1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file InstrRefBasedImpl.cpp
9 ///
10 /// This is a separate implementation of LiveDebugValues, see
11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
12 ///
13 /// This pass propagates variable locations between basic blocks, resolving
14 /// control flow conflicts between them. The problem is much like SSA
15 /// construction, where each DBG_VALUE instruction assigns the *value* that
16 /// a variable has, and every instruction where the variable is in scope uses
17 /// that variable. The resulting map of instruction-to-value is then translated
18 /// into a register (or spill) location for each variable over each instruction.
19 ///
20 /// This pass determines which DBG_VALUE dominates which instructions, or if
21 /// none do, where values must be merged (like PHI nodes). The added
22 /// complication is that because codegen has already finished, a PHI node may
23 /// be needed for a variable location to be correct, but no register or spill
24 /// slot merges the necessary values. In these circumstances, the variable
25 /// location is dropped.
26 ///
27 /// What makes this analysis non-trivial is loops: we cannot tell in advance
28 /// whether a variable location is live throughout a loop, or whether its
29 /// location is clobbered (or redefined by another DBG_VALUE), without
30 /// exploring all the way through.
31 ///
32 /// To make this simpler we perform two kinds of analysis. First, we identify
33 /// every value defined by every instruction (ignoring those that only move
34 /// another value), then compute a map of which values are available for each
35 /// instruction. This is stronger than a reaching-def analysis, as we create
36 /// PHI values where other values merge.
37 ///
38 /// Secondly, for each variable, we effectively re-construct SSA using each
39 /// DBG_VALUE as a def. The DBG_VALUEs read a value-number computed by the
40 /// first analysis from the location they refer to. We can then compute the
41 /// dominance frontiers of where a variable has a value, and create PHI nodes
42 /// where they merge.
43 /// This isn't precisely SSA-construction though, because the function shape
44 /// is pre-defined. If a variable location requires a PHI node, but no
45 /// PHI for the relevant values is present in the function (as computed by the
46 /// first analysis), the location must be dropped.
47 ///
48 /// Once both are complete, we can pass back over all instructions knowing:
49 ///  * What _value_ each variable should contain, either defined by an
50 ///    instruction or where control flow merges
51 ///  * What the location of that value is (if any).
52 /// Allowing us to create appropriate live-in DBG_VALUEs, and DBG_VALUEs when
53 /// a value moves location. After this pass runs, all variable locations within
54 /// a block should be specified by DBG_VALUEs within that block, allowing
55 /// DbgEntityHistoryCalculator to focus on individual blocks.
56 ///
57 /// This pass is able to go fast because the size of the first
58 /// reaching-definition analysis is proportional to the working-set size of
59 /// the function, which the compiler tries to keep small. (It's also
60 /// proportional to the number of blocks). Additionally, we repeatedly perform
61 /// the second reaching-definition analysis with only the variables and blocks
62 /// in a single lexical scope, exploiting their locality.
63 ///
64 /// Determining where PHIs happen is trickier with this approach, and it comes
65 /// to a head in the major problem for LiveDebugValues: is a value live-through
66 /// a loop, or not? Your garden-variety dataflow analysis aims to build a set of
67 /// facts about a function, however this analysis needs to generate new value
68 /// numbers at joins.
69 ///
70 /// To do this, consider a lattice of all definition values, from instructions
71 /// and from PHIs. Each PHI is characterised by the RPO number of the block it
72 /// occurs in. Each value pair A, B can be ordered by RPO(A) < RPO(B):
73 /// with non-PHI values at the top, and any PHI value in the last block (by RPO
74 /// order) at the bottom.
75 ///
76 /// (Awkwardly: lower-down-the _lattice_ means a greater RPO _number_. Below,
77 /// "rank" always refers to the former).
78 ///
79 /// At any join, for each register, we consider:
80 ///  * All incoming values, and
81 ///  * The PREVIOUS live-in value at this join.
82 /// If all incoming values agree: that's the live-in value. If they do not, the
83 /// incoming values are ranked according to the partial order, and the NEXT
84 /// LOWEST rank after the PREVIOUS live-in value is picked (multiple values of
85 /// the same rank are ignored as conflicting). If there are no candidate values,
86 /// or if the rank of the live-in would be lower than the rank of the current
87 /// blocks PHIs, create a new PHI value.
88 ///
89 /// Intuitively: if it's not immediately obvious what value a join should result
90 /// in, we iteratively descend from instruction-definitions down through PHI
91 /// values, getting closer to the current block each time. If the current block
92 /// is a loop head, this ordering is effectively searching outer levels of
93 /// loops, to find a value that's live-through the current loop.
94 ///
95 /// If there is no value that's live-through this loop, a PHI is created for
96 /// this location instead. We can't use a lower-ranked PHI because by definition
97 /// it doesn't dominate the current block. We can't create a PHI value any
98 /// earlier, because we risk creating a PHI value at a location where values do
99 /// not in fact merge, thus misrepresenting the truth, and not making the true
100 /// live-through value for variable locations.
101 ///
102 /// This algorithm applies to both calculating the availability of values in
103 /// the first analysis, and the location of variables in the second. However
104 /// for the second we add an extra dimension of pain: creating a variable
105 /// location PHI is only valid if, for each incoming edge,
106 ///  * There is a value for the variable on the incoming edge, and
107 ///  * All the edges have that value in the same register.
108 /// Or put another way: we can only create a variable-location PHI if there is
109 /// a matching machine-location PHI, each input to which is the variables value
110 /// in the predecessor block.
111 ///
112 /// To accommodate this difference, each point on the lattice is split in
113 /// two: a "proposed" PHI and "definite" PHI. Any PHI that can immediately
114 /// have a location determined are "definite" PHIs, and no further work is
115 /// needed. Otherwise, a location that all non-backedge predecessors agree
116 /// on is picked and propagated as a "proposed" PHI value. If that PHI value
117 /// is truly live-through, it'll appear on the loop backedges on the next
118 /// dataflow iteration, after which the block live-in moves to be a "definite"
119 /// PHI. If it's not truly live-through, the variable value will be downgraded
120 /// further as we explore the lattice, or remains "proposed" and is considered
121 /// invalid once dataflow completes.
122 ///
123 /// ### Terminology
124 ///
125 /// A machine location is a register or spill slot, a value is something that's
126 /// defined by an instruction or PHI node, while a variable value is the value
127 /// assigned to a variable. A variable location is a machine location, that must
128 /// contain the appropriate variable value. A value that is a PHI node is
129 /// occasionally called an mphi.
130 ///
131 /// The first dataflow problem is the "machine value location" problem,
132 /// because we're determining which machine locations contain which values.
133 /// The "locations" are constant: what's unknown is what value they contain.
134 ///
135 /// The second dataflow problem (the one for variables) is the "variable value
136 /// problem", because it's determining what values a variable has, rather than
137 /// what location those values are placed in. Unfortunately, it's not that
138 /// simple, because producing a PHI value always involves picking a location.
139 /// This is an imperfection that we just have to accept, at least for now.
140 ///
141 /// TODO:
142 ///   Overlapping fragments
143 ///   Entry values
144 ///   Add back DEBUG statements for debugging this
145 ///   Collect statistics
146 ///
147 //===----------------------------------------------------------------------===//
148 
149 #include "llvm/ADT/DenseMap.h"
150 #include "llvm/ADT/PostOrderIterator.h"
151 #include "llvm/ADT/STLExtras.h"
152 #include "llvm/ADT/SmallPtrSet.h"
153 #include "llvm/ADT/SmallSet.h"
154 #include "llvm/ADT/SmallVector.h"
155 #include "llvm/ADT/Statistic.h"
156 #include "llvm/CodeGen/LexicalScopes.h"
157 #include "llvm/CodeGen/MachineBasicBlock.h"
158 #include "llvm/CodeGen/MachineFrameInfo.h"
159 #include "llvm/CodeGen/MachineFunction.h"
160 #include "llvm/CodeGen/MachineFunctionPass.h"
161 #include "llvm/CodeGen/MachineInstr.h"
162 #include "llvm/CodeGen/MachineInstrBuilder.h"
163 #include "llvm/CodeGen/MachineInstrBundle.h"
164 #include "llvm/CodeGen/MachineMemOperand.h"
165 #include "llvm/CodeGen/MachineOperand.h"
166 #include "llvm/CodeGen/PseudoSourceValue.h"
167 #include "llvm/CodeGen/RegisterScavenging.h"
168 #include "llvm/CodeGen/TargetFrameLowering.h"
169 #include "llvm/CodeGen/TargetInstrInfo.h"
170 #include "llvm/CodeGen/TargetLowering.h"
171 #include "llvm/CodeGen/TargetPassConfig.h"
172 #include "llvm/CodeGen/TargetRegisterInfo.h"
173 #include "llvm/CodeGen/TargetSubtargetInfo.h"
174 #include "llvm/Config/llvm-config.h"
175 #include "llvm/IR/DIBuilder.h"
176 #include "llvm/IR/DebugInfoMetadata.h"
177 #include "llvm/IR/DebugLoc.h"
178 #include "llvm/IR/Function.h"
179 #include "llvm/IR/Module.h"
180 #include "llvm/InitializePasses.h"
181 #include "llvm/MC/MCRegisterInfo.h"
182 #include "llvm/Pass.h"
183 #include "llvm/Support/Casting.h"
184 #include "llvm/Support/Compiler.h"
185 #include "llvm/Support/Debug.h"
186 #include "llvm/Support/TypeSize.h"
187 #include "llvm/Support/raw_ostream.h"
188 #include "llvm/Target/TargetMachine.h"
189 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
190 #include <algorithm>
191 #include <cassert>
192 #include <cstdint>
193 #include <functional>
194 #include <limits.h>
195 #include <limits>
196 #include <queue>
197 #include <tuple>
198 #include <utility>
199 #include <vector>
200 
201 #include "InstrRefBasedImpl.h"
202 #include "LiveDebugValues.h"
203 
204 using namespace llvm;
205 using namespace LiveDebugValues;
206 
207 // SSAUpdaterImple sets DEBUG_TYPE, change it.
208 #undef DEBUG_TYPE
209 #define DEBUG_TYPE "livedebugvalues"
210 
211 // Act more like the VarLoc implementation, by propagating some locations too
212 // far and ignoring some transfers.
213 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
214                                    cl::desc("Act like old LiveDebugValues did"),
215                                    cl::init(false));
216 
217 /// Thin wrapper around an integer -- designed to give more type safety to
218 /// spill location numbers.
219 class SpillLocationNo {
220 public:
221   explicit SpillLocationNo(unsigned SpillNo) : SpillNo(SpillNo) {}
222   unsigned SpillNo;
223   unsigned id() const { return SpillNo; }
224 };
225 
226 /// Collection of DBG_VALUEs observed when traversing a block. Records each
227 /// variable and the value the DBG_VALUE refers to. Requires the machine value
228 /// location dataflow algorithm to have run already, so that values can be
229 /// identified.
230 class VLocTracker {
231 public:
232   /// Map DebugVariable to the latest Value it's defined to have.
233   /// Needs to be a MapVector because we determine order-in-the-input-MIR from
234   /// the order in this container.
235   /// We only retain the last DbgValue in each block for each variable, to
236   /// determine the blocks live-out variable value. The Vars container forms the
237   /// transfer function for this block, as part of the dataflow analysis. The
238   /// movement of values between locations inside of a block is handled at a
239   /// much later stage, in the TransferTracker class.
240   MapVector<DebugVariable, DbgValue> Vars;
241   DenseMap<DebugVariable, const DILocation *> Scopes;
242   MachineBasicBlock *MBB;
243 
244 public:
245   VLocTracker() {}
246 
247   void defVar(const MachineInstr &MI, const DbgValueProperties &Properties,
248               Optional<ValueIDNum> ID) {
249     assert(MI.isDebugValue() || MI.isDebugRef());
250     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
251                       MI.getDebugLoc()->getInlinedAt());
252     DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def)
253                         : DbgValue(Properties, DbgValue::Undef);
254 
255     // Attempt insertion; overwrite if it's already mapped.
256     auto Result = Vars.insert(std::make_pair(Var, Rec));
257     if (!Result.second)
258       Result.first->second = Rec;
259     Scopes[Var] = MI.getDebugLoc().get();
260   }
261 
262   void defVar(const MachineInstr &MI, const MachineOperand &MO) {
263     // Only DBG_VALUEs can define constant-valued variables.
264     assert(MI.isDebugValue());
265     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
266                       MI.getDebugLoc()->getInlinedAt());
267     DbgValueProperties Properties(MI);
268     DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const);
269 
270     // Attempt insertion; overwrite if it's already mapped.
271     auto Result = Vars.insert(std::make_pair(Var, Rec));
272     if (!Result.second)
273       Result.first->second = Rec;
274     Scopes[Var] = MI.getDebugLoc().get();
275   }
276 };
277 
278 /// Tracker for converting machine value locations and variable values into
279 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
280 /// specifying block live-in locations and transfers within blocks.
281 ///
282 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
283 /// and must be initialized with the set of variable values that are live-in to
284 /// the block. The caller then repeatedly calls process(). TransferTracker picks
285 /// out variable locations for the live-in variable values (if there _is_ a
286 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is
287 /// stepped through, transfers of values between machine locations are
288 /// identified and if profitable, a DBG_VALUE created.
289 ///
290 /// This is where debug use-before-defs would be resolved: a variable with an
291 /// unavailable value could materialize in the middle of a block, when the
292 /// value becomes available. Or, we could detect clobbers and re-specify the
293 /// variable in a backup location. (XXX these are unimplemented).
294 class TransferTracker {
295 public:
296   const TargetInstrInfo *TII;
297   const TargetLowering *TLI;
298   /// This machine location tracker is assumed to always contain the up-to-date
299   /// value mapping for all machine locations. TransferTracker only reads
300   /// information from it. (XXX make it const?)
301   MLocTracker *MTracker;
302   MachineFunction &MF;
303   bool ShouldEmitDebugEntryValues;
304 
305   /// Record of all changes in variable locations at a block position. Awkwardly
306   /// we allow inserting either before or after the point: MBB != nullptr
307   /// indicates it's before, otherwise after.
308   struct Transfer {
309     MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
310     MachineBasicBlock *MBB; /// non-null if we should insert after.
311     SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
312   };
313 
314   struct LocAndProperties {
315     LocIdx Loc;
316     DbgValueProperties Properties;
317   };
318 
319   /// Collection of transfers (DBG_VALUEs) to be inserted.
320   SmallVector<Transfer, 32> Transfers;
321 
322   /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
323   /// between TransferTrackers view of variable locations and MLocTrackers. For
324   /// example, MLocTracker observes all clobbers, but TransferTracker lazily
325   /// does not.
326   std::vector<ValueIDNum> VarLocs;
327 
328   /// Map from LocIdxes to which DebugVariables are based that location.
329   /// Mantained while stepping through the block. Not accurate if
330   /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
331   std::map<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
332 
333   /// Map from DebugVariable to it's current location and qualifying meta
334   /// information. To be used in conjunction with ActiveMLocs to construct
335   /// enough information for the DBG_VALUEs for a particular LocIdx.
336   DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;
337 
338   /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
339   SmallVector<MachineInstr *, 4> PendingDbgValues;
340 
341   /// Record of a use-before-def: created when a value that's live-in to the
342   /// current block isn't available in any machine location, but it will be
343   /// defined in this block.
344   struct UseBeforeDef {
345     /// Value of this variable, def'd in block.
346     ValueIDNum ID;
347     /// Identity of this variable.
348     DebugVariable Var;
349     /// Additional variable properties.
350     DbgValueProperties Properties;
351   };
352 
353   /// Map from instruction index (within the block) to the set of UseBeforeDefs
354   /// that become defined at that instruction.
355   DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
356 
357   /// The set of variables that are in UseBeforeDefs and can become a location
358   /// once the relevant value is defined. An element being erased from this
359   /// collection prevents the use-before-def materializing.
360   DenseSet<DebugVariable> UseBeforeDefVariables;
361 
362   const TargetRegisterInfo &TRI;
363   const BitVector &CalleeSavedRegs;
364 
365   TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
366                   MachineFunction &MF, const TargetRegisterInfo &TRI,
367                   const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
368       : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
369         CalleeSavedRegs(CalleeSavedRegs) {
370     TLI = MF.getSubtarget().getTargetLowering();
371     auto &TM = TPC.getTM<TargetMachine>();
372     ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
373   }
374 
375   /// Load object with live-in variable values. \p mlocs contains the live-in
376   /// values in each machine location, while \p vlocs the live-in variable
377   /// values. This method picks variable locations for the live-in variables,
378   /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
379   /// object fields to track variable locations as we step through the block.
380   /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
381   void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs,
382                   SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
383                   unsigned NumLocs) {
384     ActiveMLocs.clear();
385     ActiveVLocs.clear();
386     VarLocs.clear();
387     VarLocs.reserve(NumLocs);
388     UseBeforeDefs.clear();
389     UseBeforeDefVariables.clear();
390 
391     auto isCalleeSaved = [&](LocIdx L) {
392       unsigned Reg = MTracker->LocIdxToLocID[L];
393       if (Reg >= MTracker->NumRegs)
394         return false;
395       for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
396         if (CalleeSavedRegs.test(*RAI))
397           return true;
398       return false;
399     };
400 
401     // Map of the preferred location for each value.
402     std::map<ValueIDNum, LocIdx> ValueToLoc;
403 
404     // Produce a map of value numbers to the current machine locs they live
405     // in. When emulating VarLocBasedImpl, there should only be one
406     // location; when not, we get to pick.
407     for (auto Location : MTracker->locations()) {
408       LocIdx Idx = Location.Idx;
409       ValueIDNum &VNum = MLocs[Idx.asU64()];
410       VarLocs.push_back(VNum);
411       auto it = ValueToLoc.find(VNum);
412       // In order of preference, pick:
413       //  * Callee saved registers,
414       //  * Other registers,
415       //  * Spill slots.
416       if (it == ValueToLoc.end() || MTracker->isSpill(it->second) ||
417           (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) {
418         // Insert, or overwrite if insertion failed.
419         auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx));
420         if (!PrefLocRes.second)
421           PrefLocRes.first->second = Idx;
422       }
423     }
424 
425     // Now map variables to their picked LocIdxes.
426     for (auto Var : VLocs) {
427       if (Var.second.Kind == DbgValue::Const) {
428         PendingDbgValues.push_back(
429             emitMOLoc(Var.second.MO, Var.first, Var.second.Properties));
430         continue;
431       }
432 
433       // If the value has no location, we can't make a variable location.
434       const ValueIDNum &Num = Var.second.ID;
435       auto ValuesPreferredLoc = ValueToLoc.find(Num);
436       if (ValuesPreferredLoc == ValueToLoc.end()) {
437         // If it's a def that occurs in this block, register it as a
438         // use-before-def to be resolved as we step through the block.
439         if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI())
440           addUseBeforeDef(Var.first, Var.second.Properties, Num);
441         else
442           recoverAsEntryValue(Var.first, Var.second.Properties, Num);
443         continue;
444       }
445 
446       LocIdx M = ValuesPreferredLoc->second;
447       auto NewValue = LocAndProperties{M, Var.second.Properties};
448       auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
449       if (!Result.second)
450         Result.first->second = NewValue;
451       ActiveMLocs[M].insert(Var.first);
452       PendingDbgValues.push_back(
453           MTracker->emitLoc(M, Var.first, Var.second.Properties));
454     }
455     flushDbgValues(MBB.begin(), &MBB);
456   }
457 
458   /// Record that \p Var has value \p ID, a value that becomes available
459   /// later in the function.
460   void addUseBeforeDef(const DebugVariable &Var,
461                        const DbgValueProperties &Properties, ValueIDNum ID) {
462     UseBeforeDef UBD = {ID, Var, Properties};
463     UseBeforeDefs[ID.getInst()].push_back(UBD);
464     UseBeforeDefVariables.insert(Var);
465   }
466 
467   /// After the instruction at index \p Inst and position \p pos has been
468   /// processed, check whether it defines a variable value in a use-before-def.
469   /// If so, and the variable value hasn't changed since the start of the
470   /// block, create a DBG_VALUE.
471   void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
472     auto MIt = UseBeforeDefs.find(Inst);
473     if (MIt == UseBeforeDefs.end())
474       return;
475 
476     for (auto &Use : MIt->second) {
477       LocIdx L = Use.ID.getLoc();
478 
479       // If something goes very wrong, we might end up labelling a COPY
480       // instruction or similar with an instruction number, where it doesn't
481       // actually define a new value, instead it moves a value. In case this
482       // happens, discard.
483       if (MTracker->LocIdxToIDNum[L] != Use.ID)
484         continue;
485 
486       // If a different debug instruction defined the variable value / location
487       // since the start of the block, don't materialize this use-before-def.
488       if (!UseBeforeDefVariables.count(Use.Var))
489         continue;
490 
491       PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties));
492     }
493     flushDbgValues(pos, nullptr);
494   }
495 
496   /// Helper to move created DBG_VALUEs into Transfers collection.
497   void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
498     if (PendingDbgValues.size() == 0)
499       return;
500 
501     // Pick out the instruction start position.
502     MachineBasicBlock::instr_iterator BundleStart;
503     if (MBB && Pos == MBB->begin())
504       BundleStart = MBB->instr_begin();
505     else
506       BundleStart = getBundleStart(Pos->getIterator());
507 
508     Transfers.push_back({BundleStart, MBB, PendingDbgValues});
509     PendingDbgValues.clear();
510   }
511 
512   bool isEntryValueVariable(const DebugVariable &Var,
513                             const DIExpression *Expr) const {
514     if (!Var.getVariable()->isParameter())
515       return false;
516 
517     if (Var.getInlinedAt())
518       return false;
519 
520     if (Expr->getNumElements() > 0)
521       return false;
522 
523     return true;
524   }
525 
526   bool isEntryValueValue(const ValueIDNum &Val) const {
527     // Must be in entry block (block number zero), and be a PHI / live-in value.
528     if (Val.getBlock() || !Val.isPHI())
529       return false;
530 
531     // Entry values must enter in a register.
532     if (MTracker->isSpill(Val.getLoc()))
533       return false;
534 
535     Register SP = TLI->getStackPointerRegisterToSaveRestore();
536     Register FP = TRI.getFrameRegister(MF);
537     Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
538     return Reg != SP && Reg != FP;
539   }
540 
541   bool recoverAsEntryValue(const DebugVariable &Var, DbgValueProperties &Prop,
542                            const ValueIDNum &Num) {
543     // Is this variable location a candidate to be an entry value. First,
544     // should we be trying this at all?
545     if (!ShouldEmitDebugEntryValues)
546       return false;
547 
548     // Is the variable appropriate for entry values (i.e., is a parameter).
549     if (!isEntryValueVariable(Var, Prop.DIExpr))
550       return false;
551 
552     // Is the value assigned to this variable still the entry value?
553     if (!isEntryValueValue(Num))
554       return false;
555 
556     // Emit a variable location using an entry value expression.
557     DIExpression *NewExpr =
558         DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue);
559     Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
560     MachineOperand MO = MachineOperand::CreateReg(Reg, false);
561 
562     PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect}));
563     return true;
564   }
565 
566   /// Change a variable value after encountering a DBG_VALUE inside a block.
567   void redefVar(const MachineInstr &MI) {
568     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
569                       MI.getDebugLoc()->getInlinedAt());
570     DbgValueProperties Properties(MI);
571 
572     const MachineOperand &MO = MI.getOperand(0);
573 
574     // Ignore non-register locations, we don't transfer those.
575     if (!MO.isReg() || MO.getReg() == 0) {
576       auto It = ActiveVLocs.find(Var);
577       if (It != ActiveVLocs.end()) {
578         ActiveMLocs[It->second.Loc].erase(Var);
579         ActiveVLocs.erase(It);
580      }
581       // Any use-before-defs no longer apply.
582       UseBeforeDefVariables.erase(Var);
583       return;
584     }
585 
586     Register Reg = MO.getReg();
587     LocIdx NewLoc = MTracker->getRegMLoc(Reg);
588     redefVar(MI, Properties, NewLoc);
589   }
590 
591   /// Handle a change in variable location within a block. Terminate the
592   /// variables current location, and record the value it now refers to, so
593   /// that we can detect location transfers later on.
594   void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
595                 Optional<LocIdx> OptNewLoc) {
596     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
597                       MI.getDebugLoc()->getInlinedAt());
598     // Any use-before-defs no longer apply.
599     UseBeforeDefVariables.erase(Var);
600 
601     // Erase any previous location,
602     auto It = ActiveVLocs.find(Var);
603     if (It != ActiveVLocs.end())
604       ActiveMLocs[It->second.Loc].erase(Var);
605 
606     // If there _is_ no new location, all we had to do was erase.
607     if (!OptNewLoc)
608       return;
609     LocIdx NewLoc = *OptNewLoc;
610 
611     // Check whether our local copy of values-by-location in #VarLocs is out of
612     // date. Wipe old tracking data for the location if it's been clobbered in
613     // the meantime.
614     if (MTracker->getNumAtPos(NewLoc) != VarLocs[NewLoc.asU64()]) {
615       for (auto &P : ActiveMLocs[NewLoc]) {
616         ActiveVLocs.erase(P);
617       }
618       ActiveMLocs[NewLoc.asU64()].clear();
619       VarLocs[NewLoc.asU64()] = MTracker->getNumAtPos(NewLoc);
620     }
621 
622     ActiveMLocs[NewLoc].insert(Var);
623     if (It == ActiveVLocs.end()) {
624       ActiveVLocs.insert(
625           std::make_pair(Var, LocAndProperties{NewLoc, Properties}));
626     } else {
627       It->second.Loc = NewLoc;
628       It->second.Properties = Properties;
629     }
630   }
631 
632   /// Account for a location \p mloc being clobbered. Examine the variable
633   /// locations that will be terminated: and try to recover them by using
634   /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
635   /// explicitly terminate a location if it can't be recovered.
636   void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
637                    bool MakeUndef = true) {
638     auto ActiveMLocIt = ActiveMLocs.find(MLoc);
639     if (ActiveMLocIt == ActiveMLocs.end())
640       return;
641 
642     // What was the old variable value?
643     ValueIDNum OldValue = VarLocs[MLoc.asU64()];
644     VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
645 
646     // Examine the remaining variable locations: if we can find the same value
647     // again, we can recover the location.
648     Optional<LocIdx> NewLoc = None;
649     for (auto Loc : MTracker->locations())
650       if (Loc.Value == OldValue)
651         NewLoc = Loc.Idx;
652 
653     // If there is no location, and we weren't asked to make the variable
654     // explicitly undef, then stop here.
655     if (!NewLoc && !MakeUndef) {
656       // Try and recover a few more locations with entry values.
657       for (auto &Var : ActiveMLocIt->second) {
658         auto &Prop = ActiveVLocs.find(Var)->second.Properties;
659         recoverAsEntryValue(Var, Prop, OldValue);
660       }
661       flushDbgValues(Pos, nullptr);
662       return;
663     }
664 
665     // Examine all the variables based on this location.
666     DenseSet<DebugVariable> NewMLocs;
667     for (auto &Var : ActiveMLocIt->second) {
668       auto ActiveVLocIt = ActiveVLocs.find(Var);
669       // Re-state the variable location: if there's no replacement then NewLoc
670       // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE
671       // identifying the alternative location will be emitted.
672       const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr;
673       DbgValueProperties Properties(Expr, false);
674       PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties));
675 
676       // Update machine locations <=> variable locations maps. Defer updating
677       // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator.
678       if (!NewLoc) {
679         ActiveVLocs.erase(ActiveVLocIt);
680       } else {
681         ActiveVLocIt->second.Loc = *NewLoc;
682         NewMLocs.insert(Var);
683       }
684     }
685 
686     // Commit any deferred ActiveMLoc changes.
687     if (!NewMLocs.empty())
688       for (auto &Var : NewMLocs)
689         ActiveMLocs[*NewLoc].insert(Var);
690 
691     // We lazily track what locations have which values; if we've found a new
692     // location for the clobbered value, remember it.
693     if (NewLoc)
694       VarLocs[NewLoc->asU64()] = OldValue;
695 
696     flushDbgValues(Pos, nullptr);
697 
698     ActiveMLocIt->second.clear();
699   }
700 
701   /// Transfer variables based on \p Src to be based on \p Dst. This handles
702   /// both register copies as well as spills and restores. Creates DBG_VALUEs
703   /// describing the movement.
704   void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
705     // Does Src still contain the value num we expect? If not, it's been
706     // clobbered in the meantime, and our variable locations are stale.
707     if (VarLocs[Src.asU64()] != MTracker->getNumAtPos(Src))
708       return;
709 
710     // assert(ActiveMLocs[Dst].size() == 0);
711     //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
712     ActiveMLocs[Dst] = ActiveMLocs[Src];
713     VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
714 
715     // For each variable based on Src; create a location at Dst.
716     for (auto &Var : ActiveMLocs[Src]) {
717       auto ActiveVLocIt = ActiveVLocs.find(Var);
718       assert(ActiveVLocIt != ActiveVLocs.end());
719       ActiveVLocIt->second.Loc = Dst;
720 
721       MachineInstr *MI =
722           MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
723       PendingDbgValues.push_back(MI);
724     }
725     ActiveMLocs[Src].clear();
726     flushDbgValues(Pos, nullptr);
727 
728     // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
729     // about the old location.
730     if (EmulateOldLDV)
731       VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
732   }
733 
734   MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
735                                 const DebugVariable &Var,
736                                 const DbgValueProperties &Properties) {
737     DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
738                                   Var.getVariable()->getScope(),
739                                   const_cast<DILocation *>(Var.getInlinedAt()));
740     auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
741     MIB.add(MO);
742     if (Properties.Indirect)
743       MIB.addImm(0);
744     else
745       MIB.addReg(0);
746     MIB.addMetadata(Var.getVariable());
747     MIB.addMetadata(Properties.DIExpr);
748     return MIB;
749   }
750 };
751 
752 //===----------------------------------------------------------------------===//
753 //            Implementation
754 //===----------------------------------------------------------------------===//
755 
756 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
757 
758 void DbgValue::dump(const MLocTracker *MTrack) const {
759   if (Kind == Const) {
760     MO.dump();
761   } else if (Kind == NoVal) {
762     dbgs() << "NoVal(" << BlockNo << ")";
763   } else if (Kind == Proposed) {
764     dbgs() << "VPHI(" << MTrack->IDAsString(ID) << ")";
765   } else {
766     assert(Kind == Def);
767     dbgs() << MTrack->IDAsString(ID);
768   }
769   if (Properties.Indirect)
770     dbgs() << " indir";
771   if (Properties.DIExpr)
772     dbgs() << " " << *Properties.DIExpr;
773 }
774 
775 MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
776                          const TargetRegisterInfo &TRI,
777                          const TargetLowering &TLI)
778     : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
779       LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) {
780   NumRegs = TRI.getNumRegs();
781   reset();
782   LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
783   assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
784 
785   // Always track SP. This avoids the implicit clobbering caused by regmasks
786   // from affectings its values. (LiveDebugValues disbelieves calls and
787   // regmasks that claim to clobber SP).
788   Register SP = TLI.getStackPointerRegisterToSaveRestore();
789   if (SP) {
790     unsigned ID = getLocID(SP, false);
791     (void)lookupOrTrackRegister(ID);
792   }
793 }
794 
795 LocIdx MLocTracker::trackRegister(unsigned ID) {
796   assert(ID != 0);
797   LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
798   LocIdxToIDNum.grow(NewIdx);
799   LocIdxToLocID.grow(NewIdx);
800 
801   // Default: it's an mphi.
802   ValueIDNum ValNum = {CurBB, 0, NewIdx};
803   // Was this reg ever touched by a regmask?
804   for (const auto &MaskPair : reverse(Masks)) {
805     if (MaskPair.first->clobbersPhysReg(ID)) {
806       // There was an earlier def we skipped.
807       ValNum = {CurBB, MaskPair.second, NewIdx};
808       break;
809     }
810   }
811 
812   LocIdxToIDNum[NewIdx] = ValNum;
813   LocIdxToLocID[NewIdx] = ID;
814   return NewIdx;
815 }
816 
817 void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB,
818                                unsigned InstID) {
819   // Ensure SP exists, so that we don't override it later.
820   Register SP = TLI.getStackPointerRegisterToSaveRestore();
821 
822   // Def any register we track have that isn't preserved. The regmask
823   // terminates the liveness of a register, meaning its value can't be
824   // relied upon -- we represent this by giving it a new value.
825   for (auto Location : locations()) {
826     unsigned ID = LocIdxToLocID[Location.Idx];
827     // Don't clobber SP, even if the mask says it's clobbered.
828     if (ID < NumRegs && ID != SP && MO->clobbersPhysReg(ID))
829       defReg(ID, CurBB, InstID);
830   }
831   Masks.push_back(std::make_pair(MO, InstID));
832 }
833 
834 LocIdx MLocTracker::getOrTrackSpillLoc(SpillLoc L) {
835   unsigned SpillID = SpillLocs.idFor(L);
836   if (SpillID == 0) {
837     SpillID = SpillLocs.insert(L);
838     unsigned L = getLocID(SpillID, true);
839     LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
840     LocIdxToIDNum.grow(Idx);
841     LocIdxToLocID.grow(Idx);
842     LocIDToLocIdx.push_back(Idx);
843     LocIdxToLocID[Idx] = L;
844     return Idx;
845   } else {
846     unsigned L = getLocID(SpillID, true);
847     LocIdx Idx = LocIDToLocIdx[L];
848     return Idx;
849   }
850 }
851 
852 std::string MLocTracker::LocIdxToName(LocIdx Idx) const {
853   unsigned ID = LocIdxToLocID[Idx];
854   if (ID >= NumRegs)
855     return Twine("slot ").concat(Twine(ID - NumRegs)).str();
856   else
857     return TRI.getRegAsmName(ID).str();
858 }
859 
860 std::string MLocTracker::IDAsString(const ValueIDNum &Num) const {
861   std::string DefName = LocIdxToName(Num.getLoc());
862   return Num.asString(DefName);
863 }
864 
865 LLVM_DUMP_METHOD void MLocTracker::dump() {
866   for (auto Location : locations()) {
867     std::string MLocName = LocIdxToName(Location.Value.getLoc());
868     std::string DefName = Location.Value.asString(MLocName);
869     dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
870   }
871 }
872 
873 LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() {
874   for (auto Location : locations()) {
875     std::string foo = LocIdxToName(Location.Idx);
876     dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
877   }
878 }
879 
880 MachineInstrBuilder MLocTracker::emitLoc(Optional<LocIdx> MLoc,
881                                          const DebugVariable &Var,
882                                          const DbgValueProperties &Properties) {
883   DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
884                                 Var.getVariable()->getScope(),
885                                 const_cast<DILocation *>(Var.getInlinedAt()));
886   auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));
887 
888   const DIExpression *Expr = Properties.DIExpr;
889   if (!MLoc) {
890     // No location -> DBG_VALUE $noreg
891     MIB.addReg(0);
892     MIB.addReg(0);
893   } else if (LocIdxToLocID[*MLoc] >= NumRegs) {
894     unsigned LocID = LocIdxToLocID[*MLoc];
895     const SpillLoc &Spill = SpillLocs[LocID - NumRegs + 1];
896 
897     auto *TRI = MF.getSubtarget().getRegisterInfo();
898     Expr = TRI->prependOffsetExpression(Expr, DIExpression::ApplyOffset,
899                                         Spill.SpillOffset);
900     unsigned Base = Spill.SpillBase;
901     MIB.addReg(Base);
902     MIB.addImm(0);
903   } else {
904     unsigned LocID = LocIdxToLocID[*MLoc];
905     MIB.addReg(LocID);
906     if (Properties.Indirect)
907       MIB.addImm(0);
908     else
909       MIB.addReg(0);
910   }
911 
912   MIB.addMetadata(Var.getVariable());
913   MIB.addMetadata(Expr);
914   return MIB;
915 }
916 
917 /// Default construct and initialize the pass.
918 InstrRefBasedLDV::InstrRefBasedLDV() {}
919 
920 bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const {
921   unsigned Reg = MTracker->LocIdxToLocID[L];
922   for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
923     if (CalleeSavedRegs.test(*RAI))
924       return true;
925   return false;
926 }
927 
928 //===----------------------------------------------------------------------===//
929 //            Debug Range Extension Implementation
930 //===----------------------------------------------------------------------===//
931 
932 #ifndef NDEBUG
933 // Something to restore in the future.
934 // void InstrRefBasedLDV::printVarLocInMBB(..)
935 #endif
936 
937 SpillLoc
938 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
939   assert(MI.hasOneMemOperand() &&
940          "Spill instruction does not have exactly one memory operand?");
941   auto MMOI = MI.memoperands_begin();
942   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
943   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
944          "Inconsistent memory operand in spill instruction");
945   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
946   const MachineBasicBlock *MBB = MI.getParent();
947   Register Reg;
948   StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
949   return {Reg, Offset};
950 }
951 
952 /// End all previous ranges related to @MI and start a new range from @MI
953 /// if it is a DBG_VALUE instr.
954 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
955   if (!MI.isDebugValue())
956     return false;
957 
958   const DILocalVariable *Var = MI.getDebugVariable();
959   const DIExpression *Expr = MI.getDebugExpression();
960   const DILocation *DebugLoc = MI.getDebugLoc();
961   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
962   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
963          "Expected inlined-at fields to agree");
964 
965   DebugVariable V(Var, Expr, InlinedAt);
966   DbgValueProperties Properties(MI);
967 
968   // If there are no instructions in this lexical scope, do no location tracking
969   // at all, this variable shouldn't get a legitimate location range.
970   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
971   if (Scope == nullptr)
972     return true; // handled it; by doing nothing
973 
974   // For now, ignore DBG_VALUE_LISTs when extending ranges. Allow it to
975   // contribute to locations in this block, but don't propagate further.
976   // Interpret it like a DBG_VALUE $noreg.
977   if (MI.isDebugValueList()) {
978     if (VTracker)
979       VTracker->defVar(MI, Properties, None);
980     if (TTracker)
981       TTracker->redefVar(MI, Properties, None);
982     return true;
983   }
984 
985   const MachineOperand &MO = MI.getOperand(0);
986 
987   // MLocTracker needs to know that this register is read, even if it's only
988   // read by a debug inst.
989   if (MO.isReg() && MO.getReg() != 0)
990     (void)MTracker->readReg(MO.getReg());
991 
992   // If we're preparing for the second analysis (variables), the machine value
993   // locations are already solved, and we report this DBG_VALUE and the value
994   // it refers to to VLocTracker.
995   if (VTracker) {
996     if (MO.isReg()) {
997       // Feed defVar the new variable location, or if this is a
998       // DBG_VALUE $noreg, feed defVar None.
999       if (MO.getReg())
1000         VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg()));
1001       else
1002         VTracker->defVar(MI, Properties, None);
1003     } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
1004                MI.getOperand(0).isCImm()) {
1005       VTracker->defVar(MI, MI.getOperand(0));
1006     }
1007   }
1008 
1009   // If performing final tracking of transfers, report this variable definition
1010   // to the TransferTracker too.
1011   if (TTracker)
1012     TTracker->redefVar(MI);
1013   return true;
1014 }
1015 
1016 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
1017                                              ValueIDNum **MLiveOuts,
1018                                              ValueIDNum **MLiveIns) {
1019   if (!MI.isDebugRef())
1020     return false;
1021 
1022   // Only handle this instruction when we are building the variable value
1023   // transfer function.
1024   if (!VTracker)
1025     return false;
1026 
1027   unsigned InstNo = MI.getOperand(0).getImm();
1028   unsigned OpNo = MI.getOperand(1).getImm();
1029 
1030   const DILocalVariable *Var = MI.getDebugVariable();
1031   const DIExpression *Expr = MI.getDebugExpression();
1032   const DILocation *DebugLoc = MI.getDebugLoc();
1033   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1034   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1035          "Expected inlined-at fields to agree");
1036 
1037   DebugVariable V(Var, Expr, InlinedAt);
1038 
1039   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1040   if (Scope == nullptr)
1041     return true; // Handled by doing nothing. This variable is never in scope.
1042 
1043   const MachineFunction &MF = *MI.getParent()->getParent();
1044 
1045   // Various optimizations may have happened to the value during codegen,
1046   // recorded in the value substitution table. Apply any substitutions to
1047   // the instruction / operand number in this DBG_INSTR_REF, and collect
1048   // any subregister extractions performed during optimization.
1049 
1050   // Create dummy substitution with Src set, for lookup.
1051   auto SoughtSub =
1052       MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0);
1053 
1054   SmallVector<unsigned, 4> SeenSubregs;
1055   auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1056   while (LowerBoundIt != MF.DebugValueSubstitutions.end() &&
1057          LowerBoundIt->Src == SoughtSub.Src) {
1058     std::tie(InstNo, OpNo) = LowerBoundIt->Dest;
1059     SoughtSub.Src = LowerBoundIt->Dest;
1060     if (unsigned Subreg = LowerBoundIt->Subreg)
1061       SeenSubregs.push_back(Subreg);
1062     LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1063   }
1064 
1065   // Default machine value number is <None> -- if no instruction defines
1066   // the corresponding value, it must have been optimized out.
1067   Optional<ValueIDNum> NewID = None;
1068 
1069   // Try to lookup the instruction number, and find the machine value number
1070   // that it defines. It could be an instruction, or a PHI.
1071   auto InstrIt = DebugInstrNumToInstr.find(InstNo);
1072   auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(),
1073                                 DebugPHINumToValue.end(), InstNo);
1074   if (InstrIt != DebugInstrNumToInstr.end()) {
1075     const MachineInstr &TargetInstr = *InstrIt->second.first;
1076     uint64_t BlockNo = TargetInstr.getParent()->getNumber();
1077 
1078     // Pick out the designated operand.
1079     assert(OpNo < TargetInstr.getNumOperands());
1080     const MachineOperand &MO = TargetInstr.getOperand(OpNo);
1081 
1082     // Today, this can only be a register.
1083     assert(MO.isReg() && MO.isDef());
1084 
1085     unsigned LocID = MTracker->getLocID(MO.getReg(), false);
1086     LocIdx L = MTracker->LocIDToLocIdx[LocID];
1087     NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
1088   } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
1089     // It's actually a PHI value. Which value it is might not be obvious, use
1090     // the resolver helper to find out.
1091     NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns,
1092                            MI, InstNo);
1093   }
1094 
1095   // Apply any subregister extractions, in reverse. We might have seen code
1096   // like this:
1097   //    CALL64 @foo, implicit-def $rax
1098   //    %0:gr64 = COPY $rax
1099   //    %1:gr32 = COPY %0.sub_32bit
1100   //    %2:gr16 = COPY %1.sub_16bit
1101   //    %3:gr8  = COPY %2.sub_8bit
1102   // In which case each copy would have been recorded as a substitution with
1103   // a subregister qualifier. Apply those qualifiers now.
1104   if (NewID && !SeenSubregs.empty()) {
1105     unsigned Offset = 0;
1106     unsigned Size = 0;
1107 
1108     // Look at each subregister that we passed through, and progressively
1109     // narrow in, accumulating any offsets that occur. Substitutions should
1110     // only ever be the same or narrower width than what they read from;
1111     // iterate in reverse order so that we go from wide to small.
1112     for (unsigned Subreg : reverse(SeenSubregs)) {
1113       unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
1114       unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
1115       Offset += ThisOffset;
1116       Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
1117     }
1118 
1119     // If that worked, look for an appropriate subregister with the register
1120     // where the define happens. Don't look at values that were defined during
1121     // a stack write: we can't currently express register locations within
1122     // spills.
1123     LocIdx L = NewID->getLoc();
1124     if (NewID && !MTracker->isSpill(L)) {
1125       // Find the register class for the register where this def happened.
1126       // FIXME: no index for this?
1127       Register Reg = MTracker->LocIdxToLocID[L];
1128       const TargetRegisterClass *TRC = nullptr;
1129       for (auto *TRCI : TRI->regclasses())
1130         if (TRCI->contains(Reg))
1131           TRC = TRCI;
1132       assert(TRC && "Couldn't find target register class?");
1133 
1134       // If the register we have isn't the right size or in the right place,
1135       // Try to find a subregister inside it.
1136       unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
1137       if (Size != MainRegSize || Offset) {
1138         // Enumerate all subregisters, searching.
1139         Register NewReg = 0;
1140         for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1141           unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1142           unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
1143           unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
1144           if (SubregSize == Size && SubregOffset == Offset) {
1145             NewReg = *SRI;
1146             break;
1147           }
1148         }
1149 
1150         // If we didn't find anything: there's no way to express our value.
1151         if (!NewReg) {
1152           NewID = None;
1153         } else {
1154           // Re-state the value as being defined within the subregister
1155           // that we found.
1156           LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
1157           NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
1158         }
1159       }
1160     } else {
1161       // If we can't handle subregisters, unset the new value.
1162       NewID = None;
1163     }
1164   }
1165 
1166   // We, we have a value number or None. Tell the variable value tracker about
1167   // it. The rest of this LiveDebugValues implementation acts exactly the same
1168   // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that
1169   // aren't immediately available).
1170   DbgValueProperties Properties(Expr, false);
1171   VTracker->defVar(MI, Properties, NewID);
1172 
1173   // If we're on the final pass through the function, decompose this INSTR_REF
1174   // into a plain DBG_VALUE.
1175   if (!TTracker)
1176     return true;
1177 
1178   // Pick a location for the machine value number, if such a location exists.
1179   // (This information could be stored in TransferTracker to make it faster).
1180   Optional<LocIdx> FoundLoc = None;
1181   for (auto Location : MTracker->locations()) {
1182     LocIdx CurL = Location.Idx;
1183     ValueIDNum ID = MTracker->LocIdxToIDNum[CurL];
1184     if (NewID && ID == NewID) {
1185       // If this is the first location with that value, pick it. Otherwise,
1186       // consider whether it's a "longer term" location.
1187       if (!FoundLoc) {
1188         FoundLoc = CurL;
1189         continue;
1190       }
1191 
1192       if (MTracker->isSpill(CurL))
1193         FoundLoc = CurL; // Spills are a longer term location.
1194       else if (!MTracker->isSpill(*FoundLoc) &&
1195                !MTracker->isSpill(CurL) &&
1196                !isCalleeSaved(*FoundLoc) &&
1197                isCalleeSaved(CurL))
1198         FoundLoc = CurL; // Callee saved regs are longer term than normal.
1199     }
1200   }
1201 
1202   // Tell transfer tracker that the variable value has changed.
1203   TTracker->redefVar(MI, Properties, FoundLoc);
1204 
1205   // If there was a value with no location; but the value is defined in a
1206   // later instruction in this block, this is a block-local use-before-def.
1207   if (!FoundLoc && NewID && NewID->getBlock() == CurBB &&
1208       NewID->getInst() > CurInst)
1209     TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID);
1210 
1211   // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
1212   // This DBG_VALUE is potentially a $noreg / undefined location, if
1213   // FoundLoc is None.
1214   // (XXX -- could morph the DBG_INSTR_REF in the future).
1215   MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties);
1216   TTracker->PendingDbgValues.push_back(DbgMI);
1217   TTracker->flushDbgValues(MI.getIterator(), nullptr);
1218   return true;
1219 }
1220 
1221 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
1222   if (!MI.isDebugPHI())
1223     return false;
1224 
1225   // Analyse these only when solving the machine value location problem.
1226   if (VTracker || TTracker)
1227     return true;
1228 
1229   // First operand is the value location, either a stack slot or register.
1230   // Second is the debug instruction number of the original PHI.
1231   const MachineOperand &MO = MI.getOperand(0);
1232   unsigned InstrNum = MI.getOperand(1).getImm();
1233 
1234   if (MO.isReg()) {
1235     // The value is whatever's currently in the register. Read and record it,
1236     // to be analysed later.
1237     Register Reg = MO.getReg();
1238     ValueIDNum Num = MTracker->readReg(Reg);
1239     auto PHIRec = DebugPHIRecord(
1240         {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
1241     DebugPHINumToValue.push_back(PHIRec);
1242 
1243     // Subsequent register operations, or variable locations, might occur for
1244     // any of the subregisters of this DBG_PHIs operand. Ensure that all
1245     // registers aliasing this register are tracked.
1246     for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1247       MTracker->lookupOrTrackRegister(*RAI);
1248   } else {
1249     // The value is whatever's in this stack slot.
1250     assert(MO.isFI());
1251     unsigned FI = MO.getIndex();
1252 
1253     // If the stack slot is dead, then this was optimized away.
1254     // FIXME: stack slot colouring should account for slots that get merged.
1255     if (MFI->isDeadObjectIndex(FI))
1256       return true;
1257 
1258     // Identify this spill slot.
1259     Register Base;
1260     StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
1261     SpillLoc SL = {Base, Offs};
1262     Optional<ValueIDNum> Num = MTracker->readSpill(SL);
1263 
1264     if (!Num)
1265       // Nothing ever writes to this slot. Curious, but nothing we can do.
1266       return true;
1267 
1268     // Record this DBG_PHI for later analysis.
1269     auto DbgPHI = DebugPHIRecord(
1270         {InstrNum, MI.getParent(), *Num, *MTracker->getSpillMLoc(SL)});
1271     DebugPHINumToValue.push_back(DbgPHI);
1272   }
1273 
1274   return true;
1275 }
1276 
1277 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
1278   // Meta Instructions do not affect the debug liveness of any register they
1279   // define.
1280   if (MI.isImplicitDef()) {
1281     // Except when there's an implicit def, and the location it's defining has
1282     // no value number. The whole point of an implicit def is to announce that
1283     // the register is live, without be specific about it's value. So define
1284     // a value if there isn't one already.
1285     ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
1286     // Has a legitimate value -> ignore the implicit def.
1287     if (Num.getLoc() != 0)
1288       return;
1289     // Otherwise, def it here.
1290   } else if (MI.isMetaInstruction())
1291     return;
1292 
1293   MachineFunction *MF = MI.getMF();
1294   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1295   Register SP = TLI->getStackPointerRegisterToSaveRestore();
1296 
1297   // Find the regs killed by MI, and find regmasks of preserved regs.
1298   // Max out the number of statically allocated elements in `DeadRegs`, as this
1299   // prevents fallback to std::set::count() operations.
1300   SmallSet<uint32_t, 32> DeadRegs;
1301   SmallVector<const uint32_t *, 4> RegMasks;
1302   SmallVector<const MachineOperand *, 4> RegMaskPtrs;
1303   for (const MachineOperand &MO : MI.operands()) {
1304     // Determine whether the operand is a register def.
1305     if (MO.isReg() && MO.isDef() && MO.getReg() &&
1306         Register::isPhysicalRegister(MO.getReg()) &&
1307         !(MI.isCall() && MO.getReg() == SP)) {
1308       // Remove ranges of all aliased registers.
1309       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1310         // FIXME: Can we break out of this loop early if no insertion occurs?
1311         DeadRegs.insert(*RAI);
1312     } else if (MO.isRegMask()) {
1313       RegMasks.push_back(MO.getRegMask());
1314       RegMaskPtrs.push_back(&MO);
1315     }
1316   }
1317 
1318   // Tell MLocTracker about all definitions, of regmasks and otherwise.
1319   for (uint32_t DeadReg : DeadRegs)
1320     MTracker->defReg(DeadReg, CurBB, CurInst);
1321 
1322   for (auto *MO : RegMaskPtrs)
1323     MTracker->writeRegMask(MO, CurBB, CurInst);
1324 
1325   if (!TTracker)
1326     return;
1327 
1328   // When committing variable values to locations: tell transfer tracker that
1329   // we've clobbered things. It may be able to recover the variable from a
1330   // different location.
1331 
1332   // Inform TTracker about any direct clobbers.
1333   for (uint32_t DeadReg : DeadRegs) {
1334     LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
1335     TTracker->clobberMloc(Loc, MI.getIterator(), false);
1336   }
1337 
1338   // Look for any clobbers performed by a register mask. Only test locations
1339   // that are actually being tracked.
1340   for (auto L : MTracker->locations()) {
1341     // Stack locations can't be clobbered by regmasks.
1342     if (MTracker->isSpill(L.Idx))
1343       continue;
1344 
1345     Register Reg = MTracker->LocIdxToLocID[L.Idx];
1346     for (auto *MO : RegMaskPtrs)
1347       if (MO->clobbersPhysReg(Reg))
1348         TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
1349   }
1350 }
1351 
1352 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
1353   ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
1354 
1355   MTracker->setReg(DstRegNum, SrcValue);
1356 
1357   // In all circumstances, re-def the super registers. It's definitely a new
1358   // value now. This doesn't uniquely identify the composition of subregs, for
1359   // example, two identical values in subregisters composed in different
1360   // places would not get equal value numbers.
1361   for (MCSuperRegIterator SRI(DstRegNum, TRI); SRI.isValid(); ++SRI)
1362     MTracker->defReg(*SRI, CurBB, CurInst);
1363 
1364   // If we're emulating VarLocBasedImpl, just define all the subregisters.
1365   // DBG_VALUEs of them will expect to be tracked from the DBG_VALUE, not
1366   // through prior copies.
1367   if (EmulateOldLDV) {
1368     for (MCSubRegIndexIterator DRI(DstRegNum, TRI); DRI.isValid(); ++DRI)
1369       MTracker->defReg(DRI.getSubReg(), CurBB, CurInst);
1370     return;
1371   }
1372 
1373   // Otherwise, actually copy subregisters from one location to another.
1374   // XXX: in addition, any subregisters of DstRegNum that don't line up with
1375   // the source register should be def'd.
1376   for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
1377     unsigned SrcSubReg = SRI.getSubReg();
1378     unsigned SubRegIdx = SRI.getSubRegIndex();
1379     unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
1380     if (!DstSubReg)
1381       continue;
1382 
1383     // Do copy. There are two matching subregisters, the source value should
1384     // have been def'd when the super-reg was, the latter might not be tracked
1385     // yet.
1386     // This will force SrcSubReg to be tracked, if it isn't yet.
1387     (void)MTracker->readReg(SrcSubReg);
1388     LocIdx SrcL = MTracker->getRegMLoc(SrcSubReg);
1389     assert(SrcL.asU64());
1390     (void)MTracker->readReg(DstSubReg);
1391     LocIdx DstL = MTracker->getRegMLoc(DstSubReg);
1392     assert(DstL.asU64());
1393     (void)DstL;
1394     ValueIDNum CpyValue = {SrcValue.getBlock(), SrcValue.getInst(), SrcL};
1395 
1396     MTracker->setReg(DstSubReg, CpyValue);
1397   }
1398 }
1399 
1400 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
1401                                           MachineFunction *MF) {
1402   // TODO: Handle multiple stores folded into one.
1403   if (!MI.hasOneMemOperand())
1404     return false;
1405 
1406   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1407     return false; // This is not a spill instruction, since no valid size was
1408                   // returned from either function.
1409 
1410   return true;
1411 }
1412 
1413 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
1414                                        MachineFunction *MF, unsigned &Reg) {
1415   if (!isSpillInstruction(MI, MF))
1416     return false;
1417 
1418   int FI;
1419   Reg = TII->isStoreToStackSlotPostFE(MI, FI);
1420   return Reg != 0;
1421 }
1422 
1423 Optional<SpillLoc>
1424 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1425                                        MachineFunction *MF, unsigned &Reg) {
1426   if (!MI.hasOneMemOperand())
1427     return None;
1428 
1429   // FIXME: Handle folded restore instructions with more than one memory
1430   // operand.
1431   if (MI.getRestoreSize(TII)) {
1432     Reg = MI.getOperand(0).getReg();
1433     return extractSpillBaseRegAndOffset(MI);
1434   }
1435   return None;
1436 }
1437 
1438 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
1439   // XXX -- it's too difficult to implement VarLocBasedImpl's  stack location
1440   // limitations under the new model. Therefore, when comparing them, compare
1441   // versions that don't attempt spills or restores at all.
1442   if (EmulateOldLDV)
1443     return false;
1444 
1445   MachineFunction *MF = MI.getMF();
1446   unsigned Reg;
1447   Optional<SpillLoc> Loc;
1448 
1449   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
1450 
1451   // First, if there are any DBG_VALUEs pointing at a spill slot that is
1452   // written to, terminate that variable location. The value in memory
1453   // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
1454   if (isSpillInstruction(MI, MF)) {
1455     Loc = extractSpillBaseRegAndOffset(MI);
1456 
1457     if (TTracker) {
1458       Optional<LocIdx> MLoc = MTracker->getSpillMLoc(*Loc);
1459       if (MLoc) {
1460         // Un-set this location before clobbering, so that we don't salvage
1461         // the variable location back to the same place.
1462         MTracker->setMLoc(*MLoc, ValueIDNum::EmptyValue);
1463         TTracker->clobberMloc(*MLoc, MI.getIterator());
1464       }
1465     }
1466   }
1467 
1468   // Try to recognise spill and restore instructions that may transfer a value.
1469   if (isLocationSpill(MI, MF, Reg)) {
1470     Loc = extractSpillBaseRegAndOffset(MI);
1471     auto ValueID = MTracker->readReg(Reg);
1472 
1473     // If the location is empty, produce a phi, signify it's the live-in value.
1474     if (ValueID.getLoc() == 0)
1475       ValueID = {CurBB, 0, MTracker->getRegMLoc(Reg)};
1476 
1477     MTracker->setSpill(*Loc, ValueID);
1478     auto OptSpillLocIdx = MTracker->getSpillMLoc(*Loc);
1479     assert(OptSpillLocIdx && "Spill slot set but has no LocIdx?");
1480     LocIdx SpillLocIdx = *OptSpillLocIdx;
1481 
1482     // Tell TransferTracker about this spill, produce DBG_VALUEs for it.
1483     if (TTracker)
1484       TTracker->transferMlocs(MTracker->getRegMLoc(Reg), SpillLocIdx,
1485                               MI.getIterator());
1486   } else {
1487     if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
1488       return false;
1489 
1490     // Is there a value to be restored?
1491     auto OptValueID = MTracker->readSpill(*Loc);
1492     if (OptValueID) {
1493       ValueIDNum ValueID = *OptValueID;
1494       LocIdx SpillLocIdx = *MTracker->getSpillMLoc(*Loc);
1495       // XXX -- can we recover sub-registers of this value? Until we can, first
1496       // overwrite all defs of the register being restored to.
1497       for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1498         MTracker->defReg(*RAI, CurBB, CurInst);
1499 
1500       // Now override the reg we're restoring to.
1501       MTracker->setReg(Reg, ValueID);
1502 
1503       // Report this restore to the transfer tracker too.
1504       if (TTracker)
1505         TTracker->transferMlocs(SpillLocIdx, MTracker->getRegMLoc(Reg),
1506                                 MI.getIterator());
1507     } else {
1508       // There isn't anything in the location; not clear if this is a code path
1509       // that still runs. Def this register anyway just in case.
1510       for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1511         MTracker->defReg(*RAI, CurBB, CurInst);
1512 
1513       // Force the spill slot to be tracked.
1514       LocIdx L = MTracker->getOrTrackSpillLoc(*Loc);
1515 
1516       // Set the restored value to be a machine phi number, signifying that it's
1517       // whatever the spills live-in value is in this block. Definitely has
1518       // a LocIdx due to the setSpill above.
1519       ValueIDNum ValueID = {CurBB, 0, L};
1520       MTracker->setReg(Reg, ValueID);
1521       MTracker->setSpill(*Loc, ValueID);
1522     }
1523   }
1524   return true;
1525 }
1526 
1527 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
1528   auto DestSrc = TII->isCopyInstr(MI);
1529   if (!DestSrc)
1530     return false;
1531 
1532   const MachineOperand *DestRegOp = DestSrc->Destination;
1533   const MachineOperand *SrcRegOp = DestSrc->Source;
1534 
1535   auto isCalleeSavedReg = [&](unsigned Reg) {
1536     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1537       if (CalleeSavedRegs.test(*RAI))
1538         return true;
1539     return false;
1540   };
1541 
1542   Register SrcReg = SrcRegOp->getReg();
1543   Register DestReg = DestRegOp->getReg();
1544 
1545   // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
1546   if (SrcReg == DestReg)
1547     return true;
1548 
1549   // For emulating VarLocBasedImpl:
1550   // We want to recognize instructions where destination register is callee
1551   // saved register. If register that could be clobbered by the call is
1552   // included, there would be a great chance that it is going to be clobbered
1553   // soon. It is more likely that previous register, which is callee saved, is
1554   // going to stay unclobbered longer, even if it is killed.
1555   //
1556   // For InstrRefBasedImpl, we can track multiple locations per value, so
1557   // ignore this condition.
1558   if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
1559     return false;
1560 
1561   // InstrRefBasedImpl only followed killing copies.
1562   if (EmulateOldLDV && !SrcRegOp->isKill())
1563     return false;
1564 
1565   // Copy MTracker info, including subregs if available.
1566   InstrRefBasedLDV::performCopy(SrcReg, DestReg);
1567 
1568   // Only produce a transfer of DBG_VALUE within a block where old LDV
1569   // would have. We might make use of the additional value tracking in some
1570   // other way, later.
1571   if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
1572     TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
1573                             MTracker->getRegMLoc(DestReg), MI.getIterator());
1574 
1575   // VarLocBasedImpl would quit tracking the old location after copying.
1576   if (EmulateOldLDV && SrcReg != DestReg)
1577     MTracker->defReg(SrcReg, CurBB, CurInst);
1578 
1579   // Finally, the copy might have clobbered variables based on the destination
1580   // register. Tell TTracker about it, in case a backup location exists.
1581   if (TTracker) {
1582     for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
1583       LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
1584       TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false);
1585     }
1586   }
1587 
1588   return true;
1589 }
1590 
1591 /// Accumulate a mapping between each DILocalVariable fragment and other
1592 /// fragments of that DILocalVariable which overlap. This reduces work during
1593 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
1594 /// known-to-overlap fragments are present".
1595 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
1596 ///           fragment usage.
1597 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
1598   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
1599                       MI.getDebugLoc()->getInlinedAt());
1600   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
1601 
1602   // If this is the first sighting of this variable, then we are guaranteed
1603   // there are currently no overlapping fragments either. Initialize the set
1604   // of seen fragments, record no overlaps for the current one, and return.
1605   auto SeenIt = SeenFragments.find(MIVar.getVariable());
1606   if (SeenIt == SeenFragments.end()) {
1607     SmallSet<FragmentInfo, 4> OneFragment;
1608     OneFragment.insert(ThisFragment);
1609     SeenFragments.insert({MIVar.getVariable(), OneFragment});
1610 
1611     OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1612     return;
1613   }
1614 
1615   // If this particular Variable/Fragment pair already exists in the overlap
1616   // map, it has already been accounted for.
1617   auto IsInOLapMap =
1618       OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1619   if (!IsInOLapMap.second)
1620     return;
1621 
1622   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
1623   auto &AllSeenFragments = SeenIt->second;
1624 
1625   // Otherwise, examine all other seen fragments for this variable, with "this"
1626   // fragment being a previously unseen fragment. Record any pair of
1627   // overlapping fragments.
1628   for (auto &ASeenFragment : AllSeenFragments) {
1629     // Does this previously seen fragment overlap?
1630     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
1631       // Yes: Mark the current fragment as being overlapped.
1632       ThisFragmentsOverlaps.push_back(ASeenFragment);
1633       // Mark the previously seen fragment as being overlapped by the current
1634       // one.
1635       auto ASeenFragmentsOverlaps =
1636           OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
1637       assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
1638              "Previously seen var fragment has no vector of overlaps");
1639       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
1640     }
1641   }
1642 
1643   AllSeenFragments.insert(ThisFragment);
1644 }
1645 
1646 void InstrRefBasedLDV::process(MachineInstr &MI, ValueIDNum **MLiveOuts,
1647                                ValueIDNum **MLiveIns) {
1648   // Try to interpret an MI as a debug or transfer instruction. Only if it's
1649   // none of these should we interpret it's register defs as new value
1650   // definitions.
1651   if (transferDebugValue(MI))
1652     return;
1653   if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
1654     return;
1655   if (transferDebugPHI(MI))
1656     return;
1657   if (transferRegisterCopy(MI))
1658     return;
1659   if (transferSpillOrRestoreInst(MI))
1660     return;
1661   transferRegisterDef(MI);
1662 }
1663 
1664 void InstrRefBasedLDV::produceMLocTransferFunction(
1665     MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
1666     unsigned MaxNumBlocks) {
1667   // Because we try to optimize around register mask operands by ignoring regs
1668   // that aren't currently tracked, we set up something ugly for later: RegMask
1669   // operands that are seen earlier than the first use of a register, still need
1670   // to clobber that register in the transfer function. But this information
1671   // isn't actively recorded. Instead, we track each RegMask used in each block,
1672   // and accumulated the clobbered but untracked registers in each block into
1673   // the following bitvector. Later, if new values are tracked, we can add
1674   // appropriate clobbers.
1675   SmallVector<BitVector, 32> BlockMasks;
1676   BlockMasks.resize(MaxNumBlocks);
1677 
1678   // Reserve one bit per register for the masks described above.
1679   unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
1680   for (auto &BV : BlockMasks)
1681     BV.resize(TRI->getNumRegs(), true);
1682 
1683   // Step through all instructions and inhale the transfer function.
1684   for (auto &MBB : MF) {
1685     // Object fields that are read by trackers to know where we are in the
1686     // function.
1687     CurBB = MBB.getNumber();
1688     CurInst = 1;
1689 
1690     // Set all machine locations to a PHI value. For transfer function
1691     // production only, this signifies the live-in value to the block.
1692     MTracker->reset();
1693     MTracker->setMPhis(CurBB);
1694 
1695     // Step through each instruction in this block.
1696     for (auto &MI : MBB) {
1697       process(MI);
1698       // Also accumulate fragment map.
1699       if (MI.isDebugValue())
1700         accumulateFragmentMap(MI);
1701 
1702       // Create a map from the instruction number (if present) to the
1703       // MachineInstr and its position.
1704       if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
1705         auto InstrAndPos = std::make_pair(&MI, CurInst);
1706         auto InsertResult =
1707             DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
1708 
1709         // There should never be duplicate instruction numbers.
1710         assert(InsertResult.second);
1711         (void)InsertResult;
1712       }
1713 
1714       ++CurInst;
1715     }
1716 
1717     // Produce the transfer function, a map of machine location to new value. If
1718     // any machine location has the live-in phi value from the start of the
1719     // block, it's live-through and doesn't need recording in the transfer
1720     // function.
1721     for (auto Location : MTracker->locations()) {
1722       LocIdx Idx = Location.Idx;
1723       ValueIDNum &P = Location.Value;
1724       if (P.isPHI() && P.getLoc() == Idx.asU64())
1725         continue;
1726 
1727       // Insert-or-update.
1728       auto &TransferMap = MLocTransfer[CurBB];
1729       auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
1730       if (!Result.second)
1731         Result.first->second = P;
1732     }
1733 
1734     // Accumulate any bitmask operands into the clobberred reg mask for this
1735     // block.
1736     for (auto &P : MTracker->Masks) {
1737       BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
1738     }
1739   }
1740 
1741   // Compute a bitvector of all the registers that are tracked in this block.
1742   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
1743   Register SP = TLI->getStackPointerRegisterToSaveRestore();
1744   BitVector UsedRegs(TRI->getNumRegs());
1745   for (auto Location : MTracker->locations()) {
1746     unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
1747     if (ID >= TRI->getNumRegs() || ID == SP)
1748       continue;
1749     UsedRegs.set(ID);
1750   }
1751 
1752   // Check that any regmask-clobber of a register that gets tracked, is not
1753   // live-through in the transfer function. It needs to be clobbered at the
1754   // very least.
1755   for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
1756     BitVector &BV = BlockMasks[I];
1757     BV.flip();
1758     BV &= UsedRegs;
1759     // This produces all the bits that we clobber, but also use. Check that
1760     // they're all clobbered or at least set in the designated transfer
1761     // elem.
1762     for (unsigned Bit : BV.set_bits()) {
1763       unsigned ID = MTracker->getLocID(Bit, false);
1764       LocIdx Idx = MTracker->LocIDToLocIdx[ID];
1765       auto &TransferMap = MLocTransfer[I];
1766 
1767       // Install a value representing the fact that this location is effectively
1768       // written to in this block. As there's no reserved value, instead use
1769       // a value number that is never generated. Pick the value number for the
1770       // first instruction in the block, def'ing this location, which we know
1771       // this block never used anyway.
1772       ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
1773       auto Result =
1774         TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
1775       if (!Result.second) {
1776         ValueIDNum &ValueID = Result.first->second;
1777         if (ValueID.getBlock() == I && ValueID.isPHI())
1778           // It was left as live-through. Set it to clobbered.
1779           ValueID = NotGeneratedNum;
1780       }
1781     }
1782   }
1783 }
1784 
1785 std::tuple<bool, bool>
1786 InstrRefBasedLDV::mlocJoin(MachineBasicBlock &MBB,
1787                            SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1788                            ValueIDNum **OutLocs, ValueIDNum *InLocs) {
1789   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
1790   bool Changed = false;
1791   bool DowngradeOccurred = false;
1792 
1793   // Collect predecessors that have been visited. Anything that hasn't been
1794   // visited yet is a backedge on the first iteration, and the meet of it's
1795   // lattice value for all locations will be unaffected.
1796   SmallVector<const MachineBasicBlock *, 8> BlockOrders;
1797   for (auto Pred : MBB.predecessors()) {
1798     if (Visited.count(Pred)) {
1799       BlockOrders.push_back(Pred);
1800     }
1801   }
1802 
1803   // Visit predecessors in RPOT order.
1804   auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
1805     return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
1806   };
1807   llvm::sort(BlockOrders, Cmp);
1808 
1809   // Skip entry block.
1810   if (BlockOrders.size() == 0)
1811     return std::tuple<bool, bool>(false, false);
1812 
1813   // Step through all machine locations, then look at each predecessor and
1814   // detect disagreements.
1815   unsigned ThisBlockRPO = BBToOrder.find(&MBB)->second;
1816   for (auto Location : MTracker->locations()) {
1817     LocIdx Idx = Location.Idx;
1818     // Pick out the first predecessors live-out value for this location. It's
1819     // guaranteed to be not a backedge, as we order by RPO.
1820     ValueIDNum BaseVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
1821 
1822     // Some flags for whether there's a disagreement, and whether it's a
1823     // disagreement with a backedge or not.
1824     bool Disagree = false;
1825     bool NonBackEdgeDisagree = false;
1826 
1827     // Loop around everything that wasn't 'base'.
1828     for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
1829       auto *MBB = BlockOrders[I];
1830       if (BaseVal != OutLocs[MBB->getNumber()][Idx.asU64()]) {
1831         // Live-out of a predecessor disagrees with the first predecessor.
1832         Disagree = true;
1833 
1834         // Test whether it's a disagreemnt in the backedges or not.
1835         if (BBToOrder.find(MBB)->second < ThisBlockRPO) // might be self b/e
1836           NonBackEdgeDisagree = true;
1837       }
1838     }
1839 
1840     bool OverRide = false;
1841     if (Disagree && !NonBackEdgeDisagree) {
1842       // Only the backedges disagree. Consider demoting the livein
1843       // lattice value, as per the file level comment. The value we consider
1844       // demoting to is the value that the non-backedge predecessors agree on.
1845       // The order of values is that non-PHIs are \top, a PHI at this block
1846       // \bot, and phis between the two are ordered by their RPO number.
1847       // If there's no agreement, or we've already demoted to this PHI value
1848       // before, replace with a PHI value at this block.
1849 
1850       // Calculate order numbers: zero means normal def, nonzero means RPO
1851       // number.
1852       unsigned BaseBlockRPONum = BBNumToRPO[BaseVal.getBlock()] + 1;
1853       if (!BaseVal.isPHI())
1854         BaseBlockRPONum = 0;
1855 
1856       ValueIDNum &InLocID = InLocs[Idx.asU64()];
1857       unsigned InLocRPONum = BBNumToRPO[InLocID.getBlock()] + 1;
1858       if (!InLocID.isPHI())
1859         InLocRPONum = 0;
1860 
1861       // Should we ignore the disagreeing backedges, and override with the
1862       // value the other predecessors agree on (in "base")?
1863       unsigned ThisBlockRPONum = BBNumToRPO[MBB.getNumber()] + 1;
1864       if (BaseBlockRPONum > InLocRPONum && BaseBlockRPONum < ThisBlockRPONum) {
1865         // Override.
1866         OverRide = true;
1867         DowngradeOccurred = true;
1868       }
1869     }
1870     // else: if we disagree in the non-backedges, then this is definitely
1871     // a control flow merge where different values merge. Make it a PHI.
1872 
1873     // Generate a phi...
1874     ValueIDNum PHI = {(uint64_t)MBB.getNumber(), 0, Idx};
1875     ValueIDNum NewVal = (Disagree && !OverRide) ? PHI : BaseVal;
1876     if (InLocs[Idx.asU64()] != NewVal) {
1877       Changed |= true;
1878       InLocs[Idx.asU64()] = NewVal;
1879     }
1880   }
1881 
1882   // TODO: Reimplement NumInserted and NumRemoved.
1883   return std::tuple<bool, bool>(Changed, DowngradeOccurred);
1884 }
1885 
1886 void InstrRefBasedLDV::mlocDataflow(
1887     ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
1888     SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
1889   std::priority_queue<unsigned int, std::vector<unsigned int>,
1890                       std::greater<unsigned int>>
1891       Worklist, Pending;
1892 
1893   // We track what is on the current and pending worklist to avoid inserting
1894   // the same thing twice. We could avoid this with a custom priority queue,
1895   // but this is probably not worth it.
1896   SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
1897 
1898   // Initialize worklist with every block to be visited.
1899   for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
1900     Worklist.push(I);
1901     OnWorklist.insert(OrderToBB[I]);
1902   }
1903 
1904   MTracker->reset();
1905 
1906   // Set inlocs for entry block -- each as a PHI at the entry block. Represents
1907   // the incoming value to the function.
1908   MTracker->setMPhis(0);
1909   for (auto Location : MTracker->locations())
1910     MInLocs[0][Location.Idx.asU64()] = Location.Value;
1911 
1912   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
1913   while (!Worklist.empty() || !Pending.empty()) {
1914     // Vector for storing the evaluated block transfer function.
1915     SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
1916 
1917     while (!Worklist.empty()) {
1918       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
1919       CurBB = MBB->getNumber();
1920       Worklist.pop();
1921 
1922       // Join the values in all predecessor blocks.
1923       bool InLocsChanged, DowngradeOccurred;
1924       std::tie(InLocsChanged, DowngradeOccurred) =
1925           mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
1926       InLocsChanged |= Visited.insert(MBB).second;
1927 
1928       // If a downgrade occurred, book us in for re-examination on the next
1929       // iteration.
1930       if (DowngradeOccurred && OnPending.insert(MBB).second)
1931         Pending.push(BBToOrder[MBB]);
1932 
1933       // Don't examine transfer function if we've visited this loc at least
1934       // once, and inlocs haven't changed.
1935       if (!InLocsChanged)
1936         continue;
1937 
1938       // Load the current set of live-ins into MLocTracker.
1939       MTracker->loadFromArray(MInLocs[CurBB], CurBB);
1940 
1941       // Each element of the transfer function can be a new def, or a read of
1942       // a live-in value. Evaluate each element, and store to "ToRemap".
1943       ToRemap.clear();
1944       for (auto &P : MLocTransfer[CurBB]) {
1945         if (P.second.getBlock() == CurBB && P.second.isPHI()) {
1946           // This is a movement of whatever was live in. Read it.
1947           ValueIDNum NewID = MTracker->getNumAtPos(P.second.getLoc());
1948           ToRemap.push_back(std::make_pair(P.first, NewID));
1949         } else {
1950           // It's a def. Just set it.
1951           assert(P.second.getBlock() == CurBB);
1952           ToRemap.push_back(std::make_pair(P.first, P.second));
1953         }
1954       }
1955 
1956       // Commit the transfer function changes into mloc tracker, which
1957       // transforms the contents of the MLocTracker into the live-outs.
1958       for (auto &P : ToRemap)
1959         MTracker->setMLoc(P.first, P.second);
1960 
1961       // Now copy out-locs from mloc tracker into out-loc vector, checking
1962       // whether changes have occurred. These changes can have come from both
1963       // the transfer function, and mlocJoin.
1964       bool OLChanged = false;
1965       for (auto Location : MTracker->locations()) {
1966         OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
1967         MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
1968       }
1969 
1970       MTracker->reset();
1971 
1972       // No need to examine successors again if out-locs didn't change.
1973       if (!OLChanged)
1974         continue;
1975 
1976       // All successors should be visited: put any back-edges on the pending
1977       // list for the next dataflow iteration, and any other successors to be
1978       // visited this iteration, if they're not going to be already.
1979       for (auto s : MBB->successors()) {
1980         // Does branching to this successor represent a back-edge?
1981         if (BBToOrder[s] > BBToOrder[MBB]) {
1982           // No: visit it during this dataflow iteration.
1983           if (OnWorklist.insert(s).second)
1984             Worklist.push(BBToOrder[s]);
1985         } else {
1986           // Yes: visit it on the next iteration.
1987           if (OnPending.insert(s).second)
1988             Pending.push(BBToOrder[s]);
1989         }
1990       }
1991     }
1992 
1993     Worklist.swap(Pending);
1994     std::swap(OnPending, OnWorklist);
1995     OnPending.clear();
1996     // At this point, pending must be empty, since it was just the empty
1997     // worklist
1998     assert(Pending.empty() && "Pending should be empty");
1999   }
2000 
2001   // Once all the live-ins don't change on mlocJoin(), we've reached a
2002   // fixedpoint.
2003 }
2004 
2005 bool InstrRefBasedLDV::vlocDowngradeLattice(
2006     const MachineBasicBlock &MBB, const DbgValue &OldLiveInLocation,
2007     const SmallVectorImpl<InValueT> &Values, unsigned CurBlockRPONum) {
2008   // Ranking value preference: see file level comment, the highest rank is
2009   // a plain def, followed by PHI values in reverse post-order. Numerically,
2010   // we assign all defs the rank '0', all PHIs their blocks RPO number plus
2011   // one, and consider the lowest value the highest ranked.
2012   int OldLiveInRank = BBNumToRPO[OldLiveInLocation.ID.getBlock()] + 1;
2013   if (!OldLiveInLocation.ID.isPHI())
2014     OldLiveInRank = 0;
2015 
2016   // Allow any unresolvable conflict to be over-ridden.
2017   if (OldLiveInLocation.Kind == DbgValue::NoVal) {
2018     // Although if it was an unresolvable conflict from _this_ block, then
2019     // all other seeking of downgrades and PHIs must have failed before hand.
2020     if (OldLiveInLocation.BlockNo == (unsigned)MBB.getNumber())
2021       return false;
2022     OldLiveInRank = INT_MIN;
2023   }
2024 
2025   auto &InValue = *Values[0].second;
2026 
2027   if (InValue.Kind == DbgValue::Const || InValue.Kind == DbgValue::NoVal)
2028     return false;
2029 
2030   unsigned ThisRPO = BBNumToRPO[InValue.ID.getBlock()];
2031   int ThisRank = ThisRPO + 1;
2032   if (!InValue.ID.isPHI())
2033     ThisRank = 0;
2034 
2035   // Too far down the lattice?
2036   if (ThisRPO >= CurBlockRPONum)
2037     return false;
2038 
2039   // Higher in the lattice than what we've already explored?
2040   if (ThisRank <= OldLiveInRank)
2041     return false;
2042 
2043   return true;
2044 }
2045 
2046 std::tuple<Optional<ValueIDNum>, bool> InstrRefBasedLDV::pickVPHILoc(
2047     MachineBasicBlock &MBB, const DebugVariable &Var, const LiveIdxT &LiveOuts,
2048     ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
2049     const SmallVectorImpl<MachineBasicBlock *> &BlockOrders) {
2050   // Collect a set of locations from predecessor where its live-out value can
2051   // be found.
2052   SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
2053   unsigned NumLocs = MTracker->getNumLocs();
2054   unsigned BackEdgesStart = 0;
2055 
2056   for (auto p : BlockOrders) {
2057     // Pick out where backedges start in the list of predecessors. Relies on
2058     // BlockOrders being sorted by RPO.
2059     if (BBToOrder[p] < BBToOrder[&MBB])
2060       ++BackEdgesStart;
2061 
2062     // For each predecessor, create a new set of locations.
2063     Locs.resize(Locs.size() + 1);
2064     unsigned ThisBBNum = p->getNumber();
2065     auto LiveOutMap = LiveOuts.find(p);
2066     if (LiveOutMap == LiveOuts.end())
2067       // This predecessor isn't in scope, it must have no live-in/live-out
2068       // locations.
2069       continue;
2070 
2071     auto It = LiveOutMap->second->find(Var);
2072     if (It == LiveOutMap->second->end())
2073       // There's no value recorded for this variable in this predecessor,
2074       // leave an empty set of locations.
2075       continue;
2076 
2077     const DbgValue &OutVal = It->second;
2078 
2079     if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
2080       // Consts and no-values cannot have locations we can join on.
2081       continue;
2082 
2083     assert(OutVal.Kind == DbgValue::Proposed || OutVal.Kind == DbgValue::Def);
2084     ValueIDNum ValToLookFor = OutVal.ID;
2085 
2086     // Search the live-outs of the predecessor for the specified value.
2087     for (unsigned int I = 0; I < NumLocs; ++I) {
2088       if (MOutLocs[ThisBBNum][I] == ValToLookFor)
2089         Locs.back().push_back(LocIdx(I));
2090     }
2091   }
2092 
2093   // If there were no locations at all, return an empty result.
2094   if (Locs.empty())
2095     return std::tuple<Optional<ValueIDNum>, bool>(None, false);
2096 
2097   // Lambda for seeking a common location within a range of location-sets.
2098   using LocsIt = SmallVector<SmallVector<LocIdx, 4>, 8>::iterator;
2099   auto SeekLocation =
2100       [&Locs](llvm::iterator_range<LocsIt> SearchRange) -> Optional<LocIdx> {
2101     // Starting with the first set of locations, take the intersection with
2102     // subsequent sets.
2103     SmallVector<LocIdx, 4> base = Locs[0];
2104     for (auto &S : SearchRange) {
2105       SmallVector<LocIdx, 4> new_base;
2106       std::set_intersection(base.begin(), base.end(), S.begin(), S.end(),
2107                             std::inserter(new_base, new_base.begin()));
2108       base = new_base;
2109     }
2110     if (base.empty())
2111       return None;
2112 
2113     // We now have a set of LocIdxes that contain the right output value in
2114     // each of the predecessors. Pick the lowest; if there's a register loc,
2115     // that'll be it.
2116     return *base.begin();
2117   };
2118 
2119   // Search for a common location for all predecessors. If we can't, then fall
2120   // back to only finding a common location between non-backedge predecessors.
2121   bool ValidForAllLocs = true;
2122   auto TheLoc = SeekLocation(Locs);
2123   if (!TheLoc) {
2124     ValidForAllLocs = false;
2125     TheLoc =
2126         SeekLocation(make_range(Locs.begin(), Locs.begin() + BackEdgesStart));
2127   }
2128 
2129   if (!TheLoc)
2130     return std::tuple<Optional<ValueIDNum>, bool>(None, false);
2131 
2132   // Return a PHI-value-number for the found location.
2133   LocIdx L = *TheLoc;
2134   ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
2135   return std::tuple<Optional<ValueIDNum>, bool>(PHIVal, ValidForAllLocs);
2136 }
2137 
2138 std::tuple<bool, bool> InstrRefBasedLDV::vlocJoin(
2139     MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs,
2140     SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, unsigned BBNum,
2141     const SmallSet<DebugVariable, 4> &AllVars, ValueIDNum **MOutLocs,
2142     ValueIDNum **MInLocs,
2143     SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
2144     SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
2145     DenseMap<DebugVariable, DbgValue> &InLocsT) {
2146   bool DowngradeOccurred = false;
2147 
2148   // To emulate VarLocBasedImpl, process this block if it's not in scope but
2149   // _does_ assign a variable value. No live-ins for this scope are transferred
2150   // in though, so we can return immediately.
2151   if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB)) {
2152     if (VLOCVisited)
2153       return std::tuple<bool, bool>(true, false);
2154     return std::tuple<bool, bool>(false, false);
2155   }
2156 
2157   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2158   bool Changed = false;
2159 
2160   // Find any live-ins computed in a prior iteration.
2161   auto ILSIt = VLOCInLocs.find(&MBB);
2162   assert(ILSIt != VLOCInLocs.end());
2163   auto &ILS = *ILSIt->second;
2164 
2165   // Order predecessors by RPOT order, for exploring them in that order.
2166   SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
2167 
2168   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2169     return BBToOrder[A] < BBToOrder[B];
2170   };
2171 
2172   llvm::sort(BlockOrders, Cmp);
2173 
2174   unsigned CurBlockRPONum = BBToOrder[&MBB];
2175 
2176   // Force a re-visit to loop heads in the first dataflow iteration.
2177   // FIXME: if we could "propose" Const values this wouldn't be needed,
2178   // because they'd need to be confirmed before being emitted.
2179   if (!BlockOrders.empty() &&
2180       BBToOrder[BlockOrders[BlockOrders.size() - 1]] >= CurBlockRPONum &&
2181       VLOCVisited)
2182     DowngradeOccurred = true;
2183 
2184   auto ConfirmValue = [&InLocsT](const DebugVariable &DV, DbgValue VR) {
2185     auto Result = InLocsT.insert(std::make_pair(DV, VR));
2186     (void)Result;
2187     assert(Result.second);
2188   };
2189 
2190   auto ConfirmNoVal = [&ConfirmValue, &MBB](const DebugVariable &Var, const DbgValueProperties &Properties) {
2191     DbgValue NoLocPHIVal(MBB.getNumber(), Properties, DbgValue::NoVal);
2192 
2193     ConfirmValue(Var, NoLocPHIVal);
2194   };
2195 
2196   // Attempt to join the values for each variable.
2197   for (auto &Var : AllVars) {
2198     // Collect all the DbgValues for this variable.
2199     SmallVector<InValueT, 8> Values;
2200     bool Bail = false;
2201     unsigned BackEdgesStart = 0;
2202     for (auto p : BlockOrders) {
2203       // If the predecessor isn't in scope / to be explored, we'll never be
2204       // able to join any locations.
2205       if (!BlocksToExplore.contains(p)) {
2206         Bail = true;
2207         break;
2208       }
2209 
2210       // Don't attempt to handle unvisited predecessors: they're implicitly
2211       // "unknown"s in the lattice.
2212       if (VLOCVisited && !VLOCVisited->count(p))
2213         continue;
2214 
2215       // If the predecessors OutLocs is absent, there's not much we can do.
2216       auto OL = VLOCOutLocs.find(p);
2217       if (OL == VLOCOutLocs.end()) {
2218         Bail = true;
2219         break;
2220       }
2221 
2222       // No live-out value for this predecessor also means we can't produce
2223       // a joined value.
2224       auto VIt = OL->second->find(Var);
2225       if (VIt == OL->second->end()) {
2226         Bail = true;
2227         break;
2228       }
2229 
2230       // Keep track of where back-edges begin in the Values vector. Relies on
2231       // BlockOrders being sorted by RPO.
2232       unsigned ThisBBRPONum = BBToOrder[p];
2233       if (ThisBBRPONum < CurBlockRPONum)
2234         ++BackEdgesStart;
2235 
2236       Values.push_back(std::make_pair(p, &VIt->second));
2237     }
2238 
2239     // If there were no values, or one of the predecessors couldn't have a
2240     // value, then give up immediately. It's not safe to produce a live-in
2241     // value.
2242     if (Bail || Values.size() == 0)
2243       continue;
2244 
2245     // Enumeration identifying the current state of the predecessors values.
2246     enum {
2247       Unset = 0,
2248       Agreed,       // All preds agree on the variable value.
2249       PropDisagree, // All preds agree, but the value kind is Proposed in some.
2250       BEDisagree,   // Only back-edges disagree on variable value.
2251       PHINeeded,    // Non-back-edge predecessors have conflicing values.
2252       NoSolution    // Conflicting Value metadata makes solution impossible.
2253     } OurState = Unset;
2254 
2255     // All (non-entry) blocks have at least one non-backedge predecessor.
2256     // Pick the variable value from the first of these, to compare against
2257     // all others.
2258     const DbgValue &FirstVal = *Values[0].second;
2259     const ValueIDNum &FirstID = FirstVal.ID;
2260 
2261     // Scan for variable values that can't be resolved: if they have different
2262     // DIExpressions, different indirectness, or are mixed constants /
2263     // non-constants.
2264     for (auto &V : Values) {
2265       if (V.second->Properties != FirstVal.Properties)
2266         OurState = NoSolution;
2267       if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
2268         OurState = NoSolution;
2269     }
2270 
2271     // Flags diagnosing _how_ the values disagree.
2272     bool NonBackEdgeDisagree = false;
2273     bool DisagreeOnPHINess = false;
2274     bool IDDisagree = false;
2275     bool Disagree = false;
2276     if (OurState == Unset) {
2277       for (auto &V : Values) {
2278         if (*V.second == FirstVal)
2279           continue; // No disagreement.
2280 
2281         Disagree = true;
2282 
2283         // Flag whether the value number actually diagrees.
2284         if (V.second->ID != FirstID)
2285           IDDisagree = true;
2286 
2287         // Distinguish whether disagreement happens in backedges or not.
2288         // Relies on Values (and BlockOrders) being sorted by RPO.
2289         unsigned ThisBBRPONum = BBToOrder[V.first];
2290         if (ThisBBRPONum < CurBlockRPONum)
2291           NonBackEdgeDisagree = true;
2292 
2293         // Is there a difference in whether the value is definite or only
2294         // proposed?
2295         if (V.second->Kind != FirstVal.Kind &&
2296             (V.second->Kind == DbgValue::Proposed ||
2297              V.second->Kind == DbgValue::Def) &&
2298             (FirstVal.Kind == DbgValue::Proposed ||
2299              FirstVal.Kind == DbgValue::Def))
2300           DisagreeOnPHINess = true;
2301       }
2302 
2303       // Collect those flags together and determine an overall state for
2304       // what extend the predecessors agree on a live-in value.
2305       if (!Disagree)
2306         OurState = Agreed;
2307       else if (!IDDisagree && DisagreeOnPHINess)
2308         OurState = PropDisagree;
2309       else if (!NonBackEdgeDisagree)
2310         OurState = BEDisagree;
2311       else
2312         OurState = PHINeeded;
2313     }
2314 
2315     // An extra indicator: if we only disagree on whether the value is a
2316     // Def, or proposed, then also flag whether that disagreement happens
2317     // in backedges only.
2318     bool PropOnlyInBEs = Disagree && !IDDisagree && DisagreeOnPHINess &&
2319                          !NonBackEdgeDisagree && FirstVal.Kind == DbgValue::Def;
2320 
2321     const auto &Properties = FirstVal.Properties;
2322 
2323     auto OldLiveInIt = ILS.find(Var);
2324     const DbgValue *OldLiveInLocation =
2325         (OldLiveInIt != ILS.end()) ? &OldLiveInIt->second : nullptr;
2326 
2327     bool OverRide = false;
2328     if (OurState == BEDisagree && OldLiveInLocation) {
2329       // Only backedges disagree: we can consider downgrading. If there was a
2330       // previous live-in value, use it to work out whether the current
2331       // incoming value represents a lattice downgrade or not.
2332       OverRide =
2333           vlocDowngradeLattice(MBB, *OldLiveInLocation, Values, CurBlockRPONum);
2334     }
2335 
2336     // Use the current state of predecessor agreement and other flags to work
2337     // out what to do next. Possibilities include:
2338     //  * Accept a value all predecessors agree on, or accept one that
2339     //    represents a step down the exploration lattice,
2340     //  * Use a PHI value number, if one can be found,
2341     //  * Propose a PHI value number, and see if it gets confirmed later,
2342     //  * Emit a 'NoVal' value, indicating we couldn't resolve anything.
2343     if (OurState == Agreed) {
2344       // Easiest solution: all predecessors agree on the variable value.
2345       ConfirmValue(Var, FirstVal);
2346     } else if (OurState == BEDisagree && OverRide) {
2347       // Only backedges disagree, and the other predecessors have produced
2348       // a new live-in value further down the exploration lattice.
2349       DowngradeOccurred = true;
2350       ConfirmValue(Var, FirstVal);
2351     } else if (OurState == PropDisagree) {
2352       // Predecessors agree on value, but some say it's only a proposed value.
2353       // Propagate it as proposed: unless it was proposed in this block, in
2354       // which case we're able to confirm the value.
2355       if (FirstID.getBlock() == (uint64_t)MBB.getNumber() && FirstID.isPHI()) {
2356         ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def));
2357       } else if (PropOnlyInBEs) {
2358         // If only backedges disagree, a higher (in RPO) block confirmed this
2359         // location, and we need to propagate it into this loop.
2360         ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def));
2361       } else {
2362         // Otherwise; a Def meeting a Proposed is still a Proposed.
2363         ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Proposed));
2364       }
2365     } else if ((OurState == PHINeeded || OurState == BEDisagree)) {
2366       // Predecessors disagree and can't be downgraded: this can only be
2367       // solved with a PHI. Use pickVPHILoc to go look for one.
2368       Optional<ValueIDNum> VPHI;
2369       bool AllEdgesVPHI = false;
2370       std::tie(VPHI, AllEdgesVPHI) =
2371           pickVPHILoc(MBB, Var, VLOCOutLocs, MOutLocs, MInLocs, BlockOrders);
2372 
2373       if (VPHI && AllEdgesVPHI) {
2374         // There's a PHI value that's valid for all predecessors -- we can use
2375         // it. If any of the non-backedge predecessors have proposed values
2376         // though, this PHI is also only proposed, until the predecessors are
2377         // confirmed.
2378         DbgValue::KindT K = DbgValue::Def;
2379         for (unsigned int I = 0; I < BackEdgesStart; ++I)
2380           if (Values[I].second->Kind == DbgValue::Proposed)
2381             K = DbgValue::Proposed;
2382 
2383         ConfirmValue(Var, DbgValue(*VPHI, Properties, K));
2384       } else if (VPHI) {
2385         // There's a PHI value, but it's only legal for backedges. Leave this
2386         // as a proposed PHI value: it might come back on the backedges,
2387         // and allow us to confirm it in the future.
2388         DbgValue NoBEValue = DbgValue(*VPHI, Properties, DbgValue::Proposed);
2389         ConfirmValue(Var, NoBEValue);
2390       } else {
2391         ConfirmNoVal(Var, Properties);
2392       }
2393     } else {
2394       // Otherwise: we don't know. Emit a "phi but no real loc" phi.
2395       ConfirmNoVal(Var, Properties);
2396     }
2397   }
2398 
2399   // Store newly calculated in-locs into VLOCInLocs, if they've changed.
2400   Changed = ILS != InLocsT;
2401   if (Changed)
2402     ILS = InLocsT;
2403 
2404   return std::tuple<bool, bool>(Changed, DowngradeOccurred);
2405 }
2406 
2407 void InstrRefBasedLDV::vlocDataflow(
2408     const LexicalScope *Scope, const DILocation *DILoc,
2409     const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
2410     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
2411     ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
2412     SmallVectorImpl<VLocTracker> &AllTheVLocs) {
2413   // This method is much like mlocDataflow: but focuses on a single
2414   // LexicalScope at a time. Pick out a set of blocks and variables that are
2415   // to have their value assignments solved, then run our dataflow algorithm
2416   // until a fixedpoint is reached.
2417   std::priority_queue<unsigned int, std::vector<unsigned int>,
2418                       std::greater<unsigned int>>
2419       Worklist, Pending;
2420   SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
2421 
2422   // The set of blocks we'll be examining.
2423   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
2424 
2425   // The order in which to examine them (RPO).
2426   SmallVector<MachineBasicBlock *, 8> BlockOrders;
2427 
2428   // RPO ordering function.
2429   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2430     return BBToOrder[A] < BBToOrder[B];
2431   };
2432 
2433   LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
2434 
2435   // A separate container to distinguish "blocks we're exploring" versus
2436   // "blocks that are potentially in scope. See comment at start of vlocJoin.
2437   SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore;
2438 
2439   // Old LiveDebugValues tracks variable locations that come out of blocks
2440   // not in scope, where DBG_VALUEs occur. This is something we could
2441   // legitimately ignore, but lets allow it for now.
2442   if (EmulateOldLDV)
2443     BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
2444 
2445   // We also need to propagate variable values through any artificial blocks
2446   // that immediately follow blocks in scope.
2447   DenseSet<const MachineBasicBlock *> ToAdd;
2448 
2449   // Helper lambda: For a given block in scope, perform a depth first search
2450   // of all the artificial successors, adding them to the ToAdd collection.
2451   auto AccumulateArtificialBlocks =
2452       [this, &ToAdd, &BlocksToExplore,
2453        &InScopeBlocks](const MachineBasicBlock *MBB) {
2454         // Depth-first-search state: each node is a block and which successor
2455         // we're currently exploring.
2456         SmallVector<std::pair<const MachineBasicBlock *,
2457                               MachineBasicBlock::const_succ_iterator>,
2458                     8>
2459             DFS;
2460 
2461         // Find any artificial successors not already tracked.
2462         for (auto *succ : MBB->successors()) {
2463           if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ))
2464             continue;
2465           if (!ArtificialBlocks.count(succ))
2466             continue;
2467           DFS.push_back(std::make_pair(succ, succ->succ_begin()));
2468           ToAdd.insert(succ);
2469         }
2470 
2471         // Search all those blocks, depth first.
2472         while (!DFS.empty()) {
2473           const MachineBasicBlock *CurBB = DFS.back().first;
2474           MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
2475           // Walk back if we've explored this blocks successors to the end.
2476           if (CurSucc == CurBB->succ_end()) {
2477             DFS.pop_back();
2478             continue;
2479           }
2480 
2481           // If the current successor is artificial and unexplored, descend into
2482           // it.
2483           if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
2484             DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin()));
2485             ToAdd.insert(*CurSucc);
2486             continue;
2487           }
2488 
2489           ++CurSucc;
2490         }
2491       };
2492 
2493   // Search in-scope blocks and those containing a DBG_VALUE from this scope
2494   // for artificial successors.
2495   for (auto *MBB : BlocksToExplore)
2496     AccumulateArtificialBlocks(MBB);
2497   for (auto *MBB : InScopeBlocks)
2498     AccumulateArtificialBlocks(MBB);
2499 
2500   BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
2501   InScopeBlocks.insert(ToAdd.begin(), ToAdd.end());
2502 
2503   // Single block scope: not interesting! No propagation at all. Note that
2504   // this could probably go above ArtificialBlocks without damage, but
2505   // that then produces output differences from original-live-debug-values,
2506   // which propagates from a single block into many artificial ones.
2507   if (BlocksToExplore.size() == 1)
2508     return;
2509 
2510   // Picks out relevants blocks RPO order and sort them.
2511   for (auto *MBB : BlocksToExplore)
2512     BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
2513 
2514   llvm::sort(BlockOrders, Cmp);
2515   unsigned NumBlocks = BlockOrders.size();
2516 
2517   // Allocate some vectors for storing the live ins and live outs. Large.
2518   SmallVector<DenseMap<DebugVariable, DbgValue>, 32> LiveIns, LiveOuts;
2519   LiveIns.resize(NumBlocks);
2520   LiveOuts.resize(NumBlocks);
2521 
2522   // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
2523   // vlocJoin.
2524   LiveIdxT LiveOutIdx, LiveInIdx;
2525   LiveOutIdx.reserve(NumBlocks);
2526   LiveInIdx.reserve(NumBlocks);
2527   for (unsigned I = 0; I < NumBlocks; ++I) {
2528     LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
2529     LiveInIdx[BlockOrders[I]] = &LiveIns[I];
2530   }
2531 
2532   for (auto *MBB : BlockOrders) {
2533     Worklist.push(BBToOrder[MBB]);
2534     OnWorklist.insert(MBB);
2535   }
2536 
2537   // Iterate over all the blocks we selected, propagating variable values.
2538   bool FirstTrip = true;
2539   SmallPtrSet<const MachineBasicBlock *, 16> VLOCVisited;
2540   while (!Worklist.empty() || !Pending.empty()) {
2541     while (!Worklist.empty()) {
2542       auto *MBB = OrderToBB[Worklist.top()];
2543       CurBB = MBB->getNumber();
2544       Worklist.pop();
2545 
2546       DenseMap<DebugVariable, DbgValue> JoinedInLocs;
2547 
2548       // Join values from predecessors. Updates LiveInIdx, and writes output
2549       // into JoinedInLocs.
2550       bool InLocsChanged, DowngradeOccurred;
2551       std::tie(InLocsChanged, DowngradeOccurred) = vlocJoin(
2552           *MBB, LiveOutIdx, LiveInIdx, (FirstTrip) ? &VLOCVisited : nullptr,
2553           CurBB, VarsWeCareAbout, MOutLocs, MInLocs, InScopeBlocks,
2554           BlocksToExplore, JoinedInLocs);
2555 
2556       bool FirstVisit = VLOCVisited.insert(MBB).second;
2557 
2558       // Always explore transfer function if inlocs changed, or if we've not
2559       // visited this block before.
2560       InLocsChanged |= FirstVisit;
2561 
2562       // If a downgrade occurred, book us in for re-examination on the next
2563       // iteration.
2564       if (DowngradeOccurred && OnPending.insert(MBB).second)
2565         Pending.push(BBToOrder[MBB]);
2566 
2567       if (!InLocsChanged)
2568         continue;
2569 
2570       // Do transfer function.
2571       auto &VTracker = AllTheVLocs[MBB->getNumber()];
2572       for (auto &Transfer : VTracker.Vars) {
2573         // Is this var we're mangling in this scope?
2574         if (VarsWeCareAbout.count(Transfer.first)) {
2575           // Erase on empty transfer (DBG_VALUE $noreg).
2576           if (Transfer.second.Kind == DbgValue::Undef) {
2577             JoinedInLocs.erase(Transfer.first);
2578           } else {
2579             // Insert new variable value; or overwrite.
2580             auto NewValuePair = std::make_pair(Transfer.first, Transfer.second);
2581             auto Result = JoinedInLocs.insert(NewValuePair);
2582             if (!Result.second)
2583               Result.first->second = Transfer.second;
2584           }
2585         }
2586       }
2587 
2588       // Did the live-out locations change?
2589       bool OLChanged = JoinedInLocs != *LiveOutIdx[MBB];
2590 
2591       // If they haven't changed, there's no need to explore further.
2592       if (!OLChanged)
2593         continue;
2594 
2595       // Commit to the live-out record.
2596       *LiveOutIdx[MBB] = JoinedInLocs;
2597 
2598       // We should visit all successors. Ensure we'll visit any non-backedge
2599       // successors during this dataflow iteration; book backedge successors
2600       // to be visited next time around.
2601       for (auto s : MBB->successors()) {
2602         // Ignore out of scope / not-to-be-explored successors.
2603         if (LiveInIdx.find(s) == LiveInIdx.end())
2604           continue;
2605 
2606         if (BBToOrder[s] > BBToOrder[MBB]) {
2607           if (OnWorklist.insert(s).second)
2608             Worklist.push(BBToOrder[s]);
2609         } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
2610           Pending.push(BBToOrder[s]);
2611         }
2612       }
2613     }
2614     Worklist.swap(Pending);
2615     std::swap(OnWorklist, OnPending);
2616     OnPending.clear();
2617     assert(Pending.empty());
2618     FirstTrip = false;
2619   }
2620 
2621   // Dataflow done. Now what? Save live-ins. Ignore any that are still marked
2622   // as being variable-PHIs, because those did not have their machine-PHI
2623   // value confirmed. Such variable values are places that could have been
2624   // PHIs, but are not.
2625   for (auto *MBB : BlockOrders) {
2626     auto &VarMap = *LiveInIdx[MBB];
2627     for (auto &P : VarMap) {
2628       if (P.second.Kind == DbgValue::Proposed ||
2629           P.second.Kind == DbgValue::NoVal)
2630         continue;
2631       Output[MBB->getNumber()].push_back(P);
2632     }
2633   }
2634 
2635   BlockOrders.clear();
2636   BlocksToExplore.clear();
2637 }
2638 
2639 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2640 void InstrRefBasedLDV::dump_mloc_transfer(
2641     const MLocTransferMap &mloc_transfer) const {
2642   for (auto &P : mloc_transfer) {
2643     std::string foo = MTracker->LocIdxToName(P.first);
2644     std::string bar = MTracker->IDAsString(P.second);
2645     dbgs() << "Loc " << foo << " --> " << bar << "\n";
2646   }
2647 }
2648 #endif
2649 
2650 void InstrRefBasedLDV::emitLocations(
2651     MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MOutLocs,
2652     ValueIDNum **MInLocs, DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
2653     const TargetPassConfig &TPC) {
2654   TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC);
2655   unsigned NumLocs = MTracker->getNumLocs();
2656 
2657   // For each block, load in the machine value locations and variable value
2658   // live-ins, then step through each instruction in the block. New DBG_VALUEs
2659   // to be inserted will be created along the way.
2660   for (MachineBasicBlock &MBB : MF) {
2661     unsigned bbnum = MBB.getNumber();
2662     MTracker->reset();
2663     MTracker->loadFromArray(MInLocs[bbnum], bbnum);
2664     TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()],
2665                          NumLocs);
2666 
2667     CurBB = bbnum;
2668     CurInst = 1;
2669     for (auto &MI : MBB) {
2670       process(MI, MOutLocs, MInLocs);
2671       TTracker->checkInstForNewValues(CurInst, MI.getIterator());
2672       ++CurInst;
2673     }
2674   }
2675 
2676   // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer
2677   // in DWARF in different orders. Use the order that they appear when walking
2678   // through each block / each instruction, stored in AllVarsNumbering.
2679   auto OrderDbgValues = [&](const MachineInstr *A,
2680                             const MachineInstr *B) -> bool {
2681     DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(),
2682                        A->getDebugLoc()->getInlinedAt());
2683     DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(),
2684                        B->getDebugLoc()->getInlinedAt());
2685     return AllVarsNumbering.find(VarA)->second <
2686            AllVarsNumbering.find(VarB)->second;
2687   };
2688 
2689   // Go through all the transfers recorded in the TransferTracker -- this is
2690   // both the live-ins to a block, and any movements of values that happen
2691   // in the middle.
2692   for (auto &P : TTracker->Transfers) {
2693     // Sort them according to appearance order.
2694     llvm::sort(P.Insts, OrderDbgValues);
2695     // Insert either before or after the designated point...
2696     if (P.MBB) {
2697       MachineBasicBlock &MBB = *P.MBB;
2698       for (auto *MI : P.Insts) {
2699         MBB.insert(P.Pos, MI);
2700       }
2701     } else {
2702       // Terminators, like tail calls, can clobber things. Don't try and place
2703       // transfers after them.
2704       if (P.Pos->isTerminator())
2705         continue;
2706 
2707       MachineBasicBlock &MBB = *P.Pos->getParent();
2708       for (auto *MI : P.Insts) {
2709         MBB.insertAfterBundle(P.Pos, MI);
2710       }
2711     }
2712   }
2713 }
2714 
2715 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
2716   // Build some useful data structures.
2717   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
2718     if (const DebugLoc &DL = MI.getDebugLoc())
2719       return DL.getLine() != 0;
2720     return false;
2721   };
2722   // Collect a set of all the artificial blocks.
2723   for (auto &MBB : MF)
2724     if (none_of(MBB.instrs(), hasNonArtificialLocation))
2725       ArtificialBlocks.insert(&MBB);
2726 
2727   // Compute mappings of block <=> RPO order.
2728   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
2729   unsigned int RPONumber = 0;
2730   for (MachineBasicBlock *MBB : RPOT) {
2731     OrderToBB[RPONumber] = MBB;
2732     BBToOrder[MBB] = RPONumber;
2733     BBNumToRPO[MBB->getNumber()] = RPONumber;
2734     ++RPONumber;
2735   }
2736 
2737   // Order value substitutions by their "source" operand pair, for quick lookup.
2738   llvm::sort(MF.DebugValueSubstitutions);
2739 
2740 #ifdef EXPENSIVE_CHECKS
2741   // As an expensive check, test whether there are any duplicate substitution
2742   // sources in the collection.
2743   if (MF.DebugValueSubstitutions.size() > 2) {
2744     for (auto It = MF.DebugValueSubstitutions.begin();
2745          It != std::prev(MF.DebugValueSubstitutions.end()); ++It) {
2746       assert(It->Src != std::next(It)->Src && "Duplicate variable location "
2747                                               "substitution seen");
2748     }
2749   }
2750 #endif
2751 }
2752 
2753 /// Calculate the liveness information for the given machine function and
2754 /// extend ranges across basic blocks.
2755 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC,
2756                                     unsigned InputBBLimit,
2757                                     unsigned InputDbgValLimit) {
2758   // No subprogram means this function contains no debuginfo.
2759   if (!MF.getFunction().getSubprogram())
2760     return false;
2761 
2762   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
2763   this->TPC = TPC;
2764 
2765   TRI = MF.getSubtarget().getRegisterInfo();
2766   TII = MF.getSubtarget().getInstrInfo();
2767   TFI = MF.getSubtarget().getFrameLowering();
2768   TFI->getCalleeSaves(MF, CalleeSavedRegs);
2769   MFI = &MF.getFrameInfo();
2770   LS.initialize(MF);
2771 
2772   MTracker =
2773       new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
2774   VTracker = nullptr;
2775   TTracker = nullptr;
2776 
2777   SmallVector<MLocTransferMap, 32> MLocTransfer;
2778   SmallVector<VLocTracker, 8> vlocs;
2779   LiveInsT SavedLiveIns;
2780 
2781   int MaxNumBlocks = -1;
2782   for (auto &MBB : MF)
2783     MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
2784   assert(MaxNumBlocks >= 0);
2785   ++MaxNumBlocks;
2786 
2787   MLocTransfer.resize(MaxNumBlocks);
2788   vlocs.resize(MaxNumBlocks);
2789   SavedLiveIns.resize(MaxNumBlocks);
2790 
2791   initialSetup(MF);
2792 
2793   produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
2794 
2795   // Allocate and initialize two array-of-arrays for the live-in and live-out
2796   // machine values. The outer dimension is the block number; while the inner
2797   // dimension is a LocIdx from MLocTracker.
2798   ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks];
2799   ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks];
2800   unsigned NumLocs = MTracker->getNumLocs();
2801   for (int i = 0; i < MaxNumBlocks; ++i) {
2802     MOutLocs[i] = new ValueIDNum[NumLocs];
2803     MInLocs[i] = new ValueIDNum[NumLocs];
2804   }
2805 
2806   // Solve the machine value dataflow problem using the MLocTransfer function,
2807   // storing the computed live-ins / live-outs into the array-of-arrays. We use
2808   // both live-ins and live-outs for decision making in the variable value
2809   // dataflow problem.
2810   mlocDataflow(MInLocs, MOutLocs, MLocTransfer);
2811 
2812   // Patch up debug phi numbers, turning unknown block-live-in values into
2813   // either live-through machine values, or PHIs.
2814   for (auto &DBG_PHI : DebugPHINumToValue) {
2815     // Identify unresolved block-live-ins.
2816     ValueIDNum &Num = DBG_PHI.ValueRead;
2817     if (!Num.isPHI())
2818       continue;
2819 
2820     unsigned BlockNo = Num.getBlock();
2821     LocIdx LocNo = Num.getLoc();
2822     Num = MInLocs[BlockNo][LocNo.asU64()];
2823   }
2824   // Later, we'll be looking up ranges of instruction numbers.
2825   llvm::sort(DebugPHINumToValue);
2826 
2827   // Walk back through each block / instruction, collecting DBG_VALUE
2828   // instructions and recording what machine value their operands refer to.
2829   for (auto &OrderPair : OrderToBB) {
2830     MachineBasicBlock &MBB = *OrderPair.second;
2831     CurBB = MBB.getNumber();
2832     VTracker = &vlocs[CurBB];
2833     VTracker->MBB = &MBB;
2834     MTracker->loadFromArray(MInLocs[CurBB], CurBB);
2835     CurInst = 1;
2836     for (auto &MI : MBB) {
2837       process(MI, MOutLocs, MInLocs);
2838       ++CurInst;
2839     }
2840     MTracker->reset();
2841   }
2842 
2843   // Number all variables in the order that they appear, to be used as a stable
2844   // insertion order later.
2845   DenseMap<DebugVariable, unsigned> AllVarsNumbering;
2846 
2847   // Map from one LexicalScope to all the variables in that scope.
2848   DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars;
2849 
2850   // Map from One lexical scope to all blocks in that scope.
2851   DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>
2852       ScopeToBlocks;
2853 
2854   // Store a DILocation that describes a scope.
2855   DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation;
2856 
2857   // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
2858   // the order is unimportant, it just has to be stable.
2859   unsigned VarAssignCount = 0;
2860   for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
2861     auto *MBB = OrderToBB[I];
2862     auto *VTracker = &vlocs[MBB->getNumber()];
2863     // Collect each variable with a DBG_VALUE in this block.
2864     for (auto &idx : VTracker->Vars) {
2865       const auto &Var = idx.first;
2866       const DILocation *ScopeLoc = VTracker->Scopes[Var];
2867       assert(ScopeLoc != nullptr);
2868       auto *Scope = LS.findLexicalScope(ScopeLoc);
2869 
2870       // No insts in scope -> shouldn't have been recorded.
2871       assert(Scope != nullptr);
2872 
2873       AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
2874       ScopeToVars[Scope].insert(Var);
2875       ScopeToBlocks[Scope].insert(VTracker->MBB);
2876       ScopeToDILocation[Scope] = ScopeLoc;
2877       ++VarAssignCount;
2878     }
2879   }
2880 
2881   bool Changed = false;
2882 
2883   // If we have an extremely large number of variable assignments and blocks,
2884   // bail out at this point. We've burnt some time doing analysis already,
2885   // however we should cut our losses.
2886   if ((unsigned)MaxNumBlocks > InputBBLimit &&
2887       VarAssignCount > InputDbgValLimit) {
2888     LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName()
2889                       << " has " << MaxNumBlocks << " basic blocks and "
2890                       << VarAssignCount
2891                       << " variable assignments, exceeding limits.\n");
2892   } else {
2893     // Compute the extended ranges, iterating over scopes. There might be
2894     // something to be said for ordering them by size/locality, but that's for
2895     // the future. For each scope, solve the variable value problem, producing
2896     // a map of variables to values in SavedLiveIns.
2897     for (auto &P : ScopeToVars) {
2898       vlocDataflow(P.first, ScopeToDILocation[P.first], P.second,
2899                    ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs,
2900                    vlocs);
2901     }
2902 
2903     // Using the computed value locations and variable values for each block,
2904     // create the DBG_VALUE instructions representing the extended variable
2905     // locations.
2906     emitLocations(MF, SavedLiveIns, MOutLocs, MInLocs, AllVarsNumbering, *TPC);
2907 
2908     // Did we actually make any changes? If we created any DBG_VALUEs, then yes.
2909     Changed = TTracker->Transfers.size() != 0;
2910   }
2911 
2912   // Common clean-up of memory.
2913   for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) {
2914     delete[] MOutLocs[Idx];
2915     delete[] MInLocs[Idx];
2916   }
2917   delete[] MOutLocs;
2918   delete[] MInLocs;
2919 
2920   delete MTracker;
2921   delete TTracker;
2922   MTracker = nullptr;
2923   VTracker = nullptr;
2924   TTracker = nullptr;
2925 
2926   ArtificialBlocks.clear();
2927   OrderToBB.clear();
2928   BBToOrder.clear();
2929   BBNumToRPO.clear();
2930   DebugInstrNumToInstr.clear();
2931   DebugPHINumToValue.clear();
2932 
2933   return Changed;
2934 }
2935 
2936 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
2937   return new InstrRefBasedLDV();
2938 }
2939 
2940 namespace {
2941 class LDVSSABlock;
2942 class LDVSSAUpdater;
2943 
2944 // Pick a type to identify incoming block values as we construct SSA. We
2945 // can't use anything more robust than an integer unfortunately, as SSAUpdater
2946 // expects to zero-initialize the type.
2947 typedef uint64_t BlockValueNum;
2948 
2949 /// Represents an SSA PHI node for the SSA updater class. Contains the block
2950 /// this PHI is in, the value number it would have, and the expected incoming
2951 /// values from parent blocks.
2952 class LDVSSAPhi {
2953 public:
2954   SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
2955   LDVSSABlock *ParentBlock;
2956   BlockValueNum PHIValNum;
2957   LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
2958       : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
2959 
2960   LDVSSABlock *getParent() { return ParentBlock; }
2961 };
2962 
2963 /// Thin wrapper around a block predecessor iterator. Only difference from a
2964 /// normal block iterator is that it dereferences to an LDVSSABlock.
2965 class LDVSSABlockIterator {
2966 public:
2967   MachineBasicBlock::pred_iterator PredIt;
2968   LDVSSAUpdater &Updater;
2969 
2970   LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
2971                       LDVSSAUpdater &Updater)
2972       : PredIt(PredIt), Updater(Updater) {}
2973 
2974   bool operator!=(const LDVSSABlockIterator &OtherIt) const {
2975     return OtherIt.PredIt != PredIt;
2976   }
2977 
2978   LDVSSABlockIterator &operator++() {
2979     ++PredIt;
2980     return *this;
2981   }
2982 
2983   LDVSSABlock *operator*();
2984 };
2985 
2986 /// Thin wrapper around a block for SSA Updater interface. Necessary because
2987 /// we need to track the PHI value(s) that we may have observed as necessary
2988 /// in this block.
2989 class LDVSSABlock {
2990 public:
2991   MachineBasicBlock &BB;
2992   LDVSSAUpdater &Updater;
2993   using PHIListT = SmallVector<LDVSSAPhi, 1>;
2994   /// List of PHIs in this block. There should only ever be one.
2995   PHIListT PHIList;
2996 
2997   LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
2998       : BB(BB), Updater(Updater) {}
2999 
3000   LDVSSABlockIterator succ_begin() {
3001     return LDVSSABlockIterator(BB.succ_begin(), Updater);
3002   }
3003 
3004   LDVSSABlockIterator succ_end() {
3005     return LDVSSABlockIterator(BB.succ_end(), Updater);
3006   }
3007 
3008   /// SSAUpdater has requested a PHI: create that within this block record.
3009   LDVSSAPhi *newPHI(BlockValueNum Value) {
3010     PHIList.emplace_back(Value, this);
3011     return &PHIList.back();
3012   }
3013 
3014   /// SSAUpdater wishes to know what PHIs already exist in this block.
3015   PHIListT &phis() { return PHIList; }
3016 };
3017 
3018 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
3019 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
3020 // SSAUpdaterTraits<LDVSSAUpdater>.
3021 class LDVSSAUpdater {
3022 public:
3023   /// Map of value numbers to PHI records.
3024   DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
3025   /// Map of which blocks generate Undef values -- blocks that are not
3026   /// dominated by any Def.
3027   DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
3028   /// Map of machine blocks to our own records of them.
3029   DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
3030   /// Machine location where any PHI must occur.
3031   LocIdx Loc;
3032   /// Table of live-in machine value numbers for blocks / locations.
3033   ValueIDNum **MLiveIns;
3034 
3035   LDVSSAUpdater(LocIdx L, ValueIDNum **MLiveIns) : Loc(L), MLiveIns(MLiveIns) {}
3036 
3037   void reset() {
3038     for (auto &Block : BlockMap)
3039       delete Block.second;
3040 
3041     PHIs.clear();
3042     UndefMap.clear();
3043     BlockMap.clear();
3044   }
3045 
3046   ~LDVSSAUpdater() { reset(); }
3047 
3048   /// For a given MBB, create a wrapper block for it. Stores it in the
3049   /// LDVSSAUpdater block map.
3050   LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
3051     auto it = BlockMap.find(BB);
3052     if (it == BlockMap.end()) {
3053       BlockMap[BB] = new LDVSSABlock(*BB, *this);
3054       it = BlockMap.find(BB);
3055     }
3056     return it->second;
3057   }
3058 
3059   /// Find the live-in value number for the given block. Looks up the value at
3060   /// the PHI location on entry.
3061   BlockValueNum getValue(LDVSSABlock *LDVBB) {
3062     return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64();
3063   }
3064 };
3065 
3066 LDVSSABlock *LDVSSABlockIterator::operator*() {
3067   return Updater.getSSALDVBlock(*PredIt);
3068 }
3069 
3070 #ifndef NDEBUG
3071 
3072 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
3073   out << "SSALDVPHI " << PHI.PHIValNum;
3074   return out;
3075 }
3076 
3077 #endif
3078 
3079 } // namespace
3080 
3081 namespace llvm {
3082 
3083 /// Template specialization to give SSAUpdater access to CFG and value
3084 /// information. SSAUpdater calls methods in these traits, passing in the
3085 /// LDVSSAUpdater object, to learn about blocks and the values they define.
3086 /// It also provides methods to create PHI nodes and track them.
3087 template <> class SSAUpdaterTraits<LDVSSAUpdater> {
3088 public:
3089   using BlkT = LDVSSABlock;
3090   using ValT = BlockValueNum;
3091   using PhiT = LDVSSAPhi;
3092   using BlkSucc_iterator = LDVSSABlockIterator;
3093 
3094   // Methods to access block successors -- dereferencing to our wrapper class.
3095   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
3096   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
3097 
3098   /// Iterator for PHI operands.
3099   class PHI_iterator {
3100   private:
3101     LDVSSAPhi *PHI;
3102     unsigned Idx;
3103 
3104   public:
3105     explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
3106         : PHI(P), Idx(0) {}
3107     PHI_iterator(LDVSSAPhi *P, bool) // end iterator
3108         : PHI(P), Idx(PHI->IncomingValues.size()) {}
3109 
3110     PHI_iterator &operator++() {
3111       Idx++;
3112       return *this;
3113     }
3114     bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
3115     bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
3116 
3117     BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
3118 
3119     LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
3120   };
3121 
3122   static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
3123 
3124   static inline PHI_iterator PHI_end(PhiT *PHI) {
3125     return PHI_iterator(PHI, true);
3126   }
3127 
3128   /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
3129   /// vector.
3130   static void FindPredecessorBlocks(LDVSSABlock *BB,
3131                                     SmallVectorImpl<LDVSSABlock *> *Preds) {
3132     for (MachineBasicBlock::pred_iterator PI = BB->BB.pred_begin(),
3133                                           E = BB->BB.pred_end();
3134          PI != E; ++PI)
3135       Preds->push_back(BB->Updater.getSSALDVBlock(*PI));
3136   }
3137 
3138   /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
3139   /// register. For LiveDebugValues, represents a block identified as not having
3140   /// any DBG_PHI predecessors.
3141   static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
3142     // Create a value number for this block -- it needs to be unique and in the
3143     // "undef" collection, so that we know it's not real. Use a number
3144     // representing a PHI into this block.
3145     BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
3146     Updater->UndefMap[&BB->BB] = Num;
3147     return Num;
3148   }
3149 
3150   /// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
3151   /// SSAUpdater will populate it with information about incoming values. The
3152   /// value number of this PHI is whatever the  machine value number problem
3153   /// solution determined it to be. This includes non-phi values if SSAUpdater
3154   /// tries to create a PHI where the incoming values are identical.
3155   static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
3156                                    LDVSSAUpdater *Updater) {
3157     BlockValueNum PHIValNum = Updater->getValue(BB);
3158     LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
3159     Updater->PHIs[PHIValNum] = PHI;
3160     return PHIValNum;
3161   }
3162 
3163   /// AddPHIOperand - Add the specified value as an operand of the PHI for
3164   /// the specified predecessor block.
3165   static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
3166     PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
3167   }
3168 
3169   /// ValueIsPHI - Check if the instruction that defines the specified value
3170   /// is a PHI instruction.
3171   static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3172     auto PHIIt = Updater->PHIs.find(Val);
3173     if (PHIIt == Updater->PHIs.end())
3174       return nullptr;
3175     return PHIIt->second;
3176   }
3177 
3178   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
3179   /// operands, i.e., it was just added.
3180   static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3181     LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
3182     if (PHI && PHI->IncomingValues.size() == 0)
3183       return PHI;
3184     return nullptr;
3185   }
3186 
3187   /// GetPHIValue - For the specified PHI instruction, return the value
3188   /// that it defines.
3189   static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
3190 };
3191 
3192 } // end namespace llvm
3193 
3194 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(MachineFunction &MF,
3195                                                       ValueIDNum **MLiveOuts,
3196                                                       ValueIDNum **MLiveIns,
3197                                                       MachineInstr &Here,
3198                                                       uint64_t InstrNum) {
3199   // Pick out records of DBG_PHI instructions that have been observed. If there
3200   // are none, then we cannot compute a value number.
3201   auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
3202                                     DebugPHINumToValue.end(), InstrNum);
3203   auto LowerIt = RangePair.first;
3204   auto UpperIt = RangePair.second;
3205 
3206   // No DBG_PHI means there can be no location.
3207   if (LowerIt == UpperIt)
3208     return None;
3209 
3210   // If there's only one DBG_PHI, then that is our value number.
3211   if (std::distance(LowerIt, UpperIt) == 1)
3212     return LowerIt->ValueRead;
3213 
3214   auto DBGPHIRange = make_range(LowerIt, UpperIt);
3215 
3216   // Pick out the location (physreg, slot) where any PHIs must occur. It's
3217   // technically possible for us to merge values in different registers in each
3218   // block, but highly unlikely that LLVM will generate such code after register
3219   // allocation.
3220   LocIdx Loc = LowerIt->ReadLoc;
3221 
3222   // We have several DBG_PHIs, and a use position (the Here inst). All each
3223   // DBG_PHI does is identify a value at a program position. We can treat each
3224   // DBG_PHI like it's a Def of a value, and the use position is a Use of a
3225   // value, just like SSA. We use the bulk-standard LLVM SSA updater class to
3226   // determine which Def is used at the Use, and any PHIs that happen along
3227   // the way.
3228   // Adapted LLVM SSA Updater:
3229   LDVSSAUpdater Updater(Loc, MLiveIns);
3230   // Map of which Def or PHI is the current value in each block.
3231   DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
3232   // Set of PHIs that we have created along the way.
3233   SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
3234 
3235   // Each existing DBG_PHI is a Def'd value under this model. Record these Defs
3236   // for the SSAUpdater.
3237   for (const auto &DBG_PHI : DBGPHIRange) {
3238     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3239     const ValueIDNum &Num = DBG_PHI.ValueRead;
3240     AvailableValues.insert(std::make_pair(Block, Num.asU64()));
3241   }
3242 
3243   LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
3244   const auto &AvailIt = AvailableValues.find(HereBlock);
3245   if (AvailIt != AvailableValues.end()) {
3246     // Actually, we already know what the value is -- the Use is in the same
3247     // block as the Def.
3248     return ValueIDNum::fromU64(AvailIt->second);
3249   }
3250 
3251   // Otherwise, we must use the SSA Updater. It will identify the value number
3252   // that we are to use, and the PHIs that must happen along the way.
3253   SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
3254   BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
3255   ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
3256 
3257   // We have the number for a PHI, or possibly live-through value, to be used
3258   // at this Use. There are a number of things we have to check about it though:
3259   //  * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
3260   //    Use was not completely dominated by DBG_PHIs and we should abort.
3261   //  * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
3262   //    we've left SSA form. Validate that the inputs to each PHI are the
3263   //    expected values.
3264   //  * Is a PHI we've created actually a merging of values, or are all the
3265   //    predecessor values the same, leading to a non-PHI machine value number?
3266   //    (SSAUpdater doesn't know that either). Remap validated PHIs into the
3267   //    the ValidatedValues collection below to sort this out.
3268   DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
3269 
3270   // Define all the input DBG_PHI values in ValidatedValues.
3271   for (const auto &DBG_PHI : DBGPHIRange) {
3272     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3273     const ValueIDNum &Num = DBG_PHI.ValueRead;
3274     ValidatedValues.insert(std::make_pair(Block, Num));
3275   }
3276 
3277   // Sort PHIs to validate into RPO-order.
3278   SmallVector<LDVSSAPhi *, 8> SortedPHIs;
3279   for (auto &PHI : CreatedPHIs)
3280     SortedPHIs.push_back(PHI);
3281 
3282   std::sort(
3283       SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) {
3284         return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
3285       });
3286 
3287   for (auto &PHI : SortedPHIs) {
3288     ValueIDNum ThisBlockValueNum =
3289         MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()];
3290 
3291     // Are all these things actually defined?
3292     for (auto &PHIIt : PHI->IncomingValues) {
3293       // Any undef input means DBG_PHIs didn't dominate the use point.
3294       if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end())
3295         return None;
3296 
3297       ValueIDNum ValueToCheck;
3298       ValueIDNum *BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()];
3299 
3300       auto VVal = ValidatedValues.find(PHIIt.first);
3301       if (VVal == ValidatedValues.end()) {
3302         // We cross a loop, and this is a backedge. LLVMs tail duplication
3303         // happens so late that DBG_PHI instructions should not be able to
3304         // migrate into loops -- meaning we can only be live-through this
3305         // loop.
3306         ValueToCheck = ThisBlockValueNum;
3307       } else {
3308         // Does the block have as a live-out, in the location we're examining,
3309         // the value that we expect? If not, it's been moved or clobbered.
3310         ValueToCheck = VVal->second;
3311       }
3312 
3313       if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
3314         return None;
3315     }
3316 
3317     // Record this value as validated.
3318     ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
3319   }
3320 
3321   // All the PHIs are valid: we can return what the SSAUpdater said our value
3322   // number was.
3323   return Result;
3324 }
3325