a map of machine location to new value. If 1746 // any machine location has the live-in phi value from the start of the 1747 // block, it's live-through and doesn't need recording in the transfer 1748 // function. 1749 for (auto Location : MTracker->locations()) { 1750 LocIdx Idx = Location.Idx; 1751 ValueIDNum &P = Location.Value; 1752 if (P.isPHI() && P.getLoc() == Idx.asU64()) 1753 continue; 1754 1755 // Insert-or-update. 1756 auto &TransferMap = MLocTransfer[CurBB]; 1757 auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P)); 1758 if (!Result.second) 1759 Result.first->second = P; 1760 } 1761 1762 // Accumulate any bitmask operands into the clobberred reg mask for this 1763 // block. 1764 for (auto &P : MTracker->Masks) { 1765 BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords); 1766 } 1767 } 1768 1769 // Compute a bitvector of all the registers that are tracked in this block. 1770 BitVector UsedRegs(TRI->getNumRegs()); 1771 for (auto Location : MTracker->locations()) { 1772 unsigned ID = MTracker->LocIdxToLocID[Location.Idx]; 1773 // Ignore stack slots, and aliases of the stack pointer. 1774 if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID)) 1775 continue; 1776 UsedRegs.set(ID); 1777 } 1778 1779 // Check that any regmask-clobber of a register that gets tracked, is not 1780 // live-through in the transfer function. It needs to be clobbered at the 1781 // very least. 1782 for (unsigned int I = 0; I < MaxNumBlocks; ++I) { 1783 BitVector &BV = BlockMasks[I]; 1784 BV.flip(); 1785 BV &= UsedRegs; 1786 // This produces all the bits that we clobber, but also use. Check that 1787 // they're all clobbered or at least set in the designated transfer 1788 // elem. 1789 for (unsigned Bit : BV.set_bits()) { 1790 unsigned ID = MTracker->getLocID(Bit); 1791 LocIdx Idx = MTracker->LocIDToLocIdx[ID]; 1792 auto &TransferMap = MLocTransfer[I]; 1793 1794 // Install a value representing the fact that this location is effectively 1795 // written to in this block. As there's no reserved value, instead use 1796 // a value number that is never generated. Pick the value number for the 1797 // first instruction in the block, def'ing this location, which we know 1798 // this block never used anyway. 1799 ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx); 1800 auto Result = 1801 TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum)); 1802 if (!Result.second) { 1803 ValueIDNum &ValueID = Result.first->second; 1804 if (ValueID.getBlock() == I && ValueID.isPHI()) 1805 // It was left as live-through. Set it to clobbered. 1806 ValueID = NotGeneratedNum; 1807 } 1808 } 1809 } 1810 } 1811 1812 bool InstrRefBasedLDV::mlocJoin( 1813 MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1814 ValueIDNum **OutLocs, ValueIDNum *InLocs) { 1815 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 1816 bool Changed = false; 1817 1818 // Handle value-propagation when control flow merges on entry to a block. For 1819 // any location without a PHI already placed, the location has the same value 1820 // as its predecessors. If a PHI is placed, test to see whether it's now a 1821 // redundant PHI that we can eliminate. 1822 1823 SmallVector<const MachineBasicBlock *, 8> BlockOrders; 1824 for (auto Pred : MBB.predecessors()) 1825 BlockOrders.push_back(Pred); 1826 1827 // Visit predecessors in RPOT order. 1828 auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) { 1829 return BBToOrder.find(A)->second < BBToOrder.find(B)->second; 1830 }; 1831 llvm::sort(BlockOrders, Cmp); 1832 1833 // Skip entry block. 1834 if (BlockOrders.size() == 0) 1835 return false; 1836 1837 // Step through all machine locations, look at each predecessor and test 1838 // whether we can eliminate redundant PHIs. 1839 for (auto Location : MTracker->locations()) { 1840 LocIdx Idx = Location.Idx; 1841 1842 // Pick out the first predecessors live-out value for this location. It's 1843 // guaranteed to not be a backedge, as we order by RPO. 1844 ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()]; 1845 1846 // If we've already eliminated a PHI here, do no further checking, just 1847 // propagate the first live-in value into this block. 1848 if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) { 1849 if (InLocs[Idx.asU64()] != FirstVal) { 1850 InLocs[Idx.asU64()] = FirstVal; 1851 Changed |= true; 1852 } 1853 continue; 1854 } 1855 1856 // We're now examining a PHI to see whether it's un-necessary. Loop around 1857 // the other live-in values and test whether they're all the same. 1858 bool Disagree = false; 1859 for (unsigned int I = 1; I < BlockOrders.size(); ++I) { 1860 const MachineBasicBlock *PredMBB = BlockOrders[I]; 1861 const ValueIDNum &PredLiveOut = 1862 OutLocs[PredMBB->getNumber()][Idx.asU64()]; 1863 1864 // Incoming values agree, continue trying to eliminate this PHI. 1865 if (FirstVal == PredLiveOut) 1866 continue; 1867 1868 // We can also accept a PHI value that feeds back into itself. 1869 if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx)) 1870 continue; 1871 1872 // Live-out of a predecessor disagrees with the first predecessor. 1873 Disagree = true; 1874 } 1875 1876 // No disagreement? No PHI. Otherwise, leave the PHI in live-ins. 1877 if (!Disagree) { 1878 InLocs[Idx.asU64()] = FirstVal; 1879 Changed |= true; 1880 } 1881 } 1882 1883 // TODO: Reimplement NumInserted and NumRemoved. 1884 return Changed; 1885 } 1886 1887 void InstrRefBasedLDV::findStackIndexInterference( 1888 SmallVectorImpl<unsigned> &Slots) { 1889 // We could spend a bit of time finding the exact, minimal, set of stack 1890 // indexes that interfere with each other, much like reg units. Or, we can 1891 // rely on the fact that: 1892 // * The smallest / lowest index will interfere with everything at zero 1893 // offset, which will be the largest set of registers, 1894 // * Most indexes with non-zero offset will end up being interference units 1895 // anyway. 1896 // So just pick those out and return them. 1897 1898 // We can rely on a single-byte stack index existing already, because we 1899 // initialize them in MLocTracker. 1900 auto It = MTracker->StackSlotIdxes.find({8, 0}); 1901 assert(It != MTracker->StackSlotIdxes.end()); 1902 Slots.push_back(It->second); 1903 1904 // Find anything that has a non-zero offset and add that too. 1905 for (auto &Pair : MTracker->StackSlotIdxes) { 1906 // Is offset zero? If so, ignore. 1907 if (!Pair.first.second) 1908 continue; 1909 Slots.push_back(Pair.second); 1910 } 1911 } 1912 1913 void InstrRefBasedLDV::placeMLocPHIs( 1914 MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, 1915 ValueIDNum **MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) { 1916 SmallVector<unsigned, 4> StackUnits; 1917 findStackIndexInterference(StackUnits); 1918 1919 // To avoid repeatedly running the PHI placement algorithm, leverage the 1920 // fact that a def of register MUST also def its register units. Find the 1921 // units for registers, place PHIs for them, and then replicate them for 1922 // aliasing registers. Some inputs that are never def'd (DBG_PHIs of 1923 // arguments) don't lead to register units being tracked, just place PHIs for 1924 // those registers directly. Stack slots have their own form of "unit", 1925 // store them to one side. 1926 SmallSet<Register, 32> RegUnitsToPHIUp; 1927 SmallSet<LocIdx, 32> NormalLocsToPHI; 1928 SmallSet<SpillLocationNo, 32> StackSlots; 1929 for (auto Location : MTracker->locations()) { 1930 LocIdx L = Location.Idx; 1931 if (MTracker->isSpill(L)) { 1932 StackSlots.insert(MTracker->locIDToSpill(MTracker->LocIdxToLocID[L])); 1933 continue; 1934 } 1935 1936 Register R = MTracker->LocIdxToLocID[L]; 1937 SmallSet<Register, 8> FoundRegUnits; 1938 bool AnyIllegal = false; 1939 for (MCRegUnitIterator RUI(R.asMCReg(), TRI); RUI.isValid(); ++RUI) { 1940 for (MCRegUnitRootIterator URoot(*RUI, TRI); URoot.isValid(); ++URoot){ 1941 if (!MTracker->isRegisterTracked(*URoot)) { 1942 // Not all roots were loaded into the tracking map: this register 1943 // isn't actually def'd anywhere, we only read from it. Generate PHIs 1944 // for this reg, but don't iterate units. 1945 AnyIllegal = true; 1946 } else { 1947 FoundRegUnits.insert(*URoot); 1948 } 1949 } 1950 } 1951 1952 if (AnyIllegal) { 1953 NormalLocsToPHI.insert(L); 1954 continue; 1955 } 1956 1957 RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end()); 1958 } 1959 1960 // Lambda to fetch PHIs for a given location, and write into the PHIBlocks 1961 // collection. 1962 SmallVector<MachineBasicBlock *, 32> PHIBlocks; 1963 auto CollectPHIsForLoc = [&](LocIdx L) { 1964 // Collect the set of defs. 1965 SmallPtrSet<MachineBasicBlock *, 32> DefBlocks; 1966 for (unsigned int I = 0; I < OrderToBB.size(); ++I) { 1967 MachineBasicBlock *MBB = OrderToBB[I]; 1968 const auto &TransferFunc = MLocTransfer[MBB->getNumber()]; 1969 if (TransferFunc.find(L) != TransferFunc.end()) 1970 DefBlocks.insert(MBB); 1971 } 1972 1973 // The entry block defs the location too: it's the live-in / argument value. 1974 // Only insert if there are other defs though; everything is trivially live 1975 // through otherwise. 1976 if (!DefBlocks.empty()) 1977 DefBlocks.insert(&*MF.begin()); 1978 1979 // Ask the SSA construction algorithm where we should put PHIs. Clear 1980 // anything that might have been hanging around from earlier. 1981 PHIBlocks.clear(); 1982 BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks); 1983 }; 1984 1985 auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) { 1986 for (const MachineBasicBlock *MBB : PHIBlocks) 1987 MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L); 1988 }; 1989 1990 // For locations with no reg units, just place PHIs. 1991 for (LocIdx L : NormalLocsToPHI) { 1992 CollectPHIsForLoc(L); 1993 // Install those PHI values into the live-in value array. 1994 InstallPHIsAtLoc(L); 1995 } 1996 1997 // For stack slots, calculate PHIs for the equivalent of the units, then 1998 // install for each index. 1999 for (SpillLocationNo Slot : StackSlots) { 2000 for (unsigned Idx : StackUnits) { 2001 unsigned SpillID = MTracker->getSpillIDWithIdx(Slot, Idx); 2002 LocIdx L = MTracker->getSpillMLoc(SpillID); 2003 CollectPHIsForLoc(L); 2004 InstallPHIsAtLoc(L); 2005 2006 // Find anything that aliases this stack index, install PHIs for it too. 2007 unsigned Size, Offset; 2008 std::tie(Size, Offset) = MTracker->StackIdxesToPos[Idx]; 2009 for (auto &Pair : MTracker->StackSlotIdxes) { 2010 unsigned ThisSize, ThisOffset; 2011 std::tie(ThisSize, ThisOffset) = Pair.first; 2012 if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset) 2013 continue; 2014 2015 unsigned ThisID = MTracker->getSpillIDWithIdx(Slot, Pair.second); 2016 LocIdx ThisL = MTracker->getSpillMLoc(ThisID); 2017 InstallPHIsAtLoc(ThisL); 2018 } 2019 } 2020 } 2021 2022 // For reg units, place PHIs, and then place them for any aliasing registers. 2023 for (Register R : RegUnitsToPHIUp) { 2024 LocIdx L = MTracker->lookupOrTrackRegister(R); 2025 CollectPHIsForLoc(L); 2026 2027 // Install those PHI values into the live-in value array. 2028 InstallPHIsAtLoc(L); 2029 2030 // Now find aliases and install PHIs for those. 2031 for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) { 2032 // Super-registers that are "above" the largest register read/written by 2033 // the function will alias, but will not be tracked. 2034 if (!MTracker->isRegisterTracked(*RAI)) 2035 continue; 2036 2037 LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI); 2038 InstallPHIsAtLoc(AliasLoc); 2039 } 2040 } 2041 } 2042 2043 void InstrRefBasedLDV::buildMLocValueMap( 2044 MachineFunction &MF, ValueIDNum **MInLocs, ValueIDNum **MOutLocs, 2045 SmallVectorImpl<MLocTransferMap> &MLocTransfer) { 2046 std::priority_queue<unsigned int, std::vector<unsigned int>, 2047 std::greater<unsigned int>> 2048 Worklist, Pending; 2049 2050 // We track what is on the current and pending worklist to avoid inserting 2051 // the same thing twice. We could avoid this with a custom priority queue, 2052 // but this is probably not worth it. 2053 SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist; 2054 2055 // Initialize worklist with every block to be visited. Also produce list of 2056 // all blocks. 2057 SmallPtrSet<MachineBasicBlock *, 32> AllBlocks; 2058 for (unsigned int I = 0; I < BBToOrder.size(); ++I) { 2059 Worklist.push(I); 2060 OnWorklist.insert(OrderToBB[I]); 2061 AllBlocks.insert(OrderToBB[I]); 2062 } 2063 2064 // Initialize entry block to PHIs. These represent arguments. 2065 for (auto Location : MTracker->locations()) 2066 MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx); 2067 2068 MTracker->reset(); 2069 2070 // Start by placing PHIs, using the usual SSA constructor algorithm. Consider 2071 // any machine-location that isn't live-through a block to be def'd in that 2072 // block. 2073 placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer); 2074 2075 // Propagate values to eliminate redundant PHIs. At the same time, this 2076 // produces the table of Block x Location => Value for the entry to each 2077 // block. 2078 // The kind of PHIs we can eliminate are, for example, where one path in a 2079 // conditional spills and restores a register, and the register still has 2080 // the same value once control flow joins, unbeknowns to the PHI placement 2081 // code. Propagating values allows us to identify such un-necessary PHIs and 2082 // remove them. 2083 SmallPtrSet<const MachineBasicBlock *, 16> Visited; 2084 while (!Worklist.empty() || !Pending.empty()) { 2085 // Vector for storing the evaluated block transfer function. 2086 SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap; 2087 2088 while (!Worklist.empty()) { 2089 MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; 2090 CurBB = MBB->getNumber(); 2091 Worklist.pop(); 2092 2093 // Join the values in all predecessor blocks. 2094 bool InLocsChanged; 2095 InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]); 2096 InLocsChanged |= Visited.insert(MBB).second; 2097 2098 // Don't examine transfer function if we've visited this loc at least 2099 // once, and inlocs haven't changed. 2100 if (!InLocsChanged) 2101 continue; 2102 2103 // Load the current set of live-ins into MLocTracker. 2104 MTracker->loadFromArray(MInLocs[CurBB], CurBB); 2105 2106 // Each element of the transfer function can be a new def, or a read of 2107 // a live-in value. Evaluate each element, and store to "ToRemap". 2108 ToRemap.clear(); 2109 for (auto &P : MLocTransfer[CurBB]) { 2110 if (P.second.getBlock() == CurBB && P.second.isPHI()) { 2111 // This is a movement of whatever was live in. Read it. 2112 ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc()); 2113 ToRemap.push_back(std::make_pair(P.first, NewID)); 2114 } else { 2115 // It's a def. Just set it. 2116 assert(P.second.getBlock() == CurBB); 2117 ToRemap.push_back(std::make_pair(P.first, P.second)); 2118 } 2119 } 2120 2121 // Commit the transfer function changes into mloc tracker, which 2122 // transforms the contents of the MLocTracker into the live-outs. 2123 for (auto &P : ToRemap) 2124 MTracker->setMLoc(P.first, P.second); 2125 2126 // Now copy out-locs from mloc tracker into out-loc vector, checking 2127 // whether changes have occurred. These changes can have come from both 2128 // the transfer function, and mlocJoin. 2129 bool OLChanged = false; 2130 for (auto Location : MTracker->locations()) { 2131 OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value; 2132 MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value; 2133 } 2134 2135 MTracker->reset(); 2136 2137 // No need to examine successors again if out-locs didn't change. 2138 if (!OLChanged) 2139 continue; 2140 2141 // All successors should be visited: put any back-edges on the pending 2142 // list for the next pass-through, and any other successors to be 2143 // visited this pass, if they're not going to be already. 2144 for (auto s : MBB->successors()) { 2145 // Does branching to this successor represent a back-edge? 2146 if (BBToOrder[s] > BBToOrder[MBB]) { 2147 // No: visit it during this dataflow iteration. 2148 if (OnWorklist.insert(s).second) 2149 Worklist.push(BBToOrder[s]); 2150 } else { 2151 // Yes: visit it on the next iteration. 2152 if (OnPending.insert(s).second) 2153 Pending.push(BBToOrder[s]); 2154 } 2155 } 2156 } 2157 2158 Worklist.swap(Pending); 2159 std::swap(OnPending, OnWorklist); 2160 OnPending.clear(); 2161 // At this point, pending must be empty, since it was just the empty 2162 // worklist 2163 assert(Pending.empty() && "Pending should be empty"); 2164 } 2165 2166 // Once all the live-ins don't change on mlocJoin(), we've eliminated all 2167 // redundant PHIs. 2168 } 2169 2170 // Boilerplate for feeding MachineBasicBlocks into IDF calculator. Provide 2171 // template specialisations for graph traits and a successor enumerator. 2172 namespace llvm { 2173 template <> struct GraphTraits<MachineBasicBlock> { 2174 using NodeRef = MachineBasicBlock *; 2175 using ChildIteratorType = MachineBasicBlock::succ_iterator; 2176 2177 static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; } 2178 static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } 2179 static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } 2180 }; 2181 2182 template <> struct GraphTraits<const MachineBasicBlock> { 2183 using NodeRef = const MachineBasicBlock *; 2184 using ChildIteratorType = MachineBasicBlock::const_succ_iterator; 2185 2186 static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; } 2187 static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } 2188 static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } 2189 }; 2190 2191 using MachineDomTreeBase = DomTreeBase<MachineBasicBlock>::NodeType; 2192 using MachineDomTreeChildGetter = 2193 typename IDFCalculatorDetail::ChildrenGetterTy<MachineDomTreeBase, false>; 2194 2195 namespace IDFCalculatorDetail { 2196 template <> 2197 typename MachineDomTreeChildGetter::ChildrenTy 2198 MachineDomTreeChildGetter::get(const NodeRef &N) { 2199 return {N->succ_begin(), N->succ_end()}; 2200 } 2201 } // namespace IDFCalculatorDetail 2202 } // namespace llvm 2203 2204 void InstrRefBasedLDV::BlockPHIPlacement( 2205 const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, 2206 const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks, 2207 SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) { 2208 // Apply IDF calculator to the designated set of location defs, storing 2209 // required PHIs into PHIBlocks. Uses the dominator tree stored in the 2210 // InstrRefBasedLDV object. 2211 IDFCalculatorDetail::ChildrenGetterTy<MachineDomTreeBase, false> foo; 2212 IDFCalculatorBase<MachineDomTreeBase, false> IDF(DomTree->getBase(), foo); 2213 2214 IDF.setLiveInBlocks(AllBlocks); 2215 IDF.setDefiningBlocks(DefBlocks); 2216 IDF.calculate(PHIBlocks); 2217 } 2218 2219 Optional<ValueIDNum> InstrRefBasedLDV::pickVPHILoc( 2220 const MachineBasicBlock &MBB, const DebugVariable &Var, 2221 const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs, 2222 const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) { 2223 // Collect a set of locations from predecessor where its live-out value can 2224 // be found. 2225 SmallVector<SmallVector<LocIdx, 4>, 8> Locs; 2226 SmallVector<const DbgValueProperties *, 4> Properties; 2227 unsigned NumLocs = MTracker->getNumLocs(); 2228 2229 // No predecessors means no PHIs. 2230 if (BlockOrders.empty()) 2231 return None; 2232 2233 for (auto p : BlockOrders) { 2234 unsigned ThisBBNum = p->getNumber(); 2235 auto OutValIt = LiveOuts.find(p); 2236 if (OutValIt == LiveOuts.end()) 2237 // If we have a predecessor not in scope, we'll never find a PHI position. 2238 return None; 2239 const DbgValue &OutVal = *OutValIt->second; 2240 2241 if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal) 2242 // Consts and no-values cannot have locations we can join on. 2243 return None; 2244 2245 Properties.push_back(&OutVal.Properties); 2246 2247 // Create new empty vector of locations. 2248 Locs.resize(Locs.size() + 1); 2249 2250 // If the live-in value is a def, find the locations where that value is 2251 // present. Do the same for VPHIs where we know the VPHI value. 2252 if (OutVal.Kind == DbgValue::Def || 2253 (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() && 2254 OutVal.ID != ValueIDNum::EmptyValue)) { 2255 ValueIDNum ValToLookFor = OutVal.ID; 2256 // Search the live-outs of the predecessor for the specified value. 2257 for (unsigned int I = 0; I < NumLocs; ++I) { 2258 if (MOutLocs[ThisBBNum][I] == ValToLookFor) 2259 Locs.back().push_back(LocIdx(I)); 2260 } 2261 } else { 2262 assert(OutVal.Kind == DbgValue::VPHI); 2263 // For VPHIs where we don't know the location, we definitely can't find 2264 // a join loc. 2265 if (OutVal.BlockNo != MBB.getNumber()) 2266 return None; 2267 2268 // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e. 2269 // a value that's live-through the whole loop. (It has to be a backedge, 2270 // because a block can't dominate itself). We can accept as a PHI location 2271 // any location where the other predecessors agree, _and_ the machine 2272 // locations feed back into themselves. Therefore, add all self-looping 2273 // machine-value PHI locations. 2274 for (unsigned int I = 0; I < NumLocs; ++I) { 2275 ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I)); 2276 if (MOutLocs[ThisBBNum][I] == MPHI) 2277 Locs.back().push_back(LocIdx(I)); 2278 } 2279 } 2280 } 2281 2282 // We should have found locations for all predecessors, or returned. 2283 assert(Locs.size() == BlockOrders.size()); 2284 2285 // Check that all properties are the same. We can't pick a location if they're 2286 // not. 2287 const DbgValueProperties *Properties0 = Properties[0]; 2288 for (auto *Prop : Properties) 2289 if (*Prop != *Properties0) 2290 return None; 2291 2292 // Starting with the first set of locations, take the intersection with 2293 // subsequent sets. 2294 SmallVector<LocIdx, 4> CandidateLocs = Locs[0]; 2295 for (unsigned int I = 1; I < Locs.size(); ++I) { 2296 auto &LocVec = Locs[I]; 2297 SmallVector<LocIdx, 4> NewCandidates; 2298 std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(), 2299 LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin())); 2300 CandidateLocs = NewCandidates; 2301 } 2302 if (CandidateLocs.empty()) 2303 return None; 2304 2305 // We now have a set of LocIdxes that contain the right output value in 2306 // each of the predecessors. Pick the lowest; if there's a register loc, 2307 // that'll be it. 2308 LocIdx L = *CandidateLocs.begin(); 2309 2310 // Return a PHI-value-number for the found location. 2311 ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L}; 2312 return PHIVal; 2313 } 2314 2315 bool InstrRefBasedLDV::vlocJoin( 2316 MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, 2317 SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks, 2318 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, 2319 DbgValue &LiveIn) { 2320 // To emulate VarLocBasedImpl, process this block if it's not in scope but 2321 // _does_ assign a variable value. No live-ins for this scope are transferred 2322 // in though, so we can return immediately. 2323 if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB)) 2324 return false; 2325 2326 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 2327 bool Changed = false; 2328 2329 // Order predecessors by RPOT order, for exploring them in that order. 2330 SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors()); 2331 2332 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 2333 return BBToOrder[A] < BBToOrder[B]; 2334 }; 2335 2336 llvm::sort(BlockOrders, Cmp); 2337 2338 unsigned CurBlockRPONum = BBToOrder[&MBB]; 2339 2340 // Collect all the incoming DbgValues for this variable, from predecessor 2341 // live-out values. 2342 SmallVector<InValueT, 8> Values; 2343 bool Bail = false; 2344 int BackEdgesStart = 0; 2345 for (auto p : BlockOrders) { 2346 // If the predecessor isn't in scope / to be explored, we'll never be 2347 // able to join any locations. 2348 if (!BlocksToExplore.contains(p)) { 2349 Bail = true; 2350 break; 2351 } 2352 2353 // All Live-outs will have been initialized. 2354 DbgValue &OutLoc = *VLOCOutLocs.find(p)->second; 2355 2356 // Keep track of where back-edges begin in the Values vector. Relies on 2357 // BlockOrders being sorted by RPO. 2358 unsigned ThisBBRPONum = BBToOrder[p]; 2359 if (ThisBBRPONum < CurBlockRPONum) 2360 ++BackEdgesStart; 2361 2362 Values.push_back(std::make_pair(p, &OutLoc)); 2363 } 2364 2365 // If there were no values, or one of the predecessors couldn't have a 2366 // value, then give up immediately. It's not safe to produce a live-in 2367 // value. Leave as whatever it was before. 2368 if (Bail || Values.size() == 0) 2369 return false; 2370 2371 // All (non-entry) blocks have at least one non-backedge predecessor. 2372 // Pick the variable value from the first of these, to compare against 2373 // all others. 2374 const DbgValue &FirstVal = *Values[0].second; 2375 2376 // If the old live-in value is not a PHI then either a) no PHI is needed 2377 // here, or b) we eliminated the PHI that was here. If so, we can just 2378 // propagate in the first parent's incoming value. 2379 if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) { 2380 Changed = LiveIn != FirstVal; 2381 if (Changed) 2382 LiveIn = FirstVal; 2383 return Changed; 2384 } 2385 2386 // Scan for variable values that can never be resolved: if they have 2387 // different DIExpressions, different indirectness, or are mixed constants / 2388 // non-constants. 2389 for (auto &V : Values) { 2390 if (V.second->Properties != FirstVal.Properties) 2391 return false; 2392 if (V.second->Kind == DbgValue::NoVal) 2393 return false; 2394 if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const) 2395 return false; 2396 } 2397 2398 // Try to eliminate this PHI. Do the incoming values all agree? 2399 bool Disagree = false; 2400 for (auto &V : Values) { 2401 if (*V.second == FirstVal) 2402 continue; // No disagreement. 2403 2404 // Eliminate if a backedge feeds a VPHI back into itself. 2405 if (V.second->Kind == DbgValue::VPHI && 2406 V.second->BlockNo == MBB.getNumber() && 2407 // Is this a backedge? 2408 std::distance(Values.begin(), &V) >= BackEdgesStart) 2409 continue; 2410 2411 Disagree = true; 2412 } 2413 2414 // No disagreement -> live-through value. 2415 if (!Disagree) { 2416 Changed = LiveIn != FirstVal; 2417 if (Changed) 2418 LiveIn = FirstVal; 2419 return Changed; 2420 } else { 2421 // Otherwise use a VPHI. 2422 DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI); 2423 Changed = LiveIn != VPHI; 2424 if (Changed) 2425 LiveIn = VPHI; 2426 return Changed; 2427 } 2428 } 2429 2430 void InstrRefBasedLDV::buildVLocValueMap(const DILocation *DILoc, 2431 const SmallSet<DebugVariable, 4> &VarsWeCareAbout, 2432 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output, 2433 ValueIDNum **MOutLocs, ValueIDNum **MInLocs, 2434 SmallVectorImpl<VLocTracker> &AllTheVLocs) { 2435 // This method is much like buildMLocValueMap: but focuses on a single 2436 // LexicalScope at a time. Pick out a set of blocks and variables that are 2437 // to have their value assignments solved, then run our dataflow algorithm 2438 // until a fixedpoint is reached. 2439 std::priority_queue<unsigned int, std::vector<unsigned int>, 2440 std::greater<unsigned int>> 2441 Worklist, Pending; 2442 SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending; 2443 2444 // The set of blocks we'll be examining. 2445 SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore; 2446 2447 // The order in which to examine them (RPO). 2448 SmallVector<MachineBasicBlock *, 8> BlockOrders; 2449 2450 // RPO ordering function. 2451 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 2452 return BBToOrder[A] < BBToOrder[B]; 2453 }; 2454 2455 LS.getMachineBasicBlocks(DILoc, BlocksToExplore); 2456 2457 // A separate container to distinguish "blocks we're exploring" versus 2458 // "blocks that are potentially in scope. See comment at start of vlocJoin. 2459 SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore; 2460 2461 // Old LiveDebugValues tracks variable locations that come out of blocks 2462 // not in scope, where DBG_VALUEs occur. This is something we could 2463 // legitimately ignore, but lets allow it for now. 2464 if (EmulateOldLDV) 2465 BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end()); 2466 2467 // We also need to propagate variable values through any artificial blocks 2468 // that immediately follow blocks in scope. 2469 DenseSet<const MachineBasicBlock *> ToAdd; 2470 2471 // Helper lambda: For a given block in scope, perform a depth first search 2472 // of all the artificial successors, adding them to the ToAdd collection. 2473 auto AccumulateArtificialBlocks = 2474 [this, &ToAdd, &BlocksToExplore, 2475 &InScopeBlocks](const MachineBasicBlock *MBB) { 2476 // Depth-first-search state: each node is a block and which successor 2477 // we're currently exploring. 2478 SmallVector<std::pair<const MachineBasicBlock *, 2479 MachineBasicBlock::const_succ_iterator>, 2480 8> 2481 DFS; 2482 2483 // Find any artificial successors not already tracked. 2484 for (auto *succ : MBB->successors()) { 2485 if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ)) 2486 continue; 2487 if (!ArtificialBlocks.count(succ)) 2488 continue; 2489 ToAdd.insert(succ); 2490 DFS.push_back(std::make_pair(succ, succ->succ_begin())); 2491 } 2492 2493 // Search all those blocks, depth first. 2494 while (!DFS.empty()) { 2495 const MachineBasicBlock *CurBB = DFS.back().first; 2496 MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second; 2497 // Walk back if we've explored this blocks successors to the end. 2498 if (CurSucc == CurBB->succ_end()) { 2499 DFS.pop_back(); 2500 continue; 2501 } 2502 2503 // If the current successor is artificial and unexplored, descend into 2504 // it. 2505 if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) { 2506 ToAdd.insert(*CurSucc); 2507 DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin())); 2508 continue; 2509 } 2510 2511 ++CurSucc; 2512 } 2513 }; 2514 2515 // Search in-scope blocks and those containing a DBG_VALUE from this scope 2516 // for artificial successors. 2517 for (auto *MBB : BlocksToExplore) 2518 AccumulateArtificialBlocks(MBB); 2519 for (auto *MBB : InScopeBlocks) 2520 AccumulateArtificialBlocks(MBB); 2521 2522 BlocksToExplore.insert(ToAdd.begin(), ToAdd.end()); 2523 InScopeBlocks.insert(ToAdd.begin(), ToAdd.end()); 2524 2525 // Single block scope: not interesting! No propagation at all. Note that 2526 // this could probably go above ArtificialBlocks without damage, but 2527 // that then produces output differences from original-live-debug-values, 2528 // which propagates from a single block into many artificial ones. 2529 if (BlocksToExplore.size() == 1) 2530 return; 2531 2532 // Convert a const set to a non-const set. LexicalScopes 2533 // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones. 2534 // (Neither of them mutate anything). 2535 SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore; 2536 for (const auto *MBB : BlocksToExplore) 2537 MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB)); 2538 2539 // Picks out relevants blocks RPO order and sort them. 2540 for (auto *MBB : BlocksToExplore) 2541 BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB)); 2542 2543 llvm::sort(BlockOrders, Cmp); 2544 unsigned NumBlocks = BlockOrders.size(); 2545 2546 // Allocate some vectors for storing the live ins and live outs. Large. 2547 SmallVector<DbgValue, 32> LiveIns, LiveOuts; 2548 LiveIns.reserve(NumBlocks); 2549 LiveOuts.reserve(NumBlocks); 2550 2551 // Initialize all values to start as NoVals. This signifies "it's live 2552 // through, but we don't know what it is". 2553 DbgValueProperties EmptyProperties(EmptyExpr, false); 2554 for (unsigned int I = 0; I < NumBlocks; ++I) { 2555 DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal); 2556 LiveIns.push_back(EmptyDbgValue); 2557 LiveOuts.push_back(EmptyDbgValue); 2558 } 2559 2560 // Produce by-MBB indexes of live-in/live-outs, to ease lookup within 2561 // vlocJoin. 2562 LiveIdxT LiveOutIdx, LiveInIdx; 2563 LiveOutIdx.reserve(NumBlocks); 2564 LiveInIdx.reserve(NumBlocks); 2565 for (unsigned I = 0; I < NumBlocks; ++I) { 2566 LiveOutIdx[BlockOrders[I]] = &LiveOuts[I]; 2567 LiveInIdx[BlockOrders[I]] = &LiveIns[I]; 2568 } 2569 2570 // Loop over each variable and place PHIs for it, then propagate values 2571 // between blocks. This keeps the locality of working on one lexical scope at 2572 // at time, but avoids re-processing variable values because some other 2573 // variable has been assigned. 2574 for (auto &Var : VarsWeCareAbout) { 2575 // Re-initialize live-ins and live-outs, to clear the remains of previous 2576 // variables live-ins / live-outs. 2577 for (unsigned int I = 0; I < NumBlocks; ++I) { 2578 DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal); 2579 LiveIns[I] = EmptyDbgValue; 2580 LiveOuts[I] = EmptyDbgValue; 2581 } 2582 2583 // Place PHIs for variable values, using the LLVM IDF calculator. 2584 // Collect the set of blocks where variables are def'd. 2585 SmallPtrSet<MachineBasicBlock *, 32> DefBlocks; 2586 for (const MachineBasicBlock *ExpMBB : BlocksToExplore) { 2587 auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars; 2588 if (TransferFunc.find(Var) != TransferFunc.end()) 2589 DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB)); 2590 } 2591 2592 SmallVector<MachineBasicBlock *, 32> PHIBlocks; 2593 2594 // Request the set of PHIs we should insert for this variable. 2595 BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks); 2596 2597 // Insert PHIs into the per-block live-in tables for this variable. 2598 for (MachineBasicBlock *PHIMBB : PHIBlocks) { 2599 unsigned BlockNo = PHIMBB->getNumber(); 2600 DbgValue *LiveIn = LiveInIdx[PHIMBB]; 2601 *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI); 2602 } 2603 2604 for (auto *MBB : BlockOrders) { 2605 Worklist.push(BBToOrder[MBB]); 2606 OnWorklist.insert(MBB); 2607 } 2608 2609 // Iterate over all the blocks we selected, propagating the variables value. 2610 // This loop does two things: 2611 // * Eliminates un-necessary VPHIs in vlocJoin, 2612 // * Evaluates the blocks transfer function (i.e. variable assignments) and 2613 // stores the result to the blocks live-outs. 2614 // Always evaluate the transfer function on the first iteration, and when 2615 // the live-ins change thereafter. 2616 bool FirstTrip = true; 2617 while (!Worklist.empty() || !Pending.empty()) { 2618 while (!Worklist.empty()) { 2619 auto *MBB = OrderToBB[Worklist.top()]; 2620 CurBB = MBB->getNumber(); 2621 Worklist.pop(); 2622 2623 auto LiveInsIt = LiveInIdx.find(MBB); 2624 assert(LiveInsIt != LiveInIdx.end()); 2625 DbgValue *LiveIn = LiveInsIt->second; 2626 2627 // Join values from predecessors. Updates LiveInIdx, and writes output 2628 // into JoinedInLocs. 2629 bool InLocsChanged = 2630 vlocJoin(*MBB, LiveOutIdx, InScopeBlocks, BlocksToExplore, *LiveIn); 2631 2632 SmallVector<const MachineBasicBlock *, 8> Preds; 2633 for (const auto *Pred : MBB->predecessors()) 2634 Preds.push_back(Pred); 2635 2636 // If this block's live-in value is a VPHI, try to pick a machine-value 2637 // for it. This makes the machine-value available and propagated 2638 // through all blocks by the time value propagation finishes. We can't 2639 // do this any earlier as it needs to read the block live-outs. 2640 if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) { 2641 // There's a small possibility that on a preceeding path, a VPHI is 2642 // eliminated and transitions from VPHI-with-location to 2643 // live-through-value. As a result, the selected location of any VPHI 2644 // might change, so we need to re-compute it on each iteration. 2645 Optional<ValueIDNum> ValueNum = 2646 pickVPHILoc(*MBB, Var, LiveOutIdx, MOutLocs, Preds); 2647 2648 if (ValueNum) { 2649 InLocsChanged |= LiveIn->ID != *ValueNum; 2650 LiveIn->ID = *ValueNum; 2651 } 2652 } 2653 2654 if (!InLocsChanged && !FirstTrip) 2655 continue; 2656 2657 DbgValue *LiveOut = LiveOutIdx[MBB]; 2658 bool OLChanged = false; 2659 2660 // Do transfer function. 2661 auto &VTracker = AllTheVLocs[MBB->getNumber()]; 2662 auto TransferIt = VTracker.Vars.find(Var); 2663 if (TransferIt != VTracker.Vars.end()) { 2664 // Erase on empty transfer (DBG_VALUE $noreg). 2665 if (TransferIt->second.Kind == DbgValue::Undef) { 2666 DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal); 2667 if (*LiveOut != NewVal) { 2668 *LiveOut = NewVal; 2669 OLChanged = true; 2670 } 2671 } else { 2672 // Insert new variable value; or overwrite. 2673 if (*LiveOut != TransferIt->second) { 2674 *LiveOut = TransferIt->second; 2675 OLChanged = true; 2676 } 2677 } 2678 } else { 2679 // Just copy live-ins to live-outs, for anything not transferred. 2680 if (*LiveOut != *LiveIn) { 2681 *LiveOut = *LiveIn; 2682 OLChanged = true; 2683 } 2684 } 2685 2686 // If no live-out value changed, there's no need to explore further. 2687 if (!OLChanged) 2688 continue; 2689 2690 // We should visit all successors. Ensure we'll visit any non-backedge 2691 // successors during this dataflow iteration; book backedge successors 2692 // to be visited next time around. 2693 for (auto s : MBB->successors()) { 2694 // Ignore out of scope / not-to-be-explored successors. 2695 if (LiveInIdx.find(s) == LiveInIdx.end()) 2696 continue; 2697 2698 if (BBToOrder[s] > BBToOrder[MBB]) { 2699 if (OnWorklist.insert(s).second) 2700 Worklist.push(BBToOrder[s]); 2701 } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) { 2702 Pending.push(BBToOrder[s]); 2703 } 2704 } 2705 } 2706 Worklist.swap(Pending); 2707 std::swap(OnWorklist, OnPending); 2708 OnPending.clear(); 2709 assert(Pending.empty()); 2710 FirstTrip = false; 2711 } 2712 2713 // Save live-ins to output vector. Ignore any that are still marked as being 2714 // VPHIs with no location -- those are variables that we know the value of, 2715 // but are not actually available in the register file. 2716 for (auto *MBB : BlockOrders) { 2717 DbgValue *BlockLiveIn = LiveInIdx[MBB]; 2718 if (BlockLiveIn->Kind == DbgValue::NoVal) 2719 continue; 2720 if (BlockLiveIn->Kind == DbgValue::VPHI && 2721 BlockLiveIn->ID == ValueIDNum::EmptyValue) 2722 continue; 2723 if (BlockLiveIn->Kind == DbgValue::VPHI) 2724 BlockLiveIn->Kind = DbgValue::Def; 2725 Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn)); 2726 } 2727 } // Per-variable loop. 2728 2729 BlockOrders.clear(); 2730 BlocksToExplore.clear(); 2731 } 2732 2733 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2734 void InstrRefBasedLDV::dump_mloc_transfer( 2735 const MLocTransferMap &mloc_transfer) const { 2736 for (auto &P : mloc_transfer) { 2737 std::string foo = MTracker->LocIdxToName(P.first); 2738 std::string bar = MTracker->IDAsString(P.second); 2739 dbgs() << "Loc " << foo << " --> " << bar << "\n"; 2740 } 2741 } 2742 #endif 2743 2744 void InstrRefBasedLDV::emitLocations( 2745 MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MOutLocs, 2746 ValueIDNum **MInLocs, DenseMap<DebugVariable, unsigned> &AllVarsNumbering, 2747 const TargetPassConfig &TPC) { 2748 TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC); 2749 unsigned NumLocs = MTracker->getNumLocs(); 2750 2751 // For each block, load in the machine value locations and variable value 2752 // live-ins, then step through each instruction in the block. New DBG_VALUEs 2753 // to be inserted will be created along the way. 2754 for (MachineBasicBlock &MBB : MF) { 2755 unsigned bbnum = MBB.getNumber(); 2756 MTracker->reset(); 2757 MTracker->loadFromArray(MInLocs[bbnum], bbnum); 2758 TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()], 2759 NumLocs); 2760 2761 CurBB = bbnum; 2762 CurInst = 1; 2763 for (auto &MI : MBB) { 2764 process(MI, MOutLocs, MInLocs); 2765 TTracker->checkInstForNewValues(CurInst, MI.getIterator()); 2766 ++CurInst; 2767 } 2768 } 2769 2770 // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer 2771 // in DWARF in different orders. Use the order that they appear when walking 2772 // through each block / each instruction, stored in AllVarsNumbering. 2773 auto OrderDbgValues = [&](const MachineInstr *A, 2774 const MachineInstr *B) -> bool { 2775 DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(), 2776 A->getDebugLoc()->getInlinedAt()); 2777 DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(), 2778 B->getDebugLoc()->getInlinedAt()); 2779 return AllVarsNumbering.find(VarA)->second < 2780 AllVarsNumbering.find(VarB)->second; 2781 }; 2782 2783 // Go through all the transfers recorded in the TransferTracker -- this is 2784 // both the live-ins to a block, and any movements of values that happen 2785 // in the middle. 2786 for (auto &P : TTracker->Transfers) { 2787 // Sort them according to appearance order. 2788 llvm::sort(P.Insts, OrderDbgValues); 2789 // Insert either before or after the designated point... 2790 if (P.MBB) { 2791 MachineBasicBlock &MBB = *P.MBB; 2792 for (auto *MI : P.Insts) { 2793 MBB.insert(P.Pos, MI); 2794 } 2795 } else { 2796 // Terminators, like tail calls, can clobber things. Don't try and place 2797 // transfers after them. 2798 if (P.Pos->isTerminator()) 2799 continue; 2800 2801 MachineBasicBlock &MBB = *P.Pos->getParent(); 2802 for (auto *MI : P.Insts) { 2803 MBB.insertAfterBundle(P.Pos, MI); 2804 } 2805 } 2806 } 2807 } 2808 2809 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) { 2810 // Build some useful data structures. 2811 2812 LLVMContext &Context = MF.getFunction().getContext(); 2813 EmptyExpr = DIExpression::get(Context, {}); 2814 2815 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { 2816 if (const DebugLoc &DL = MI.getDebugLoc()) 2817 return DL.getLine() != 0; 2818 return false; 2819 }; 2820 // Collect a set of all the artificial blocks. 2821 for (auto &MBB : MF) 2822 if (none_of(MBB.instrs(), hasNonArtificialLocation)) 2823 ArtificialBlocks.insert(&MBB); 2824 2825 // Compute mappings of block <=> RPO order. 2826 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 2827 unsigned int RPONumber = 0; 2828 for (MachineBasicBlock *MBB : RPOT) { 2829 OrderToBB[RPONumber] = MBB; 2830 BBToOrder[MBB] = RPONumber; 2831 BBNumToRPO[MBB->getNumber()] = RPONumber; 2832 ++RPONumber; 2833 } 2834 2835 // Order value substitutions by their "source" operand pair, for quick lookup. 2836 llvm::sort(MF.DebugValueSubstitutions); 2837 2838 #ifdef EXPENSIVE_CHECKS 2839 // As an expensive check, test whether there are any duplicate substitution 2840 // sources in the collection. 2841 if (MF.DebugValueSubstitutions.size() > 2) { 2842 for (auto It = MF.DebugValueSubstitutions.begin(); 2843 It != std::prev(MF.DebugValueSubstitutions.end()); ++It) { 2844 assert(It->Src != std::next(It)->Src && "Duplicate variable location " 2845 "substitution seen"); 2846 } 2847 } 2848 #endif 2849 } 2850 2851 /// Calculate the liveness information for the given machine function and 2852 /// extend ranges across basic blocks. 2853 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF, 2854 MachineDominatorTree *DomTree, 2855 TargetPassConfig *TPC, 2856 unsigned InputBBLimit, 2857 unsigned InputDbgValLimit) { 2858 // No subprogram means this function contains no debuginfo. 2859 if (!MF.getFunction().getSubprogram()) 2860 return false; 2861 2862 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); 2863 this->TPC = TPC; 2864 2865 this->DomTree = DomTree; 2866 TRI = MF.getSubtarget().getRegisterInfo(); 2867 MRI = &MF.getRegInfo(); 2868 TII = MF.getSubtarget().getInstrInfo(); 2869 TFI = MF.getSubtarget().getFrameLowering(); 2870 TFI->getCalleeSaves(MF, CalleeSavedRegs); 2871 MFI = &MF.getFrameInfo(); 2872 LS.initialize(MF); 2873 2874 MTracker = 2875 new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering()); 2876 VTracker = nullptr; 2877 TTracker = nullptr; 2878 2879 SmallVector<MLocTransferMap, 32> MLocTransfer; 2880 SmallVector<VLocTracker, 8> vlocs; 2881 LiveInsT SavedLiveIns; 2882 2883 int MaxNumBlocks = -1; 2884 for (auto &MBB : MF) 2885 MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks); 2886 assert(MaxNumBlocks >= 0); 2887 ++MaxNumBlocks; 2888 2889 MLocTransfer.resize(MaxNumBlocks); 2890 vlocs.resize(MaxNumBlocks); 2891 SavedLiveIns.resize(MaxNumBlocks); 2892 2893 initialSetup(MF); 2894 2895 produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks); 2896 2897 // Allocate and initialize two array-of-arrays for the live-in and live-out 2898 // machine values. The outer dimension is the block number; while the inner 2899 // dimension is a LocIdx from MLocTracker. 2900 ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks]; 2901 ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks]; 2902 unsigned NumLocs = MTracker->getNumLocs(); 2903 for (int i = 0; i < MaxNumBlocks; ++i) { 2904 // These all auto-initialize to ValueIDNum::EmptyValue 2905 MOutLocs[i] = new ValueIDNum[NumLocs]; 2906 MInLocs[i] = new ValueIDNum[NumLocs]; 2907 } 2908 2909 // Solve the machine value dataflow problem using the MLocTransfer function, 2910 // storing the computed live-ins / live-outs into the array-of-arrays. We use 2911 // both live-ins and live-outs for decision making in the variable value 2912 // dataflow problem. 2913 buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer); 2914 2915 // Patch up debug phi numbers, turning unknown block-live-in values into 2916 // either live-through machine values, or PHIs. 2917 for (auto &DBG_PHI : DebugPHINumToValue) { 2918 // Identify unresolved block-live-ins. 2919 ValueIDNum &Num = DBG_PHI.ValueRead; 2920 if (!Num.isPHI()) 2921 continue; 2922 2923 unsigned BlockNo = Num.getBlock(); 2924 LocIdx LocNo = Num.getLoc(); 2925 Num = MInLocs[BlockNo][LocNo.asU64()]; 2926 } 2927 // Later, we'll be looking up ranges of instruction numbers. 2928 llvm::sort(DebugPHINumToValue); 2929 2930 // Walk back through each block / instruction, collecting DBG_VALUE 2931 // instructions and recording what machine value their operands refer to. 2932 for (auto &OrderPair : OrderToBB) { 2933 MachineBasicBlock &MBB = *OrderPair.second; 2934 CurBB = MBB.getNumber(); 2935 VTracker = &vlocs[CurBB]; 2936 VTracker->MBB = &MBB; 2937 MTracker->loadFromArray(MInLocs[CurBB], CurBB); 2938 CurInst = 1; 2939 for (auto &MI : MBB) { 2940 process(MI, MOutLocs, MInLocs); 2941 ++CurInst; 2942 } 2943 MTracker->reset(); 2944 } 2945 2946 // Number all variables in the order that they appear, to be used as a stable 2947 // insertion order later. 2948 DenseMap<DebugVariable, unsigned> AllVarsNumbering; 2949 2950 // Map from one LexicalScope to all the variables in that scope. 2951 DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars; 2952 2953 // Map from One lexical scope to all blocks in that scope. 2954 DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>> 2955 ScopeToBlocks; 2956 2957 // Store a DILocation that describes a scope. 2958 DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation; 2959 2960 // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise 2961 // the order is unimportant, it just has to be stable. 2962 unsigned VarAssignCount = 0; 2963 for (unsigned int I = 0; I < OrderToBB.size(); ++I) { 2964 auto *MBB = OrderToBB[I]; 2965 auto *VTracker = &vlocs[MBB->getNumber()]; 2966 // Collect each variable with a DBG_VALUE in this block. 2967 for (auto &idx : VTracker->Vars) { 2968 const auto &Var = idx.first; 2969 const DILocation *ScopeLoc = VTracker->Scopes[Var]; 2970 assert(ScopeLoc != nullptr); 2971 auto *Scope = LS.findLexicalScope(ScopeLoc); 2972 2973 // No insts in scope -> shouldn't have been recorded. 2974 assert(Scope != nullptr); 2975 2976 AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size())); 2977 ScopeToVars[Scope].insert(Var); 2978 ScopeToBlocks[Scope].insert(VTracker->MBB); 2979 ScopeToDILocation[Scope] = ScopeLoc; 2980 ++VarAssignCount; 2981 } 2982 } 2983 2984 bool Changed = false; 2985 2986 // If we have an extremely large number of variable assignments and blocks, 2987 // bail out at this point. We've burnt some time doing analysis already, 2988 // however we should cut our losses. 2989 if ((unsigned)MaxNumBlocks > InputBBLimit && 2990 VarAssignCount > InputDbgValLimit) { 2991 LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName() 2992 << " has " << MaxNumBlocks << " basic blocks and " 2993 << VarAssignCount 2994 << " variable assignments, exceeding limits.\n"); 2995 } else { 2996 // Compute the extended ranges, iterating over scopes. There might be 2997 // something to be said for ordering them by size/locality, but that's for 2998 // the future. For each scope, solve the variable value problem, producing 2999 // a map of variables to values in SavedLiveIns. 3000 for (auto &P : ScopeToVars) { 3001 buildVLocValueMap(ScopeToDILocation[P.first], P.second, 3002 ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs, 3003 vlocs); 3004 } 3005 3006 // Using the computed value locations and variable values for each block, 3007 // create the DBG_VALUE instructions representing the extended variable 3008 // locations. 3009 emitLocations(MF, SavedLiveIns, MOutLocs, MInLocs, AllVarsNumbering, *TPC); 3010 3011 // Did we actually make any changes? If we created any DBG_VALUEs, then yes. 3012 Changed = TTracker->Transfers.size() != 0; 3013 } 3014 3015 // Common clean-up of memory. 3016 for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) { 3017 delete[] MOutLocs[Idx]; 3018 delete[] MInLocs[Idx]; 3019 } 3020 delete[] MOutLocs; 3021 delete[] MInLocs; 3022 3023 delete MTracker; 3024 delete TTracker; 3025 MTracker = nullptr; 3026 VTracker = nullptr; 3027 TTracker = nullptr; 3028 3029 ArtificialBlocks.clear(); 3030 OrderToBB.clear(); 3031 BBToOrder.clear(); 3032 BBNumToRPO.clear(); 3033 DebugInstrNumToInstr.clear(); 3034 DebugPHINumToValue.clear(); 3035 3036 return Changed; 3037 } 3038 3039 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() { 3040 return new InstrRefBasedLDV(); 3041 } 3042 3043 namespace { 3044 class LDVSSABlock; 3045 class LDVSSAUpdater; 3046 3047 // Pick a type to identify incoming block values as we construct SSA. We 3048 // can't use anything more robust than an integer unfortunately, as SSAUpdater 3049 // expects to zero-initialize the type. 3050 typedef uint64_t BlockValueNum; 3051 3052 /// Represents an SSA PHI node for the SSA updater class. Contains the block 3053 /// this PHI is in, the value number it would have, and the expected incoming 3054 /// values from parent blocks. 3055 class LDVSSAPhi { 3056 public: 3057 SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues; 3058 LDVSSABlock *ParentBlock; 3059 BlockValueNum PHIValNum; 3060 LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock) 3061 : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {} 3062 3063 LDVSSABlock *getParent() { return ParentBlock; } 3064 }; 3065 3066 /// Thin wrapper around a block predecessor iterator. Only difference from a 3067 /// normal block iterator is that it dereferences to an LDVSSABlock. 3068 class LDVSSABlockIterator { 3069 public: 3070 MachineBasicBlock::pred_iterator PredIt; 3071 LDVSSAUpdater &Updater; 3072 3073 LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt, 3074 LDVSSAUpdater &Updater) 3075 : PredIt(PredIt), Updater(Updater) {} 3076 3077 bool operator!=(const LDVSSABlockIterator &OtherIt) const { 3078 return OtherIt.PredIt != PredIt; 3079 } 3080 3081 LDVSSABlockIterator &operator++() { 3082 ++PredIt; 3083 return *this; 3084 } 3085 3086 LDVSSABlock *operator*(); 3087 }; 3088 3089 /// Thin wrapper around a block for SSA Updater interface. Necessary because 3090 /// we need to track the PHI value(s) that we may have observed as necessary 3091 /// in this block. 3092 class LDVSSABlock { 3093 public: 3094 MachineBasicBlock &BB; 3095 LDVSSAUpdater &Updater; 3096 using PHIListT = SmallVector<LDVSSAPhi, 1>; 3097 /// List of PHIs in this block. There should only ever be one. 3098 PHIListT PHIList; 3099 3100 LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater) 3101 : BB(BB), Updater(Updater) {} 3102 3103 LDVSSABlockIterator succ_begin() { 3104 return LDVSSABlockIterator(BB.succ_begin(), Updater); 3105 } 3106 3107 LDVSSABlockIterator succ_end() { 3108 return LDVSSABlockIterator(BB.succ_end(), Updater); 3109 } 3110 3111 /// SSAUpdater has requested a PHI: create that within this block record. 3112 LDVSSAPhi *newPHI(BlockValueNum Value) { 3113 PHIList.emplace_back(Value, this); 3114 return &PHIList.back(); 3115 } 3116 3117 /// SSAUpdater wishes to know what PHIs already exist in this block. 3118 PHIListT &phis() { return PHIList; } 3119 }; 3120 3121 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values 3122 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to 3123 // SSAUpdaterTraits<LDVSSAUpdater>. 3124 class LDVSSAUpdater { 3125 public: 3126 /// Map of value numbers to PHI records. 3127 DenseMap<BlockValueNum, LDVSSAPhi *> PHIs; 3128 /// Map of which blocks generate Undef values -- blocks that are not 3129 /// dominated by any Def. 3130 DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap; 3131 /// Map of machine blocks to our own records of them. 3132 DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap; 3133 /// Machine location where any PHI must occur. 3134 LocIdx Loc; 3135 /// Table of live-in machine value numbers for blocks / locations. 3136 ValueIDNum **MLiveIns; 3137 3138 LDVSSAUpdater(LocIdx L, ValueIDNum **MLiveIns) : Loc(L), MLiveIns(MLiveIns) {} 3139 3140 void reset() { 3141 for (auto &Block : BlockMap) 3142 delete Block.second; 3143 3144 PHIs.clear(); 3145 UndefMap.clear(); 3146 BlockMap.clear(); 3147 } 3148 3149 ~LDVSSAUpdater() { reset(); } 3150 3151 /// For a given MBB, create a wrapper block for it. Stores it in the 3152 /// LDVSSAUpdater block map. 3153 LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) { 3154 auto it = BlockMap.find(BB); 3155 if (it == BlockMap.end()) { 3156 BlockMap[BB] = new LDVSSABlock(*BB, *this); 3157 it = BlockMap.find(BB); 3158 } 3159 return it->second; 3160 } 3161 3162 /// Find the live-in value number for the given block. Looks up the value at 3163 /// the PHI location on entry. 3164 BlockValueNum getValue(LDVSSABlock *LDVBB) { 3165 return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64(); 3166 } 3167 }; 3168 3169 LDVSSABlock *LDVSSABlockIterator::operator*() { 3170 return Updater.getSSALDVBlock(*PredIt); 3171 } 3172 3173 #ifndef NDEBUG 3174 3175 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) { 3176 out << "SSALDVPHI " << PHI.PHIValNum; 3177 return out; 3178 } 3179 3180 #endif 3181 3182 } // namespace 3183 3184 namespace llvm { 3185 3186 /// Template specialization to give SSAUpdater access to CFG and value 3187 /// information. SSAUpdater calls methods in these traits, passing in the 3188 /// LDVSSAUpdater object, to learn about blocks and the values they define. 3189 /// It also provides methods to create PHI nodes and track them. 3190 template <> class SSAUpdaterTraits<LDVSSAUpdater> { 3191 public: 3192 using BlkT = LDVSSABlock; 3193 using ValT = BlockValueNum; 3194 using PhiT = LDVSSAPhi; 3195 using BlkSucc_iterator = LDVSSABlockIterator; 3196 3197 // Methods to access block successors -- dereferencing to our wrapper class. 3198 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); } 3199 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); } 3200 3201 /// Iterator for PHI operands. 3202 class PHI_iterator { 3203 private: 3204 LDVSSAPhi *PHI; 3205 unsigned Idx; 3206 3207 public: 3208 explicit PHI_iterator(LDVSSAPhi *P) // begin iterator 3209 : PHI(P), Idx(0) {} 3210 PHI_iterator(LDVSSAPhi *P, bool) // end iterator 3211 : PHI(P), Idx(PHI->IncomingValues.size()) {} 3212 3213 PHI_iterator &operator++() { 3214 Idx++; 3215 return *this; 3216 } 3217 bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; } 3218 bool operator!=(const PHI_iterator &X) const { return !operator==(X); } 3219 3220 BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; } 3221 3222 LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; } 3223 }; 3224 3225 static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } 3226 3227 static inline PHI_iterator PHI_end(PhiT *PHI) { 3228 return PHI_iterator(PHI, true); 3229 } 3230 3231 /// FindPredecessorBlocks - Put the predecessors of BB into the Preds 3232 /// vector. 3233 static void FindPredecessorBlocks(LDVSSABlock *BB, 3234 SmallVectorImpl<LDVSSABlock *> *Preds) { 3235 for (MachineBasicBlock::pred_iterator PI = BB->BB.pred_begin(), 3236 E = BB->BB.pred_end(); 3237 PI != E; ++PI) 3238 Preds->push_back(BB->Updater.getSSALDVBlock(*PI)); 3239 } 3240 3241 /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new 3242 /// register. For LiveDebugValues, represents a block identified as not having 3243 /// any DBG_PHI predecessors. 3244 static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) { 3245 // Create a value number for this block -- it needs to be unique and in the 3246 // "undef" collection, so that we know it's not real. Use a number 3247 // representing a PHI into this block. 3248 BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64(); 3249 Updater->UndefMap[&BB->BB] = Num; 3250 return Num; 3251 } 3252 3253 /// CreateEmptyPHI - Create a (representation of a) PHI in the given block. 3254 /// SSAUpdater will populate it with information about incoming values. The 3255 /// value number of this PHI is whatever the machine value number problem 3256 /// solution determined it to be. This includes non-phi values if SSAUpdater 3257 /// tries to create a PHI where the incoming values are identical. 3258 static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds, 3259 LDVSSAUpdater *Updater) { 3260 BlockValueNum PHIValNum = Updater->getValue(BB); 3261 LDVSSAPhi *PHI = BB->newPHI(PHIValNum); 3262 Updater->PHIs[PHIValNum] = PHI; 3263 return PHIValNum; 3264 } 3265 3266 /// AddPHIOperand - Add the specified value as an operand of the PHI for 3267 /// the specified predecessor block. 3268 static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) { 3269 PHI->IncomingValues.push_back(std::make_pair(Pred, Val)); 3270 } 3271 3272 /// ValueIsPHI - Check if the instruction that defines the specified value 3273 /// is a PHI instruction. 3274 static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) { 3275 auto PHIIt = Updater->PHIs.find(Val); 3276 if (PHIIt == Updater->PHIs.end()) 3277 return nullptr; 3278 return PHIIt->second; 3279 } 3280 3281 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source 3282 /// operands, i.e., it was just added. 3283 static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) { 3284 LDVSSAPhi *PHI = ValueIsPHI(Val, Updater); 3285 if (PHI && PHI->IncomingValues.size() == 0) 3286 return PHI; 3287 return nullptr; 3288 } 3289 3290 /// GetPHIValue - For the specified PHI instruction, return the value 3291 /// that it defines. 3292 static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; } 3293 }; 3294 3295 } // end namespace llvm 3296 3297 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(MachineFunction &MF, 3298 ValueIDNum **MLiveOuts, 3299 ValueIDNum **MLiveIns, 3300 MachineInstr &Here, 3301 uint64_t InstrNum) { 3302 // Pick out records of DBG_PHI instructions that have been observed. If there 3303 // are none, then we cannot compute a value number. 3304 auto RangePair = std::equal_range(DebugPHINumToValue.begin(), 3305 DebugPHINumToValue.end(), InstrNum); 3306 auto LowerIt = RangePair.first; 3307 auto UpperIt = RangePair.second; 3308 3309 // No DBG_PHI means there can be no location. 3310 if (LowerIt == UpperIt) 3311 return None; 3312 3313 // If there's only one DBG_PHI, then that is our value number. 3314 if (std::distance(LowerIt, UpperIt) == 1) 3315 return LowerIt->ValueRead; 3316 3317 auto DBGPHIRange = make_range(LowerIt, UpperIt); 3318 3319 // Pick out the location (physreg, slot) where any PHIs must occur. It's 3320 // technically possible for us to merge values in different registers in each 3321 // block, but highly unlikely that LLVM will generate such code after register 3322 // allocation. 3323 LocIdx Loc = LowerIt->ReadLoc; 3324 3325 // We have several DBG_PHIs, and a use position (the Here inst). All each 3326 // DBG_PHI does is identify a value at a program position. We can treat each 3327 // DBG_PHI like it's a Def of a value, and the use position is a Use of a 3328 // value, just like SSA. We use the bulk-standard LLVM SSA updater class to 3329 // determine which Def is used at the Use, and any PHIs that happen along 3330 // the way. 3331 // Adapted LLVM SSA Updater: 3332 LDVSSAUpdater Updater(Loc, MLiveIns); 3333 // Map of which Def or PHI is the current value in each block. 3334 DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues; 3335 // Set of PHIs that we have created along the way. 3336 SmallVector<LDVSSAPhi *, 8> CreatedPHIs; 3337 3338 // Each existing DBG_PHI is a Def'd value under this model. Record these Defs 3339 // for the SSAUpdater. 3340 for (const auto &DBG_PHI : DBGPHIRange) { 3341 LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB); 3342 const ValueIDNum &Num = DBG_PHI.ValueRead; 3343 AvailableValues.insert(std::make_pair(Block, Num.asU64())); 3344 } 3345 3346 LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent()); 3347 const auto &AvailIt = AvailableValues.find(HereBlock); 3348 if (AvailIt != AvailableValues.end()) { 3349 // Actually, we already know what the value is -- the Use is in the same 3350 // block as the Def. 3351 return ValueIDNum::fromU64(AvailIt->second); 3352 } 3353 3354 // Otherwise, we must use the SSA Updater. It will identify the value number 3355 // that we are to use, and the PHIs that must happen along the way. 3356 SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs); 3357 BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent())); 3358 ValueIDNum Result = ValueIDNum::fromU64(ResultInt); 3359 3360 // We have the number for a PHI, or possibly live-through value, to be used 3361 // at this Use. There are a number of things we have to check about it though: 3362 // * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this 3363 // Use was not completely dominated by DBG_PHIs and we should abort. 3364 // * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that 3365 // we've left SSA form. Validate that the inputs to each PHI are the 3366 // expected values. 3367 // * Is a PHI we've created actually a merging of values, or are all the 3368 // predecessor values the same, leading to a non-PHI machine value number? 3369 // (SSAUpdater doesn't know that either). Remap validated PHIs into the 3370 // the ValidatedValues collection below to sort this out. 3371 DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues; 3372 3373 // Define all the input DBG_PHI values in ValidatedValues. 3374 for (const auto &DBG_PHI : DBGPHIRange) { 3375 LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB); 3376 const ValueIDNum &Num = DBG_PHI.ValueRead; 3377 ValidatedValues.insert(std::make_pair(Block, Num)); 3378 } 3379 3380 // Sort PHIs to validate into RPO-order. 3381 SmallVector<LDVSSAPhi *, 8> SortedPHIs; 3382 for (auto &PHI : CreatedPHIs) 3383 SortedPHIs.push_back(PHI); 3384 3385 std::sort( 3386 SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) { 3387 return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB]; 3388 }); 3389 3390 for (auto &PHI : SortedPHIs) { 3391 ValueIDNum ThisBlockValueNum = 3392 MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()]; 3393 3394 // Are all these things actually defined? 3395 for (auto &PHIIt : PHI->IncomingValues) { 3396 // Any undef input means DBG_PHIs didn't dominate the use point. 3397 if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end()) 3398 return None; 3399 3400 ValueIDNum ValueToCheck; 3401 ValueIDNum *BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()]; 3402 3403 auto VVal = ValidatedValues.find(PHIIt.first); 3404 if (VVal == ValidatedValues.end()) { 3405 // We cross a loop, and this is a backedge. LLVMs tail duplication 3406 // happens so late that DBG_PHI instructions should not be able to 3407 // migrate into loops -- meaning we can only be live-through this 3408 // loop. 3409 ValueToCheck = ThisBlockValueNum; 3410 } else { 3411 // Does the block have as a live-out, in the location we're examining, 3412 // the value that we expect? If not, it's been moved or clobbered. 3413 ValueToCheck = VVal->second; 3414 } 3415 3416 if (BlockLiveOuts[Loc.asU64()] != ValueToCheck) 3417 return None; 3418 } 3419 3420 // Record this value as validated. 3421 ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum}); 3422 } 3423 3424 // All the PHIs are valid: we can return what the SSAUpdater said our value 3425 // number was. 3426 return Result; 3427 } 3428