1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file InstrRefBasedImpl.cpp
9 ///
10 /// This is a separate implementation of LiveDebugValues, see
11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
12 ///
13 /// This pass propagates variable locations between basic blocks, resolving
14 /// control flow conflicts between them. The problem is SSA construction, where
15 /// each debug instruction assigns the *value* that a variable has, and every
16 /// instruction where the variable is in scope uses that variable. The resulting
17 /// map of instruction-to-value is then translated into a register (or spill)
18 /// location for each variable over each instruction.
19 ///
20 /// The primary difference from normal SSA construction is that we cannot
21 /// _create_ PHI values that contain variable values. CodeGen has already
22 /// completed, and we can't alter it just to make debug-info complete. Thus:
23 /// we can identify function positions where we would like a PHI value for a
24 /// variable, but must search the MachineFunction to see whether such a PHI is
25 /// available. If no such PHI exists, the variable location must be dropped.
26 ///
27 /// To achieve this, we perform two kinds of analysis. First, we identify
28 /// every value defined by every instruction (ignoring those that only move
29 /// another value), then re-compute an SSA-form representation of the
30 /// MachineFunction, using value propagation to eliminate any un-necessary
31 /// PHI values. This gives us a map of every value computed in the function,
32 /// and its location within the register file / stack.
33 ///
34 /// Secondly, for each variable we perform the same analysis, where each debug
35 /// instruction is considered a def, and every instruction where the variable
36 /// is in lexical scope as a use. Value propagation is used again to eliminate
37 /// any un-necessary PHIs. This gives us a map of each variable to the value
38 /// it should have in a block.
39 ///
40 /// Once both are complete, we have two maps for each block:
41 ///  * Variables to the values they should have,
42 ///  * Values to the register / spill slot they are located in.
43 /// After which we can marry-up variable values with a location, and emit
44 /// DBG_VALUE instructions specifying those locations. Variable locations may
45 /// be dropped in this process due to the desired variable value not being
46 /// resident in any machine location, or because there is no PHI value in any
47 /// location that accurately represents the desired value.  The building of
48 /// location lists for each block is left to DbgEntityHistoryCalculator.
49 ///
50 /// This pass is kept efficient because the size of the first SSA problem
51 /// is proportional to the working-set size of the function, which the compiler
52 /// tries to keep small. (It's also proportional to the number of blocks).
53 /// Additionally, we repeatedly perform the second SSA problem analysis with
54 /// only the variables and blocks in a single lexical scope, exploiting their
55 /// locality.
56 ///
57 /// ### Terminology
58 ///
59 /// A machine location is a register or spill slot, a value is something that's
60 /// defined by an instruction or PHI node, while a variable value is the value
61 /// assigned to a variable. A variable location is a machine location, that must
62 /// contain the appropriate variable value. A value that is a PHI node is
63 /// occasionally called an mphi.
64 ///
65 /// The first SSA problem is the "machine value location" problem,
66 /// because we're determining which machine locations contain which values.
67 /// The "locations" are constant: what's unknown is what value they contain.
68 ///
69 /// The second SSA problem (the one for variables) is the "variable value
70 /// problem", because it's determining what values a variable has, rather than
71 /// what location those values are placed in.
72 ///
73 /// TODO:
74 ///   Overlapping fragments
75 ///   Entry values
76 ///   Add back DEBUG statements for debugging this
77 ///   Collect statistics
78 ///
79 //===----------------------------------------------------------------------===//
80 
81 #include "llvm/ADT/DenseMap.h"
82 #include "llvm/ADT/PostOrderIterator.h"
83 #include "llvm/ADT/STLExtras.h"
84 #include "llvm/ADT/SmallPtrSet.h"
85 #include "llvm/ADT/SmallSet.h"
86 #include "llvm/ADT/SmallVector.h"
87 #include "llvm/ADT/Statistic.h"
88 #include "llvm/Analysis/IteratedDominanceFrontier.h"
89 #include "llvm/CodeGen/LexicalScopes.h"
90 #include "llvm/CodeGen/MachineBasicBlock.h"
91 #include "llvm/CodeGen/MachineDominators.h"
92 #include "llvm/CodeGen/MachineFrameInfo.h"
93 #include "llvm/CodeGen/MachineFunction.h"
94 #include "llvm/CodeGen/MachineFunctionPass.h"
95 #include "llvm/CodeGen/MachineInstr.h"
96 #include "llvm/CodeGen/MachineInstrBuilder.h"
97 #include "llvm/CodeGen/MachineInstrBundle.h"
98 #include "llvm/CodeGen/MachineMemOperand.h"
99 #include "llvm/CodeGen/MachineOperand.h"
100 #include "llvm/CodeGen/PseudoSourceValue.h"
101 #include "llvm/CodeGen/RegisterScavenging.h"
102 #include "llvm/CodeGen/TargetFrameLowering.h"
103 #include "llvm/CodeGen/TargetInstrInfo.h"
104 #include "llvm/CodeGen/TargetLowering.h"
105 #include "llvm/CodeGen/TargetPassConfig.h"
106 #include "llvm/CodeGen/TargetRegisterInfo.h"
107 #include "llvm/CodeGen/TargetSubtargetInfo.h"
108 #include "llvm/Config/llvm-config.h"
109 #include "llvm/IR/DIBuilder.h"
110 #include "llvm/IR/DebugInfoMetadata.h"
111 #include "llvm/IR/DebugLoc.h"
112 #include "llvm/IR/Function.h"
113 #include "llvm/IR/Module.h"
114 #include "llvm/InitializePasses.h"
115 #include "llvm/MC/MCRegisterInfo.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/Compiler.h"
119 #include "llvm/Support/Debug.h"
120 #include "llvm/Support/TypeSize.h"
121 #include "llvm/Support/raw_ostream.h"
122 #include "llvm/Target/TargetMachine.h"
123 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
124 #include <algorithm>
125 #include <cassert>
126 #include <cstdint>
127 #include <functional>
128 #include <limits.h>
129 #include <limits>
130 #include <queue>
131 #include <tuple>
132 #include <utility>
133 #include <vector>
134 
135 #include "InstrRefBasedImpl.h"
136 #include "LiveDebugValues.h"
137 
138 using namespace llvm;
139 using namespace LiveDebugValues;
140 
141 // SSAUpdaterImple sets DEBUG_TYPE, change it.
142 #undef DEBUG_TYPE
143 #define DEBUG_TYPE "livedebugvalues"
144 
145 // Act more like the VarLoc implementation, by propagating some locations too
146 // far and ignoring some transfers.
147 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
148                                    cl::desc("Act like old LiveDebugValues did"),
149                                    cl::init(false));
150 
151 /// Tracker for converting machine value locations and variable values into
152 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
153 /// specifying block live-in locations and transfers within blocks.
154 ///
155 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
156 /// and must be initialized with the set of variable values that are live-in to
157 /// the block. The caller then repeatedly calls process(). TransferTracker picks
158 /// out variable locations for the live-in variable values (if there _is_ a
159 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is
160 /// stepped through, transfers of values between machine locations are
161 /// identified and if profitable, a DBG_VALUE created.
162 ///
163 /// This is where debug use-before-defs would be resolved: a variable with an
164 /// unavailable value could materialize in the middle of a block, when the
165 /// value becomes available. Or, we could detect clobbers and re-specify the
166 /// variable in a backup location. (XXX these are unimplemented).
167 class TransferTracker {
168 public:
169   const TargetInstrInfo *TII;
170   const TargetLowering *TLI;
171   /// This machine location tracker is assumed to always contain the up-to-date
172   /// value mapping for all machine locations. TransferTracker only reads
173   /// information from it. (XXX make it const?)
174   MLocTracker *MTracker;
175   MachineFunction &MF;
176   bool ShouldEmitDebugEntryValues;
177 
178   /// Record of all changes in variable locations at a block position. Awkwardly
179   /// we allow inserting either before or after the point: MBB != nullptr
180   /// indicates it's before, otherwise after.
181   struct Transfer {
182     MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
183     MachineBasicBlock *MBB; /// non-null if we should insert after.
184     SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
185   };
186 
187   struct LocAndProperties {
188     LocIdx Loc;
189     DbgValueProperties Properties;
190   };
191 
192   /// Collection of transfers (DBG_VALUEs) to be inserted.
193   SmallVector<Transfer, 32> Transfers;
194 
195   /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
196   /// between TransferTrackers view of variable locations and MLocTrackers. For
197   /// example, MLocTracker observes all clobbers, but TransferTracker lazily
198   /// does not.
199   SmallVector<ValueIDNum, 32> VarLocs;
200 
201   /// Map from LocIdxes to which DebugVariables are based that location.
202   /// Mantained while stepping through the block. Not accurate if
203   /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
204   DenseMap<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
205 
206   /// Map from DebugVariable to it's current location and qualifying meta
207   /// information. To be used in conjunction with ActiveMLocs to construct
208   /// enough information for the DBG_VALUEs for a particular LocIdx.
209   DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;
210 
211   /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
212   SmallVector<MachineInstr *, 4> PendingDbgValues;
213 
214   /// Record of a use-before-def: created when a value that's live-in to the
215   /// current block isn't available in any machine location, but it will be
216   /// defined in this block.
217   struct UseBeforeDef {
218     /// Value of this variable, def'd in block.
219     ValueIDNum ID;
220     /// Identity of this variable.
221     DebugVariable Var;
222     /// Additional variable properties.
223     DbgValueProperties Properties;
224   };
225 
226   /// Map from instruction index (within the block) to the set of UseBeforeDefs
227   /// that become defined at that instruction.
228   DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
229 
230   /// The set of variables that are in UseBeforeDefs and can become a location
231   /// once the relevant value is defined. An element being erased from this
232   /// collection prevents the use-before-def materializing.
233   DenseSet<DebugVariable> UseBeforeDefVariables;
234 
235   const TargetRegisterInfo &TRI;
236   const BitVector &CalleeSavedRegs;
237 
238   TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
239                   MachineFunction &MF, const TargetRegisterInfo &TRI,
240                   const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
241       : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
242         CalleeSavedRegs(CalleeSavedRegs) {
243     TLI = MF.getSubtarget().getTargetLowering();
244     auto &TM = TPC.getTM<TargetMachine>();
245     ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
246   }
247 
248   /// Load object with live-in variable values. \p mlocs contains the live-in
249   /// values in each machine location, while \p vlocs the live-in variable
250   /// values. This method picks variable locations for the live-in variables,
251   /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
252   /// object fields to track variable locations as we step through the block.
253   /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
254   void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs,
255                   SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
256                   unsigned NumLocs) {
257     ActiveMLocs.clear();
258     ActiveVLocs.clear();
259     VarLocs.clear();
260     VarLocs.reserve(NumLocs);
261     UseBeforeDefs.clear();
262     UseBeforeDefVariables.clear();
263 
264     auto isCalleeSaved = [&](LocIdx L) {
265       unsigned Reg = MTracker->LocIdxToLocID[L];
266       if (Reg >= MTracker->NumRegs)
267         return false;
268       for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
269         if (CalleeSavedRegs.test(*RAI))
270           return true;
271       return false;
272     };
273 
274     // Map of the preferred location for each value.
275     std::map<ValueIDNum, LocIdx> ValueToLoc;
276     ActiveMLocs.reserve(VLocs.size());
277     ActiveVLocs.reserve(VLocs.size());
278 
279     // Produce a map of value numbers to the current machine locs they live
280     // in. When emulating VarLocBasedImpl, there should only be one
281     // location; when not, we get to pick.
282     for (auto Location : MTracker->locations()) {
283       LocIdx Idx = Location.Idx;
284       ValueIDNum &VNum = MLocs[Idx.asU64()];
285       VarLocs.push_back(VNum);
286       auto it = ValueToLoc.find(VNum);
287       // In order of preference, pick:
288       //  * Callee saved registers,
289       //  * Other registers,
290       //  * Spill slots.
291       if (it == ValueToLoc.end() || MTracker->isSpill(it->second) ||
292           (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) {
293         // Insert, or overwrite if insertion failed.
294         auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx));
295         if (!PrefLocRes.second)
296           PrefLocRes.first->second = Idx;
297       }
298     }
299 
300     // Now map variables to their picked LocIdxes.
301     for (auto Var : VLocs) {
302       if (Var.second.Kind == DbgValue::Const) {
303         PendingDbgValues.push_back(
304             emitMOLoc(*Var.second.MO, Var.first, Var.second.Properties));
305         continue;
306       }
307 
308       // If the value has no location, we can't make a variable location.
309       const ValueIDNum &Num = Var.second.ID;
310       auto ValuesPreferredLoc = ValueToLoc.find(Num);
311       if (ValuesPreferredLoc == ValueToLoc.end()) {
312         // If it's a def that occurs in this block, register it as a
313         // use-before-def to be resolved as we step through the block.
314         if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI())
315           addUseBeforeDef(Var.first, Var.second.Properties, Num);
316         else
317           recoverAsEntryValue(Var.first, Var.second.Properties, Num);
318         continue;
319       }
320 
321       LocIdx M = ValuesPreferredLoc->second;
322       auto NewValue = LocAndProperties{M, Var.second.Properties};
323       auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
324       if (!Result.second)
325         Result.first->second = NewValue;
326       ActiveMLocs[M].insert(Var.first);
327       PendingDbgValues.push_back(
328           MTracker->emitLoc(M, Var.first, Var.second.Properties));
329     }
330     flushDbgValues(MBB.begin(), &MBB);
331   }
332 
333   /// Record that \p Var has value \p ID, a value that becomes available
334   /// later in the function.
335   void addUseBeforeDef(const DebugVariable &Var,
336                        const DbgValueProperties &Properties, ValueIDNum ID) {
337     UseBeforeDef UBD = {ID, Var, Properties};
338     UseBeforeDefs[ID.getInst()].push_back(UBD);
339     UseBeforeDefVariables.insert(Var);
340   }
341 
342   /// After the instruction at index \p Inst and position \p pos has been
343   /// processed, check whether it defines a variable value in a use-before-def.
344   /// If so, and the variable value hasn't changed since the start of the
345   /// block, create a DBG_VALUE.
346   void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
347     auto MIt = UseBeforeDefs.find(Inst);
348     if (MIt == UseBeforeDefs.end())
349       return;
350 
351     for (auto &Use : MIt->second) {
352       LocIdx L = Use.ID.getLoc();
353 
354       // If something goes very wrong, we might end up labelling a COPY
355       // instruction or similar with an instruction number, where it doesn't
356       // actually define a new value, instead it moves a value. In case this
357       // happens, discard.
358       if (MTracker->readMLoc(L) != Use.ID)
359         continue;
360 
361       // If a different debug instruction defined the variable value / location
362       // since the start of the block, don't materialize this use-before-def.
363       if (!UseBeforeDefVariables.count(Use.Var))
364         continue;
365 
366       PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties));
367     }
368     flushDbgValues(pos, nullptr);
369   }
370 
371   /// Helper to move created DBG_VALUEs into Transfers collection.
372   void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
373     if (PendingDbgValues.size() == 0)
374       return;
375 
376     // Pick out the instruction start position.
377     MachineBasicBlock::instr_iterator BundleStart;
378     if (MBB && Pos == MBB->begin())
379       BundleStart = MBB->instr_begin();
380     else
381       BundleStart = getBundleStart(Pos->getIterator());
382 
383     Transfers.push_back({BundleStart, MBB, PendingDbgValues});
384     PendingDbgValues.clear();
385   }
386 
387   bool isEntryValueVariable(const DebugVariable &Var,
388                             const DIExpression *Expr) const {
389     if (!Var.getVariable()->isParameter())
390       return false;
391 
392     if (Var.getInlinedAt())
393       return false;
394 
395     if (Expr->getNumElements() > 0)
396       return false;
397 
398     return true;
399   }
400 
401   bool isEntryValueValue(const ValueIDNum &Val) const {
402     // Must be in entry block (block number zero), and be a PHI / live-in value.
403     if (Val.getBlock() || !Val.isPHI())
404       return false;
405 
406     // Entry values must enter in a register.
407     if (MTracker->isSpill(Val.getLoc()))
408       return false;
409 
410     Register SP = TLI->getStackPointerRegisterToSaveRestore();
411     Register FP = TRI.getFrameRegister(MF);
412     Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
413     return Reg != SP && Reg != FP;
414   }
415 
416   bool recoverAsEntryValue(const DebugVariable &Var, DbgValueProperties &Prop,
417                            const ValueIDNum &Num) {
418     // Is this variable location a candidate to be an entry value. First,
419     // should we be trying this at all?
420     if (!ShouldEmitDebugEntryValues)
421       return false;
422 
423     // Is the variable appropriate for entry values (i.e., is a parameter).
424     if (!isEntryValueVariable(Var, Prop.DIExpr))
425       return false;
426 
427     // Is the value assigned to this variable still the entry value?
428     if (!isEntryValueValue(Num))
429       return false;
430 
431     // Emit a variable location using an entry value expression.
432     DIExpression *NewExpr =
433         DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue);
434     Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
435     MachineOperand MO = MachineOperand::CreateReg(Reg, false);
436 
437     PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect}));
438     return true;
439   }
440 
441   /// Change a variable value after encountering a DBG_VALUE inside a block.
442   void redefVar(const MachineInstr &MI) {
443     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
444                       MI.getDebugLoc()->getInlinedAt());
445     DbgValueProperties Properties(MI);
446 
447     const MachineOperand &MO = MI.getOperand(0);
448 
449     // Ignore non-register locations, we don't transfer those.
450     if (!MO.isReg() || MO.getReg() == 0) {
451       auto It = ActiveVLocs.find(Var);
452       if (It != ActiveVLocs.end()) {
453         ActiveMLocs[It->second.Loc].erase(Var);
454         ActiveVLocs.erase(It);
455      }
456       // Any use-before-defs no longer apply.
457       UseBeforeDefVariables.erase(Var);
458       return;
459     }
460 
461     Register Reg = MO.getReg();
462     LocIdx NewLoc = MTracker->getRegMLoc(Reg);
463     redefVar(MI, Properties, NewLoc);
464   }
465 
466   /// Handle a change in variable location within a block. Terminate the
467   /// variables current location, and record the value it now refers to, so
468   /// that we can detect location transfers later on.
469   void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
470                 Optional<LocIdx> OptNewLoc) {
471     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
472                       MI.getDebugLoc()->getInlinedAt());
473     // Any use-before-defs no longer apply.
474     UseBeforeDefVariables.erase(Var);
475 
476     // Erase any previous location,
477     auto It = ActiveVLocs.find(Var);
478     if (It != ActiveVLocs.end())
479       ActiveMLocs[It->second.Loc].erase(Var);
480 
481     // If there _is_ no new location, all we had to do was erase.
482     if (!OptNewLoc)
483       return;
484     LocIdx NewLoc = *OptNewLoc;
485 
486     // Check whether our local copy of values-by-location in #VarLocs is out of
487     // date. Wipe old tracking data for the location if it's been clobbered in
488     // the meantime.
489     if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) {
490       for (auto &P : ActiveMLocs[NewLoc]) {
491         ActiveVLocs.erase(P);
492       }
493       ActiveMLocs[NewLoc.asU64()].clear();
494       VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc);
495     }
496 
497     ActiveMLocs[NewLoc].insert(Var);
498     if (It == ActiveVLocs.end()) {
499       ActiveVLocs.insert(
500           std::make_pair(Var, LocAndProperties{NewLoc, Properties}));
501     } else {
502       It->second.Loc = NewLoc;
503       It->second.Properties = Properties;
504     }
505   }
506 
507   /// Account for a location \p mloc being clobbered. Examine the variable
508   /// locations that will be terminated: and try to recover them by using
509   /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
510   /// explicitly terminate a location if it can't be recovered.
511   void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
512                    bool MakeUndef = true) {
513     auto ActiveMLocIt = ActiveMLocs.find(MLoc);
514     if (ActiveMLocIt == ActiveMLocs.end())
515       return;
516 
517     // What was the old variable value?
518     ValueIDNum OldValue = VarLocs[MLoc.asU64()];
519     VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
520 
521     // Examine the remaining variable locations: if we can find the same value
522     // again, we can recover the location.
523     Optional<LocIdx> NewLoc = None;
524     for (auto Loc : MTracker->locations())
525       if (Loc.Value == OldValue)
526         NewLoc = Loc.Idx;
527 
528     // If there is no location, and we weren't asked to make the variable
529     // explicitly undef, then stop here.
530     if (!NewLoc && !MakeUndef) {
531       // Try and recover a few more locations with entry values.
532       for (auto &Var : ActiveMLocIt->second) {
533         auto &Prop = ActiveVLocs.find(Var)->second.Properties;
534         recoverAsEntryValue(Var, Prop, OldValue);
535       }
536       flushDbgValues(Pos, nullptr);
537       return;
538     }
539 
540     // Examine all the variables based on this location.
541     DenseSet<DebugVariable> NewMLocs;
542     for (auto &Var : ActiveMLocIt->second) {
543       auto ActiveVLocIt = ActiveVLocs.find(Var);
544       // Re-state the variable location: if there's no replacement then NewLoc
545       // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE
546       // identifying the alternative location will be emitted.
547       const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr;
548       DbgValueProperties Properties(Expr, false);
549       PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties));
550 
551       // Update machine locations <=> variable locations maps. Defer updating
552       // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator.
553       if (!NewLoc) {
554         ActiveVLocs.erase(ActiveVLocIt);
555       } else {
556         ActiveVLocIt->second.Loc = *NewLoc;
557         NewMLocs.insert(Var);
558       }
559     }
560 
561     // Commit any deferred ActiveMLoc changes.
562     if (!NewMLocs.empty())
563       for (auto &Var : NewMLocs)
564         ActiveMLocs[*NewLoc].insert(Var);
565 
566     // We lazily track what locations have which values; if we've found a new
567     // location for the clobbered value, remember it.
568     if (NewLoc)
569       VarLocs[NewLoc->asU64()] = OldValue;
570 
571     flushDbgValues(Pos, nullptr);
572 
573     // Re-find ActiveMLocIt, iterator could have been invalidated.
574     ActiveMLocIt = ActiveMLocs.find(MLoc);
575     ActiveMLocIt->second.clear();
576   }
577 
578   /// Transfer variables based on \p Src to be based on \p Dst. This handles
579   /// both register copies as well as spills and restores. Creates DBG_VALUEs
580   /// describing the movement.
581   void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
582     // Does Src still contain the value num we expect? If not, it's been
583     // clobbered in the meantime, and our variable locations are stale.
584     if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src))
585       return;
586 
587     // assert(ActiveMLocs[Dst].size() == 0);
588     //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
589 
590     // Move set of active variables from one location to another.
591     auto MovingVars = ActiveMLocs[Src];
592     ActiveMLocs[Dst] = MovingVars;
593     VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
594 
595     // For each variable based on Src; create a location at Dst.
596     for (auto &Var : MovingVars) {
597       auto ActiveVLocIt = ActiveVLocs.find(Var);
598       assert(ActiveVLocIt != ActiveVLocs.end());
599       ActiveVLocIt->second.Loc = Dst;
600 
601       MachineInstr *MI =
602           MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
603       PendingDbgValues.push_back(MI);
604     }
605     ActiveMLocs[Src].clear();
606     flushDbgValues(Pos, nullptr);
607 
608     // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
609     // about the old location.
610     if (EmulateOldLDV)
611       VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
612   }
613 
614   MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
615                                 const DebugVariable &Var,
616                                 const DbgValueProperties &Properties) {
617     DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
618                                   Var.getVariable()->getScope(),
619                                   const_cast<DILocation *>(Var.getInlinedAt()));
620     auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
621     MIB.add(MO);
622     if (Properties.Indirect)
623       MIB.addImm(0);
624     else
625       MIB.addReg(0);
626     MIB.addMetadata(Var.getVariable());
627     MIB.addMetadata(Properties.DIExpr);
628     return MIB;
629   }
630 };
631 
632 //===----------------------------------------------------------------------===//
633 //            Implementation
634 //===----------------------------------------------------------------------===//
635 
636 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
637 ValueIDNum ValueIDNum::TombstoneValue = {UINT_MAX, UINT_MAX, UINT_MAX - 1};
638 
639 #ifndef NDEBUG
640 void DbgValue::dump(const MLocTracker *MTrack) const {
641   if (Kind == Const) {
642     MO->dump();
643   } else if (Kind == NoVal) {
644     dbgs() << "NoVal(" << BlockNo << ")";
645   } else if (Kind == VPHI) {
646     dbgs() << "VPHI(" << BlockNo << "," << MTrack->IDAsString(ID) << ")";
647   } else {
648     assert(Kind == Def);
649     dbgs() << MTrack->IDAsString(ID);
650   }
651   if (Properties.Indirect)
652     dbgs() << " indir";
653   if (Properties.DIExpr)
654     dbgs() << " " << *Properties.DIExpr;
655 }
656 #endif
657 
658 MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
659                          const TargetRegisterInfo &TRI,
660                          const TargetLowering &TLI)
661     : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
662       LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) {
663   NumRegs = TRI.getNumRegs();
664   reset();
665   LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
666   assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
667 
668   // Always track SP. This avoids the implicit clobbering caused by regmasks
669   // from affectings its values. (LiveDebugValues disbelieves calls and
670   // regmasks that claim to clobber SP).
671   Register SP = TLI.getStackPointerRegisterToSaveRestore();
672   if (SP) {
673     unsigned ID = getLocID(SP);
674     (void)lookupOrTrackRegister(ID);
675 
676     for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI)
677       SPAliases.insert(*RAI);
678   }
679 
680   // Build some common stack positions -- full registers being spilt to the
681   // stack.
682   StackSlotIdxes.insert({{8, 0}, 0});
683   StackSlotIdxes.insert({{16, 0}, 1});
684   StackSlotIdxes.insert({{32, 0}, 2});
685   StackSlotIdxes.insert({{64, 0}, 3});
686   StackSlotIdxes.insert({{128, 0}, 4});
687   StackSlotIdxes.insert({{256, 0}, 5});
688   StackSlotIdxes.insert({{512, 0}, 6});
689 
690   // Traverse all the subregister idxes, and ensure there's an index for them.
691   // Duplicates are no problem: we're interested in their position in the
692   // stack slot, we don't want to type the slot.
693   for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) {
694     unsigned Size = TRI.getSubRegIdxSize(I);
695     unsigned Offs = TRI.getSubRegIdxOffset(I);
696     unsigned Idx = StackSlotIdxes.size();
697 
698     // Some subregs have -1, -2 and so forth fed into their fields, to mean
699     // special backend things. Ignore those.
700     if (Size > 60000 || Offs > 60000)
701       continue;
702 
703     StackSlotIdxes.insert({{Size, Offs}, Idx});
704   }
705 
706   for (auto &Idx : StackSlotIdxes)
707     StackIdxesToPos[Idx.second] = Idx.first;
708 
709   NumSlotIdxes = StackSlotIdxes.size();
710 }
711 
712 LocIdx MLocTracker::trackRegister(unsigned ID) {
713   assert(ID != 0);
714   LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
715   LocIdxToIDNum.grow(NewIdx);
716   LocIdxToLocID.grow(NewIdx);
717 
718   // Default: it's an mphi.
719   ValueIDNum ValNum = {CurBB, 0, NewIdx};
720   // Was this reg ever touched by a regmask?
721   for (const auto &MaskPair : reverse(Masks)) {
722     if (MaskPair.first->clobbersPhysReg(ID)) {
723       // There was an earlier def we skipped.
724       ValNum = {CurBB, MaskPair.second, NewIdx};
725       break;
726     }
727   }
728 
729   LocIdxToIDNum[NewIdx] = ValNum;
730   LocIdxToLocID[NewIdx] = ID;
731   return NewIdx;
732 }
733 
734 void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB,
735                                unsigned InstID) {
736   // Def any register we track have that isn't preserved. The regmask
737   // terminates the liveness of a register, meaning its value can't be
738   // relied upon -- we represent this by giving it a new value.
739   for (auto Location : locations()) {
740     unsigned ID = LocIdxToLocID[Location.Idx];
741     // Don't clobber SP, even if the mask says it's clobbered.
742     if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID))
743       defReg(ID, CurBB, InstID);
744   }
745   Masks.push_back(std::make_pair(MO, InstID));
746 }
747 
748 SpillLocationNo MLocTracker::getOrTrackSpillLoc(SpillLoc L) {
749   SpillLocationNo SpillID(SpillLocs.idFor(L));
750   if (SpillID.id() == 0) {
751     // Spill location is untracked: create record for this one, and all
752     // subregister slots too.
753     SpillID = SpillLocationNo(SpillLocs.insert(L));
754     for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) {
755       unsigned L = getSpillIDWithIdx(SpillID, StackIdx);
756       LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
757       LocIdxToIDNum.grow(Idx);
758       LocIdxToLocID.grow(Idx);
759       LocIDToLocIdx.push_back(Idx);
760       LocIdxToLocID[Idx] = L;
761       // Initialize to PHI value; corresponds to the location's live-in value
762       // during transfer function construction.
763       LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx);
764     }
765   }
766   return SpillID;
767 }
768 
769 std::string MLocTracker::LocIdxToName(LocIdx Idx) const {
770   unsigned ID = LocIdxToLocID[Idx];
771   if (ID >= NumRegs) {
772     StackSlotPos Pos = locIDToSpillIdx(ID);
773     ID -= NumRegs;
774     unsigned Slot = ID / NumSlotIdxes;
775     return Twine("slot ")
776         .concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first)
777         .concat(Twine(" offs ").concat(Twine(Pos.second))))))
778         .str();
779   } else {
780     return TRI.getRegAsmName(ID).str();
781   }
782 }
783 
784 std::string MLocTracker::IDAsString(const ValueIDNum &Num) const {
785   std::string DefName = LocIdxToName(Num.getLoc());
786   return Num.asString(DefName);
787 }
788 
789 #ifndef NDEBUG
790 LLVM_DUMP_METHOD void MLocTracker::dump() {
791   for (auto Location : locations()) {
792     std::string MLocName = LocIdxToName(Location.Value.getLoc());
793     std::string DefName = Location.Value.asString(MLocName);
794     dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
795   }
796 }
797 
798 LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() {
799   for (auto Location : locations()) {
800     std::string foo = LocIdxToName(Location.Idx);
801     dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
802   }
803 }
804 #endif
805 
806 MachineInstrBuilder MLocTracker::emitLoc(Optional<LocIdx> MLoc,
807                                          const DebugVariable &Var,
808                                          const DbgValueProperties &Properties) {
809   DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
810                                 Var.getVariable()->getScope(),
811                                 const_cast<DILocation *>(Var.getInlinedAt()));
812   auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));
813 
814   const DIExpression *Expr = Properties.DIExpr;
815   if (!MLoc) {
816     // No location -> DBG_VALUE $noreg
817     MIB.addReg(0);
818     MIB.addReg(0);
819   } else if (LocIdxToLocID[*MLoc] >= NumRegs) {
820     unsigned LocID = LocIdxToLocID[*MLoc];
821     SpillLocationNo SpillID = locIDToSpill(LocID);
822     StackSlotPos StackIdx = locIDToSpillIdx(LocID);
823     unsigned short Offset = StackIdx.second;
824 
825     // TODO: support variables that are located in spill slots, with non-zero
826     // offsets from the start of the spill slot. It would require some more
827     // complex DIExpression calculations. This doesn't seem to be produced by
828     // LLVM right now, so don't try and support it.
829     // Accept no-subregister slots and subregisters where the offset is zero.
830     // The consumer should already have type information to work out how large
831     // the variable is.
832     if (Offset == 0) {
833       const SpillLoc &Spill = SpillLocs[SpillID.id()];
834       Expr = TRI.prependOffsetExpression(Expr, DIExpression::ApplyOffset,
835                                          Spill.SpillOffset);
836       unsigned Base = Spill.SpillBase;
837       MIB.addReg(Base);
838       MIB.addImm(0);
839 
840       // Being on the stack makes this location indirect; if it was _already_
841       // indirect though, we need to add extra indirection. See this test for
842       // a scenario where this happens:
843       //     llvm/test/DebugInfo/X86/spill-nontrivial-param.ll
844       if (Properties.Indirect) {
845         std::vector<uint64_t> Elts = {dwarf::DW_OP_deref};
846         Expr = DIExpression::append(Expr, Elts);
847       }
848     } else {
849       // This is a stack location with a weird subregister offset: emit an undef
850       // DBG_VALUE instead.
851       MIB.addReg(0);
852       MIB.addReg(0);
853     }
854   } else {
855     // Non-empty, non-stack slot, must be a plain register.
856     unsigned LocID = LocIdxToLocID[*MLoc];
857     MIB.addReg(LocID);
858     if (Properties.Indirect)
859       MIB.addImm(0);
860     else
861       MIB.addReg(0);
862   }
863 
864   MIB.addMetadata(Var.getVariable());
865   MIB.addMetadata(Expr);
866   return MIB;
867 }
868 
869 /// Default construct and initialize the pass.
870 InstrRefBasedLDV::InstrRefBasedLDV() {}
871 
872 bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const {
873   unsigned Reg = MTracker->LocIdxToLocID[L];
874   for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
875     if (CalleeSavedRegs.test(*RAI))
876       return true;
877   return false;
878 }
879 
880 //===----------------------------------------------------------------------===//
881 //            Debug Range Extension Implementation
882 //===----------------------------------------------------------------------===//
883 
884 #ifndef NDEBUG
885 // Something to restore in the future.
886 // void InstrRefBasedLDV::printVarLocInMBB(..)
887 #endif
888 
889 SpillLocationNo
890 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
891   assert(MI.hasOneMemOperand() &&
892          "Spill instruction does not have exactly one memory operand?");
893   auto MMOI = MI.memoperands_begin();
894   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
895   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
896          "Inconsistent memory operand in spill instruction");
897   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
898   const MachineBasicBlock *MBB = MI.getParent();
899   Register Reg;
900   StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
901   return MTracker->getOrTrackSpillLoc({Reg, Offset});
902 }
903 
904 Optional<LocIdx> InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) {
905   SpillLocationNo SpillLoc =  extractSpillBaseRegAndOffset(MI);
906 
907   // Where in the stack slot is this value defined -- i.e., what size of value
908   // is this? An important question, because it could be loaded into a register
909   // from the stack at some point. Happily the memory operand will tell us
910   // the size written to the stack.
911   auto *MemOperand = *MI.memoperands_begin();
912   unsigned SizeInBits = MemOperand->getSizeInBits();
913 
914   // Find that position in the stack indexes we're tracking.
915   auto IdxIt = MTracker->StackSlotIdxes.find({SizeInBits, 0});
916   if (IdxIt == MTracker->StackSlotIdxes.end())
917     // That index is not tracked. This is suprising, and unlikely to ever
918     // occur, but the safe action is to indicate the variable is optimised out.
919     return None;
920 
921   unsigned SpillID = MTracker->getSpillIDWithIdx(SpillLoc, IdxIt->second);
922   return MTracker->getSpillMLoc(SpillID);
923 }
924 
925 /// End all previous ranges related to @MI and start a new range from @MI
926 /// if it is a DBG_VALUE instr.
927 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
928   if (!MI.isDebugValue())
929     return false;
930 
931   const DILocalVariable *Var = MI.getDebugVariable();
932   const DIExpression *Expr = MI.getDebugExpression();
933   const DILocation *DebugLoc = MI.getDebugLoc();
934   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
935   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
936          "Expected inlined-at fields to agree");
937 
938   DebugVariable V(Var, Expr, InlinedAt);
939   DbgValueProperties Properties(MI);
940 
941   // If there are no instructions in this lexical scope, do no location tracking
942   // at all, this variable shouldn't get a legitimate location range.
943   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
944   if (Scope == nullptr)
945     return true; // handled it; by doing nothing
946 
947   // For now, ignore DBG_VALUE_LISTs when extending ranges. Allow it to
948   // contribute to locations in this block, but don't propagate further.
949   // Interpret it like a DBG_VALUE $noreg.
950   if (MI.isDebugValueList()) {
951     if (VTracker)
952       VTracker->defVar(MI, Properties, None);
953     if (TTracker)
954       TTracker->redefVar(MI, Properties, None);
955     return true;
956   }
957 
958   const MachineOperand &MO = MI.getOperand(0);
959 
960   // MLocTracker needs to know that this register is read, even if it's only
961   // read by a debug inst.
962   if (MO.isReg() && MO.getReg() != 0)
963     (void)MTracker->readReg(MO.getReg());
964 
965   // If we're preparing for the second analysis (variables), the machine value
966   // locations are already solved, and we report this DBG_VALUE and the value
967   // it refers to to VLocTracker.
968   if (VTracker) {
969     if (MO.isReg()) {
970       // Feed defVar the new variable location, or if this is a
971       // DBG_VALUE $noreg, feed defVar None.
972       if (MO.getReg())
973         VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg()));
974       else
975         VTracker->defVar(MI, Properties, None);
976     } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
977                MI.getOperand(0).isCImm()) {
978       VTracker->defVar(MI, MI.getOperand(0));
979     }
980   }
981 
982   // If performing final tracking of transfers, report this variable definition
983   // to the TransferTracker too.
984   if (TTracker)
985     TTracker->redefVar(MI);
986   return true;
987 }
988 
989 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
990                                              ValueIDNum **MLiveOuts,
991                                              ValueIDNum **MLiveIns) {
992   if (!MI.isDebugRef())
993     return false;
994 
995   // Only handle this instruction when we are building the variable value
996   // transfer function.
997   if (!VTracker)
998     return false;
999 
1000   unsigned InstNo = MI.getOperand(0).getImm();
1001   unsigned OpNo = MI.getOperand(1).getImm();
1002 
1003   const DILocalVariable *Var = MI.getDebugVariable();
1004   const DIExpression *Expr = MI.getDebugExpression();
1005   const DILocation *DebugLoc = MI.getDebugLoc();
1006   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1007   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1008          "Expected inlined-at fields to agree");
1009 
1010   DebugVariable V(Var, Expr, InlinedAt);
1011 
1012   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1013   if (Scope == nullptr)
1014     return true; // Handled by doing nothing. This variable is never in scope.
1015 
1016   const MachineFunction &MF = *MI.getParent()->getParent();
1017 
1018   // Various optimizations may have happened to the value during codegen,
1019   // recorded in the value substitution table. Apply any substitutions to
1020   // the instruction / operand number in this DBG_INSTR_REF, and collect
1021   // any subregister extractions performed during optimization.
1022 
1023   // Create dummy substitution with Src set, for lookup.
1024   auto SoughtSub =
1025       MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0);
1026 
1027   SmallVector<unsigned, 4> SeenSubregs;
1028   auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1029   while (LowerBoundIt != MF.DebugValueSubstitutions.end() &&
1030          LowerBoundIt->Src == SoughtSub.Src) {
1031     std::tie(InstNo, OpNo) = LowerBoundIt->Dest;
1032     SoughtSub.Src = LowerBoundIt->Dest;
1033     if (unsigned Subreg = LowerBoundIt->Subreg)
1034       SeenSubregs.push_back(Subreg);
1035     LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1036   }
1037 
1038   // Default machine value number is <None> -- if no instruction defines
1039   // the corresponding value, it must have been optimized out.
1040   Optional<ValueIDNum> NewID = None;
1041 
1042   // Try to lookup the instruction number, and find the machine value number
1043   // that it defines. It could be an instruction, or a PHI.
1044   auto InstrIt = DebugInstrNumToInstr.find(InstNo);
1045   auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(),
1046                                 DebugPHINumToValue.end(), InstNo);
1047   if (InstrIt != DebugInstrNumToInstr.end()) {
1048     const MachineInstr &TargetInstr = *InstrIt->second.first;
1049     uint64_t BlockNo = TargetInstr.getParent()->getNumber();
1050 
1051     // Pick out the designated operand. It might be a memory reference, if
1052     // a register def was folded into a stack store.
1053     if (OpNo == MachineFunction::DebugOperandMemNumber &&
1054         TargetInstr.hasOneMemOperand()) {
1055       Optional<LocIdx> L = findLocationForMemOperand(TargetInstr);
1056       if (L)
1057         NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L);
1058     } else if (OpNo != MachineFunction::DebugOperandMemNumber) {
1059       assert(OpNo < TargetInstr.getNumOperands());
1060       const MachineOperand &MO = TargetInstr.getOperand(OpNo);
1061 
1062       // Today, this can only be a register.
1063       assert(MO.isReg() && MO.isDef());
1064 
1065       unsigned LocID = MTracker->getLocID(MO.getReg());
1066       LocIdx L = MTracker->LocIDToLocIdx[LocID];
1067       NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
1068     }
1069     // else: NewID is left as None.
1070   } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
1071     // It's actually a PHI value. Which value it is might not be obvious, use
1072     // the resolver helper to find out.
1073     NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns,
1074                            MI, InstNo);
1075   }
1076 
1077   // Apply any subregister extractions, in reverse. We might have seen code
1078   // like this:
1079   //    CALL64 @foo, implicit-def $rax
1080   //    %0:gr64 = COPY $rax
1081   //    %1:gr32 = COPY %0.sub_32bit
1082   //    %2:gr16 = COPY %1.sub_16bit
1083   //    %3:gr8  = COPY %2.sub_8bit
1084   // In which case each copy would have been recorded as a substitution with
1085   // a subregister qualifier. Apply those qualifiers now.
1086   if (NewID && !SeenSubregs.empty()) {
1087     unsigned Offset = 0;
1088     unsigned Size = 0;
1089 
1090     // Look at each subregister that we passed through, and progressively
1091     // narrow in, accumulating any offsets that occur. Substitutions should
1092     // only ever be the same or narrower width than what they read from;
1093     // iterate in reverse order so that we go from wide to small.
1094     for (unsigned Subreg : reverse(SeenSubregs)) {
1095       unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
1096       unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
1097       Offset += ThisOffset;
1098       Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
1099     }
1100 
1101     // If that worked, look for an appropriate subregister with the register
1102     // where the define happens. Don't look at values that were defined during
1103     // a stack write: we can't currently express register locations within
1104     // spills.
1105     LocIdx L = NewID->getLoc();
1106     if (NewID && !MTracker->isSpill(L)) {
1107       // Find the register class for the register where this def happened.
1108       // FIXME: no index for this?
1109       Register Reg = MTracker->LocIdxToLocID[L];
1110       const TargetRegisterClass *TRC = nullptr;
1111       for (auto *TRCI : TRI->regclasses())
1112         if (TRCI->contains(Reg))
1113           TRC = TRCI;
1114       assert(TRC && "Couldn't find target register class?");
1115 
1116       // If the register we have isn't the right size or in the right place,
1117       // Try to find a subregister inside it.
1118       unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
1119       if (Size != MainRegSize || Offset) {
1120         // Enumerate all subregisters, searching.
1121         Register NewReg = 0;
1122         for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1123           unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1124           unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
1125           unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
1126           if (SubregSize == Size && SubregOffset == Offset) {
1127             NewReg = *SRI;
1128             break;
1129           }
1130         }
1131 
1132         // If we didn't find anything: there's no way to express our value.
1133         if (!NewReg) {
1134           NewID = None;
1135         } else {
1136           // Re-state the value as being defined within the subregister
1137           // that we found.
1138           LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
1139           NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
1140         }
1141       }
1142     } else {
1143       // If we can't handle subregisters, unset the new value.
1144       NewID = None;
1145     }
1146   }
1147 
1148   // We, we have a value number or None. Tell the variable value tracker about
1149   // it. The rest of this LiveDebugValues implementation acts exactly the same
1150   // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that
1151   // aren't immediately available).
1152   DbgValueProperties Properties(Expr, false);
1153   VTracker->defVar(MI, Properties, NewID);
1154 
1155   // If we're on the final pass through the function, decompose this INSTR_REF
1156   // into a plain DBG_VALUE.
1157   if (!TTracker)
1158     return true;
1159 
1160   // Pick a location for the machine value number, if such a location exists.
1161   // (This information could be stored in TransferTracker to make it faster).
1162   Optional<LocIdx> FoundLoc = None;
1163   for (auto Location : MTracker->locations()) {
1164     LocIdx CurL = Location.Idx;
1165     ValueIDNum ID = MTracker->readMLoc(CurL);
1166     if (NewID && ID == NewID) {
1167       // If this is the first location with that value, pick it. Otherwise,
1168       // consider whether it's a "longer term" location.
1169       if (!FoundLoc) {
1170         FoundLoc = CurL;
1171         continue;
1172       }
1173 
1174       if (MTracker->isSpill(CurL))
1175         FoundLoc = CurL; // Spills are a longer term location.
1176       else if (!MTracker->isSpill(*FoundLoc) &&
1177                !MTracker->isSpill(CurL) &&
1178                !isCalleeSaved(*FoundLoc) &&
1179                isCalleeSaved(CurL))
1180         FoundLoc = CurL; // Callee saved regs are longer term than normal.
1181     }
1182   }
1183 
1184   // Tell transfer tracker that the variable value has changed.
1185   TTracker->redefVar(MI, Properties, FoundLoc);
1186 
1187   // If there was a value with no location; but the value is defined in a
1188   // later instruction in this block, this is a block-local use-before-def.
1189   if (!FoundLoc && NewID && NewID->getBlock() == CurBB &&
1190       NewID->getInst() > CurInst)
1191     TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID);
1192 
1193   // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
1194   // This DBG_VALUE is potentially a $noreg / undefined location, if
1195   // FoundLoc is None.
1196   // (XXX -- could morph the DBG_INSTR_REF in the future).
1197   MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties);
1198   TTracker->PendingDbgValues.push_back(DbgMI);
1199   TTracker->flushDbgValues(MI.getIterator(), nullptr);
1200   return true;
1201 }
1202 
1203 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
1204   if (!MI.isDebugPHI())
1205     return false;
1206 
1207   // Analyse these only when solving the machine value location problem.
1208   if (VTracker || TTracker)
1209     return true;
1210 
1211   // First operand is the value location, either a stack slot or register.
1212   // Second is the debug instruction number of the original PHI.
1213   const MachineOperand &MO = MI.getOperand(0);
1214   unsigned InstrNum = MI.getOperand(1).getImm();
1215 
1216   if (MO.isReg()) {
1217     // The value is whatever's currently in the register. Read and record it,
1218     // to be analysed later.
1219     Register Reg = MO.getReg();
1220     ValueIDNum Num = MTracker->readReg(Reg);
1221     auto PHIRec = DebugPHIRecord(
1222         {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
1223     DebugPHINumToValue.push_back(PHIRec);
1224 
1225     // Ensure this register is tracked.
1226     for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1227       MTracker->lookupOrTrackRegister(*RAI);
1228   } else {
1229     // The value is whatever's in this stack slot.
1230     assert(MO.isFI());
1231     unsigned FI = MO.getIndex();
1232 
1233     // If the stack slot is dead, then this was optimized away.
1234     // FIXME: stack slot colouring should account for slots that get merged.
1235     if (MFI->isDeadObjectIndex(FI))
1236       return true;
1237 
1238     // Identify this spill slot, ensure it's tracked.
1239     Register Base;
1240     StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
1241     SpillLoc SL = {Base, Offs};
1242     SpillLocationNo SpillNo = MTracker->getOrTrackSpillLoc(SL);
1243 
1244     // Problem: what value should we extract from the stack? LLVM does not
1245     // record what size the last store to the slot was, and it would become
1246     // sketchy after stack slot colouring anyway. Take a look at what values
1247     // are stored on the stack, and pick the largest one that wasn't def'd
1248     // by a spill (i.e., the value most likely to have been def'd in a register
1249     // and then spilt.
1250     std::array<unsigned, 4> CandidateSizes = {64, 32, 16, 8};
1251     Optional<ValueIDNum> Result = None;
1252     Optional<LocIdx> SpillLoc = None;
1253     for (unsigned int I = 0; I < CandidateSizes.size(); ++I) {
1254       unsigned SpillID = MTracker->getLocID(SpillNo, {CandidateSizes[I], 0});
1255       SpillLoc = MTracker->getSpillMLoc(SpillID);
1256       ValueIDNum Val = MTracker->readMLoc(*SpillLoc);
1257       // If this value was defined in it's own position, then it was probably
1258       // an aliasing index of a small value that was spilt.
1259       if (Val.getLoc() != SpillLoc->asU64()) {
1260         Result = Val;
1261         break;
1262       }
1263     }
1264 
1265     // If we didn't find anything, we're probably looking at a PHI, or a memory
1266     // store folded into an instruction. FIXME: Take a guess that's it's 64
1267     // bits. This isn't ideal, but tracking the size that the spill is
1268     // "supposed" to be is more complex, and benefits a small number of
1269     // locations.
1270     if (!Result) {
1271       unsigned SpillID = MTracker->getLocID(SpillNo, {64, 0});
1272       SpillLoc = MTracker->getSpillMLoc(SpillID);
1273       Result = MTracker->readMLoc(*SpillLoc);
1274     }
1275 
1276     // Record this DBG_PHI for later analysis.
1277     auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), *Result, *SpillLoc});
1278     DebugPHINumToValue.push_back(DbgPHI);
1279   }
1280 
1281   return true;
1282 }
1283 
1284 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
1285   // Meta Instructions do not affect the debug liveness of any register they
1286   // define.
1287   if (MI.isImplicitDef()) {
1288     // Except when there's an implicit def, and the location it's defining has
1289     // no value number. The whole point of an implicit def is to announce that
1290     // the register is live, without be specific about it's value. So define
1291     // a value if there isn't one already.
1292     ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
1293     // Has a legitimate value -> ignore the implicit def.
1294     if (Num.getLoc() != 0)
1295       return;
1296     // Otherwise, def it here.
1297   } else if (MI.isMetaInstruction())
1298     return;
1299 
1300   // We always ignore SP defines on call instructions, they don't actually
1301   // change the value of the stack pointer... except for win32's _chkstk. This
1302   // is rare: filter quickly for the common case (no stack adjustments, not a
1303   // call, etc). If it is a call that modifies SP, recognise the SP register
1304   // defs.
1305   bool CallChangesSP = false;
1306   if (AdjustsStackInCalls && MI.isCall() && MI.getOperand(0).isSymbol() &&
1307       !strcmp(MI.getOperand(0).getSymbolName(), StackProbeSymbolName.data()))
1308     CallChangesSP = true;
1309 
1310   // Test whether we should ignore a def of this register due to it being part
1311   // of the stack pointer.
1312   auto IgnoreSPAlias = [this, &MI, CallChangesSP](Register R) -> bool {
1313     if (CallChangesSP)
1314       return false;
1315     return MI.isCall() && MTracker->SPAliases.count(R);
1316   };
1317 
1318   // Find the regs killed by MI, and find regmasks of preserved regs.
1319   // Max out the number of statically allocated elements in `DeadRegs`, as this
1320   // prevents fallback to std::set::count() operations.
1321   SmallSet<uint32_t, 32> DeadRegs;
1322   SmallVector<const uint32_t *, 4> RegMasks;
1323   SmallVector<const MachineOperand *, 4> RegMaskPtrs;
1324   for (const MachineOperand &MO : MI.operands()) {
1325     // Determine whether the operand is a register def.
1326     if (MO.isReg() && MO.isDef() && MO.getReg() &&
1327         Register::isPhysicalRegister(MO.getReg()) &&
1328         !IgnoreSPAlias(MO.getReg())) {
1329       // Remove ranges of all aliased registers.
1330       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1331         // FIXME: Can we break out of this loop early if no insertion occurs?
1332         DeadRegs.insert(*RAI);
1333     } else if (MO.isRegMask()) {
1334       RegMasks.push_back(MO.getRegMask());
1335       RegMaskPtrs.push_back(&MO);
1336     }
1337   }
1338 
1339   // Tell MLocTracker about all definitions, of regmasks and otherwise.
1340   for (uint32_t DeadReg : DeadRegs)
1341     MTracker->defReg(DeadReg, CurBB, CurInst);
1342 
1343   for (auto *MO : RegMaskPtrs)
1344     MTracker->writeRegMask(MO, CurBB, CurInst);
1345 
1346   // If this instruction writes to a spill slot, def that slot.
1347   if (hasFoldedStackStore(MI)) {
1348     SpillLocationNo SpillNo = extractSpillBaseRegAndOffset(MI);
1349     for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
1350       unsigned SpillID = MTracker->getSpillIDWithIdx(SpillNo, I);
1351       LocIdx L = MTracker->getSpillMLoc(SpillID);
1352       MTracker->setMLoc(L, ValueIDNum(CurBB, CurInst, L));
1353     }
1354   }
1355 
1356   if (!TTracker)
1357     return;
1358 
1359   // When committing variable values to locations: tell transfer tracker that
1360   // we've clobbered things. It may be able to recover the variable from a
1361   // different location.
1362 
1363   // Inform TTracker about any direct clobbers.
1364   for (uint32_t DeadReg : DeadRegs) {
1365     LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
1366     TTracker->clobberMloc(Loc, MI.getIterator(), false);
1367   }
1368 
1369   // Look for any clobbers performed by a register mask. Only test locations
1370   // that are actually being tracked.
1371   for (auto L : MTracker->locations()) {
1372     // Stack locations can't be clobbered by regmasks.
1373     if (MTracker->isSpill(L.Idx))
1374       continue;
1375 
1376     Register Reg = MTracker->LocIdxToLocID[L.Idx];
1377     if (IgnoreSPAlias(Reg))
1378       continue;
1379 
1380     for (auto *MO : RegMaskPtrs)
1381       if (MO->clobbersPhysReg(Reg))
1382         TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
1383   }
1384 
1385   // Tell TTracker about any folded stack store.
1386   if (hasFoldedStackStore(MI)) {
1387     SpillLocationNo SpillNo = extractSpillBaseRegAndOffset(MI);
1388     for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
1389       unsigned SpillID = MTracker->getSpillIDWithIdx(SpillNo, I);
1390       LocIdx L = MTracker->getSpillMLoc(SpillID);
1391       TTracker->clobberMloc(L, MI.getIterator(), true);
1392     }
1393   }
1394 }
1395 
1396 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
1397   // In all circumstances, re-def all aliases. It's definitely a new value now.
1398   for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI)
1399     MTracker->defReg(*RAI, CurBB, CurInst);
1400 
1401   ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
1402   MTracker->setReg(DstRegNum, SrcValue);
1403 
1404   // Copy subregisters from one location to another.
1405   for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
1406     unsigned SrcSubReg = SRI.getSubReg();
1407     unsigned SubRegIdx = SRI.getSubRegIndex();
1408     unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
1409     if (!DstSubReg)
1410       continue;
1411 
1412     // Do copy. There are two matching subregisters, the source value should
1413     // have been def'd when the super-reg was, the latter might not be tracked
1414     // yet.
1415     // This will force SrcSubReg to be tracked, if it isn't yet. Will read
1416     // mphi values if it wasn't tracked.
1417     LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg);
1418     LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg);
1419     (void)SrcL;
1420     (void)DstL;
1421     ValueIDNum CpyValue = MTracker->readReg(SrcSubReg);
1422 
1423     MTracker->setReg(DstSubReg, CpyValue);
1424   }
1425 }
1426 
1427 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
1428                                           MachineFunction *MF) {
1429   // TODO: Handle multiple stores folded into one.
1430   if (!MI.hasOneMemOperand())
1431     return false;
1432 
1433   // Reject any memory operand that's aliased -- we can't guarantee its value.
1434   auto MMOI = MI.memoperands_begin();
1435   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1436   if (PVal->isAliased(MFI))
1437     return false;
1438 
1439   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1440     return false; // This is not a spill instruction, since no valid size was
1441                   // returned from either function.
1442 
1443   return true;
1444 }
1445 
1446 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
1447                                        MachineFunction *MF, unsigned &Reg) {
1448   if (!isSpillInstruction(MI, MF))
1449     return false;
1450 
1451   int FI;
1452   Reg = TII->isStoreToStackSlotPostFE(MI, FI);
1453   return Reg != 0;
1454 }
1455 
1456 Optional<SpillLocationNo>
1457 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1458                                        MachineFunction *MF, unsigned &Reg) {
1459   if (!MI.hasOneMemOperand())
1460     return None;
1461 
1462   // FIXME: Handle folded restore instructions with more than one memory
1463   // operand.
1464   if (MI.getRestoreSize(TII)) {
1465     Reg = MI.getOperand(0).getReg();
1466     return extractSpillBaseRegAndOffset(MI);
1467   }
1468   return None;
1469 }
1470 
1471 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
1472   // XXX -- it's too difficult to implement VarLocBasedImpl's  stack location
1473   // limitations under the new model. Therefore, when comparing them, compare
1474   // versions that don't attempt spills or restores at all.
1475   if (EmulateOldLDV)
1476     return false;
1477 
1478   // Strictly limit ourselves to plain loads and stores, not all instructions
1479   // that can access the stack.
1480   int DummyFI = -1;
1481   if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) &&
1482       !TII->isLoadFromStackSlotPostFE(MI, DummyFI))
1483     return false;
1484 
1485   MachineFunction *MF = MI.getMF();
1486   unsigned Reg;
1487 
1488   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
1489 
1490   // Strictly limit ourselves to plain loads and stores, not all instructions
1491   // that can access the stack.
1492   int FIDummy;
1493   if (!TII->isStoreToStackSlotPostFE(MI, FIDummy) &&
1494       !TII->isLoadFromStackSlotPostFE(MI, FIDummy))
1495     return false;
1496 
1497   // First, if there are any DBG_VALUEs pointing at a spill slot that is
1498   // written to, terminate that variable location. The value in memory
1499   // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
1500   if (isSpillInstruction(MI, MF)) {
1501     SpillLocationNo Loc = extractSpillBaseRegAndOffset(MI);
1502 
1503     // Un-set this location and clobber, so that earlier locations don't
1504     // continue past this store.
1505     for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) {
1506       unsigned SpillID = MTracker->getSpillIDWithIdx(Loc, SlotIdx);
1507       Optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID);
1508       if (!MLoc)
1509         continue;
1510 
1511       // We need to over-write the stack slot with something (here, a def at
1512       // this instruction) to ensure no values are preserved in this stack slot
1513       // after the spill. It also prevents TTracker from trying to recover the
1514       // location and re-installing it in the same place.
1515       ValueIDNum Def(CurBB, CurInst, *MLoc);
1516       MTracker->setMLoc(*MLoc, Def);
1517       if (TTracker)
1518         TTracker->clobberMloc(*MLoc, MI.getIterator());
1519     }
1520   }
1521 
1522   // Try to recognise spill and restore instructions that may transfer a value.
1523   if (isLocationSpill(MI, MF, Reg)) {
1524     SpillLocationNo Loc = extractSpillBaseRegAndOffset(MI);
1525 
1526     auto DoTransfer = [&](Register SrcReg, unsigned SpillID) {
1527       auto ReadValue = MTracker->readReg(SrcReg);
1528       LocIdx DstLoc = MTracker->getSpillMLoc(SpillID);
1529       MTracker->setMLoc(DstLoc, ReadValue);
1530 
1531       if (TTracker) {
1532         LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg);
1533         TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator());
1534       }
1535     };
1536 
1537     // Then, transfer subreg bits.
1538     for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1539       // Ensure this reg is tracked,
1540       (void)MTracker->lookupOrTrackRegister(*SRI);
1541       unsigned SubregIdx = TRI->getSubRegIndex(Reg, *SRI);
1542       unsigned SpillID = MTracker->getLocID(Loc, SubregIdx);
1543       DoTransfer(*SRI, SpillID);
1544     }
1545 
1546     // Directly lookup size of main source reg, and transfer.
1547     unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
1548     unsigned SpillID = MTracker->getLocID(Loc, {Size, 0});
1549     DoTransfer(Reg, SpillID);
1550   } else {
1551     Optional<SpillLocationNo> OptLoc = isRestoreInstruction(MI, MF, Reg);
1552     if (!OptLoc)
1553       return false;
1554     SpillLocationNo Loc = *OptLoc;
1555 
1556     // Assumption: we're reading from the base of the stack slot, not some
1557     // offset into it. It seems very unlikely LLVM would ever generate
1558     // restores where this wasn't true. This then becomes a question of what
1559     // subregisters in the destination register line up with positions in the
1560     // stack slot.
1561 
1562     // Def all registers that alias the destination.
1563     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1564       MTracker->defReg(*RAI, CurBB, CurInst);
1565 
1566     // Now find subregisters within the destination register, and load values
1567     // from stack slot positions.
1568     auto DoTransfer = [&](Register DestReg, unsigned SpillID) {
1569       LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID);
1570       auto ReadValue = MTracker->readMLoc(SrcIdx);
1571       MTracker->setReg(DestReg, ReadValue);
1572 
1573       if (TTracker) {
1574         LocIdx DstLoc = MTracker->getRegMLoc(DestReg);
1575         TTracker->transferMlocs(SrcIdx, DstLoc, MI.getIterator());
1576       }
1577     };
1578 
1579     for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1580       unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1581       unsigned SpillID = MTracker->getLocID(Loc, Subreg);
1582       DoTransfer(*SRI, SpillID);
1583     }
1584 
1585     // Directly look up this registers slot idx by size, and transfer.
1586     unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
1587     unsigned SpillID = MTracker->getLocID(Loc, {Size, 0});
1588     DoTransfer(Reg, SpillID);
1589   }
1590   return true;
1591 }
1592 
1593 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
1594   auto DestSrc = TII->isCopyInstr(MI);
1595   if (!DestSrc)
1596     return false;
1597 
1598   const MachineOperand *DestRegOp = DestSrc->Destination;
1599   const MachineOperand *SrcRegOp = DestSrc->Source;
1600 
1601   auto isCalleeSavedReg = [&](unsigned Reg) {
1602     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1603       if (CalleeSavedRegs.test(*RAI))
1604         return true;
1605     return false;
1606   };
1607 
1608   Register SrcReg = SrcRegOp->getReg();
1609   Register DestReg = DestRegOp->getReg();
1610 
1611   // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
1612   if (SrcReg == DestReg)
1613     return true;
1614 
1615   // For emulating VarLocBasedImpl:
1616   // We want to recognize instructions where destination register is callee
1617   // saved register. If register that could be clobbered by the call is
1618   // included, there would be a great chance that it is going to be clobbered
1619   // soon. It is more likely that previous register, which is callee saved, is
1620   // going to stay unclobbered longer, even if it is killed.
1621   //
1622   // For InstrRefBasedImpl, we can track multiple locations per value, so
1623   // ignore this condition.
1624   if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
1625     return false;
1626 
1627   // InstrRefBasedImpl only followed killing copies.
1628   if (EmulateOldLDV && !SrcRegOp->isKill())
1629     return false;
1630 
1631   // Copy MTracker info, including subregs if available.
1632   InstrRefBasedLDV::performCopy(SrcReg, DestReg);
1633 
1634   // Only produce a transfer of DBG_VALUE within a block where old LDV
1635   // would have. We might make use of the additional value tracking in some
1636   // other way, later.
1637   if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
1638     TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
1639                             MTracker->getRegMLoc(DestReg), MI.getIterator());
1640 
1641   // VarLocBasedImpl would quit tracking the old location after copying.
1642   if (EmulateOldLDV && SrcReg != DestReg)
1643     MTracker->defReg(SrcReg, CurBB, CurInst);
1644 
1645   // Finally, the copy might have clobbered variables based on the destination
1646   // register. Tell TTracker about it, in case a backup location exists.
1647   if (TTracker) {
1648     for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
1649       LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
1650       TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false);
1651     }
1652   }
1653 
1654   return true;
1655 }
1656 
1657 /// Accumulate a mapping between each DILocalVariable fragment and other
1658 /// fragments of that DILocalVariable which overlap. This reduces work during
1659 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
1660 /// known-to-overlap fragments are present".
1661 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
1662 ///           fragment usage.
1663 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
1664   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
1665                       MI.getDebugLoc()->getInlinedAt());
1666   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
1667 
1668   // If this is the first sighting of this variable, then we are guaranteed
1669   // there are currently no overlapping fragments either. Initialize the set
1670   // of seen fragments, record no overlaps for the current one, and return.
1671   auto SeenIt = SeenFragments.find(MIVar.getVariable());
1672   if (SeenIt == SeenFragments.end()) {
1673     SmallSet<FragmentInfo, 4> OneFragment;
1674     OneFragment.insert(ThisFragment);
1675     SeenFragments.insert({MIVar.getVariable(), OneFragment});
1676 
1677     OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1678     return;
1679   }
1680 
1681   // If this particular Variable/Fragment pair already exists in the overlap
1682   // map, it has already been accounted for.
1683   auto IsInOLapMap =
1684       OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1685   if (!IsInOLapMap.second)
1686     return;
1687 
1688   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
1689   auto &AllSeenFragments = SeenIt->second;
1690 
1691   // Otherwise, examine all other seen fragments for this variable, with "this"
1692   // fragment being a previously unseen fragment. Record any pair of
1693   // overlapping fragments.
1694   for (auto &ASeenFragment : AllSeenFragments) {
1695     // Does this previously seen fragment overlap?
1696     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
1697       // Yes: Mark the current fragment as being overlapped.
1698       ThisFragmentsOverlaps.push_back(ASeenFragment);
1699       // Mark the previously seen fragment as being overlapped by the current
1700       // one.
1701       auto ASeenFragmentsOverlaps =
1702           OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
1703       assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
1704              "Previously seen var fragment has no vector of overlaps");
1705       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
1706     }
1707   }
1708 
1709   AllSeenFragments.insert(ThisFragment);
1710 }
1711 
1712 void InstrRefBasedLDV::process(MachineInstr &MI, ValueIDNum **MLiveOuts,
1713                                ValueIDNum **MLiveIns) {
1714   // Try to interpret an MI as a debug or transfer instruction. Only if it's
1715   // none of these should we interpret it's register defs as new value
1716   // definitions.
1717   if (transferDebugValue(MI))
1718     return;
1719   if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
1720     return;
1721   if (transferDebugPHI(MI))
1722     return;
1723   if (transferRegisterCopy(MI))
1724     return;
1725   if (transferSpillOrRestoreInst(MI))
1726     return;
1727   transferRegisterDef(MI);
1728 }
1729 
1730 void InstrRefBasedLDV::produceMLocTransferFunction(
1731     MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
1732     unsigned MaxNumBlocks) {
1733   // Because we try to optimize around register mask operands by ignoring regs
1734   // that aren't currently tracked, we set up something ugly for later: RegMask
1735   // operands that are seen earlier than the first use of a register, still need
1736   // to clobber that register in the transfer function. But this information
1737   // isn't actively recorded. Instead, we track each RegMask used in each block,
1738   // and accumulated the clobbered but untracked registers in each block into
1739   // the following bitvector. Later, if new values are tracked, we can add
1740   // appropriate clobbers.
1741   SmallVector<BitVector, 32> BlockMasks;
1742   BlockMasks.resize(MaxNumBlocks);
1743 
1744   // Reserve one bit per register for the masks described above.
1745   unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
1746   for (auto &BV : BlockMasks)
1747     BV.resize(TRI->getNumRegs(), true);
1748 
1749   // Step through all instructions and inhale the transfer function.
1750   for (auto &MBB : MF) {
1751     // Object fields that are read by trackers to know where we are in the
1752     // function.
1753     CurBB = MBB.getNumber();
1754     CurInst = 1;
1755 
1756     // Set all machine locations to a PHI value. For transfer function
1757     // production only, this signifies the live-in value to the block.
1758     MTracker->reset();
1759     MTracker->setMPhis(CurBB);
1760 
1761     // Step through each instruction in this block.
1762     for (auto &MI : MBB) {
1763       process(MI);
1764       // Also accumulate fragment map.
1765       if (MI.isDebugValue())
1766         accumulateFragmentMap(MI);
1767 
1768       // Create a map from the instruction number (if present) to the
1769       // MachineInstr and its position.
1770       if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
1771         auto InstrAndPos = std::make_pair(&MI, CurInst);
1772         auto InsertResult =
1773             DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
1774 
1775         // There should never be duplicate instruction numbers.
1776         assert(InsertResult.second);
1777         (void)InsertResult;
1778       }
1779 
1780       ++CurInst;
1781     }
1782 
1783     // Produce the transfer function, a map of machine location to new value. If
1784     // any machine location has the live-in phi value from the start of the
1785     // block, it's live-through and doesn't need recording in the transfer
1786     // function.
1787     for (auto Location : MTracker->locations()) {
1788       LocIdx Idx = Location.Idx;
1789       ValueIDNum &P = Location.Value;
1790       if (P.isPHI() && P.getLoc() == Idx.asU64())
1791         continue;
1792 
1793       // Insert-or-update.
1794       auto &TransferMap = MLocTransfer[CurBB];
1795       auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
1796       if (!Result.second)
1797         Result.first->second = P;
1798     }
1799 
1800     // Accumulate any bitmask operands into the clobberred reg mask for this
1801     // block.
1802     for (auto &P : MTracker->Masks) {
1803       BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
1804     }
1805   }
1806 
1807   // Compute a bitvector of all the registers that are tracked in this block.
1808   BitVector UsedRegs(TRI->getNumRegs());
1809   for (auto Location : MTracker->locations()) {
1810     unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
1811     // Ignore stack slots, and aliases of the stack pointer.
1812     if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID))
1813       continue;
1814     UsedRegs.set(ID);
1815   }
1816 
1817   // Check that any regmask-clobber of a register that gets tracked, is not
1818   // live-through in the transfer function. It needs to be clobbered at the
1819   // very least.
1820   for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
1821     BitVector &BV = BlockMasks[I];
1822     BV.flip();
1823     BV &= UsedRegs;
1824     // This produces all the bits that we clobber, but also use. Check that
1825     // they're all clobbered or at least set in the designated transfer
1826     // elem.
1827     for (unsigned Bit : BV.set_bits()) {
1828       unsigned ID = MTracker->getLocID(Bit);
1829       LocIdx Idx = MTracker->LocIDToLocIdx[ID];
1830       auto &TransferMap = MLocTransfer[I];
1831 
1832       // Install a value representing the fact that this location is effectively
1833       // written to in this block. As there's no reserved value, instead use
1834       // a value number that is never generated. Pick the value number for the
1835       // first instruction in the block, def'ing this location, which we know
1836       // this block never used anyway.
1837       ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
1838       auto Result =
1839         TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
1840       if (!Result.second) {
1841         ValueIDNum &ValueID = Result.first->second;
1842         if (ValueID.getBlock() == I && ValueID.isPHI())
1843           // It was left as live-through. Set it to clobbered.
1844           ValueID = NotGeneratedNum;
1845       }
1846     }
1847   }
1848 }
1849 
1850 bool InstrRefBasedLDV::mlocJoin(
1851     MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1852     ValueIDNum **OutLocs, ValueIDNum *InLocs) {
1853   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
1854   bool Changed = false;
1855 
1856   // Handle value-propagation when control flow merges on entry to a block. For
1857   // any location without a PHI already placed, the location has the same value
1858   // as its predecessors. If a PHI is placed, test to see whether it's now a
1859   // redundant PHI that we can eliminate.
1860 
1861   SmallVector<const MachineBasicBlock *, 8> BlockOrders;
1862   for (auto Pred : MBB.predecessors())
1863     BlockOrders.push_back(Pred);
1864 
1865   // Visit predecessors in RPOT order.
1866   auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
1867     return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
1868   };
1869   llvm::sort(BlockOrders, Cmp);
1870 
1871   // Skip entry block.
1872   if (BlockOrders.size() == 0)
1873     return false;
1874 
1875   // Step through all machine locations, look at each predecessor and test
1876   // whether we can eliminate redundant PHIs.
1877   for (auto Location : MTracker->locations()) {
1878     LocIdx Idx = Location.Idx;
1879 
1880     // Pick out the first predecessors live-out value for this location. It's
1881     // guaranteed to not be a backedge, as we order by RPO.
1882     ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
1883 
1884     // If we've already eliminated a PHI here, do no further checking, just
1885     // propagate the first live-in value into this block.
1886     if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) {
1887       if (InLocs[Idx.asU64()] != FirstVal) {
1888         InLocs[Idx.asU64()] = FirstVal;
1889         Changed |= true;
1890       }
1891       continue;
1892     }
1893 
1894     // We're now examining a PHI to see whether it's un-necessary. Loop around
1895     // the other live-in values and test whether they're all the same.
1896     bool Disagree = false;
1897     for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
1898       const MachineBasicBlock *PredMBB = BlockOrders[I];
1899       const ValueIDNum &PredLiveOut =
1900           OutLocs[PredMBB->getNumber()][Idx.asU64()];
1901 
1902       // Incoming values agree, continue trying to eliminate this PHI.
1903       if (FirstVal == PredLiveOut)
1904         continue;
1905 
1906       // We can also accept a PHI value that feeds back into itself.
1907       if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx))
1908         continue;
1909 
1910       // Live-out of a predecessor disagrees with the first predecessor.
1911       Disagree = true;
1912     }
1913 
1914     // No disagreement? No PHI. Otherwise, leave the PHI in live-ins.
1915     if (!Disagree) {
1916       InLocs[Idx.asU64()] = FirstVal;
1917       Changed |= true;
1918     }
1919   }
1920 
1921   // TODO: Reimplement NumInserted and NumRemoved.
1922   return Changed;
1923 }
1924 
1925 void InstrRefBasedLDV::findStackIndexInterference(
1926     SmallVectorImpl<unsigned> &Slots) {
1927   // We could spend a bit of time finding the exact, minimal, set of stack
1928   // indexes that interfere with each other, much like reg units. Or, we can
1929   // rely on the fact that:
1930   //  * The smallest / lowest index will interfere with everything at zero
1931   //    offset, which will be the largest set of registers,
1932   //  * Most indexes with non-zero offset will end up being interference units
1933   //    anyway.
1934   // So just pick those out and return them.
1935 
1936   // We can rely on a single-byte stack index existing already, because we
1937   // initialize them in MLocTracker.
1938   auto It = MTracker->StackSlotIdxes.find({8, 0});
1939   assert(It != MTracker->StackSlotIdxes.end());
1940   Slots.push_back(It->second);
1941 
1942   // Find anything that has a non-zero offset and add that too.
1943   for (auto &Pair : MTracker->StackSlotIdxes) {
1944     // Is offset zero? If so, ignore.
1945     if (!Pair.first.second)
1946       continue;
1947     Slots.push_back(Pair.second);
1948   }
1949 }
1950 
1951 void InstrRefBasedLDV::placeMLocPHIs(
1952     MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
1953     ValueIDNum **MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
1954   SmallVector<unsigned, 4> StackUnits;
1955   findStackIndexInterference(StackUnits);
1956 
1957   // To avoid repeatedly running the PHI placement algorithm, leverage the
1958   // fact that a def of register MUST also def its register units. Find the
1959   // units for registers, place PHIs for them, and then replicate them for
1960   // aliasing registers. Some inputs that are never def'd (DBG_PHIs of
1961   // arguments) don't lead to register units being tracked, just place PHIs for
1962   // those registers directly. Stack slots have their own form of "unit",
1963   // store them to one side.
1964   SmallSet<Register, 32> RegUnitsToPHIUp;
1965   SmallSet<LocIdx, 32> NormalLocsToPHI;
1966   SmallSet<SpillLocationNo, 32> StackSlots;
1967   for (auto Location : MTracker->locations()) {
1968     LocIdx L = Location.Idx;
1969     if (MTracker->isSpill(L)) {
1970       StackSlots.insert(MTracker->locIDToSpill(MTracker->LocIdxToLocID[L]));
1971       continue;
1972     }
1973 
1974     Register R = MTracker->LocIdxToLocID[L];
1975     SmallSet<Register, 8> FoundRegUnits;
1976     bool AnyIllegal = false;
1977     for (MCRegUnitIterator RUI(R.asMCReg(), TRI); RUI.isValid(); ++RUI) {
1978       for (MCRegUnitRootIterator URoot(*RUI, TRI); URoot.isValid(); ++URoot){
1979         if (!MTracker->isRegisterTracked(*URoot)) {
1980           // Not all roots were loaded into the tracking map: this register
1981           // isn't actually def'd anywhere, we only read from it. Generate PHIs
1982           // for this reg, but don't iterate units.
1983           AnyIllegal = true;
1984         } else {
1985           FoundRegUnits.insert(*URoot);
1986         }
1987       }
1988     }
1989 
1990     if (AnyIllegal) {
1991       NormalLocsToPHI.insert(L);
1992       continue;
1993     }
1994 
1995     RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end());
1996   }
1997 
1998   // Lambda to fetch PHIs for a given location, and write into the PHIBlocks
1999   // collection.
2000   SmallVector<MachineBasicBlock *, 32> PHIBlocks;
2001   auto CollectPHIsForLoc = [&](LocIdx L) {
2002     // Collect the set of defs.
2003     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
2004     for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
2005       MachineBasicBlock *MBB = OrderToBB[I];
2006       const auto &TransferFunc = MLocTransfer[MBB->getNumber()];
2007       if (TransferFunc.find(L) != TransferFunc.end())
2008         DefBlocks.insert(MBB);
2009     }
2010 
2011     // The entry block defs the location too: it's the live-in / argument value.
2012     // Only insert if there are other defs though; everything is trivially live
2013     // through otherwise.
2014     if (!DefBlocks.empty())
2015       DefBlocks.insert(&*MF.begin());
2016 
2017     // Ask the SSA construction algorithm where we should put PHIs. Clear
2018     // anything that might have been hanging around from earlier.
2019     PHIBlocks.clear();
2020     BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks);
2021   };
2022 
2023   auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) {
2024     for (const MachineBasicBlock *MBB : PHIBlocks)
2025       MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L);
2026   };
2027 
2028   // For locations with no reg units, just place PHIs.
2029   for (LocIdx L : NormalLocsToPHI) {
2030     CollectPHIsForLoc(L);
2031     // Install those PHI values into the live-in value array.
2032     InstallPHIsAtLoc(L);
2033   }
2034 
2035   // For stack slots, calculate PHIs for the equivalent of the units, then
2036   // install for each index.
2037   for (SpillLocationNo Slot : StackSlots) {
2038     for (unsigned Idx : StackUnits) {
2039       unsigned SpillID = MTracker->getSpillIDWithIdx(Slot, Idx);
2040       LocIdx L = MTracker->getSpillMLoc(SpillID);
2041       CollectPHIsForLoc(L);
2042       InstallPHIsAtLoc(L);
2043 
2044       // Find anything that aliases this stack index, install PHIs for it too.
2045       unsigned Size, Offset;
2046       std::tie(Size, Offset) = MTracker->StackIdxesToPos[Idx];
2047       for (auto &Pair : MTracker->StackSlotIdxes) {
2048         unsigned ThisSize, ThisOffset;
2049         std::tie(ThisSize, ThisOffset) = Pair.first;
2050         if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset)
2051           continue;
2052 
2053         unsigned ThisID = MTracker->getSpillIDWithIdx(Slot, Pair.second);
2054         LocIdx ThisL = MTracker->getSpillMLoc(ThisID);
2055         InstallPHIsAtLoc(ThisL);
2056       }
2057     }
2058   }
2059 
2060   // For reg units, place PHIs, and then place them for any aliasing registers.
2061   for (Register R : RegUnitsToPHIUp) {
2062     LocIdx L = MTracker->lookupOrTrackRegister(R);
2063     CollectPHIsForLoc(L);
2064 
2065     // Install those PHI values into the live-in value array.
2066     InstallPHIsAtLoc(L);
2067 
2068     // Now find aliases and install PHIs for those.
2069     for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) {
2070       // Super-registers that are "above" the largest register read/written by
2071       // the function will alias, but will not be tracked.
2072       if (!MTracker->isRegisterTracked(*RAI))
2073         continue;
2074 
2075       LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI);
2076       InstallPHIsAtLoc(AliasLoc);
2077     }
2078   }
2079 }
2080 
2081 void InstrRefBasedLDV::buildMLocValueMap(
2082     MachineFunction &MF, ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
2083     SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2084   std::priority_queue<unsigned int, std::vector<unsigned int>,
2085                       std::greater<unsigned int>>
2086       Worklist, Pending;
2087 
2088   // We track what is on the current and pending worklist to avoid inserting
2089   // the same thing twice. We could avoid this with a custom priority queue,
2090   // but this is probably not worth it.
2091   SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
2092 
2093   // Initialize worklist with every block to be visited. Also produce list of
2094   // all blocks.
2095   SmallPtrSet<MachineBasicBlock *, 32> AllBlocks;
2096   for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
2097     Worklist.push(I);
2098     OnWorklist.insert(OrderToBB[I]);
2099     AllBlocks.insert(OrderToBB[I]);
2100   }
2101 
2102   // Initialize entry block to PHIs. These represent arguments.
2103   for (auto Location : MTracker->locations())
2104     MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx);
2105 
2106   MTracker->reset();
2107 
2108   // Start by placing PHIs, using the usual SSA constructor algorithm. Consider
2109   // any machine-location that isn't live-through a block to be def'd in that
2110   // block.
2111   placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer);
2112 
2113   // Propagate values to eliminate redundant PHIs. At the same time, this
2114   // produces the table of Block x Location => Value for the entry to each
2115   // block.
2116   // The kind of PHIs we can eliminate are, for example, where one path in a
2117   // conditional spills and restores a register, and the register still has
2118   // the same value once control flow joins, unbeknowns to the PHI placement
2119   // code. Propagating values allows us to identify such un-necessary PHIs and
2120   // remove them.
2121   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
2122   while (!Worklist.empty() || !Pending.empty()) {
2123     // Vector for storing the evaluated block transfer function.
2124     SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
2125 
2126     while (!Worklist.empty()) {
2127       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
2128       CurBB = MBB->getNumber();
2129       Worklist.pop();
2130 
2131       // Join the values in all predecessor blocks.
2132       bool InLocsChanged;
2133       InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
2134       InLocsChanged |= Visited.insert(MBB).second;
2135 
2136       // Don't examine transfer function if we've visited this loc at least
2137       // once, and inlocs haven't changed.
2138       if (!InLocsChanged)
2139         continue;
2140 
2141       // Load the current set of live-ins into MLocTracker.
2142       MTracker->loadFromArray(MInLocs[CurBB], CurBB);
2143 
2144       // Each element of the transfer function can be a new def, or a read of
2145       // a live-in value. Evaluate each element, and store to "ToRemap".
2146       ToRemap.clear();
2147       for (auto &P : MLocTransfer[CurBB]) {
2148         if (P.second.getBlock() == CurBB && P.second.isPHI()) {
2149           // This is a movement of whatever was live in. Read it.
2150           ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc());
2151           ToRemap.push_back(std::make_pair(P.first, NewID));
2152         } else {
2153           // It's a def. Just set it.
2154           assert(P.second.getBlock() == CurBB);
2155           ToRemap.push_back(std::make_pair(P.first, P.second));
2156         }
2157       }
2158 
2159       // Commit the transfer function changes into mloc tracker, which
2160       // transforms the contents of the MLocTracker into the live-outs.
2161       for (auto &P : ToRemap)
2162         MTracker->setMLoc(P.first, P.second);
2163 
2164       // Now copy out-locs from mloc tracker into out-loc vector, checking
2165       // whether changes have occurred. These changes can have come from both
2166       // the transfer function, and mlocJoin.
2167       bool OLChanged = false;
2168       for (auto Location : MTracker->locations()) {
2169         OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
2170         MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
2171       }
2172 
2173       MTracker->reset();
2174 
2175       // No need to examine successors again if out-locs didn't change.
2176       if (!OLChanged)
2177         continue;
2178 
2179       // All successors should be visited: put any back-edges on the pending
2180       // list for the next pass-through, and any other successors to be
2181       // visited this pass, if they're not going to be already.
2182       for (auto s : MBB->successors()) {
2183         // Does branching to this successor represent a back-edge?
2184         if (BBToOrder[s] > BBToOrder[MBB]) {
2185           // No: visit it during this dataflow iteration.
2186           if (OnWorklist.insert(s).second)
2187             Worklist.push(BBToOrder[s]);
2188         } else {
2189           // Yes: visit it on the next iteration.
2190           if (OnPending.insert(s).second)
2191             Pending.push(BBToOrder[s]);
2192         }
2193       }
2194     }
2195 
2196     Worklist.swap(Pending);
2197     std::swap(OnPending, OnWorklist);
2198     OnPending.clear();
2199     // At this point, pending must be empty, since it was just the empty
2200     // worklist
2201     assert(Pending.empty() && "Pending should be empty");
2202   }
2203 
2204   // Once all the live-ins don't change on mlocJoin(), we've eliminated all
2205   // redundant PHIs.
2206 }
2207 
2208 // Boilerplate for feeding MachineBasicBlocks into IDF calculator. Provide
2209 // template specialisations for graph traits and a successor enumerator.
2210 namespace llvm {
2211 template <> struct GraphTraits<MachineBasicBlock> {
2212   using NodeRef = MachineBasicBlock *;
2213   using ChildIteratorType = MachineBasicBlock::succ_iterator;
2214 
2215   static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
2216   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
2217   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
2218 };
2219 
2220 template <> struct GraphTraits<const MachineBasicBlock> {
2221   using NodeRef = const MachineBasicBlock *;
2222   using ChildIteratorType = MachineBasicBlock::const_succ_iterator;
2223 
2224   static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
2225   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
2226   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
2227 };
2228 
2229 using MachineDomTreeBase = DomTreeBase<MachineBasicBlock>::NodeType;
2230 using MachineDomTreeChildGetter =
2231     typename IDFCalculatorDetail::ChildrenGetterTy<MachineDomTreeBase, false>;
2232 
2233 namespace IDFCalculatorDetail {
2234 template <>
2235 typename MachineDomTreeChildGetter::ChildrenTy
2236 MachineDomTreeChildGetter::get(const NodeRef &N) {
2237   return {N->succ_begin(), N->succ_end()};
2238 }
2239 } // namespace IDFCalculatorDetail
2240 } // namespace llvm
2241 
2242 void InstrRefBasedLDV::BlockPHIPlacement(
2243     const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
2244     const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
2245     SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) {
2246   // Apply IDF calculator to the designated set of location defs, storing
2247   // required PHIs into PHIBlocks. Uses the dominator tree stored in the
2248   // InstrRefBasedLDV object.
2249   IDFCalculatorDetail::ChildrenGetterTy<MachineDomTreeBase, false> foo;
2250   IDFCalculatorBase<MachineDomTreeBase, false> IDF(DomTree->getBase(), foo);
2251 
2252   IDF.setLiveInBlocks(AllBlocks);
2253   IDF.setDefiningBlocks(DefBlocks);
2254   IDF.calculate(PHIBlocks);
2255 }
2256 
2257 Optional<ValueIDNum> InstrRefBasedLDV::pickVPHILoc(
2258     const MachineBasicBlock &MBB, const DebugVariable &Var,
2259     const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs,
2260     const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
2261   // Collect a set of locations from predecessor where its live-out value can
2262   // be found.
2263   SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
2264   SmallVector<const DbgValueProperties *, 4> Properties;
2265   unsigned NumLocs = MTracker->getNumLocs();
2266 
2267   // No predecessors means no PHIs.
2268   if (BlockOrders.empty())
2269     return None;
2270 
2271   for (auto p : BlockOrders) {
2272     unsigned ThisBBNum = p->getNumber();
2273     auto OutValIt = LiveOuts.find(p);
2274     if (OutValIt == LiveOuts.end())
2275       // If we have a predecessor not in scope, we'll never find a PHI position.
2276       return None;
2277     const DbgValue &OutVal = *OutValIt->second;
2278 
2279     if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
2280       // Consts and no-values cannot have locations we can join on.
2281       return None;
2282 
2283     Properties.push_back(&OutVal.Properties);
2284 
2285     // Create new empty vector of locations.
2286     Locs.resize(Locs.size() + 1);
2287 
2288     // If the live-in value is a def, find the locations where that value is
2289     // present. Do the same for VPHIs where we know the VPHI value.
2290     if (OutVal.Kind == DbgValue::Def ||
2291         (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() &&
2292          OutVal.ID != ValueIDNum::EmptyValue)) {
2293       ValueIDNum ValToLookFor = OutVal.ID;
2294       // Search the live-outs of the predecessor for the specified value.
2295       for (unsigned int I = 0; I < NumLocs; ++I) {
2296         if (MOutLocs[ThisBBNum][I] == ValToLookFor)
2297           Locs.back().push_back(LocIdx(I));
2298       }
2299     } else {
2300       assert(OutVal.Kind == DbgValue::VPHI);
2301       // For VPHIs where we don't know the location, we definitely can't find
2302       // a join loc.
2303       if (OutVal.BlockNo != MBB.getNumber())
2304         return None;
2305 
2306       // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e.
2307       // a value that's live-through the whole loop. (It has to be a backedge,
2308       // because a block can't dominate itself). We can accept as a PHI location
2309       // any location where the other predecessors agree, _and_ the machine
2310       // locations feed back into themselves. Therefore, add all self-looping
2311       // machine-value PHI locations.
2312       for (unsigned int I = 0; I < NumLocs; ++I) {
2313         ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I));
2314         if (MOutLocs[ThisBBNum][I] == MPHI)
2315           Locs.back().push_back(LocIdx(I));
2316       }
2317     }
2318   }
2319 
2320   // We should have found locations for all predecessors, or returned.
2321   assert(Locs.size() == BlockOrders.size());
2322 
2323   // Check that all properties are the same. We can't pick a location if they're
2324   // not.
2325   const DbgValueProperties *Properties0 = Properties[0];
2326   for (auto *Prop : Properties)
2327     if (*Prop != *Properties0)
2328       return None;
2329 
2330   // Starting with the first set of locations, take the intersection with
2331   // subsequent sets.
2332   SmallVector<LocIdx, 4> CandidateLocs = Locs[0];
2333   for (unsigned int I = 1; I < Locs.size(); ++I) {
2334     auto &LocVec = Locs[I];
2335     SmallVector<LocIdx, 4> NewCandidates;
2336     std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(),
2337                           LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin()));
2338     CandidateLocs = NewCandidates;
2339   }
2340   if (CandidateLocs.empty())
2341     return None;
2342 
2343   // We now have a set of LocIdxes that contain the right output value in
2344   // each of the predecessors. Pick the lowest; if there's a register loc,
2345   // that'll be it.
2346   LocIdx L = *CandidateLocs.begin();
2347 
2348   // Return a PHI-value-number for the found location.
2349   ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
2350   return PHIVal;
2351 }
2352 
2353 bool InstrRefBasedLDV::vlocJoin(
2354     MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
2355     SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
2356     SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
2357     DbgValue &LiveIn) {
2358   // To emulate VarLocBasedImpl, process this block if it's not in scope but
2359   // _does_ assign a variable value. No live-ins for this scope are transferred
2360   // in though, so we can return immediately.
2361   if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB))
2362     return false;
2363 
2364   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2365   bool Changed = false;
2366 
2367   // Order predecessors by RPOT order, for exploring them in that order.
2368   SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
2369 
2370   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2371     return BBToOrder[A] < BBToOrder[B];
2372   };
2373 
2374   llvm::sort(BlockOrders, Cmp);
2375 
2376   unsigned CurBlockRPONum = BBToOrder[&MBB];
2377 
2378   // Collect all the incoming DbgValues for this variable, from predecessor
2379   // live-out values.
2380   SmallVector<InValueT, 8> Values;
2381   bool Bail = false;
2382   int BackEdgesStart = 0;
2383   for (auto p : BlockOrders) {
2384     // If the predecessor isn't in scope / to be explored, we'll never be
2385     // able to join any locations.
2386     if (!BlocksToExplore.contains(p)) {
2387       Bail = true;
2388       break;
2389     }
2390 
2391     // All Live-outs will have been initialized.
2392     DbgValue &OutLoc = *VLOCOutLocs.find(p)->second;
2393 
2394     // Keep track of where back-edges begin in the Values vector. Relies on
2395     // BlockOrders being sorted by RPO.
2396     unsigned ThisBBRPONum = BBToOrder[p];
2397     if (ThisBBRPONum < CurBlockRPONum)
2398       ++BackEdgesStart;
2399 
2400     Values.push_back(std::make_pair(p, &OutLoc));
2401   }
2402 
2403   // If there were no values, or one of the predecessors couldn't have a
2404   // value, then give up immediately. It's not safe to produce a live-in
2405   // value. Leave as whatever it was before.
2406   if (Bail || Values.size() == 0)
2407     return false;
2408 
2409   // All (non-entry) blocks have at least one non-backedge predecessor.
2410   // Pick the variable value from the first of these, to compare against
2411   // all others.
2412   const DbgValue &FirstVal = *Values[0].second;
2413 
2414   // If the old live-in value is not a PHI then either a) no PHI is needed
2415   // here, or b) we eliminated the PHI that was here. If so, we can just
2416   // propagate in the first parent's incoming value.
2417   if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) {
2418     Changed = LiveIn != FirstVal;
2419     if (Changed)
2420       LiveIn = FirstVal;
2421     return Changed;
2422   }
2423 
2424   // Scan for variable values that can never be resolved: if they have
2425   // different DIExpressions, different indirectness, or are mixed constants /
2426   // non-constants.
2427   for (auto &V : Values) {
2428     if (V.second->Properties != FirstVal.Properties)
2429       return false;
2430     if (V.second->Kind == DbgValue::NoVal)
2431       return false;
2432     if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
2433       return false;
2434   }
2435 
2436   // Try to eliminate this PHI. Do the incoming values all agree?
2437   bool Disagree = false;
2438   for (auto &V : Values) {
2439     if (*V.second == FirstVal)
2440       continue; // No disagreement.
2441 
2442     // Eliminate if a backedge feeds a VPHI back into itself.
2443     if (V.second->Kind == DbgValue::VPHI &&
2444         V.second->BlockNo == MBB.getNumber() &&
2445         // Is this a backedge?
2446         std::distance(Values.begin(), &V) >= BackEdgesStart)
2447       continue;
2448 
2449     Disagree = true;
2450   }
2451 
2452   // No disagreement -> live-through value.
2453   if (!Disagree) {
2454     Changed = LiveIn != FirstVal;
2455     if (Changed)
2456       LiveIn = FirstVal;
2457     return Changed;
2458   } else {
2459     // Otherwise use a VPHI.
2460     DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI);
2461     Changed = LiveIn != VPHI;
2462     if (Changed)
2463       LiveIn = VPHI;
2464     return Changed;
2465   }
2466 }
2467 
2468 void InstrRefBasedLDV::buildVLocValueMap(const DILocation *DILoc,
2469     const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
2470     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
2471     ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
2472     SmallVectorImpl<VLocTracker> &AllTheVLocs) {
2473   // This method is much like buildMLocValueMap: but focuses on a single
2474   // LexicalScope at a time. Pick out a set of blocks and variables that are
2475   // to have their value assignments solved, then run our dataflow algorithm
2476   // until a fixedpoint is reached.
2477   std::priority_queue<unsigned int, std::vector<unsigned int>,
2478                       std::greater<unsigned int>>
2479       Worklist, Pending;
2480   SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
2481 
2482   // The set of blocks we'll be examining.
2483   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
2484 
2485   // The order in which to examine them (RPO).
2486   SmallVector<MachineBasicBlock *, 8> BlockOrders;
2487 
2488   // RPO ordering function.
2489   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2490     return BBToOrder[A] < BBToOrder[B];
2491   };
2492 
2493   LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
2494 
2495   // A separate container to distinguish "blocks we're exploring" versus
2496   // "blocks that are potentially in scope. See comment at start of vlocJoin.
2497   SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore;
2498 
2499   // VarLoc LiveDebugValues tracks variable locations that are defined in
2500   // blocks not in scope. This is something we could legitimately ignore, but
2501   // lets allow it for now for the sake of coverage.
2502   BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
2503 
2504   // We also need to propagate variable values through any artificial blocks
2505   // that immediately follow blocks in scope.
2506   DenseSet<const MachineBasicBlock *> ToAdd;
2507 
2508   // Helper lambda: For a given block in scope, perform a depth first search
2509   // of all the artificial successors, adding them to the ToAdd collection.
2510   auto AccumulateArtificialBlocks =
2511       [this, &ToAdd, &BlocksToExplore,
2512        &InScopeBlocks](const MachineBasicBlock *MBB) {
2513         // Depth-first-search state: each node is a block and which successor
2514         // we're currently exploring.
2515         SmallVector<std::pair<const MachineBasicBlock *,
2516                               MachineBasicBlock::const_succ_iterator>,
2517                     8>
2518             DFS;
2519 
2520         // Find any artificial successors not already tracked.
2521         for (auto *succ : MBB->successors()) {
2522           if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ))
2523             continue;
2524           if (!ArtificialBlocks.count(succ))
2525             continue;
2526           ToAdd.insert(succ);
2527           DFS.push_back(std::make_pair(succ, succ->succ_begin()));
2528         }
2529 
2530         // Search all those blocks, depth first.
2531         while (!DFS.empty()) {
2532           const MachineBasicBlock *CurBB = DFS.back().first;
2533           MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
2534           // Walk back if we've explored this blocks successors to the end.
2535           if (CurSucc == CurBB->succ_end()) {
2536             DFS.pop_back();
2537             continue;
2538           }
2539 
2540           // If the current successor is artificial and unexplored, descend into
2541           // it.
2542           if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
2543             ToAdd.insert(*CurSucc);
2544             DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin()));
2545             continue;
2546           }
2547 
2548           ++CurSucc;
2549         }
2550       };
2551 
2552   // Search in-scope blocks and those containing a DBG_VALUE from this scope
2553   // for artificial successors.
2554   for (auto *MBB : BlocksToExplore)
2555     AccumulateArtificialBlocks(MBB);
2556   for (auto *MBB : InScopeBlocks)
2557     AccumulateArtificialBlocks(MBB);
2558 
2559   BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
2560   InScopeBlocks.insert(ToAdd.begin(), ToAdd.end());
2561 
2562   // Single block scope: not interesting! No propagation at all. Note that
2563   // this could probably go above ArtificialBlocks without damage, but
2564   // that then produces output differences from original-live-debug-values,
2565   // which propagates from a single block into many artificial ones.
2566   if (BlocksToExplore.size() == 1)
2567     return;
2568 
2569   // Convert a const set to a non-const set. LexicalScopes
2570   // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones.
2571   // (Neither of them mutate anything).
2572   SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore;
2573   for (const auto *MBB : BlocksToExplore)
2574     MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB));
2575 
2576   // Picks out relevants blocks RPO order and sort them.
2577   for (auto *MBB : BlocksToExplore)
2578     BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
2579 
2580   llvm::sort(BlockOrders, Cmp);
2581   unsigned NumBlocks = BlockOrders.size();
2582 
2583   // Allocate some vectors for storing the live ins and live outs. Large.
2584   SmallVector<DbgValue, 32> LiveIns, LiveOuts;
2585   LiveIns.reserve(NumBlocks);
2586   LiveOuts.reserve(NumBlocks);
2587 
2588   // Initialize all values to start as NoVals. This signifies "it's live
2589   // through, but we don't know what it is".
2590   DbgValueProperties EmptyProperties(EmptyExpr, false);
2591   for (unsigned int I = 0; I < NumBlocks; ++I) {
2592     DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
2593     LiveIns.push_back(EmptyDbgValue);
2594     LiveOuts.push_back(EmptyDbgValue);
2595   }
2596 
2597   // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
2598   // vlocJoin.
2599   LiveIdxT LiveOutIdx, LiveInIdx;
2600   LiveOutIdx.reserve(NumBlocks);
2601   LiveInIdx.reserve(NumBlocks);
2602   for (unsigned I = 0; I < NumBlocks; ++I) {
2603     LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
2604     LiveInIdx[BlockOrders[I]] = &LiveIns[I];
2605   }
2606 
2607   // Loop over each variable and place PHIs for it, then propagate values
2608   // between blocks. This keeps the locality of working on one lexical scope at
2609   // at time, but avoids re-processing variable values because some other
2610   // variable has been assigned.
2611   for (auto &Var : VarsWeCareAbout) {
2612     // Re-initialize live-ins and live-outs, to clear the remains of previous
2613     // variables live-ins / live-outs.
2614     for (unsigned int I = 0; I < NumBlocks; ++I) {
2615       DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
2616       LiveIns[I] = EmptyDbgValue;
2617       LiveOuts[I] = EmptyDbgValue;
2618     }
2619 
2620     // Place PHIs for variable values, using the LLVM IDF calculator.
2621     // Collect the set of blocks where variables are def'd.
2622     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
2623     for (const MachineBasicBlock *ExpMBB : BlocksToExplore) {
2624       auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars;
2625       if (TransferFunc.find(Var) != TransferFunc.end())
2626         DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB));
2627     }
2628 
2629     SmallVector<MachineBasicBlock *, 32> PHIBlocks;
2630 
2631     // Request the set of PHIs we should insert for this variable.
2632     BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks);
2633 
2634     // Insert PHIs into the per-block live-in tables for this variable.
2635     for (MachineBasicBlock *PHIMBB : PHIBlocks) {
2636       unsigned BlockNo = PHIMBB->getNumber();
2637       DbgValue *LiveIn = LiveInIdx[PHIMBB];
2638       *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI);
2639     }
2640 
2641     for (auto *MBB : BlockOrders) {
2642       Worklist.push(BBToOrder[MBB]);
2643       OnWorklist.insert(MBB);
2644     }
2645 
2646     // Iterate over all the blocks we selected, propagating the variables value.
2647     // This loop does two things:
2648     //  * Eliminates un-necessary VPHIs in vlocJoin,
2649     //  * Evaluates the blocks transfer function (i.e. variable assignments) and
2650     //    stores the result to the blocks live-outs.
2651     // Always evaluate the transfer function on the first iteration, and when
2652     // the live-ins change thereafter.
2653     bool FirstTrip = true;
2654     while (!Worklist.empty() || !Pending.empty()) {
2655       while (!Worklist.empty()) {
2656         auto *MBB = OrderToBB[Worklist.top()];
2657         CurBB = MBB->getNumber();
2658         Worklist.pop();
2659 
2660         auto LiveInsIt = LiveInIdx.find(MBB);
2661         assert(LiveInsIt != LiveInIdx.end());
2662         DbgValue *LiveIn = LiveInsIt->second;
2663 
2664         // Join values from predecessors. Updates LiveInIdx, and writes output
2665         // into JoinedInLocs.
2666         bool InLocsChanged =
2667             vlocJoin(*MBB, LiveOutIdx, InScopeBlocks, BlocksToExplore, *LiveIn);
2668 
2669         SmallVector<const MachineBasicBlock *, 8> Preds;
2670         for (const auto *Pred : MBB->predecessors())
2671           Preds.push_back(Pred);
2672 
2673         // If this block's live-in value is a VPHI, try to pick a machine-value
2674         // for it. This makes the machine-value available and propagated
2675         // through all blocks by the time value propagation finishes. We can't
2676         // do this any earlier as it needs to read the block live-outs.
2677         if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) {
2678           // There's a small possibility that on a preceeding path, a VPHI is
2679           // eliminated and transitions from VPHI-with-location to
2680           // live-through-value. As a result, the selected location of any VPHI
2681           // might change, so we need to re-compute it on each iteration.
2682           Optional<ValueIDNum> ValueNum =
2683               pickVPHILoc(*MBB, Var, LiveOutIdx, MOutLocs, Preds);
2684 
2685           if (ValueNum) {
2686             InLocsChanged |= LiveIn->ID != *ValueNum;
2687             LiveIn->ID = *ValueNum;
2688           }
2689         }
2690 
2691         if (!InLocsChanged && !FirstTrip)
2692           continue;
2693 
2694         DbgValue *LiveOut = LiveOutIdx[MBB];
2695         bool OLChanged = false;
2696 
2697         // Do transfer function.
2698         auto &VTracker = AllTheVLocs[MBB->getNumber()];
2699         auto TransferIt = VTracker.Vars.find(Var);
2700         if (TransferIt != VTracker.Vars.end()) {
2701           // Erase on empty transfer (DBG_VALUE $noreg).
2702           if (TransferIt->second.Kind == DbgValue::Undef) {
2703             DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal);
2704             if (*LiveOut != NewVal) {
2705               *LiveOut = NewVal;
2706               OLChanged = true;
2707             }
2708           } else {
2709             // Insert new variable value; or overwrite.
2710             if (*LiveOut != TransferIt->second) {
2711               *LiveOut = TransferIt->second;
2712               OLChanged = true;
2713             }
2714           }
2715         } else {
2716           // Just copy live-ins to live-outs, for anything not transferred.
2717           if (*LiveOut != *LiveIn) {
2718             *LiveOut = *LiveIn;
2719             OLChanged = true;
2720           }
2721         }
2722 
2723         // If no live-out value changed, there's no need to explore further.
2724         if (!OLChanged)
2725           continue;
2726 
2727         // We should visit all successors. Ensure we'll visit any non-backedge
2728         // successors during this dataflow iteration; book backedge successors
2729         // to be visited next time around.
2730         for (auto s : MBB->successors()) {
2731           // Ignore out of scope / not-to-be-explored successors.
2732           if (LiveInIdx.find(s) == LiveInIdx.end())
2733             continue;
2734 
2735           if (BBToOrder[s] > BBToOrder[MBB]) {
2736             if (OnWorklist.insert(s).second)
2737               Worklist.push(BBToOrder[s]);
2738           } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
2739             Pending.push(BBToOrder[s]);
2740           }
2741         }
2742       }
2743       Worklist.swap(Pending);
2744       std::swap(OnWorklist, OnPending);
2745       OnPending.clear();
2746       assert(Pending.empty());
2747       FirstTrip = false;
2748     }
2749 
2750     // Save live-ins to output vector. Ignore any that are still marked as being
2751     // VPHIs with no location -- those are variables that we know the value of,
2752     // but are not actually available in the register file.
2753     for (auto *MBB : BlockOrders) {
2754       DbgValue *BlockLiveIn = LiveInIdx[MBB];
2755       if (BlockLiveIn->Kind == DbgValue::NoVal)
2756         continue;
2757       if (BlockLiveIn->Kind == DbgValue::VPHI &&
2758           BlockLiveIn->ID == ValueIDNum::EmptyValue)
2759         continue;
2760       if (BlockLiveIn->Kind == DbgValue::VPHI)
2761         BlockLiveIn->Kind = DbgValue::Def;
2762       Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn));
2763     }
2764   } // Per-variable loop.
2765 
2766   BlockOrders.clear();
2767   BlocksToExplore.clear();
2768 }
2769 
2770 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2771 void InstrRefBasedLDV::dump_mloc_transfer(
2772     const MLocTransferMap &mloc_transfer) const {
2773   for (auto &P : mloc_transfer) {
2774     std::string foo = MTracker->LocIdxToName(P.first);
2775     std::string bar = MTracker->IDAsString(P.second);
2776     dbgs() << "Loc " << foo << " --> " << bar << "\n";
2777   }
2778 }
2779 #endif
2780 
2781 void InstrRefBasedLDV::emitLocations(
2782     MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MOutLocs,
2783     ValueIDNum **MInLocs, DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
2784     const TargetPassConfig &TPC) {
2785   TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC);
2786   unsigned NumLocs = MTracker->getNumLocs();
2787 
2788   // For each block, load in the machine value locations and variable value
2789   // live-ins, then step through each instruction in the block. New DBG_VALUEs
2790   // to be inserted will be created along the way.
2791   for (MachineBasicBlock &MBB : MF) {
2792     unsigned bbnum = MBB.getNumber();
2793     MTracker->reset();
2794     MTracker->loadFromArray(MInLocs[bbnum], bbnum);
2795     TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()],
2796                          NumLocs);
2797 
2798     CurBB = bbnum;
2799     CurInst = 1;
2800     for (auto &MI : MBB) {
2801       process(MI, MOutLocs, MInLocs);
2802       TTracker->checkInstForNewValues(CurInst, MI.getIterator());
2803       ++CurInst;
2804     }
2805   }
2806 
2807   // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer
2808   // in DWARF in different orders. Use the order that they appear when walking
2809   // through each block / each instruction, stored in AllVarsNumbering.
2810   auto OrderDbgValues = [&](const MachineInstr *A,
2811                             const MachineInstr *B) -> bool {
2812     DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(),
2813                        A->getDebugLoc()->getInlinedAt());
2814     DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(),
2815                        B->getDebugLoc()->getInlinedAt());
2816     return AllVarsNumbering.find(VarA)->second <
2817            AllVarsNumbering.find(VarB)->second;
2818   };
2819 
2820   // Go through all the transfers recorded in the TransferTracker -- this is
2821   // both the live-ins to a block, and any movements of values that happen
2822   // in the middle.
2823   for (auto &P : TTracker->Transfers) {
2824     // Sort them according to appearance order.
2825     llvm::sort(P.Insts, OrderDbgValues);
2826     // Insert either before or after the designated point...
2827     if (P.MBB) {
2828       MachineBasicBlock &MBB = *P.MBB;
2829       for (auto *MI : P.Insts) {
2830         MBB.insert(P.Pos, MI);
2831       }
2832     } else {
2833       // Terminators, like tail calls, can clobber things. Don't try and place
2834       // transfers after them.
2835       if (P.Pos->isTerminator())
2836         continue;
2837 
2838       MachineBasicBlock &MBB = *P.Pos->getParent();
2839       for (auto *MI : P.Insts) {
2840         MBB.insertAfterBundle(P.Pos, MI);
2841       }
2842     }
2843   }
2844 }
2845 
2846 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
2847   // Build some useful data structures.
2848 
2849   LLVMContext &Context = MF.getFunction().getContext();
2850   EmptyExpr = DIExpression::get(Context, {});
2851 
2852   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
2853     if (const DebugLoc &DL = MI.getDebugLoc())
2854       return DL.getLine() != 0;
2855     return false;
2856   };
2857   // Collect a set of all the artificial blocks.
2858   for (auto &MBB : MF)
2859     if (none_of(MBB.instrs(), hasNonArtificialLocation))
2860       ArtificialBlocks.insert(&MBB);
2861 
2862   // Compute mappings of block <=> RPO order.
2863   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
2864   unsigned int RPONumber = 0;
2865   for (MachineBasicBlock *MBB : RPOT) {
2866     OrderToBB[RPONumber] = MBB;
2867     BBToOrder[MBB] = RPONumber;
2868     BBNumToRPO[MBB->getNumber()] = RPONumber;
2869     ++RPONumber;
2870   }
2871 
2872   // Order value substitutions by their "source" operand pair, for quick lookup.
2873   llvm::sort(MF.DebugValueSubstitutions);
2874 
2875 #ifdef EXPENSIVE_CHECKS
2876   // As an expensive check, test whether there are any duplicate substitution
2877   // sources in the collection.
2878   if (MF.DebugValueSubstitutions.size() > 2) {
2879     for (auto It = MF.DebugValueSubstitutions.begin();
2880          It != std::prev(MF.DebugValueSubstitutions.end()); ++It) {
2881       assert(It->Src != std::next(It)->Src && "Duplicate variable location "
2882                                               "substitution seen");
2883     }
2884   }
2885 #endif
2886 }
2887 
2888 /// Calculate the liveness information for the given machine function and
2889 /// extend ranges across basic blocks.
2890 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
2891                                     MachineDominatorTree *DomTree,
2892                                     TargetPassConfig *TPC,
2893                                     unsigned InputBBLimit,
2894                                     unsigned InputDbgValLimit) {
2895   // No subprogram means this function contains no debuginfo.
2896   if (!MF.getFunction().getSubprogram())
2897     return false;
2898 
2899   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
2900   this->TPC = TPC;
2901 
2902   this->DomTree = DomTree;
2903   TRI = MF.getSubtarget().getRegisterInfo();
2904   MRI = &MF.getRegInfo();
2905   TII = MF.getSubtarget().getInstrInfo();
2906   TFI = MF.getSubtarget().getFrameLowering();
2907   TFI->getCalleeSaves(MF, CalleeSavedRegs);
2908   MFI = &MF.getFrameInfo();
2909   LS.initialize(MF);
2910 
2911   const auto &STI = MF.getSubtarget();
2912   AdjustsStackInCalls = MFI->adjustsStack() &&
2913                         STI.getFrameLowering()->stackProbeFunctionModifiesSP();
2914   if (AdjustsStackInCalls)
2915     StackProbeSymbolName = STI.getTargetLowering()->getStackProbeSymbolName(MF);
2916 
2917   MTracker =
2918       new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
2919   VTracker = nullptr;
2920   TTracker = nullptr;
2921 
2922   SmallVector<MLocTransferMap, 32> MLocTransfer;
2923   SmallVector<VLocTracker, 8> vlocs;
2924   LiveInsT SavedLiveIns;
2925 
2926   int MaxNumBlocks = -1;
2927   for (auto &MBB : MF)
2928     MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
2929   assert(MaxNumBlocks >= 0);
2930   ++MaxNumBlocks;
2931 
2932   MLocTransfer.resize(MaxNumBlocks);
2933   vlocs.resize(MaxNumBlocks);
2934   SavedLiveIns.resize(MaxNumBlocks);
2935 
2936   initialSetup(MF);
2937 
2938   produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
2939 
2940   // Allocate and initialize two array-of-arrays for the live-in and live-out
2941   // machine values. The outer dimension is the block number; while the inner
2942   // dimension is a LocIdx from MLocTracker.
2943   ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks];
2944   ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks];
2945   unsigned NumLocs = MTracker->getNumLocs();
2946   for (int i = 0; i < MaxNumBlocks; ++i) {
2947     // These all auto-initialize to ValueIDNum::EmptyValue
2948     MOutLocs[i] = new ValueIDNum[NumLocs];
2949     MInLocs[i] = new ValueIDNum[NumLocs];
2950   }
2951 
2952   // Solve the machine value dataflow problem using the MLocTransfer function,
2953   // storing the computed live-ins / live-outs into the array-of-arrays. We use
2954   // both live-ins and live-outs for decision making in the variable value
2955   // dataflow problem.
2956   buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer);
2957 
2958   // Patch up debug phi numbers, turning unknown block-live-in values into
2959   // either live-through machine values, or PHIs.
2960   for (auto &DBG_PHI : DebugPHINumToValue) {
2961     // Identify unresolved block-live-ins.
2962     ValueIDNum &Num = DBG_PHI.ValueRead;
2963     if (!Num.isPHI())
2964       continue;
2965 
2966     unsigned BlockNo = Num.getBlock();
2967     LocIdx LocNo = Num.getLoc();
2968     Num = MInLocs[BlockNo][LocNo.asU64()];
2969   }
2970   // Later, we'll be looking up ranges of instruction numbers.
2971   llvm::sort(DebugPHINumToValue);
2972 
2973   // Walk back through each block / instruction, collecting DBG_VALUE
2974   // instructions and recording what machine value their operands refer to.
2975   for (auto &OrderPair : OrderToBB) {
2976     MachineBasicBlock &MBB = *OrderPair.second;
2977     CurBB = MBB.getNumber();
2978     VTracker = &vlocs[CurBB];
2979     VTracker->MBB = &MBB;
2980     MTracker->loadFromArray(MInLocs[CurBB], CurBB);
2981     CurInst = 1;
2982     for (auto &MI : MBB) {
2983       process(MI, MOutLocs, MInLocs);
2984       ++CurInst;
2985     }
2986     MTracker->reset();
2987   }
2988 
2989   // Number all variables in the order that they appear, to be used as a stable
2990   // insertion order later.
2991   DenseMap<DebugVariable, unsigned> AllVarsNumbering;
2992 
2993   // Map from one LexicalScope to all the variables in that scope.
2994   DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars;
2995 
2996   // Map from One lexical scope to all blocks in that scope.
2997   DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>
2998       ScopeToBlocks;
2999 
3000   // Store a DILocation that describes a scope.
3001   DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation;
3002 
3003   // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
3004   // the order is unimportant, it just has to be stable.
3005   unsigned VarAssignCount = 0;
3006   for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
3007     auto *MBB = OrderToBB[I];
3008     auto *VTracker = &vlocs[MBB->getNumber()];
3009     // Collect each variable with a DBG_VALUE in this block.
3010     for (auto &idx : VTracker->Vars) {
3011       const auto &Var = idx.first;
3012       const DILocation *ScopeLoc = VTracker->Scopes[Var];
3013       assert(ScopeLoc != nullptr);
3014       auto *Scope = LS.findLexicalScope(ScopeLoc);
3015 
3016       // No insts in scope -> shouldn't have been recorded.
3017       assert(Scope != nullptr);
3018 
3019       AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
3020       ScopeToVars[Scope].insert(Var);
3021       ScopeToBlocks[Scope].insert(VTracker->MBB);
3022       ScopeToDILocation[Scope] = ScopeLoc;
3023       ++VarAssignCount;
3024     }
3025   }
3026 
3027   bool Changed = false;
3028 
3029   // If we have an extremely large number of variable assignments and blocks,
3030   // bail out at this point. We've burnt some time doing analysis already,
3031   // however we should cut our losses.
3032   if ((unsigned)MaxNumBlocks > InputBBLimit &&
3033       VarAssignCount > InputDbgValLimit) {
3034     LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName()
3035                       << " has " << MaxNumBlocks << " basic blocks and "
3036                       << VarAssignCount
3037                       << " variable assignments, exceeding limits.\n");
3038   } else {
3039     // Compute the extended ranges, iterating over scopes. There might be
3040     // something to be said for ordering them by size/locality, but that's for
3041     // the future. For each scope, solve the variable value problem, producing
3042     // a map of variables to values in SavedLiveIns.
3043     for (auto &P : ScopeToVars) {
3044       buildVLocValueMap(ScopeToDILocation[P.first], P.second,
3045                    ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs,
3046                    vlocs);
3047     }
3048 
3049     // Using the computed value locations and variable values for each block,
3050     // create the DBG_VALUE instructions representing the extended variable
3051     // locations.
3052     emitLocations(MF, SavedLiveIns, MOutLocs, MInLocs, AllVarsNumbering, *TPC);
3053 
3054     // Did we actually make any changes? If we created any DBG_VALUEs, then yes.
3055     Changed = TTracker->Transfers.size() != 0;
3056   }
3057 
3058   // Common clean-up of memory.
3059   for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) {
3060     delete[] MOutLocs[Idx];
3061     delete[] MInLocs[Idx];
3062   }
3063   delete[] MOutLocs;
3064   delete[] MInLocs;
3065 
3066   delete MTracker;
3067   delete TTracker;
3068   MTracker = nullptr;
3069   VTracker = nullptr;
3070   TTracker = nullptr;
3071 
3072   ArtificialBlocks.clear();
3073   OrderToBB.clear();
3074   BBToOrder.clear();
3075   BBNumToRPO.clear();
3076   DebugInstrNumToInstr.clear();
3077   DebugPHINumToValue.clear();
3078 
3079   return Changed;
3080 }
3081 
3082 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
3083   return new InstrRefBasedLDV();
3084 }
3085 
3086 namespace {
3087 class LDVSSABlock;
3088 class LDVSSAUpdater;
3089 
3090 // Pick a type to identify incoming block values as we construct SSA. We
3091 // can't use anything more robust than an integer unfortunately, as SSAUpdater
3092 // expects to zero-initialize the type.
3093 typedef uint64_t BlockValueNum;
3094 
3095 /// Represents an SSA PHI node for the SSA updater class. Contains the block
3096 /// this PHI is in, the value number it would have, and the expected incoming
3097 /// values from parent blocks.
3098 class LDVSSAPhi {
3099 public:
3100   SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
3101   LDVSSABlock *ParentBlock;
3102   BlockValueNum PHIValNum;
3103   LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
3104       : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
3105 
3106   LDVSSABlock *getParent() { return ParentBlock; }
3107 };
3108 
3109 /// Thin wrapper around a block predecessor iterator. Only difference from a
3110 /// normal block iterator is that it dereferences to an LDVSSABlock.
3111 class LDVSSABlockIterator {
3112 public:
3113   MachineBasicBlock::pred_iterator PredIt;
3114   LDVSSAUpdater &Updater;
3115 
3116   LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
3117                       LDVSSAUpdater &Updater)
3118       : PredIt(PredIt), Updater(Updater) {}
3119 
3120   bool operator!=(const LDVSSABlockIterator &OtherIt) const {
3121     return OtherIt.PredIt != PredIt;
3122   }
3123 
3124   LDVSSABlockIterator &operator++() {
3125     ++PredIt;
3126     return *this;
3127   }
3128 
3129   LDVSSABlock *operator*();
3130 };
3131 
3132 /// Thin wrapper around a block for SSA Updater interface. Necessary because
3133 /// we need to track the PHI value(s) that we may have observed as necessary
3134 /// in this block.
3135 class LDVSSABlock {
3136 public:
3137   MachineBasicBlock &BB;
3138   LDVSSAUpdater &Updater;
3139   using PHIListT = SmallVector<LDVSSAPhi, 1>;
3140   /// List of PHIs in this block. There should only ever be one.
3141   PHIListT PHIList;
3142 
3143   LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
3144       : BB(BB), Updater(Updater) {}
3145 
3146   LDVSSABlockIterator succ_begin() {
3147     return LDVSSABlockIterator(BB.succ_begin(), Updater);
3148   }
3149 
3150   LDVSSABlockIterator succ_end() {
3151     return LDVSSABlockIterator(BB.succ_end(), Updater);
3152   }
3153 
3154   /// SSAUpdater has requested a PHI: create that within this block record.
3155   LDVSSAPhi *newPHI(BlockValueNum Value) {
3156     PHIList.emplace_back(Value, this);
3157     return &PHIList.back();
3158   }
3159 
3160   /// SSAUpdater wishes to know what PHIs already exist in this block.
3161   PHIListT &phis() { return PHIList; }
3162 };
3163 
3164 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
3165 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
3166 // SSAUpdaterTraits<LDVSSAUpdater>.
3167 class LDVSSAUpdater {
3168 public:
3169   /// Map of value numbers to PHI records.
3170   DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
3171   /// Map of which blocks generate Undef values -- blocks that are not
3172   /// dominated by any Def.
3173   DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
3174   /// Map of machine blocks to our own records of them.
3175   DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
3176   /// Machine location where any PHI must occur.
3177   LocIdx Loc;
3178   /// Table of live-in machine value numbers for blocks / locations.
3179   ValueIDNum **MLiveIns;
3180 
3181   LDVSSAUpdater(LocIdx L, ValueIDNum **MLiveIns) : Loc(L), MLiveIns(MLiveIns) {}
3182 
3183   void reset() {
3184     for (auto &Block : BlockMap)
3185       delete Block.second;
3186 
3187     PHIs.clear();
3188     UndefMap.clear();
3189     BlockMap.clear();
3190   }
3191 
3192   ~LDVSSAUpdater() { reset(); }
3193 
3194   /// For a given MBB, create a wrapper block for it. Stores it in the
3195   /// LDVSSAUpdater block map.
3196   LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
3197     auto it = BlockMap.find(BB);
3198     if (it == BlockMap.end()) {
3199       BlockMap[BB] = new LDVSSABlock(*BB, *this);
3200       it = BlockMap.find(BB);
3201     }
3202     return it->second;
3203   }
3204 
3205   /// Find the live-in value number for the given block. Looks up the value at
3206   /// the PHI location on entry.
3207   BlockValueNum getValue(LDVSSABlock *LDVBB) {
3208     return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64();
3209   }
3210 };
3211 
3212 LDVSSABlock *LDVSSABlockIterator::operator*() {
3213   return Updater.getSSALDVBlock(*PredIt);
3214 }
3215 
3216 #ifndef NDEBUG
3217 
3218 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
3219   out << "SSALDVPHI " << PHI.PHIValNum;
3220   return out;
3221 }
3222 
3223 #endif
3224 
3225 } // namespace
3226 
3227 namespace llvm {
3228 
3229 /// Template specialization to give SSAUpdater access to CFG and value
3230 /// information. SSAUpdater calls methods in these traits, passing in the
3231 /// LDVSSAUpdater object, to learn about blocks and the values they define.
3232 /// It also provides methods to create PHI nodes and track them.
3233 template <> class SSAUpdaterTraits<LDVSSAUpdater> {
3234 public:
3235   using BlkT = LDVSSABlock;
3236   using ValT = BlockValueNum;
3237   using PhiT = LDVSSAPhi;
3238   using BlkSucc_iterator = LDVSSABlockIterator;
3239 
3240   // Methods to access block successors -- dereferencing to our wrapper class.
3241   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
3242   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
3243 
3244   /// Iterator for PHI operands.
3245   class PHI_iterator {
3246   private:
3247     LDVSSAPhi *PHI;
3248     unsigned Idx;
3249 
3250   public:
3251     explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
3252         : PHI(P), Idx(0) {}
3253     PHI_iterator(LDVSSAPhi *P, bool) // end iterator
3254         : PHI(P), Idx(PHI->IncomingValues.size()) {}
3255 
3256     PHI_iterator &operator++() {
3257       Idx++;
3258       return *this;
3259     }
3260     bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
3261     bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
3262 
3263     BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
3264 
3265     LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
3266   };
3267 
3268   static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
3269 
3270   static inline PHI_iterator PHI_end(PhiT *PHI) {
3271     return PHI_iterator(PHI, true);
3272   }
3273 
3274   /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
3275   /// vector.
3276   static void FindPredecessorBlocks(LDVSSABlock *BB,
3277                                     SmallVectorImpl<LDVSSABlock *> *Preds) {
3278     for (MachineBasicBlock *Pred : BB->BB.predecessors())
3279       Preds->push_back(BB->Updater.getSSALDVBlock(Pred));
3280   }
3281 
3282   /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
3283   /// register. For LiveDebugValues, represents a block identified as not having
3284   /// any DBG_PHI predecessors.
3285   static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
3286     // Create a value number for this block -- it needs to be unique and in the
3287     // "undef" collection, so that we know it's not real. Use a number
3288     // representing a PHI into this block.
3289     BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
3290     Updater->UndefMap[&BB->BB] = Num;
3291     return Num;
3292   }
3293 
3294   /// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
3295   /// SSAUpdater will populate it with information about incoming values. The
3296   /// value number of this PHI is whatever the  machine value number problem
3297   /// solution determined it to be. This includes non-phi values if SSAUpdater
3298   /// tries to create a PHI where the incoming values are identical.
3299   static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
3300                                    LDVSSAUpdater *Updater) {
3301     BlockValueNum PHIValNum = Updater->getValue(BB);
3302     LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
3303     Updater->PHIs[PHIValNum] = PHI;
3304     return PHIValNum;
3305   }
3306 
3307   /// AddPHIOperand - Add the specified value as an operand of the PHI for
3308   /// the specified predecessor block.
3309   static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
3310     PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
3311   }
3312 
3313   /// ValueIsPHI - Check if the instruction that defines the specified value
3314   /// is a PHI instruction.
3315   static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3316     auto PHIIt = Updater->PHIs.find(Val);
3317     if (PHIIt == Updater->PHIs.end())
3318       return nullptr;
3319     return PHIIt->second;
3320   }
3321 
3322   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
3323   /// operands, i.e., it was just added.
3324   static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3325     LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
3326     if (PHI && PHI->IncomingValues.size() == 0)
3327       return PHI;
3328     return nullptr;
3329   }
3330 
3331   /// GetPHIValue - For the specified PHI instruction, return the value
3332   /// that it defines.
3333   static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
3334 };
3335 
3336 } // end namespace llvm
3337 
3338 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(MachineFunction &MF,
3339                                                       ValueIDNum **MLiveOuts,
3340                                                       ValueIDNum **MLiveIns,
3341                                                       MachineInstr &Here,
3342                                                       uint64_t InstrNum) {
3343   // Pick out records of DBG_PHI instructions that have been observed. If there
3344   // are none, then we cannot compute a value number.
3345   auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
3346                                     DebugPHINumToValue.end(), InstrNum);
3347   auto LowerIt = RangePair.first;
3348   auto UpperIt = RangePair.second;
3349 
3350   // No DBG_PHI means there can be no location.
3351   if (LowerIt == UpperIt)
3352     return None;
3353 
3354   // If there's only one DBG_PHI, then that is our value number.
3355   if (std::distance(LowerIt, UpperIt) == 1)
3356     return LowerIt->ValueRead;
3357 
3358   auto DBGPHIRange = make_range(LowerIt, UpperIt);
3359 
3360   // Pick out the location (physreg, slot) where any PHIs must occur. It's
3361   // technically possible for us to merge values in different registers in each
3362   // block, but highly unlikely that LLVM will generate such code after register
3363   // allocation.
3364   LocIdx Loc = LowerIt->ReadLoc;
3365 
3366   // We have several DBG_PHIs, and a use position (the Here inst). All each
3367   // DBG_PHI does is identify a value at a program position. We can treat each
3368   // DBG_PHI like it's a Def of a value, and the use position is a Use of a
3369   // value, just like SSA. We use the bulk-standard LLVM SSA updater class to
3370   // determine which Def is used at the Use, and any PHIs that happen along
3371   // the way.
3372   // Adapted LLVM SSA Updater:
3373   LDVSSAUpdater Updater(Loc, MLiveIns);
3374   // Map of which Def or PHI is the current value in each block.
3375   DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
3376   // Set of PHIs that we have created along the way.
3377   SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
3378 
3379   // Each existing DBG_PHI is a Def'd value under this model. Record these Defs
3380   // for the SSAUpdater.
3381   for (const auto &DBG_PHI : DBGPHIRange) {
3382     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3383     const ValueIDNum &Num = DBG_PHI.ValueRead;
3384     AvailableValues.insert(std::make_pair(Block, Num.asU64()));
3385   }
3386 
3387   LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
3388   const auto &AvailIt = AvailableValues.find(HereBlock);
3389   if (AvailIt != AvailableValues.end()) {
3390     // Actually, we already know what the value is -- the Use is in the same
3391     // block as the Def.
3392     return ValueIDNum::fromU64(AvailIt->second);
3393   }
3394 
3395   // Otherwise, we must use the SSA Updater. It will identify the value number
3396   // that we are to use, and the PHIs that must happen along the way.
3397   SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
3398   BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
3399   ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
3400 
3401   // We have the number for a PHI, or possibly live-through value, to be used
3402   // at this Use. There are a number of things we have to check about it though:
3403   //  * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
3404   //    Use was not completely dominated by DBG_PHIs and we should abort.
3405   //  * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
3406   //    we've left SSA form. Validate that the inputs to each PHI are the
3407   //    expected values.
3408   //  * Is a PHI we've created actually a merging of values, or are all the
3409   //    predecessor values the same, leading to a non-PHI machine value number?
3410   //    (SSAUpdater doesn't know that either). Remap validated PHIs into the
3411   //    the ValidatedValues collection below to sort this out.
3412   DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
3413 
3414   // Define all the input DBG_PHI values in ValidatedValues.
3415   for (const auto &DBG_PHI : DBGPHIRange) {
3416     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3417     const ValueIDNum &Num = DBG_PHI.ValueRead;
3418     ValidatedValues.insert(std::make_pair(Block, Num));
3419   }
3420 
3421   // Sort PHIs to validate into RPO-order.
3422   SmallVector<LDVSSAPhi *, 8> SortedPHIs;
3423   for (auto &PHI : CreatedPHIs)
3424     SortedPHIs.push_back(PHI);
3425 
3426   std::sort(
3427       SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) {
3428         return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
3429       });
3430 
3431   for (auto &PHI : SortedPHIs) {
3432     ValueIDNum ThisBlockValueNum =
3433         MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()];
3434 
3435     // Are all these things actually defined?
3436     for (auto &PHIIt : PHI->IncomingValues) {
3437       // Any undef input means DBG_PHIs didn't dominate the use point.
3438       if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end())
3439         return None;
3440 
3441       ValueIDNum ValueToCheck;
3442       ValueIDNum *BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()];
3443 
3444       auto VVal = ValidatedValues.find(PHIIt.first);
3445       if (VVal == ValidatedValues.end()) {
3446         // We cross a loop, and this is a backedge. LLVMs tail duplication
3447         // happens so late that DBG_PHI instructions should not be able to
3448         // migrate into loops -- meaning we can only be live-through this
3449         // loop.
3450         ValueToCheck = ThisBlockValueNum;
3451       } else {
3452         // Does the block have as a live-out, in the location we're examining,
3453         // the value that we expect? If not, it's been moved or clobbered.
3454         ValueToCheck = VVal->second;
3455       }
3456 
3457       if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
3458         return None;
3459     }
3460 
3461     // Record this value as validated.
3462     ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
3463   }
3464 
3465   // All the PHIs are valid: we can return what the SSAUpdater said our value
3466   // number was.
3467   return Result;
3468 }
3469