1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file InstrRefBasedImpl.cpp
9 ///
10 /// This is a separate implementation of LiveDebugValues, see
11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
12 ///
13 /// This pass propagates variable locations between basic blocks, resolving
14 /// control flow conflicts between them. The problem is much like SSA
15 /// construction, where each DBG_VALUE instruction assigns the *value* that
16 /// a variable has, and every instruction where the variable is in scope uses
17 /// that variable. The resulting map of instruction-to-value is then translated
18 /// into a register (or spill) location for each variable over each instruction.
19 ///
20 /// This pass determines which DBG_VALUE dominates which instructions, or if
21 /// none do, where values must be merged (like PHI nodes). The added
22 /// complication is that because codegen has already finished, a PHI node may
23 /// be needed for a variable location to be correct, but no register or spill
24 /// slot merges the necessary values. In these circumstances, the variable
25 /// location is dropped.
26 ///
27 /// What makes this analysis non-trivial is loops: we cannot tell in advance
28 /// whether a variable location is live throughout a loop, or whether its
29 /// location is clobbered (or redefined by another DBG_VALUE), without
30 /// exploring all the way through.
31 ///
32 /// To make this simpler we perform two kinds of analysis. First, we identify
33 /// every value defined by every instruction (ignoring those that only move
34 /// another value), then compute a map of which values are available for each
35 /// instruction. This is stronger than a reaching-def analysis, as we create
36 /// PHI values where other values merge.
37 ///
38 /// Secondly, for each variable, we effectively re-construct SSA using each
39 /// DBG_VALUE as a def. The DBG_VALUEs read a value-number computed by the
40 /// first analysis from the location they refer to. We can then compute the
41 /// dominance frontiers of where a variable has a value, and create PHI nodes
42 /// where they merge.
43 /// This isn't precisely SSA-construction though, because the function shape
44 /// is pre-defined. If a variable location requires a PHI node, but no
45 /// PHI for the relevant values is present in the function (as computed by the
46 /// first analysis), the location must be dropped.
47 ///
48 /// Once both are complete, we can pass back over all instructions knowing:
49 ///  * What _value_ each variable should contain, either defined by an
50 ///    instruction or where control flow merges
51 ///  * What the location of that value is (if any).
52 /// Allowing us to create appropriate live-in DBG_VALUEs, and DBG_VALUEs when
53 /// a value moves location. After this pass runs, all variable locations within
54 /// a block should be specified by DBG_VALUEs within that block, allowing
55 /// DbgEntityHistoryCalculator to focus on individual blocks.
56 ///
57 /// This pass is able to go fast because the size of the first
58 /// reaching-definition analysis is proportional to the working-set size of
59 /// the function, which the compiler tries to keep small. (It's also
60 /// proportional to the number of blocks). Additionally, we repeatedly perform
61 /// the second reaching-definition analysis with only the variables and blocks
62 /// in a single lexical scope, exploiting their locality.
63 ///
64 /// Determining where PHIs happen is trickier with this approach, and it comes
65 /// to a head in the major problem for LiveDebugValues: is a value live-through
66 /// a loop, or not? Your garden-variety dataflow analysis aims to build a set of
67 /// facts about a function, however this analysis needs to generate new value
68 /// numbers at joins.
69 ///
70 /// To do this, consider a lattice of all definition values, from instructions
71 /// and from PHIs. Each PHI is characterised by the RPO number of the block it
72 /// occurs in. Each value pair A, B can be ordered by RPO(A) < RPO(B):
73 /// with non-PHI values at the top, and any PHI value in the last block (by RPO
74 /// order) at the bottom.
75 ///
76 /// (Awkwardly: lower-down-the _lattice_ means a greater RPO _number_. Below,
77 /// "rank" always refers to the former).
78 ///
79 /// At any join, for each register, we consider:
80 ///  * All incoming values, and
81 ///  * The PREVIOUS live-in value at this join.
82 /// If all incoming values agree: that's the live-in value. If they do not, the
83 /// incoming values are ranked according to the partial order, and the NEXT
84 /// LOWEST rank after the PREVIOUS live-in value is picked (multiple values of
85 /// the same rank are ignored as conflicting). If there are no candidate values,
86 /// or if the rank of the live-in would be lower than the rank of the current
87 /// blocks PHIs, create a new PHI value.
88 ///
89 /// Intuitively: if it's not immediately obvious what value a join should result
90 /// in, we iteratively descend from instruction-definitions down through PHI
91 /// values, getting closer to the current block each time. If the current block
92 /// is a loop head, this ordering is effectively searching outer levels of
93 /// loops, to find a value that's live-through the current loop.
94 ///
95 /// If there is no value that's live-through this loop, a PHI is created for
96 /// this location instead. We can't use a lower-ranked PHI because by definition
97 /// it doesn't dominate the current block. We can't create a PHI value any
98 /// earlier, because we risk creating a PHI value at a location where values do
99 /// not in fact merge, thus misrepresenting the truth, and not making the true
100 /// live-through value for variable locations.
101 ///
102 /// This algorithm applies to both calculating the availability of values in
103 /// the first analysis, and the location of variables in the second. However
104 /// for the second we add an extra dimension of pain: creating a variable
105 /// location PHI is only valid if, for each incoming edge,
106 ///  * There is a value for the variable on the incoming edge, and
107 ///  * All the edges have that value in the same register.
108 /// Or put another way: we can only create a variable-location PHI if there is
109 /// a matching machine-location PHI, each input to which is the variables value
110 /// in the predecessor block.
111 ///
112 /// To accomodate this difference, each point on the lattice is split in
113 /// two: a "proposed" PHI and "definite" PHI. Any PHI that can immediately
114 /// have a location determined are "definite" PHIs, and no further work is
115 /// needed. Otherwise, a location that all non-backedge predecessors agree
116 /// on is picked and propagated as a "proposed" PHI value. If that PHI value
117 /// is truly live-through, it'll appear on the loop backedges on the next
118 /// dataflow iteration, after which the block live-in moves to be a "definite"
119 /// PHI. If it's not truly live-through, the variable value will be downgraded
120 /// further as we explore the lattice, or remains "proposed" and is considered
121 /// invalid once dataflow completes.
122 ///
123 /// ### Terminology
124 ///
125 /// A machine location is a register or spill slot, a value is something that's
126 /// defined by an instruction or PHI node, while a variable value is the value
127 /// assigned to a variable. A variable location is a machine location, that must
128 /// contain the appropriate variable value. A value that is a PHI node is
129 /// occasionally called an mphi.
130 ///
131 /// The first dataflow problem is the "machine value location" problem,
132 /// because we're determining which machine locations contain which values.
133 /// The "locations" are constant: what's unknown is what value they contain.
134 ///
135 /// The second dataflow problem (the one for variables) is the "variable value
136 /// problem", because it's determining what values a variable has, rather than
137 /// what location those values are placed in. Unfortunately, it's not that
138 /// simple, because producing a PHI value always involves picking a location.
139 /// This is an imperfection that we just have to accept, at least for now.
140 ///
141 /// TODO:
142 ///   Overlapping fragments
143 ///   Entry values
144 ///   Add back DEBUG statements for debugging this
145 ///   Collect statistics
146 ///
147 //===----------------------------------------------------------------------===//
148 
149 #include "llvm/ADT/DenseMap.h"
150 #include "llvm/ADT/PostOrderIterator.h"
151 #include "llvm/ADT/SmallPtrSet.h"
152 #include "llvm/ADT/SmallSet.h"
153 #include "llvm/ADT/SmallVector.h"
154 #include "llvm/ADT/Statistic.h"
155 #include "llvm/ADT/UniqueVector.h"
156 #include "llvm/CodeGen/LexicalScopes.h"
157 #include "llvm/CodeGen/MachineBasicBlock.h"
158 #include "llvm/CodeGen/MachineFrameInfo.h"
159 #include "llvm/CodeGen/MachineFunction.h"
160 #include "llvm/CodeGen/MachineFunctionPass.h"
161 #include "llvm/CodeGen/MachineInstr.h"
162 #include "llvm/CodeGen/MachineInstrBuilder.h"
163 #include "llvm/CodeGen/MachineMemOperand.h"
164 #include "llvm/CodeGen/MachineOperand.h"
165 #include "llvm/CodeGen/PseudoSourceValue.h"
166 #include "llvm/CodeGen/RegisterScavenging.h"
167 #include "llvm/CodeGen/TargetFrameLowering.h"
168 #include "llvm/CodeGen/TargetInstrInfo.h"
169 #include "llvm/CodeGen/TargetLowering.h"
170 #include "llvm/CodeGen/TargetPassConfig.h"
171 #include "llvm/CodeGen/TargetRegisterInfo.h"
172 #include "llvm/CodeGen/TargetSubtargetInfo.h"
173 #include "llvm/Config/llvm-config.h"
174 #include "llvm/IR/DIBuilder.h"
175 #include "llvm/IR/DebugInfoMetadata.h"
176 #include "llvm/IR/DebugLoc.h"
177 #include "llvm/IR/Function.h"
178 #include "llvm/IR/Module.h"
179 #include "llvm/InitializePasses.h"
180 #include "llvm/MC/MCRegisterInfo.h"
181 #include "llvm/Pass.h"
182 #include "llvm/Support/Casting.h"
183 #include "llvm/Support/Compiler.h"
184 #include "llvm/Support/Debug.h"
185 #include "llvm/Support/raw_ostream.h"
186 #include <algorithm>
187 #include <cassert>
188 #include <cstdint>
189 #include <functional>
190 #include <queue>
191 #include <tuple>
192 #include <utility>
193 #include <vector>
194 #include <limits.h>
195 #include <limits>
196 
197 #include "LiveDebugValues.h"
198 
199 using namespace llvm;
200 
201 #define DEBUG_TYPE "livedebugvalues"
202 
203 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");
204 STATISTIC(NumRemoved, "Number of DBG_VALUE instructions removed");
205 
206 // Act more like the VarLoc implementation, by propagating some locations too
207 // far and ignoring some transfers.
208 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
209                                    cl::desc("Act like old LiveDebugValues did"),
210                                    cl::init(false));
211 
212 // Rely on isStoreToStackSlotPostFE and similar to observe all stack spills.
213 static cl::opt<bool>
214     ObserveAllStackops("observe-all-stack-ops", cl::Hidden,
215                        cl::desc("Allow non-kill spill and restores"),
216                        cl::init(false));
217 
218 namespace {
219 
220 // The location at which a spilled value resides. It consists of a register and
221 // an offset.
222 struct SpillLoc {
223   unsigned SpillBase;
224   int SpillOffset;
225   bool operator==(const SpillLoc &Other) const {
226     return std::tie(SpillBase, SpillOffset) ==
227            std::tie(Other.SpillBase, Other.SpillOffset);
228   }
229   bool operator<(const SpillLoc &Other) const {
230     return std::tie(SpillBase, SpillOffset) <
231            std::tie(Other.SpillBase, Other.SpillOffset);
232   }
233 };
234 
235 class LocIdx {
236   unsigned Location;
237 
238   // Default constructor is private, initializing to an illegal location number.
239   // Use only for "not an entry" elements in IndexedMaps.
240   LocIdx() : Location(UINT_MAX) { }
241 
242 public:
243   #define NUM_LOC_BITS 24
244   LocIdx(unsigned L) : Location(L) {
245     assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits");
246   }
247 
248   static LocIdx MakeIllegalLoc() {
249     return LocIdx();
250   }
251 
252   bool isIllegal() const {
253     return Location == UINT_MAX;
254   }
255 
256   uint64_t asU64() const {
257     return Location;
258   }
259 
260   bool operator==(unsigned L) const {
261     return Location == L;
262   }
263 
264   bool operator==(const LocIdx &L) const {
265     return Location == L.Location;
266   }
267 
268   bool operator!=(unsigned L) const {
269     return !(*this == L);
270   }
271 
272   bool operator!=(const LocIdx &L) const {
273     return !(*this == L);
274   }
275 
276   bool operator<(const LocIdx &Other) const {
277     return Location < Other.Location;
278   }
279 };
280 
281 class LocIdxToIndexFunctor {
282 public:
283   using argument_type = LocIdx;
284   unsigned operator()(const LocIdx &L) const {
285     return L.asU64();
286   }
287 };
288 
289 /// Unique identifier for a value defined by an instruction, as a value type.
290 /// Casts back and forth to a uint64_t. Probably replacable with something less
291 /// bit-constrained. Each value identifies the instruction and machine location
292 /// where the value is defined, although there may be no corresponding machine
293 /// operand for it (ex: regmasks clobbering values). The instructions are
294 /// one-based, and definitions that are PHIs have instruction number zero.
295 ///
296 /// The obvious limits of a 1M block function or 1M instruction blocks are
297 /// problematic; but by that point we should probably have bailed out of
298 /// trying to analyse the function.
299 class ValueIDNum {
300   uint64_t BlockNo : 20;         /// The block where the def happens.
301   uint64_t InstNo : 20;          /// The Instruction where the def happens.
302                                  /// One based, is distance from start of block.
303   uint64_t LocNo : NUM_LOC_BITS; /// The machine location where the def happens.
304 
305 public:
306   // XXX -- temporarily enabled while the live-in / live-out tables are moved
307   // to something more type-y
308   ValueIDNum() : BlockNo(0xFFFFF),
309                  InstNo(0xFFFFF),
310                  LocNo(0xFFFFFF) { }
311 
312   ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc)
313     : BlockNo(Block), InstNo(Inst), LocNo(Loc) { }
314 
315   ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc)
316     : BlockNo(Block), InstNo(Inst), LocNo(Loc.asU64()) { }
317 
318   uint64_t getBlock() const { return BlockNo; }
319   uint64_t getInst() const { return InstNo; }
320   uint64_t getLoc() const { return LocNo; }
321   bool isPHI() const { return InstNo == 0; }
322 
323   uint64_t asU64() const {
324     uint64_t TmpBlock = BlockNo;
325     uint64_t TmpInst = InstNo;
326     return TmpBlock << 44ull | TmpInst << NUM_LOC_BITS | LocNo;
327   }
328 
329   static ValueIDNum fromU64(uint64_t v) {
330     uint64_t L = (v & 0x3FFF);
331     return {v >> 44ull, ((v >> NUM_LOC_BITS) & 0xFFFFF), L};
332   }
333 
334   bool operator<(const ValueIDNum &Other) const {
335     return asU64() < Other.asU64();
336   }
337 
338   bool operator==(const ValueIDNum &Other) const {
339     return std::tie(BlockNo, InstNo, LocNo) ==
340            std::tie(Other.BlockNo, Other.InstNo, Other.LocNo);
341   }
342 
343   bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); }
344 
345   std::string asString(const std::string &mlocname) const {
346     return Twine("bb ")
347         .concat(Twine(BlockNo).concat(Twine(" inst ").concat(
348             Twine(InstNo).concat(Twine(" loc ").concat(Twine(mlocname))))))
349         .str();
350   }
351 
352   static ValueIDNum EmptyValue;
353 };
354 
355 } // end anonymous namespace
356 
357 namespace {
358 
359 /// Meta qualifiers for a value. Pair of whatever expression is used to qualify
360 /// the the value, and Boolean of whether or not it's indirect.
361 class DbgValueProperties {
362 public:
363   DbgValueProperties(const DIExpression *DIExpr, bool Indirect)
364       : DIExpr(DIExpr), Indirect(Indirect) {}
365 
366   /// Extract properties from an existing DBG_VALUE instruction.
367   DbgValueProperties(const MachineInstr &MI) {
368     assert(MI.isDebugValue());
369     DIExpr = MI.getDebugExpression();
370     Indirect = MI.getOperand(1).isImm();
371   }
372 
373   bool operator==(const DbgValueProperties &Other) const {
374     return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect);
375   }
376 
377   bool operator!=(const DbgValueProperties &Other) const {
378     return !(*this == Other);
379   }
380 
381   const DIExpression *DIExpr;
382   bool Indirect;
383 };
384 
385 /// Tracker for what values are in machine locations. Listens to the Things
386 /// being Done by various instructions, and maintains a table of what machine
387 /// locations have what values (as defined by a ValueIDNum).
388 ///
389 /// There are potentially a much larger number of machine locations on the
390 /// target machine than the actual working-set size of the function. On x86 for
391 /// example, we're extremely unlikely to want to track values through control
392 /// or debug registers. To avoid doing so, MLocTracker has several layers of
393 /// indirection going on, with two kinds of ``location'':
394 ///  * A LocID uniquely identifies a register or spill location, with a
395 ///    predictable value.
396 ///  * A LocIdx is a key (in the database sense) for a LocID and a ValueIDNum.
397 /// Whenever a location is def'd or used by a MachineInstr, we automagically
398 /// create a new LocIdx for a location, but not otherwise. This ensures we only
399 /// account for locations that are actually used or defined. The cost is another
400 /// vector lookup (of LocID -> LocIdx) over any other implementation. This is
401 /// fairly cheap, and the compiler tries to reduce the working-set at any one
402 /// time in the function anyway.
403 ///
404 /// Register mask operands completely blow this out of the water; I've just
405 /// piled hacks on top of hacks to get around that.
406 class MLocTracker {
407 public:
408   MachineFunction &MF;
409   const TargetInstrInfo &TII;
410   const TargetRegisterInfo &TRI;
411   const TargetLowering &TLI;
412 
413   /// IndexedMap type, mapping from LocIdx to ValueIDNum.
414   typedef IndexedMap<ValueIDNum, LocIdxToIndexFunctor> LocToValueType;
415 
416   /// Map of LocIdxes to the ValueIDNums that they store. This is tightly
417   /// packed, entries only exist for locations that are being tracked.
418   LocToValueType LocIdxToIDNum;
419 
420   /// "Map" of machine location IDs (i.e., raw register or spill number) to the
421   /// LocIdx key / number for that location. There are always at least as many
422   /// as the number of registers on the target -- if the value in the register
423   /// is not being tracked, then the LocIdx value will be zero. New entries are
424   /// appended if a new spill slot begins being tracked.
425   /// This, and the corresponding reverse map persist for the analysis of the
426   /// whole function, and is necessarying for decoding various vectors of
427   /// values.
428   std::vector<LocIdx> LocIDToLocIdx;
429 
430   /// Inverse map of LocIDToLocIdx.
431   IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID;
432 
433   /// Unique-ification of spill slots. Used to number them -- their LocID
434   /// number is the index in SpillLocs minus one plus NumRegs.
435   UniqueVector<SpillLoc> SpillLocs;
436 
437   // If we discover a new machine location, assign it an mphi with this
438   // block number.
439   unsigned CurBB;
440 
441   /// Cached local copy of the number of registers the target has.
442   unsigned NumRegs;
443 
444   /// Collection of register mask operands that have been observed. Second part
445   /// of pair indicates the instruction that they happened in. Used to
446   /// reconstruct where defs happened if we start tracking a location later
447   /// on.
448   SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks;
449 
450   /// Iterator for locations and the values they contain. Dereferencing
451   /// produces a struct/pair containing the LocIdx key for this location,
452   /// and a reference to the value currently stored. Simplifies the process
453   /// of seeking a particular location.
454   class MLocIterator {
455     LocToValueType &ValueMap;
456     LocIdx Idx;
457 
458   public:
459     class value_type {
460       public:
461       value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) { }
462       const LocIdx Idx;  /// Read-only index of this location.
463       ValueIDNum &Value; /// Reference to the stored value at this location.
464     };
465 
466     MLocIterator(LocToValueType &ValueMap, LocIdx Idx)
467       : ValueMap(ValueMap), Idx(Idx) { }
468 
469     bool operator==(const MLocIterator &Other) const {
470       assert(&ValueMap == &Other.ValueMap);
471       return Idx == Other.Idx;
472     }
473 
474     bool operator!=(const MLocIterator &Other) const {
475       return !(*this == Other);
476     }
477 
478     void operator++() {
479       Idx = LocIdx(Idx.asU64() + 1);
480     }
481 
482     value_type operator*() {
483       return value_type(Idx, ValueMap[LocIdx(Idx)]);
484     }
485   };
486 
487   MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
488               const TargetRegisterInfo &TRI, const TargetLowering &TLI)
489       : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
490         LocIdxToIDNum(ValueIDNum::EmptyValue),
491         LocIdxToLocID(0) {
492     NumRegs = TRI.getNumRegs();
493     reset();
494     LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
495     assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
496 
497     // Always track SP. This avoids the implicit clobbering caused by regmasks
498     // from affectings its values. (LiveDebugValues disbelieves calls and
499     // regmasks that claim to clobber SP).
500     Register SP = TLI.getStackPointerRegisterToSaveRestore();
501     if (SP) {
502       unsigned ID = getLocID(SP, false);
503       (void)lookupOrTrackRegister(ID);
504     }
505   }
506 
507   /// Produce location ID number for indexing LocIDToLocIdx. Takes the register
508   /// or spill number, and flag for whether it's a spill or not.
509   unsigned getLocID(Register RegOrSpill, bool isSpill) {
510     return (isSpill) ? RegOrSpill.id() + NumRegs - 1 : RegOrSpill.id();
511   }
512 
513   /// Accessor for reading the value at Idx.
514   ValueIDNum getNumAtPos(LocIdx Idx) const {
515     assert(Idx.asU64() < LocIdxToIDNum.size());
516     return LocIdxToIDNum[Idx];
517   }
518 
519   unsigned getNumLocs(void) const { return LocIdxToIDNum.size(); }
520 
521   /// Reset all locations to contain a PHI value at the designated block. Used
522   /// sometimes for actual PHI values, othertimes to indicate the block entry
523   /// value (before any more information is known).
524   void setMPhis(unsigned NewCurBB) {
525     CurBB = NewCurBB;
526     for (auto Location : locations())
527       Location.Value = {CurBB, 0, Location.Idx};
528   }
529 
530   /// Load values for each location from array of ValueIDNums. Take current
531   /// bbnum just in case we read a value from a hitherto untouched register.
532   void loadFromArray(ValueIDNum *Locs, unsigned NewCurBB) {
533     CurBB = NewCurBB;
534     // Iterate over all tracked locations, and load each locations live-in
535     // value into our local index.
536     for (auto Location : locations())
537       Location.Value = Locs[Location.Idx.asU64()];
538   }
539 
540   /// Wipe any un-necessary location records after traversing a block.
541   void reset(void) {
542     // We could reset all the location values too; however either loadFromArray
543     // or setMPhis should be called before this object is re-used. Just
544     // clear Masks, they're definitely not needed.
545     Masks.clear();
546   }
547 
548   /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of
549   /// the information in this pass uninterpretable.
550   void clear(void) {
551     reset();
552     LocIDToLocIdx.clear();
553     LocIdxToLocID.clear();
554     LocIdxToIDNum.clear();
555     //SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from 0
556     SpillLocs = decltype(SpillLocs)();
557 
558     LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
559   }
560 
561   /// Set a locaiton to a certain value.
562   void setMLoc(LocIdx L, ValueIDNum Num) {
563     assert(L.asU64() < LocIdxToIDNum.size());
564     LocIdxToIDNum[L] = Num;
565   }
566 
567   /// Create a LocIdx for an untracked register ID. Initialize it to either an
568   /// mphi value representing a live-in, or a recent register mask clobber.
569   LocIdx trackRegister(unsigned ID) {
570     assert(ID != 0);
571     LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
572     LocIdxToIDNum.grow(NewIdx);
573     LocIdxToLocID.grow(NewIdx);
574 
575     // Default: it's an mphi.
576     ValueIDNum ValNum = {CurBB, 0, NewIdx};
577     // Was this reg ever touched by a regmask?
578     for (const auto &MaskPair : reverse(Masks)) {
579       if (MaskPair.first->clobbersPhysReg(ID)) {
580         // There was an earlier def we skipped.
581         ValNum = {CurBB, MaskPair.second, NewIdx};
582         break;
583       }
584     }
585 
586     LocIdxToIDNum[NewIdx] = ValNum;
587     LocIdxToLocID[NewIdx] = ID;
588     return NewIdx;
589   }
590 
591   LocIdx lookupOrTrackRegister(unsigned ID) {
592     LocIdx &Index = LocIDToLocIdx[ID];
593     if (Index.isIllegal())
594       Index = trackRegister(ID);
595     return Index;
596   }
597 
598   /// Record a definition of the specified register at the given block / inst.
599   /// This doesn't take a ValueIDNum, because the definition and its location
600   /// are synonymous.
601   void defReg(Register R, unsigned BB, unsigned Inst) {
602     unsigned ID = getLocID(R, false);
603     LocIdx Idx = lookupOrTrackRegister(ID);
604     ValueIDNum ValueID = {BB, Inst, Idx};
605     LocIdxToIDNum[Idx] = ValueID;
606   }
607 
608   /// Set a register to a value number. To be used if the value number is
609   /// known in advance.
610   void setReg(Register R, ValueIDNum ValueID) {
611     unsigned ID = getLocID(R, false);
612     LocIdx Idx = lookupOrTrackRegister(ID);
613     LocIdxToIDNum[Idx] = ValueID;
614   }
615 
616   ValueIDNum readReg(Register R) {
617     unsigned ID = getLocID(R, false);
618     LocIdx Idx = lookupOrTrackRegister(ID);
619     return LocIdxToIDNum[Idx];
620   }
621 
622   /// Reset a register value to zero / empty. Needed to replicate the
623   /// VarLoc implementation where a copy to/from a register effectively
624   /// clears the contents of the source register. (Values can only have one
625   ///  machine location in VarLocBasedImpl).
626   void wipeRegister(Register R) {
627     unsigned ID = getLocID(R, false);
628     LocIdx Idx = LocIDToLocIdx[ID];
629     LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue;
630   }
631 
632   /// Determine the LocIdx of an existing register.
633   LocIdx getRegMLoc(Register R) {
634     unsigned ID = getLocID(R, false);
635     return LocIDToLocIdx[ID];
636   }
637 
638   /// Record a RegMask operand being executed. Defs any register we currently
639   /// track, stores a pointer to the mask in case we have to account for it
640   /// later.
641   void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID) {
642     // Ensure SP exists, so that we don't override it later.
643     Register SP = TLI.getStackPointerRegisterToSaveRestore();
644 
645     // Def any register we track have that isn't preserved. The regmask
646     // terminates the liveness of a register, meaning its value can't be
647     // relied upon -- we represent this by giving it a new value.
648     for (auto Location : locations()) {
649       unsigned ID = LocIdxToLocID[Location.Idx];
650       // Don't clobber SP, even if the mask says it's clobbered.
651       if (ID < NumRegs && ID != SP && MO->clobbersPhysReg(ID))
652         defReg(ID, CurBB, InstID);
653     }
654     Masks.push_back(std::make_pair(MO, InstID));
655   }
656 
657   /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked.
658   LocIdx getOrTrackSpillLoc(SpillLoc L) {
659     unsigned SpillID = SpillLocs.idFor(L);
660     if (SpillID == 0) {
661       SpillID = SpillLocs.insert(L);
662       unsigned L = getLocID(SpillID, true);
663       LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
664       LocIdxToIDNum.grow(Idx);
665       LocIdxToLocID.grow(Idx);
666       LocIDToLocIdx.push_back(Idx);
667       LocIdxToLocID[Idx] = L;
668       return Idx;
669     } else {
670       unsigned L = getLocID(SpillID, true);
671       LocIdx Idx = LocIDToLocIdx[L];
672       return Idx;
673     }
674   }
675 
676   /// Set the value stored in a spill slot.
677   void setSpill(SpillLoc L, ValueIDNum ValueID) {
678     LocIdx Idx = getOrTrackSpillLoc(L);
679     LocIdxToIDNum[Idx] = ValueID;
680   }
681 
682   /// Read whatever value is in a spill slot, or None if it isn't tracked.
683   Optional<ValueIDNum> readSpill(SpillLoc L) {
684     unsigned SpillID = SpillLocs.idFor(L);
685     if (SpillID == 0)
686       return None;
687 
688     unsigned LocID = getLocID(SpillID, true);
689     LocIdx Idx = LocIDToLocIdx[LocID];
690     return LocIdxToIDNum[Idx];
691   }
692 
693   /// Determine the LocIdx of a spill slot. Return None if it previously
694   /// hasn't had a value assigned.
695   Optional<LocIdx> getSpillMLoc(SpillLoc L) {
696     unsigned SpillID = SpillLocs.idFor(L);
697     if (SpillID == 0)
698       return None;
699     unsigned LocNo = getLocID(SpillID, true);
700     return LocIDToLocIdx[LocNo];
701   }
702 
703   /// Return true if Idx is a spill machine location.
704   bool isSpill(LocIdx Idx) const {
705     return LocIdxToLocID[Idx] >= NumRegs;
706   }
707 
708   MLocIterator begin() {
709     return MLocIterator(LocIdxToIDNum, 0);
710   }
711 
712   MLocIterator end() {
713     return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size());
714   }
715 
716   /// Return a range over all locations currently tracked.
717   iterator_range<MLocIterator> locations() {
718     return llvm::make_range(begin(), end());
719   }
720 
721   std::string LocIdxToName(LocIdx Idx) const {
722     unsigned ID = LocIdxToLocID[Idx];
723     if (ID >= NumRegs)
724       return Twine("slot ").concat(Twine(ID - NumRegs)).str();
725     else
726       return TRI.getRegAsmName(ID).str();
727   }
728 
729   std::string IDAsString(const ValueIDNum &Num) const {
730     std::string DefName = LocIdxToName(Num.getLoc());
731     return Num.asString(DefName);
732   }
733 
734   LLVM_DUMP_METHOD
735   void dump() {
736     for (auto Location : locations()) {
737       std::string MLocName = LocIdxToName(Location.Value.getLoc());
738       std::string DefName = Location.Value.asString(MLocName);
739       dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
740     }
741   }
742 
743   LLVM_DUMP_METHOD
744   void dump_mloc_map() {
745     for (auto Location : locations()) {
746       std::string foo = LocIdxToName(Location.Idx);
747       dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
748     }
749   }
750 
751   /// Create a DBG_VALUE based on  machine location \p MLoc. Qualify it with the
752   /// information in \pProperties, for variable Var. Don't insert it anywhere,
753   /// just return the builder for it.
754   MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var,
755                               const DbgValueProperties &Properties) {
756     DebugLoc DL =
757         DebugLoc::get(0, 0, Var.getVariable()->getScope(), Var.getInlinedAt());
758     auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));
759 
760     const DIExpression *Expr = Properties.DIExpr;
761     if (!MLoc) {
762       // No location -> DBG_VALUE $noreg
763       MIB.addReg(0, RegState::Debug);
764       MIB.addReg(0, RegState::Debug);
765     } else if (LocIdxToLocID[*MLoc] >= NumRegs) {
766       unsigned LocID = LocIdxToLocID[*MLoc];
767       const SpillLoc &Spill = SpillLocs[LocID - NumRegs + 1];
768       Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset,
769                                    Spill.SpillOffset);
770       unsigned Base = Spill.SpillBase;
771       MIB.addReg(Base, RegState::Debug);
772       MIB.addImm(0);
773     } else {
774       unsigned LocID = LocIdxToLocID[*MLoc];
775       MIB.addReg(LocID, RegState::Debug);
776       if (Properties.Indirect)
777         MIB.addImm(0);
778       else
779         MIB.addReg(0, RegState::Debug);
780     }
781 
782     MIB.addMetadata(Var.getVariable());
783     MIB.addMetadata(Expr);
784     return MIB;
785   }
786 };
787 
788 /// Class recording the (high level) _value_ of a variable. Identifies either
789 /// the value of the variable as a ValueIDNum, or a constant MachineOperand.
790 /// This class also stores meta-information about how the value is qualified.
791 /// Used to reason about variable values when performing the second
792 /// (DebugVariable specific) dataflow analysis.
793 class DbgValue {
794 public:
795   union {
796     /// If Kind is Def, the value number that this value is based on.
797     ValueIDNum ID;
798     /// If Kind is Const, the MachineOperand defining this value.
799     MachineOperand MO;
800     /// For a NoVal DbgValue, which block it was generated in.
801     unsigned BlockNo;
802   };
803   /// Qualifiers for the ValueIDNum above.
804   DbgValueProperties Properties;
805 
806   typedef enum {
807     Undef,     // Represents a DBG_VALUE $noreg in the transfer function only.
808     Def,       // This value is defined by an inst, or is a PHI value.
809     Const,     // A constant value contained in the MachineOperand field.
810     Proposed,  // This is a tentative PHI value, which may be confirmed or
811                // invalidated later.
812     NoVal      // Empty DbgValue, generated during dataflow. BlockNo stores
813                // which block this was generated in.
814    } KindT;
815   /// Discriminator for whether this is a constant or an in-program value.
816   KindT Kind;
817 
818   DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind)
819     : ID(Val), Properties(Prop), Kind(Kind) {
820     assert(Kind == Def || Kind == Proposed);
821   }
822 
823   DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind)
824     : BlockNo(BlockNo), Properties(Prop), Kind(Kind) {
825     assert(Kind == NoVal);
826   }
827 
828   DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind)
829     : MO(MO), Properties(Prop), Kind(Kind) {
830     assert(Kind == Const);
831   }
832 
833   DbgValue(const DbgValueProperties &Prop, KindT Kind)
834     : Properties(Prop), Kind(Kind) {
835     assert(Kind == Undef &&
836            "Empty DbgValue constructor must pass in Undef kind");
837   }
838 
839   void dump(const MLocTracker *MTrack) const {
840     if (Kind == Const) {
841       MO.dump();
842     } else if (Kind == NoVal) {
843       dbgs() << "NoVal(" << BlockNo << ")";
844     } else if (Kind == Proposed) {
845       dbgs() << "VPHI(" << MTrack->IDAsString(ID) << ")";
846     } else {
847       assert(Kind == Def);
848       dbgs() << MTrack->IDAsString(ID);
849     }
850     if (Properties.Indirect)
851       dbgs() << " indir";
852     if (Properties.DIExpr)
853       dbgs() << " " << *Properties.DIExpr;
854   }
855 
856   bool operator==(const DbgValue &Other) const {
857     if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties))
858       return false;
859     else if (Kind == Proposed && ID != Other.ID)
860       return false;
861     else if (Kind == Def && ID != Other.ID)
862       return false;
863     else if (Kind == NoVal && BlockNo != Other.BlockNo)
864       return false;
865     else if (Kind == Const)
866       return MO.isIdenticalTo(Other.MO);
867 
868     return true;
869   }
870 
871   bool operator!=(const DbgValue &Other) const { return !(*this == Other); }
872 };
873 
874 /// Types for recording sets of variable fragments that overlap. For a given
875 /// local variable, we record all other fragments of that variable that could
876 /// overlap it, to reduce search time.
877 using FragmentOfVar =
878     std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
879 using OverlapMap =
880     DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
881 
882 /// Collection of DBG_VALUEs observed when traversing a block. Records each
883 /// variable and the value the DBG_VALUE refers to. Requires the machine value
884 /// location dataflow algorithm to have run already, so that values can be
885 /// identified.
886 class VLocTracker {
887 public:
888   /// Map DebugVariable to the latest Value it's defined to have.
889   /// Needs to be a MapVector because we determine order-in-the-input-MIR from
890   /// the order in this container.
891   /// We only retain the last DbgValue in each block for each variable, to
892   /// determine the blocks live-out variable value. The Vars container forms the
893   /// transfer function for this block, as part of the dataflow analysis. The
894   /// movement of values between locations inside of a block is handled at a
895   /// much later stage, in the TransferTracker class.
896   MapVector<DebugVariable, DbgValue> Vars;
897   DenseMap<DebugVariable, const DILocation *> Scopes;
898   MachineBasicBlock *MBB;
899 
900 public:
901   VLocTracker() {}
902 
903   void defVar(const MachineInstr &MI, const DbgValueProperties &Properties,
904               Optional<ValueIDNum> ID) {
905     assert(MI.isDebugValue() || MI.isDebugRef());
906     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
907                       MI.getDebugLoc()->getInlinedAt());
908     DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def)
909                         : DbgValue(Properties, DbgValue::Undef);
910 
911     // Attempt insertion; overwrite if it's already mapped.
912     auto Result = Vars.insert(std::make_pair(Var, Rec));
913     if (!Result.second)
914       Result.first->second = Rec;
915     Scopes[Var] = MI.getDebugLoc().get();
916   }
917 
918   void defVar(const MachineInstr &MI, const MachineOperand &MO) {
919     // Only DBG_VALUEs can define constant-valued variables.
920     assert(MI.isDebugValue());
921     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
922                       MI.getDebugLoc()->getInlinedAt());
923     DbgValueProperties Properties(MI);
924     DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const);
925 
926     // Attempt insertion; overwrite if it's already mapped.
927     auto Result = Vars.insert(std::make_pair(Var, Rec));
928     if (!Result.second)
929       Result.first->second = Rec;
930     Scopes[Var] = MI.getDebugLoc().get();
931   }
932 };
933 
934 /// Tracker for converting machine value locations and variable values into
935 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
936 /// specifying block live-in locations and transfers within blocks.
937 ///
938 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
939 /// and must be initialized with the set of variable values that are live-in to
940 /// the block. The caller then repeatedly calls process(). TransferTracker picks
941 /// out variable locations for the live-in variable values (if there _is_ a
942 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is
943 /// stepped through, transfers of values between machine locations are
944 /// identified and if profitable, a DBG_VALUE created.
945 ///
946 /// This is where debug use-before-defs would be resolved: a variable with an
947 /// unavailable value could materialize in the middle of a block, when the
948 /// value becomes available. Or, we could detect clobbers and re-specify the
949 /// variable in a backup location. (XXX these are unimplemented).
950 class TransferTracker {
951 public:
952   const TargetInstrInfo *TII;
953   /// This machine location tracker is assumed to always contain the up-to-date
954   /// value mapping for all machine locations. TransferTracker only reads
955   /// information from it. (XXX make it const?)
956   MLocTracker *MTracker;
957   MachineFunction &MF;
958 
959   /// Record of all changes in variable locations at a block position. Awkwardly
960   /// we allow inserting either before or after the point: MBB != nullptr
961   /// indicates it's before, otherwise after.
962   struct Transfer {
963     MachineBasicBlock::iterator Pos; /// Position to insert DBG_VALUes
964     MachineBasicBlock *MBB;          /// non-null if we should insert after.
965     SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
966   };
967 
968   typedef struct {
969     LocIdx Loc;
970     DbgValueProperties Properties;
971   } LocAndProperties;
972 
973   /// Collection of transfers (DBG_VALUEs) to be inserted.
974   SmallVector<Transfer, 32> Transfers;
975 
976   /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
977   /// between TransferTrackers view of variable locations and MLocTrackers. For
978   /// example, MLocTracker observes all clobbers, but TransferTracker lazily
979   /// does not.
980   std::vector<ValueIDNum> VarLocs;
981 
982   /// Map from LocIdxes to which DebugVariables are based that location.
983   /// Mantained while stepping through the block. Not accurate if
984   /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
985   std::map<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
986 
987   /// Map from DebugVariable to it's current location and qualifying meta
988   /// information. To be used in conjunction with ActiveMLocs to construct
989   /// enough information for the DBG_VALUEs for a particular LocIdx.
990   DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;
991 
992   /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
993   SmallVector<MachineInstr *, 4> PendingDbgValues;
994 
995   const TargetRegisterInfo &TRI;
996   const BitVector &CalleeSavedRegs;
997 
998   TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
999                   MachineFunction &MF, const TargetRegisterInfo &TRI,
1000                   const BitVector &CalleeSavedRegs)
1001       : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
1002         CalleeSavedRegs(CalleeSavedRegs) {}
1003 
1004   /// Load object with live-in variable values. \p mlocs contains the live-in
1005   /// values in each machine location, while \p vlocs the live-in variable
1006   /// values. This method picks variable locations for the live-in variables,
1007   /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
1008   /// object fields to track variable locations as we step through the block.
1009   /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
1010   void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs,
1011                   SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
1012                   unsigned NumLocs) {
1013     ActiveMLocs.clear();
1014     ActiveVLocs.clear();
1015     VarLocs.clear();
1016     VarLocs.reserve(NumLocs);
1017 
1018     auto isCalleeSaved = [&](LocIdx L) {
1019       unsigned Reg = MTracker->LocIdxToLocID[L];
1020       if (Reg >= MTracker->NumRegs)
1021         return false;
1022       for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
1023         if (CalleeSavedRegs.test(*RAI))
1024           return true;
1025       return false;
1026     };
1027 
1028     // Map of the preferred location for each value.
1029     std::map<ValueIDNum, LocIdx> ValueToLoc;
1030 
1031     // Produce a map of value numbers to the current machine locs they live
1032     // in. When emulating VarLocBasedImpl, there should only be one
1033     // location; when not, we get to pick.
1034     for (auto Location : MTracker->locations()) {
1035       LocIdx Idx = Location.Idx;
1036       ValueIDNum &VNum = MLocs[Idx.asU64()];
1037       VarLocs.push_back(VNum);
1038       auto it = ValueToLoc.find(VNum);
1039       // In order of preference, pick:
1040       //  * Callee saved registers,
1041       //  * Other registers,
1042       //  * Spill slots.
1043       if (it == ValueToLoc.end() || MTracker->isSpill(it->second) ||
1044           (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) {
1045         // Insert, or overwrite if insertion failed.
1046         auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx));
1047         if (!PrefLocRes.second)
1048           PrefLocRes.first->second = Idx;
1049       }
1050     }
1051 
1052     // Now map variables to their picked LocIdxes.
1053     for (auto Var : VLocs) {
1054       if (Var.second.Kind == DbgValue::Const) {
1055         PendingDbgValues.push_back(
1056             emitMOLoc(Var.second.MO, Var.first, Var.second.Properties));
1057         continue;
1058       }
1059 
1060       // If the value has no location, we can't make a variable location.
1061       auto ValuesPreferredLoc = ValueToLoc.find(Var.second.ID);
1062       if (ValuesPreferredLoc == ValueToLoc.end())
1063         continue;
1064 
1065       LocIdx M = ValuesPreferredLoc->second;
1066       auto NewValue = LocAndProperties{M, Var.second.Properties};
1067       auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
1068       if (!Result.second)
1069         Result.first->second = NewValue;
1070       ActiveMLocs[M].insert(Var.first);
1071       PendingDbgValues.push_back(
1072           MTracker->emitLoc(M, Var.first, Var.second.Properties));
1073     }
1074     flushDbgValues(MBB.begin(), &MBB);
1075   }
1076 
1077   /// Helper to move created DBG_VALUEs into Transfers collection.
1078   void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
1079     if (PendingDbgValues.size() > 0) {
1080       Transfers.push_back({Pos, MBB, PendingDbgValues});
1081       PendingDbgValues.clear();
1082     }
1083   }
1084 
1085   /// Change a variable value after encountering a DBG_VALUE inside a block.
1086   void redefVar(const MachineInstr &MI) {
1087     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
1088                       MI.getDebugLoc()->getInlinedAt());
1089     DbgValueProperties Properties(MI);
1090 
1091     const MachineOperand &MO = MI.getOperand(0);
1092 
1093     // Ignore non-register locations, we don't transfer those.
1094     if (!MO.isReg() || MO.getReg() == 0) {
1095       auto It = ActiveVLocs.find(Var);
1096       if (It != ActiveVLocs.end()) {
1097         ActiveMLocs[It->second.Loc].erase(Var);
1098         ActiveVLocs.erase(It);
1099      }
1100       return;
1101     }
1102 
1103     Register Reg = MO.getReg();
1104     LocIdx NewLoc = MTracker->getRegMLoc(Reg);
1105     redefVar(MI, Properties, NewLoc);
1106   }
1107 
1108   /// Handle a change in variable location within a block. Terminate the
1109   /// variables current location, and record the value it now refers to, so
1110   /// that we can detect location transfers later on.
1111   void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
1112                 Optional<LocIdx> OptNewLoc) {
1113     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
1114                       MI.getDebugLoc()->getInlinedAt());
1115 
1116     // Erase any previous location,
1117     auto It = ActiveVLocs.find(Var);
1118     if (It != ActiveVLocs.end())
1119       ActiveMLocs[It->second.Loc].erase(Var);
1120 
1121     // If there _is_ no new location, all we had to do was erase.
1122     if (!OptNewLoc)
1123       return;
1124     LocIdx NewLoc = *OptNewLoc;
1125 
1126     // Check whether our local copy of values-by-location in #VarLocs is out of
1127     // date. Wipe old tracking data for the location if it's been clobbered in
1128     // the meantime.
1129     if (MTracker->getNumAtPos(NewLoc) != VarLocs[NewLoc.asU64()]) {
1130       for (auto &P : ActiveMLocs[NewLoc]) {
1131         ActiveVLocs.erase(P);
1132       }
1133       ActiveMLocs[NewLoc.asU64()].clear();
1134       VarLocs[NewLoc.asU64()] = MTracker->getNumAtPos(NewLoc);
1135     }
1136 
1137     ActiveMLocs[NewLoc].insert(Var);
1138     if (It == ActiveVLocs.end()) {
1139       ActiveVLocs.insert(
1140           std::make_pair(Var, LocAndProperties{NewLoc, Properties}));
1141     } else {
1142       It->second.Loc = NewLoc;
1143       It->second.Properties = Properties;
1144     }
1145   }
1146 
1147   /// Explicitly terminate variable locations based on \p mloc. Creates undef
1148   /// DBG_VALUEs for any variables that were located there, and clears
1149   /// #ActiveMLoc / #ActiveVLoc tracking information for that location.
1150   void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos) {
1151     assert(MTracker->isSpill(MLoc));
1152     auto ActiveMLocIt = ActiveMLocs.find(MLoc);
1153     if (ActiveMLocIt == ActiveMLocs.end())
1154       return;
1155 
1156     VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
1157 
1158     for (auto &Var : ActiveMLocIt->second) {
1159       auto ActiveVLocIt = ActiveVLocs.find(Var);
1160       // Create an undef. We can't feed in a nullptr DIExpression alas,
1161       // so use the variables last expression. Pass None as the location.
1162       const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr;
1163       DbgValueProperties Properties(Expr, false);
1164       PendingDbgValues.push_back(MTracker->emitLoc(None, Var, Properties));
1165       ActiveVLocs.erase(ActiveVLocIt);
1166     }
1167     flushDbgValues(Pos, nullptr);
1168 
1169     ActiveMLocIt->second.clear();
1170   }
1171 
1172   /// Transfer variables based on \p Src to be based on \p Dst. This handles
1173   /// both register copies as well as spills and restores. Creates DBG_VALUEs
1174   /// describing the movement.
1175   void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
1176     // Does Src still contain the value num we expect? If not, it's been
1177     // clobbered in the meantime, and our variable locations are stale.
1178     if (VarLocs[Src.asU64()] != MTracker->getNumAtPos(Src))
1179       return;
1180 
1181     // assert(ActiveMLocs[Dst].size() == 0);
1182     //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
1183     ActiveMLocs[Dst] = ActiveMLocs[Src];
1184     VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
1185 
1186     // For each variable based on Src; create a location at Dst.
1187     for (auto &Var : ActiveMLocs[Src]) {
1188       auto ActiveVLocIt = ActiveVLocs.find(Var);
1189       assert(ActiveVLocIt != ActiveVLocs.end());
1190       ActiveVLocIt->second.Loc = Dst;
1191 
1192       assert(Dst != 0);
1193       MachineInstr *MI =
1194           MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
1195       PendingDbgValues.push_back(MI);
1196     }
1197     ActiveMLocs[Src].clear();
1198     flushDbgValues(Pos, nullptr);
1199 
1200     // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
1201     // about the old location.
1202     if (EmulateOldLDV)
1203       VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
1204   }
1205 
1206   MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
1207                                 const DebugVariable &Var,
1208                                 const DbgValueProperties &Properties) {
1209     DebugLoc DL =
1210         DebugLoc::get(0, 0, Var.getVariable()->getScope(), Var.getInlinedAt());
1211     auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
1212     MIB.add(MO);
1213     if (Properties.Indirect)
1214       MIB.addImm(0);
1215     else
1216       MIB.addReg(0);
1217     MIB.addMetadata(Var.getVariable());
1218     MIB.addMetadata(Properties.DIExpr);
1219     return MIB;
1220   }
1221 };
1222 
1223 class InstrRefBasedLDV : public LDVImpl {
1224 private:
1225   using FragmentInfo = DIExpression::FragmentInfo;
1226   using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
1227 
1228   // Helper while building OverlapMap, a map of all fragments seen for a given
1229   // DILocalVariable.
1230   using VarToFragments =
1231       DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
1232 
1233   /// Machine location/value transfer function, a mapping of which locations
1234   // are assigned which new values.
1235   typedef std::map<LocIdx, ValueIDNum> MLocTransferMap;
1236 
1237   /// Live in/out structure for the variable values: a per-block map of
1238   /// variables to their values. XXX, better name?
1239   typedef DenseMap<const MachineBasicBlock *,
1240                    DenseMap<DebugVariable, DbgValue> *>
1241       LiveIdxT;
1242 
1243   typedef std::pair<DebugVariable, DbgValue> VarAndLoc;
1244 
1245   /// Type for a live-in value: the predecessor block, and its value.
1246   typedef std::pair<MachineBasicBlock *, DbgValue *> InValueT;
1247 
1248   /// Vector (per block) of a collection (inner smallvector) of live-ins.
1249   /// Used as the result type for the variable value dataflow problem.
1250   typedef SmallVector<SmallVector<VarAndLoc, 8>, 8> LiveInsT;
1251 
1252   const TargetRegisterInfo *TRI;
1253   const TargetInstrInfo *TII;
1254   const TargetFrameLowering *TFI;
1255   BitVector CalleeSavedRegs;
1256   LexicalScopes LS;
1257   TargetPassConfig *TPC;
1258 
1259   /// Object to track machine locations as we step through a block. Could
1260   /// probably be a field rather than a pointer, as it's always used.
1261   MLocTracker *MTracker;
1262 
1263   /// Number of the current block LiveDebugValues is stepping through.
1264   unsigned CurBB;
1265 
1266   /// Number of the current instruction LiveDebugValues is evaluating.
1267   unsigned CurInst;
1268 
1269   /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl
1270   /// steps through a block. Reads the values at each location from the
1271   /// MLocTracker object.
1272   VLocTracker *VTracker;
1273 
1274   /// Tracker for transfers, listens to DBG_VALUEs and transfers of values
1275   /// between locations during stepping, creates new DBG_VALUEs when values move
1276   /// location.
1277   TransferTracker *TTracker;
1278 
1279   /// Blocks which are artificial, i.e. blocks which exclusively contain
1280   /// instructions without DebugLocs, or with line 0 locations.
1281   SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
1282 
1283   // Mapping of blocks to and from their RPOT order.
1284   DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
1285   DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
1286   DenseMap<unsigned, unsigned> BBNumToRPO;
1287 
1288   /// Pair of MachineInstr, and its 1-based offset into the containing block.
1289   typedef std::pair<const MachineInstr *, unsigned> InstAndNum;
1290   /// Map from debug instruction number to the MachineInstr labelled with that
1291   /// number, and its location within the function. Used to transform
1292   /// instruction numbers in DBG_INSTR_REFs into machine value numbers.
1293   std::map<uint64_t, InstAndNum> DebugInstrNumToInstr;
1294 
1295   // Map of overlapping variable fragments.
1296   OverlapMap OverlapFragments;
1297   VarToFragments SeenFragments;
1298 
1299   /// Tests whether this instruction is a spill to a stack slot.
1300   bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
1301 
1302   /// Decide if @MI is a spill instruction and return true if it is. We use 2
1303   /// criteria to make this decision:
1304   /// - Is this instruction a store to a spill slot?
1305   /// - Is there a register operand that is both used and killed?
1306   /// TODO: Store optimization can fold spills into other stores (including
1307   /// other spills). We do not handle this yet (more than one memory operand).
1308   bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
1309                        unsigned &Reg);
1310 
1311   /// If a given instruction is identified as a spill, return the spill slot
1312   /// and set \p Reg to the spilled register.
1313   Optional<SpillLoc> isRestoreInstruction(const MachineInstr &MI,
1314                                           MachineFunction *MF, unsigned &Reg);
1315 
1316   /// Given a spill instruction, extract the register and offset used to
1317   /// address the spill slot in a target independent way.
1318   SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
1319 
1320   /// Observe a single instruction while stepping through a block.
1321   void process(MachineInstr &MI);
1322 
1323   /// Examines whether \p MI is a DBG_VALUE and notifies trackers.
1324   /// \returns true if MI was recognized and processed.
1325   bool transferDebugValue(const MachineInstr &MI);
1326 
1327   /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers.
1328   /// \returns true if MI was recognized and processed.
1329   bool transferDebugInstrRef(MachineInstr &MI);
1330 
1331   /// Examines whether \p MI is copy instruction, and notifies trackers.
1332   /// \returns true if MI was recognized and processed.
1333   bool transferRegisterCopy(MachineInstr &MI);
1334 
1335   /// Examines whether \p MI is stack spill or restore  instruction, and
1336   /// notifies trackers. \returns true if MI was recognized and processed.
1337   bool transferSpillOrRestoreInst(MachineInstr &MI);
1338 
1339   /// Examines \p MI for any registers that it defines, and notifies trackers.
1340   void transferRegisterDef(MachineInstr &MI);
1341 
1342   /// Copy one location to the other, accounting for movement of subregisters
1343   /// too.
1344   void performCopy(Register Src, Register Dst);
1345 
1346   void accumulateFragmentMap(MachineInstr &MI);
1347 
1348   /// Step through the function, recording register definitions and movements
1349   /// in an MLocTracker. Convert the observations into a per-block transfer
1350   /// function in \p MLocTransfer, suitable for using with the machine value
1351   /// location dataflow problem.
1352   void
1353   produceMLocTransferFunction(MachineFunction &MF,
1354                               SmallVectorImpl<MLocTransferMap> &MLocTransfer,
1355                               unsigned MaxNumBlocks);
1356 
1357   /// Solve the machine value location dataflow problem. Takes as input the
1358   /// transfer functions in \p MLocTransfer. Writes the output live-in and
1359   /// live-out arrays to the (initialized to zero) multidimensional arrays in
1360   /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block
1361   /// number, the inner by LocIdx.
1362   void mlocDataflow(ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
1363                     SmallVectorImpl<MLocTransferMap> &MLocTransfer);
1364 
1365   /// Perform a control flow join (lattice value meet) of the values in machine
1366   /// locations at \p MBB. Follows the algorithm described in the file-comment,
1367   /// reading live-outs of predecessors from \p OutLocs, the current live ins
1368   /// from \p InLocs, and assigning the newly computed live ins back into
1369   /// \p InLocs. \returns two bools -- the first indicates whether a change
1370   /// was made, the second whether a lattice downgrade occurred. If the latter
1371   /// is true, revisiting this block is necessary.
1372   std::tuple<bool, bool>
1373   mlocJoin(MachineBasicBlock &MBB,
1374            SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1375            ValueIDNum **OutLocs, ValueIDNum *InLocs);
1376 
1377   /// Solve the variable value dataflow problem, for a single lexical scope.
1378   /// Uses the algorithm from the file comment to resolve control flow joins,
1379   /// although there are extra hacks, see vlocJoin. Reads the
1380   /// locations of values from the \p MInLocs and \p MOutLocs arrays (see
1381   /// mlocDataflow) and reads the variable values transfer function from
1382   /// \p AllTheVlocs. Live-in and Live-out variable values are stored locally,
1383   /// with the live-ins permanently stored to \p Output once the fixedpoint is
1384   /// reached.
1385   /// \p VarsWeCareAbout contains a collection of the variables in \p Scope
1386   /// that we should be tracking.
1387   /// \p AssignBlocks contains the set of blocks that aren't in \p Scope, but
1388   /// which do contain DBG_VALUEs, which VarLocBasedImpl tracks locations
1389   /// through.
1390   void vlocDataflow(const LexicalScope *Scope, const DILocation *DILoc,
1391                     const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
1392                     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks,
1393                     LiveInsT &Output, ValueIDNum **MOutLocs,
1394                     ValueIDNum **MInLocs,
1395                     SmallVectorImpl<VLocTracker> &AllTheVLocs);
1396 
1397   /// Compute the live-ins to a block, considering control flow merges according
1398   /// to the method in the file comment. Live out and live in variable values
1399   /// are stored in \p VLOCOutLocs and \p VLOCInLocs. The live-ins for \p MBB
1400   /// are computed and stored into \p VLOCInLocs. \returns true if the live-ins
1401   /// are modified.
1402   /// \p InLocsT Output argument, storage for calculated live-ins.
1403   /// \returns two bools -- the first indicates whether a change
1404   /// was made, the second whether a lattice downgrade occurred. If the latter
1405   /// is true, revisiting this block is necessary.
1406   std::tuple<bool, bool>
1407   vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs,
1408            SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited,
1409            unsigned BBNum, const SmallSet<DebugVariable, 4> &AllVars,
1410            ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
1411            SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
1412            SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
1413            DenseMap<DebugVariable, DbgValue> &InLocsT);
1414 
1415   /// Continue exploration of the variable-value lattice, as explained in the
1416   /// file-level comment. \p OldLiveInLocation contains the current
1417   /// exploration position, from which we need to descend further. \p Values
1418   /// contains the set of live-in values, \p CurBlockRPONum the RPO number of
1419   /// the current block, and \p CandidateLocations a set of locations that
1420   /// should be considered as PHI locations, if we reach the bottom of the
1421   /// lattice. \returns true if we should downgrade; the value is the agreeing
1422   /// value number in a non-backedge predecessor.
1423   bool vlocDowngradeLattice(const MachineBasicBlock &MBB,
1424                             const DbgValue &OldLiveInLocation,
1425                             const SmallVectorImpl<InValueT> &Values,
1426                             unsigned CurBlockRPONum);
1427 
1428   /// For the given block and live-outs feeding into it, try to find a
1429   /// machine location where they all join. If a solution for all predecessors
1430   /// can't be found, a location where all non-backedge-predecessors join
1431   /// will be returned instead. While this method finds a join location, this
1432   /// says nothing as to whether it should be used.
1433   /// \returns Pair of value ID if found, and true when the correct value
1434   /// is available on all predecessor edges, or false if it's only available
1435   /// for non-backedge predecessors.
1436   std::tuple<Optional<ValueIDNum>, bool>
1437   pickVPHILoc(MachineBasicBlock &MBB, const DebugVariable &Var,
1438               const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs,
1439               ValueIDNum **MInLocs,
1440               const SmallVectorImpl<MachineBasicBlock *> &BlockOrders);
1441 
1442   /// Given the solutions to the two dataflow problems, machine value locations
1443   /// in \p MInLocs and live-in variable values in \p SavedLiveIns, runs the
1444   /// TransferTracker class over the function to produce live-in and transfer
1445   /// DBG_VALUEs, then inserts them. Groups of DBG_VALUEs are inserted in the
1446   /// order given by AllVarsNumbering -- this could be any stable order, but
1447   /// right now "order of appearence in function, when explored in RPO", so
1448   /// that we can compare explictly against VarLocBasedImpl.
1449   void emitLocations(MachineFunction &MF, LiveInsT SavedLiveIns,
1450                      ValueIDNum **MInLocs,
1451                      DenseMap<DebugVariable, unsigned> &AllVarsNumbering);
1452 
1453   /// Boilerplate computation of some initial sets, artifical blocks and
1454   /// RPOT block ordering.
1455   void initialSetup(MachineFunction &MF);
1456 
1457   bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override;
1458 
1459 public:
1460   /// Default construct and initialize the pass.
1461   InstrRefBasedLDV();
1462 
1463   LLVM_DUMP_METHOD
1464   void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const;
1465 
1466   bool isCalleeSaved(LocIdx L) {
1467     unsigned Reg = MTracker->LocIdxToLocID[L];
1468     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1469       if (CalleeSavedRegs.test(*RAI))
1470         return true;
1471     return false;
1472   }
1473 };
1474 
1475 } // end anonymous namespace
1476 
1477 //===----------------------------------------------------------------------===//
1478 //            Implementation
1479 //===----------------------------------------------------------------------===//
1480 
1481 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
1482 
1483 /// Default construct and initialize the pass.
1484 InstrRefBasedLDV::InstrRefBasedLDV() {}
1485 
1486 //===----------------------------------------------------------------------===//
1487 //            Debug Range Extension Implementation
1488 //===----------------------------------------------------------------------===//
1489 
1490 #ifndef NDEBUG
1491 // Something to restore in the future.
1492 // void InstrRefBasedLDV::printVarLocInMBB(..)
1493 #endif
1494 
1495 SpillLoc
1496 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
1497   assert(MI.hasOneMemOperand() &&
1498          "Spill instruction does not have exactly one memory operand?");
1499   auto MMOI = MI.memoperands_begin();
1500   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1501   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
1502          "Inconsistent memory operand in spill instruction");
1503   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
1504   const MachineBasicBlock *MBB = MI.getParent();
1505   Register Reg;
1506   int Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
1507   return {Reg, Offset};
1508 }
1509 
1510 /// End all previous ranges related to @MI and start a new range from @MI
1511 /// if it is a DBG_VALUE instr.
1512 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
1513   if (!MI.isDebugValue())
1514     return false;
1515 
1516   const DILocalVariable *Var = MI.getDebugVariable();
1517   const DIExpression *Expr = MI.getDebugExpression();
1518   const DILocation *DebugLoc = MI.getDebugLoc();
1519   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1520   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1521          "Expected inlined-at fields to agree");
1522 
1523   DebugVariable V(Var, Expr, InlinedAt);
1524   DbgValueProperties Properties(MI);
1525 
1526   // If there are no instructions in this lexical scope, do no location tracking
1527   // at all, this variable shouldn't get a legitimate location range.
1528   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1529   if (Scope == nullptr)
1530     return true; // handled it; by doing nothing
1531 
1532   const MachineOperand &MO = MI.getOperand(0);
1533 
1534   // MLocTracker needs to know that this register is read, even if it's only
1535   // read by a debug inst.
1536   if (MO.isReg() && MO.getReg() != 0)
1537     (void)MTracker->readReg(MO.getReg());
1538 
1539   // If we're preparing for the second analysis (variables), the machine value
1540   // locations are already solved, and we report this DBG_VALUE and the value
1541   // it refers to to VLocTracker.
1542   if (VTracker) {
1543     if (MO.isReg()) {
1544       // Feed defVar the new variable location, or if this is a
1545       // DBG_VALUE $noreg, feed defVar None.
1546       if (MO.getReg())
1547         VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg()));
1548       else
1549         VTracker->defVar(MI, Properties, None);
1550     } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
1551                MI.getOperand(0).isCImm()) {
1552       VTracker->defVar(MI, MI.getOperand(0));
1553     }
1554   }
1555 
1556   // If performing final tracking of transfers, report this variable definition
1557   // to the TransferTracker too.
1558   if (TTracker)
1559     TTracker->redefVar(MI);
1560   return true;
1561 }
1562 
1563 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI) {
1564   if (!MI.isDebugRef())
1565     return false;
1566 
1567   // Only handle this instruction when we are building the variable value
1568   // transfer function.
1569   if (!VTracker)
1570     return false;
1571 
1572   unsigned InstNo = MI.getOperand(0).getImm();
1573   unsigned OpNo = MI.getOperand(1).getImm();
1574 
1575   const DILocalVariable *Var = MI.getDebugVariable();
1576   const DIExpression *Expr = MI.getDebugExpression();
1577   const DILocation *DebugLoc = MI.getDebugLoc();
1578   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1579   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1580          "Expected inlined-at fields to agree");
1581 
1582   DebugVariable V(Var, Expr, InlinedAt);
1583 
1584   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1585   if (Scope == nullptr)
1586     return true; // Handled by doing nothing. This variable is never in scope.
1587 
1588   const MachineFunction &MF = *MI.getParent()->getParent();
1589 
1590   // Various optimizations may have happened to the value during codegen,
1591   // recorded in the value substitution table. Apply any substitutions to
1592   // the instruction / operand number in this DBG_INSTR_REF.
1593   auto Sub = MF.DebugValueSubstitutions.find(std::make_pair(InstNo, OpNo));
1594   while (Sub != MF.DebugValueSubstitutions.end()) {
1595     InstNo = Sub->second.first;
1596     OpNo = Sub->second.second;
1597     Sub = MF.DebugValueSubstitutions.find(std::make_pair(InstNo, OpNo));
1598   }
1599 
1600   // Default machine value number is <None> -- if no instruction defines
1601   // the corresponding value, it must have been optimized out.
1602   Optional<ValueIDNum> NewID = None;
1603 
1604   // Try to lookup the instruction number, and find the machine value number
1605   // that it defines.
1606   auto InstrIt = DebugInstrNumToInstr.find(InstNo);
1607   if (InstrIt != DebugInstrNumToInstr.end()) {
1608     const MachineInstr &TargetInstr = *InstrIt->second.first;
1609     uint64_t BlockNo = TargetInstr.getParent()->getNumber();
1610 
1611     // Pick out the designated operand.
1612     assert(OpNo < TargetInstr.getNumOperands());
1613     const MachineOperand &MO = TargetInstr.getOperand(OpNo);
1614 
1615     // Today, this can only be a register.
1616     assert(MO.isReg() && MO.isDef());
1617 
1618     unsigned LocID = MTracker->getLocID(MO.getReg(), false);
1619     LocIdx L = MTracker->LocIDToLocIdx[LocID];
1620     NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
1621   }
1622 
1623   // We, we have a value number or None. Tell the variable value tracker about
1624   // it. The rest of this LiveDebugValues implementation acts exactly the same
1625   // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that
1626   // aren't immediately available).
1627   DbgValueProperties Properties(Expr, false);
1628   VTracker->defVar(MI, Properties, NewID);
1629 
1630   // If we're on the final pass through the function, decompose this INSTR_REF
1631   // into a plain DBG_VALUE.
1632   if (!TTracker)
1633     return true;
1634 
1635   // Pick a location for the machine value number, if such a location exists.
1636   // (This information could be stored in TransferTracker to make it faster).
1637   Optional<LocIdx> FoundLoc = None;
1638   for (auto Location : MTracker->locations()) {
1639     LocIdx CurL = Location.Idx;
1640     ValueIDNum ID = MTracker->LocIdxToIDNum[CurL];
1641     if (NewID && ID == NewID) {
1642       // If this is the first location with that value, pick it. Otherwise,
1643       // consider whether it's a "longer term" location.
1644       if (!FoundLoc) {
1645         FoundLoc = CurL;
1646         continue;
1647       }
1648 
1649       if (MTracker->isSpill(CurL))
1650         FoundLoc = CurL; // Spills are a longer term location.
1651       else if (!MTracker->isSpill(*FoundLoc) &&
1652                !MTracker->isSpill(CurL) &&
1653                !isCalleeSaved(*FoundLoc) &&
1654                isCalleeSaved(CurL))
1655         FoundLoc = CurL; // Callee saved regs are longer term than normal.
1656     }
1657   }
1658 
1659   // Tell transfer tracker that the variable value has changed.
1660   TTracker->redefVar(MI, Properties, FoundLoc);
1661 
1662   // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
1663   // This DBG_VALUE is potentially a $noreg / undefined location, if
1664   // FoundLoc is None.
1665   // (XXX -- could morph the DBG_INSTR_REF in the future).
1666   MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties);
1667   TTracker->PendingDbgValues.push_back(DbgMI);
1668   TTracker->flushDbgValues(MI.getIterator(), nullptr);
1669 
1670   return true;
1671 }
1672 
1673 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
1674   // Meta Instructions do not affect the debug liveness of any register they
1675   // define.
1676   if (MI.isImplicitDef()) {
1677     // Except when there's an implicit def, and the location it's defining has
1678     // no value number. The whole point of an implicit def is to announce that
1679     // the register is live, without be specific about it's value. So define
1680     // a value if there isn't one already.
1681     ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
1682     // Has a legitimate value -> ignore the implicit def.
1683     if (Num.getLoc() != 0)
1684       return;
1685     // Otherwise, def it here.
1686   } else if (MI.isMetaInstruction())
1687     return;
1688 
1689   MachineFunction *MF = MI.getMF();
1690   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1691   Register SP = TLI->getStackPointerRegisterToSaveRestore();
1692 
1693   // Find the regs killed by MI, and find regmasks of preserved regs.
1694   // Max out the number of statically allocated elements in `DeadRegs`, as this
1695   // prevents fallback to std::set::count() operations.
1696   SmallSet<uint32_t, 32> DeadRegs;
1697   SmallVector<const uint32_t *, 4> RegMasks;
1698   SmallVector<const MachineOperand *, 4> RegMaskPtrs;
1699   for (const MachineOperand &MO : MI.operands()) {
1700     // Determine whether the operand is a register def.
1701     if (MO.isReg() && MO.isDef() && MO.getReg() &&
1702         Register::isPhysicalRegister(MO.getReg()) &&
1703         !(MI.isCall() && MO.getReg() == SP)) {
1704       // Remove ranges of all aliased registers.
1705       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1706         // FIXME: Can we break out of this loop early if no insertion occurs?
1707         DeadRegs.insert(*RAI);
1708     } else if (MO.isRegMask()) {
1709       RegMasks.push_back(MO.getRegMask());
1710       RegMaskPtrs.push_back(&MO);
1711     }
1712   }
1713 
1714   // Tell MLocTracker about all definitions, of regmasks and otherwise.
1715   for (uint32_t DeadReg : DeadRegs)
1716     MTracker->defReg(DeadReg, CurBB, CurInst);
1717 
1718   for (auto *MO : RegMaskPtrs)
1719     MTracker->writeRegMask(MO, CurBB, CurInst);
1720 }
1721 
1722 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
1723   ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
1724 
1725   MTracker->setReg(DstRegNum, SrcValue);
1726 
1727   // In all circumstances, re-def the super registers. It's definitely a new
1728   // value now. This doesn't uniquely identify the composition of subregs, for
1729   // example, two identical values in subregisters composed in different
1730   // places would not get equal value numbers.
1731   for (MCSuperRegIterator SRI(DstRegNum, TRI); SRI.isValid(); ++SRI)
1732     MTracker->defReg(*SRI, CurBB, CurInst);
1733 
1734   // If we're emulating VarLocBasedImpl, just define all the subregisters.
1735   // DBG_VALUEs of them will expect to be tracked from the DBG_VALUE, not
1736   // through prior copies.
1737   if (EmulateOldLDV) {
1738     for (MCSubRegIndexIterator DRI(DstRegNum, TRI); DRI.isValid(); ++DRI)
1739       MTracker->defReg(DRI.getSubReg(), CurBB, CurInst);
1740     return;
1741   }
1742 
1743   // Otherwise, actually copy subregisters from one location to another.
1744   // XXX: in addition, any subregisters of DstRegNum that don't line up with
1745   // the source register should be def'd.
1746   for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
1747     unsigned SrcSubReg = SRI.getSubReg();
1748     unsigned SubRegIdx = SRI.getSubRegIndex();
1749     unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
1750     if (!DstSubReg)
1751       continue;
1752 
1753     // Do copy. There are two matching subregisters, the source value should
1754     // have been def'd when the super-reg was, the latter might not be tracked
1755     // yet.
1756     // This will force SrcSubReg to be tracked, if it isn't yet.
1757     (void)MTracker->readReg(SrcSubReg);
1758     LocIdx SrcL = MTracker->getRegMLoc(SrcSubReg);
1759     assert(SrcL.asU64());
1760     (void)MTracker->readReg(DstSubReg);
1761     LocIdx DstL = MTracker->getRegMLoc(DstSubReg);
1762     assert(DstL.asU64());
1763     (void)DstL;
1764     ValueIDNum CpyValue = {SrcValue.getBlock(), SrcValue.getInst(), SrcL};
1765 
1766     MTracker->setReg(DstSubReg, CpyValue);
1767   }
1768 }
1769 
1770 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
1771                                           MachineFunction *MF) {
1772   // TODO: Handle multiple stores folded into one.
1773   if (!MI.hasOneMemOperand())
1774     return false;
1775 
1776   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1777     return false; // This is not a spill instruction, since no valid size was
1778                   // returned from either function.
1779 
1780   return true;
1781 }
1782 
1783 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
1784                                        MachineFunction *MF, unsigned &Reg) {
1785   if (!isSpillInstruction(MI, MF))
1786     return false;
1787 
1788   // XXX FIXME: On x86, isStoreToStackSlotPostFE returns '1' instead of an
1789   // actual register number.
1790   if (ObserveAllStackops) {
1791     int FI;
1792     Reg = TII->isStoreToStackSlotPostFE(MI, FI);
1793     return Reg != 0;
1794   }
1795 
1796   auto isKilledReg = [&](const MachineOperand MO, unsigned &Reg) {
1797     if (!MO.isReg() || !MO.isUse()) {
1798       Reg = 0;
1799       return false;
1800     }
1801     Reg = MO.getReg();
1802     return MO.isKill();
1803   };
1804 
1805   for (const MachineOperand &MO : MI.operands()) {
1806     // In a spill instruction generated by the InlineSpiller the spilled
1807     // register has its kill flag set.
1808     if (isKilledReg(MO, Reg))
1809       return true;
1810     if (Reg != 0) {
1811       // Check whether next instruction kills the spilled register.
1812       // FIXME: Current solution does not cover search for killed register in
1813       // bundles and instructions further down the chain.
1814       auto NextI = std::next(MI.getIterator());
1815       // Skip next instruction that points to basic block end iterator.
1816       if (MI.getParent()->end() == NextI)
1817         continue;
1818       unsigned RegNext;
1819       for (const MachineOperand &MONext : NextI->operands()) {
1820         // Return true if we came across the register from the
1821         // previous spill instruction that is killed in NextI.
1822         if (isKilledReg(MONext, RegNext) && RegNext == Reg)
1823           return true;
1824       }
1825     }
1826   }
1827   // Return false if we didn't find spilled register.
1828   return false;
1829 }
1830 
1831 Optional<SpillLoc>
1832 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1833                                        MachineFunction *MF, unsigned &Reg) {
1834   if (!MI.hasOneMemOperand())
1835     return None;
1836 
1837   // FIXME: Handle folded restore instructions with more than one memory
1838   // operand.
1839   if (MI.getRestoreSize(TII)) {
1840     Reg = MI.getOperand(0).getReg();
1841     return extractSpillBaseRegAndOffset(MI);
1842   }
1843   return None;
1844 }
1845 
1846 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
1847   // XXX -- it's too difficult to implement VarLocBasedImpl's  stack location
1848   // limitations under the new model. Therefore, when comparing them, compare
1849   // versions that don't attempt spills or restores at all.
1850   if (EmulateOldLDV)
1851     return false;
1852 
1853   MachineFunction *MF = MI.getMF();
1854   unsigned Reg;
1855   Optional<SpillLoc> Loc;
1856 
1857   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
1858 
1859   // First, if there are any DBG_VALUEs pointing at a spill slot that is
1860   // written to, terminate that variable location. The value in memory
1861   // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
1862   if (isSpillInstruction(MI, MF)) {
1863     Loc = extractSpillBaseRegAndOffset(MI);
1864 
1865     if (TTracker) {
1866       Optional<LocIdx> MLoc = MTracker->getSpillMLoc(*Loc);
1867       if (MLoc)
1868         TTracker->clobberMloc(*MLoc, MI.getIterator());
1869     }
1870   }
1871 
1872   // Try to recognise spill and restore instructions that may transfer a value.
1873   if (isLocationSpill(MI, MF, Reg)) {
1874     Loc = extractSpillBaseRegAndOffset(MI);
1875     auto ValueID = MTracker->readReg(Reg);
1876 
1877     // If the location is empty, produce a phi, signify it's the live-in value.
1878     if (ValueID.getLoc() == 0)
1879       ValueID = {CurBB, 0, MTracker->getRegMLoc(Reg)};
1880 
1881     MTracker->setSpill(*Loc, ValueID);
1882     auto OptSpillLocIdx = MTracker->getSpillMLoc(*Loc);
1883     assert(OptSpillLocIdx && "Spill slot set but has no LocIdx?");
1884     LocIdx SpillLocIdx = *OptSpillLocIdx;
1885 
1886     // Tell TransferTracker about this spill, produce DBG_VALUEs for it.
1887     if (TTracker)
1888       TTracker->transferMlocs(MTracker->getRegMLoc(Reg), SpillLocIdx,
1889                               MI.getIterator());
1890 
1891     // VarLocBasedImpl would, at this point, stop tracking the source
1892     // register of the store.
1893     if (EmulateOldLDV) {
1894       for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1895         MTracker->defReg(*RAI, CurBB, CurInst);
1896     }
1897   } else {
1898     if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
1899       return false;
1900 
1901     // Is there a value to be restored?
1902     auto OptValueID = MTracker->readSpill(*Loc);
1903     if (OptValueID) {
1904       ValueIDNum ValueID = *OptValueID;
1905       LocIdx SpillLocIdx = *MTracker->getSpillMLoc(*Loc);
1906       // XXX -- can we recover sub-registers of this value? Until we can, first
1907       // overwrite all defs of the register being restored to.
1908       for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1909         MTracker->defReg(*RAI, CurBB, CurInst);
1910 
1911       // Now override the reg we're restoring to.
1912       MTracker->setReg(Reg, ValueID);
1913 
1914       // Report this restore to the transfer tracker too.
1915       if (TTracker)
1916         TTracker->transferMlocs(SpillLocIdx, MTracker->getRegMLoc(Reg),
1917                                 MI.getIterator());
1918     } else {
1919       // There isn't anything in the location; not clear if this is a code path
1920       // that still runs. Def this register anyway just in case.
1921       for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1922         MTracker->defReg(*RAI, CurBB, CurInst);
1923 
1924       // Force the spill slot to be tracked.
1925       LocIdx L = MTracker->getOrTrackSpillLoc(*Loc);
1926 
1927       // Set the restored value to be a machine phi number, signifying that it's
1928       // whatever the spills live-in value is in this block. Definitely has
1929       // a LocIdx due to the setSpill above.
1930       ValueIDNum ValueID = {CurBB, 0, L};
1931       MTracker->setReg(Reg, ValueID);
1932       MTracker->setSpill(*Loc, ValueID);
1933     }
1934   }
1935   return true;
1936 }
1937 
1938 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
1939   auto DestSrc = TII->isCopyInstr(MI);
1940   if (!DestSrc)
1941     return false;
1942 
1943   const MachineOperand *DestRegOp = DestSrc->Destination;
1944   const MachineOperand *SrcRegOp = DestSrc->Source;
1945 
1946   auto isCalleeSavedReg = [&](unsigned Reg) {
1947     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1948       if (CalleeSavedRegs.test(*RAI))
1949         return true;
1950     return false;
1951   };
1952 
1953   Register SrcReg = SrcRegOp->getReg();
1954   Register DestReg = DestRegOp->getReg();
1955 
1956   // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
1957   if (SrcReg == DestReg)
1958     return true;
1959 
1960   // For emulating VarLocBasedImpl:
1961   // We want to recognize instructions where destination register is callee
1962   // saved register. If register that could be clobbered by the call is
1963   // included, there would be a great chance that it is going to be clobbered
1964   // soon. It is more likely that previous register, which is callee saved, is
1965   // going to stay unclobbered longer, even if it is killed.
1966   //
1967   // For InstrRefBasedImpl, we can track multiple locations per value, so
1968   // ignore this condition.
1969   if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
1970     return false;
1971 
1972   // InstrRefBasedImpl only followed killing copies.
1973   if (EmulateOldLDV && !SrcRegOp->isKill())
1974     return false;
1975 
1976   // Copy MTracker info, including subregs if available.
1977   InstrRefBasedLDV::performCopy(SrcReg, DestReg);
1978 
1979   // Only produce a transfer of DBG_VALUE within a block where old LDV
1980   // would have. We might make use of the additional value tracking in some
1981   // other way, later.
1982   if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
1983     TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
1984                             MTracker->getRegMLoc(DestReg), MI.getIterator());
1985 
1986   // VarLocBasedImpl would quit tracking the old location after copying.
1987   if (EmulateOldLDV && SrcReg != DestReg)
1988     MTracker->defReg(SrcReg, CurBB, CurInst);
1989 
1990   return true;
1991 }
1992 
1993 /// Accumulate a mapping between each DILocalVariable fragment and other
1994 /// fragments of that DILocalVariable which overlap. This reduces work during
1995 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
1996 /// known-to-overlap fragments are present".
1997 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
1998 ///           fragment usage.
1999 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
2000   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
2001                       MI.getDebugLoc()->getInlinedAt());
2002   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
2003 
2004   // If this is the first sighting of this variable, then we are guaranteed
2005   // there are currently no overlapping fragments either. Initialize the set
2006   // of seen fragments, record no overlaps for the current one, and return.
2007   auto SeenIt = SeenFragments.find(MIVar.getVariable());
2008   if (SeenIt == SeenFragments.end()) {
2009     SmallSet<FragmentInfo, 4> OneFragment;
2010     OneFragment.insert(ThisFragment);
2011     SeenFragments.insert({MIVar.getVariable(), OneFragment});
2012 
2013     OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
2014     return;
2015   }
2016 
2017   // If this particular Variable/Fragment pair already exists in the overlap
2018   // map, it has already been accounted for.
2019   auto IsInOLapMap =
2020       OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
2021   if (!IsInOLapMap.second)
2022     return;
2023 
2024   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
2025   auto &AllSeenFragments = SeenIt->second;
2026 
2027   // Otherwise, examine all other seen fragments for this variable, with "this"
2028   // fragment being a previously unseen fragment. Record any pair of
2029   // overlapping fragments.
2030   for (auto &ASeenFragment : AllSeenFragments) {
2031     // Does this previously seen fragment overlap?
2032     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
2033       // Yes: Mark the current fragment as being overlapped.
2034       ThisFragmentsOverlaps.push_back(ASeenFragment);
2035       // Mark the previously seen fragment as being overlapped by the current
2036       // one.
2037       auto ASeenFragmentsOverlaps =
2038           OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
2039       assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
2040              "Previously seen var fragment has no vector of overlaps");
2041       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
2042     }
2043   }
2044 
2045   AllSeenFragments.insert(ThisFragment);
2046 }
2047 
2048 void InstrRefBasedLDV::process(MachineInstr &MI) {
2049   // Try to interpret an MI as a debug or transfer instruction. Only if it's
2050   // none of these should we interpret it's register defs as new value
2051   // definitions.
2052   if (transferDebugValue(MI))
2053     return;
2054   if (transferDebugInstrRef(MI))
2055     return;
2056   if (transferRegisterCopy(MI))
2057     return;
2058   if (transferSpillOrRestoreInst(MI))
2059     return;
2060   transferRegisterDef(MI);
2061 }
2062 
2063 void InstrRefBasedLDV::produceMLocTransferFunction(
2064     MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
2065     unsigned MaxNumBlocks) {
2066   // Because we try to optimize around register mask operands by ignoring regs
2067   // that aren't currently tracked, we set up something ugly for later: RegMask
2068   // operands that are seen earlier than the first use of a register, still need
2069   // to clobber that register in the transfer function. But this information
2070   // isn't actively recorded. Instead, we track each RegMask used in each block,
2071   // and accumulated the clobbered but untracked registers in each block into
2072   // the following bitvector. Later, if new values are tracked, we can add
2073   // appropriate clobbers.
2074   SmallVector<BitVector, 32> BlockMasks;
2075   BlockMasks.resize(MaxNumBlocks);
2076 
2077   // Reserve one bit per register for the masks described above.
2078   unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
2079   for (auto &BV : BlockMasks)
2080     BV.resize(TRI->getNumRegs(), true);
2081 
2082   // Step through all instructions and inhale the transfer function.
2083   for (auto &MBB : MF) {
2084     // Object fields that are read by trackers to know where we are in the
2085     // function.
2086     CurBB = MBB.getNumber();
2087     CurInst = 1;
2088 
2089     // Set all machine locations to a PHI value. For transfer function
2090     // production only, this signifies the live-in value to the block.
2091     MTracker->reset();
2092     MTracker->setMPhis(CurBB);
2093 
2094     // Step through each instruction in this block.
2095     for (auto &MI : MBB) {
2096       process(MI);
2097       // Also accumulate fragment map.
2098       if (MI.isDebugValue())
2099         accumulateFragmentMap(MI);
2100 
2101       // Create a map from the instruction number (if present) to the
2102       // MachineInstr and its position.
2103       if (MI.peekDebugInstrNum()) {
2104         uint64_t InstrNo = MI.peekDebugInstrNum();
2105         auto InstrAndPos = std::make_pair(&MI, CurInst);
2106         auto InsertResult =
2107             DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
2108 
2109         // There should never be duplicate instruction numbers.
2110         assert(InsertResult.second);
2111         (void)InsertResult;
2112       }
2113 
2114       ++CurInst;
2115     }
2116 
2117     // Produce the transfer function, a map of machine location to new value. If
2118     // any machine location has the live-in phi value from the start of the
2119     // block, it's live-through and doesn't need recording in the transfer
2120     // function.
2121     for (auto Location : MTracker->locations()) {
2122       LocIdx Idx = Location.Idx;
2123       ValueIDNum &P = Location.Value;
2124       if (P.isPHI() && P.getLoc() == Idx.asU64())
2125         continue;
2126 
2127       // Insert-or-update.
2128       auto &TransferMap = MLocTransfer[CurBB];
2129       auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
2130       if (!Result.second)
2131         Result.first->second = P;
2132     }
2133 
2134     // Accumulate any bitmask operands into the clobberred reg mask for this
2135     // block.
2136     for (auto &P : MTracker->Masks) {
2137       BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
2138     }
2139   }
2140 
2141   // Compute a bitvector of all the registers that are tracked in this block.
2142   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2143   Register SP = TLI->getStackPointerRegisterToSaveRestore();
2144   BitVector UsedRegs(TRI->getNumRegs());
2145   for (auto Location : MTracker->locations()) {
2146     unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
2147     if (ID >= TRI->getNumRegs() || ID == SP)
2148       continue;
2149     UsedRegs.set(ID);
2150   }
2151 
2152   // Check that any regmask-clobber of a register that gets tracked, is not
2153   // live-through in the transfer function. It needs to be clobbered at the
2154   // very least.
2155   for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
2156     BitVector &BV = BlockMasks[I];
2157     BV.flip();
2158     BV &= UsedRegs;
2159     // This produces all the bits that we clobber, but also use. Check that
2160     // they're all clobbered or at least set in the designated transfer
2161     // elem.
2162     for (unsigned Bit : BV.set_bits()) {
2163       unsigned ID = MTracker->getLocID(Bit, false);
2164       LocIdx Idx = MTracker->LocIDToLocIdx[ID];
2165       auto &TransferMap = MLocTransfer[I];
2166 
2167       // Install a value representing the fact that this location is effectively
2168       // written to in this block. As there's no reserved value, instead use
2169       // a value number that is never generated. Pick the value number for the
2170       // first instruction in the block, def'ing this location, which we know
2171       // this block never used anyway.
2172       ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
2173       auto Result =
2174         TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
2175       if (!Result.second) {
2176         ValueIDNum &ValueID = Result.first->second;
2177         if (ValueID.getBlock() == I && ValueID.isPHI())
2178           // It was left as live-through. Set it to clobbered.
2179           ValueID = NotGeneratedNum;
2180       }
2181     }
2182   }
2183 }
2184 
2185 std::tuple<bool, bool>
2186 InstrRefBasedLDV::mlocJoin(MachineBasicBlock &MBB,
2187                            SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
2188                            ValueIDNum **OutLocs, ValueIDNum *InLocs) {
2189   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2190   bool Changed = false;
2191   bool DowngradeOccurred = false;
2192 
2193   // Collect predecessors that have been visited. Anything that hasn't been
2194   // visited yet is a backedge on the first iteration, and the meet of it's
2195   // lattice value for all locations will be unaffected.
2196   SmallVector<const MachineBasicBlock *, 8> BlockOrders;
2197   for (auto Pred : MBB.predecessors()) {
2198     if (Visited.count(Pred)) {
2199       BlockOrders.push_back(Pred);
2200     }
2201   }
2202 
2203   // Visit predecessors in RPOT order.
2204   auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
2205     return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
2206   };
2207   llvm::sort(BlockOrders.begin(), BlockOrders.end(), Cmp);
2208 
2209   // Skip entry block.
2210   if (BlockOrders.size() == 0)
2211     return std::tuple<bool, bool>(false, false);
2212 
2213   // Step through all machine locations, then look at each predecessor and
2214   // detect disagreements.
2215   unsigned ThisBlockRPO = BBToOrder.find(&MBB)->second;
2216   for (auto Location : MTracker->locations()) {
2217     LocIdx Idx = Location.Idx;
2218     // Pick out the first predecessors live-out value for this location. It's
2219     // guaranteed to be not a backedge, as we order by RPO.
2220     ValueIDNum BaseVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
2221 
2222     // Some flags for whether there's a disagreement, and whether it's a
2223     // disagreement with a backedge or not.
2224     bool Disagree = false;
2225     bool NonBackEdgeDisagree = false;
2226 
2227     // Loop around everything that wasn't 'base'.
2228     for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
2229       auto *MBB = BlockOrders[I];
2230       if (BaseVal != OutLocs[MBB->getNumber()][Idx.asU64()]) {
2231         // Live-out of a predecessor disagrees with the first predecessor.
2232         Disagree = true;
2233 
2234         // Test whether it's a disagreemnt in the backedges or not.
2235         if (BBToOrder.find(MBB)->second < ThisBlockRPO) // might be self b/e
2236           NonBackEdgeDisagree = true;
2237       }
2238     }
2239 
2240     bool OverRide = false;
2241     if (Disagree && !NonBackEdgeDisagree) {
2242       // Only the backedges disagree. Consider demoting the livein
2243       // lattice value, as per the file level comment. The value we consider
2244       // demoting to is the value that the non-backedge predecessors agree on.
2245       // The order of values is that non-PHIs are \top, a PHI at this block
2246       // \bot, and phis between the two are ordered by their RPO number.
2247       // If there's no agreement, or we've already demoted to this PHI value
2248       // before, replace with a PHI value at this block.
2249 
2250       // Calculate order numbers: zero means normal def, nonzero means RPO
2251       // number.
2252       unsigned BaseBlockRPONum = BBNumToRPO[BaseVal.getBlock()] + 1;
2253       if (!BaseVal.isPHI())
2254         BaseBlockRPONum = 0;
2255 
2256       ValueIDNum &InLocID = InLocs[Idx.asU64()];
2257       unsigned InLocRPONum = BBNumToRPO[InLocID.getBlock()] + 1;
2258       if (!InLocID.isPHI())
2259         InLocRPONum = 0;
2260 
2261       // Should we ignore the disagreeing backedges, and override with the
2262       // value the other predecessors agree on (in "base")?
2263       unsigned ThisBlockRPONum = BBNumToRPO[MBB.getNumber()] + 1;
2264       if (BaseBlockRPONum > InLocRPONum && BaseBlockRPONum < ThisBlockRPONum) {
2265         // Override.
2266         OverRide = true;
2267         DowngradeOccurred = true;
2268       }
2269     }
2270     // else: if we disagree in the non-backedges, then this is definitely
2271     // a control flow merge where different values merge. Make it a PHI.
2272 
2273     // Generate a phi...
2274     ValueIDNum PHI = {(uint64_t)MBB.getNumber(), 0, Idx};
2275     ValueIDNum NewVal = (Disagree && !OverRide) ? PHI : BaseVal;
2276     if (InLocs[Idx.asU64()] != NewVal) {
2277       Changed |= true;
2278       InLocs[Idx.asU64()] = NewVal;
2279     }
2280   }
2281 
2282   // Uhhhhhh, reimplement NumInserted and NumRemoved pls.
2283   return std::tuple<bool, bool>(Changed, DowngradeOccurred);
2284 }
2285 
2286 void InstrRefBasedLDV::mlocDataflow(
2287     ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
2288     SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2289   std::priority_queue<unsigned int, std::vector<unsigned int>,
2290                       std::greater<unsigned int>>
2291       Worklist, Pending;
2292 
2293   // We track what is on the current and pending worklist to avoid inserting
2294   // the same thing twice. We could avoid this with a custom priority queue,
2295   // but this is probably not worth it.
2296   SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
2297 
2298   // Initialize worklist with every block to be visited.
2299   for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
2300     Worklist.push(I);
2301     OnWorklist.insert(OrderToBB[I]);
2302   }
2303 
2304   MTracker->reset();
2305 
2306   // Set inlocs for entry block -- each as a PHI at the entry block. Represents
2307   // the incoming value to the function.
2308   MTracker->setMPhis(0);
2309   for (auto Location : MTracker->locations())
2310     MInLocs[0][Location.Idx.asU64()] = Location.Value;
2311 
2312   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
2313   while (!Worklist.empty() || !Pending.empty()) {
2314     // Vector for storing the evaluated block transfer function.
2315     SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
2316 
2317     while (!Worklist.empty()) {
2318       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
2319       CurBB = MBB->getNumber();
2320       Worklist.pop();
2321 
2322       // Join the values in all predecessor blocks.
2323       bool InLocsChanged, DowngradeOccurred;
2324       std::tie(InLocsChanged, DowngradeOccurred) =
2325           mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
2326       InLocsChanged |= Visited.insert(MBB).second;
2327 
2328       // If a downgrade occurred, book us in for re-examination on the next
2329       // iteration.
2330       if (DowngradeOccurred && OnPending.insert(MBB).second)
2331         Pending.push(BBToOrder[MBB]);
2332 
2333       // Don't examine transfer function if we've visited this loc at least
2334       // once, and inlocs haven't changed.
2335       if (!InLocsChanged)
2336         continue;
2337 
2338       // Load the current set of live-ins into MLocTracker.
2339       MTracker->loadFromArray(MInLocs[CurBB], CurBB);
2340 
2341       // Each element of the transfer function can be a new def, or a read of
2342       // a live-in value. Evaluate each element, and store to "ToRemap".
2343       ToRemap.clear();
2344       for (auto &P : MLocTransfer[CurBB]) {
2345         if (P.second.getBlock() == CurBB && P.second.isPHI()) {
2346           // This is a movement of whatever was live in. Read it.
2347           ValueIDNum NewID = MTracker->getNumAtPos(P.second.getLoc());
2348           ToRemap.push_back(std::make_pair(P.first, NewID));
2349         } else {
2350           // It's a def. Just set it.
2351           assert(P.second.getBlock() == CurBB);
2352           ToRemap.push_back(std::make_pair(P.first, P.second));
2353         }
2354       }
2355 
2356       // Commit the transfer function changes into mloc tracker, which
2357       // transforms the contents of the MLocTracker into the live-outs.
2358       for (auto &P : ToRemap)
2359         MTracker->setMLoc(P.first, P.second);
2360 
2361       // Now copy out-locs from mloc tracker into out-loc vector, checking
2362       // whether changes have occurred. These changes can have come from both
2363       // the transfer function, and mlocJoin.
2364       bool OLChanged = false;
2365       for (auto Location : MTracker->locations()) {
2366         OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
2367         MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
2368       }
2369 
2370       MTracker->reset();
2371 
2372       // No need to examine successors again if out-locs didn't change.
2373       if (!OLChanged)
2374         continue;
2375 
2376       // All successors should be visited: put any back-edges on the pending
2377       // list for the next dataflow iteration, and any other successors to be
2378       // visited this iteration, if they're not going to be already.
2379       for (auto s : MBB->successors()) {
2380         // Does branching to this successor represent a back-edge?
2381         if (BBToOrder[s] > BBToOrder[MBB]) {
2382           // No: visit it during this dataflow iteration.
2383           if (OnWorklist.insert(s).second)
2384             Worklist.push(BBToOrder[s]);
2385         } else {
2386           // Yes: visit it on the next iteration.
2387           if (OnPending.insert(s).second)
2388             Pending.push(BBToOrder[s]);
2389         }
2390       }
2391     }
2392 
2393     Worklist.swap(Pending);
2394     std::swap(OnPending, OnWorklist);
2395     OnPending.clear();
2396     // At this point, pending must be empty, since it was just the empty
2397     // worklist
2398     assert(Pending.empty() && "Pending should be empty");
2399   }
2400 
2401   // Once all the live-ins don't change on mlocJoin(), we've reached a
2402   // fixedpoint.
2403 }
2404 
2405 bool InstrRefBasedLDV::vlocDowngradeLattice(
2406     const MachineBasicBlock &MBB, const DbgValue &OldLiveInLocation,
2407     const SmallVectorImpl<InValueT> &Values, unsigned CurBlockRPONum) {
2408   // Ranking value preference: see file level comment, the highest rank is
2409   // a plain def, followed by PHI values in reverse post-order. Numerically,
2410   // we assign all defs the rank '0', all PHIs their blocks RPO number plus
2411   // one, and consider the lowest value the highest ranked.
2412   int OldLiveInRank = BBNumToRPO[OldLiveInLocation.ID.getBlock()] + 1;
2413   if (!OldLiveInLocation.ID.isPHI())
2414     OldLiveInRank = 0;
2415 
2416   // Allow any unresolvable conflict to be over-ridden.
2417   if (OldLiveInLocation.Kind == DbgValue::NoVal) {
2418     // Although if it was an unresolvable conflict from _this_ block, then
2419     // all other seeking of downgrades and PHIs must have failed before hand.
2420     if (OldLiveInLocation.BlockNo == (unsigned)MBB.getNumber())
2421       return false;
2422     OldLiveInRank = INT_MIN;
2423   }
2424 
2425   auto &InValue = *Values[0].second;
2426 
2427   if (InValue.Kind == DbgValue::Const || InValue.Kind == DbgValue::NoVal)
2428     return false;
2429 
2430   unsigned ThisRPO = BBNumToRPO[InValue.ID.getBlock()];
2431   int ThisRank = ThisRPO + 1;
2432   if (!InValue.ID.isPHI())
2433     ThisRank = 0;
2434 
2435   // Too far down the lattice?
2436   if (ThisRPO >= CurBlockRPONum)
2437     return false;
2438 
2439   // Higher in the lattice than what we've already explored?
2440   if (ThisRank <= OldLiveInRank)
2441     return false;
2442 
2443   return true;
2444 }
2445 
2446 std::tuple<Optional<ValueIDNum>, bool> InstrRefBasedLDV::pickVPHILoc(
2447     MachineBasicBlock &MBB, const DebugVariable &Var, const LiveIdxT &LiveOuts,
2448     ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
2449     const SmallVectorImpl<MachineBasicBlock *> &BlockOrders) {
2450   // Collect a set of locations from predecessor where its live-out value can
2451   // be found.
2452   SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
2453   unsigned NumLocs = MTracker->getNumLocs();
2454   unsigned BackEdgesStart = 0;
2455 
2456   for (auto p : BlockOrders) {
2457     // Pick out where backedges start in the list of predecessors. Relies on
2458     // BlockOrders being sorted by RPO.
2459     if (BBToOrder[p] < BBToOrder[&MBB])
2460       ++BackEdgesStart;
2461 
2462     // For each predecessor, create a new set of locations.
2463     Locs.resize(Locs.size() + 1);
2464     unsigned ThisBBNum = p->getNumber();
2465     auto LiveOutMap = LiveOuts.find(p);
2466     if (LiveOutMap == LiveOuts.end())
2467       // This predecessor isn't in scope, it must have no live-in/live-out
2468       // locations.
2469       continue;
2470 
2471     auto It = LiveOutMap->second->find(Var);
2472     if (It == LiveOutMap->second->end())
2473       // There's no value recorded for this variable in this predecessor,
2474       // leave an empty set of locations.
2475       continue;
2476 
2477     const DbgValue &OutVal = It->second;
2478 
2479     if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
2480       // Consts and no-values cannot have locations we can join on.
2481       continue;
2482 
2483     assert(OutVal.Kind == DbgValue::Proposed || OutVal.Kind == DbgValue::Def);
2484     ValueIDNum ValToLookFor = OutVal.ID;
2485 
2486     // Search the live-outs of the predecessor for the specified value.
2487     for (unsigned int I = 0; I < NumLocs; ++I) {
2488       if (MOutLocs[ThisBBNum][I] == ValToLookFor)
2489         Locs.back().push_back(LocIdx(I));
2490     }
2491   }
2492 
2493   // If there were no locations at all, return an empty result.
2494   if (Locs.empty())
2495     return std::tuple<Optional<ValueIDNum>, bool>(None, false);
2496 
2497   // Lambda for seeking a common location within a range of location-sets.
2498   typedef SmallVector<SmallVector<LocIdx, 4>, 8>::iterator LocsIt;
2499   auto SeekLocation =
2500       [&Locs](llvm::iterator_range<LocsIt> SearchRange) -> Optional<LocIdx> {
2501     // Starting with the first set of locations, take the intersection with
2502     // subsequent sets.
2503     SmallVector<LocIdx, 4> base = Locs[0];
2504     for (auto &S : SearchRange) {
2505       SmallVector<LocIdx, 4> new_base;
2506       std::set_intersection(base.begin(), base.end(), S.begin(), S.end(),
2507                             std::inserter(new_base, new_base.begin()));
2508       base = new_base;
2509     }
2510     if (base.empty())
2511       return None;
2512 
2513     // We now have a set of LocIdxes that contain the right output value in
2514     // each of the predecessors. Pick the lowest; if there's a register loc,
2515     // that'll be it.
2516     return *base.begin();
2517   };
2518 
2519   // Search for a common location for all predecessors. If we can't, then fall
2520   // back to only finding a common location between non-backedge predecessors.
2521   bool ValidForAllLocs = true;
2522   auto TheLoc = SeekLocation(Locs);
2523   if (!TheLoc) {
2524     ValidForAllLocs = false;
2525     TheLoc =
2526         SeekLocation(make_range(Locs.begin(), Locs.begin() + BackEdgesStart));
2527   }
2528 
2529   if (!TheLoc)
2530     return std::tuple<Optional<ValueIDNum>, bool>(None, false);
2531 
2532   // Return a PHI-value-number for the found location.
2533   LocIdx L = *TheLoc;
2534   ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
2535   return std::tuple<Optional<ValueIDNum>, bool>(PHIVal, ValidForAllLocs);
2536 }
2537 
2538 std::tuple<bool, bool> InstrRefBasedLDV::vlocJoin(
2539     MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs,
2540     SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, unsigned BBNum,
2541     const SmallSet<DebugVariable, 4> &AllVars, ValueIDNum **MOutLocs,
2542     ValueIDNum **MInLocs,
2543     SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
2544     SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
2545     DenseMap<DebugVariable, DbgValue> &InLocsT) {
2546   bool DowngradeOccurred = false;
2547 
2548   // To emulate VarLocBasedImpl, process this block if it's not in scope but
2549   // _does_ assign a variable value. No live-ins for this scope are transferred
2550   // in though, so we can return immediately.
2551   if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB)) {
2552     if (VLOCVisited)
2553       return std::tuple<bool, bool>(true, false);
2554     return std::tuple<bool, bool>(false, false);
2555   }
2556 
2557   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2558   bool Changed = false;
2559 
2560   // Find any live-ins computed in a prior iteration.
2561   auto ILSIt = VLOCInLocs.find(&MBB);
2562   assert(ILSIt != VLOCInLocs.end());
2563   auto &ILS = *ILSIt->second;
2564 
2565   // Order predecessors by RPOT order, for exploring them in that order.
2566   SmallVector<MachineBasicBlock *, 8> BlockOrders;
2567   for (auto p : MBB.predecessors())
2568     BlockOrders.push_back(p);
2569 
2570   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2571     return BBToOrder[A] < BBToOrder[B];
2572   };
2573 
2574   llvm::sort(BlockOrders.begin(), BlockOrders.end(), Cmp);
2575 
2576   unsigned CurBlockRPONum = BBToOrder[&MBB];
2577 
2578   // Force a re-visit to loop heads in the first dataflow iteration.
2579   // FIXME: if we could "propose" Const values this wouldn't be needed,
2580   // because they'd need to be confirmed before being emitted.
2581   if (!BlockOrders.empty() &&
2582       BBToOrder[BlockOrders[BlockOrders.size() - 1]] >= CurBlockRPONum &&
2583       VLOCVisited)
2584     DowngradeOccurred = true;
2585 
2586   auto ConfirmValue = [&InLocsT](const DebugVariable &DV, DbgValue VR) {
2587     auto Result = InLocsT.insert(std::make_pair(DV, VR));
2588     (void)Result;
2589     assert(Result.second);
2590   };
2591 
2592   auto ConfirmNoVal = [&ConfirmValue, &MBB](const DebugVariable &Var, const DbgValueProperties &Properties) {
2593     DbgValue NoLocPHIVal(MBB.getNumber(), Properties, DbgValue::NoVal);
2594 
2595     ConfirmValue(Var, NoLocPHIVal);
2596   };
2597 
2598   // Attempt to join the values for each variable.
2599   for (auto &Var : AllVars) {
2600     // Collect all the DbgValues for this variable.
2601     SmallVector<InValueT, 8> Values;
2602     bool Bail = false;
2603     unsigned BackEdgesStart = 0;
2604     for (auto p : BlockOrders) {
2605       // If the predecessor isn't in scope / to be explored, we'll never be
2606       // able to join any locations.
2607       if (BlocksToExplore.find(p) == BlocksToExplore.end()) {
2608         Bail = true;
2609         break;
2610       }
2611 
2612       // Don't attempt to handle unvisited predecessors: they're implicitly
2613       // "unknown"s in the lattice.
2614       if (VLOCVisited && !VLOCVisited->count(p))
2615         continue;
2616 
2617       // If the predecessors OutLocs is absent, there's not much we can do.
2618       auto OL = VLOCOutLocs.find(p);
2619       if (OL == VLOCOutLocs.end()) {
2620         Bail = true;
2621         break;
2622       }
2623 
2624       // No live-out value for this predecessor also means we can't produce
2625       // a joined value.
2626       auto VIt = OL->second->find(Var);
2627       if (VIt == OL->second->end()) {
2628         Bail = true;
2629         break;
2630       }
2631 
2632       // Keep track of where back-edges begin in the Values vector. Relies on
2633       // BlockOrders being sorted by RPO.
2634       unsigned ThisBBRPONum = BBToOrder[p];
2635       if (ThisBBRPONum < CurBlockRPONum)
2636         ++BackEdgesStart;
2637 
2638       Values.push_back(std::make_pair(p, &VIt->second));
2639     }
2640 
2641     // If there were no values, or one of the predecessors couldn't have a
2642     // value, then give up immediately. It's not safe to produce a live-in
2643     // value.
2644     if (Bail || Values.size() == 0)
2645       continue;
2646 
2647     // Enumeration identifying the current state of the predecessors values.
2648     enum {
2649       Unset = 0,
2650       Agreed,       // All preds agree on the variable value.
2651       PropDisagree, // All preds agree, but the value kind is Proposed in some.
2652       BEDisagree,   // Only back-edges disagree on variable value.
2653       PHINeeded,    // Non-back-edge predecessors have conflicing values.
2654       NoSolution    // Conflicting Value metadata makes solution impossible.
2655     } OurState = Unset;
2656 
2657     // All (non-entry) blocks have at least one non-backedge predecessor.
2658     // Pick the variable value from the first of these, to compare against
2659     // all others.
2660     const DbgValue &FirstVal = *Values[0].second;
2661     const ValueIDNum &FirstID = FirstVal.ID;
2662 
2663     // Scan for variable values that can't be resolved: if they have different
2664     // DIExpressions, different indirectness, or are mixed constants /
2665     // non-constants.
2666     for (auto &V : Values) {
2667       if (V.second->Properties != FirstVal.Properties)
2668         OurState = NoSolution;
2669       if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
2670         OurState = NoSolution;
2671     }
2672 
2673     // Flags diagnosing _how_ the values disagree.
2674     bool NonBackEdgeDisagree = false;
2675     bool DisagreeOnPHINess = false;
2676     bool IDDisagree = false;
2677     bool Disagree = false;
2678     if (OurState == Unset) {
2679       for (auto &V : Values) {
2680         if (*V.second == FirstVal)
2681           continue; // No disagreement.
2682 
2683         Disagree = true;
2684 
2685         // Flag whether the value number actually diagrees.
2686         if (V.second->ID != FirstID)
2687           IDDisagree = true;
2688 
2689         // Distinguish whether disagreement happens in backedges or not.
2690         // Relies on Values (and BlockOrders) being sorted by RPO.
2691         unsigned ThisBBRPONum = BBToOrder[V.first];
2692         if (ThisBBRPONum < CurBlockRPONum)
2693           NonBackEdgeDisagree = true;
2694 
2695         // Is there a difference in whether the value is definite or only
2696         // proposed?
2697         if (V.second->Kind != FirstVal.Kind &&
2698             (V.second->Kind == DbgValue::Proposed ||
2699              V.second->Kind == DbgValue::Def) &&
2700             (FirstVal.Kind == DbgValue::Proposed ||
2701              FirstVal.Kind == DbgValue::Def))
2702           DisagreeOnPHINess = true;
2703       }
2704 
2705       // Collect those flags together and determine an overall state for
2706       // what extend the predecessors agree on a live-in value.
2707       if (!Disagree)
2708         OurState = Agreed;
2709       else if (!IDDisagree && DisagreeOnPHINess)
2710         OurState = PropDisagree;
2711       else if (!NonBackEdgeDisagree)
2712         OurState = BEDisagree;
2713       else
2714         OurState = PHINeeded;
2715     }
2716 
2717     // An extra indicator: if we only disagree on whether the value is a
2718     // Def, or proposed, then also flag whether that disagreement happens
2719     // in backedges only.
2720     bool PropOnlyInBEs = Disagree && !IDDisagree && DisagreeOnPHINess &&
2721                          !NonBackEdgeDisagree && FirstVal.Kind == DbgValue::Def;
2722 
2723     const auto &Properties = FirstVal.Properties;
2724 
2725     auto OldLiveInIt = ILS.find(Var);
2726     const DbgValue *OldLiveInLocation =
2727         (OldLiveInIt != ILS.end()) ? &OldLiveInIt->second : nullptr;
2728 
2729     bool OverRide = false;
2730     if (OurState == BEDisagree && OldLiveInLocation) {
2731       // Only backedges disagree: we can consider downgrading. If there was a
2732       // previous live-in value, use it to work out whether the current
2733       // incoming value represents a lattice downgrade or not.
2734       OverRide =
2735           vlocDowngradeLattice(MBB, *OldLiveInLocation, Values, CurBlockRPONum);
2736     }
2737 
2738     // Use the current state of predecessor agreement and other flags to work
2739     // out what to do next. Possibilities include:
2740     //  * Accept a value all predecessors agree on, or accept one that
2741     //    represents a step down the exploration lattice,
2742     //  * Use a PHI value number, if one can be found,
2743     //  * Propose a PHI value number, and see if it gets confirmed later,
2744     //  * Emit a 'NoVal' value, indicating we couldn't resolve anything.
2745     if (OurState == Agreed) {
2746       // Easiest solution: all predecessors agree on the variable value.
2747       ConfirmValue(Var, FirstVal);
2748     } else if (OurState == BEDisagree && OverRide) {
2749       // Only backedges disagree, and the other predecessors have produced
2750       // a new live-in value further down the exploration lattice.
2751       DowngradeOccurred = true;
2752       ConfirmValue(Var, FirstVal);
2753     } else if (OurState == PropDisagree) {
2754       // Predecessors agree on value, but some say it's only a proposed value.
2755       // Propagate it as proposed: unless it was proposed in this block, in
2756       // which case we're able to confirm the value.
2757       if (FirstID.getBlock() == (uint64_t)MBB.getNumber() && FirstID.isPHI()) {
2758         ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def));
2759       } else if (PropOnlyInBEs) {
2760         // If only backedges disagree, a higher (in RPO) block confirmed this
2761         // location, and we need to propagate it into this loop.
2762         ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def));
2763       } else {
2764         // Otherwise; a Def meeting a Proposed is still a Proposed.
2765         ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Proposed));
2766       }
2767     } else if ((OurState == PHINeeded || OurState == BEDisagree)) {
2768       // Predecessors disagree and can't be downgraded: this can only be
2769       // solved with a PHI. Use pickVPHILoc to go look for one.
2770       Optional<ValueIDNum> VPHI;
2771       bool AllEdgesVPHI = false;
2772       std::tie(VPHI, AllEdgesVPHI) =
2773           pickVPHILoc(MBB, Var, VLOCOutLocs, MOutLocs, MInLocs, BlockOrders);
2774 
2775       if (VPHI && AllEdgesVPHI) {
2776         // There's a PHI value that's valid for all predecessors -- we can use
2777         // it. If any of the non-backedge predecessors have proposed values
2778         // though, this PHI is also only proposed, until the predecessors are
2779         // confirmed.
2780         DbgValue::KindT K = DbgValue::Def;
2781         for (unsigned int I = 0; I < BackEdgesStart; ++I)
2782           if (Values[I].second->Kind == DbgValue::Proposed)
2783             K = DbgValue::Proposed;
2784 
2785         ConfirmValue(Var, DbgValue(*VPHI, Properties, K));
2786       } else if (VPHI) {
2787         // There's a PHI value, but it's only legal for backedges. Leave this
2788         // as a proposed PHI value: it might come back on the backedges,
2789         // and allow us to confirm it in the future.
2790         DbgValue NoBEValue = DbgValue(*VPHI, Properties, DbgValue::Proposed);
2791         ConfirmValue(Var, NoBEValue);
2792       } else {
2793         ConfirmNoVal(Var, Properties);
2794       }
2795     } else {
2796       // Otherwise: we don't know. Emit a "phi but no real loc" phi.
2797       ConfirmNoVal(Var, Properties);
2798     }
2799   }
2800 
2801   // Store newly calculated in-locs into VLOCInLocs, if they've changed.
2802   Changed = ILS != InLocsT;
2803   if (Changed)
2804     ILS = InLocsT;
2805 
2806   return std::tuple<bool, bool>(Changed, DowngradeOccurred);
2807 }
2808 
2809 void InstrRefBasedLDV::vlocDataflow(
2810     const LexicalScope *Scope, const DILocation *DILoc,
2811     const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
2812     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
2813     ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
2814     SmallVectorImpl<VLocTracker> &AllTheVLocs) {
2815   // This method is much like mlocDataflow: but focuses on a single
2816   // LexicalScope at a time. Pick out a set of blocks and variables that are
2817   // to have their value assignments solved, then run our dataflow algorithm
2818   // until a fixedpoint is reached.
2819   std::priority_queue<unsigned int, std::vector<unsigned int>,
2820                       std::greater<unsigned int>>
2821       Worklist, Pending;
2822   SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
2823 
2824   // The set of blocks we'll be examining.
2825   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
2826 
2827   // The order in which to examine them (RPO).
2828   SmallVector<MachineBasicBlock *, 8> BlockOrders;
2829 
2830   // RPO ordering function.
2831   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2832     return BBToOrder[A] < BBToOrder[B];
2833   };
2834 
2835   LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
2836 
2837   // A separate container to distinguish "blocks we're exploring" versus
2838   // "blocks that are potentially in scope. See comment at start of vlocJoin.
2839   SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore;
2840 
2841   // Old LiveDebugValues tracks variable locations that come out of blocks
2842   // not in scope, where DBG_VALUEs occur. This is something we could
2843   // legitimately ignore, but lets allow it for now.
2844   if (EmulateOldLDV)
2845     BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
2846 
2847   // We also need to propagate variable values through any artificial blocks
2848   // that immediately follow blocks in scope.
2849   DenseSet<const MachineBasicBlock *> ToAdd;
2850 
2851   // Helper lambda: For a given block in scope, perform a depth first search
2852   // of all the artificial successors, adding them to the ToAdd collection.
2853   auto AccumulateArtificialBlocks =
2854       [this, &ToAdd, &BlocksToExplore,
2855        &InScopeBlocks](const MachineBasicBlock *MBB) {
2856         // Depth-first-search state: each node is a block and which successor
2857         // we're currently exploring.
2858         SmallVector<std::pair<const MachineBasicBlock *,
2859                               MachineBasicBlock::const_succ_iterator>,
2860                     8>
2861             DFS;
2862 
2863         // Find any artificial successors not already tracked.
2864         for (auto *succ : MBB->successors()) {
2865           if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ))
2866             continue;
2867           if (!ArtificialBlocks.count(succ))
2868             continue;
2869           DFS.push_back(std::make_pair(succ, succ->succ_begin()));
2870           ToAdd.insert(succ);
2871         }
2872 
2873         // Search all those blocks, depth first.
2874         while (!DFS.empty()) {
2875           const MachineBasicBlock *CurBB = DFS.back().first;
2876           MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
2877           // Walk back if we've explored this blocks successors to the end.
2878           if (CurSucc == CurBB->succ_end()) {
2879             DFS.pop_back();
2880             continue;
2881           }
2882 
2883           // If the current successor is artificial and unexplored, descend into
2884           // it.
2885           if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
2886             DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin()));
2887             ToAdd.insert(*CurSucc);
2888             continue;
2889           }
2890 
2891           ++CurSucc;
2892         }
2893       };
2894 
2895   // Search in-scope blocks and those containing a DBG_VALUE from this scope
2896   // for artificial successors.
2897   for (auto *MBB : BlocksToExplore)
2898     AccumulateArtificialBlocks(MBB);
2899   for (auto *MBB : InScopeBlocks)
2900     AccumulateArtificialBlocks(MBB);
2901 
2902   BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
2903   InScopeBlocks.insert(ToAdd.begin(), ToAdd.end());
2904 
2905   // Single block scope: not interesting! No propagation at all. Note that
2906   // this could probably go above ArtificialBlocks without damage, but
2907   // that then produces output differences from original-live-debug-values,
2908   // which propagates from a single block into many artificial ones.
2909   if (BlocksToExplore.size() == 1)
2910     return;
2911 
2912   // Picks out relevants blocks RPO order and sort them.
2913   for (auto *MBB : BlocksToExplore)
2914     BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
2915 
2916   llvm::sort(BlockOrders.begin(), BlockOrders.end(), Cmp);
2917   unsigned NumBlocks = BlockOrders.size();
2918 
2919   // Allocate some vectors for storing the live ins and live outs. Large.
2920   SmallVector<DenseMap<DebugVariable, DbgValue>, 32> LiveIns, LiveOuts;
2921   LiveIns.resize(NumBlocks);
2922   LiveOuts.resize(NumBlocks);
2923 
2924   // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
2925   // vlocJoin.
2926   LiveIdxT LiveOutIdx, LiveInIdx;
2927   LiveOutIdx.reserve(NumBlocks);
2928   LiveInIdx.reserve(NumBlocks);
2929   for (unsigned I = 0; I < NumBlocks; ++I) {
2930     LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
2931     LiveInIdx[BlockOrders[I]] = &LiveIns[I];
2932   }
2933 
2934   for (auto *MBB : BlockOrders) {
2935     Worklist.push(BBToOrder[MBB]);
2936     OnWorklist.insert(MBB);
2937   }
2938 
2939   // Iterate over all the blocks we selected, propagating variable values.
2940   bool FirstTrip = true;
2941   SmallPtrSet<const MachineBasicBlock *, 16> VLOCVisited;
2942   while (!Worklist.empty() || !Pending.empty()) {
2943     while (!Worklist.empty()) {
2944       auto *MBB = OrderToBB[Worklist.top()];
2945       CurBB = MBB->getNumber();
2946       Worklist.pop();
2947 
2948       DenseMap<DebugVariable, DbgValue> JoinedInLocs;
2949 
2950       // Join values from predecessors. Updates LiveInIdx, and writes output
2951       // into JoinedInLocs.
2952       bool InLocsChanged, DowngradeOccurred;
2953       std::tie(InLocsChanged, DowngradeOccurred) = vlocJoin(
2954           *MBB, LiveOutIdx, LiveInIdx, (FirstTrip) ? &VLOCVisited : nullptr,
2955           CurBB, VarsWeCareAbout, MOutLocs, MInLocs, InScopeBlocks,
2956           BlocksToExplore, JoinedInLocs);
2957 
2958       bool FirstVisit = VLOCVisited.insert(MBB).second;
2959 
2960       // Always explore transfer function if inlocs changed, or if we've not
2961       // visited this block before.
2962       InLocsChanged |= FirstVisit;
2963 
2964       // If a downgrade occurred, book us in for re-examination on the next
2965       // iteration.
2966       if (DowngradeOccurred && OnPending.insert(MBB).second)
2967         Pending.push(BBToOrder[MBB]);
2968 
2969       if (!InLocsChanged)
2970         continue;
2971 
2972       // Do transfer function.
2973       auto &VTracker = AllTheVLocs[MBB->getNumber()];
2974       for (auto &Transfer : VTracker.Vars) {
2975         // Is this var we're mangling in this scope?
2976         if (VarsWeCareAbout.count(Transfer.first)) {
2977           // Erase on empty transfer (DBG_VALUE $noreg).
2978           if (Transfer.second.Kind == DbgValue::Undef) {
2979             JoinedInLocs.erase(Transfer.first);
2980           } else {
2981             // Insert new variable value; or overwrite.
2982             auto NewValuePair = std::make_pair(Transfer.first, Transfer.second);
2983             auto Result = JoinedInLocs.insert(NewValuePair);
2984             if (!Result.second)
2985               Result.first->second = Transfer.second;
2986           }
2987         }
2988       }
2989 
2990       // Did the live-out locations change?
2991       bool OLChanged = JoinedInLocs != *LiveOutIdx[MBB];
2992 
2993       // If they haven't changed, there's no need to explore further.
2994       if (!OLChanged)
2995         continue;
2996 
2997       // Commit to the live-out record.
2998       *LiveOutIdx[MBB] = JoinedInLocs;
2999 
3000       // We should visit all successors. Ensure we'll visit any non-backedge
3001       // successors during this dataflow iteration; book backedge successors
3002       // to be visited next time around.
3003       for (auto s : MBB->successors()) {
3004         // Ignore out of scope / not-to-be-explored successors.
3005         if (LiveInIdx.find(s) == LiveInIdx.end())
3006           continue;
3007 
3008         if (BBToOrder[s] > BBToOrder[MBB]) {
3009           if (OnWorklist.insert(s).second)
3010             Worklist.push(BBToOrder[s]);
3011         } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
3012           Pending.push(BBToOrder[s]);
3013         }
3014       }
3015     }
3016     Worklist.swap(Pending);
3017     std::swap(OnWorklist, OnPending);
3018     OnPending.clear();
3019     assert(Pending.empty());
3020     FirstTrip = false;
3021   }
3022 
3023   // Dataflow done. Now what? Save live-ins. Ignore any that are still marked
3024   // as being variable-PHIs, because those did not have their machine-PHI
3025   // value confirmed. Such variable values are places that could have been
3026   // PHIs, but are not.
3027   for (auto *MBB : BlockOrders) {
3028     auto &VarMap = *LiveInIdx[MBB];
3029     for (auto &P : VarMap) {
3030       if (P.second.Kind == DbgValue::Proposed ||
3031           P.second.Kind == DbgValue::NoVal)
3032         continue;
3033       Output[MBB->getNumber()].push_back(P);
3034     }
3035   }
3036 
3037   BlockOrders.clear();
3038   BlocksToExplore.clear();
3039 }
3040 
3041 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3042 void InstrRefBasedLDV::dump_mloc_transfer(
3043     const MLocTransferMap &mloc_transfer) const {
3044   for (auto &P : mloc_transfer) {
3045     std::string foo = MTracker->LocIdxToName(P.first);
3046     std::string bar = MTracker->IDAsString(P.second);
3047     dbgs() << "Loc " << foo << " --> " << bar << "\n";
3048   }
3049 }
3050 #endif
3051 
3052 void InstrRefBasedLDV::emitLocations(
3053     MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MInLocs,
3054     DenseMap<DebugVariable, unsigned> &AllVarsNumbering) {
3055   TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs);
3056   unsigned NumLocs = MTracker->getNumLocs();
3057 
3058   // For each block, load in the machine value locations and variable value
3059   // live-ins, then step through each instruction in the block. New DBG_VALUEs
3060   // to be inserted will be created along the way.
3061   for (MachineBasicBlock &MBB : MF) {
3062     unsigned bbnum = MBB.getNumber();
3063     MTracker->reset();
3064     MTracker->loadFromArray(MInLocs[bbnum], bbnum);
3065     TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()],
3066                          NumLocs);
3067 
3068     CurBB = bbnum;
3069     CurInst = 1;
3070     for (auto &MI : MBB) {
3071       process(MI);
3072       ++CurInst;
3073     }
3074   }
3075 
3076   // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer
3077   // in DWARF in different orders. Use the order that they appear when walking
3078   // through each block / each instruction, stored in AllVarsNumbering.
3079   auto OrderDbgValues = [&](const MachineInstr *A,
3080                             const MachineInstr *B) -> bool {
3081     DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(),
3082                        A->getDebugLoc()->getInlinedAt());
3083     DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(),
3084                        B->getDebugLoc()->getInlinedAt());
3085     return AllVarsNumbering.find(VarA)->second <
3086            AllVarsNumbering.find(VarB)->second;
3087   };
3088 
3089   // Go through all the transfers recorded in the TransferTracker -- this is
3090   // both the live-ins to a block, and any movements of values that happen
3091   // in the middle.
3092   for (auto &P : TTracker->Transfers) {
3093     // Sort them according to appearance order.
3094     llvm::sort(P.Insts.begin(), P.Insts.end(), OrderDbgValues);
3095     // Insert either before or after the designated point...
3096     if (P.MBB) {
3097       MachineBasicBlock &MBB = *P.MBB;
3098       for (auto *MI : P.Insts) {
3099         MBB.insert(P.Pos, MI);
3100       }
3101     } else {
3102       MachineBasicBlock &MBB = *P.Pos->getParent();
3103       for (auto *MI : P.Insts) {
3104         MBB.insertAfter(P.Pos, MI);
3105       }
3106     }
3107   }
3108 }
3109 
3110 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
3111   // Build some useful data structures.
3112   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
3113     if (const DebugLoc &DL = MI.getDebugLoc())
3114       return DL.getLine() != 0;
3115     return false;
3116   };
3117   // Collect a set of all the artificial blocks.
3118   for (auto &MBB : MF)
3119     if (none_of(MBB.instrs(), hasNonArtificialLocation))
3120       ArtificialBlocks.insert(&MBB);
3121 
3122   // Compute mappings of block <=> RPO order.
3123   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
3124   unsigned int RPONumber = 0;
3125   for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
3126     OrderToBB[RPONumber] = *RI;
3127     BBToOrder[*RI] = RPONumber;
3128     BBNumToRPO[(*RI)->getNumber()] = RPONumber;
3129     ++RPONumber;
3130   }
3131 }
3132 
3133 /// Calculate the liveness information for the given machine function and
3134 /// extend ranges across basic blocks.
3135 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
3136                                     TargetPassConfig *TPC) {
3137   // No subprogram means this function contains no debuginfo.
3138   if (!MF.getFunction().getSubprogram())
3139     return false;
3140 
3141   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
3142   this->TPC = TPC;
3143 
3144   TRI = MF.getSubtarget().getRegisterInfo();
3145   TII = MF.getSubtarget().getInstrInfo();
3146   TFI = MF.getSubtarget().getFrameLowering();
3147   TFI->getCalleeSaves(MF, CalleeSavedRegs);
3148   LS.initialize(MF);
3149 
3150   MTracker =
3151       new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
3152   VTracker = nullptr;
3153   TTracker = nullptr;
3154 
3155   SmallVector<MLocTransferMap, 32> MLocTransfer;
3156   SmallVector<VLocTracker, 8> vlocs;
3157   LiveInsT SavedLiveIns;
3158 
3159   int MaxNumBlocks = -1;
3160   for (auto &MBB : MF)
3161     MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
3162   assert(MaxNumBlocks >= 0);
3163   ++MaxNumBlocks;
3164 
3165   MLocTransfer.resize(MaxNumBlocks);
3166   vlocs.resize(MaxNumBlocks);
3167   SavedLiveIns.resize(MaxNumBlocks);
3168 
3169   initialSetup(MF);
3170 
3171   produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
3172 
3173   // Allocate and initialize two array-of-arrays for the live-in and live-out
3174   // machine values. The outer dimension is the block number; while the inner
3175   // dimension is a LocIdx from MLocTracker.
3176   ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks];
3177   ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks];
3178   unsigned NumLocs = MTracker->getNumLocs();
3179   for (int i = 0; i < MaxNumBlocks; ++i) {
3180     MOutLocs[i] = new ValueIDNum[NumLocs];
3181     MInLocs[i] = new ValueIDNum[NumLocs];
3182   }
3183 
3184   // Solve the machine value dataflow problem using the MLocTransfer function,
3185   // storing the computed live-ins / live-outs into the array-of-arrays. We use
3186   // both live-ins and live-outs for decision making in the variable value
3187   // dataflow problem.
3188   mlocDataflow(MInLocs, MOutLocs, MLocTransfer);
3189 
3190   // Walk back through each block / instruction, collecting DBG_VALUE
3191   // instructions and recording what machine value their operands refer to.
3192   for (auto &OrderPair : OrderToBB) {
3193     MachineBasicBlock &MBB = *OrderPair.second;
3194     CurBB = MBB.getNumber();
3195     VTracker = &vlocs[CurBB];
3196     VTracker->MBB = &MBB;
3197     MTracker->loadFromArray(MInLocs[CurBB], CurBB);
3198     CurInst = 1;
3199     for (auto &MI : MBB) {
3200       process(MI);
3201       ++CurInst;
3202     }
3203     MTracker->reset();
3204   }
3205 
3206   // Number all variables in the order that they appear, to be used as a stable
3207   // insertion order later.
3208   DenseMap<DebugVariable, unsigned> AllVarsNumbering;
3209 
3210   // Map from one LexicalScope to all the variables in that scope.
3211   DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars;
3212 
3213   // Map from One lexical scope to all blocks in that scope.
3214   DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>
3215       ScopeToBlocks;
3216 
3217   // Store a DILocation that describes a scope.
3218   DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation;
3219 
3220   // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
3221   // the order is unimportant, it just has to be stable.
3222   for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
3223     auto *MBB = OrderToBB[I];
3224     auto *VTracker = &vlocs[MBB->getNumber()];
3225     // Collect each variable with a DBG_VALUE in this block.
3226     for (auto &idx : VTracker->Vars) {
3227       const auto &Var = idx.first;
3228       const DILocation *ScopeLoc = VTracker->Scopes[Var];
3229       assert(ScopeLoc != nullptr);
3230       auto *Scope = LS.findLexicalScope(ScopeLoc);
3231 
3232       // No insts in scope -> shouldn't have been recorded.
3233       assert(Scope != nullptr);
3234 
3235       AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
3236       ScopeToVars[Scope].insert(Var);
3237       ScopeToBlocks[Scope].insert(VTracker->MBB);
3238       ScopeToDILocation[Scope] = ScopeLoc;
3239     }
3240   }
3241 
3242   // OK. Iterate over scopes: there might be something to be said for
3243   // ordering them by size/locality, but that's for the future. For each scope,
3244   // solve the variable value problem, producing a map of variables to values
3245   // in SavedLiveIns.
3246   for (auto &P : ScopeToVars) {
3247     vlocDataflow(P.first, ScopeToDILocation[P.first], P.second,
3248                  ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs,
3249                  vlocs);
3250   }
3251 
3252   // Using the computed value locations and variable values for each block,
3253   // create the DBG_VALUE instructions representing the extended variable
3254   // locations.
3255   emitLocations(MF, SavedLiveIns, MInLocs, AllVarsNumbering);
3256 
3257   for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) {
3258     delete[] MOutLocs[Idx];
3259     delete[] MInLocs[Idx];
3260   }
3261   delete[] MOutLocs;
3262   delete[] MInLocs;
3263 
3264   // Did we actually make any changes? If we created any DBG_VALUEs, then yes.
3265   bool Changed = TTracker->Transfers.size() != 0;
3266 
3267   delete MTracker;
3268   delete TTracker;
3269   MTracker = nullptr;
3270   VTracker = nullptr;
3271   TTracker = nullptr;
3272 
3273   ArtificialBlocks.clear();
3274   OrderToBB.clear();
3275   BBToOrder.clear();
3276   BBNumToRPO.clear();
3277   DebugInstrNumToInstr.clear();
3278 
3279   return Changed;
3280 }
3281 
3282 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
3283   return new InstrRefBasedLDV();
3284 }
3285