1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file InstrRefBasedImpl.cpp
9 ///
10 /// This is a separate implementation of LiveDebugValues, see
11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
12 ///
13 /// This pass propagates variable locations between basic blocks, resolving
14 /// control flow conflicts between them. The problem is SSA construction, where
15 /// each debug instruction assigns the *value* that a variable has, and every
16 /// instruction where the variable is in scope uses that variable. The resulting
17 /// map of instruction-to-value is then translated into a register (or spill)
18 /// location for each variable over each instruction.
19 ///
20 /// The primary difference from normal SSA construction is that we cannot
21 /// _create_ PHI values that contain variable values. CodeGen has already
22 /// completed, and we can't alter it just to make debug-info complete. Thus:
23 /// we can identify function positions where we would like a PHI value for a
24 /// variable, but must search the MachineFunction to see whether such a PHI is
25 /// available. If no such PHI exists, the variable location must be dropped.
26 ///
27 /// To achieve this, we perform two kinds of analysis. First, we identify
28 /// every value defined by every instruction (ignoring those that only move
29 /// another value), then re-compute an SSA-form representation of the
30 /// MachineFunction, using value propagation to eliminate any un-necessary
31 /// PHI values. This gives us a map of every value computed in the function,
32 /// and its location within the register file / stack.
33 ///
34 /// Secondly, for each variable we perform the same analysis, where each debug
35 /// instruction is considered a def, and every instruction where the variable
36 /// is in lexical scope as a use. Value propagation is used again to eliminate
37 /// any un-necessary PHIs. This gives us a map of each variable to the value
38 /// it should have in a block.
39 ///
40 /// Once both are complete, we have two maps for each block:
41 ///  * Variables to the values they should have,
42 ///  * Values to the register / spill slot they are located in.
43 /// After which we can marry-up variable values with a location, and emit
44 /// DBG_VALUE instructions specifying those locations. Variable locations may
45 /// be dropped in this process due to the desired variable value not being
46 /// resident in any machine location, or because there is no PHI value in any
47 /// location that accurately represents the desired value.  The building of
48 /// location lists for each block is left to DbgEntityHistoryCalculator.
49 ///
50 /// This pass is kept efficient because the size of the first SSA problem
51 /// is proportional to the working-set size of the function, which the compiler
52 /// tries to keep small. (It's also proportional to the number of blocks).
53 /// Additionally, we repeatedly perform the second SSA problem analysis with
54 /// only the variables and blocks in a single lexical scope, exploiting their
55 /// locality.
56 ///
57 /// ### Terminology
58 ///
59 /// A machine location is a register or spill slot, a value is something that's
60 /// defined by an instruction or PHI node, while a variable value is the value
61 /// assigned to a variable. A variable location is a machine location, that must
62 /// contain the appropriate variable value. A value that is a PHI node is
63 /// occasionally called an mphi.
64 ///
65 /// The first SSA problem is the "machine value location" problem,
66 /// because we're determining which machine locations contain which values.
67 /// The "locations" are constant: what's unknown is what value they contain.
68 ///
69 /// The second SSA problem (the one for variables) is the "variable value
70 /// problem", because it's determining what values a variable has, rather than
71 /// what location those values are placed in.
72 ///
73 /// TODO:
74 ///   Overlapping fragments
75 ///   Entry values
76 ///   Add back DEBUG statements for debugging this
77 ///   Collect statistics
78 ///
79 //===----------------------------------------------------------------------===//
80 
81 #include "llvm/ADT/DenseMap.h"
82 #include "llvm/ADT/PostOrderIterator.h"
83 #include "llvm/ADT/STLExtras.h"
84 #include "llvm/ADT/SmallPtrSet.h"
85 #include "llvm/ADT/SmallSet.h"
86 #include "llvm/ADT/SmallVector.h"
87 #include "llvm/BinaryFormat/Dwarf.h"
88 #include "llvm/CodeGen/LexicalScopes.h"
89 #include "llvm/CodeGen/MachineBasicBlock.h"
90 #include "llvm/CodeGen/MachineDominators.h"
91 #include "llvm/CodeGen/MachineFrameInfo.h"
92 #include "llvm/CodeGen/MachineFunction.h"
93 #include "llvm/CodeGen/MachineInstr.h"
94 #include "llvm/CodeGen/MachineInstrBuilder.h"
95 #include "llvm/CodeGen/MachineInstrBundle.h"
96 #include "llvm/CodeGen/MachineMemOperand.h"
97 #include "llvm/CodeGen/MachineOperand.h"
98 #include "llvm/CodeGen/PseudoSourceValue.h"
99 #include "llvm/CodeGen/TargetFrameLowering.h"
100 #include "llvm/CodeGen/TargetInstrInfo.h"
101 #include "llvm/CodeGen/TargetLowering.h"
102 #include "llvm/CodeGen/TargetPassConfig.h"
103 #include "llvm/CodeGen/TargetRegisterInfo.h"
104 #include "llvm/CodeGen/TargetSubtargetInfo.h"
105 #include "llvm/Config/llvm-config.h"
106 #include "llvm/IR/DebugInfoMetadata.h"
107 #include "llvm/IR/DebugLoc.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/MC/MCRegisterInfo.h"
110 #include "llvm/Support/Casting.h"
111 #include "llvm/Support/Compiler.h"
112 #include "llvm/Support/Debug.h"
113 #include "llvm/Support/GenericIteratedDominanceFrontier.h"
114 #include "llvm/Support/TypeSize.h"
115 #include "llvm/Support/raw_ostream.h"
116 #include "llvm/Target/TargetMachine.h"
117 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
118 #include <algorithm>
119 #include <cassert>
120 #include <climits>
121 #include <cstdint>
122 #include <functional>
123 #include <queue>
124 #include <tuple>
125 #include <utility>
126 #include <vector>
127 
128 #include "InstrRefBasedImpl.h"
129 #include "LiveDebugValues.h"
130 
131 using namespace llvm;
132 using namespace LiveDebugValues;
133 
134 // SSAUpdaterImple sets DEBUG_TYPE, change it.
135 #undef DEBUG_TYPE
136 #define DEBUG_TYPE "livedebugvalues"
137 
138 // Act more like the VarLoc implementation, by propagating some locations too
139 // far and ignoring some transfers.
140 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
141                                    cl::desc("Act like old LiveDebugValues did"),
142                                    cl::init(false));
143 
144 // Limit for the maximum number of stack slots we should track, past which we
145 // will ignore any spills. InstrRefBasedLDV gathers detailed information on all
146 // stack slots which leads to high memory consumption, and in some scenarios
147 // (such as asan with very many locals) the working set of the function can be
148 // very large, causing many spills. In these scenarios, it is very unlikely that
149 // the developer has hundreds of variables live at the same time that they're
150 // carefully thinking about -- instead, they probably autogenerated the code.
151 // When this happens, gracefully stop tracking excess spill slots, rather than
152 // consuming all the developer's memory.
153 static cl::opt<unsigned>
154     StackWorkingSetLimit("livedebugvalues-max-stack-slots", cl::Hidden,
155                          cl::desc("livedebugvalues-stack-ws-limit"),
156                          cl::init(250));
157 
158 /// Tracker for converting machine value locations and variable values into
159 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
160 /// specifying block live-in locations and transfers within blocks.
161 ///
162 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
163 /// and must be initialized with the set of variable values that are live-in to
164 /// the block. The caller then repeatedly calls process(). TransferTracker picks
165 /// out variable locations for the live-in variable values (if there _is_ a
166 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is
167 /// stepped through, transfers of values between machine locations are
168 /// identified and if profitable, a DBG_VALUE created.
169 ///
170 /// This is where debug use-before-defs would be resolved: a variable with an
171 /// unavailable value could materialize in the middle of a block, when the
172 /// value becomes available. Or, we could detect clobbers and re-specify the
173 /// variable in a backup location. (XXX these are unimplemented).
174 class TransferTracker {
175 public:
176   const TargetInstrInfo *TII;
177   const TargetLowering *TLI;
178   /// This machine location tracker is assumed to always contain the up-to-date
179   /// value mapping for all machine locations. TransferTracker only reads
180   /// information from it. (XXX make it const?)
181   MLocTracker *MTracker;
182   MachineFunction &MF;
183   bool ShouldEmitDebugEntryValues;
184 
185   /// Record of all changes in variable locations at a block position. Awkwardly
186   /// we allow inserting either before or after the point: MBB != nullptr
187   /// indicates it's before, otherwise after.
188   struct Transfer {
189     MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
190     MachineBasicBlock *MBB; /// non-null if we should insert after.
191     SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
192   };
193 
194   struct LocAndProperties {
195     LocIdx Loc;
196     DbgValueProperties Properties;
197   };
198 
199   /// Collection of transfers (DBG_VALUEs) to be inserted.
200   SmallVector<Transfer, 32> Transfers;
201 
202   /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
203   /// between TransferTrackers view of variable locations and MLocTrackers. For
204   /// example, MLocTracker observes all clobbers, but TransferTracker lazily
205   /// does not.
206   SmallVector<ValueIDNum, 32> VarLocs;
207 
208   /// Map from LocIdxes to which DebugVariables are based that location.
209   /// Mantained while stepping through the block. Not accurate if
210   /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
211   DenseMap<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
212 
213   /// Map from DebugVariable to it's current location and qualifying meta
214   /// information. To be used in conjunction with ActiveMLocs to construct
215   /// enough information for the DBG_VALUEs for a particular LocIdx.
216   DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;
217 
218   /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
219   SmallVector<MachineInstr *, 4> PendingDbgValues;
220 
221   /// Record of a use-before-def: created when a value that's live-in to the
222   /// current block isn't available in any machine location, but it will be
223   /// defined in this block.
224   struct UseBeforeDef {
225     /// Value of this variable, def'd in block.
226     ValueIDNum ID;
227     /// Identity of this variable.
228     DebugVariable Var;
229     /// Additional variable properties.
230     DbgValueProperties Properties;
231   };
232 
233   /// Map from instruction index (within the block) to the set of UseBeforeDefs
234   /// that become defined at that instruction.
235   DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
236 
237   /// The set of variables that are in UseBeforeDefs and can become a location
238   /// once the relevant value is defined. An element being erased from this
239   /// collection prevents the use-before-def materializing.
240   DenseSet<DebugVariable> UseBeforeDefVariables;
241 
242   const TargetRegisterInfo &TRI;
243   const BitVector &CalleeSavedRegs;
244 
245   TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
246                   MachineFunction &MF, const TargetRegisterInfo &TRI,
247                   const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
248       : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
249         CalleeSavedRegs(CalleeSavedRegs) {
250     TLI = MF.getSubtarget().getTargetLowering();
251     auto &TM = TPC.getTM<TargetMachine>();
252     ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
253   }
254 
255   /// Load object with live-in variable values. \p mlocs contains the live-in
256   /// values in each machine location, while \p vlocs the live-in variable
257   /// values. This method picks variable locations for the live-in variables,
258   /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
259   /// object fields to track variable locations as we step through the block.
260   /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
261   void
262   loadInlocs(MachineBasicBlock &MBB, ValueTable &MLocs,
263              const SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
264              unsigned NumLocs) {
265     ActiveMLocs.clear();
266     ActiveVLocs.clear();
267     VarLocs.clear();
268     VarLocs.reserve(NumLocs);
269     UseBeforeDefs.clear();
270     UseBeforeDefVariables.clear();
271 
272     auto isCalleeSaved = [&](LocIdx L) {
273       unsigned Reg = MTracker->LocIdxToLocID[L];
274       if (Reg >= MTracker->NumRegs)
275         return false;
276       for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
277         if (CalleeSavedRegs.test(*RAI))
278           return true;
279       return false;
280     };
281 
282     // Map of the preferred location for each value.
283     DenseMap<ValueIDNum, LocIdx> ValueToLoc;
284 
285     // Initialized the preferred-location map with illegal locations, to be
286     // filled in later.
287     for (auto &VLoc : VLocs)
288       if (VLoc.second.Kind == DbgValue::Def)
289         ValueToLoc.insert({VLoc.second.ID, LocIdx::MakeIllegalLoc()});
290 
291     ActiveMLocs.reserve(VLocs.size());
292     ActiveVLocs.reserve(VLocs.size());
293 
294     // Produce a map of value numbers to the current machine locs they live
295     // in. When emulating VarLocBasedImpl, there should only be one
296     // location; when not, we get to pick.
297     for (auto Location : MTracker->locations()) {
298       LocIdx Idx = Location.Idx;
299       ValueIDNum &VNum = MLocs[Idx.asU64()];
300       VarLocs.push_back(VNum);
301 
302       // Is there a variable that wants a location for this value? If not, skip.
303       auto VIt = ValueToLoc.find(VNum);
304       if (VIt == ValueToLoc.end())
305         continue;
306 
307       LocIdx CurLoc = VIt->second;
308       // In order of preference, pick:
309       //  * Callee saved registers,
310       //  * Other registers,
311       //  * Spill slots.
312       if (CurLoc.isIllegal() || MTracker->isSpill(CurLoc) ||
313           (!isCalleeSaved(CurLoc) && isCalleeSaved(Idx.asU64()))) {
314         // Insert, or overwrite if insertion failed.
315         VIt->second = Idx;
316       }
317     }
318 
319     // Now map variables to their picked LocIdxes.
320     for (const auto &Var : VLocs) {
321       if (Var.second.Kind == DbgValue::Const) {
322         PendingDbgValues.push_back(
323             emitMOLoc(*Var.second.MO, Var.first, Var.second.Properties));
324         continue;
325       }
326 
327       // If the value has no location, we can't make a variable location.
328       const ValueIDNum &Num = Var.second.ID;
329       auto ValuesPreferredLoc = ValueToLoc.find(Num);
330       if (ValuesPreferredLoc->second.isIllegal()) {
331         // If it's a def that occurs in this block, register it as a
332         // use-before-def to be resolved as we step through the block.
333         if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI())
334           addUseBeforeDef(Var.first, Var.second.Properties, Num);
335         else
336           recoverAsEntryValue(Var.first, Var.second.Properties, Num);
337         continue;
338       }
339 
340       LocIdx M = ValuesPreferredLoc->second;
341       auto NewValue = LocAndProperties{M, Var.second.Properties};
342       auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
343       if (!Result.second)
344         Result.first->second = NewValue;
345       ActiveMLocs[M].insert(Var.first);
346       PendingDbgValues.push_back(
347           MTracker->emitLoc(M, Var.first, Var.second.Properties));
348     }
349     flushDbgValues(MBB.begin(), &MBB);
350   }
351 
352   /// Record that \p Var has value \p ID, a value that becomes available
353   /// later in the function.
354   void addUseBeforeDef(const DebugVariable &Var,
355                        const DbgValueProperties &Properties, ValueIDNum ID) {
356     UseBeforeDef UBD = {ID, Var, Properties};
357     UseBeforeDefs[ID.getInst()].push_back(UBD);
358     UseBeforeDefVariables.insert(Var);
359   }
360 
361   /// After the instruction at index \p Inst and position \p pos has been
362   /// processed, check whether it defines a variable value in a use-before-def.
363   /// If so, and the variable value hasn't changed since the start of the
364   /// block, create a DBG_VALUE.
365   void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
366     auto MIt = UseBeforeDefs.find(Inst);
367     if (MIt == UseBeforeDefs.end())
368       return;
369 
370     for (auto &Use : MIt->second) {
371       LocIdx L = Use.ID.getLoc();
372 
373       // If something goes very wrong, we might end up labelling a COPY
374       // instruction or similar with an instruction number, where it doesn't
375       // actually define a new value, instead it moves a value. In case this
376       // happens, discard.
377       if (MTracker->readMLoc(L) != Use.ID)
378         continue;
379 
380       // If a different debug instruction defined the variable value / location
381       // since the start of the block, don't materialize this use-before-def.
382       if (!UseBeforeDefVariables.count(Use.Var))
383         continue;
384 
385       PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties));
386     }
387     flushDbgValues(pos, nullptr);
388   }
389 
390   /// Helper to move created DBG_VALUEs into Transfers collection.
391   void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
392     if (PendingDbgValues.size() == 0)
393       return;
394 
395     // Pick out the instruction start position.
396     MachineBasicBlock::instr_iterator BundleStart;
397     if (MBB && Pos == MBB->begin())
398       BundleStart = MBB->instr_begin();
399     else
400       BundleStart = getBundleStart(Pos->getIterator());
401 
402     Transfers.push_back({BundleStart, MBB, PendingDbgValues});
403     PendingDbgValues.clear();
404   }
405 
406   bool isEntryValueVariable(const DebugVariable &Var,
407                             const DIExpression *Expr) const {
408     if (!Var.getVariable()->isParameter())
409       return false;
410 
411     if (Var.getInlinedAt())
412       return false;
413 
414     if (Expr->getNumElements() > 0)
415       return false;
416 
417     return true;
418   }
419 
420   bool isEntryValueValue(const ValueIDNum &Val) const {
421     // Must be in entry block (block number zero), and be a PHI / live-in value.
422     if (Val.getBlock() || !Val.isPHI())
423       return false;
424 
425     // Entry values must enter in a register.
426     if (MTracker->isSpill(Val.getLoc()))
427       return false;
428 
429     Register SP = TLI->getStackPointerRegisterToSaveRestore();
430     Register FP = TRI.getFrameRegister(MF);
431     Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
432     return Reg != SP && Reg != FP;
433   }
434 
435   bool recoverAsEntryValue(const DebugVariable &Var,
436                            const DbgValueProperties &Prop,
437                            const ValueIDNum &Num) {
438     // Is this variable location a candidate to be an entry value. First,
439     // should we be trying this at all?
440     if (!ShouldEmitDebugEntryValues)
441       return false;
442 
443     // Is the variable appropriate for entry values (i.e., is a parameter).
444     if (!isEntryValueVariable(Var, Prop.DIExpr))
445       return false;
446 
447     // Is the value assigned to this variable still the entry value?
448     if (!isEntryValueValue(Num))
449       return false;
450 
451     // Emit a variable location using an entry value expression.
452     DIExpression *NewExpr =
453         DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue);
454     Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
455     MachineOperand MO = MachineOperand::CreateReg(Reg, false);
456 
457     PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect}));
458     return true;
459   }
460 
461   /// Change a variable value after encountering a DBG_VALUE inside a block.
462   void redefVar(const MachineInstr &MI) {
463     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
464                       MI.getDebugLoc()->getInlinedAt());
465     DbgValueProperties Properties(MI);
466 
467     const MachineOperand &MO = MI.getOperand(0);
468 
469     // Ignore non-register locations, we don't transfer those.
470     if (!MO.isReg() || MO.getReg() == 0) {
471       auto It = ActiveVLocs.find(Var);
472       if (It != ActiveVLocs.end()) {
473         ActiveMLocs[It->second.Loc].erase(Var);
474         ActiveVLocs.erase(It);
475      }
476       // Any use-before-defs no longer apply.
477       UseBeforeDefVariables.erase(Var);
478       return;
479     }
480 
481     Register Reg = MO.getReg();
482     LocIdx NewLoc = MTracker->getRegMLoc(Reg);
483     redefVar(MI, Properties, NewLoc);
484   }
485 
486   /// Handle a change in variable location within a block. Terminate the
487   /// variables current location, and record the value it now refers to, so
488   /// that we can detect location transfers later on.
489   void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
490                 Optional<LocIdx> OptNewLoc) {
491     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
492                       MI.getDebugLoc()->getInlinedAt());
493     // Any use-before-defs no longer apply.
494     UseBeforeDefVariables.erase(Var);
495 
496     // Erase any previous location,
497     auto It = ActiveVLocs.find(Var);
498     if (It != ActiveVLocs.end())
499       ActiveMLocs[It->second.Loc].erase(Var);
500 
501     // If there _is_ no new location, all we had to do was erase.
502     if (!OptNewLoc)
503       return;
504     LocIdx NewLoc = *OptNewLoc;
505 
506     // Check whether our local copy of values-by-location in #VarLocs is out of
507     // date. Wipe old tracking data for the location if it's been clobbered in
508     // the meantime.
509     if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) {
510       for (auto &P : ActiveMLocs[NewLoc]) {
511         ActiveVLocs.erase(P);
512       }
513       ActiveMLocs[NewLoc.asU64()].clear();
514       VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc);
515     }
516 
517     ActiveMLocs[NewLoc].insert(Var);
518     if (It == ActiveVLocs.end()) {
519       ActiveVLocs.insert(
520           std::make_pair(Var, LocAndProperties{NewLoc, Properties}));
521     } else {
522       It->second.Loc = NewLoc;
523       It->second.Properties = Properties;
524     }
525   }
526 
527   /// Account for a location \p mloc being clobbered. Examine the variable
528   /// locations that will be terminated: and try to recover them by using
529   /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
530   /// explicitly terminate a location if it can't be recovered.
531   void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
532                    bool MakeUndef = true) {
533     auto ActiveMLocIt = ActiveMLocs.find(MLoc);
534     if (ActiveMLocIt == ActiveMLocs.end())
535       return;
536 
537     // What was the old variable value?
538     ValueIDNum OldValue = VarLocs[MLoc.asU64()];
539     VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
540 
541     // Examine the remaining variable locations: if we can find the same value
542     // again, we can recover the location.
543     Optional<LocIdx> NewLoc = None;
544     for (auto Loc : MTracker->locations())
545       if (Loc.Value == OldValue)
546         NewLoc = Loc.Idx;
547 
548     // If there is no location, and we weren't asked to make the variable
549     // explicitly undef, then stop here.
550     if (!NewLoc && !MakeUndef) {
551       // Try and recover a few more locations with entry values.
552       for (auto &Var : ActiveMLocIt->second) {
553         auto &Prop = ActiveVLocs.find(Var)->second.Properties;
554         recoverAsEntryValue(Var, Prop, OldValue);
555       }
556       flushDbgValues(Pos, nullptr);
557       return;
558     }
559 
560     // Examine all the variables based on this location.
561     DenseSet<DebugVariable> NewMLocs;
562     for (auto &Var : ActiveMLocIt->second) {
563       auto ActiveVLocIt = ActiveVLocs.find(Var);
564       // Re-state the variable location: if there's no replacement then NewLoc
565       // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE
566       // identifying the alternative location will be emitted.
567       const DbgValueProperties &Properties = ActiveVLocIt->second.Properties;
568       PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties));
569 
570       // Update machine locations <=> variable locations maps. Defer updating
571       // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator.
572       if (!NewLoc) {
573         ActiveVLocs.erase(ActiveVLocIt);
574       } else {
575         ActiveVLocIt->second.Loc = *NewLoc;
576         NewMLocs.insert(Var);
577       }
578     }
579 
580     // Commit any deferred ActiveMLoc changes.
581     if (!NewMLocs.empty())
582       for (auto &Var : NewMLocs)
583         ActiveMLocs[*NewLoc].insert(Var);
584 
585     // We lazily track what locations have which values; if we've found a new
586     // location for the clobbered value, remember it.
587     if (NewLoc)
588       VarLocs[NewLoc->asU64()] = OldValue;
589 
590     flushDbgValues(Pos, nullptr);
591 
592     // Re-find ActiveMLocIt, iterator could have been invalidated.
593     ActiveMLocIt = ActiveMLocs.find(MLoc);
594     ActiveMLocIt->second.clear();
595   }
596 
597   /// Transfer variables based on \p Src to be based on \p Dst. This handles
598   /// both register copies as well as spills and restores. Creates DBG_VALUEs
599   /// describing the movement.
600   void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
601     // Does Src still contain the value num we expect? If not, it's been
602     // clobbered in the meantime, and our variable locations are stale.
603     if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src))
604       return;
605 
606     // assert(ActiveMLocs[Dst].size() == 0);
607     //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
608 
609     // Move set of active variables from one location to another.
610     auto MovingVars = ActiveMLocs[Src];
611     ActiveMLocs[Dst] = MovingVars;
612     VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
613 
614     // For each variable based on Src; create a location at Dst.
615     for (auto &Var : MovingVars) {
616       auto ActiveVLocIt = ActiveVLocs.find(Var);
617       assert(ActiveVLocIt != ActiveVLocs.end());
618       ActiveVLocIt->second.Loc = Dst;
619 
620       MachineInstr *MI =
621           MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
622       PendingDbgValues.push_back(MI);
623     }
624     ActiveMLocs[Src].clear();
625     flushDbgValues(Pos, nullptr);
626 
627     // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
628     // about the old location.
629     if (EmulateOldLDV)
630       VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
631   }
632 
633   MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
634                                 const DebugVariable &Var,
635                                 const DbgValueProperties &Properties) {
636     DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
637                                   Var.getVariable()->getScope(),
638                                   const_cast<DILocation *>(Var.getInlinedAt()));
639     auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
640     MIB.add(MO);
641     if (Properties.Indirect)
642       MIB.addImm(0);
643     else
644       MIB.addReg(0);
645     MIB.addMetadata(Var.getVariable());
646     MIB.addMetadata(Properties.DIExpr);
647     return MIB;
648   }
649 };
650 
651 //===----------------------------------------------------------------------===//
652 //            Implementation
653 //===----------------------------------------------------------------------===//
654 
655 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
656 ValueIDNum ValueIDNum::TombstoneValue = {UINT_MAX, UINT_MAX, UINT_MAX - 1};
657 
658 #ifndef NDEBUG
659 void DbgValue::dump(const MLocTracker *MTrack) const {
660   if (Kind == Const) {
661     MO->dump();
662   } else if (Kind == NoVal) {
663     dbgs() << "NoVal(" << BlockNo << ")";
664   } else if (Kind == VPHI) {
665     dbgs() << "VPHI(" << BlockNo << "," << MTrack->IDAsString(ID) << ")";
666   } else {
667     assert(Kind == Def);
668     dbgs() << MTrack->IDAsString(ID);
669   }
670   if (Properties.Indirect)
671     dbgs() << " indir";
672   if (Properties.DIExpr)
673     dbgs() << " " << *Properties.DIExpr;
674 }
675 #endif
676 
677 MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
678                          const TargetRegisterInfo &TRI,
679                          const TargetLowering &TLI)
680     : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
681       LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) {
682   NumRegs = TRI.getNumRegs();
683   reset();
684   LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
685   assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
686 
687   // Always track SP. This avoids the implicit clobbering caused by regmasks
688   // from affectings its values. (LiveDebugValues disbelieves calls and
689   // regmasks that claim to clobber SP).
690   Register SP = TLI.getStackPointerRegisterToSaveRestore();
691   if (SP) {
692     unsigned ID = getLocID(SP);
693     (void)lookupOrTrackRegister(ID);
694 
695     for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI)
696       SPAliases.insert(*RAI);
697   }
698 
699   // Build some common stack positions -- full registers being spilt to the
700   // stack.
701   StackSlotIdxes.insert({{8, 0}, 0});
702   StackSlotIdxes.insert({{16, 0}, 1});
703   StackSlotIdxes.insert({{32, 0}, 2});
704   StackSlotIdxes.insert({{64, 0}, 3});
705   StackSlotIdxes.insert({{128, 0}, 4});
706   StackSlotIdxes.insert({{256, 0}, 5});
707   StackSlotIdxes.insert({{512, 0}, 6});
708 
709   // Traverse all the subregister idxes, and ensure there's an index for them.
710   // Duplicates are no problem: we're interested in their position in the
711   // stack slot, we don't want to type the slot.
712   for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) {
713     unsigned Size = TRI.getSubRegIdxSize(I);
714     unsigned Offs = TRI.getSubRegIdxOffset(I);
715     unsigned Idx = StackSlotIdxes.size();
716 
717     // Some subregs have -1, -2 and so forth fed into their fields, to mean
718     // special backend things. Ignore those.
719     if (Size > 60000 || Offs > 60000)
720       continue;
721 
722     StackSlotIdxes.insert({{Size, Offs}, Idx});
723   }
724 
725   // There may also be strange register class sizes (think x86 fp80s).
726   for (const TargetRegisterClass *RC : TRI.regclasses()) {
727     unsigned Size = TRI.getRegSizeInBits(*RC);
728 
729     // We might see special reserved values as sizes, and classes for other
730     // stuff the machine tries to model. If it's more than 512 bits, then it
731     // is very unlikely to be a register than can be spilt.
732     if (Size > 512)
733       continue;
734 
735     unsigned Idx = StackSlotIdxes.size();
736     StackSlotIdxes.insert({{Size, 0}, Idx});
737   }
738 
739   for (auto &Idx : StackSlotIdxes)
740     StackIdxesToPos[Idx.second] = Idx.first;
741 
742   NumSlotIdxes = StackSlotIdxes.size();
743 }
744 
745 LocIdx MLocTracker::trackRegister(unsigned ID) {
746   assert(ID != 0);
747   LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
748   LocIdxToIDNum.grow(NewIdx);
749   LocIdxToLocID.grow(NewIdx);
750 
751   // Default: it's an mphi.
752   ValueIDNum ValNum = {CurBB, 0, NewIdx};
753   // Was this reg ever touched by a regmask?
754   for (const auto &MaskPair : reverse(Masks)) {
755     if (MaskPair.first->clobbersPhysReg(ID)) {
756       // There was an earlier def we skipped.
757       ValNum = {CurBB, MaskPair.second, NewIdx};
758       break;
759     }
760   }
761 
762   LocIdxToIDNum[NewIdx] = ValNum;
763   LocIdxToLocID[NewIdx] = ID;
764   return NewIdx;
765 }
766 
767 void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB,
768                                unsigned InstID) {
769   // Def any register we track have that isn't preserved. The regmask
770   // terminates the liveness of a register, meaning its value can't be
771   // relied upon -- we represent this by giving it a new value.
772   for (auto Location : locations()) {
773     unsigned ID = LocIdxToLocID[Location.Idx];
774     // Don't clobber SP, even if the mask says it's clobbered.
775     if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID))
776       defReg(ID, CurBB, InstID);
777   }
778   Masks.push_back(std::make_pair(MO, InstID));
779 }
780 
781 Optional<SpillLocationNo> MLocTracker::getOrTrackSpillLoc(SpillLoc L) {
782   SpillLocationNo SpillID(SpillLocs.idFor(L));
783 
784   if (SpillID.id() == 0) {
785     // If there is no location, and we have reached the limit of how many stack
786     // slots to track, then don't track this one.
787     if (SpillLocs.size() >= StackWorkingSetLimit)
788       return None;
789 
790     // Spill location is untracked: create record for this one, and all
791     // subregister slots too.
792     SpillID = SpillLocationNo(SpillLocs.insert(L));
793     for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) {
794       unsigned L = getSpillIDWithIdx(SpillID, StackIdx);
795       LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
796       LocIdxToIDNum.grow(Idx);
797       LocIdxToLocID.grow(Idx);
798       LocIDToLocIdx.push_back(Idx);
799       LocIdxToLocID[Idx] = L;
800       // Initialize to PHI value; corresponds to the location's live-in value
801       // during transfer function construction.
802       LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx);
803     }
804   }
805   return SpillID;
806 }
807 
808 std::string MLocTracker::LocIdxToName(LocIdx Idx) const {
809   unsigned ID = LocIdxToLocID[Idx];
810   if (ID >= NumRegs) {
811     StackSlotPos Pos = locIDToSpillIdx(ID);
812     ID -= NumRegs;
813     unsigned Slot = ID / NumSlotIdxes;
814     return Twine("slot ")
815         .concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first)
816         .concat(Twine(" offs ").concat(Twine(Pos.second))))))
817         .str();
818   } else {
819     return TRI.getRegAsmName(ID).str();
820   }
821 }
822 
823 std::string MLocTracker::IDAsString(const ValueIDNum &Num) const {
824   std::string DefName = LocIdxToName(Num.getLoc());
825   return Num.asString(DefName);
826 }
827 
828 #ifndef NDEBUG
829 LLVM_DUMP_METHOD void MLocTracker::dump() {
830   for (auto Location : locations()) {
831     std::string MLocName = LocIdxToName(Location.Value.getLoc());
832     std::string DefName = Location.Value.asString(MLocName);
833     dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
834   }
835 }
836 
837 LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() {
838   for (auto Location : locations()) {
839     std::string foo = LocIdxToName(Location.Idx);
840     dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
841   }
842 }
843 #endif
844 
845 MachineInstrBuilder MLocTracker::emitLoc(Optional<LocIdx> MLoc,
846                                          const DebugVariable &Var,
847                                          const DbgValueProperties &Properties) {
848   DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
849                                 Var.getVariable()->getScope(),
850                                 const_cast<DILocation *>(Var.getInlinedAt()));
851   auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));
852 
853   const DIExpression *Expr = Properties.DIExpr;
854   if (!MLoc) {
855     // No location -> DBG_VALUE $noreg
856     MIB.addReg(0);
857     MIB.addReg(0);
858   } else if (LocIdxToLocID[*MLoc] >= NumRegs) {
859     unsigned LocID = LocIdxToLocID[*MLoc];
860     SpillLocationNo SpillID = locIDToSpill(LocID);
861     StackSlotPos StackIdx = locIDToSpillIdx(LocID);
862     unsigned short Offset = StackIdx.second;
863 
864     // TODO: support variables that are located in spill slots, with non-zero
865     // offsets from the start of the spill slot. It would require some more
866     // complex DIExpression calculations. This doesn't seem to be produced by
867     // LLVM right now, so don't try and support it.
868     // Accept no-subregister slots and subregisters where the offset is zero.
869     // The consumer should already have type information to work out how large
870     // the variable is.
871     if (Offset == 0) {
872       const SpillLoc &Spill = SpillLocs[SpillID.id()];
873       unsigned Base = Spill.SpillBase;
874       MIB.addReg(Base);
875 
876       // There are several ways we can dereference things, and several inputs
877       // to consider:
878       // * NRVO variables will appear with IsIndirect set, but should have
879       //   nothing else in their DIExpressions,
880       // * Variables with DW_OP_stack_value in their expr already need an
881       //   explicit dereference of the stack location,
882       // * Values that don't match the variable size need DW_OP_deref_size,
883       // * Everything else can just become a simple location expression.
884 
885       // We need to use deref_size whenever there's a mismatch between the
886       // size of value and the size of variable portion being read.
887       // Additionally, we should use it whenever dealing with stack_value
888       // fragments, to avoid the consumer having to determine the deref size
889       // from DW_OP_piece.
890       bool UseDerefSize = false;
891       unsigned ValueSizeInBits = getLocSizeInBits(*MLoc);
892       unsigned DerefSizeInBytes = ValueSizeInBits / 8;
893       if (auto Fragment = Var.getFragment()) {
894         unsigned VariableSizeInBits = Fragment->SizeInBits;
895         if (VariableSizeInBits != ValueSizeInBits || Expr->isComplex())
896           UseDerefSize = true;
897       } else if (auto Size = Var.getVariable()->getSizeInBits()) {
898         if (*Size != ValueSizeInBits) {
899           UseDerefSize = true;
900         }
901       }
902 
903       if (Properties.Indirect) {
904         // This is something like an NRVO variable, where the pointer has been
905         // spilt to the stack, or a dbg.addr pointing at a coroutine frame
906         // field. It should end up being a memory location, with the pointer
907         // to the variable loaded off the stack with a deref. It can't be a
908         // DW_OP_stack_value expression.
909         assert(!Expr->isImplicit());
910         Expr = TRI.prependOffsetExpression(
911             Expr, DIExpression::ApplyOffset | DIExpression::DerefAfter,
912             Spill.SpillOffset);
913         MIB.addImm(0);
914       } else if (UseDerefSize) {
915         // We're loading a value off the stack that's not the same size as the
916         // variable. Add / subtract stack offset, explicitly deref with a size,
917         // and add DW_OP_stack_value if not already present.
918         SmallVector<uint64_t, 2> Ops = {dwarf::DW_OP_deref_size,
919                                         DerefSizeInBytes};
920         Expr = DIExpression::prependOpcodes(Expr, Ops, true);
921         unsigned Flags = DIExpression::StackValue | DIExpression::ApplyOffset;
922         Expr = TRI.prependOffsetExpression(Expr, Flags, Spill.SpillOffset);
923         MIB.addReg(0);
924       } else if (Expr->isComplex()) {
925         // A variable with no size ambiguity, but with extra elements in it's
926         // expression. Manually dereference the stack location.
927         assert(Expr->isComplex());
928         Expr = TRI.prependOffsetExpression(
929             Expr, DIExpression::ApplyOffset | DIExpression::DerefAfter,
930             Spill.SpillOffset);
931         MIB.addReg(0);
932       } else {
933         // A plain value that has been spilt to the stack, with no further
934         // context. Request a location expression, marking the DBG_VALUE as
935         // IsIndirect.
936         Expr = TRI.prependOffsetExpression(Expr, DIExpression::ApplyOffset,
937                                            Spill.SpillOffset);
938         MIB.addImm(0);
939       }
940     } else {
941       // This is a stack location with a weird subregister offset: emit an undef
942       // DBG_VALUE instead.
943       MIB.addReg(0);
944       MIB.addReg(0);
945     }
946   } else {
947     // Non-empty, non-stack slot, must be a plain register.
948     unsigned LocID = LocIdxToLocID[*MLoc];
949     MIB.addReg(LocID);
950     if (Properties.Indirect)
951       MIB.addImm(0);
952     else
953       MIB.addReg(0);
954   }
955 
956   MIB.addMetadata(Var.getVariable());
957   MIB.addMetadata(Expr);
958   return MIB;
959 }
960 
961 /// Default construct and initialize the pass.
962 InstrRefBasedLDV::InstrRefBasedLDV() = default;
963 
964 bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const {
965   unsigned Reg = MTracker->LocIdxToLocID[L];
966   for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
967     if (CalleeSavedRegs.test(*RAI))
968       return true;
969   return false;
970 }
971 
972 //===----------------------------------------------------------------------===//
973 //            Debug Range Extension Implementation
974 //===----------------------------------------------------------------------===//
975 
976 #ifndef NDEBUG
977 // Something to restore in the future.
978 // void InstrRefBasedLDV::printVarLocInMBB(..)
979 #endif
980 
981 Optional<SpillLocationNo>
982 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
983   assert(MI.hasOneMemOperand() &&
984          "Spill instruction does not have exactly one memory operand?");
985   auto MMOI = MI.memoperands_begin();
986   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
987   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
988          "Inconsistent memory operand in spill instruction");
989   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
990   const MachineBasicBlock *MBB = MI.getParent();
991   Register Reg;
992   StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
993   return MTracker->getOrTrackSpillLoc({Reg, Offset});
994 }
995 
996 Optional<LocIdx>
997 InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) {
998   Optional<SpillLocationNo> SpillLoc = extractSpillBaseRegAndOffset(MI);
999   if (!SpillLoc)
1000     return None;
1001 
1002   // Where in the stack slot is this value defined -- i.e., what size of value
1003   // is this? An important question, because it could be loaded into a register
1004   // from the stack at some point. Happily the memory operand will tell us
1005   // the size written to the stack.
1006   auto *MemOperand = *MI.memoperands_begin();
1007   unsigned SizeInBits = MemOperand->getSizeInBits();
1008 
1009   // Find that position in the stack indexes we're tracking.
1010   auto IdxIt = MTracker->StackSlotIdxes.find({SizeInBits, 0});
1011   if (IdxIt == MTracker->StackSlotIdxes.end())
1012     // That index is not tracked. This is suprising, and unlikely to ever
1013     // occur, but the safe action is to indicate the variable is optimised out.
1014     return None;
1015 
1016   unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillLoc, IdxIt->second);
1017   return MTracker->getSpillMLoc(SpillID);
1018 }
1019 
1020 /// End all previous ranges related to @MI and start a new range from @MI
1021 /// if it is a DBG_VALUE instr.
1022 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
1023   if (!MI.isDebugValue())
1024     return false;
1025 
1026   const DILocalVariable *Var = MI.getDebugVariable();
1027   const DIExpression *Expr = MI.getDebugExpression();
1028   const DILocation *DebugLoc = MI.getDebugLoc();
1029   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1030   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1031          "Expected inlined-at fields to agree");
1032 
1033   DebugVariable V(Var, Expr, InlinedAt);
1034   DbgValueProperties Properties(MI);
1035 
1036   // If there are no instructions in this lexical scope, do no location tracking
1037   // at all, this variable shouldn't get a legitimate location range.
1038   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1039   if (Scope == nullptr)
1040     return true; // handled it; by doing nothing
1041 
1042   // For now, ignore DBG_VALUE_LISTs when extending ranges. Allow it to
1043   // contribute to locations in this block, but don't propagate further.
1044   // Interpret it like a DBG_VALUE $noreg.
1045   if (MI.isDebugValueList()) {
1046     if (VTracker)
1047       VTracker->defVar(MI, Properties, None);
1048     if (TTracker)
1049       TTracker->redefVar(MI, Properties, None);
1050     return true;
1051   }
1052 
1053   const MachineOperand &MO = MI.getOperand(0);
1054 
1055   // MLocTracker needs to know that this register is read, even if it's only
1056   // read by a debug inst.
1057   if (MO.isReg() && MO.getReg() != 0)
1058     (void)MTracker->readReg(MO.getReg());
1059 
1060   // If we're preparing for the second analysis (variables), the machine value
1061   // locations are already solved, and we report this DBG_VALUE and the value
1062   // it refers to to VLocTracker.
1063   if (VTracker) {
1064     if (MO.isReg()) {
1065       // Feed defVar the new variable location, or if this is a
1066       // DBG_VALUE $noreg, feed defVar None.
1067       if (MO.getReg())
1068         VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg()));
1069       else
1070         VTracker->defVar(MI, Properties, None);
1071     } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
1072                MI.getOperand(0).isCImm()) {
1073       VTracker->defVar(MI, MI.getOperand(0));
1074     }
1075   }
1076 
1077   // If performing final tracking of transfers, report this variable definition
1078   // to the TransferTracker too.
1079   if (TTracker)
1080     TTracker->redefVar(MI);
1081   return true;
1082 }
1083 
1084 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
1085                                              const ValueTable *MLiveOuts,
1086                                              const ValueTable *MLiveIns) {
1087   if (!MI.isDebugRef())
1088     return false;
1089 
1090   // Only handle this instruction when we are building the variable value
1091   // transfer function.
1092   if (!VTracker && !TTracker)
1093     return false;
1094 
1095   unsigned InstNo = MI.getOperand(0).getImm();
1096   unsigned OpNo = MI.getOperand(1).getImm();
1097 
1098   const DILocalVariable *Var = MI.getDebugVariable();
1099   const DIExpression *Expr = MI.getDebugExpression();
1100   const DILocation *DebugLoc = MI.getDebugLoc();
1101   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1102   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1103          "Expected inlined-at fields to agree");
1104 
1105   DebugVariable V(Var, Expr, InlinedAt);
1106 
1107   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1108   if (Scope == nullptr)
1109     return true; // Handled by doing nothing. This variable is never in scope.
1110 
1111   const MachineFunction &MF = *MI.getParent()->getParent();
1112 
1113   // Various optimizations may have happened to the value during codegen,
1114   // recorded in the value substitution table. Apply any substitutions to
1115   // the instruction / operand number in this DBG_INSTR_REF, and collect
1116   // any subregister extractions performed during optimization.
1117 
1118   // Create dummy substitution with Src set, for lookup.
1119   auto SoughtSub =
1120       MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0);
1121 
1122   SmallVector<unsigned, 4> SeenSubregs;
1123   auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1124   while (LowerBoundIt != MF.DebugValueSubstitutions.end() &&
1125          LowerBoundIt->Src == SoughtSub.Src) {
1126     std::tie(InstNo, OpNo) = LowerBoundIt->Dest;
1127     SoughtSub.Src = LowerBoundIt->Dest;
1128     if (unsigned Subreg = LowerBoundIt->Subreg)
1129       SeenSubregs.push_back(Subreg);
1130     LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1131   }
1132 
1133   // Default machine value number is <None> -- if no instruction defines
1134   // the corresponding value, it must have been optimized out.
1135   Optional<ValueIDNum> NewID = None;
1136 
1137   // Try to lookup the instruction number, and find the machine value number
1138   // that it defines. It could be an instruction, or a PHI.
1139   auto InstrIt = DebugInstrNumToInstr.find(InstNo);
1140   auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(),
1141                                 DebugPHINumToValue.end(), InstNo);
1142   if (InstrIt != DebugInstrNumToInstr.end()) {
1143     const MachineInstr &TargetInstr = *InstrIt->second.first;
1144     uint64_t BlockNo = TargetInstr.getParent()->getNumber();
1145 
1146     // Pick out the designated operand. It might be a memory reference, if
1147     // a register def was folded into a stack store.
1148     if (OpNo == MachineFunction::DebugOperandMemNumber &&
1149         TargetInstr.hasOneMemOperand()) {
1150       Optional<LocIdx> L = findLocationForMemOperand(TargetInstr);
1151       if (L)
1152         NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L);
1153     } else if (OpNo != MachineFunction::DebugOperandMemNumber) {
1154       // Permit the debug-info to be completely wrong: identifying a nonexistant
1155       // operand, or one that is not a register definition, means something
1156       // unexpected happened during optimisation. Broken debug-info, however,
1157       // shouldn't crash the compiler -- instead leave the variable value as
1158       // None, which will make it appear "optimised out".
1159       if (OpNo < TargetInstr.getNumOperands()) {
1160         const MachineOperand &MO = TargetInstr.getOperand(OpNo);
1161 
1162         if (MO.isReg() && MO.isDef() && MO.getReg()) {
1163           unsigned LocID = MTracker->getLocID(MO.getReg());
1164           LocIdx L = MTracker->LocIDToLocIdx[LocID];
1165           NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
1166         }
1167       }
1168 
1169       if (!NewID) {
1170         LLVM_DEBUG(
1171             { dbgs() << "Seen instruction reference to illegal operand\n"; });
1172       }
1173     }
1174     // else: NewID is left as None.
1175   } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
1176     // It's actually a PHI value. Which value it is might not be obvious, use
1177     // the resolver helper to find out.
1178     NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns,
1179                            MI, InstNo);
1180   }
1181 
1182   // Apply any subregister extractions, in reverse. We might have seen code
1183   // like this:
1184   //    CALL64 @foo, implicit-def $rax
1185   //    %0:gr64 = COPY $rax
1186   //    %1:gr32 = COPY %0.sub_32bit
1187   //    %2:gr16 = COPY %1.sub_16bit
1188   //    %3:gr8  = COPY %2.sub_8bit
1189   // In which case each copy would have been recorded as a substitution with
1190   // a subregister qualifier. Apply those qualifiers now.
1191   if (NewID && !SeenSubregs.empty()) {
1192     unsigned Offset = 0;
1193     unsigned Size = 0;
1194 
1195     // Look at each subregister that we passed through, and progressively
1196     // narrow in, accumulating any offsets that occur. Substitutions should
1197     // only ever be the same or narrower width than what they read from;
1198     // iterate in reverse order so that we go from wide to small.
1199     for (unsigned Subreg : reverse(SeenSubregs)) {
1200       unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
1201       unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
1202       Offset += ThisOffset;
1203       Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
1204     }
1205 
1206     // If that worked, look for an appropriate subregister with the register
1207     // where the define happens. Don't look at values that were defined during
1208     // a stack write: we can't currently express register locations within
1209     // spills.
1210     LocIdx L = NewID->getLoc();
1211     if (NewID && !MTracker->isSpill(L)) {
1212       // Find the register class for the register where this def happened.
1213       // FIXME: no index for this?
1214       Register Reg = MTracker->LocIdxToLocID[L];
1215       const TargetRegisterClass *TRC = nullptr;
1216       for (auto *TRCI : TRI->regclasses())
1217         if (TRCI->contains(Reg))
1218           TRC = TRCI;
1219       assert(TRC && "Couldn't find target register class?");
1220 
1221       // If the register we have isn't the right size or in the right place,
1222       // Try to find a subregister inside it.
1223       unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
1224       if (Size != MainRegSize || Offset) {
1225         // Enumerate all subregisters, searching.
1226         Register NewReg = 0;
1227         for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1228           unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1229           unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
1230           unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
1231           if (SubregSize == Size && SubregOffset == Offset) {
1232             NewReg = *SRI;
1233             break;
1234           }
1235         }
1236 
1237         // If we didn't find anything: there's no way to express our value.
1238         if (!NewReg) {
1239           NewID = None;
1240         } else {
1241           // Re-state the value as being defined within the subregister
1242           // that we found.
1243           LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
1244           NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
1245         }
1246       }
1247     } else {
1248       // If we can't handle subregisters, unset the new value.
1249       NewID = None;
1250     }
1251   }
1252 
1253   // We, we have a value number or None. Tell the variable value tracker about
1254   // it. The rest of this LiveDebugValues implementation acts exactly the same
1255   // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that
1256   // aren't immediately available).
1257   DbgValueProperties Properties(Expr, false);
1258   if (VTracker)
1259     VTracker->defVar(MI, Properties, NewID);
1260 
1261   // If we're on the final pass through the function, decompose this INSTR_REF
1262   // into a plain DBG_VALUE.
1263   if (!TTracker)
1264     return true;
1265 
1266   // Pick a location for the machine value number, if such a location exists.
1267   // (This information could be stored in TransferTracker to make it faster).
1268   Optional<LocIdx> FoundLoc = None;
1269   for (auto Location : MTracker->locations()) {
1270     LocIdx CurL = Location.Idx;
1271     ValueIDNum ID = MTracker->readMLoc(CurL);
1272     if (NewID && ID == NewID) {
1273       // If this is the first location with that value, pick it. Otherwise,
1274       // consider whether it's a "longer term" location.
1275       if (!FoundLoc) {
1276         FoundLoc = CurL;
1277         continue;
1278       }
1279 
1280       if (MTracker->isSpill(CurL))
1281         FoundLoc = CurL; // Spills are a longer term location.
1282       else if (!MTracker->isSpill(*FoundLoc) &&
1283                !MTracker->isSpill(CurL) &&
1284                !isCalleeSaved(*FoundLoc) &&
1285                isCalleeSaved(CurL))
1286         FoundLoc = CurL; // Callee saved regs are longer term than normal.
1287     }
1288   }
1289 
1290   // Tell transfer tracker that the variable value has changed.
1291   TTracker->redefVar(MI, Properties, FoundLoc);
1292 
1293   // If there was a value with no location; but the value is defined in a
1294   // later instruction in this block, this is a block-local use-before-def.
1295   if (!FoundLoc && NewID && NewID->getBlock() == CurBB &&
1296       NewID->getInst() > CurInst)
1297     TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID);
1298 
1299   // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
1300   // This DBG_VALUE is potentially a $noreg / undefined location, if
1301   // FoundLoc is None.
1302   // (XXX -- could morph the DBG_INSTR_REF in the future).
1303   MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties);
1304   TTracker->PendingDbgValues.push_back(DbgMI);
1305   TTracker->flushDbgValues(MI.getIterator(), nullptr);
1306   return true;
1307 }
1308 
1309 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
1310   if (!MI.isDebugPHI())
1311     return false;
1312 
1313   // Analyse these only when solving the machine value location problem.
1314   if (VTracker || TTracker)
1315     return true;
1316 
1317   // First operand is the value location, either a stack slot or register.
1318   // Second is the debug instruction number of the original PHI.
1319   const MachineOperand &MO = MI.getOperand(0);
1320   unsigned InstrNum = MI.getOperand(1).getImm();
1321 
1322   auto EmitBadPHI = [this, &MI, InstrNum](void) -> bool {
1323     // Helper lambda to do any accounting when we fail to find a location for
1324     // a DBG_PHI. This can happen if DBG_PHIs are malformed, or refer to a
1325     // dead stack slot, for example.
1326     // Record a DebugPHIRecord with an empty value + location.
1327     DebugPHINumToValue.push_back({InstrNum, MI.getParent(), None, None});
1328     return true;
1329   };
1330 
1331   if (MO.isReg() && MO.getReg()) {
1332     // The value is whatever's currently in the register. Read and record it,
1333     // to be analysed later.
1334     Register Reg = MO.getReg();
1335     ValueIDNum Num = MTracker->readReg(Reg);
1336     auto PHIRec = DebugPHIRecord(
1337         {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
1338     DebugPHINumToValue.push_back(PHIRec);
1339 
1340     // Ensure this register is tracked.
1341     for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1342       MTracker->lookupOrTrackRegister(*RAI);
1343   } else if (MO.isFI()) {
1344     // The value is whatever's in this stack slot.
1345     unsigned FI = MO.getIndex();
1346 
1347     // If the stack slot is dead, then this was optimized away.
1348     // FIXME: stack slot colouring should account for slots that get merged.
1349     if (MFI->isDeadObjectIndex(FI))
1350       return EmitBadPHI();
1351 
1352     // Identify this spill slot, ensure it's tracked.
1353     Register Base;
1354     StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
1355     SpillLoc SL = {Base, Offs};
1356     Optional<SpillLocationNo> SpillNo = MTracker->getOrTrackSpillLoc(SL);
1357 
1358     // We might be able to find a value, but have chosen not to, to avoid
1359     // tracking too much stack information.
1360     if (!SpillNo)
1361       return EmitBadPHI();
1362 
1363     // Any stack location DBG_PHI should have an associate bit-size.
1364     assert(MI.getNumOperands() == 3 && "Stack DBG_PHI with no size?");
1365     unsigned slotBitSize = MI.getOperand(2).getImm();
1366 
1367     unsigned SpillID = MTracker->getLocID(*SpillNo, {slotBitSize, 0});
1368     LocIdx SpillLoc = MTracker->getSpillMLoc(SpillID);
1369     ValueIDNum Result = MTracker->readMLoc(SpillLoc);
1370 
1371     // Record this DBG_PHI for later analysis.
1372     auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), Result, SpillLoc});
1373     DebugPHINumToValue.push_back(DbgPHI);
1374   } else {
1375     // Else: if the operand is neither a legal register or a stack slot, then
1376     // we're being fed illegal debug-info. Record an empty PHI, so that any
1377     // debug users trying to read this number will be put off trying to
1378     // interpret the value.
1379     LLVM_DEBUG(
1380         { dbgs() << "Seen DBG_PHI with unrecognised operand format\n"; });
1381     return EmitBadPHI();
1382   }
1383 
1384   return true;
1385 }
1386 
1387 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
1388   // Meta Instructions do not affect the debug liveness of any register they
1389   // define.
1390   if (MI.isImplicitDef()) {
1391     // Except when there's an implicit def, and the location it's defining has
1392     // no value number. The whole point of an implicit def is to announce that
1393     // the register is live, without be specific about it's value. So define
1394     // a value if there isn't one already.
1395     ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
1396     // Has a legitimate value -> ignore the implicit def.
1397     if (Num.getLoc() != 0)
1398       return;
1399     // Otherwise, def it here.
1400   } else if (MI.isMetaInstruction())
1401     return;
1402 
1403   // We always ignore SP defines on call instructions, they don't actually
1404   // change the value of the stack pointer... except for win32's _chkstk. This
1405   // is rare: filter quickly for the common case (no stack adjustments, not a
1406   // call, etc). If it is a call that modifies SP, recognise the SP register
1407   // defs.
1408   bool CallChangesSP = false;
1409   if (AdjustsStackInCalls && MI.isCall() && MI.getOperand(0).isSymbol() &&
1410       !strcmp(MI.getOperand(0).getSymbolName(), StackProbeSymbolName.data()))
1411     CallChangesSP = true;
1412 
1413   // Test whether we should ignore a def of this register due to it being part
1414   // of the stack pointer.
1415   auto IgnoreSPAlias = [this, &MI, CallChangesSP](Register R) -> bool {
1416     if (CallChangesSP)
1417       return false;
1418     return MI.isCall() && MTracker->SPAliases.count(R);
1419   };
1420 
1421   // Find the regs killed by MI, and find regmasks of preserved regs.
1422   // Max out the number of statically allocated elements in `DeadRegs`, as this
1423   // prevents fallback to std::set::count() operations.
1424   SmallSet<uint32_t, 32> DeadRegs;
1425   SmallVector<const uint32_t *, 4> RegMasks;
1426   SmallVector<const MachineOperand *, 4> RegMaskPtrs;
1427   for (const MachineOperand &MO : MI.operands()) {
1428     // Determine whether the operand is a register def.
1429     if (MO.isReg() && MO.isDef() && MO.getReg() &&
1430         Register::isPhysicalRegister(MO.getReg()) &&
1431         !IgnoreSPAlias(MO.getReg())) {
1432       // Remove ranges of all aliased registers.
1433       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1434         // FIXME: Can we break out of this loop early if no insertion occurs?
1435         DeadRegs.insert(*RAI);
1436     } else if (MO.isRegMask()) {
1437       RegMasks.push_back(MO.getRegMask());
1438       RegMaskPtrs.push_back(&MO);
1439     }
1440   }
1441 
1442   // Tell MLocTracker about all definitions, of regmasks and otherwise.
1443   for (uint32_t DeadReg : DeadRegs)
1444     MTracker->defReg(DeadReg, CurBB, CurInst);
1445 
1446   for (auto *MO : RegMaskPtrs)
1447     MTracker->writeRegMask(MO, CurBB, CurInst);
1448 
1449   // If this instruction writes to a spill slot, def that slot.
1450   if (hasFoldedStackStore(MI)) {
1451     if (Optional<SpillLocationNo> SpillNo = extractSpillBaseRegAndOffset(MI)) {
1452       for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
1453         unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
1454         LocIdx L = MTracker->getSpillMLoc(SpillID);
1455         MTracker->setMLoc(L, ValueIDNum(CurBB, CurInst, L));
1456       }
1457     }
1458   }
1459 
1460   if (!TTracker)
1461     return;
1462 
1463   // When committing variable values to locations: tell transfer tracker that
1464   // we've clobbered things. It may be able to recover the variable from a
1465   // different location.
1466 
1467   // Inform TTracker about any direct clobbers.
1468   for (uint32_t DeadReg : DeadRegs) {
1469     LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
1470     TTracker->clobberMloc(Loc, MI.getIterator(), false);
1471   }
1472 
1473   // Look for any clobbers performed by a register mask. Only test locations
1474   // that are actually being tracked.
1475   if (!RegMaskPtrs.empty()) {
1476     for (auto L : MTracker->locations()) {
1477       // Stack locations can't be clobbered by regmasks.
1478       if (MTracker->isSpill(L.Idx))
1479         continue;
1480 
1481       Register Reg = MTracker->LocIdxToLocID[L.Idx];
1482       if (IgnoreSPAlias(Reg))
1483         continue;
1484 
1485       for (auto *MO : RegMaskPtrs)
1486         if (MO->clobbersPhysReg(Reg))
1487           TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
1488     }
1489   }
1490 
1491   // Tell TTracker about any folded stack store.
1492   if (hasFoldedStackStore(MI)) {
1493     if (Optional<SpillLocationNo> SpillNo = extractSpillBaseRegAndOffset(MI)) {
1494       for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
1495         unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
1496         LocIdx L = MTracker->getSpillMLoc(SpillID);
1497         TTracker->clobberMloc(L, MI.getIterator(), true);
1498       }
1499     }
1500   }
1501 }
1502 
1503 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
1504   // In all circumstances, re-def all aliases. It's definitely a new value now.
1505   for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI)
1506     MTracker->defReg(*RAI, CurBB, CurInst);
1507 
1508   ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
1509   MTracker->setReg(DstRegNum, SrcValue);
1510 
1511   // Copy subregisters from one location to another.
1512   for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
1513     unsigned SrcSubReg = SRI.getSubReg();
1514     unsigned SubRegIdx = SRI.getSubRegIndex();
1515     unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
1516     if (!DstSubReg)
1517       continue;
1518 
1519     // Do copy. There are two matching subregisters, the source value should
1520     // have been def'd when the super-reg was, the latter might not be tracked
1521     // yet.
1522     // This will force SrcSubReg to be tracked, if it isn't yet. Will read
1523     // mphi values if it wasn't tracked.
1524     LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg);
1525     LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg);
1526     (void)SrcL;
1527     (void)DstL;
1528     ValueIDNum CpyValue = MTracker->readReg(SrcSubReg);
1529 
1530     MTracker->setReg(DstSubReg, CpyValue);
1531   }
1532 }
1533 
1534 Optional<SpillLocationNo>
1535 InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
1536                                      MachineFunction *MF) {
1537   // TODO: Handle multiple stores folded into one.
1538   if (!MI.hasOneMemOperand())
1539     return None;
1540 
1541   // Reject any memory operand that's aliased -- we can't guarantee its value.
1542   auto MMOI = MI.memoperands_begin();
1543   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1544   if (PVal->isAliased(MFI))
1545     return None;
1546 
1547   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1548     return None; // This is not a spill instruction, since no valid size was
1549                  // returned from either function.
1550 
1551   return extractSpillBaseRegAndOffset(MI);
1552 }
1553 
1554 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
1555                                        MachineFunction *MF, unsigned &Reg) {
1556   if (!isSpillInstruction(MI, MF))
1557     return false;
1558 
1559   int FI;
1560   Reg = TII->isStoreToStackSlotPostFE(MI, FI);
1561   return Reg != 0;
1562 }
1563 
1564 Optional<SpillLocationNo>
1565 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1566                                        MachineFunction *MF, unsigned &Reg) {
1567   if (!MI.hasOneMemOperand())
1568     return None;
1569 
1570   // FIXME: Handle folded restore instructions with more than one memory
1571   // operand.
1572   if (MI.getRestoreSize(TII)) {
1573     Reg = MI.getOperand(0).getReg();
1574     return extractSpillBaseRegAndOffset(MI);
1575   }
1576   return None;
1577 }
1578 
1579 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
1580   // XXX -- it's too difficult to implement VarLocBasedImpl's  stack location
1581   // limitations under the new model. Therefore, when comparing them, compare
1582   // versions that don't attempt spills or restores at all.
1583   if (EmulateOldLDV)
1584     return false;
1585 
1586   // Strictly limit ourselves to plain loads and stores, not all instructions
1587   // that can access the stack.
1588   int DummyFI = -1;
1589   if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) &&
1590       !TII->isLoadFromStackSlotPostFE(MI, DummyFI))
1591     return false;
1592 
1593   MachineFunction *MF = MI.getMF();
1594   unsigned Reg;
1595 
1596   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
1597 
1598   // Strictly limit ourselves to plain loads and stores, not all instructions
1599   // that can access the stack.
1600   int FIDummy;
1601   if (!TII->isStoreToStackSlotPostFE(MI, FIDummy) &&
1602       !TII->isLoadFromStackSlotPostFE(MI, FIDummy))
1603     return false;
1604 
1605   // First, if there are any DBG_VALUEs pointing at a spill slot that is
1606   // written to, terminate that variable location. The value in memory
1607   // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
1608   if (Optional<SpillLocationNo> Loc = isSpillInstruction(MI, MF)) {
1609     // Un-set this location and clobber, so that earlier locations don't
1610     // continue past this store.
1611     for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) {
1612       unsigned SpillID = MTracker->getSpillIDWithIdx(*Loc, SlotIdx);
1613       Optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID);
1614       if (!MLoc)
1615         continue;
1616 
1617       // We need to over-write the stack slot with something (here, a def at
1618       // this instruction) to ensure no values are preserved in this stack slot
1619       // after the spill. It also prevents TTracker from trying to recover the
1620       // location and re-installing it in the same place.
1621       ValueIDNum Def(CurBB, CurInst, *MLoc);
1622       MTracker->setMLoc(*MLoc, Def);
1623       if (TTracker)
1624         TTracker->clobberMloc(*MLoc, MI.getIterator());
1625     }
1626   }
1627 
1628   // Try to recognise spill and restore instructions that may transfer a value.
1629   if (isLocationSpill(MI, MF, Reg)) {
1630     // isLocationSpill returning true should guarantee we can extract a
1631     // location.
1632     SpillLocationNo Loc = *extractSpillBaseRegAndOffset(MI);
1633 
1634     auto DoTransfer = [&](Register SrcReg, unsigned SpillID) {
1635       auto ReadValue = MTracker->readReg(SrcReg);
1636       LocIdx DstLoc = MTracker->getSpillMLoc(SpillID);
1637       MTracker->setMLoc(DstLoc, ReadValue);
1638 
1639       if (TTracker) {
1640         LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg);
1641         TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator());
1642       }
1643     };
1644 
1645     // Then, transfer subreg bits.
1646     for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1647       // Ensure this reg is tracked,
1648       (void)MTracker->lookupOrTrackRegister(*SRI);
1649       unsigned SubregIdx = TRI->getSubRegIndex(Reg, *SRI);
1650       unsigned SpillID = MTracker->getLocID(Loc, SubregIdx);
1651       DoTransfer(*SRI, SpillID);
1652     }
1653 
1654     // Directly lookup size of main source reg, and transfer.
1655     unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
1656     unsigned SpillID = MTracker->getLocID(Loc, {Size, 0});
1657     DoTransfer(Reg, SpillID);
1658   } else {
1659     Optional<SpillLocationNo> Loc = isRestoreInstruction(MI, MF, Reg);
1660     if (!Loc)
1661       return false;
1662 
1663     // Assumption: we're reading from the base of the stack slot, not some
1664     // offset into it. It seems very unlikely LLVM would ever generate
1665     // restores where this wasn't true. This then becomes a question of what
1666     // subregisters in the destination register line up with positions in the
1667     // stack slot.
1668 
1669     // Def all registers that alias the destination.
1670     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1671       MTracker->defReg(*RAI, CurBB, CurInst);
1672 
1673     // Now find subregisters within the destination register, and load values
1674     // from stack slot positions.
1675     auto DoTransfer = [&](Register DestReg, unsigned SpillID) {
1676       LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID);
1677       auto ReadValue = MTracker->readMLoc(SrcIdx);
1678       MTracker->setReg(DestReg, ReadValue);
1679     };
1680 
1681     for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1682       unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1683       unsigned SpillID = MTracker->getLocID(*Loc, Subreg);
1684       DoTransfer(*SRI, SpillID);
1685     }
1686 
1687     // Directly look up this registers slot idx by size, and transfer.
1688     unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
1689     unsigned SpillID = MTracker->getLocID(*Loc, {Size, 0});
1690     DoTransfer(Reg, SpillID);
1691   }
1692   return true;
1693 }
1694 
1695 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
1696   auto DestSrc = TII->isCopyInstr(MI);
1697   if (!DestSrc)
1698     return false;
1699 
1700   const MachineOperand *DestRegOp = DestSrc->Destination;
1701   const MachineOperand *SrcRegOp = DestSrc->Source;
1702 
1703   auto isCalleeSavedReg = [&](unsigned Reg) {
1704     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1705       if (CalleeSavedRegs.test(*RAI))
1706         return true;
1707     return false;
1708   };
1709 
1710   Register SrcReg = SrcRegOp->getReg();
1711   Register DestReg = DestRegOp->getReg();
1712 
1713   // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
1714   if (SrcReg == DestReg)
1715     return true;
1716 
1717   // For emulating VarLocBasedImpl:
1718   // We want to recognize instructions where destination register is callee
1719   // saved register. If register that could be clobbered by the call is
1720   // included, there would be a great chance that it is going to be clobbered
1721   // soon. It is more likely that previous register, which is callee saved, is
1722   // going to stay unclobbered longer, even if it is killed.
1723   //
1724   // For InstrRefBasedImpl, we can track multiple locations per value, so
1725   // ignore this condition.
1726   if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
1727     return false;
1728 
1729   // InstrRefBasedImpl only followed killing copies.
1730   if (EmulateOldLDV && !SrcRegOp->isKill())
1731     return false;
1732 
1733   // Copy MTracker info, including subregs if available.
1734   InstrRefBasedLDV::performCopy(SrcReg, DestReg);
1735 
1736   // Only produce a transfer of DBG_VALUE within a block where old LDV
1737   // would have. We might make use of the additional value tracking in some
1738   // other way, later.
1739   if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
1740     TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
1741                             MTracker->getRegMLoc(DestReg), MI.getIterator());
1742 
1743   // VarLocBasedImpl would quit tracking the old location after copying.
1744   if (EmulateOldLDV && SrcReg != DestReg)
1745     MTracker->defReg(SrcReg, CurBB, CurInst);
1746 
1747   // Finally, the copy might have clobbered variables based on the destination
1748   // register. Tell TTracker about it, in case a backup location exists.
1749   if (TTracker) {
1750     for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
1751       LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
1752       TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false);
1753     }
1754   }
1755 
1756   return true;
1757 }
1758 
1759 /// Accumulate a mapping between each DILocalVariable fragment and other
1760 /// fragments of that DILocalVariable which overlap. This reduces work during
1761 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
1762 /// known-to-overlap fragments are present".
1763 /// \param MI A previously unprocessed debug instruction to analyze for
1764 ///           fragment usage.
1765 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
1766   assert(MI.isDebugValue() || MI.isDebugRef());
1767   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
1768                       MI.getDebugLoc()->getInlinedAt());
1769   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
1770 
1771   // If this is the first sighting of this variable, then we are guaranteed
1772   // there are currently no overlapping fragments either. Initialize the set
1773   // of seen fragments, record no overlaps for the current one, and return.
1774   auto SeenIt = SeenFragments.find(MIVar.getVariable());
1775   if (SeenIt == SeenFragments.end()) {
1776     SmallSet<FragmentInfo, 4> OneFragment;
1777     OneFragment.insert(ThisFragment);
1778     SeenFragments.insert({MIVar.getVariable(), OneFragment});
1779 
1780     OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1781     return;
1782   }
1783 
1784   // If this particular Variable/Fragment pair already exists in the overlap
1785   // map, it has already been accounted for.
1786   auto IsInOLapMap =
1787       OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1788   if (!IsInOLapMap.second)
1789     return;
1790 
1791   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
1792   auto &AllSeenFragments = SeenIt->second;
1793 
1794   // Otherwise, examine all other seen fragments for this variable, with "this"
1795   // fragment being a previously unseen fragment. Record any pair of
1796   // overlapping fragments.
1797   for (auto &ASeenFragment : AllSeenFragments) {
1798     // Does this previously seen fragment overlap?
1799     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
1800       // Yes: Mark the current fragment as being overlapped.
1801       ThisFragmentsOverlaps.push_back(ASeenFragment);
1802       // Mark the previously seen fragment as being overlapped by the current
1803       // one.
1804       auto ASeenFragmentsOverlaps =
1805           OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
1806       assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
1807              "Previously seen var fragment has no vector of overlaps");
1808       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
1809     }
1810   }
1811 
1812   AllSeenFragments.insert(ThisFragment);
1813 }
1814 
1815 void InstrRefBasedLDV::process(MachineInstr &MI, const ValueTable *MLiveOuts,
1816                                const ValueTable *MLiveIns) {
1817   // Try to interpret an MI as a debug or transfer instruction. Only if it's
1818   // none of these should we interpret it's register defs as new value
1819   // definitions.
1820   if (transferDebugValue(MI))
1821     return;
1822   if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
1823     return;
1824   if (transferDebugPHI(MI))
1825     return;
1826   if (transferRegisterCopy(MI))
1827     return;
1828   if (transferSpillOrRestoreInst(MI))
1829     return;
1830   transferRegisterDef(MI);
1831 }
1832 
1833 void InstrRefBasedLDV::produceMLocTransferFunction(
1834     MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
1835     unsigned MaxNumBlocks) {
1836   // Because we try to optimize around register mask operands by ignoring regs
1837   // that aren't currently tracked, we set up something ugly for later: RegMask
1838   // operands that are seen earlier than the first use of a register, still need
1839   // to clobber that register in the transfer function. But this information
1840   // isn't actively recorded. Instead, we track each RegMask used in each block,
1841   // and accumulated the clobbered but untracked registers in each block into
1842   // the following bitvector. Later, if new values are tracked, we can add
1843   // appropriate clobbers.
1844   SmallVector<BitVector, 32> BlockMasks;
1845   BlockMasks.resize(MaxNumBlocks);
1846 
1847   // Reserve one bit per register for the masks described above.
1848   unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
1849   for (auto &BV : BlockMasks)
1850     BV.resize(TRI->getNumRegs(), true);
1851 
1852   // Step through all instructions and inhale the transfer function.
1853   for (auto &MBB : MF) {
1854     // Object fields that are read by trackers to know where we are in the
1855     // function.
1856     CurBB = MBB.getNumber();
1857     CurInst = 1;
1858 
1859     // Set all machine locations to a PHI value. For transfer function
1860     // production only, this signifies the live-in value to the block.
1861     MTracker->reset();
1862     MTracker->setMPhis(CurBB);
1863 
1864     // Step through each instruction in this block.
1865     for (auto &MI : MBB) {
1866       // Pass in an empty unique_ptr for the value tables when accumulating the
1867       // machine transfer function.
1868       process(MI, nullptr, nullptr);
1869 
1870       // Also accumulate fragment map.
1871       if (MI.isDebugValue() || MI.isDebugRef())
1872         accumulateFragmentMap(MI);
1873 
1874       // Create a map from the instruction number (if present) to the
1875       // MachineInstr and its position.
1876       if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
1877         auto InstrAndPos = std::make_pair(&MI, CurInst);
1878         auto InsertResult =
1879             DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
1880 
1881         // There should never be duplicate instruction numbers.
1882         assert(InsertResult.second);
1883         (void)InsertResult;
1884       }
1885 
1886       ++CurInst;
1887     }
1888 
1889     // Produce the transfer function, a map of machine location to new value. If
1890     // any machine location has the live-in phi value from the start of the
1891     // block, it's live-through and doesn't need recording in the transfer
1892     // function.
1893     for (auto Location : MTracker->locations()) {
1894       LocIdx Idx = Location.Idx;
1895       ValueIDNum &P = Location.Value;
1896       if (P.isPHI() && P.getLoc() == Idx.asU64())
1897         continue;
1898 
1899       // Insert-or-update.
1900       auto &TransferMap = MLocTransfer[CurBB];
1901       auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
1902       if (!Result.second)
1903         Result.first->second = P;
1904     }
1905 
1906     // Accumulate any bitmask operands into the clobberred reg mask for this
1907     // block.
1908     for (auto &P : MTracker->Masks) {
1909       BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
1910     }
1911   }
1912 
1913   // Compute a bitvector of all the registers that are tracked in this block.
1914   BitVector UsedRegs(TRI->getNumRegs());
1915   for (auto Location : MTracker->locations()) {
1916     unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
1917     // Ignore stack slots, and aliases of the stack pointer.
1918     if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID))
1919       continue;
1920     UsedRegs.set(ID);
1921   }
1922 
1923   // Check that any regmask-clobber of a register that gets tracked, is not
1924   // live-through in the transfer function. It needs to be clobbered at the
1925   // very least.
1926   for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
1927     BitVector &BV = BlockMasks[I];
1928     BV.flip();
1929     BV &= UsedRegs;
1930     // This produces all the bits that we clobber, but also use. Check that
1931     // they're all clobbered or at least set in the designated transfer
1932     // elem.
1933     for (unsigned Bit : BV.set_bits()) {
1934       unsigned ID = MTracker->getLocID(Bit);
1935       LocIdx Idx = MTracker->LocIDToLocIdx[ID];
1936       auto &TransferMap = MLocTransfer[I];
1937 
1938       // Install a value representing the fact that this location is effectively
1939       // written to in this block. As there's no reserved value, instead use
1940       // a value number that is never generated. Pick the value number for the
1941       // first instruction in the block, def'ing this location, which we know
1942       // this block never used anyway.
1943       ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
1944       auto Result =
1945         TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
1946       if (!Result.second) {
1947         ValueIDNum &ValueID = Result.first->second;
1948         if (ValueID.getBlock() == I && ValueID.isPHI())
1949           // It was left as live-through. Set it to clobbered.
1950           ValueID = NotGeneratedNum;
1951       }
1952     }
1953   }
1954 }
1955 
1956 bool InstrRefBasedLDV::mlocJoin(
1957     MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1958     FuncValueTable &OutLocs, ValueTable &InLocs) {
1959   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
1960   bool Changed = false;
1961 
1962   // Handle value-propagation when control flow merges on entry to a block. For
1963   // any location without a PHI already placed, the location has the same value
1964   // as its predecessors. If a PHI is placed, test to see whether it's now a
1965   // redundant PHI that we can eliminate.
1966 
1967   SmallVector<const MachineBasicBlock *, 8> BlockOrders;
1968   for (auto Pred : MBB.predecessors())
1969     BlockOrders.push_back(Pred);
1970 
1971   // Visit predecessors in RPOT order.
1972   auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
1973     return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
1974   };
1975   llvm::sort(BlockOrders, Cmp);
1976 
1977   // Skip entry block.
1978   if (BlockOrders.size() == 0)
1979     return false;
1980 
1981   // Step through all machine locations, look at each predecessor and test
1982   // whether we can eliminate redundant PHIs.
1983   for (auto Location : MTracker->locations()) {
1984     LocIdx Idx = Location.Idx;
1985 
1986     // Pick out the first predecessors live-out value for this location. It's
1987     // guaranteed to not be a backedge, as we order by RPO.
1988     ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
1989 
1990     // If we've already eliminated a PHI here, do no further checking, just
1991     // propagate the first live-in value into this block.
1992     if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) {
1993       if (InLocs[Idx.asU64()] != FirstVal) {
1994         InLocs[Idx.asU64()] = FirstVal;
1995         Changed |= true;
1996       }
1997       continue;
1998     }
1999 
2000     // We're now examining a PHI to see whether it's un-necessary. Loop around
2001     // the other live-in values and test whether they're all the same.
2002     bool Disagree = false;
2003     for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
2004       const MachineBasicBlock *PredMBB = BlockOrders[I];
2005       const ValueIDNum &PredLiveOut =
2006           OutLocs[PredMBB->getNumber()][Idx.asU64()];
2007 
2008       // Incoming values agree, continue trying to eliminate this PHI.
2009       if (FirstVal == PredLiveOut)
2010         continue;
2011 
2012       // We can also accept a PHI value that feeds back into itself.
2013       if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx))
2014         continue;
2015 
2016       // Live-out of a predecessor disagrees with the first predecessor.
2017       Disagree = true;
2018     }
2019 
2020     // No disagreement? No PHI. Otherwise, leave the PHI in live-ins.
2021     if (!Disagree) {
2022       InLocs[Idx.asU64()] = FirstVal;
2023       Changed |= true;
2024     }
2025   }
2026 
2027   // TODO: Reimplement NumInserted and NumRemoved.
2028   return Changed;
2029 }
2030 
2031 void InstrRefBasedLDV::findStackIndexInterference(
2032     SmallVectorImpl<unsigned> &Slots) {
2033   // We could spend a bit of time finding the exact, minimal, set of stack
2034   // indexes that interfere with each other, much like reg units. Or, we can
2035   // rely on the fact that:
2036   //  * The smallest / lowest index will interfere with everything at zero
2037   //    offset, which will be the largest set of registers,
2038   //  * Most indexes with non-zero offset will end up being interference units
2039   //    anyway.
2040   // So just pick those out and return them.
2041 
2042   // We can rely on a single-byte stack index existing already, because we
2043   // initialize them in MLocTracker.
2044   auto It = MTracker->StackSlotIdxes.find({8, 0});
2045   assert(It != MTracker->StackSlotIdxes.end());
2046   Slots.push_back(It->second);
2047 
2048   // Find anything that has a non-zero offset and add that too.
2049   for (auto &Pair : MTracker->StackSlotIdxes) {
2050     // Is offset zero? If so, ignore.
2051     if (!Pair.first.second)
2052       continue;
2053     Slots.push_back(Pair.second);
2054   }
2055 }
2056 
2057 void InstrRefBasedLDV::placeMLocPHIs(
2058     MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
2059     FuncValueTable &MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2060   SmallVector<unsigned, 4> StackUnits;
2061   findStackIndexInterference(StackUnits);
2062 
2063   // To avoid repeatedly running the PHI placement algorithm, leverage the
2064   // fact that a def of register MUST also def its register units. Find the
2065   // units for registers, place PHIs for them, and then replicate them for
2066   // aliasing registers. Some inputs that are never def'd (DBG_PHIs of
2067   // arguments) don't lead to register units being tracked, just place PHIs for
2068   // those registers directly. Stack slots have their own form of "unit",
2069   // store them to one side.
2070   SmallSet<Register, 32> RegUnitsToPHIUp;
2071   SmallSet<LocIdx, 32> NormalLocsToPHI;
2072   SmallSet<SpillLocationNo, 32> StackSlots;
2073   for (auto Location : MTracker->locations()) {
2074     LocIdx L = Location.Idx;
2075     if (MTracker->isSpill(L)) {
2076       StackSlots.insert(MTracker->locIDToSpill(MTracker->LocIdxToLocID[L]));
2077       continue;
2078     }
2079 
2080     Register R = MTracker->LocIdxToLocID[L];
2081     SmallSet<Register, 8> FoundRegUnits;
2082     bool AnyIllegal = false;
2083     for (MCRegUnitIterator RUI(R.asMCReg(), TRI); RUI.isValid(); ++RUI) {
2084       for (MCRegUnitRootIterator URoot(*RUI, TRI); URoot.isValid(); ++URoot){
2085         if (!MTracker->isRegisterTracked(*URoot)) {
2086           // Not all roots were loaded into the tracking map: this register
2087           // isn't actually def'd anywhere, we only read from it. Generate PHIs
2088           // for this reg, but don't iterate units.
2089           AnyIllegal = true;
2090         } else {
2091           FoundRegUnits.insert(*URoot);
2092         }
2093       }
2094     }
2095 
2096     if (AnyIllegal) {
2097       NormalLocsToPHI.insert(L);
2098       continue;
2099     }
2100 
2101     RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end());
2102   }
2103 
2104   // Lambda to fetch PHIs for a given location, and write into the PHIBlocks
2105   // collection.
2106   SmallVector<MachineBasicBlock *, 32> PHIBlocks;
2107   auto CollectPHIsForLoc = [&](LocIdx L) {
2108     // Collect the set of defs.
2109     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
2110     for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
2111       MachineBasicBlock *MBB = OrderToBB[I];
2112       const auto &TransferFunc = MLocTransfer[MBB->getNumber()];
2113       if (TransferFunc.find(L) != TransferFunc.end())
2114         DefBlocks.insert(MBB);
2115     }
2116 
2117     // The entry block defs the location too: it's the live-in / argument value.
2118     // Only insert if there are other defs though; everything is trivially live
2119     // through otherwise.
2120     if (!DefBlocks.empty())
2121       DefBlocks.insert(&*MF.begin());
2122 
2123     // Ask the SSA construction algorithm where we should put PHIs. Clear
2124     // anything that might have been hanging around from earlier.
2125     PHIBlocks.clear();
2126     BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks);
2127   };
2128 
2129   auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) {
2130     for (const MachineBasicBlock *MBB : PHIBlocks)
2131       MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L);
2132   };
2133 
2134   // For locations with no reg units, just place PHIs.
2135   for (LocIdx L : NormalLocsToPHI) {
2136     CollectPHIsForLoc(L);
2137     // Install those PHI values into the live-in value array.
2138     InstallPHIsAtLoc(L);
2139   }
2140 
2141   // For stack slots, calculate PHIs for the equivalent of the units, then
2142   // install for each index.
2143   for (SpillLocationNo Slot : StackSlots) {
2144     for (unsigned Idx : StackUnits) {
2145       unsigned SpillID = MTracker->getSpillIDWithIdx(Slot, Idx);
2146       LocIdx L = MTracker->getSpillMLoc(SpillID);
2147       CollectPHIsForLoc(L);
2148       InstallPHIsAtLoc(L);
2149 
2150       // Find anything that aliases this stack index, install PHIs for it too.
2151       unsigned Size, Offset;
2152       std::tie(Size, Offset) = MTracker->StackIdxesToPos[Idx];
2153       for (auto &Pair : MTracker->StackSlotIdxes) {
2154         unsigned ThisSize, ThisOffset;
2155         std::tie(ThisSize, ThisOffset) = Pair.first;
2156         if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset)
2157           continue;
2158 
2159         unsigned ThisID = MTracker->getSpillIDWithIdx(Slot, Pair.second);
2160         LocIdx ThisL = MTracker->getSpillMLoc(ThisID);
2161         InstallPHIsAtLoc(ThisL);
2162       }
2163     }
2164   }
2165 
2166   // For reg units, place PHIs, and then place them for any aliasing registers.
2167   for (Register R : RegUnitsToPHIUp) {
2168     LocIdx L = MTracker->lookupOrTrackRegister(R);
2169     CollectPHIsForLoc(L);
2170 
2171     // Install those PHI values into the live-in value array.
2172     InstallPHIsAtLoc(L);
2173 
2174     // Now find aliases and install PHIs for those.
2175     for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) {
2176       // Super-registers that are "above" the largest register read/written by
2177       // the function will alias, but will not be tracked.
2178       if (!MTracker->isRegisterTracked(*RAI))
2179         continue;
2180 
2181       LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI);
2182       InstallPHIsAtLoc(AliasLoc);
2183     }
2184   }
2185 }
2186 
2187 void InstrRefBasedLDV::buildMLocValueMap(
2188     MachineFunction &MF, FuncValueTable &MInLocs, FuncValueTable &MOutLocs,
2189     SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2190   std::priority_queue<unsigned int, std::vector<unsigned int>,
2191                       std::greater<unsigned int>>
2192       Worklist, Pending;
2193 
2194   // We track what is on the current and pending worklist to avoid inserting
2195   // the same thing twice. We could avoid this with a custom priority queue,
2196   // but this is probably not worth it.
2197   SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
2198 
2199   // Initialize worklist with every block to be visited. Also produce list of
2200   // all blocks.
2201   SmallPtrSet<MachineBasicBlock *, 32> AllBlocks;
2202   for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
2203     Worklist.push(I);
2204     OnWorklist.insert(OrderToBB[I]);
2205     AllBlocks.insert(OrderToBB[I]);
2206   }
2207 
2208   // Initialize entry block to PHIs. These represent arguments.
2209   for (auto Location : MTracker->locations())
2210     MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx);
2211 
2212   MTracker->reset();
2213 
2214   // Start by placing PHIs, using the usual SSA constructor algorithm. Consider
2215   // any machine-location that isn't live-through a block to be def'd in that
2216   // block.
2217   placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer);
2218 
2219   // Propagate values to eliminate redundant PHIs. At the same time, this
2220   // produces the table of Block x Location => Value for the entry to each
2221   // block.
2222   // The kind of PHIs we can eliminate are, for example, where one path in a
2223   // conditional spills and restores a register, and the register still has
2224   // the same value once control flow joins, unbeknowns to the PHI placement
2225   // code. Propagating values allows us to identify such un-necessary PHIs and
2226   // remove them.
2227   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
2228   while (!Worklist.empty() || !Pending.empty()) {
2229     // Vector for storing the evaluated block transfer function.
2230     SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
2231 
2232     while (!Worklist.empty()) {
2233       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
2234       CurBB = MBB->getNumber();
2235       Worklist.pop();
2236 
2237       // Join the values in all predecessor blocks.
2238       bool InLocsChanged;
2239       InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
2240       InLocsChanged |= Visited.insert(MBB).second;
2241 
2242       // Don't examine transfer function if we've visited this loc at least
2243       // once, and inlocs haven't changed.
2244       if (!InLocsChanged)
2245         continue;
2246 
2247       // Load the current set of live-ins into MLocTracker.
2248       MTracker->loadFromArray(MInLocs[CurBB], CurBB);
2249 
2250       // Each element of the transfer function can be a new def, or a read of
2251       // a live-in value. Evaluate each element, and store to "ToRemap".
2252       ToRemap.clear();
2253       for (auto &P : MLocTransfer[CurBB]) {
2254         if (P.second.getBlock() == CurBB && P.second.isPHI()) {
2255           // This is a movement of whatever was live in. Read it.
2256           ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc());
2257           ToRemap.push_back(std::make_pair(P.first, NewID));
2258         } else {
2259           // It's a def. Just set it.
2260           assert(P.second.getBlock() == CurBB);
2261           ToRemap.push_back(std::make_pair(P.first, P.second));
2262         }
2263       }
2264 
2265       // Commit the transfer function changes into mloc tracker, which
2266       // transforms the contents of the MLocTracker into the live-outs.
2267       for (auto &P : ToRemap)
2268         MTracker->setMLoc(P.first, P.second);
2269 
2270       // Now copy out-locs from mloc tracker into out-loc vector, checking
2271       // whether changes have occurred. These changes can have come from both
2272       // the transfer function, and mlocJoin.
2273       bool OLChanged = false;
2274       for (auto Location : MTracker->locations()) {
2275         OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
2276         MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
2277       }
2278 
2279       MTracker->reset();
2280 
2281       // No need to examine successors again if out-locs didn't change.
2282       if (!OLChanged)
2283         continue;
2284 
2285       // All successors should be visited: put any back-edges on the pending
2286       // list for the next pass-through, and any other successors to be
2287       // visited this pass, if they're not going to be already.
2288       for (auto s : MBB->successors()) {
2289         // Does branching to this successor represent a back-edge?
2290         if (BBToOrder[s] > BBToOrder[MBB]) {
2291           // No: visit it during this dataflow iteration.
2292           if (OnWorklist.insert(s).second)
2293             Worklist.push(BBToOrder[s]);
2294         } else {
2295           // Yes: visit it on the next iteration.
2296           if (OnPending.insert(s).second)
2297             Pending.push(BBToOrder[s]);
2298         }
2299       }
2300     }
2301 
2302     Worklist.swap(Pending);
2303     std::swap(OnPending, OnWorklist);
2304     OnPending.clear();
2305     // At this point, pending must be empty, since it was just the empty
2306     // worklist
2307     assert(Pending.empty() && "Pending should be empty");
2308   }
2309 
2310   // Once all the live-ins don't change on mlocJoin(), we've eliminated all
2311   // redundant PHIs.
2312 }
2313 
2314 void InstrRefBasedLDV::BlockPHIPlacement(
2315     const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
2316     const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
2317     SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) {
2318   // Apply IDF calculator to the designated set of location defs, storing
2319   // required PHIs into PHIBlocks. Uses the dominator tree stored in the
2320   // InstrRefBasedLDV object.
2321   IDFCalculatorBase<MachineBasicBlock, false> IDF(DomTree->getBase());
2322 
2323   IDF.setLiveInBlocks(AllBlocks);
2324   IDF.setDefiningBlocks(DefBlocks);
2325   IDF.calculate(PHIBlocks);
2326 }
2327 
2328 Optional<ValueIDNum> InstrRefBasedLDV::pickVPHILoc(
2329     const MachineBasicBlock &MBB, const DebugVariable &Var,
2330     const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs,
2331     const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
2332   // Collect a set of locations from predecessor where its live-out value can
2333   // be found.
2334   SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
2335   SmallVector<const DbgValueProperties *, 4> Properties;
2336   unsigned NumLocs = MTracker->getNumLocs();
2337 
2338   // No predecessors means no PHIs.
2339   if (BlockOrders.empty())
2340     return None;
2341 
2342   for (auto p : BlockOrders) {
2343     unsigned ThisBBNum = p->getNumber();
2344     auto OutValIt = LiveOuts.find(p);
2345     if (OutValIt == LiveOuts.end())
2346       // If we have a predecessor not in scope, we'll never find a PHI position.
2347       return None;
2348     const DbgValue &OutVal = *OutValIt->second;
2349 
2350     if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
2351       // Consts and no-values cannot have locations we can join on.
2352       return None;
2353 
2354     Properties.push_back(&OutVal.Properties);
2355 
2356     // Create new empty vector of locations.
2357     Locs.resize(Locs.size() + 1);
2358 
2359     // If the live-in value is a def, find the locations where that value is
2360     // present. Do the same for VPHIs where we know the VPHI value.
2361     if (OutVal.Kind == DbgValue::Def ||
2362         (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() &&
2363          OutVal.ID != ValueIDNum::EmptyValue)) {
2364       ValueIDNum ValToLookFor = OutVal.ID;
2365       // Search the live-outs of the predecessor for the specified value.
2366       for (unsigned int I = 0; I < NumLocs; ++I) {
2367         if (MOutLocs[ThisBBNum][I] == ValToLookFor)
2368           Locs.back().push_back(LocIdx(I));
2369       }
2370     } else {
2371       assert(OutVal.Kind == DbgValue::VPHI);
2372       // For VPHIs where we don't know the location, we definitely can't find
2373       // a join loc.
2374       if (OutVal.BlockNo != MBB.getNumber())
2375         return None;
2376 
2377       // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e.
2378       // a value that's live-through the whole loop. (It has to be a backedge,
2379       // because a block can't dominate itself). We can accept as a PHI location
2380       // any location where the other predecessors agree, _and_ the machine
2381       // locations feed back into themselves. Therefore, add all self-looping
2382       // machine-value PHI locations.
2383       for (unsigned int I = 0; I < NumLocs; ++I) {
2384         ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I));
2385         if (MOutLocs[ThisBBNum][I] == MPHI)
2386           Locs.back().push_back(LocIdx(I));
2387       }
2388     }
2389   }
2390 
2391   // We should have found locations for all predecessors, or returned.
2392   assert(Locs.size() == BlockOrders.size());
2393 
2394   // Check that all properties are the same. We can't pick a location if they're
2395   // not.
2396   const DbgValueProperties *Properties0 = Properties[0];
2397   for (auto *Prop : Properties)
2398     if (*Prop != *Properties0)
2399       return None;
2400 
2401   // Starting with the first set of locations, take the intersection with
2402   // subsequent sets.
2403   SmallVector<LocIdx, 4> CandidateLocs = Locs[0];
2404   for (unsigned int I = 1; I < Locs.size(); ++I) {
2405     auto &LocVec = Locs[I];
2406     SmallVector<LocIdx, 4> NewCandidates;
2407     std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(),
2408                           LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin()));
2409     CandidateLocs = NewCandidates;
2410   }
2411   if (CandidateLocs.empty())
2412     return None;
2413 
2414   // We now have a set of LocIdxes that contain the right output value in
2415   // each of the predecessors. Pick the lowest; if there's a register loc,
2416   // that'll be it.
2417   LocIdx L = *CandidateLocs.begin();
2418 
2419   // Return a PHI-value-number for the found location.
2420   ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
2421   return PHIVal;
2422 }
2423 
2424 bool InstrRefBasedLDV::vlocJoin(
2425     MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
2426     SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
2427     DbgValue &LiveIn) {
2428   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2429   bool Changed = false;
2430 
2431   // Order predecessors by RPOT order, for exploring them in that order.
2432   SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
2433 
2434   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2435     return BBToOrder[A] < BBToOrder[B];
2436   };
2437 
2438   llvm::sort(BlockOrders, Cmp);
2439 
2440   unsigned CurBlockRPONum = BBToOrder[&MBB];
2441 
2442   // Collect all the incoming DbgValues for this variable, from predecessor
2443   // live-out values.
2444   SmallVector<InValueT, 8> Values;
2445   bool Bail = false;
2446   int BackEdgesStart = 0;
2447   for (auto p : BlockOrders) {
2448     // If the predecessor isn't in scope / to be explored, we'll never be
2449     // able to join any locations.
2450     if (!BlocksToExplore.contains(p)) {
2451       Bail = true;
2452       break;
2453     }
2454 
2455     // All Live-outs will have been initialized.
2456     DbgValue &OutLoc = *VLOCOutLocs.find(p)->second;
2457 
2458     // Keep track of where back-edges begin in the Values vector. Relies on
2459     // BlockOrders being sorted by RPO.
2460     unsigned ThisBBRPONum = BBToOrder[p];
2461     if (ThisBBRPONum < CurBlockRPONum)
2462       ++BackEdgesStart;
2463 
2464     Values.push_back(std::make_pair(p, &OutLoc));
2465   }
2466 
2467   // If there were no values, or one of the predecessors couldn't have a
2468   // value, then give up immediately. It's not safe to produce a live-in
2469   // value. Leave as whatever it was before.
2470   if (Bail || Values.size() == 0)
2471     return false;
2472 
2473   // All (non-entry) blocks have at least one non-backedge predecessor.
2474   // Pick the variable value from the first of these, to compare against
2475   // all others.
2476   const DbgValue &FirstVal = *Values[0].second;
2477 
2478   // If the old live-in value is not a PHI then either a) no PHI is needed
2479   // here, or b) we eliminated the PHI that was here. If so, we can just
2480   // propagate in the first parent's incoming value.
2481   if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) {
2482     Changed = LiveIn != FirstVal;
2483     if (Changed)
2484       LiveIn = FirstVal;
2485     return Changed;
2486   }
2487 
2488   // Scan for variable values that can never be resolved: if they have
2489   // different DIExpressions, different indirectness, or are mixed constants /
2490   // non-constants.
2491   for (auto &V : Values) {
2492     if (V.second->Properties != FirstVal.Properties)
2493       return false;
2494     if (V.second->Kind == DbgValue::NoVal)
2495       return false;
2496     if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
2497       return false;
2498   }
2499 
2500   // Try to eliminate this PHI. Do the incoming values all agree?
2501   bool Disagree = false;
2502   for (auto &V : Values) {
2503     if (*V.second == FirstVal)
2504       continue; // No disagreement.
2505 
2506     // Eliminate if a backedge feeds a VPHI back into itself.
2507     if (V.second->Kind == DbgValue::VPHI &&
2508         V.second->BlockNo == MBB.getNumber() &&
2509         // Is this a backedge?
2510         std::distance(Values.begin(), &V) >= BackEdgesStart)
2511       continue;
2512 
2513     Disagree = true;
2514   }
2515 
2516   // No disagreement -> live-through value.
2517   if (!Disagree) {
2518     Changed = LiveIn != FirstVal;
2519     if (Changed)
2520       LiveIn = FirstVal;
2521     return Changed;
2522   } else {
2523     // Otherwise use a VPHI.
2524     DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI);
2525     Changed = LiveIn != VPHI;
2526     if (Changed)
2527       LiveIn = VPHI;
2528     return Changed;
2529   }
2530 }
2531 
2532 void InstrRefBasedLDV::getBlocksForScope(
2533     const DILocation *DILoc,
2534     SmallPtrSetImpl<const MachineBasicBlock *> &BlocksToExplore,
2535     const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks) {
2536   // Get the set of "normal" in-lexical-scope blocks.
2537   LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
2538 
2539   // VarLoc LiveDebugValues tracks variable locations that are defined in
2540   // blocks not in scope. This is something we could legitimately ignore, but
2541   // lets allow it for now for the sake of coverage.
2542   BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
2543 
2544   // Storage for artificial blocks we intend to add to BlocksToExplore.
2545   DenseSet<const MachineBasicBlock *> ToAdd;
2546 
2547   // To avoid needlessly dropping large volumes of variable locations, propagate
2548   // variables through aritifical blocks, i.e. those that don't have any
2549   // instructions in scope at all. To accurately replicate VarLoc
2550   // LiveDebugValues, this means exploring all artificial successors too.
2551   // Perform a depth-first-search to enumerate those blocks.
2552   for (auto *MBB : BlocksToExplore) {
2553     // Depth-first-search state: each node is a block and which successor
2554     // we're currently exploring.
2555     SmallVector<std::pair<const MachineBasicBlock *,
2556                           MachineBasicBlock::const_succ_iterator>,
2557                 8>
2558         DFS;
2559 
2560     // Find any artificial successors not already tracked.
2561     for (auto *succ : MBB->successors()) {
2562       if (BlocksToExplore.count(succ))
2563         continue;
2564       if (!ArtificialBlocks.count(succ))
2565         continue;
2566       ToAdd.insert(succ);
2567       DFS.push_back({succ, succ->succ_begin()});
2568     }
2569 
2570     // Search all those blocks, depth first.
2571     while (!DFS.empty()) {
2572       const MachineBasicBlock *CurBB = DFS.back().first;
2573       MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
2574       // Walk back if we've explored this blocks successors to the end.
2575       if (CurSucc == CurBB->succ_end()) {
2576         DFS.pop_back();
2577         continue;
2578       }
2579 
2580       // If the current successor is artificial and unexplored, descend into
2581       // it.
2582       if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
2583         ToAdd.insert(*CurSucc);
2584         DFS.push_back({*CurSucc, (*CurSucc)->succ_begin()});
2585         continue;
2586       }
2587 
2588       ++CurSucc;
2589     }
2590   };
2591 
2592   BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
2593 }
2594 
2595 void InstrRefBasedLDV::buildVLocValueMap(
2596     const DILocation *DILoc, const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
2597     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
2598     FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
2599     SmallVectorImpl<VLocTracker> &AllTheVLocs) {
2600   // This method is much like buildMLocValueMap: but focuses on a single
2601   // LexicalScope at a time. Pick out a set of blocks and variables that are
2602   // to have their value assignments solved, then run our dataflow algorithm
2603   // until a fixedpoint is reached.
2604   std::priority_queue<unsigned int, std::vector<unsigned int>,
2605                       std::greater<unsigned int>>
2606       Worklist, Pending;
2607   SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
2608 
2609   // The set of blocks we'll be examining.
2610   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
2611 
2612   // The order in which to examine them (RPO).
2613   SmallVector<MachineBasicBlock *, 8> BlockOrders;
2614 
2615   // RPO ordering function.
2616   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2617     return BBToOrder[A] < BBToOrder[B];
2618   };
2619 
2620   getBlocksForScope(DILoc, BlocksToExplore, AssignBlocks);
2621 
2622   // Single block scope: not interesting! No propagation at all. Note that
2623   // this could probably go above ArtificialBlocks without damage, but
2624   // that then produces output differences from original-live-debug-values,
2625   // which propagates from a single block into many artificial ones.
2626   if (BlocksToExplore.size() == 1)
2627     return;
2628 
2629   // Convert a const set to a non-const set. LexicalScopes
2630   // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones.
2631   // (Neither of them mutate anything).
2632   SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore;
2633   for (const auto *MBB : BlocksToExplore)
2634     MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB));
2635 
2636   // Picks out relevants blocks RPO order and sort them.
2637   for (auto *MBB : BlocksToExplore)
2638     BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
2639 
2640   llvm::sort(BlockOrders, Cmp);
2641   unsigned NumBlocks = BlockOrders.size();
2642 
2643   // Allocate some vectors for storing the live ins and live outs. Large.
2644   SmallVector<DbgValue, 32> LiveIns, LiveOuts;
2645   LiveIns.reserve(NumBlocks);
2646   LiveOuts.reserve(NumBlocks);
2647 
2648   // Initialize all values to start as NoVals. This signifies "it's live
2649   // through, but we don't know what it is".
2650   DbgValueProperties EmptyProperties(EmptyExpr, false);
2651   for (unsigned int I = 0; I < NumBlocks; ++I) {
2652     DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
2653     LiveIns.push_back(EmptyDbgValue);
2654     LiveOuts.push_back(EmptyDbgValue);
2655   }
2656 
2657   // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
2658   // vlocJoin.
2659   LiveIdxT LiveOutIdx, LiveInIdx;
2660   LiveOutIdx.reserve(NumBlocks);
2661   LiveInIdx.reserve(NumBlocks);
2662   for (unsigned I = 0; I < NumBlocks; ++I) {
2663     LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
2664     LiveInIdx[BlockOrders[I]] = &LiveIns[I];
2665   }
2666 
2667   // Loop over each variable and place PHIs for it, then propagate values
2668   // between blocks. This keeps the locality of working on one lexical scope at
2669   // at time, but avoids re-processing variable values because some other
2670   // variable has been assigned.
2671   for (auto &Var : VarsWeCareAbout) {
2672     // Re-initialize live-ins and live-outs, to clear the remains of previous
2673     // variables live-ins / live-outs.
2674     for (unsigned int I = 0; I < NumBlocks; ++I) {
2675       DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
2676       LiveIns[I] = EmptyDbgValue;
2677       LiveOuts[I] = EmptyDbgValue;
2678     }
2679 
2680     // Place PHIs for variable values, using the LLVM IDF calculator.
2681     // Collect the set of blocks where variables are def'd.
2682     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
2683     for (const MachineBasicBlock *ExpMBB : BlocksToExplore) {
2684       auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars;
2685       if (TransferFunc.find(Var) != TransferFunc.end())
2686         DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB));
2687     }
2688 
2689     SmallVector<MachineBasicBlock *, 32> PHIBlocks;
2690 
2691     // Request the set of PHIs we should insert for this variable. If there's
2692     // only one value definition, things are very simple.
2693     if (DefBlocks.size() == 1) {
2694       placePHIsForSingleVarDefinition(MutBlocksToExplore, *DefBlocks.begin(),
2695                                       AllTheVLocs, Var, Output);
2696       continue;
2697     }
2698 
2699     // Otherwise: we need to place PHIs through SSA and propagate values.
2700     BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks);
2701 
2702     // Insert PHIs into the per-block live-in tables for this variable.
2703     for (MachineBasicBlock *PHIMBB : PHIBlocks) {
2704       unsigned BlockNo = PHIMBB->getNumber();
2705       DbgValue *LiveIn = LiveInIdx[PHIMBB];
2706       *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI);
2707     }
2708 
2709     for (auto *MBB : BlockOrders) {
2710       Worklist.push(BBToOrder[MBB]);
2711       OnWorklist.insert(MBB);
2712     }
2713 
2714     // Iterate over all the blocks we selected, propagating the variables value.
2715     // This loop does two things:
2716     //  * Eliminates un-necessary VPHIs in vlocJoin,
2717     //  * Evaluates the blocks transfer function (i.e. variable assignments) and
2718     //    stores the result to the blocks live-outs.
2719     // Always evaluate the transfer function on the first iteration, and when
2720     // the live-ins change thereafter.
2721     bool FirstTrip = true;
2722     while (!Worklist.empty() || !Pending.empty()) {
2723       while (!Worklist.empty()) {
2724         auto *MBB = OrderToBB[Worklist.top()];
2725         CurBB = MBB->getNumber();
2726         Worklist.pop();
2727 
2728         auto LiveInsIt = LiveInIdx.find(MBB);
2729         assert(LiveInsIt != LiveInIdx.end());
2730         DbgValue *LiveIn = LiveInsIt->second;
2731 
2732         // Join values from predecessors. Updates LiveInIdx, and writes output
2733         // into JoinedInLocs.
2734         bool InLocsChanged =
2735             vlocJoin(*MBB, LiveOutIdx, BlocksToExplore, *LiveIn);
2736 
2737         SmallVector<const MachineBasicBlock *, 8> Preds;
2738         for (const auto *Pred : MBB->predecessors())
2739           Preds.push_back(Pred);
2740 
2741         // If this block's live-in value is a VPHI, try to pick a machine-value
2742         // for it. This makes the machine-value available and propagated
2743         // through all blocks by the time value propagation finishes. We can't
2744         // do this any earlier as it needs to read the block live-outs.
2745         if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) {
2746           // There's a small possibility that on a preceeding path, a VPHI is
2747           // eliminated and transitions from VPHI-with-location to
2748           // live-through-value. As a result, the selected location of any VPHI
2749           // might change, so we need to re-compute it on each iteration.
2750           Optional<ValueIDNum> ValueNum =
2751               pickVPHILoc(*MBB, Var, LiveOutIdx, MOutLocs, Preds);
2752 
2753           if (ValueNum) {
2754             InLocsChanged |= LiveIn->ID != *ValueNum;
2755             LiveIn->ID = *ValueNum;
2756           }
2757         }
2758 
2759         if (!InLocsChanged && !FirstTrip)
2760           continue;
2761 
2762         DbgValue *LiveOut = LiveOutIdx[MBB];
2763         bool OLChanged = false;
2764 
2765         // Do transfer function.
2766         auto &VTracker = AllTheVLocs[MBB->getNumber()];
2767         auto TransferIt = VTracker.Vars.find(Var);
2768         if (TransferIt != VTracker.Vars.end()) {
2769           // Erase on empty transfer (DBG_VALUE $noreg).
2770           if (TransferIt->second.Kind == DbgValue::Undef) {
2771             DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal);
2772             if (*LiveOut != NewVal) {
2773               *LiveOut = NewVal;
2774               OLChanged = true;
2775             }
2776           } else {
2777             // Insert new variable value; or overwrite.
2778             if (*LiveOut != TransferIt->second) {
2779               *LiveOut = TransferIt->second;
2780               OLChanged = true;
2781             }
2782           }
2783         } else {
2784           // Just copy live-ins to live-outs, for anything not transferred.
2785           if (*LiveOut != *LiveIn) {
2786             *LiveOut = *LiveIn;
2787             OLChanged = true;
2788           }
2789         }
2790 
2791         // If no live-out value changed, there's no need to explore further.
2792         if (!OLChanged)
2793           continue;
2794 
2795         // We should visit all successors. Ensure we'll visit any non-backedge
2796         // successors during this dataflow iteration; book backedge successors
2797         // to be visited next time around.
2798         for (auto s : MBB->successors()) {
2799           // Ignore out of scope / not-to-be-explored successors.
2800           if (LiveInIdx.find(s) == LiveInIdx.end())
2801             continue;
2802 
2803           if (BBToOrder[s] > BBToOrder[MBB]) {
2804             if (OnWorklist.insert(s).second)
2805               Worklist.push(BBToOrder[s]);
2806           } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
2807             Pending.push(BBToOrder[s]);
2808           }
2809         }
2810       }
2811       Worklist.swap(Pending);
2812       std::swap(OnWorklist, OnPending);
2813       OnPending.clear();
2814       assert(Pending.empty());
2815       FirstTrip = false;
2816     }
2817 
2818     // Save live-ins to output vector. Ignore any that are still marked as being
2819     // VPHIs with no location -- those are variables that we know the value of,
2820     // but are not actually available in the register file.
2821     for (auto *MBB : BlockOrders) {
2822       DbgValue *BlockLiveIn = LiveInIdx[MBB];
2823       if (BlockLiveIn->Kind == DbgValue::NoVal)
2824         continue;
2825       if (BlockLiveIn->Kind == DbgValue::VPHI &&
2826           BlockLiveIn->ID == ValueIDNum::EmptyValue)
2827         continue;
2828       if (BlockLiveIn->Kind == DbgValue::VPHI)
2829         BlockLiveIn->Kind = DbgValue::Def;
2830       assert(BlockLiveIn->Properties.DIExpr->getFragmentInfo() ==
2831              Var.getFragment() && "Fragment info missing during value prop");
2832       Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn));
2833     }
2834   } // Per-variable loop.
2835 
2836   BlockOrders.clear();
2837   BlocksToExplore.clear();
2838 }
2839 
2840 void InstrRefBasedLDV::placePHIsForSingleVarDefinition(
2841     const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks,
2842     MachineBasicBlock *AssignMBB, SmallVectorImpl<VLocTracker> &AllTheVLocs,
2843     const DebugVariable &Var, LiveInsT &Output) {
2844   // If there is a single definition of the variable, then working out it's
2845   // value everywhere is very simple: it's every block dominated by the
2846   // definition. At the dominance frontier, the usual algorithm would:
2847   //  * Place PHIs,
2848   //  * Propagate values into them,
2849   //  * Find there's no incoming variable value from the other incoming branches
2850   //    of the dominance frontier,
2851   //  * Specify there's no variable value in blocks past the frontier.
2852   // This is a common case, hence it's worth special-casing it.
2853 
2854   // Pick out the variables value from the block transfer function.
2855   VLocTracker &VLocs = AllTheVLocs[AssignMBB->getNumber()];
2856   auto ValueIt = VLocs.Vars.find(Var);
2857   const DbgValue &Value = ValueIt->second;
2858 
2859   // If it's an explicit assignment of "undef", that means there is no location
2860   // anyway, anywhere.
2861   if (Value.Kind == DbgValue::Undef)
2862     return;
2863 
2864   // Assign the variable value to entry to each dominated block that's in scope.
2865   // Skip the definition block -- it's assigned the variable value in the middle
2866   // of the block somewhere.
2867   for (auto *ScopeBlock : InScopeBlocks) {
2868     if (!DomTree->properlyDominates(AssignMBB, ScopeBlock))
2869       continue;
2870 
2871     Output[ScopeBlock->getNumber()].push_back({Var, Value});
2872   }
2873 
2874   // All blocks that aren't dominated have no live-in value, thus no variable
2875   // value will be given to them.
2876 }
2877 
2878 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2879 void InstrRefBasedLDV::dump_mloc_transfer(
2880     const MLocTransferMap &mloc_transfer) const {
2881   for (auto &P : mloc_transfer) {
2882     std::string foo = MTracker->LocIdxToName(P.first);
2883     std::string bar = MTracker->IDAsString(P.second);
2884     dbgs() << "Loc " << foo << " --> " << bar << "\n";
2885   }
2886 }
2887 #endif
2888 
2889 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
2890   // Build some useful data structures.
2891 
2892   LLVMContext &Context = MF.getFunction().getContext();
2893   EmptyExpr = DIExpression::get(Context, {});
2894 
2895   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
2896     if (const DebugLoc &DL = MI.getDebugLoc())
2897       return DL.getLine() != 0;
2898     return false;
2899   };
2900   // Collect a set of all the artificial blocks.
2901   for (auto &MBB : MF)
2902     if (none_of(MBB.instrs(), hasNonArtificialLocation))
2903       ArtificialBlocks.insert(&MBB);
2904 
2905   // Compute mappings of block <=> RPO order.
2906   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
2907   unsigned int RPONumber = 0;
2908   for (MachineBasicBlock *MBB : RPOT) {
2909     OrderToBB[RPONumber] = MBB;
2910     BBToOrder[MBB] = RPONumber;
2911     BBNumToRPO[MBB->getNumber()] = RPONumber;
2912     ++RPONumber;
2913   }
2914 
2915   // Order value substitutions by their "source" operand pair, for quick lookup.
2916   llvm::sort(MF.DebugValueSubstitutions);
2917 
2918 #ifdef EXPENSIVE_CHECKS
2919   // As an expensive check, test whether there are any duplicate substitution
2920   // sources in the collection.
2921   if (MF.DebugValueSubstitutions.size() > 2) {
2922     for (auto It = MF.DebugValueSubstitutions.begin();
2923          It != std::prev(MF.DebugValueSubstitutions.end()); ++It) {
2924       assert(It->Src != std::next(It)->Src && "Duplicate variable location "
2925                                               "substitution seen");
2926     }
2927   }
2928 #endif
2929 }
2930 
2931 // Produce an "ejection map" for blocks, i.e., what's the highest-numbered
2932 // lexical scope it's used in. When exploring in DFS order and we pass that
2933 // scope, the block can be processed and any tracking information freed.
2934 void InstrRefBasedLDV::makeDepthFirstEjectionMap(
2935     SmallVectorImpl<unsigned> &EjectionMap,
2936     const ScopeToDILocT &ScopeToDILocation,
2937     ScopeToAssignBlocksT &ScopeToAssignBlocks) {
2938   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
2939   SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
2940   auto *TopScope = LS.getCurrentFunctionScope();
2941 
2942   // Unlike lexical scope explorers, we explore in reverse order, to find the
2943   // "last" lexical scope used for each block early.
2944   WorkStack.push_back({TopScope, TopScope->getChildren().size() - 1});
2945 
2946   while (!WorkStack.empty()) {
2947     auto &ScopePosition = WorkStack.back();
2948     LexicalScope *WS = ScopePosition.first;
2949     ssize_t ChildNum = ScopePosition.second--;
2950 
2951     const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
2952     if (ChildNum >= 0) {
2953       // If ChildNum is positive, there are remaining children to explore.
2954       // Push the child and its children-count onto the stack.
2955       auto &ChildScope = Children[ChildNum];
2956       WorkStack.push_back(
2957           std::make_pair(ChildScope, ChildScope->getChildren().size() - 1));
2958     } else {
2959       WorkStack.pop_back();
2960 
2961       // We've explored all children and any later blocks: examine all blocks
2962       // in our scope. If they haven't yet had an ejection number set, then
2963       // this scope will be the last to use that block.
2964       auto DILocationIt = ScopeToDILocation.find(WS);
2965       if (DILocationIt != ScopeToDILocation.end()) {
2966         getBlocksForScope(DILocationIt->second, BlocksToExplore,
2967                           ScopeToAssignBlocks.find(WS)->second);
2968         for (auto *MBB : BlocksToExplore) {
2969           unsigned BBNum = MBB->getNumber();
2970           if (EjectionMap[BBNum] == 0)
2971             EjectionMap[BBNum] = WS->getDFSOut();
2972         }
2973 
2974         BlocksToExplore.clear();
2975       }
2976     }
2977   }
2978 }
2979 
2980 bool InstrRefBasedLDV::depthFirstVLocAndEmit(
2981     unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation,
2982     const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToAssignBlocks,
2983     LiveInsT &Output, FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
2984     SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF,
2985     DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
2986     const TargetPassConfig &TPC) {
2987   TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC);
2988   unsigned NumLocs = MTracker->getNumLocs();
2989   VTracker = nullptr;
2990 
2991   // No scopes? No variable locations.
2992   if (!LS.getCurrentFunctionScope())
2993     return false;
2994 
2995   // Build map from block number to the last scope that uses the block.
2996   SmallVector<unsigned, 16> EjectionMap;
2997   EjectionMap.resize(MaxNumBlocks, 0);
2998   makeDepthFirstEjectionMap(EjectionMap, ScopeToDILocation,
2999                             ScopeToAssignBlocks);
3000 
3001   // Helper lambda for ejecting a block -- if nothing is going to use the block,
3002   // we can translate the variable location information into DBG_VALUEs and then
3003   // free all of InstrRefBasedLDV's data structures.
3004   auto EjectBlock = [&](MachineBasicBlock &MBB) -> void {
3005     unsigned BBNum = MBB.getNumber();
3006     AllTheVLocs[BBNum].clear();
3007 
3008     // Prime the transfer-tracker, and then step through all the block
3009     // instructions, installing transfers.
3010     MTracker->reset();
3011     MTracker->loadFromArray(MInLocs[BBNum], BBNum);
3012     TTracker->loadInlocs(MBB, MInLocs[BBNum], Output[BBNum], NumLocs);
3013 
3014     CurBB = BBNum;
3015     CurInst = 1;
3016     for (auto &MI : MBB) {
3017       process(MI, MOutLocs.get(), MInLocs.get());
3018       TTracker->checkInstForNewValues(CurInst, MI.getIterator());
3019       ++CurInst;
3020     }
3021 
3022     // Free machine-location tables for this block.
3023     MInLocs[BBNum].reset();
3024     MOutLocs[BBNum].reset();
3025     // We don't need live-in variable values for this block either.
3026     Output[BBNum].clear();
3027     AllTheVLocs[BBNum].clear();
3028   };
3029 
3030   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
3031   SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
3032   WorkStack.push_back({LS.getCurrentFunctionScope(), 0});
3033   unsigned HighestDFSIn = 0;
3034 
3035   // Proceed to explore in depth first order.
3036   while (!WorkStack.empty()) {
3037     auto &ScopePosition = WorkStack.back();
3038     LexicalScope *WS = ScopePosition.first;
3039     ssize_t ChildNum = ScopePosition.second++;
3040 
3041     // We obesrve scopes with children twice here, once descending in, once
3042     // ascending out of the scope nest. Use HighestDFSIn as a ratchet to ensure
3043     // we don't process a scope twice. Additionally, ignore scopes that don't
3044     // have a DILocation -- by proxy, this means we never tracked any variable
3045     // assignments in that scope.
3046     auto DILocIt = ScopeToDILocation.find(WS);
3047     if (HighestDFSIn <= WS->getDFSIn() && DILocIt != ScopeToDILocation.end()) {
3048       const DILocation *DILoc = DILocIt->second;
3049       auto &VarsWeCareAbout = ScopeToVars.find(WS)->second;
3050       auto &BlocksInScope = ScopeToAssignBlocks.find(WS)->second;
3051 
3052       buildVLocValueMap(DILoc, VarsWeCareAbout, BlocksInScope, Output, MOutLocs,
3053                         MInLocs, AllTheVLocs);
3054     }
3055 
3056     HighestDFSIn = std::max(HighestDFSIn, WS->getDFSIn());
3057 
3058     // Descend into any scope nests.
3059     const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
3060     if (ChildNum < (ssize_t)Children.size()) {
3061       // There are children to explore -- push onto stack and continue.
3062       auto &ChildScope = Children[ChildNum];
3063       WorkStack.push_back(std::make_pair(ChildScope, 0));
3064     } else {
3065       WorkStack.pop_back();
3066 
3067       // We've explored a leaf, or have explored all the children of a scope.
3068       // Try to eject any blocks where this is the last scope it's relevant to.
3069       auto DILocationIt = ScopeToDILocation.find(WS);
3070       if (DILocationIt == ScopeToDILocation.end())
3071         continue;
3072 
3073       getBlocksForScope(DILocationIt->second, BlocksToExplore,
3074                         ScopeToAssignBlocks.find(WS)->second);
3075       for (auto *MBB : BlocksToExplore)
3076         if (WS->getDFSOut() == EjectionMap[MBB->getNumber()])
3077           EjectBlock(const_cast<MachineBasicBlock &>(*MBB));
3078 
3079       BlocksToExplore.clear();
3080     }
3081   }
3082 
3083   // Some artificial blocks may not have been ejected, meaning they're not
3084   // connected to an actual legitimate scope. This can technically happen
3085   // with things like the entry block. In theory, we shouldn't need to do
3086   // anything for such out-of-scope blocks, but for the sake of being similar
3087   // to VarLocBasedLDV, eject these too.
3088   for (auto *MBB : ArtificialBlocks)
3089     if (MOutLocs[MBB->getNumber()])
3090       EjectBlock(*MBB);
3091 
3092   return emitTransfers(AllVarsNumbering);
3093 }
3094 
3095 bool InstrRefBasedLDV::emitTransfers(
3096     DenseMap<DebugVariable, unsigned> &AllVarsNumbering) {
3097   // Go through all the transfers recorded in the TransferTracker -- this is
3098   // both the live-ins to a block, and any movements of values that happen
3099   // in the middle.
3100   for (const auto &P : TTracker->Transfers) {
3101     // We have to insert DBG_VALUEs in a consistent order, otherwise they
3102     // appear in DWARF in different orders. Use the order that they appear
3103     // when walking through each block / each instruction, stored in
3104     // AllVarsNumbering.
3105     SmallVector<std::pair<unsigned, MachineInstr *>> Insts;
3106     for (MachineInstr *MI : P.Insts) {
3107       DebugVariable Var(MI->getDebugVariable(), MI->getDebugExpression(),
3108                         MI->getDebugLoc()->getInlinedAt());
3109       Insts.emplace_back(AllVarsNumbering.find(Var)->second, MI);
3110     }
3111     llvm::sort(Insts,
3112                [](const auto &A, const auto &B) { return A.first < B.first; });
3113 
3114     // Insert either before or after the designated point...
3115     if (P.MBB) {
3116       MachineBasicBlock &MBB = *P.MBB;
3117       for (const auto &Pair : Insts)
3118         MBB.insert(P.Pos, Pair.second);
3119     } else {
3120       // Terminators, like tail calls, can clobber things. Don't try and place
3121       // transfers after them.
3122       if (P.Pos->isTerminator())
3123         continue;
3124 
3125       MachineBasicBlock &MBB = *P.Pos->getParent();
3126       for (const auto &Pair : Insts)
3127         MBB.insertAfterBundle(P.Pos, Pair.second);
3128     }
3129   }
3130 
3131   return TTracker->Transfers.size() != 0;
3132 }
3133 
3134 /// Calculate the liveness information for the given machine function and
3135 /// extend ranges across basic blocks.
3136 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
3137                                     MachineDominatorTree *DomTree,
3138                                     TargetPassConfig *TPC,
3139                                     unsigned InputBBLimit,
3140                                     unsigned InputDbgValLimit) {
3141   // No subprogram means this function contains no debuginfo.
3142   if (!MF.getFunction().getSubprogram())
3143     return false;
3144 
3145   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
3146   this->TPC = TPC;
3147 
3148   this->DomTree = DomTree;
3149   TRI = MF.getSubtarget().getRegisterInfo();
3150   MRI = &MF.getRegInfo();
3151   TII = MF.getSubtarget().getInstrInfo();
3152   TFI = MF.getSubtarget().getFrameLowering();
3153   TFI->getCalleeSaves(MF, CalleeSavedRegs);
3154   MFI = &MF.getFrameInfo();
3155   LS.initialize(MF);
3156 
3157   const auto &STI = MF.getSubtarget();
3158   AdjustsStackInCalls = MFI->adjustsStack() &&
3159                         STI.getFrameLowering()->stackProbeFunctionModifiesSP();
3160   if (AdjustsStackInCalls)
3161     StackProbeSymbolName = STI.getTargetLowering()->getStackProbeSymbolName(MF);
3162 
3163   MTracker =
3164       new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
3165   VTracker = nullptr;
3166   TTracker = nullptr;
3167 
3168   SmallVector<MLocTransferMap, 32> MLocTransfer;
3169   SmallVector<VLocTracker, 8> vlocs;
3170   LiveInsT SavedLiveIns;
3171 
3172   int MaxNumBlocks = -1;
3173   for (auto &MBB : MF)
3174     MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
3175   assert(MaxNumBlocks >= 0);
3176   ++MaxNumBlocks;
3177 
3178   MLocTransfer.resize(MaxNumBlocks);
3179   vlocs.resize(MaxNumBlocks, VLocTracker(OverlapFragments, EmptyExpr));
3180   SavedLiveIns.resize(MaxNumBlocks);
3181 
3182   initialSetup(MF);
3183 
3184   produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
3185 
3186   // Allocate and initialize two array-of-arrays for the live-in and live-out
3187   // machine values. The outer dimension is the block number; while the inner
3188   // dimension is a LocIdx from MLocTracker.
3189   FuncValueTable MOutLocs = std::make_unique<ValueTable[]>(MaxNumBlocks);
3190   FuncValueTable MInLocs = std::make_unique<ValueTable[]>(MaxNumBlocks);
3191   unsigned NumLocs = MTracker->getNumLocs();
3192   for (int i = 0; i < MaxNumBlocks; ++i) {
3193     // These all auto-initialize to ValueIDNum::EmptyValue
3194     MOutLocs[i] = std::make_unique<ValueIDNum[]>(NumLocs);
3195     MInLocs[i] = std::make_unique<ValueIDNum[]>(NumLocs);
3196   }
3197 
3198   // Solve the machine value dataflow problem using the MLocTransfer function,
3199   // storing the computed live-ins / live-outs into the array-of-arrays. We use
3200   // both live-ins and live-outs for decision making in the variable value
3201   // dataflow problem.
3202   buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer);
3203 
3204   // Patch up debug phi numbers, turning unknown block-live-in values into
3205   // either live-through machine values, or PHIs.
3206   for (auto &DBG_PHI : DebugPHINumToValue) {
3207     // Identify unresolved block-live-ins.
3208     if (!DBG_PHI.ValueRead)
3209       continue;
3210 
3211     ValueIDNum &Num = *DBG_PHI.ValueRead;
3212     if (!Num.isPHI())
3213       continue;
3214 
3215     unsigned BlockNo = Num.getBlock();
3216     LocIdx LocNo = Num.getLoc();
3217     Num = MInLocs[BlockNo][LocNo.asU64()];
3218   }
3219   // Later, we'll be looking up ranges of instruction numbers.
3220   llvm::sort(DebugPHINumToValue);
3221 
3222   // Walk back through each block / instruction, collecting DBG_VALUE
3223   // instructions and recording what machine value their operands refer to.
3224   for (auto &OrderPair : OrderToBB) {
3225     MachineBasicBlock &MBB = *OrderPair.second;
3226     CurBB = MBB.getNumber();
3227     VTracker = &vlocs[CurBB];
3228     VTracker->MBB = &MBB;
3229     MTracker->loadFromArray(MInLocs[CurBB], CurBB);
3230     CurInst = 1;
3231     for (auto &MI : MBB) {
3232       process(MI, MOutLocs.get(), MInLocs.get());
3233       ++CurInst;
3234     }
3235     MTracker->reset();
3236   }
3237 
3238   // Number all variables in the order that they appear, to be used as a stable
3239   // insertion order later.
3240   DenseMap<DebugVariable, unsigned> AllVarsNumbering;
3241 
3242   // Map from one LexicalScope to all the variables in that scope.
3243   ScopeToVarsT ScopeToVars;
3244 
3245   // Map from One lexical scope to all blocks where assignments happen for
3246   // that scope.
3247   ScopeToAssignBlocksT ScopeToAssignBlocks;
3248 
3249   // Store map of DILocations that describes scopes.
3250   ScopeToDILocT ScopeToDILocation;
3251 
3252   // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
3253   // the order is unimportant, it just has to be stable.
3254   unsigned VarAssignCount = 0;
3255   for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
3256     auto *MBB = OrderToBB[I];
3257     auto *VTracker = &vlocs[MBB->getNumber()];
3258     // Collect each variable with a DBG_VALUE in this block.
3259     for (auto &idx : VTracker->Vars) {
3260       const auto &Var = idx.first;
3261       const DILocation *ScopeLoc = VTracker->Scopes[Var];
3262       assert(ScopeLoc != nullptr);
3263       auto *Scope = LS.findLexicalScope(ScopeLoc);
3264 
3265       // No insts in scope -> shouldn't have been recorded.
3266       assert(Scope != nullptr);
3267 
3268       AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
3269       ScopeToVars[Scope].insert(Var);
3270       ScopeToAssignBlocks[Scope].insert(VTracker->MBB);
3271       ScopeToDILocation[Scope] = ScopeLoc;
3272       ++VarAssignCount;
3273     }
3274   }
3275 
3276   bool Changed = false;
3277 
3278   // If we have an extremely large number of variable assignments and blocks,
3279   // bail out at this point. We've burnt some time doing analysis already,
3280   // however we should cut our losses.
3281   if ((unsigned)MaxNumBlocks > InputBBLimit &&
3282       VarAssignCount > InputDbgValLimit) {
3283     LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName()
3284                       << " has " << MaxNumBlocks << " basic blocks and "
3285                       << VarAssignCount
3286                       << " variable assignments, exceeding limits.\n");
3287   } else {
3288     // Optionally, solve the variable value problem and emit to blocks by using
3289     // a lexical-scope-depth search. It should be functionally identical to
3290     // the "else" block of this condition.
3291     Changed = depthFirstVLocAndEmit(
3292         MaxNumBlocks, ScopeToDILocation, ScopeToVars, ScopeToAssignBlocks,
3293         SavedLiveIns, MOutLocs, MInLocs, vlocs, MF, AllVarsNumbering, *TPC);
3294   }
3295 
3296   delete MTracker;
3297   delete TTracker;
3298   MTracker = nullptr;
3299   VTracker = nullptr;
3300   TTracker = nullptr;
3301 
3302   ArtificialBlocks.clear();
3303   OrderToBB.clear();
3304   BBToOrder.clear();
3305   BBNumToRPO.clear();
3306   DebugInstrNumToInstr.clear();
3307   DebugPHINumToValue.clear();
3308   OverlapFragments.clear();
3309   SeenFragments.clear();
3310   SeenDbgPHIs.clear();
3311 
3312   return Changed;
3313 }
3314 
3315 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
3316   return new InstrRefBasedLDV();
3317 }
3318 
3319 namespace {
3320 class LDVSSABlock;
3321 class LDVSSAUpdater;
3322 
3323 // Pick a type to identify incoming block values as we construct SSA. We
3324 // can't use anything more robust than an integer unfortunately, as SSAUpdater
3325 // expects to zero-initialize the type.
3326 typedef uint64_t BlockValueNum;
3327 
3328 /// Represents an SSA PHI node for the SSA updater class. Contains the block
3329 /// this PHI is in, the value number it would have, and the expected incoming
3330 /// values from parent blocks.
3331 class LDVSSAPhi {
3332 public:
3333   SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
3334   LDVSSABlock *ParentBlock;
3335   BlockValueNum PHIValNum;
3336   LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
3337       : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
3338 
3339   LDVSSABlock *getParent() { return ParentBlock; }
3340 };
3341 
3342 /// Thin wrapper around a block predecessor iterator. Only difference from a
3343 /// normal block iterator is that it dereferences to an LDVSSABlock.
3344 class LDVSSABlockIterator {
3345 public:
3346   MachineBasicBlock::pred_iterator PredIt;
3347   LDVSSAUpdater &Updater;
3348 
3349   LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
3350                       LDVSSAUpdater &Updater)
3351       : PredIt(PredIt), Updater(Updater) {}
3352 
3353   bool operator!=(const LDVSSABlockIterator &OtherIt) const {
3354     return OtherIt.PredIt != PredIt;
3355   }
3356 
3357   LDVSSABlockIterator &operator++() {
3358     ++PredIt;
3359     return *this;
3360   }
3361 
3362   LDVSSABlock *operator*();
3363 };
3364 
3365 /// Thin wrapper around a block for SSA Updater interface. Necessary because
3366 /// we need to track the PHI value(s) that we may have observed as necessary
3367 /// in this block.
3368 class LDVSSABlock {
3369 public:
3370   MachineBasicBlock &BB;
3371   LDVSSAUpdater &Updater;
3372   using PHIListT = SmallVector<LDVSSAPhi, 1>;
3373   /// List of PHIs in this block. There should only ever be one.
3374   PHIListT PHIList;
3375 
3376   LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
3377       : BB(BB), Updater(Updater) {}
3378 
3379   LDVSSABlockIterator succ_begin() {
3380     return LDVSSABlockIterator(BB.succ_begin(), Updater);
3381   }
3382 
3383   LDVSSABlockIterator succ_end() {
3384     return LDVSSABlockIterator(BB.succ_end(), Updater);
3385   }
3386 
3387   /// SSAUpdater has requested a PHI: create that within this block record.
3388   LDVSSAPhi *newPHI(BlockValueNum Value) {
3389     PHIList.emplace_back(Value, this);
3390     return &PHIList.back();
3391   }
3392 
3393   /// SSAUpdater wishes to know what PHIs already exist in this block.
3394   PHIListT &phis() { return PHIList; }
3395 };
3396 
3397 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
3398 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
3399 // SSAUpdaterTraits<LDVSSAUpdater>.
3400 class LDVSSAUpdater {
3401 public:
3402   /// Map of value numbers to PHI records.
3403   DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
3404   /// Map of which blocks generate Undef values -- blocks that are not
3405   /// dominated by any Def.
3406   DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
3407   /// Map of machine blocks to our own records of them.
3408   DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
3409   /// Machine location where any PHI must occur.
3410   LocIdx Loc;
3411   /// Table of live-in machine value numbers for blocks / locations.
3412   const ValueTable *MLiveIns;
3413 
3414   LDVSSAUpdater(LocIdx L, const ValueTable *MLiveIns)
3415       : Loc(L), MLiveIns(MLiveIns) {}
3416 
3417   void reset() {
3418     for (auto &Block : BlockMap)
3419       delete Block.second;
3420 
3421     PHIs.clear();
3422     UndefMap.clear();
3423     BlockMap.clear();
3424   }
3425 
3426   ~LDVSSAUpdater() { reset(); }
3427 
3428   /// For a given MBB, create a wrapper block for it. Stores it in the
3429   /// LDVSSAUpdater block map.
3430   LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
3431     auto it = BlockMap.find(BB);
3432     if (it == BlockMap.end()) {
3433       BlockMap[BB] = new LDVSSABlock(*BB, *this);
3434       it = BlockMap.find(BB);
3435     }
3436     return it->second;
3437   }
3438 
3439   /// Find the live-in value number for the given block. Looks up the value at
3440   /// the PHI location on entry.
3441   BlockValueNum getValue(LDVSSABlock *LDVBB) {
3442     return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64();
3443   }
3444 };
3445 
3446 LDVSSABlock *LDVSSABlockIterator::operator*() {
3447   return Updater.getSSALDVBlock(*PredIt);
3448 }
3449 
3450 #ifndef NDEBUG
3451 
3452 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
3453   out << "SSALDVPHI " << PHI.PHIValNum;
3454   return out;
3455 }
3456 
3457 #endif
3458 
3459 } // namespace
3460 
3461 namespace llvm {
3462 
3463 /// Template specialization to give SSAUpdater access to CFG and value
3464 /// information. SSAUpdater calls methods in these traits, passing in the
3465 /// LDVSSAUpdater object, to learn about blocks and the values they define.
3466 /// It also provides methods to create PHI nodes and track them.
3467 template <> class SSAUpdaterTraits<LDVSSAUpdater> {
3468 public:
3469   using BlkT = LDVSSABlock;
3470   using ValT = BlockValueNum;
3471   using PhiT = LDVSSAPhi;
3472   using BlkSucc_iterator = LDVSSABlockIterator;
3473 
3474   // Methods to access block successors -- dereferencing to our wrapper class.
3475   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
3476   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
3477 
3478   /// Iterator for PHI operands.
3479   class PHI_iterator {
3480   private:
3481     LDVSSAPhi *PHI;
3482     unsigned Idx;
3483 
3484   public:
3485     explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
3486         : PHI(P), Idx(0) {}
3487     PHI_iterator(LDVSSAPhi *P, bool) // end iterator
3488         : PHI(P), Idx(PHI->IncomingValues.size()) {}
3489 
3490     PHI_iterator &operator++() {
3491       Idx++;
3492       return *this;
3493     }
3494     bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
3495     bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
3496 
3497     BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
3498 
3499     LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
3500   };
3501 
3502   static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
3503 
3504   static inline PHI_iterator PHI_end(PhiT *PHI) {
3505     return PHI_iterator(PHI, true);
3506   }
3507 
3508   /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
3509   /// vector.
3510   static void FindPredecessorBlocks(LDVSSABlock *BB,
3511                                     SmallVectorImpl<LDVSSABlock *> *Preds) {
3512     for (MachineBasicBlock *Pred : BB->BB.predecessors())
3513       Preds->push_back(BB->Updater.getSSALDVBlock(Pred));
3514   }
3515 
3516   /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
3517   /// register. For LiveDebugValues, represents a block identified as not having
3518   /// any DBG_PHI predecessors.
3519   static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
3520     // Create a value number for this block -- it needs to be unique and in the
3521     // "undef" collection, so that we know it's not real. Use a number
3522     // representing a PHI into this block.
3523     BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
3524     Updater->UndefMap[&BB->BB] = Num;
3525     return Num;
3526   }
3527 
3528   /// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
3529   /// SSAUpdater will populate it with information about incoming values. The
3530   /// value number of this PHI is whatever the  machine value number problem
3531   /// solution determined it to be. This includes non-phi values if SSAUpdater
3532   /// tries to create a PHI where the incoming values are identical.
3533   static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
3534                                    LDVSSAUpdater *Updater) {
3535     BlockValueNum PHIValNum = Updater->getValue(BB);
3536     LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
3537     Updater->PHIs[PHIValNum] = PHI;
3538     return PHIValNum;
3539   }
3540 
3541   /// AddPHIOperand - Add the specified value as an operand of the PHI for
3542   /// the specified predecessor block.
3543   static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
3544     PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
3545   }
3546 
3547   /// ValueIsPHI - Check if the instruction that defines the specified value
3548   /// is a PHI instruction.
3549   static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3550     auto PHIIt = Updater->PHIs.find(Val);
3551     if (PHIIt == Updater->PHIs.end())
3552       return nullptr;
3553     return PHIIt->second;
3554   }
3555 
3556   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
3557   /// operands, i.e., it was just added.
3558   static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3559     LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
3560     if (PHI && PHI->IncomingValues.size() == 0)
3561       return PHI;
3562     return nullptr;
3563   }
3564 
3565   /// GetPHIValue - For the specified PHI instruction, return the value
3566   /// that it defines.
3567   static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
3568 };
3569 
3570 } // end namespace llvm
3571 
3572 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(
3573     MachineFunction &MF, const ValueTable *MLiveOuts,
3574     const ValueTable *MLiveIns, MachineInstr &Here, uint64_t InstrNum) {
3575   assert(MLiveOuts && MLiveIns &&
3576          "Tried to resolve DBG_PHI before location "
3577          "tables allocated?");
3578 
3579   // This function will be called twice per DBG_INSTR_REF, and might end up
3580   // computing lots of SSA information: memoize it.
3581   auto SeenDbgPHIIt = SeenDbgPHIs.find(&Here);
3582   if (SeenDbgPHIIt != SeenDbgPHIs.end())
3583     return SeenDbgPHIIt->second;
3584 
3585   Optional<ValueIDNum> Result =
3586       resolveDbgPHIsImpl(MF, MLiveOuts, MLiveIns, Here, InstrNum);
3587   SeenDbgPHIs.insert({&Here, Result});
3588   return Result;
3589 }
3590 
3591 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIsImpl(
3592     MachineFunction &MF, const ValueTable *MLiveOuts,
3593     const ValueTable *MLiveIns, MachineInstr &Here, uint64_t InstrNum) {
3594   // Pick out records of DBG_PHI instructions that have been observed. If there
3595   // are none, then we cannot compute a value number.
3596   auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
3597                                     DebugPHINumToValue.end(), InstrNum);
3598   auto LowerIt = RangePair.first;
3599   auto UpperIt = RangePair.second;
3600 
3601   // No DBG_PHI means there can be no location.
3602   if (LowerIt == UpperIt)
3603     return None;
3604 
3605   // If any DBG_PHIs referred to a location we didn't understand, don't try to
3606   // compute a value. There might be scenarios where we could recover a value
3607   // for some range of DBG_INSTR_REFs, but at this point we can have high
3608   // confidence that we've seen a bug.
3609   auto DBGPHIRange = make_range(LowerIt, UpperIt);
3610   for (const DebugPHIRecord &DBG_PHI : DBGPHIRange)
3611     if (!DBG_PHI.ValueRead)
3612       return None;
3613 
3614   // If there's only one DBG_PHI, then that is our value number.
3615   if (std::distance(LowerIt, UpperIt) == 1)
3616     return *LowerIt->ValueRead;
3617 
3618   // Pick out the location (physreg, slot) where any PHIs must occur. It's
3619   // technically possible for us to merge values in different registers in each
3620   // block, but highly unlikely that LLVM will generate such code after register
3621   // allocation.
3622   LocIdx Loc = *LowerIt->ReadLoc;
3623 
3624   // We have several DBG_PHIs, and a use position (the Here inst). All each
3625   // DBG_PHI does is identify a value at a program position. We can treat each
3626   // DBG_PHI like it's a Def of a value, and the use position is a Use of a
3627   // value, just like SSA. We use the bulk-standard LLVM SSA updater class to
3628   // determine which Def is used at the Use, and any PHIs that happen along
3629   // the way.
3630   // Adapted LLVM SSA Updater:
3631   LDVSSAUpdater Updater(Loc, MLiveIns);
3632   // Map of which Def or PHI is the current value in each block.
3633   DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
3634   // Set of PHIs that we have created along the way.
3635   SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
3636 
3637   // Each existing DBG_PHI is a Def'd value under this model. Record these Defs
3638   // for the SSAUpdater.
3639   for (const auto &DBG_PHI : DBGPHIRange) {
3640     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3641     const ValueIDNum &Num = *DBG_PHI.ValueRead;
3642     AvailableValues.insert(std::make_pair(Block, Num.asU64()));
3643   }
3644 
3645   LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
3646   const auto &AvailIt = AvailableValues.find(HereBlock);
3647   if (AvailIt != AvailableValues.end()) {
3648     // Actually, we already know what the value is -- the Use is in the same
3649     // block as the Def.
3650     return ValueIDNum::fromU64(AvailIt->second);
3651   }
3652 
3653   // Otherwise, we must use the SSA Updater. It will identify the value number
3654   // that we are to use, and the PHIs that must happen along the way.
3655   SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
3656   BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
3657   ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
3658 
3659   // We have the number for a PHI, or possibly live-through value, to be used
3660   // at this Use. There are a number of things we have to check about it though:
3661   //  * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
3662   //    Use was not completely dominated by DBG_PHIs and we should abort.
3663   //  * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
3664   //    we've left SSA form. Validate that the inputs to each PHI are the
3665   //    expected values.
3666   //  * Is a PHI we've created actually a merging of values, or are all the
3667   //    predecessor values the same, leading to a non-PHI machine value number?
3668   //    (SSAUpdater doesn't know that either). Remap validated PHIs into the
3669   //    the ValidatedValues collection below to sort this out.
3670   DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
3671 
3672   // Define all the input DBG_PHI values in ValidatedValues.
3673   for (const auto &DBG_PHI : DBGPHIRange) {
3674     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3675     const ValueIDNum &Num = *DBG_PHI.ValueRead;
3676     ValidatedValues.insert(std::make_pair(Block, Num));
3677   }
3678 
3679   // Sort PHIs to validate into RPO-order.
3680   SmallVector<LDVSSAPhi *, 8> SortedPHIs;
3681   for (auto &PHI : CreatedPHIs)
3682     SortedPHIs.push_back(PHI);
3683 
3684   std::sort(
3685       SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) {
3686         return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
3687       });
3688 
3689   for (auto &PHI : SortedPHIs) {
3690     ValueIDNum ThisBlockValueNum =
3691         MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()];
3692 
3693     // Are all these things actually defined?
3694     for (auto &PHIIt : PHI->IncomingValues) {
3695       // Any undef input means DBG_PHIs didn't dominate the use point.
3696       if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end())
3697         return None;
3698 
3699       ValueIDNum ValueToCheck;
3700       const ValueTable &BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()];
3701 
3702       auto VVal = ValidatedValues.find(PHIIt.first);
3703       if (VVal == ValidatedValues.end()) {
3704         // We cross a loop, and this is a backedge. LLVMs tail duplication
3705         // happens so late that DBG_PHI instructions should not be able to
3706         // migrate into loops -- meaning we can only be live-through this
3707         // loop.
3708         ValueToCheck = ThisBlockValueNum;
3709       } else {
3710         // Does the block have as a live-out, in the location we're examining,
3711         // the value that we expect? If not, it's been moved or clobbered.
3712         ValueToCheck = VVal->second;
3713       }
3714 
3715       if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
3716         return None;
3717     }
3718 
3719     // Record this value as validated.
3720     ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
3721   }
3722 
3723   // All the PHIs are valid: we can return what the SSAUpdater said our value
3724   // number was.
3725   return Result;
3726 }
3727