1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file InstrRefBasedImpl.cpp 9 /// 10 /// This is a separate implementation of LiveDebugValues, see 11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information. 12 /// 13 /// This pass propagates variable locations between basic blocks, resolving 14 /// control flow conflicts between them. The problem is much like SSA 15 /// construction, where each DBG_VALUE instruction assigns the *value* that 16 /// a variable has, and every instruction where the variable is in scope uses 17 /// that variable. The resulting map of instruction-to-value is then translated 18 /// into a register (or spill) location for each variable over each instruction. 19 /// 20 /// This pass determines which DBG_VALUE dominates which instructions, or if 21 /// none do, where values must be merged (like PHI nodes). The added 22 /// complication is that because codegen has already finished, a PHI node may 23 /// be needed for a variable location to be correct, but no register or spill 24 /// slot merges the necessary values. In these circumstances, the variable 25 /// location is dropped. 26 /// 27 /// What makes this analysis non-trivial is loops: we cannot tell in advance 28 /// whether a variable location is live throughout a loop, or whether its 29 /// location is clobbered (or redefined by another DBG_VALUE), without 30 /// exploring all the way through. 31 /// 32 /// To make this simpler we perform two kinds of analysis. First, we identify 33 /// every value defined by every instruction (ignoring those that only move 34 /// another value), then compute a map of which values are available for each 35 /// instruction. This is stronger than a reaching-def analysis, as we create 36 /// PHI values where other values merge. 37 /// 38 /// Secondly, for each variable, we effectively re-construct SSA using each 39 /// DBG_VALUE as a def. The DBG_VALUEs read a value-number computed by the 40 /// first analysis from the location they refer to. We can then compute the 41 /// dominance frontiers of where a variable has a value, and create PHI nodes 42 /// where they merge. 43 /// This isn't precisely SSA-construction though, because the function shape 44 /// is pre-defined. If a variable location requires a PHI node, but no 45 /// PHI for the relevant values is present in the function (as computed by the 46 /// first analysis), the location must be dropped. 47 /// 48 /// Once both are complete, we can pass back over all instructions knowing: 49 /// * What _value_ each variable should contain, either defined by an 50 /// instruction or where control flow merges 51 /// * What the location of that value is (if any). 52 /// Allowing us to create appropriate live-in DBG_VALUEs, and DBG_VALUEs when 53 /// a value moves location. After this pass runs, all variable locations within 54 /// a block should be specified by DBG_VALUEs within that block, allowing 55 /// DbgEntityHistoryCalculator to focus on individual blocks. 56 /// 57 /// This pass is able to go fast because the size of the first 58 /// reaching-definition analysis is proportional to the working-set size of 59 /// the function, which the compiler tries to keep small. (It's also 60 /// proportional to the number of blocks). Additionally, we repeatedly perform 61 /// the second reaching-definition analysis with only the variables and blocks 62 /// in a single lexical scope, exploiting their locality. 63 /// 64 /// Determining where PHIs happen is trickier with this approach, and it comes 65 /// to a head in the major problem for LiveDebugValues: is a value live-through 66 /// a loop, or not? Your garden-variety dataflow analysis aims to build a set of 67 /// facts about a function, however this analysis needs to generate new value 68 /// numbers at joins. 69 /// 70 /// To do this, consider a lattice of all definition values, from instructions 71 /// and from PHIs. Each PHI is characterised by the RPO number of the block it 72 /// occurs in. Each value pair A, B can be ordered by RPO(A) < RPO(B): 73 /// with non-PHI values at the top, and any PHI value in the last block (by RPO 74 /// order) at the bottom. 75 /// 76 /// (Awkwardly: lower-down-the _lattice_ means a greater RPO _number_. Below, 77 /// "rank" always refers to the former). 78 /// 79 /// At any join, for each register, we consider: 80 /// * All incoming values, and 81 /// * The PREVIOUS live-in value at this join. 82 /// If all incoming values agree: that's the live-in value. If they do not, the 83 /// incoming values are ranked according to the partial order, and the NEXT 84 /// LOWEST rank after the PREVIOUS live-in value is picked (multiple values of 85 /// the same rank are ignored as conflicting). If there are no candidate values, 86 /// or if the rank of the live-in would be lower than the rank of the current 87 /// blocks PHIs, create a new PHI value. 88 /// 89 /// Intuitively: if it's not immediately obvious what value a join should result 90 /// in, we iteratively descend from instruction-definitions down through PHI 91 /// values, getting closer to the current block each time. If the current block 92 /// is a loop head, this ordering is effectively searching outer levels of 93 /// loops, to find a value that's live-through the current loop. 94 /// 95 /// If there is no value that's live-through this loop, a PHI is created for 96 /// this location instead. We can't use a lower-ranked PHI because by definition 97 /// it doesn't dominate the current block. We can't create a PHI value any 98 /// earlier, because we risk creating a PHI value at a location where values do 99 /// not in fact merge, thus misrepresenting the truth, and not making the true 100 /// live-through value for variable locations. 101 /// 102 /// This algorithm applies to both calculating the availability of values in 103 /// the first analysis, and the location of variables in the second. However 104 /// for the second we add an extra dimension of pain: creating a variable 105 /// location PHI is only valid if, for each incoming edge, 106 /// * There is a value for the variable on the incoming edge, and 107 /// * All the edges have that value in the same register. 108 /// Or put another way: we can only create a variable-location PHI if there is 109 /// a matching machine-location PHI, each input to which is the variables value 110 /// in the predecessor block. 111 /// 112 /// To accommodate this difference, each point on the lattice is split in 113 /// two: a "proposed" PHI and "definite" PHI. Any PHI that can immediately 114 /// have a location determined are "definite" PHIs, and no further work is 115 /// needed. Otherwise, a location that all non-backedge predecessors agree 116 /// on is picked and propagated as a "proposed" PHI value. If that PHI value 117 /// is truly live-through, it'll appear on the loop backedges on the next 118 /// dataflow iteration, after which the block live-in moves to be a "definite" 119 /// PHI. If it's not truly live-through, the variable value will be downgraded 120 /// further as we explore the lattice, or remains "proposed" and is considered 121 /// invalid once dataflow completes. 122 /// 123 /// ### Terminology 124 /// 125 /// A machine location is a register or spill slot, a value is something that's 126 /// defined by an instruction or PHI node, while a variable value is the value 127 /// assigned to a variable. A variable location is a machine location, that must 128 /// contain the appropriate variable value. A value that is a PHI node is 129 /// occasionally called an mphi. 130 /// 131 /// The first dataflow problem is the "machine value location" problem, 132 /// because we're determining which machine locations contain which values. 133 /// The "locations" are constant: what's unknown is what value they contain. 134 /// 135 /// The second dataflow problem (the one for variables) is the "variable value 136 /// problem", because it's determining what values a variable has, rather than 137 /// what location those values are placed in. Unfortunately, it's not that 138 /// simple, because producing a PHI value always involves picking a location. 139 /// This is an imperfection that we just have to accept, at least for now. 140 /// 141 /// TODO: 142 /// Overlapping fragments 143 /// Entry values 144 /// Add back DEBUG statements for debugging this 145 /// Collect statistics 146 /// 147 //===----------------------------------------------------------------------===// 148 149 #include "llvm/ADT/DenseMap.h" 150 #include "llvm/ADT/PostOrderIterator.h" 151 #include "llvm/ADT/STLExtras.h" 152 #include "llvm/ADT/SmallPtrSet.h" 153 #include "llvm/ADT/SmallSet.h" 154 #include "llvm/ADT/SmallVector.h" 155 #include "llvm/ADT/Statistic.h" 156 #include "llvm/ADT/UniqueVector.h" 157 #include "llvm/CodeGen/LexicalScopes.h" 158 #include "llvm/CodeGen/MachineBasicBlock.h" 159 #include "llvm/CodeGen/MachineFrameInfo.h" 160 #include "llvm/CodeGen/MachineFunction.h" 161 #include "llvm/CodeGen/MachineFunctionPass.h" 162 #include "llvm/CodeGen/MachineInstr.h" 163 #include "llvm/CodeGen/MachineInstrBuilder.h" 164 #include "llvm/CodeGen/MachineInstrBundle.h" 165 #include "llvm/CodeGen/MachineMemOperand.h" 166 #include "llvm/CodeGen/MachineOperand.h" 167 #include "llvm/CodeGen/PseudoSourceValue.h" 168 #include "llvm/CodeGen/RegisterScavenging.h" 169 #include "llvm/CodeGen/TargetFrameLowering.h" 170 #include "llvm/CodeGen/TargetInstrInfo.h" 171 #include "llvm/CodeGen/TargetLowering.h" 172 #include "llvm/CodeGen/TargetPassConfig.h" 173 #include "llvm/CodeGen/TargetRegisterInfo.h" 174 #include "llvm/CodeGen/TargetSubtargetInfo.h" 175 #include "llvm/Config/llvm-config.h" 176 #include "llvm/IR/DIBuilder.h" 177 #include "llvm/IR/DebugInfoMetadata.h" 178 #include "llvm/IR/DebugLoc.h" 179 #include "llvm/IR/Function.h" 180 #include "llvm/IR/Module.h" 181 #include "llvm/InitializePasses.h" 182 #include "llvm/MC/MCRegisterInfo.h" 183 #include "llvm/Pass.h" 184 #include "llvm/Support/Casting.h" 185 #include "llvm/Support/Compiler.h" 186 #include "llvm/Support/Debug.h" 187 #include "llvm/Support/TypeSize.h" 188 #include "llvm/Support/raw_ostream.h" 189 #include "llvm/Target/TargetMachine.h" 190 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h" 191 #include <algorithm> 192 #include <cassert> 193 #include <cstdint> 194 #include <functional> 195 #include <queue> 196 #include <tuple> 197 #include <utility> 198 #include <vector> 199 #include <limits.h> 200 #include <limits> 201 202 #include "LiveDebugValues.h" 203 204 using namespace llvm; 205 206 // SSAUpdaterImple sets DEBUG_TYPE, change it. 207 #undef DEBUG_TYPE 208 #define DEBUG_TYPE "livedebugvalues" 209 210 // Act more like the VarLoc implementation, by propagating some locations too 211 // far and ignoring some transfers. 212 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden, 213 cl::desc("Act like old LiveDebugValues did"), 214 cl::init(false)); 215 216 namespace { 217 218 // The location at which a spilled value resides. It consists of a register and 219 // an offset. 220 struct SpillLoc { 221 unsigned SpillBase; 222 StackOffset SpillOffset; 223 bool operator==(const SpillLoc &Other) const { 224 return std::make_pair(SpillBase, SpillOffset) == 225 std::make_pair(Other.SpillBase, Other.SpillOffset); 226 } 227 bool operator<(const SpillLoc &Other) const { 228 return std::make_tuple(SpillBase, SpillOffset.getFixed(), 229 SpillOffset.getScalable()) < 230 std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(), 231 Other.SpillOffset.getScalable()); 232 } 233 }; 234 235 class LocIdx { 236 unsigned Location; 237 238 // Default constructor is private, initializing to an illegal location number. 239 // Use only for "not an entry" elements in IndexedMaps. 240 LocIdx() : Location(UINT_MAX) { } 241 242 public: 243 #define NUM_LOC_BITS 24 244 LocIdx(unsigned L) : Location(L) { 245 assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits"); 246 } 247 248 static LocIdx MakeIllegalLoc() { 249 return LocIdx(); 250 } 251 252 bool isIllegal() const { 253 return Location == UINT_MAX; 254 } 255 256 uint64_t asU64() const { 257 return Location; 258 } 259 260 bool operator==(unsigned L) const { 261 return Location == L; 262 } 263 264 bool operator==(const LocIdx &L) const { 265 return Location == L.Location; 266 } 267 268 bool operator!=(unsigned L) const { 269 return !(*this == L); 270 } 271 272 bool operator!=(const LocIdx &L) const { 273 return !(*this == L); 274 } 275 276 bool operator<(const LocIdx &Other) const { 277 return Location < Other.Location; 278 } 279 }; 280 281 class LocIdxToIndexFunctor { 282 public: 283 using argument_type = LocIdx; 284 unsigned operator()(const LocIdx &L) const { 285 return L.asU64(); 286 } 287 }; 288 289 /// Unique identifier for a value defined by an instruction, as a value type. 290 /// Casts back and forth to a uint64_t. Probably replacable with something less 291 /// bit-constrained. Each value identifies the instruction and machine location 292 /// where the value is defined, although there may be no corresponding machine 293 /// operand for it (ex: regmasks clobbering values). The instructions are 294 /// one-based, and definitions that are PHIs have instruction number zero. 295 /// 296 /// The obvious limits of a 1M block function or 1M instruction blocks are 297 /// problematic; but by that point we should probably have bailed out of 298 /// trying to analyse the function. 299 class ValueIDNum { 300 uint64_t BlockNo : 20; /// The block where the def happens. 301 uint64_t InstNo : 20; /// The Instruction where the def happens. 302 /// One based, is distance from start of block. 303 uint64_t LocNo : NUM_LOC_BITS; /// The machine location where the def happens. 304 305 public: 306 // XXX -- temporarily enabled while the live-in / live-out tables are moved 307 // to something more type-y 308 ValueIDNum() : BlockNo(0xFFFFF), 309 InstNo(0xFFFFF), 310 LocNo(0xFFFFFF) { } 311 312 ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc) 313 : BlockNo(Block), InstNo(Inst), LocNo(Loc) { } 314 315 ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc) 316 : BlockNo(Block), InstNo(Inst), LocNo(Loc.asU64()) { } 317 318 uint64_t getBlock() const { return BlockNo; } 319 uint64_t getInst() const { return InstNo; } 320 uint64_t getLoc() const { return LocNo; } 321 bool isPHI() const { return InstNo == 0; } 322 323 uint64_t asU64() const { 324 uint64_t TmpBlock = BlockNo; 325 uint64_t TmpInst = InstNo; 326 return TmpBlock << 44ull | TmpInst << NUM_LOC_BITS | LocNo; 327 } 328 329 static ValueIDNum fromU64(uint64_t v) { 330 uint64_t L = (v & 0x3FFF); 331 return {v >> 44ull, ((v >> NUM_LOC_BITS) & 0xFFFFF), L}; 332 } 333 334 bool operator<(const ValueIDNum &Other) const { 335 return asU64() < Other.asU64(); 336 } 337 338 bool operator==(const ValueIDNum &Other) const { 339 return std::tie(BlockNo, InstNo, LocNo) == 340 std::tie(Other.BlockNo, Other.InstNo, Other.LocNo); 341 } 342 343 bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); } 344 345 std::string asString(const std::string &mlocname) const { 346 return Twine("Value{bb: ") 347 .concat(Twine(BlockNo).concat( 348 Twine(", inst: ") 349 .concat((InstNo ? Twine(InstNo) : Twine("live-in")) 350 .concat(Twine(", loc: ").concat(Twine(mlocname))) 351 .concat(Twine("}"))))) 352 .str(); 353 } 354 355 static ValueIDNum EmptyValue; 356 }; 357 358 } // end anonymous namespace 359 360 namespace { 361 362 /// Meta qualifiers for a value. Pair of whatever expression is used to qualify 363 /// the the value, and Boolean of whether or not it's indirect. 364 class DbgValueProperties { 365 public: 366 DbgValueProperties(const DIExpression *DIExpr, bool Indirect) 367 : DIExpr(DIExpr), Indirect(Indirect) {} 368 369 /// Extract properties from an existing DBG_VALUE instruction. 370 DbgValueProperties(const MachineInstr &MI) { 371 assert(MI.isDebugValue()); 372 DIExpr = MI.getDebugExpression(); 373 Indirect = MI.getOperand(1).isImm(); 374 } 375 376 bool operator==(const DbgValueProperties &Other) const { 377 return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect); 378 } 379 380 bool operator!=(const DbgValueProperties &Other) const { 381 return !(*this == Other); 382 } 383 384 const DIExpression *DIExpr; 385 bool Indirect; 386 }; 387 388 /// Tracker for what values are in machine locations. Listens to the Things 389 /// being Done by various instructions, and maintains a table of what machine 390 /// locations have what values (as defined by a ValueIDNum). 391 /// 392 /// There are potentially a much larger number of machine locations on the 393 /// target machine than the actual working-set size of the function. On x86 for 394 /// example, we're extremely unlikely to want to track values through control 395 /// or debug registers. To avoid doing so, MLocTracker has several layers of 396 /// indirection going on, with two kinds of ``location'': 397 /// * A LocID uniquely identifies a register or spill location, with a 398 /// predictable value. 399 /// * A LocIdx is a key (in the database sense) for a LocID and a ValueIDNum. 400 /// Whenever a location is def'd or used by a MachineInstr, we automagically 401 /// create a new LocIdx for a location, but not otherwise. This ensures we only 402 /// account for locations that are actually used or defined. The cost is another 403 /// vector lookup (of LocID -> LocIdx) over any other implementation. This is 404 /// fairly cheap, and the compiler tries to reduce the working-set at any one 405 /// time in the function anyway. 406 /// 407 /// Register mask operands completely blow this out of the water; I've just 408 /// piled hacks on top of hacks to get around that. 409 class MLocTracker { 410 public: 411 MachineFunction &MF; 412 const TargetInstrInfo &TII; 413 const TargetRegisterInfo &TRI; 414 const TargetLowering &TLI; 415 416 /// IndexedMap type, mapping from LocIdx to ValueIDNum. 417 using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>; 418 419 /// Map of LocIdxes to the ValueIDNums that they store. This is tightly 420 /// packed, entries only exist for locations that are being tracked. 421 LocToValueType LocIdxToIDNum; 422 423 /// "Map" of machine location IDs (i.e., raw register or spill number) to the 424 /// LocIdx key / number for that location. There are always at least as many 425 /// as the number of registers on the target -- if the value in the register 426 /// is not being tracked, then the LocIdx value will be zero. New entries are 427 /// appended if a new spill slot begins being tracked. 428 /// This, and the corresponding reverse map persist for the analysis of the 429 /// whole function, and is necessarying for decoding various vectors of 430 /// values. 431 std::vector<LocIdx> LocIDToLocIdx; 432 433 /// Inverse map of LocIDToLocIdx. 434 IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID; 435 436 /// Unique-ification of spill slots. Used to number them -- their LocID 437 /// number is the index in SpillLocs minus one plus NumRegs. 438 UniqueVector<SpillLoc> SpillLocs; 439 440 // If we discover a new machine location, assign it an mphi with this 441 // block number. 442 unsigned CurBB; 443 444 /// Cached local copy of the number of registers the target has. 445 unsigned NumRegs; 446 447 /// Collection of register mask operands that have been observed. Second part 448 /// of pair indicates the instruction that they happened in. Used to 449 /// reconstruct where defs happened if we start tracking a location later 450 /// on. 451 SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks; 452 453 /// Iterator for locations and the values they contain. Dereferencing 454 /// produces a struct/pair containing the LocIdx key for this location, 455 /// and a reference to the value currently stored. Simplifies the process 456 /// of seeking a particular location. 457 class MLocIterator { 458 LocToValueType &ValueMap; 459 LocIdx Idx; 460 461 public: 462 class value_type { 463 public: 464 value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) { } 465 const LocIdx Idx; /// Read-only index of this location. 466 ValueIDNum &Value; /// Reference to the stored value at this location. 467 }; 468 469 MLocIterator(LocToValueType &ValueMap, LocIdx Idx) 470 : ValueMap(ValueMap), Idx(Idx) { } 471 472 bool operator==(const MLocIterator &Other) const { 473 assert(&ValueMap == &Other.ValueMap); 474 return Idx == Other.Idx; 475 } 476 477 bool operator!=(const MLocIterator &Other) const { 478 return !(*this == Other); 479 } 480 481 void operator++() { 482 Idx = LocIdx(Idx.asU64() + 1); 483 } 484 485 value_type operator*() { 486 return value_type(Idx, ValueMap[LocIdx(Idx)]); 487 } 488 }; 489 490 MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII, 491 const TargetRegisterInfo &TRI, const TargetLowering &TLI) 492 : MF(MF), TII(TII), TRI(TRI), TLI(TLI), 493 LocIdxToIDNum(ValueIDNum::EmptyValue), 494 LocIdxToLocID(0) { 495 NumRegs = TRI.getNumRegs(); 496 reset(); 497 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); 498 assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure 499 500 // Always track SP. This avoids the implicit clobbering caused by regmasks 501 // from affectings its values. (LiveDebugValues disbelieves calls and 502 // regmasks that claim to clobber SP). 503 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 504 if (SP) { 505 unsigned ID = getLocID(SP, false); 506 (void)lookupOrTrackRegister(ID); 507 } 508 } 509 510 /// Produce location ID number for indexing LocIDToLocIdx. Takes the register 511 /// or spill number, and flag for whether it's a spill or not. 512 unsigned getLocID(Register RegOrSpill, bool isSpill) { 513 return (isSpill) ? RegOrSpill.id() + NumRegs - 1 : RegOrSpill.id(); 514 } 515 516 /// Accessor for reading the value at Idx. 517 ValueIDNum getNumAtPos(LocIdx Idx) const { 518 assert(Idx.asU64() < LocIdxToIDNum.size()); 519 return LocIdxToIDNum[Idx]; 520 } 521 522 unsigned getNumLocs(void) const { return LocIdxToIDNum.size(); } 523 524 /// Reset all locations to contain a PHI value at the designated block. Used 525 /// sometimes for actual PHI values, othertimes to indicate the block entry 526 /// value (before any more information is known). 527 void setMPhis(unsigned NewCurBB) { 528 CurBB = NewCurBB; 529 for (auto Location : locations()) 530 Location.Value = {CurBB, 0, Location.Idx}; 531 } 532 533 /// Load values for each location from array of ValueIDNums. Take current 534 /// bbnum just in case we read a value from a hitherto untouched register. 535 void loadFromArray(ValueIDNum *Locs, unsigned NewCurBB) { 536 CurBB = NewCurBB; 537 // Iterate over all tracked locations, and load each locations live-in 538 // value into our local index. 539 for (auto Location : locations()) 540 Location.Value = Locs[Location.Idx.asU64()]; 541 } 542 543 /// Wipe any un-necessary location records after traversing a block. 544 void reset(void) { 545 // We could reset all the location values too; however either loadFromArray 546 // or setMPhis should be called before this object is re-used. Just 547 // clear Masks, they're definitely not needed. 548 Masks.clear(); 549 } 550 551 /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of 552 /// the information in this pass uninterpretable. 553 void clear(void) { 554 reset(); 555 LocIDToLocIdx.clear(); 556 LocIdxToLocID.clear(); 557 LocIdxToIDNum.clear(); 558 //SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from 0 559 SpillLocs = decltype(SpillLocs)(); 560 561 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); 562 } 563 564 /// Set a locaiton to a certain value. 565 void setMLoc(LocIdx L, ValueIDNum Num) { 566 assert(L.asU64() < LocIdxToIDNum.size()); 567 LocIdxToIDNum[L] = Num; 568 } 569 570 /// Create a LocIdx for an untracked register ID. Initialize it to either an 571 /// mphi value representing a live-in, or a recent register mask clobber. 572 LocIdx trackRegister(unsigned ID) { 573 assert(ID != 0); 574 LocIdx NewIdx = LocIdx(LocIdxToIDNum.size()); 575 LocIdxToIDNum.grow(NewIdx); 576 LocIdxToLocID.grow(NewIdx); 577 578 // Default: it's an mphi. 579 ValueIDNum ValNum = {CurBB, 0, NewIdx}; 580 // Was this reg ever touched by a regmask? 581 for (const auto &MaskPair : reverse(Masks)) { 582 if (MaskPair.first->clobbersPhysReg(ID)) { 583 // There was an earlier def we skipped. 584 ValNum = {CurBB, MaskPair.second, NewIdx}; 585 break; 586 } 587 } 588 589 LocIdxToIDNum[NewIdx] = ValNum; 590 LocIdxToLocID[NewIdx] = ID; 591 return NewIdx; 592 } 593 594 LocIdx lookupOrTrackRegister(unsigned ID) { 595 LocIdx &Index = LocIDToLocIdx[ID]; 596 if (Index.isIllegal()) 597 Index = trackRegister(ID); 598 return Index; 599 } 600 601 /// Record a definition of the specified register at the given block / inst. 602 /// This doesn't take a ValueIDNum, because the definition and its location 603 /// are synonymous. 604 void defReg(Register R, unsigned BB, unsigned Inst) { 605 unsigned ID = getLocID(R, false); 606 LocIdx Idx = lookupOrTrackRegister(ID); 607 ValueIDNum ValueID = {BB, Inst, Idx}; 608 LocIdxToIDNum[Idx] = ValueID; 609 } 610 611 /// Set a register to a value number. To be used if the value number is 612 /// known in advance. 613 void setReg(Register R, ValueIDNum ValueID) { 614 unsigned ID = getLocID(R, false); 615 LocIdx Idx = lookupOrTrackRegister(ID); 616 LocIdxToIDNum[Idx] = ValueID; 617 } 618 619 ValueIDNum readReg(Register R) { 620 unsigned ID = getLocID(R, false); 621 LocIdx Idx = lookupOrTrackRegister(ID); 622 return LocIdxToIDNum[Idx]; 623 } 624 625 /// Reset a register value to zero / empty. Needed to replicate the 626 /// VarLoc implementation where a copy to/from a register effectively 627 /// clears the contents of the source register. (Values can only have one 628 /// machine location in VarLocBasedImpl). 629 void wipeRegister(Register R) { 630 unsigned ID = getLocID(R, false); 631 LocIdx Idx = LocIDToLocIdx[ID]; 632 LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue; 633 } 634 635 /// Determine the LocIdx of an existing register. 636 LocIdx getRegMLoc(Register R) { 637 unsigned ID = getLocID(R, false); 638 return LocIDToLocIdx[ID]; 639 } 640 641 /// Record a RegMask operand being executed. Defs any register we currently 642 /// track, stores a pointer to the mask in case we have to account for it 643 /// later. 644 void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID) { 645 // Ensure SP exists, so that we don't override it later. 646 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 647 648 // Def any register we track have that isn't preserved. The regmask 649 // terminates the liveness of a register, meaning its value can't be 650 // relied upon -- we represent this by giving it a new value. 651 for (auto Location : locations()) { 652 unsigned ID = LocIdxToLocID[Location.Idx]; 653 // Don't clobber SP, even if the mask says it's clobbered. 654 if (ID < NumRegs && ID != SP && MO->clobbersPhysReg(ID)) 655 defReg(ID, CurBB, InstID); 656 } 657 Masks.push_back(std::make_pair(MO, InstID)); 658 } 659 660 /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked. 661 LocIdx getOrTrackSpillLoc(SpillLoc L) { 662 unsigned SpillID = SpillLocs.idFor(L); 663 if (SpillID == 0) { 664 SpillID = SpillLocs.insert(L); 665 unsigned L = getLocID(SpillID, true); 666 LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx 667 LocIdxToIDNum.grow(Idx); 668 LocIdxToLocID.grow(Idx); 669 LocIDToLocIdx.push_back(Idx); 670 LocIdxToLocID[Idx] = L; 671 return Idx; 672 } else { 673 unsigned L = getLocID(SpillID, true); 674 LocIdx Idx = LocIDToLocIdx[L]; 675 return Idx; 676 } 677 } 678 679 /// Set the value stored in a spill slot. 680 void setSpill(SpillLoc L, ValueIDNum ValueID) { 681 LocIdx Idx = getOrTrackSpillLoc(L); 682 LocIdxToIDNum[Idx] = ValueID; 683 } 684 685 /// Read whatever value is in a spill slot, or None if it isn't tracked. 686 Optional<ValueIDNum> readSpill(SpillLoc L) { 687 unsigned SpillID = SpillLocs.idFor(L); 688 if (SpillID == 0) 689 return None; 690 691 unsigned LocID = getLocID(SpillID, true); 692 LocIdx Idx = LocIDToLocIdx[LocID]; 693 return LocIdxToIDNum[Idx]; 694 } 695 696 /// Determine the LocIdx of a spill slot. Return None if it previously 697 /// hasn't had a value assigned. 698 Optional<LocIdx> getSpillMLoc(SpillLoc L) { 699 unsigned SpillID = SpillLocs.idFor(L); 700 if (SpillID == 0) 701 return None; 702 unsigned LocNo = getLocID(SpillID, true); 703 return LocIDToLocIdx[LocNo]; 704 } 705 706 /// Return true if Idx is a spill machine location. 707 bool isSpill(LocIdx Idx) const { 708 return LocIdxToLocID[Idx] >= NumRegs; 709 } 710 711 MLocIterator begin() { 712 return MLocIterator(LocIdxToIDNum, 0); 713 } 714 715 MLocIterator end() { 716 return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size()); 717 } 718 719 /// Return a range over all locations currently tracked. 720 iterator_range<MLocIterator> locations() { 721 return llvm::make_range(begin(), end()); 722 } 723 724 std::string LocIdxToName(LocIdx Idx) const { 725 unsigned ID = LocIdxToLocID[Idx]; 726 if (ID >= NumRegs) 727 return Twine("slot ").concat(Twine(ID - NumRegs)).str(); 728 else 729 return TRI.getRegAsmName(ID).str(); 730 } 731 732 std::string IDAsString(const ValueIDNum &Num) const { 733 std::string DefName = LocIdxToName(Num.getLoc()); 734 return Num.asString(DefName); 735 } 736 737 LLVM_DUMP_METHOD 738 void dump() { 739 for (auto Location : locations()) { 740 std::string MLocName = LocIdxToName(Location.Value.getLoc()); 741 std::string DefName = Location.Value.asString(MLocName); 742 dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n"; 743 } 744 } 745 746 LLVM_DUMP_METHOD 747 void dump_mloc_map() { 748 for (auto Location : locations()) { 749 std::string foo = LocIdxToName(Location.Idx); 750 dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n"; 751 } 752 } 753 754 /// Create a DBG_VALUE based on machine location \p MLoc. Qualify it with the 755 /// information in \pProperties, for variable Var. Don't insert it anywhere, 756 /// just return the builder for it. 757 MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var, 758 const DbgValueProperties &Properties) { 759 DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, 760 Var.getVariable()->getScope(), 761 const_cast<DILocation *>(Var.getInlinedAt())); 762 auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE)); 763 764 const DIExpression *Expr = Properties.DIExpr; 765 if (!MLoc) { 766 // No location -> DBG_VALUE $noreg 767 MIB.addReg(0, RegState::Debug); 768 MIB.addReg(0, RegState::Debug); 769 } else if (LocIdxToLocID[*MLoc] >= NumRegs) { 770 unsigned LocID = LocIdxToLocID[*MLoc]; 771 const SpillLoc &Spill = SpillLocs[LocID - NumRegs + 1]; 772 773 auto *TRI = MF.getSubtarget().getRegisterInfo(); 774 Expr = TRI->prependOffsetExpression(Expr, DIExpression::ApplyOffset, 775 Spill.SpillOffset); 776 unsigned Base = Spill.SpillBase; 777 MIB.addReg(Base, RegState::Debug); 778 MIB.addImm(0); 779 } else { 780 unsigned LocID = LocIdxToLocID[*MLoc]; 781 MIB.addReg(LocID, RegState::Debug); 782 if (Properties.Indirect) 783 MIB.addImm(0); 784 else 785 MIB.addReg(0, RegState::Debug); 786 } 787 788 MIB.addMetadata(Var.getVariable()); 789 MIB.addMetadata(Expr); 790 return MIB; 791 } 792 }; 793 794 /// Class recording the (high level) _value_ of a variable. Identifies either 795 /// the value of the variable as a ValueIDNum, or a constant MachineOperand. 796 /// This class also stores meta-information about how the value is qualified. 797 /// Used to reason about variable values when performing the second 798 /// (DebugVariable specific) dataflow analysis. 799 class DbgValue { 800 public: 801 union { 802 /// If Kind is Def, the value number that this value is based on. 803 ValueIDNum ID; 804 /// If Kind is Const, the MachineOperand defining this value. 805 MachineOperand MO; 806 /// For a NoVal DbgValue, which block it was generated in. 807 unsigned BlockNo; 808 }; 809 /// Qualifiers for the ValueIDNum above. 810 DbgValueProperties Properties; 811 812 typedef enum { 813 Undef, // Represents a DBG_VALUE $noreg in the transfer function only. 814 Def, // This value is defined by an inst, or is a PHI value. 815 Const, // A constant value contained in the MachineOperand field. 816 Proposed, // This is a tentative PHI value, which may be confirmed or 817 // invalidated later. 818 NoVal // Empty DbgValue, generated during dataflow. BlockNo stores 819 // which block this was generated in. 820 } KindT; 821 /// Discriminator for whether this is a constant or an in-program value. 822 KindT Kind; 823 824 DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind) 825 : ID(Val), Properties(Prop), Kind(Kind) { 826 assert(Kind == Def || Kind == Proposed); 827 } 828 829 DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind) 830 : BlockNo(BlockNo), Properties(Prop), Kind(Kind) { 831 assert(Kind == NoVal); 832 } 833 834 DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind) 835 : MO(MO), Properties(Prop), Kind(Kind) { 836 assert(Kind == Const); 837 } 838 839 DbgValue(const DbgValueProperties &Prop, KindT Kind) 840 : Properties(Prop), Kind(Kind) { 841 assert(Kind == Undef && 842 "Empty DbgValue constructor must pass in Undef kind"); 843 } 844 845 void dump(const MLocTracker *MTrack) const { 846 if (Kind == Const) { 847 MO.dump(); 848 } else if (Kind == NoVal) { 849 dbgs() << "NoVal(" << BlockNo << ")"; 850 } else if (Kind == Proposed) { 851 dbgs() << "VPHI(" << MTrack->IDAsString(ID) << ")"; 852 } else { 853 assert(Kind == Def); 854 dbgs() << MTrack->IDAsString(ID); 855 } 856 if (Properties.Indirect) 857 dbgs() << " indir"; 858 if (Properties.DIExpr) 859 dbgs() << " " << *Properties.DIExpr; 860 } 861 862 bool operator==(const DbgValue &Other) const { 863 if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties)) 864 return false; 865 else if (Kind == Proposed && ID != Other.ID) 866 return false; 867 else if (Kind == Def && ID != Other.ID) 868 return false; 869 else if (Kind == NoVal && BlockNo != Other.BlockNo) 870 return false; 871 else if (Kind == Const) 872 return MO.isIdenticalTo(Other.MO); 873 874 return true; 875 } 876 877 bool operator!=(const DbgValue &Other) const { return !(*this == Other); } 878 }; 879 880 /// Types for recording sets of variable fragments that overlap. For a given 881 /// local variable, we record all other fragments of that variable that could 882 /// overlap it, to reduce search time. 883 using FragmentOfVar = 884 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; 885 using OverlapMap = 886 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; 887 888 /// Collection of DBG_VALUEs observed when traversing a block. Records each 889 /// variable and the value the DBG_VALUE refers to. Requires the machine value 890 /// location dataflow algorithm to have run already, so that values can be 891 /// identified. 892 class VLocTracker { 893 public: 894 /// Map DebugVariable to the latest Value it's defined to have. 895 /// Needs to be a MapVector because we determine order-in-the-input-MIR from 896 /// the order in this container. 897 /// We only retain the last DbgValue in each block for each variable, to 898 /// determine the blocks live-out variable value. The Vars container forms the 899 /// transfer function for this block, as part of the dataflow analysis. The 900 /// movement of values between locations inside of a block is handled at a 901 /// much later stage, in the TransferTracker class. 902 MapVector<DebugVariable, DbgValue> Vars; 903 DenseMap<DebugVariable, const DILocation *> Scopes; 904 MachineBasicBlock *MBB; 905 906 public: 907 VLocTracker() {} 908 909 void defVar(const MachineInstr &MI, const DbgValueProperties &Properties, 910 Optional<ValueIDNum> ID) { 911 assert(MI.isDebugValue() || MI.isDebugRef()); 912 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 913 MI.getDebugLoc()->getInlinedAt()); 914 DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def) 915 : DbgValue(Properties, DbgValue::Undef); 916 917 // Attempt insertion; overwrite if it's already mapped. 918 auto Result = Vars.insert(std::make_pair(Var, Rec)); 919 if (!Result.second) 920 Result.first->second = Rec; 921 Scopes[Var] = MI.getDebugLoc().get(); 922 } 923 924 void defVar(const MachineInstr &MI, const MachineOperand &MO) { 925 // Only DBG_VALUEs can define constant-valued variables. 926 assert(MI.isDebugValue()); 927 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 928 MI.getDebugLoc()->getInlinedAt()); 929 DbgValueProperties Properties(MI); 930 DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const); 931 932 // Attempt insertion; overwrite if it's already mapped. 933 auto Result = Vars.insert(std::make_pair(Var, Rec)); 934 if (!Result.second) 935 Result.first->second = Rec; 936 Scopes[Var] = MI.getDebugLoc().get(); 937 } 938 }; 939 940 /// Tracker for converting machine value locations and variable values into 941 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs 942 /// specifying block live-in locations and transfers within blocks. 943 /// 944 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker 945 /// and must be initialized with the set of variable values that are live-in to 946 /// the block. The caller then repeatedly calls process(). TransferTracker picks 947 /// out variable locations for the live-in variable values (if there _is_ a 948 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is 949 /// stepped through, transfers of values between machine locations are 950 /// identified and if profitable, a DBG_VALUE created. 951 /// 952 /// This is where debug use-before-defs would be resolved: a variable with an 953 /// unavailable value could materialize in the middle of a block, when the 954 /// value becomes available. Or, we could detect clobbers and re-specify the 955 /// variable in a backup location. (XXX these are unimplemented). 956 class TransferTracker { 957 public: 958 const TargetInstrInfo *TII; 959 const TargetLowering *TLI; 960 /// This machine location tracker is assumed to always contain the up-to-date 961 /// value mapping for all machine locations. TransferTracker only reads 962 /// information from it. (XXX make it const?) 963 MLocTracker *MTracker; 964 MachineFunction &MF; 965 bool ShouldEmitDebugEntryValues; 966 967 /// Record of all changes in variable locations at a block position. Awkwardly 968 /// we allow inserting either before or after the point: MBB != nullptr 969 /// indicates it's before, otherwise after. 970 struct Transfer { 971 MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes 972 MachineBasicBlock *MBB; /// non-null if we should insert after. 973 SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert. 974 }; 975 976 struct LocAndProperties { 977 LocIdx Loc; 978 DbgValueProperties Properties; 979 }; 980 981 /// Collection of transfers (DBG_VALUEs) to be inserted. 982 SmallVector<Transfer, 32> Transfers; 983 984 /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences 985 /// between TransferTrackers view of variable locations and MLocTrackers. For 986 /// example, MLocTracker observes all clobbers, but TransferTracker lazily 987 /// does not. 988 std::vector<ValueIDNum> VarLocs; 989 990 /// Map from LocIdxes to which DebugVariables are based that location. 991 /// Mantained while stepping through the block. Not accurate if 992 /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx]. 993 std::map<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs; 994 995 /// Map from DebugVariable to it's current location and qualifying meta 996 /// information. To be used in conjunction with ActiveMLocs to construct 997 /// enough information for the DBG_VALUEs for a particular LocIdx. 998 DenseMap<DebugVariable, LocAndProperties> ActiveVLocs; 999 1000 /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection. 1001 SmallVector<MachineInstr *, 4> PendingDbgValues; 1002 1003 /// Record of a use-before-def: created when a value that's live-in to the 1004 /// current block isn't available in any machine location, but it will be 1005 /// defined in this block. 1006 struct UseBeforeDef { 1007 /// Value of this variable, def'd in block. 1008 ValueIDNum ID; 1009 /// Identity of this variable. 1010 DebugVariable Var; 1011 /// Additional variable properties. 1012 DbgValueProperties Properties; 1013 }; 1014 1015 /// Map from instruction index (within the block) to the set of UseBeforeDefs 1016 /// that become defined at that instruction. 1017 DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs; 1018 1019 /// The set of variables that are in UseBeforeDefs and can become a location 1020 /// once the relevant value is defined. An element being erased from this 1021 /// collection prevents the use-before-def materializing. 1022 DenseSet<DebugVariable> UseBeforeDefVariables; 1023 1024 const TargetRegisterInfo &TRI; 1025 const BitVector &CalleeSavedRegs; 1026 1027 TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker, 1028 MachineFunction &MF, const TargetRegisterInfo &TRI, 1029 const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC) 1030 : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI), 1031 CalleeSavedRegs(CalleeSavedRegs) { 1032 TLI = MF.getSubtarget().getTargetLowering(); 1033 auto &TM = TPC.getTM<TargetMachine>(); 1034 ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues(); 1035 } 1036 1037 /// Load object with live-in variable values. \p mlocs contains the live-in 1038 /// values in each machine location, while \p vlocs the live-in variable 1039 /// values. This method picks variable locations for the live-in variables, 1040 /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other 1041 /// object fields to track variable locations as we step through the block. 1042 /// FIXME: could just examine mloctracker instead of passing in \p mlocs? 1043 void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs, 1044 SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs, 1045 unsigned NumLocs) { 1046 ActiveMLocs.clear(); 1047 ActiveVLocs.clear(); 1048 VarLocs.clear(); 1049 VarLocs.reserve(NumLocs); 1050 UseBeforeDefs.clear(); 1051 UseBeforeDefVariables.clear(); 1052 1053 auto isCalleeSaved = [&](LocIdx L) { 1054 unsigned Reg = MTracker->LocIdxToLocID[L]; 1055 if (Reg >= MTracker->NumRegs) 1056 return false; 1057 for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI) 1058 if (CalleeSavedRegs.test(*RAI)) 1059 return true; 1060 return false; 1061 }; 1062 1063 // Map of the preferred location for each value. 1064 std::map<ValueIDNum, LocIdx> ValueToLoc; 1065 1066 // Produce a map of value numbers to the current machine locs they live 1067 // in. When emulating VarLocBasedImpl, there should only be one 1068 // location; when not, we get to pick. 1069 for (auto Location : MTracker->locations()) { 1070 LocIdx Idx = Location.Idx; 1071 ValueIDNum &VNum = MLocs[Idx.asU64()]; 1072 VarLocs.push_back(VNum); 1073 auto it = ValueToLoc.find(VNum); 1074 // In order of preference, pick: 1075 // * Callee saved registers, 1076 // * Other registers, 1077 // * Spill slots. 1078 if (it == ValueToLoc.end() || MTracker->isSpill(it->second) || 1079 (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) { 1080 // Insert, or overwrite if insertion failed. 1081 auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx)); 1082 if (!PrefLocRes.second) 1083 PrefLocRes.first->second = Idx; 1084 } 1085 } 1086 1087 // Now map variables to their picked LocIdxes. 1088 for (auto Var : VLocs) { 1089 if (Var.second.Kind == DbgValue::Const) { 1090 PendingDbgValues.push_back( 1091 emitMOLoc(Var.second.MO, Var.first, Var.second.Properties)); 1092 continue; 1093 } 1094 1095 // If the value has no location, we can't make a variable location. 1096 const ValueIDNum &Num = Var.second.ID; 1097 auto ValuesPreferredLoc = ValueToLoc.find(Num); 1098 if (ValuesPreferredLoc == ValueToLoc.end()) { 1099 // If it's a def that occurs in this block, register it as a 1100 // use-before-def to be resolved as we step through the block. 1101 if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI()) 1102 addUseBeforeDef(Var.first, Var.second.Properties, Num); 1103 else 1104 recoverAsEntryValue(Var.first, Var.second.Properties, Num); 1105 continue; 1106 } 1107 1108 LocIdx M = ValuesPreferredLoc->second; 1109 auto NewValue = LocAndProperties{M, Var.second.Properties}; 1110 auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue)); 1111 if (!Result.second) 1112 Result.first->second = NewValue; 1113 ActiveMLocs[M].insert(Var.first); 1114 PendingDbgValues.push_back( 1115 MTracker->emitLoc(M, Var.first, Var.second.Properties)); 1116 } 1117 flushDbgValues(MBB.begin(), &MBB); 1118 } 1119 1120 /// Record that \p Var has value \p ID, a value that becomes available 1121 /// later in the function. 1122 void addUseBeforeDef(const DebugVariable &Var, 1123 const DbgValueProperties &Properties, ValueIDNum ID) { 1124 UseBeforeDef UBD = {ID, Var, Properties}; 1125 UseBeforeDefs[ID.getInst()].push_back(UBD); 1126 UseBeforeDefVariables.insert(Var); 1127 } 1128 1129 /// After the instruction at index \p Inst and position \p pos has been 1130 /// processed, check whether it defines a variable value in a use-before-def. 1131 /// If so, and the variable value hasn't changed since the start of the 1132 /// block, create a DBG_VALUE. 1133 void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) { 1134 auto MIt = UseBeforeDefs.find(Inst); 1135 if (MIt == UseBeforeDefs.end()) 1136 return; 1137 1138 for (auto &Use : MIt->second) { 1139 LocIdx L = Use.ID.getLoc(); 1140 1141 // If something goes very wrong, we might end up labelling a COPY 1142 // instruction or similar with an instruction number, where it doesn't 1143 // actually define a new value, instead it moves a value. In case this 1144 // happens, discard. 1145 if (MTracker->LocIdxToIDNum[L] != Use.ID) 1146 continue; 1147 1148 // If a different debug instruction defined the variable value / location 1149 // since the start of the block, don't materialize this use-before-def. 1150 if (!UseBeforeDefVariables.count(Use.Var)) 1151 continue; 1152 1153 PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties)); 1154 } 1155 flushDbgValues(pos, nullptr); 1156 } 1157 1158 /// Helper to move created DBG_VALUEs into Transfers collection. 1159 void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) { 1160 if (PendingDbgValues.size() == 0) 1161 return; 1162 1163 // Pick out the instruction start position. 1164 MachineBasicBlock::instr_iterator BundleStart; 1165 if (MBB && Pos == MBB->begin()) 1166 BundleStart = MBB->instr_begin(); 1167 else 1168 BundleStart = getBundleStart(Pos->getIterator()); 1169 1170 Transfers.push_back({BundleStart, MBB, PendingDbgValues}); 1171 PendingDbgValues.clear(); 1172 } 1173 1174 bool isEntryValueVariable(const DebugVariable &Var, 1175 const DIExpression *Expr) const { 1176 if (!Var.getVariable()->isParameter()) 1177 return false; 1178 1179 if (Var.getInlinedAt()) 1180 return false; 1181 1182 if (Expr->getNumElements() > 0) 1183 return false; 1184 1185 return true; 1186 } 1187 1188 bool isEntryValueValue(const ValueIDNum &Val) const { 1189 // Must be in entry block (block number zero), and be a PHI / live-in value. 1190 if (Val.getBlock() || !Val.isPHI()) 1191 return false; 1192 1193 // Entry values must enter in a register. 1194 if (MTracker->isSpill(Val.getLoc())) 1195 return false; 1196 1197 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 1198 Register FP = TRI.getFrameRegister(MF); 1199 Register Reg = MTracker->LocIdxToLocID[Val.getLoc()]; 1200 return Reg != SP && Reg != FP; 1201 } 1202 1203 bool recoverAsEntryValue(const DebugVariable &Var, DbgValueProperties &Prop, 1204 const ValueIDNum &Num) { 1205 // Is this variable location a candidate to be an entry value. First, 1206 // should we be trying this at all? 1207 if (!ShouldEmitDebugEntryValues) 1208 return false; 1209 1210 // Is the variable appropriate for entry values (i.e., is a parameter). 1211 if (!isEntryValueVariable(Var, Prop.DIExpr)) 1212 return false; 1213 1214 // Is the value assigned to this variable still the entry value? 1215 if (!isEntryValueValue(Num)) 1216 return false; 1217 1218 // Emit a variable location using an entry value expression. 1219 DIExpression *NewExpr = 1220 DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue); 1221 Register Reg = MTracker->LocIdxToLocID[Num.getLoc()]; 1222 MachineOperand MO = MachineOperand::CreateReg(Reg, false); 1223 MO.setIsDebug(true); 1224 1225 PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect})); 1226 return true; 1227 } 1228 1229 /// Change a variable value after encountering a DBG_VALUE inside a block. 1230 void redefVar(const MachineInstr &MI) { 1231 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 1232 MI.getDebugLoc()->getInlinedAt()); 1233 DbgValueProperties Properties(MI); 1234 1235 const MachineOperand &MO = MI.getOperand(0); 1236 1237 // Ignore non-register locations, we don't transfer those. 1238 if (!MO.isReg() || MO.getReg() == 0) { 1239 auto It = ActiveVLocs.find(Var); 1240 if (It != ActiveVLocs.end()) { 1241 ActiveMLocs[It->second.Loc].erase(Var); 1242 ActiveVLocs.erase(It); 1243 } 1244 // Any use-before-defs no longer apply. 1245 UseBeforeDefVariables.erase(Var); 1246 return; 1247 } 1248 1249 Register Reg = MO.getReg(); 1250 LocIdx NewLoc = MTracker->getRegMLoc(Reg); 1251 redefVar(MI, Properties, NewLoc); 1252 } 1253 1254 /// Handle a change in variable location within a block. Terminate the 1255 /// variables current location, and record the value it now refers to, so 1256 /// that we can detect location transfers later on. 1257 void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties, 1258 Optional<LocIdx> OptNewLoc) { 1259 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 1260 MI.getDebugLoc()->getInlinedAt()); 1261 // Any use-before-defs no longer apply. 1262 UseBeforeDefVariables.erase(Var); 1263 1264 // Erase any previous location, 1265 auto It = ActiveVLocs.find(Var); 1266 if (It != ActiveVLocs.end()) 1267 ActiveMLocs[It->second.Loc].erase(Var); 1268 1269 // If there _is_ no new location, all we had to do was erase. 1270 if (!OptNewLoc) 1271 return; 1272 LocIdx NewLoc = *OptNewLoc; 1273 1274 // Check whether our local copy of values-by-location in #VarLocs is out of 1275 // date. Wipe old tracking data for the location if it's been clobbered in 1276 // the meantime. 1277 if (MTracker->getNumAtPos(NewLoc) != VarLocs[NewLoc.asU64()]) { 1278 for (auto &P : ActiveMLocs[NewLoc]) { 1279 ActiveVLocs.erase(P); 1280 } 1281 ActiveMLocs[NewLoc.asU64()].clear(); 1282 VarLocs[NewLoc.asU64()] = MTracker->getNumAtPos(NewLoc); 1283 } 1284 1285 ActiveMLocs[NewLoc].insert(Var); 1286 if (It == ActiveVLocs.end()) { 1287 ActiveVLocs.insert( 1288 std::make_pair(Var, LocAndProperties{NewLoc, Properties})); 1289 } else { 1290 It->second.Loc = NewLoc; 1291 It->second.Properties = Properties; 1292 } 1293 } 1294 1295 /// Account for a location \p mloc being clobbered. Examine the variable 1296 /// locations that will be terminated: and try to recover them by using 1297 /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to 1298 /// explicitly terminate a location if it can't be recovered. 1299 void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos, 1300 bool MakeUndef = true) { 1301 auto ActiveMLocIt = ActiveMLocs.find(MLoc); 1302 if (ActiveMLocIt == ActiveMLocs.end()) 1303 return; 1304 1305 // What was the old variable value? 1306 ValueIDNum OldValue = VarLocs[MLoc.asU64()]; 1307 VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue; 1308 1309 // Examine the remaining variable locations: if we can find the same value 1310 // again, we can recover the location. 1311 Optional<LocIdx> NewLoc = None; 1312 for (auto Loc : MTracker->locations()) 1313 if (Loc.Value == OldValue) 1314 NewLoc = Loc.Idx; 1315 1316 // If there is no location, and we weren't asked to make the variable 1317 // explicitly undef, then stop here. 1318 if (!NewLoc && !MakeUndef) { 1319 // Try and recover a few more locations with entry values. 1320 for (auto &Var : ActiveMLocIt->second) { 1321 auto &Prop = ActiveVLocs.find(Var)->second.Properties; 1322 recoverAsEntryValue(Var, Prop, OldValue); 1323 } 1324 flushDbgValues(Pos, nullptr); 1325 return; 1326 } 1327 1328 // Examine all the variables based on this location. 1329 DenseSet<DebugVariable> NewMLocs; 1330 for (auto &Var : ActiveMLocIt->second) { 1331 auto ActiveVLocIt = ActiveVLocs.find(Var); 1332 // Re-state the variable location: if there's no replacement then NewLoc 1333 // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE 1334 // identifying the alternative location will be emitted. 1335 const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr; 1336 DbgValueProperties Properties(Expr, false); 1337 PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties)); 1338 1339 // Update machine locations <=> variable locations maps. Defer updating 1340 // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator. 1341 if (!NewLoc) { 1342 ActiveVLocs.erase(ActiveVLocIt); 1343 } else { 1344 ActiveVLocIt->second.Loc = *NewLoc; 1345 NewMLocs.insert(Var); 1346 } 1347 } 1348 1349 // Commit any deferred ActiveMLoc changes. 1350 if (!NewMLocs.empty()) 1351 for (auto &Var : NewMLocs) 1352 ActiveMLocs[*NewLoc].insert(Var); 1353 1354 // We lazily track what locations have which values; if we've found a new 1355 // location for the clobbered value, remember it. 1356 if (NewLoc) 1357 VarLocs[NewLoc->asU64()] = OldValue; 1358 1359 flushDbgValues(Pos, nullptr); 1360 1361 ActiveMLocIt->second.clear(); 1362 } 1363 1364 /// Transfer variables based on \p Src to be based on \p Dst. This handles 1365 /// both register copies as well as spills and restores. Creates DBG_VALUEs 1366 /// describing the movement. 1367 void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) { 1368 // Does Src still contain the value num we expect? If not, it's been 1369 // clobbered in the meantime, and our variable locations are stale. 1370 if (VarLocs[Src.asU64()] != MTracker->getNumAtPos(Src)) 1371 return; 1372 1373 // assert(ActiveMLocs[Dst].size() == 0); 1374 //^^^ Legitimate scenario on account of un-clobbered slot being assigned to? 1375 ActiveMLocs[Dst] = ActiveMLocs[Src]; 1376 VarLocs[Dst.asU64()] = VarLocs[Src.asU64()]; 1377 1378 // For each variable based on Src; create a location at Dst. 1379 for (auto &Var : ActiveMLocs[Src]) { 1380 auto ActiveVLocIt = ActiveVLocs.find(Var); 1381 assert(ActiveVLocIt != ActiveVLocs.end()); 1382 ActiveVLocIt->second.Loc = Dst; 1383 1384 assert(Dst != 0); 1385 MachineInstr *MI = 1386 MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties); 1387 PendingDbgValues.push_back(MI); 1388 } 1389 ActiveMLocs[Src].clear(); 1390 flushDbgValues(Pos, nullptr); 1391 1392 // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data 1393 // about the old location. 1394 if (EmulateOldLDV) 1395 VarLocs[Src.asU64()] = ValueIDNum::EmptyValue; 1396 } 1397 1398 MachineInstrBuilder emitMOLoc(const MachineOperand &MO, 1399 const DebugVariable &Var, 1400 const DbgValueProperties &Properties) { 1401 DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, 1402 Var.getVariable()->getScope(), 1403 const_cast<DILocation *>(Var.getInlinedAt())); 1404 auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)); 1405 MIB.add(MO); 1406 if (Properties.Indirect) 1407 MIB.addImm(0); 1408 else 1409 MIB.addReg(0); 1410 MIB.addMetadata(Var.getVariable()); 1411 MIB.addMetadata(Properties.DIExpr); 1412 return MIB; 1413 } 1414 }; 1415 1416 class InstrRefBasedLDV : public LDVImpl { 1417 private: 1418 using FragmentInfo = DIExpression::FragmentInfo; 1419 using OptFragmentInfo = Optional<DIExpression::FragmentInfo>; 1420 1421 // Helper while building OverlapMap, a map of all fragments seen for a given 1422 // DILocalVariable. 1423 using VarToFragments = 1424 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; 1425 1426 /// Machine location/value transfer function, a mapping of which locations 1427 /// are assigned which new values. 1428 using MLocTransferMap = std::map<LocIdx, ValueIDNum>; 1429 1430 /// Live in/out structure for the variable values: a per-block map of 1431 /// variables to their values. XXX, better name? 1432 using LiveIdxT = 1433 DenseMap<const MachineBasicBlock *, DenseMap<DebugVariable, DbgValue> *>; 1434 1435 using VarAndLoc = std::pair<DebugVariable, DbgValue>; 1436 1437 /// Type for a live-in value: the predecessor block, and its value. 1438 using InValueT = std::pair<MachineBasicBlock *, DbgValue *>; 1439 1440 /// Vector (per block) of a collection (inner smallvector) of live-ins. 1441 /// Used as the result type for the variable value dataflow problem. 1442 using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>; 1443 1444 const TargetRegisterInfo *TRI; 1445 const TargetInstrInfo *TII; 1446 const TargetFrameLowering *TFI; 1447 const MachineFrameInfo *MFI; 1448 BitVector CalleeSavedRegs; 1449 LexicalScopes LS; 1450 TargetPassConfig *TPC; 1451 1452 /// Object to track machine locations as we step through a block. Could 1453 /// probably be a field rather than a pointer, as it's always used. 1454 MLocTracker *MTracker; 1455 1456 /// Number of the current block LiveDebugValues is stepping through. 1457 unsigned CurBB; 1458 1459 /// Number of the current instruction LiveDebugValues is evaluating. 1460 unsigned CurInst; 1461 1462 /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl 1463 /// steps through a block. Reads the values at each location from the 1464 /// MLocTracker object. 1465 VLocTracker *VTracker; 1466 1467 /// Tracker for transfers, listens to DBG_VALUEs and transfers of values 1468 /// between locations during stepping, creates new DBG_VALUEs when values move 1469 /// location. 1470 TransferTracker *TTracker; 1471 1472 /// Blocks which are artificial, i.e. blocks which exclusively contain 1473 /// instructions without DebugLocs, or with line 0 locations. 1474 SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks; 1475 1476 // Mapping of blocks to and from their RPOT order. 1477 DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; 1478 DenseMap<MachineBasicBlock *, unsigned int> BBToOrder; 1479 DenseMap<unsigned, unsigned> BBNumToRPO; 1480 1481 /// Pair of MachineInstr, and its 1-based offset into the containing block. 1482 using InstAndNum = std::pair<const MachineInstr *, unsigned>; 1483 /// Map from debug instruction number to the MachineInstr labelled with that 1484 /// number, and its location within the function. Used to transform 1485 /// instruction numbers in DBG_INSTR_REFs into machine value numbers. 1486 std::map<uint64_t, InstAndNum> DebugInstrNumToInstr; 1487 1488 /// Record of where we observed a DBG_PHI instruction. 1489 class DebugPHIRecord { 1490 public: 1491 uint64_t InstrNum; ///< Instruction number of this DBG_PHI. 1492 MachineBasicBlock *MBB; ///< Block where DBG_PHI occurred. 1493 ValueIDNum ValueRead; ///< The value number read by the DBG_PHI. 1494 LocIdx ReadLoc; ///< Register/Stack location the DBG_PHI reads. 1495 1496 operator unsigned() const { return InstrNum; } 1497 }; 1498 1499 /// Map from instruction numbers defined by DBG_PHIs to a record of what that 1500 /// DBG_PHI read and where. Populated and edited during the machine value 1501 /// location problem -- we use LLVMs SSA Updater to fix changes by 1502 /// optimizations that destroy PHI instructions. 1503 SmallVector<DebugPHIRecord, 32> DebugPHINumToValue; 1504 1505 // Map of overlapping variable fragments. 1506 OverlapMap OverlapFragments; 1507 VarToFragments SeenFragments; 1508 1509 /// Tests whether this instruction is a spill to a stack slot. 1510 bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF); 1511 1512 /// Decide if @MI is a spill instruction and return true if it is. We use 2 1513 /// criteria to make this decision: 1514 /// - Is this instruction a store to a spill slot? 1515 /// - Is there a register operand that is both used and killed? 1516 /// TODO: Store optimization can fold spills into other stores (including 1517 /// other spills). We do not handle this yet (more than one memory operand). 1518 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, 1519 unsigned &Reg); 1520 1521 /// If a given instruction is identified as a spill, return the spill slot 1522 /// and set \p Reg to the spilled register. 1523 Optional<SpillLoc> isRestoreInstruction(const MachineInstr &MI, 1524 MachineFunction *MF, unsigned &Reg); 1525 1526 /// Given a spill instruction, extract the register and offset used to 1527 /// address the spill slot in a target independent way. 1528 SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); 1529 1530 /// Observe a single instruction while stepping through a block. 1531 void process(MachineInstr &MI, ValueIDNum **MLiveOuts = nullptr, 1532 ValueIDNum **MLiveIns = nullptr); 1533 1534 /// Examines whether \p MI is a DBG_VALUE and notifies trackers. 1535 /// \returns true if MI was recognized and processed. 1536 bool transferDebugValue(const MachineInstr &MI); 1537 1538 /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers. 1539 /// \returns true if MI was recognized and processed. 1540 bool transferDebugInstrRef(MachineInstr &MI, ValueIDNum **MLiveOuts, 1541 ValueIDNum **MLiveIns); 1542 1543 /// Stores value-information about where this PHI occurred, and what 1544 /// instruction number is associated with it. 1545 /// \returns true if MI was recognized and processed. 1546 bool transferDebugPHI(MachineInstr &MI); 1547 1548 /// Examines whether \p MI is copy instruction, and notifies trackers. 1549 /// \returns true if MI was recognized and processed. 1550 bool transferRegisterCopy(MachineInstr &MI); 1551 1552 /// Examines whether \p MI is stack spill or restore instruction, and 1553 /// notifies trackers. \returns true if MI was recognized and processed. 1554 bool transferSpillOrRestoreInst(MachineInstr &MI); 1555 1556 /// Examines \p MI for any registers that it defines, and notifies trackers. 1557 void transferRegisterDef(MachineInstr &MI); 1558 1559 /// Copy one location to the other, accounting for movement of subregisters 1560 /// too. 1561 void performCopy(Register Src, Register Dst); 1562 1563 void accumulateFragmentMap(MachineInstr &MI); 1564 1565 /// Determine the machine value number referred to by (potentially several) 1566 /// DBG_PHI instructions. Block duplication and tail folding can duplicate 1567 /// DBG_PHIs, shifting the position where values in registers merge, and 1568 /// forming another mini-ssa problem to solve. 1569 /// \p Here the position of a DBG_INSTR_REF seeking a machine value number 1570 /// \p InstrNum Debug instruction number defined by DBG_PHI instructions. 1571 /// \returns The machine value number at position Here, or None. 1572 Optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF, 1573 ValueIDNum **MLiveOuts, 1574 ValueIDNum **MLiveIns, MachineInstr &Here, 1575 uint64_t InstrNum); 1576 1577 /// Step through the function, recording register definitions and movements 1578 /// in an MLocTracker. Convert the observations into a per-block transfer 1579 /// function in \p MLocTransfer, suitable for using with the machine value 1580 /// location dataflow problem. 1581 void 1582 produceMLocTransferFunction(MachineFunction &MF, 1583 SmallVectorImpl<MLocTransferMap> &MLocTransfer, 1584 unsigned MaxNumBlocks); 1585 1586 /// Solve the machine value location dataflow problem. Takes as input the 1587 /// transfer functions in \p MLocTransfer. Writes the output live-in and 1588 /// live-out arrays to the (initialized to zero) multidimensional arrays in 1589 /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block 1590 /// number, the inner by LocIdx. 1591 void mlocDataflow(ValueIDNum **MInLocs, ValueIDNum **MOutLocs, 1592 SmallVectorImpl<MLocTransferMap> &MLocTransfer); 1593 1594 /// Perform a control flow join (lattice value meet) of the values in machine 1595 /// locations at \p MBB. Follows the algorithm described in the file-comment, 1596 /// reading live-outs of predecessors from \p OutLocs, the current live ins 1597 /// from \p InLocs, and assigning the newly computed live ins back into 1598 /// \p InLocs. \returns two bools -- the first indicates whether a change 1599 /// was made, the second whether a lattice downgrade occurred. If the latter 1600 /// is true, revisiting this block is necessary. 1601 std::tuple<bool, bool> 1602 mlocJoin(MachineBasicBlock &MBB, 1603 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1604 ValueIDNum **OutLocs, ValueIDNum *InLocs); 1605 1606 /// Solve the variable value dataflow problem, for a single lexical scope. 1607 /// Uses the algorithm from the file comment to resolve control flow joins, 1608 /// although there are extra hacks, see vlocJoin. Reads the 1609 /// locations of values from the \p MInLocs and \p MOutLocs arrays (see 1610 /// mlocDataflow) and reads the variable values transfer function from 1611 /// \p AllTheVlocs. Live-in and Live-out variable values are stored locally, 1612 /// with the live-ins permanently stored to \p Output once the fixedpoint is 1613 /// reached. 1614 /// \p VarsWeCareAbout contains a collection of the variables in \p Scope 1615 /// that we should be tracking. 1616 /// \p AssignBlocks contains the set of blocks that aren't in \p Scope, but 1617 /// which do contain DBG_VALUEs, which VarLocBasedImpl tracks locations 1618 /// through. 1619 void vlocDataflow(const LexicalScope *Scope, const DILocation *DILoc, 1620 const SmallSet<DebugVariable, 4> &VarsWeCareAbout, 1621 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, 1622 LiveInsT &Output, ValueIDNum **MOutLocs, 1623 ValueIDNum **MInLocs, 1624 SmallVectorImpl<VLocTracker> &AllTheVLocs); 1625 1626 /// Compute the live-ins to a block, considering control flow merges according 1627 /// to the method in the file comment. Live out and live in variable values 1628 /// are stored in \p VLOCOutLocs and \p VLOCInLocs. The live-ins for \p MBB 1629 /// are computed and stored into \p VLOCInLocs. \returns true if the live-ins 1630 /// are modified. 1631 /// \p InLocsT Output argument, storage for calculated live-ins. 1632 /// \returns two bools -- the first indicates whether a change 1633 /// was made, the second whether a lattice downgrade occurred. If the latter 1634 /// is true, revisiting this block is necessary. 1635 std::tuple<bool, bool> 1636 vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs, 1637 SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, 1638 unsigned BBNum, const SmallSet<DebugVariable, 4> &AllVars, 1639 ValueIDNum **MOutLocs, ValueIDNum **MInLocs, 1640 SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks, 1641 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, 1642 DenseMap<DebugVariable, DbgValue> &InLocsT); 1643 1644 /// Continue exploration of the variable-value lattice, as explained in the 1645 /// file-level comment. \p OldLiveInLocation contains the current 1646 /// exploration position, from which we need to descend further. \p Values 1647 /// contains the set of live-in values, \p CurBlockRPONum the RPO number of 1648 /// the current block, and \p CandidateLocations a set of locations that 1649 /// should be considered as PHI locations, if we reach the bottom of the 1650 /// lattice. \returns true if we should downgrade; the value is the agreeing 1651 /// value number in a non-backedge predecessor. 1652 bool vlocDowngradeLattice(const MachineBasicBlock &MBB, 1653 const DbgValue &OldLiveInLocation, 1654 const SmallVectorImpl<InValueT> &Values, 1655 unsigned CurBlockRPONum); 1656 1657 /// For the given block and live-outs feeding into it, try to find a 1658 /// machine location where they all join. If a solution for all predecessors 1659 /// can't be found, a location where all non-backedge-predecessors join 1660 /// will be returned instead. While this method finds a join location, this 1661 /// says nothing as to whether it should be used. 1662 /// \returns Pair of value ID if found, and true when the correct value 1663 /// is available on all predecessor edges, or false if it's only available 1664 /// for non-backedge predecessors. 1665 std::tuple<Optional<ValueIDNum>, bool> 1666 pickVPHILoc(MachineBasicBlock &MBB, const DebugVariable &Var, 1667 const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs, 1668 ValueIDNum **MInLocs, 1669 const SmallVectorImpl<MachineBasicBlock *> &BlockOrders); 1670 1671 /// Given the solutions to the two dataflow problems, machine value locations 1672 /// in \p MInLocs and live-in variable values in \p SavedLiveIns, runs the 1673 /// TransferTracker class over the function to produce live-in and transfer 1674 /// DBG_VALUEs, then inserts them. Groups of DBG_VALUEs are inserted in the 1675 /// order given by AllVarsNumbering -- this could be any stable order, but 1676 /// right now "order of appearence in function, when explored in RPO", so 1677 /// that we can compare explictly against VarLocBasedImpl. 1678 void emitLocations(MachineFunction &MF, LiveInsT SavedLiveIns, 1679 ValueIDNum **MOutLocs, ValueIDNum **MInLocs, 1680 DenseMap<DebugVariable, unsigned> &AllVarsNumbering, 1681 const TargetPassConfig &TPC); 1682 1683 /// Boilerplate computation of some initial sets, artifical blocks and 1684 /// RPOT block ordering. 1685 void initialSetup(MachineFunction &MF); 1686 1687 bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC, 1688 unsigned InputBBLimit, unsigned InputDbgValLimit) override; 1689 1690 public: 1691 /// Default construct and initialize the pass. 1692 InstrRefBasedLDV(); 1693 1694 LLVM_DUMP_METHOD 1695 void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const; 1696 1697 bool isCalleeSaved(LocIdx L) { 1698 unsigned Reg = MTracker->LocIdxToLocID[L]; 1699 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1700 if (CalleeSavedRegs.test(*RAI)) 1701 return true; 1702 return false; 1703 } 1704 }; 1705 1706 } // end anonymous namespace 1707 1708 //===----------------------------------------------------------------------===// 1709 // Implementation 1710 //===----------------------------------------------------------------------===// 1711 1712 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX}; 1713 1714 /// Default construct and initialize the pass. 1715 InstrRefBasedLDV::InstrRefBasedLDV() {} 1716 1717 //===----------------------------------------------------------------------===// 1718 // Debug Range Extension Implementation 1719 //===----------------------------------------------------------------------===// 1720 1721 #ifndef NDEBUG 1722 // Something to restore in the future. 1723 // void InstrRefBasedLDV::printVarLocInMBB(..) 1724 #endif 1725 1726 SpillLoc 1727 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { 1728 assert(MI.hasOneMemOperand() && 1729 "Spill instruction does not have exactly one memory operand?"); 1730 auto MMOI = MI.memoperands_begin(); 1731 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 1732 assert(PVal->kind() == PseudoSourceValue::FixedStack && 1733 "Inconsistent memory operand in spill instruction"); 1734 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); 1735 const MachineBasicBlock *MBB = MI.getParent(); 1736 Register Reg; 1737 StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); 1738 return {Reg, Offset}; 1739 } 1740 1741 /// End all previous ranges related to @MI and start a new range from @MI 1742 /// if it is a DBG_VALUE instr. 1743 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) { 1744 if (!MI.isDebugValue()) 1745 return false; 1746 1747 const DILocalVariable *Var = MI.getDebugVariable(); 1748 const DIExpression *Expr = MI.getDebugExpression(); 1749 const DILocation *DebugLoc = MI.getDebugLoc(); 1750 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 1751 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 1752 "Expected inlined-at fields to agree"); 1753 1754 DebugVariable V(Var, Expr, InlinedAt); 1755 DbgValueProperties Properties(MI); 1756 1757 // If there are no instructions in this lexical scope, do no location tracking 1758 // at all, this variable shouldn't get a legitimate location range. 1759 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); 1760 if (Scope == nullptr) 1761 return true; // handled it; by doing nothing 1762 1763 const MachineOperand &MO = MI.getOperand(0); 1764 1765 // MLocTracker needs to know that this register is read, even if it's only 1766 // read by a debug inst. 1767 if (MO.isReg() && MO.getReg() != 0) 1768 (void)MTracker->readReg(MO.getReg()); 1769 1770 // If we're preparing for the second analysis (variables), the machine value 1771 // locations are already solved, and we report this DBG_VALUE and the value 1772 // it refers to to VLocTracker. 1773 if (VTracker) { 1774 if (MO.isReg()) { 1775 // Feed defVar the new variable location, or if this is a 1776 // DBG_VALUE $noreg, feed defVar None. 1777 if (MO.getReg()) 1778 VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg())); 1779 else 1780 VTracker->defVar(MI, Properties, None); 1781 } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() || 1782 MI.getOperand(0).isCImm()) { 1783 VTracker->defVar(MI, MI.getOperand(0)); 1784 } 1785 } 1786 1787 // If performing final tracking of transfers, report this variable definition 1788 // to the TransferTracker too. 1789 if (TTracker) 1790 TTracker->redefVar(MI); 1791 return true; 1792 } 1793 1794 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI, 1795 ValueIDNum **MLiveOuts, 1796 ValueIDNum **MLiveIns) { 1797 if (!MI.isDebugRef()) 1798 return false; 1799 1800 // Only handle this instruction when we are building the variable value 1801 // transfer function. 1802 if (!VTracker) 1803 return false; 1804 1805 unsigned InstNo = MI.getOperand(0).getImm(); 1806 unsigned OpNo = MI.getOperand(1).getImm(); 1807 1808 const DILocalVariable *Var = MI.getDebugVariable(); 1809 const DIExpression *Expr = MI.getDebugExpression(); 1810 const DILocation *DebugLoc = MI.getDebugLoc(); 1811 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 1812 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 1813 "Expected inlined-at fields to agree"); 1814 1815 DebugVariable V(Var, Expr, InlinedAt); 1816 1817 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); 1818 if (Scope == nullptr) 1819 return true; // Handled by doing nothing. This variable is never in scope. 1820 1821 const MachineFunction &MF = *MI.getParent()->getParent(); 1822 1823 // Various optimizations may have happened to the value during codegen, 1824 // recorded in the value substitution table. Apply any substitutions to 1825 // the instruction / operand number in this DBG_INSTR_REF, and collect 1826 // any subregister extractions performed during optimization. 1827 1828 // Create dummy substitution with Src set, for lookup. 1829 auto SoughtSub = 1830 MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0); 1831 1832 SmallVector<unsigned, 4> SeenSubregs; 1833 auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub); 1834 while (LowerBoundIt != MF.DebugValueSubstitutions.end() && 1835 LowerBoundIt->Src == SoughtSub.Src) { 1836 std::tie(InstNo, OpNo) = LowerBoundIt->Dest; 1837 SoughtSub.Src = LowerBoundIt->Dest; 1838 if (unsigned Subreg = LowerBoundIt->Subreg) 1839 SeenSubregs.push_back(Subreg); 1840 LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub); 1841 } 1842 1843 // Default machine value number is <None> -- if no instruction defines 1844 // the corresponding value, it must have been optimized out. 1845 Optional<ValueIDNum> NewID = None; 1846 1847 // Try to lookup the instruction number, and find the machine value number 1848 // that it defines. It could be an instruction, or a PHI. 1849 auto InstrIt = DebugInstrNumToInstr.find(InstNo); 1850 auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(), 1851 DebugPHINumToValue.end(), InstNo); 1852 if (InstrIt != DebugInstrNumToInstr.end()) { 1853 const MachineInstr &TargetInstr = *InstrIt->second.first; 1854 uint64_t BlockNo = TargetInstr.getParent()->getNumber(); 1855 1856 // Pick out the designated operand. 1857 assert(OpNo < TargetInstr.getNumOperands()); 1858 const MachineOperand &MO = TargetInstr.getOperand(OpNo); 1859 1860 // Today, this can only be a register. 1861 assert(MO.isReg() && MO.isDef()); 1862 1863 unsigned LocID = MTracker->getLocID(MO.getReg(), false); 1864 LocIdx L = MTracker->LocIDToLocIdx[LocID]; 1865 NewID = ValueIDNum(BlockNo, InstrIt->second.second, L); 1866 } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) { 1867 // It's actually a PHI value. Which value it is might not be obvious, use 1868 // the resolver helper to find out. 1869 NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns, 1870 MI, InstNo); 1871 } 1872 1873 // Apply any subregister extractions, in reverse. We might have seen code 1874 // like this: 1875 // CALL64 @foo, implicit-def $rax 1876 // %0:gr64 = COPY $rax 1877 // %1:gr32 = COPY %0.sub_32bit 1878 // %2:gr16 = COPY %1.sub_16bit 1879 // %3:gr8 = COPY %2.sub_8bit 1880 // In which case each copy would have been recorded as a substitution with 1881 // a subregister qualifier. Apply those qualifiers now. 1882 if (NewID && !SeenSubregs.empty()) { 1883 unsigned Offset = 0; 1884 unsigned Size = 0; 1885 1886 // Look at each subregister that we passed through, and progressively 1887 // narrow in, accumulating any offsets that occur. Substitutions should 1888 // only ever be the same or narrower width than what they read from; 1889 // iterate in reverse order so that we go from wide to small. 1890 for (unsigned Subreg : reverse(SeenSubregs)) { 1891 unsigned ThisSize = TRI->getSubRegIdxSize(Subreg); 1892 unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg); 1893 Offset += ThisOffset; 1894 Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize); 1895 } 1896 1897 // If that worked, look for an appropriate subregister with the register 1898 // where the define happens. Don't look at values that were defined during 1899 // a stack write: we can't currently express register locations within 1900 // spills. 1901 LocIdx L = NewID->getLoc(); 1902 if (NewID && !MTracker->isSpill(L)) { 1903 // Find the register class for the register where this def happened. 1904 // FIXME: no index for this? 1905 Register Reg = MTracker->LocIdxToLocID[L]; 1906 const TargetRegisterClass *TRC = nullptr; 1907 for (auto *TRCI : TRI->regclasses()) 1908 if (TRCI->contains(Reg)) 1909 TRC = TRCI; 1910 assert(TRC && "Couldn't find target register class?"); 1911 1912 // If the register we have isn't the right size or in the right place, 1913 // Try to find a subregister inside it. 1914 unsigned MainRegSize = TRI->getRegSizeInBits(*TRC); 1915 if (Size != MainRegSize || Offset) { 1916 // Enumerate all subregisters, searching. 1917 Register NewReg = 0; 1918 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) { 1919 unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI); 1920 unsigned SubregSize = TRI->getSubRegIdxSize(Subreg); 1921 unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg); 1922 if (SubregSize == Size && SubregOffset == Offset) { 1923 NewReg = *SRI; 1924 break; 1925 } 1926 } 1927 1928 // If we didn't find anything: there's no way to express our value. 1929 if (!NewReg) { 1930 NewID = None; 1931 } else { 1932 // Re-state the value as being defined within the subregister 1933 // that we found. 1934 LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg); 1935 NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc); 1936 } 1937 } 1938 } else { 1939 // If we can't handle subregisters, unset the new value. 1940 NewID = None; 1941 } 1942 } 1943 1944 // We, we have a value number or None. Tell the variable value tracker about 1945 // it. The rest of this LiveDebugValues implementation acts exactly the same 1946 // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that 1947 // aren't immediately available). 1948 DbgValueProperties Properties(Expr, false); 1949 VTracker->defVar(MI, Properties, NewID); 1950 1951 // If we're on the final pass through the function, decompose this INSTR_REF 1952 // into a plain DBG_VALUE. 1953 if (!TTracker) 1954 return true; 1955 1956 // Pick a location for the machine value number, if such a location exists. 1957 // (This information could be stored in TransferTracker to make it faster). 1958 Optional<LocIdx> FoundLoc = None; 1959 for (auto Location : MTracker->locations()) { 1960 LocIdx CurL = Location.Idx; 1961 ValueIDNum ID = MTracker->LocIdxToIDNum[CurL]; 1962 if (NewID && ID == NewID) { 1963 // If this is the first location with that value, pick it. Otherwise, 1964 // consider whether it's a "longer term" location. 1965 if (!FoundLoc) { 1966 FoundLoc = CurL; 1967 continue; 1968 } 1969 1970 if (MTracker->isSpill(CurL)) 1971 FoundLoc = CurL; // Spills are a longer term location. 1972 else if (!MTracker->isSpill(*FoundLoc) && 1973 !MTracker->isSpill(CurL) && 1974 !isCalleeSaved(*FoundLoc) && 1975 isCalleeSaved(CurL)) 1976 FoundLoc = CurL; // Callee saved regs are longer term than normal. 1977 } 1978 } 1979 1980 // Tell transfer tracker that the variable value has changed. 1981 TTracker->redefVar(MI, Properties, FoundLoc); 1982 1983 // If there was a value with no location; but the value is defined in a 1984 // later instruction in this block, this is a block-local use-before-def. 1985 if (!FoundLoc && NewID && NewID->getBlock() == CurBB && 1986 NewID->getInst() > CurInst) 1987 TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID); 1988 1989 // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant. 1990 // This DBG_VALUE is potentially a $noreg / undefined location, if 1991 // FoundLoc is None. 1992 // (XXX -- could morph the DBG_INSTR_REF in the future). 1993 MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties); 1994 TTracker->PendingDbgValues.push_back(DbgMI); 1995 TTracker->flushDbgValues(MI.getIterator(), nullptr); 1996 return true; 1997 } 1998 1999 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) { 2000 if (!MI.isDebugPHI()) 2001 return false; 2002 2003 // Analyse these only when solving the machine value location problem. 2004 if (VTracker || TTracker) 2005 return true; 2006 2007 // First operand is the value location, either a stack slot or register. 2008 // Second is the debug instruction number of the original PHI. 2009 const MachineOperand &MO = MI.getOperand(0); 2010 unsigned InstrNum = MI.getOperand(1).getImm(); 2011 2012 if (MO.isReg()) { 2013 // The value is whatever's currently in the register. Read and record it, 2014 // to be analysed later. 2015 Register Reg = MO.getReg(); 2016 ValueIDNum Num = MTracker->readReg(Reg); 2017 auto PHIRec = DebugPHIRecord( 2018 {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)}); 2019 DebugPHINumToValue.push_back(PHIRec); 2020 } else { 2021 // The value is whatever's in this stack slot. 2022 assert(MO.isFI()); 2023 unsigned FI = MO.getIndex(); 2024 2025 // If the stack slot is dead, then this was optimized away. 2026 // FIXME: stack slot colouring should account for slots that get merged. 2027 if (MFI->isDeadObjectIndex(FI)) 2028 return true; 2029 2030 // Identify this spill slot. 2031 Register Base; 2032 StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base); 2033 SpillLoc SL = {Base, Offs}; 2034 Optional<ValueIDNum> Num = MTracker->readSpill(SL); 2035 2036 if (!Num) 2037 // Nothing ever writes to this slot. Curious, but nothing we can do. 2038 return true; 2039 2040 // Record this DBG_PHI for later analysis. 2041 auto DbgPHI = DebugPHIRecord( 2042 {InstrNum, MI.getParent(), *Num, *MTracker->getSpillMLoc(SL)}); 2043 DebugPHINumToValue.push_back(DbgPHI); 2044 } 2045 2046 return true; 2047 } 2048 2049 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) { 2050 // Meta Instructions do not affect the debug liveness of any register they 2051 // define. 2052 if (MI.isImplicitDef()) { 2053 // Except when there's an implicit def, and the location it's defining has 2054 // no value number. The whole point of an implicit def is to announce that 2055 // the register is live, without be specific about it's value. So define 2056 // a value if there isn't one already. 2057 ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg()); 2058 // Has a legitimate value -> ignore the implicit def. 2059 if (Num.getLoc() != 0) 2060 return; 2061 // Otherwise, def it here. 2062 } else if (MI.isMetaInstruction()) 2063 return; 2064 2065 MachineFunction *MF = MI.getMF(); 2066 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2067 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 2068 2069 // Find the regs killed by MI, and find regmasks of preserved regs. 2070 // Max out the number of statically allocated elements in `DeadRegs`, as this 2071 // prevents fallback to std::set::count() operations. 2072 SmallSet<uint32_t, 32> DeadRegs; 2073 SmallVector<const uint32_t *, 4> RegMasks; 2074 SmallVector<const MachineOperand *, 4> RegMaskPtrs; 2075 for (const MachineOperand &MO : MI.operands()) { 2076 // Determine whether the operand is a register def. 2077 if (MO.isReg() && MO.isDef() && MO.getReg() && 2078 Register::isPhysicalRegister(MO.getReg()) && 2079 !(MI.isCall() && MO.getReg() == SP)) { 2080 // Remove ranges of all aliased registers. 2081 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 2082 // FIXME: Can we break out of this loop early if no insertion occurs? 2083 DeadRegs.insert(*RAI); 2084 } else if (MO.isRegMask()) { 2085 RegMasks.push_back(MO.getRegMask()); 2086 RegMaskPtrs.push_back(&MO); 2087 } 2088 } 2089 2090 // Tell MLocTracker about all definitions, of regmasks and otherwise. 2091 for (uint32_t DeadReg : DeadRegs) 2092 MTracker->defReg(DeadReg, CurBB, CurInst); 2093 2094 for (auto *MO : RegMaskPtrs) 2095 MTracker->writeRegMask(MO, CurBB, CurInst); 2096 2097 if (!TTracker) 2098 return; 2099 2100 // When committing variable values to locations: tell transfer tracker that 2101 // we've clobbered things. It may be able to recover the variable from a 2102 // different location. 2103 2104 // Inform TTracker about any direct clobbers. 2105 for (uint32_t DeadReg : DeadRegs) { 2106 LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg); 2107 TTracker->clobberMloc(Loc, MI.getIterator(), false); 2108 } 2109 2110 // Look for any clobbers performed by a register mask. Only test locations 2111 // that are actually being tracked. 2112 for (auto L : MTracker->locations()) { 2113 // Stack locations can't be clobbered by regmasks. 2114 if (MTracker->isSpill(L.Idx)) 2115 continue; 2116 2117 Register Reg = MTracker->LocIdxToLocID[L.Idx]; 2118 for (auto *MO : RegMaskPtrs) 2119 if (MO->clobbersPhysReg(Reg)) 2120 TTracker->clobberMloc(L.Idx, MI.getIterator(), false); 2121 } 2122 } 2123 2124 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) { 2125 ValueIDNum SrcValue = MTracker->readReg(SrcRegNum); 2126 2127 MTracker->setReg(DstRegNum, SrcValue); 2128 2129 // In all circumstances, re-def the super registers. It's definitely a new 2130 // value now. This doesn't uniquely identify the composition of subregs, for 2131 // example, two identical values in subregisters composed in different 2132 // places would not get equal value numbers. 2133 for (MCSuperRegIterator SRI(DstRegNum, TRI); SRI.isValid(); ++SRI) 2134 MTracker->defReg(*SRI, CurBB, CurInst); 2135 2136 // If we're emulating VarLocBasedImpl, just define all the subregisters. 2137 // DBG_VALUEs of them will expect to be tracked from the DBG_VALUE, not 2138 // through prior copies. 2139 if (EmulateOldLDV) { 2140 for (MCSubRegIndexIterator DRI(DstRegNum, TRI); DRI.isValid(); ++DRI) 2141 MTracker->defReg(DRI.getSubReg(), CurBB, CurInst); 2142 return; 2143 } 2144 2145 // Otherwise, actually copy subregisters from one location to another. 2146 // XXX: in addition, any subregisters of DstRegNum that don't line up with 2147 // the source register should be def'd. 2148 for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) { 2149 unsigned SrcSubReg = SRI.getSubReg(); 2150 unsigned SubRegIdx = SRI.getSubRegIndex(); 2151 unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx); 2152 if (!DstSubReg) 2153 continue; 2154 2155 // Do copy. There are two matching subregisters, the source value should 2156 // have been def'd when the super-reg was, the latter might not be tracked 2157 // yet. 2158 // This will force SrcSubReg to be tracked, if it isn't yet. 2159 (void)MTracker->readReg(SrcSubReg); 2160 LocIdx SrcL = MTracker->getRegMLoc(SrcSubReg); 2161 assert(SrcL.asU64()); 2162 (void)MTracker->readReg(DstSubReg); 2163 LocIdx DstL = MTracker->getRegMLoc(DstSubReg); 2164 assert(DstL.asU64()); 2165 (void)DstL; 2166 ValueIDNum CpyValue = {SrcValue.getBlock(), SrcValue.getInst(), SrcL}; 2167 2168 MTracker->setReg(DstSubReg, CpyValue); 2169 } 2170 } 2171 2172 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI, 2173 MachineFunction *MF) { 2174 // TODO: Handle multiple stores folded into one. 2175 if (!MI.hasOneMemOperand()) 2176 return false; 2177 2178 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) 2179 return false; // This is not a spill instruction, since no valid size was 2180 // returned from either function. 2181 2182 return true; 2183 } 2184 2185 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI, 2186 MachineFunction *MF, unsigned &Reg) { 2187 if (!isSpillInstruction(MI, MF)) 2188 return false; 2189 2190 int FI; 2191 Reg = TII->isStoreToStackSlotPostFE(MI, FI); 2192 return Reg != 0; 2193 } 2194 2195 Optional<SpillLoc> 2196 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI, 2197 MachineFunction *MF, unsigned &Reg) { 2198 if (!MI.hasOneMemOperand()) 2199 return None; 2200 2201 // FIXME: Handle folded restore instructions with more than one memory 2202 // operand. 2203 if (MI.getRestoreSize(TII)) { 2204 Reg = MI.getOperand(0).getReg(); 2205 return extractSpillBaseRegAndOffset(MI); 2206 } 2207 return None; 2208 } 2209 2210 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) { 2211 // XXX -- it's too difficult to implement VarLocBasedImpl's stack location 2212 // limitations under the new model. Therefore, when comparing them, compare 2213 // versions that don't attempt spills or restores at all. 2214 if (EmulateOldLDV) 2215 return false; 2216 2217 MachineFunction *MF = MI.getMF(); 2218 unsigned Reg; 2219 Optional<SpillLoc> Loc; 2220 2221 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); 2222 2223 // First, if there are any DBG_VALUEs pointing at a spill slot that is 2224 // written to, terminate that variable location. The value in memory 2225 // will have changed. DbgEntityHistoryCalculator doesn't try to detect this. 2226 if (isSpillInstruction(MI, MF)) { 2227 Loc = extractSpillBaseRegAndOffset(MI); 2228 2229 if (TTracker) { 2230 Optional<LocIdx> MLoc = MTracker->getSpillMLoc(*Loc); 2231 if (MLoc) { 2232 // Un-set this location before clobbering, so that we don't salvage 2233 // the variable location back to the same place. 2234 MTracker->setMLoc(*MLoc, ValueIDNum::EmptyValue); 2235 TTracker->clobberMloc(*MLoc, MI.getIterator()); 2236 } 2237 } 2238 } 2239 2240 // Try to recognise spill and restore instructions that may transfer a value. 2241 if (isLocationSpill(MI, MF, Reg)) { 2242 Loc = extractSpillBaseRegAndOffset(MI); 2243 auto ValueID = MTracker->readReg(Reg); 2244 2245 // If the location is empty, produce a phi, signify it's the live-in value. 2246 if (ValueID.getLoc() == 0) 2247 ValueID = {CurBB, 0, MTracker->getRegMLoc(Reg)}; 2248 2249 MTracker->setSpill(*Loc, ValueID); 2250 auto OptSpillLocIdx = MTracker->getSpillMLoc(*Loc); 2251 assert(OptSpillLocIdx && "Spill slot set but has no LocIdx?"); 2252 LocIdx SpillLocIdx = *OptSpillLocIdx; 2253 2254 // Tell TransferTracker about this spill, produce DBG_VALUEs for it. 2255 if (TTracker) 2256 TTracker->transferMlocs(MTracker->getRegMLoc(Reg), SpillLocIdx, 2257 MI.getIterator()); 2258 } else { 2259 if (!(Loc = isRestoreInstruction(MI, MF, Reg))) 2260 return false; 2261 2262 // Is there a value to be restored? 2263 auto OptValueID = MTracker->readSpill(*Loc); 2264 if (OptValueID) { 2265 ValueIDNum ValueID = *OptValueID; 2266 LocIdx SpillLocIdx = *MTracker->getSpillMLoc(*Loc); 2267 // XXX -- can we recover sub-registers of this value? Until we can, first 2268 // overwrite all defs of the register being restored to. 2269 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 2270 MTracker->defReg(*RAI, CurBB, CurInst); 2271 2272 // Now override the reg we're restoring to. 2273 MTracker->setReg(Reg, ValueID); 2274 2275 // Report this restore to the transfer tracker too. 2276 if (TTracker) 2277 TTracker->transferMlocs(SpillLocIdx, MTracker->getRegMLoc(Reg), 2278 MI.getIterator()); 2279 } else { 2280 // There isn't anything in the location; not clear if this is a code path 2281 // that still runs. Def this register anyway just in case. 2282 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 2283 MTracker->defReg(*RAI, CurBB, CurInst); 2284 2285 // Force the spill slot to be tracked. 2286 LocIdx L = MTracker->getOrTrackSpillLoc(*Loc); 2287 2288 // Set the restored value to be a machine phi number, signifying that it's 2289 // whatever the spills live-in value is in this block. Definitely has 2290 // a LocIdx due to the setSpill above. 2291 ValueIDNum ValueID = {CurBB, 0, L}; 2292 MTracker->setReg(Reg, ValueID); 2293 MTracker->setSpill(*Loc, ValueID); 2294 } 2295 } 2296 return true; 2297 } 2298 2299 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) { 2300 auto DestSrc = TII->isCopyInstr(MI); 2301 if (!DestSrc) 2302 return false; 2303 2304 const MachineOperand *DestRegOp = DestSrc->Destination; 2305 const MachineOperand *SrcRegOp = DestSrc->Source; 2306 2307 auto isCalleeSavedReg = [&](unsigned Reg) { 2308 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 2309 if (CalleeSavedRegs.test(*RAI)) 2310 return true; 2311 return false; 2312 }; 2313 2314 Register SrcReg = SrcRegOp->getReg(); 2315 Register DestReg = DestRegOp->getReg(); 2316 2317 // Ignore identity copies. Yep, these make it as far as LiveDebugValues. 2318 if (SrcReg == DestReg) 2319 return true; 2320 2321 // For emulating VarLocBasedImpl: 2322 // We want to recognize instructions where destination register is callee 2323 // saved register. If register that could be clobbered by the call is 2324 // included, there would be a great chance that it is going to be clobbered 2325 // soon. It is more likely that previous register, which is callee saved, is 2326 // going to stay unclobbered longer, even if it is killed. 2327 // 2328 // For InstrRefBasedImpl, we can track multiple locations per value, so 2329 // ignore this condition. 2330 if (EmulateOldLDV && !isCalleeSavedReg(DestReg)) 2331 return false; 2332 2333 // InstrRefBasedImpl only followed killing copies. 2334 if (EmulateOldLDV && !SrcRegOp->isKill()) 2335 return false; 2336 2337 // Copy MTracker info, including subregs if available. 2338 InstrRefBasedLDV::performCopy(SrcReg, DestReg); 2339 2340 // Only produce a transfer of DBG_VALUE within a block where old LDV 2341 // would have. We might make use of the additional value tracking in some 2342 // other way, later. 2343 if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill()) 2344 TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg), 2345 MTracker->getRegMLoc(DestReg), MI.getIterator()); 2346 2347 // VarLocBasedImpl would quit tracking the old location after copying. 2348 if (EmulateOldLDV && SrcReg != DestReg) 2349 MTracker->defReg(SrcReg, CurBB, CurInst); 2350 2351 // Finally, the copy might have clobbered variables based on the destination 2352 // register. Tell TTracker about it, in case a backup location exists. 2353 if (TTracker) { 2354 for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) { 2355 LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI); 2356 TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false); 2357 } 2358 } 2359 2360 return true; 2361 } 2362 2363 /// Accumulate a mapping between each DILocalVariable fragment and other 2364 /// fragments of that DILocalVariable which overlap. This reduces work during 2365 /// the data-flow stage from "Find any overlapping fragments" to "Check if the 2366 /// known-to-overlap fragments are present". 2367 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for 2368 /// fragment usage. 2369 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) { 2370 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), 2371 MI.getDebugLoc()->getInlinedAt()); 2372 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); 2373 2374 // If this is the first sighting of this variable, then we are guaranteed 2375 // there are currently no overlapping fragments either. Initialize the set 2376 // of seen fragments, record no overlaps for the current one, and return. 2377 auto SeenIt = SeenFragments.find(MIVar.getVariable()); 2378 if (SeenIt == SeenFragments.end()) { 2379 SmallSet<FragmentInfo, 4> OneFragment; 2380 OneFragment.insert(ThisFragment); 2381 SeenFragments.insert({MIVar.getVariable(), OneFragment}); 2382 2383 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 2384 return; 2385 } 2386 2387 // If this particular Variable/Fragment pair already exists in the overlap 2388 // map, it has already been accounted for. 2389 auto IsInOLapMap = 2390 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 2391 if (!IsInOLapMap.second) 2392 return; 2393 2394 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; 2395 auto &AllSeenFragments = SeenIt->second; 2396 2397 // Otherwise, examine all other seen fragments for this variable, with "this" 2398 // fragment being a previously unseen fragment. Record any pair of 2399 // overlapping fragments. 2400 for (auto &ASeenFragment : AllSeenFragments) { 2401 // Does this previously seen fragment overlap? 2402 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { 2403 // Yes: Mark the current fragment as being overlapped. 2404 ThisFragmentsOverlaps.push_back(ASeenFragment); 2405 // Mark the previously seen fragment as being overlapped by the current 2406 // one. 2407 auto ASeenFragmentsOverlaps = 2408 OverlapFragments.find({MIVar.getVariable(), ASeenFragment}); 2409 assert(ASeenFragmentsOverlaps != OverlapFragments.end() && 2410 "Previously seen var fragment has no vector of overlaps"); 2411 ASeenFragmentsOverlaps->second.push_back(ThisFragment); 2412 } 2413 } 2414 2415 AllSeenFragments.insert(ThisFragment); 2416 } 2417 2418 void InstrRefBasedLDV::process(MachineInstr &MI, ValueIDNum **MLiveOuts, 2419 ValueIDNum **MLiveIns) { 2420 // Try to interpret an MI as a debug or transfer instruction. Only if it's 2421 // none of these should we interpret it's register defs as new value 2422 // definitions. 2423 if (transferDebugValue(MI)) 2424 return; 2425 if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns)) 2426 return; 2427 if (transferDebugPHI(MI)) 2428 return; 2429 if (transferRegisterCopy(MI)) 2430 return; 2431 if (transferSpillOrRestoreInst(MI)) 2432 return; 2433 transferRegisterDef(MI); 2434 } 2435 2436 void InstrRefBasedLDV::produceMLocTransferFunction( 2437 MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer, 2438 unsigned MaxNumBlocks) { 2439 // Because we try to optimize around register mask operands by ignoring regs 2440 // that aren't currently tracked, we set up something ugly for later: RegMask 2441 // operands that are seen earlier than the first use of a register, still need 2442 // to clobber that register in the transfer function. But this information 2443 // isn't actively recorded. Instead, we track each RegMask used in each block, 2444 // and accumulated the clobbered but untracked registers in each block into 2445 // the following bitvector. Later, if new values are tracked, we can add 2446 // appropriate clobbers. 2447 SmallVector<BitVector, 32> BlockMasks; 2448 BlockMasks.resize(MaxNumBlocks); 2449 2450 // Reserve one bit per register for the masks described above. 2451 unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs()); 2452 for (auto &BV : BlockMasks) 2453 BV.resize(TRI->getNumRegs(), true); 2454 2455 // Step through all instructions and inhale the transfer function. 2456 for (auto &MBB : MF) { 2457 // Object fields that are read by trackers to know where we are in the 2458 // function. 2459 CurBB = MBB.getNumber(); 2460 CurInst = 1; 2461 2462 // Set all machine locations to a PHI value. For transfer function 2463 // production only, this signifies the live-in value to the block. 2464 MTracker->reset(); 2465 MTracker->setMPhis(CurBB); 2466 2467 // Step through each instruction in this block. 2468 for (auto &MI : MBB) { 2469 process(MI); 2470 // Also accumulate fragment map. 2471 if (MI.isDebugValue()) 2472 accumulateFragmentMap(MI); 2473 2474 // Create a map from the instruction number (if present) to the 2475 // MachineInstr and its position. 2476 if (uint64_t InstrNo = MI.peekDebugInstrNum()) { 2477 auto InstrAndPos = std::make_pair(&MI, CurInst); 2478 auto InsertResult = 2479 DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos)); 2480 2481 // There should never be duplicate instruction numbers. 2482 assert(InsertResult.second); 2483 (void)InsertResult; 2484 } 2485 2486 ++CurInst; 2487 } 2488 2489 // Produce the transfer function, a map of machine location to new value. If 2490 // any machine location has the live-in phi value from the start of the 2491 // block, it's live-through and doesn't need recording in the transfer 2492 // function. 2493 for (auto Location : MTracker->locations()) { 2494 LocIdx Idx = Location.Idx; 2495 ValueIDNum &P = Location.Value; 2496 if (P.isPHI() && P.getLoc() == Idx.asU64()) 2497 continue; 2498 2499 // Insert-or-update. 2500 auto &TransferMap = MLocTransfer[CurBB]; 2501 auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P)); 2502 if (!Result.second) 2503 Result.first->second = P; 2504 } 2505 2506 // Accumulate any bitmask operands into the clobberred reg mask for this 2507 // block. 2508 for (auto &P : MTracker->Masks) { 2509 BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords); 2510 } 2511 } 2512 2513 // Compute a bitvector of all the registers that are tracked in this block. 2514 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2515 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 2516 BitVector UsedRegs(TRI->getNumRegs()); 2517 for (auto Location : MTracker->locations()) { 2518 unsigned ID = MTracker->LocIdxToLocID[Location.Idx]; 2519 if (ID >= TRI->getNumRegs() || ID == SP) 2520 continue; 2521 UsedRegs.set(ID); 2522 } 2523 2524 // Check that any regmask-clobber of a register that gets tracked, is not 2525 // live-through in the transfer function. It needs to be clobbered at the 2526 // very least. 2527 for (unsigned int I = 0; I < MaxNumBlocks; ++I) { 2528 BitVector &BV = BlockMasks[I]; 2529 BV.flip(); 2530 BV &= UsedRegs; 2531 // This produces all the bits that we clobber, but also use. Check that 2532 // they're all clobbered or at least set in the designated transfer 2533 // elem. 2534 for (unsigned Bit : BV.set_bits()) { 2535 unsigned ID = MTracker->getLocID(Bit, false); 2536 LocIdx Idx = MTracker->LocIDToLocIdx[ID]; 2537 auto &TransferMap = MLocTransfer[I]; 2538 2539 // Install a value representing the fact that this location is effectively 2540 // written to in this block. As there's no reserved value, instead use 2541 // a value number that is never generated. Pick the value number for the 2542 // first instruction in the block, def'ing this location, which we know 2543 // this block never used anyway. 2544 ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx); 2545 auto Result = 2546 TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum)); 2547 if (!Result.second) { 2548 ValueIDNum &ValueID = Result.first->second; 2549 if (ValueID.getBlock() == I && ValueID.isPHI()) 2550 // It was left as live-through. Set it to clobbered. 2551 ValueID = NotGeneratedNum; 2552 } 2553 } 2554 } 2555 } 2556 2557 std::tuple<bool, bool> 2558 InstrRefBasedLDV::mlocJoin(MachineBasicBlock &MBB, 2559 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 2560 ValueIDNum **OutLocs, ValueIDNum *InLocs) { 2561 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 2562 bool Changed = false; 2563 bool DowngradeOccurred = false; 2564 2565 // Collect predecessors that have been visited. Anything that hasn't been 2566 // visited yet is a backedge on the first iteration, and the meet of it's 2567 // lattice value for all locations will be unaffected. 2568 SmallVector<const MachineBasicBlock *, 8> BlockOrders; 2569 for (auto Pred : MBB.predecessors()) { 2570 if (Visited.count(Pred)) { 2571 BlockOrders.push_back(Pred); 2572 } 2573 } 2574 2575 // Visit predecessors in RPOT order. 2576 auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) { 2577 return BBToOrder.find(A)->second < BBToOrder.find(B)->second; 2578 }; 2579 llvm::sort(BlockOrders, Cmp); 2580 2581 // Skip entry block. 2582 if (BlockOrders.size() == 0) 2583 return std::tuple<bool, bool>(false, false); 2584 2585 // Step through all machine locations, then look at each predecessor and 2586 // detect disagreements. 2587 unsigned ThisBlockRPO = BBToOrder.find(&MBB)->second; 2588 for (auto Location : MTracker->locations()) { 2589 LocIdx Idx = Location.Idx; 2590 // Pick out the first predecessors live-out value for this location. It's 2591 // guaranteed to be not a backedge, as we order by RPO. 2592 ValueIDNum BaseVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()]; 2593 2594 // Some flags for whether there's a disagreement, and whether it's a 2595 // disagreement with a backedge or not. 2596 bool Disagree = false; 2597 bool NonBackEdgeDisagree = false; 2598 2599 // Loop around everything that wasn't 'base'. 2600 for (unsigned int I = 1; I < BlockOrders.size(); ++I) { 2601 auto *MBB = BlockOrders[I]; 2602 if (BaseVal != OutLocs[MBB->getNumber()][Idx.asU64()]) { 2603 // Live-out of a predecessor disagrees with the first predecessor. 2604 Disagree = true; 2605 2606 // Test whether it's a disagreemnt in the backedges or not. 2607 if (BBToOrder.find(MBB)->second < ThisBlockRPO) // might be self b/e 2608 NonBackEdgeDisagree = true; 2609 } 2610 } 2611 2612 bool OverRide = false; 2613 if (Disagree && !NonBackEdgeDisagree) { 2614 // Only the backedges disagree. Consider demoting the livein 2615 // lattice value, as per the file level comment. The value we consider 2616 // demoting to is the value that the non-backedge predecessors agree on. 2617 // The order of values is that non-PHIs are \top, a PHI at this block 2618 // \bot, and phis between the two are ordered by their RPO number. 2619 // If there's no agreement, or we've already demoted to this PHI value 2620 // before, replace with a PHI value at this block. 2621 2622 // Calculate order numbers: zero means normal def, nonzero means RPO 2623 // number. 2624 unsigned BaseBlockRPONum = BBNumToRPO[BaseVal.getBlock()] + 1; 2625 if (!BaseVal.isPHI()) 2626 BaseBlockRPONum = 0; 2627 2628 ValueIDNum &InLocID = InLocs[Idx.asU64()]; 2629 unsigned InLocRPONum = BBNumToRPO[InLocID.getBlock()] + 1; 2630 if (!InLocID.isPHI()) 2631 InLocRPONum = 0; 2632 2633 // Should we ignore the disagreeing backedges, and override with the 2634 // value the other predecessors agree on (in "base")? 2635 unsigned ThisBlockRPONum = BBNumToRPO[MBB.getNumber()] + 1; 2636 if (BaseBlockRPONum > InLocRPONum && BaseBlockRPONum < ThisBlockRPONum) { 2637 // Override. 2638 OverRide = true; 2639 DowngradeOccurred = true; 2640 } 2641 } 2642 // else: if we disagree in the non-backedges, then this is definitely 2643 // a control flow merge where different values merge. Make it a PHI. 2644 2645 // Generate a phi... 2646 ValueIDNum PHI = {(uint64_t)MBB.getNumber(), 0, Idx}; 2647 ValueIDNum NewVal = (Disagree && !OverRide) ? PHI : BaseVal; 2648 if (InLocs[Idx.asU64()] != NewVal) { 2649 Changed |= true; 2650 InLocs[Idx.asU64()] = NewVal; 2651 } 2652 } 2653 2654 // TODO: Reimplement NumInserted and NumRemoved. 2655 return std::tuple<bool, bool>(Changed, DowngradeOccurred); 2656 } 2657 2658 void InstrRefBasedLDV::mlocDataflow( 2659 ValueIDNum **MInLocs, ValueIDNum **MOutLocs, 2660 SmallVectorImpl<MLocTransferMap> &MLocTransfer) { 2661 std::priority_queue<unsigned int, std::vector<unsigned int>, 2662 std::greater<unsigned int>> 2663 Worklist, Pending; 2664 2665 // We track what is on the current and pending worklist to avoid inserting 2666 // the same thing twice. We could avoid this with a custom priority queue, 2667 // but this is probably not worth it. 2668 SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist; 2669 2670 // Initialize worklist with every block to be visited. 2671 for (unsigned int I = 0; I < BBToOrder.size(); ++I) { 2672 Worklist.push(I); 2673 OnWorklist.insert(OrderToBB[I]); 2674 } 2675 2676 MTracker->reset(); 2677 2678 // Set inlocs for entry block -- each as a PHI at the entry block. Represents 2679 // the incoming value to the function. 2680 MTracker->setMPhis(0); 2681 for (auto Location : MTracker->locations()) 2682 MInLocs[0][Location.Idx.asU64()] = Location.Value; 2683 2684 SmallPtrSet<const MachineBasicBlock *, 16> Visited; 2685 while (!Worklist.empty() || !Pending.empty()) { 2686 // Vector for storing the evaluated block transfer function. 2687 SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap; 2688 2689 while (!Worklist.empty()) { 2690 MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; 2691 CurBB = MBB->getNumber(); 2692 Worklist.pop(); 2693 2694 // Join the values in all predecessor blocks. 2695 bool InLocsChanged, DowngradeOccurred; 2696 std::tie(InLocsChanged, DowngradeOccurred) = 2697 mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]); 2698 InLocsChanged |= Visited.insert(MBB).second; 2699 2700 // If a downgrade occurred, book us in for re-examination on the next 2701 // iteration. 2702 if (DowngradeOccurred && OnPending.insert(MBB).second) 2703 Pending.push(BBToOrder[MBB]); 2704 2705 // Don't examine transfer function if we've visited this loc at least 2706 // once, and inlocs haven't changed. 2707 if (!InLocsChanged) 2708 continue; 2709 2710 // Load the current set of live-ins into MLocTracker. 2711 MTracker->loadFromArray(MInLocs[CurBB], CurBB); 2712 2713 // Each element of the transfer function can be a new def, or a read of 2714 // a live-in value. Evaluate each element, and store to "ToRemap". 2715 ToRemap.clear(); 2716 for (auto &P : MLocTransfer[CurBB]) { 2717 if (P.second.getBlock() == CurBB && P.second.isPHI()) { 2718 // This is a movement of whatever was live in. Read it. 2719 ValueIDNum NewID = MTracker->getNumAtPos(P.second.getLoc()); 2720 ToRemap.push_back(std::make_pair(P.first, NewID)); 2721 } else { 2722 // It's a def. Just set it. 2723 assert(P.second.getBlock() == CurBB); 2724 ToRemap.push_back(std::make_pair(P.first, P.second)); 2725 } 2726 } 2727 2728 // Commit the transfer function changes into mloc tracker, which 2729 // transforms the contents of the MLocTracker into the live-outs. 2730 for (auto &P : ToRemap) 2731 MTracker->setMLoc(P.first, P.second); 2732 2733 // Now copy out-locs from mloc tracker into out-loc vector, checking 2734 // whether changes have occurred. These changes can have come from both 2735 // the transfer function, and mlocJoin. 2736 bool OLChanged = false; 2737 for (auto Location : MTracker->locations()) { 2738 OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value; 2739 MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value; 2740 } 2741 2742 MTracker->reset(); 2743 2744 // No need to examine successors again if out-locs didn't change. 2745 if (!OLChanged) 2746 continue; 2747 2748 // All successors should be visited: put any back-edges on the pending 2749 // list for the next dataflow iteration, and any other successors to be 2750 // visited this iteration, if they're not going to be already. 2751 for (auto s : MBB->successors()) { 2752 // Does branching to this successor represent a back-edge? 2753 if (BBToOrder[s] > BBToOrder[MBB]) { 2754 // No: visit it during this dataflow iteration. 2755 if (OnWorklist.insert(s).second) 2756 Worklist.push(BBToOrder[s]); 2757 } else { 2758 // Yes: visit it on the next iteration. 2759 if (OnPending.insert(s).second) 2760 Pending.push(BBToOrder[s]); 2761 } 2762 } 2763 } 2764 2765 Worklist.swap(Pending); 2766 std::swap(OnPending, OnWorklist); 2767 OnPending.clear(); 2768 // At this point, pending must be empty, since it was just the empty 2769 // worklist 2770 assert(Pending.empty() && "Pending should be empty"); 2771 } 2772 2773 // Once all the live-ins don't change on mlocJoin(), we've reached a 2774 // fixedpoint. 2775 } 2776 2777 bool InstrRefBasedLDV::vlocDowngradeLattice( 2778 const MachineBasicBlock &MBB, const DbgValue &OldLiveInLocation, 2779 const SmallVectorImpl<InValueT> &Values, unsigned CurBlockRPONum) { 2780 // Ranking value preference: see file level comment, the highest rank is 2781 // a plain def, followed by PHI values in reverse post-order. Numerically, 2782 // we assign all defs the rank '0', all PHIs their blocks RPO number plus 2783 // one, and consider the lowest value the highest ranked. 2784 int OldLiveInRank = BBNumToRPO[OldLiveInLocation.ID.getBlock()] + 1; 2785 if (!OldLiveInLocation.ID.isPHI()) 2786 OldLiveInRank = 0; 2787 2788 // Allow any unresolvable conflict to be over-ridden. 2789 if (OldLiveInLocation.Kind == DbgValue::NoVal) { 2790 // Although if it was an unresolvable conflict from _this_ block, then 2791 // all other seeking of downgrades and PHIs must have failed before hand. 2792 if (OldLiveInLocation.BlockNo == (unsigned)MBB.getNumber()) 2793 return false; 2794 OldLiveInRank = INT_MIN; 2795 } 2796 2797 auto &InValue = *Values[0].second; 2798 2799 if (InValue.Kind == DbgValue::Const || InValue.Kind == DbgValue::NoVal) 2800 return false; 2801 2802 unsigned ThisRPO = BBNumToRPO[InValue.ID.getBlock()]; 2803 int ThisRank = ThisRPO + 1; 2804 if (!InValue.ID.isPHI()) 2805 ThisRank = 0; 2806 2807 // Too far down the lattice? 2808 if (ThisRPO >= CurBlockRPONum) 2809 return false; 2810 2811 // Higher in the lattice than what we've already explored? 2812 if (ThisRank <= OldLiveInRank) 2813 return false; 2814 2815 return true; 2816 } 2817 2818 std::tuple<Optional<ValueIDNum>, bool> InstrRefBasedLDV::pickVPHILoc( 2819 MachineBasicBlock &MBB, const DebugVariable &Var, const LiveIdxT &LiveOuts, 2820 ValueIDNum **MOutLocs, ValueIDNum **MInLocs, 2821 const SmallVectorImpl<MachineBasicBlock *> &BlockOrders) { 2822 // Collect a set of locations from predecessor where its live-out value can 2823 // be found. 2824 SmallVector<SmallVector<LocIdx, 4>, 8> Locs; 2825 unsigned NumLocs = MTracker->getNumLocs(); 2826 unsigned BackEdgesStart = 0; 2827 2828 for (auto p : BlockOrders) { 2829 // Pick out where backedges start in the list of predecessors. Relies on 2830 // BlockOrders being sorted by RPO. 2831 if (BBToOrder[p] < BBToOrder[&MBB]) 2832 ++BackEdgesStart; 2833 2834 // For each predecessor, create a new set of locations. 2835 Locs.resize(Locs.size() + 1); 2836 unsigned ThisBBNum = p->getNumber(); 2837 auto LiveOutMap = LiveOuts.find(p); 2838 if (LiveOutMap == LiveOuts.end()) 2839 // This predecessor isn't in scope, it must have no live-in/live-out 2840 // locations. 2841 continue; 2842 2843 auto It = LiveOutMap->second->find(Var); 2844 if (It == LiveOutMap->second->end()) 2845 // There's no value recorded for this variable in this predecessor, 2846 // leave an empty set of locations. 2847 continue; 2848 2849 const DbgValue &OutVal = It->second; 2850 2851 if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal) 2852 // Consts and no-values cannot have locations we can join on. 2853 continue; 2854 2855 assert(OutVal.Kind == DbgValue::Proposed || OutVal.Kind == DbgValue::Def); 2856 ValueIDNum ValToLookFor = OutVal.ID; 2857 2858 // Search the live-outs of the predecessor for the specified value. 2859 for (unsigned int I = 0; I < NumLocs; ++I) { 2860 if (MOutLocs[ThisBBNum][I] == ValToLookFor) 2861 Locs.back().push_back(LocIdx(I)); 2862 } 2863 } 2864 2865 // If there were no locations at all, return an empty result. 2866 if (Locs.empty()) 2867 return std::tuple<Optional<ValueIDNum>, bool>(None, false); 2868 2869 // Lambda for seeking a common location within a range of location-sets. 2870 using LocsIt = SmallVector<SmallVector<LocIdx, 4>, 8>::iterator; 2871 auto SeekLocation = 2872 [&Locs](llvm::iterator_range<LocsIt> SearchRange) -> Optional<LocIdx> { 2873 // Starting with the first set of locations, take the intersection with 2874 // subsequent sets. 2875 SmallVector<LocIdx, 4> base = Locs[0]; 2876 for (auto &S : SearchRange) { 2877 SmallVector<LocIdx, 4> new_base; 2878 std::set_intersection(base.begin(), base.end(), S.begin(), S.end(), 2879 std::inserter(new_base, new_base.begin())); 2880 base = new_base; 2881 } 2882 if (base.empty()) 2883 return None; 2884 2885 // We now have a set of LocIdxes that contain the right output value in 2886 // each of the predecessors. Pick the lowest; if there's a register loc, 2887 // that'll be it. 2888 return *base.begin(); 2889 }; 2890 2891 // Search for a common location for all predecessors. If we can't, then fall 2892 // back to only finding a common location between non-backedge predecessors. 2893 bool ValidForAllLocs = true; 2894 auto TheLoc = SeekLocation(Locs); 2895 if (!TheLoc) { 2896 ValidForAllLocs = false; 2897 TheLoc = 2898 SeekLocation(make_range(Locs.begin(), Locs.begin() + BackEdgesStart)); 2899 } 2900 2901 if (!TheLoc) 2902 return std::tuple<Optional<ValueIDNum>, bool>(None, false); 2903 2904 // Return a PHI-value-number for the found location. 2905 LocIdx L = *TheLoc; 2906 ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L}; 2907 return std::tuple<Optional<ValueIDNum>, bool>(PHIVal, ValidForAllLocs); 2908 } 2909 2910 std::tuple<bool, bool> InstrRefBasedLDV::vlocJoin( 2911 MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs, 2912 SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, unsigned BBNum, 2913 const SmallSet<DebugVariable, 4> &AllVars, ValueIDNum **MOutLocs, 2914 ValueIDNum **MInLocs, 2915 SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks, 2916 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, 2917 DenseMap<DebugVariable, DbgValue> &InLocsT) { 2918 bool DowngradeOccurred = false; 2919 2920 // To emulate VarLocBasedImpl, process this block if it's not in scope but 2921 // _does_ assign a variable value. No live-ins for this scope are transferred 2922 // in though, so we can return immediately. 2923 if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB)) { 2924 if (VLOCVisited) 2925 return std::tuple<bool, bool>(true, false); 2926 return std::tuple<bool, bool>(false, false); 2927 } 2928 2929 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 2930 bool Changed = false; 2931 2932 // Find any live-ins computed in a prior iteration. 2933 auto ILSIt = VLOCInLocs.find(&MBB); 2934 assert(ILSIt != VLOCInLocs.end()); 2935 auto &ILS = *ILSIt->second; 2936 2937 // Order predecessors by RPOT order, for exploring them in that order. 2938 SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors()); 2939 2940 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 2941 return BBToOrder[A] < BBToOrder[B]; 2942 }; 2943 2944 llvm::sort(BlockOrders, Cmp); 2945 2946 unsigned CurBlockRPONum = BBToOrder[&MBB]; 2947 2948 // Force a re-visit to loop heads in the first dataflow iteration. 2949 // FIXME: if we could "propose" Const values this wouldn't be needed, 2950 // because they'd need to be confirmed before being emitted. 2951 if (!BlockOrders.empty() && 2952 BBToOrder[BlockOrders[BlockOrders.size() - 1]] >= CurBlockRPONum && 2953 VLOCVisited) 2954 DowngradeOccurred = true; 2955 2956 auto ConfirmValue = [&InLocsT](const DebugVariable &DV, DbgValue VR) { 2957 auto Result = InLocsT.insert(std::make_pair(DV, VR)); 2958 (void)Result; 2959 assert(Result.second); 2960 }; 2961 2962 auto ConfirmNoVal = [&ConfirmValue, &MBB](const DebugVariable &Var, const DbgValueProperties &Properties) { 2963 DbgValue NoLocPHIVal(MBB.getNumber(), Properties, DbgValue::NoVal); 2964 2965 ConfirmValue(Var, NoLocPHIVal); 2966 }; 2967 2968 // Attempt to join the values for each variable. 2969 for (auto &Var : AllVars) { 2970 // Collect all the DbgValues for this variable. 2971 SmallVector<InValueT, 8> Values; 2972 bool Bail = false; 2973 unsigned BackEdgesStart = 0; 2974 for (auto p : BlockOrders) { 2975 // If the predecessor isn't in scope / to be explored, we'll never be 2976 // able to join any locations. 2977 if (!BlocksToExplore.contains(p)) { 2978 Bail = true; 2979 break; 2980 } 2981 2982 // Don't attempt to handle unvisited predecessors: they're implicitly 2983 // "unknown"s in the lattice. 2984 if (VLOCVisited && !VLOCVisited->count(p)) 2985 continue; 2986 2987 // If the predecessors OutLocs is absent, there's not much we can do. 2988 auto OL = VLOCOutLocs.find(p); 2989 if (OL == VLOCOutLocs.end()) { 2990 Bail = true; 2991 break; 2992 } 2993 2994 // No live-out value for this predecessor also means we can't produce 2995 // a joined value. 2996 auto VIt = OL->second->find(Var); 2997 if (VIt == OL->second->end()) { 2998 Bail = true; 2999 break; 3000 } 3001 3002 // Keep track of where back-edges begin in the Values vector. Relies on 3003 // BlockOrders being sorted by RPO. 3004 unsigned ThisBBRPONum = BBToOrder[p]; 3005 if (ThisBBRPONum < CurBlockRPONum) 3006 ++BackEdgesStart; 3007 3008 Values.push_back(std::make_pair(p, &VIt->second)); 3009 } 3010 3011 // If there were no values, or one of the predecessors couldn't have a 3012 // value, then give up immediately. It's not safe to produce a live-in 3013 // value. 3014 if (Bail || Values.size() == 0) 3015 continue; 3016 3017 // Enumeration identifying the current state of the predecessors values. 3018 enum { 3019 Unset = 0, 3020 Agreed, // All preds agree on the variable value. 3021 PropDisagree, // All preds agree, but the value kind is Proposed in some. 3022 BEDisagree, // Only back-edges disagree on variable value. 3023 PHINeeded, // Non-back-edge predecessors have conflicing values. 3024 NoSolution // Conflicting Value metadata makes solution impossible. 3025 } OurState = Unset; 3026 3027 // All (non-entry) blocks have at least one non-backedge predecessor. 3028 // Pick the variable value from the first of these, to compare against 3029 // all others. 3030 const DbgValue &FirstVal = *Values[0].second; 3031 const ValueIDNum &FirstID = FirstVal.ID; 3032 3033 // Scan for variable values that can't be resolved: if they have different 3034 // DIExpressions, different indirectness, or are mixed constants / 3035 // non-constants. 3036 for (auto &V : Values) { 3037 if (V.second->Properties != FirstVal.Properties) 3038 OurState = NoSolution; 3039 if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const) 3040 OurState = NoSolution; 3041 } 3042 3043 // Flags diagnosing _how_ the values disagree. 3044 bool NonBackEdgeDisagree = false; 3045 bool DisagreeOnPHINess = false; 3046 bool IDDisagree = false; 3047 bool Disagree = false; 3048 if (OurState == Unset) { 3049 for (auto &V : Values) { 3050 if (*V.second == FirstVal) 3051 continue; // No disagreement. 3052 3053 Disagree = true; 3054 3055 // Flag whether the value number actually diagrees. 3056 if (V.second->ID != FirstID) 3057 IDDisagree = true; 3058 3059 // Distinguish whether disagreement happens in backedges or not. 3060 // Relies on Values (and BlockOrders) being sorted by RPO. 3061 unsigned ThisBBRPONum = BBToOrder[V.first]; 3062 if (ThisBBRPONum < CurBlockRPONum) 3063 NonBackEdgeDisagree = true; 3064 3065 // Is there a difference in whether the value is definite or only 3066 // proposed? 3067 if (V.second->Kind != FirstVal.Kind && 3068 (V.second->Kind == DbgValue::Proposed || 3069 V.second->Kind == DbgValue::Def) && 3070 (FirstVal.Kind == DbgValue::Proposed || 3071 FirstVal.Kind == DbgValue::Def)) 3072 DisagreeOnPHINess = true; 3073 } 3074 3075 // Collect those flags together and determine an overall state for 3076 // what extend the predecessors agree on a live-in value. 3077 if (!Disagree) 3078 OurState = Agreed; 3079 else if (!IDDisagree && DisagreeOnPHINess) 3080 OurState = PropDisagree; 3081 else if (!NonBackEdgeDisagree) 3082 OurState = BEDisagree; 3083 else 3084 OurState = PHINeeded; 3085 } 3086 3087 // An extra indicator: if we only disagree on whether the value is a 3088 // Def, or proposed, then also flag whether that disagreement happens 3089 // in backedges only. 3090 bool PropOnlyInBEs = Disagree && !IDDisagree && DisagreeOnPHINess && 3091 !NonBackEdgeDisagree && FirstVal.Kind == DbgValue::Def; 3092 3093 const auto &Properties = FirstVal.Properties; 3094 3095 auto OldLiveInIt = ILS.find(Var); 3096 const DbgValue *OldLiveInLocation = 3097 (OldLiveInIt != ILS.end()) ? &OldLiveInIt->second : nullptr; 3098 3099 bool OverRide = false; 3100 if (OurState == BEDisagree && OldLiveInLocation) { 3101 // Only backedges disagree: we can consider downgrading. If there was a 3102 // previous live-in value, use it to work out whether the current 3103 // incoming value represents a lattice downgrade or not. 3104 OverRide = 3105 vlocDowngradeLattice(MBB, *OldLiveInLocation, Values, CurBlockRPONum); 3106 } 3107 3108 // Use the current state of predecessor agreement and other flags to work 3109 // out what to do next. Possibilities include: 3110 // * Accept a value all predecessors agree on, or accept one that 3111 // represents a step down the exploration lattice, 3112 // * Use a PHI value number, if one can be found, 3113 // * Propose a PHI value number, and see if it gets confirmed later, 3114 // * Emit a 'NoVal' value, indicating we couldn't resolve anything. 3115 if (OurState == Agreed) { 3116 // Easiest solution: all predecessors agree on the variable value. 3117 ConfirmValue(Var, FirstVal); 3118 } else if (OurState == BEDisagree && OverRide) { 3119 // Only backedges disagree, and the other predecessors have produced 3120 // a new live-in value further down the exploration lattice. 3121 DowngradeOccurred = true; 3122 ConfirmValue(Var, FirstVal); 3123 } else if (OurState == PropDisagree) { 3124 // Predecessors agree on value, but some say it's only a proposed value. 3125 // Propagate it as proposed: unless it was proposed in this block, in 3126 // which case we're able to confirm the value. 3127 if (FirstID.getBlock() == (uint64_t)MBB.getNumber() && FirstID.isPHI()) { 3128 ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def)); 3129 } else if (PropOnlyInBEs) { 3130 // If only backedges disagree, a higher (in RPO) block confirmed this 3131 // location, and we need to propagate it into this loop. 3132 ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def)); 3133 } else { 3134 // Otherwise; a Def meeting a Proposed is still a Proposed. 3135 ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Proposed)); 3136 } 3137 } else if ((OurState == PHINeeded || OurState == BEDisagree)) { 3138 // Predecessors disagree and can't be downgraded: this can only be 3139 // solved with a PHI. Use pickVPHILoc to go look for one. 3140 Optional<ValueIDNum> VPHI; 3141 bool AllEdgesVPHI = false; 3142 std::tie(VPHI, AllEdgesVPHI) = 3143 pickVPHILoc(MBB, Var, VLOCOutLocs, MOutLocs, MInLocs, BlockOrders); 3144 3145 if (VPHI && AllEdgesVPHI) { 3146 // There's a PHI value that's valid for all predecessors -- we can use 3147 // it. If any of the non-backedge predecessors have proposed values 3148 // though, this PHI is also only proposed, until the predecessors are 3149 // confirmed. 3150 DbgValue::KindT K = DbgValue::Def; 3151 for (unsigned int I = 0; I < BackEdgesStart; ++I) 3152 if (Values[I].second->Kind == DbgValue::Proposed) 3153 K = DbgValue::Proposed; 3154 3155 ConfirmValue(Var, DbgValue(*VPHI, Properties, K)); 3156 } else if (VPHI) { 3157 // There's a PHI value, but it's only legal for backedges. Leave this 3158 // as a proposed PHI value: it might come back on the backedges, 3159 // and allow us to confirm it in the future. 3160 DbgValue NoBEValue = DbgValue(*VPHI, Properties, DbgValue::Proposed); 3161 ConfirmValue(Var, NoBEValue); 3162 } else { 3163 ConfirmNoVal(Var, Properties); 3164 } 3165 } else { 3166 // Otherwise: we don't know. Emit a "phi but no real loc" phi. 3167 ConfirmNoVal(Var, Properties); 3168 } 3169 } 3170 3171 // Store newly calculated in-locs into VLOCInLocs, if they've changed. 3172 Changed = ILS != InLocsT; 3173 if (Changed) 3174 ILS = InLocsT; 3175 3176 return std::tuple<bool, bool>(Changed, DowngradeOccurred); 3177 } 3178 3179 void InstrRefBasedLDV::vlocDataflow( 3180 const LexicalScope *Scope, const DILocation *DILoc, 3181 const SmallSet<DebugVariable, 4> &VarsWeCareAbout, 3182 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output, 3183 ValueIDNum **MOutLocs, ValueIDNum **MInLocs, 3184 SmallVectorImpl<VLocTracker> &AllTheVLocs) { 3185 // This method is much like mlocDataflow: but focuses on a single 3186 // LexicalScope at a time. Pick out a set of blocks and variables that are 3187 // to have their value assignments solved, then run our dataflow algorithm 3188 // until a fixedpoint is reached. 3189 std::priority_queue<unsigned int, std::vector<unsigned int>, 3190 std::greater<unsigned int>> 3191 Worklist, Pending; 3192 SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending; 3193 3194 // The set of blocks we'll be examining. 3195 SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore; 3196 3197 // The order in which to examine them (RPO). 3198 SmallVector<MachineBasicBlock *, 8> BlockOrders; 3199 3200 // RPO ordering function. 3201 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 3202 return BBToOrder[A] < BBToOrder[B]; 3203 }; 3204 3205 LS.getMachineBasicBlocks(DILoc, BlocksToExplore); 3206 3207 // A separate container to distinguish "blocks we're exploring" versus 3208 // "blocks that are potentially in scope. See comment at start of vlocJoin. 3209 SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore; 3210 3211 // Old LiveDebugValues tracks variable locations that come out of blocks 3212 // not in scope, where DBG_VALUEs occur. This is something we could 3213 // legitimately ignore, but lets allow it for now. 3214 if (EmulateOldLDV) 3215 BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end()); 3216 3217 // We also need to propagate variable values through any artificial blocks 3218 // that immediately follow blocks in scope. 3219 DenseSet<const MachineBasicBlock *> ToAdd; 3220 3221 // Helper lambda: For a given block in scope, perform a depth first search 3222 // of all the artificial successors, adding them to the ToAdd collection. 3223 auto AccumulateArtificialBlocks = 3224 [this, &ToAdd, &BlocksToExplore, 3225 &InScopeBlocks](const MachineBasicBlock *MBB) { 3226 // Depth-first-search state: each node is a block and which successor 3227 // we're currently exploring. 3228 SmallVector<std::pair<const MachineBasicBlock *, 3229 MachineBasicBlock::const_succ_iterator>, 3230 8> 3231 DFS; 3232 3233 // Find any artificial successors not already tracked. 3234 for (auto *succ : MBB->successors()) { 3235 if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ)) 3236 continue; 3237 if (!ArtificialBlocks.count(succ)) 3238 continue; 3239 DFS.push_back(std::make_pair(succ, succ->succ_begin())); 3240 ToAdd.insert(succ); 3241 } 3242 3243 // Search all those blocks, depth first. 3244 while (!DFS.empty()) { 3245 const MachineBasicBlock *CurBB = DFS.back().first; 3246 MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second; 3247 // Walk back if we've explored this blocks successors to the end. 3248 if (CurSucc == CurBB->succ_end()) { 3249 DFS.pop_back(); 3250 continue; 3251 } 3252 3253 // If the current successor is artificial and unexplored, descend into 3254 // it. 3255 if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) { 3256 DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin())); 3257 ToAdd.insert(*CurSucc); 3258 continue; 3259 } 3260 3261 ++CurSucc; 3262 } 3263 }; 3264 3265 // Search in-scope blocks and those containing a DBG_VALUE from this scope 3266 // for artificial successors. 3267 for (auto *MBB : BlocksToExplore) 3268 AccumulateArtificialBlocks(MBB); 3269 for (auto *MBB : InScopeBlocks) 3270 AccumulateArtificialBlocks(MBB); 3271 3272 BlocksToExplore.insert(ToAdd.begin(), ToAdd.end()); 3273 InScopeBlocks.insert(ToAdd.begin(), ToAdd.end()); 3274 3275 // Single block scope: not interesting! No propagation at all. Note that 3276 // this could probably go above ArtificialBlocks without damage, but 3277 // that then produces output differences from original-live-debug-values, 3278 // which propagates from a single block into many artificial ones. 3279 if (BlocksToExplore.size() == 1) 3280 return; 3281 3282 // Picks out relevants blocks RPO order and sort them. 3283 for (auto *MBB : BlocksToExplore) 3284 BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB)); 3285 3286 llvm::sort(BlockOrders, Cmp); 3287 unsigned NumBlocks = BlockOrders.size(); 3288 3289 // Allocate some vectors for storing the live ins and live outs. Large. 3290 SmallVector<DenseMap<DebugVariable, DbgValue>, 32> LiveIns, LiveOuts; 3291 LiveIns.resize(NumBlocks); 3292 LiveOuts.resize(NumBlocks); 3293 3294 // Produce by-MBB indexes of live-in/live-outs, to ease lookup within 3295 // vlocJoin. 3296 LiveIdxT LiveOutIdx, LiveInIdx; 3297 LiveOutIdx.reserve(NumBlocks); 3298 LiveInIdx.reserve(NumBlocks); 3299 for (unsigned I = 0; I < NumBlocks; ++I) { 3300 LiveOutIdx[BlockOrders[I]] = &LiveOuts[I]; 3301 LiveInIdx[BlockOrders[I]] = &LiveIns[I]; 3302 } 3303 3304 for (auto *MBB : BlockOrders) { 3305 Worklist.push(BBToOrder[MBB]); 3306 OnWorklist.insert(MBB); 3307 } 3308 3309 // Iterate over all the blocks we selected, propagating variable values. 3310 bool FirstTrip = true; 3311 SmallPtrSet<const MachineBasicBlock *, 16> VLOCVisited; 3312 while (!Worklist.empty() || !Pending.empty()) { 3313 while (!Worklist.empty()) { 3314 auto *MBB = OrderToBB[Worklist.top()]; 3315 CurBB = MBB->getNumber(); 3316 Worklist.pop(); 3317 3318 DenseMap<DebugVariable, DbgValue> JoinedInLocs; 3319 3320 // Join values from predecessors. Updates LiveInIdx, and writes output 3321 // into JoinedInLocs. 3322 bool InLocsChanged, DowngradeOccurred; 3323 std::tie(InLocsChanged, DowngradeOccurred) = vlocJoin( 3324 *MBB, LiveOutIdx, LiveInIdx, (FirstTrip) ? &VLOCVisited : nullptr, 3325 CurBB, VarsWeCareAbout, MOutLocs, MInLocs, InScopeBlocks, 3326 BlocksToExplore, JoinedInLocs); 3327 3328 bool FirstVisit = VLOCVisited.insert(MBB).second; 3329 3330 // Always explore transfer function if inlocs changed, or if we've not 3331 // visited this block before. 3332 InLocsChanged |= FirstVisit; 3333 3334 // If a downgrade occurred, book us in for re-examination on the next 3335 // iteration. 3336 if (DowngradeOccurred && OnPending.insert(MBB).second) 3337 Pending.push(BBToOrder[MBB]); 3338 3339 if (!InLocsChanged) 3340 continue; 3341 3342 // Do transfer function. 3343 auto &VTracker = AllTheVLocs[MBB->getNumber()]; 3344 for (auto &Transfer : VTracker.Vars) { 3345 // Is this var we're mangling in this scope? 3346 if (VarsWeCareAbout.count(Transfer.first)) { 3347 // Erase on empty transfer (DBG_VALUE $noreg). 3348 if (Transfer.second.Kind == DbgValue::Undef) { 3349 JoinedInLocs.erase(Transfer.first); 3350 } else { 3351 // Insert new variable value; or overwrite. 3352 auto NewValuePair = std::make_pair(Transfer.first, Transfer.second); 3353 auto Result = JoinedInLocs.insert(NewValuePair); 3354 if (!Result.second) 3355 Result.first->second = Transfer.second; 3356 } 3357 } 3358 } 3359 3360 // Did the live-out locations change? 3361 bool OLChanged = JoinedInLocs != *LiveOutIdx[MBB]; 3362 3363 // If they haven't changed, there's no need to explore further. 3364 if (!OLChanged) 3365 continue; 3366 3367 // Commit to the live-out record. 3368 *LiveOutIdx[MBB] = JoinedInLocs; 3369 3370 // We should visit all successors. Ensure we'll visit any non-backedge 3371 // successors during this dataflow iteration; book backedge successors 3372 // to be visited next time around. 3373 for (auto s : MBB->successors()) { 3374 // Ignore out of scope / not-to-be-explored successors. 3375 if (LiveInIdx.find(s) == LiveInIdx.end()) 3376 continue; 3377 3378 if (BBToOrder[s] > BBToOrder[MBB]) { 3379 if (OnWorklist.insert(s).second) 3380 Worklist.push(BBToOrder[s]); 3381 } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) { 3382 Pending.push(BBToOrder[s]); 3383 } 3384 } 3385 } 3386 Worklist.swap(Pending); 3387 std::swap(OnWorklist, OnPending); 3388 OnPending.clear(); 3389 assert(Pending.empty()); 3390 FirstTrip = false; 3391 } 3392 3393 // Dataflow done. Now what? Save live-ins. Ignore any that are still marked 3394 // as being variable-PHIs, because those did not have their machine-PHI 3395 // value confirmed. Such variable values are places that could have been 3396 // PHIs, but are not. 3397 for (auto *MBB : BlockOrders) { 3398 auto &VarMap = *LiveInIdx[MBB]; 3399 for (auto &P : VarMap) { 3400 if (P.second.Kind == DbgValue::Proposed || 3401 P.second.Kind == DbgValue::NoVal) 3402 continue; 3403 Output[MBB->getNumber()].push_back(P); 3404 } 3405 } 3406 3407 BlockOrders.clear(); 3408 BlocksToExplore.clear(); 3409 } 3410 3411 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3412 void InstrRefBasedLDV::dump_mloc_transfer( 3413 const MLocTransferMap &mloc_transfer) const { 3414 for (auto &P : mloc_transfer) { 3415 std::string foo = MTracker->LocIdxToName(P.first); 3416 std::string bar = MTracker->IDAsString(P.second); 3417 dbgs() << "Loc " << foo << " --> " << bar << "\n"; 3418 } 3419 } 3420 #endif 3421 3422 void InstrRefBasedLDV::emitLocations( 3423 MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MOutLocs, 3424 ValueIDNum **MInLocs, DenseMap<DebugVariable, unsigned> &AllVarsNumbering, 3425 const TargetPassConfig &TPC) { 3426 TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC); 3427 unsigned NumLocs = MTracker->getNumLocs(); 3428 3429 // For each block, load in the machine value locations and variable value 3430 // live-ins, then step through each instruction in the block. New DBG_VALUEs 3431 // to be inserted will be created along the way. 3432 for (MachineBasicBlock &MBB : MF) { 3433 unsigned bbnum = MBB.getNumber(); 3434 MTracker->reset(); 3435 MTracker->loadFromArray(MInLocs[bbnum], bbnum); 3436 TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()], 3437 NumLocs); 3438 3439 CurBB = bbnum; 3440 CurInst = 1; 3441 for (auto &MI : MBB) { 3442 process(MI, MOutLocs, MInLocs); 3443 TTracker->checkInstForNewValues(CurInst, MI.getIterator()); 3444 ++CurInst; 3445 } 3446 } 3447 3448 // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer 3449 // in DWARF in different orders. Use the order that they appear when walking 3450 // through each block / each instruction, stored in AllVarsNumbering. 3451 auto OrderDbgValues = [&](const MachineInstr *A, 3452 const MachineInstr *B) -> bool { 3453 DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(), 3454 A->getDebugLoc()->getInlinedAt()); 3455 DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(), 3456 B->getDebugLoc()->getInlinedAt()); 3457 return AllVarsNumbering.find(VarA)->second < 3458 AllVarsNumbering.find(VarB)->second; 3459 }; 3460 3461 // Go through all the transfers recorded in the TransferTracker -- this is 3462 // both the live-ins to a block, and any movements of values that happen 3463 // in the middle. 3464 for (auto &P : TTracker->Transfers) { 3465 // Sort them according to appearance order. 3466 llvm::sort(P.Insts, OrderDbgValues); 3467 // Insert either before or after the designated point... 3468 if (P.MBB) { 3469 MachineBasicBlock &MBB = *P.MBB; 3470 for (auto *MI : P.Insts) { 3471 MBB.insert(P.Pos, MI); 3472 } 3473 } else { 3474 // Terminators, like tail calls, can clobber things. Don't try and place 3475 // transfers after them. 3476 if (P.Pos->isTerminator()) 3477 continue; 3478 3479 MachineBasicBlock &MBB = *P.Pos->getParent(); 3480 for (auto *MI : P.Insts) { 3481 MBB.insertAfterBundle(P.Pos, MI); 3482 } 3483 } 3484 } 3485 } 3486 3487 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) { 3488 // Build some useful data structures. 3489 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { 3490 if (const DebugLoc &DL = MI.getDebugLoc()) 3491 return DL.getLine() != 0; 3492 return false; 3493 }; 3494 // Collect a set of all the artificial blocks. 3495 for (auto &MBB : MF) 3496 if (none_of(MBB.instrs(), hasNonArtificialLocation)) 3497 ArtificialBlocks.insert(&MBB); 3498 3499 // Compute mappings of block <=> RPO order. 3500 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 3501 unsigned int RPONumber = 0; 3502 for (MachineBasicBlock *MBB : RPOT) { 3503 OrderToBB[RPONumber] = MBB; 3504 BBToOrder[MBB] = RPONumber; 3505 BBNumToRPO[MBB->getNumber()] = RPONumber; 3506 ++RPONumber; 3507 } 3508 3509 // Order value substitutions by their "source" operand pair, for quick lookup. 3510 llvm::sort(MF.DebugValueSubstitutions); 3511 3512 #ifdef EXPENSIVE_CHECKS 3513 // As an expensive check, test whether there are any duplicate substitution 3514 // sources in the collection. 3515 if (MF.DebugValueSubstitutions.size() > 2) { 3516 for (auto It = MF.DebugValueSubstitutions.begin(); 3517 It != std::prev(MF.DebugValueSubstitutions.end()); ++It) { 3518 assert(It->Src != std::next(It)->Src && "Duplicate variable location " 3519 "substitution seen"); 3520 } 3521 } 3522 #endif 3523 } 3524 3525 /// Calculate the liveness information for the given machine function and 3526 /// extend ranges across basic blocks. 3527 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC, 3528 unsigned InputBBLimit, 3529 unsigned InputDbgValLimit) { 3530 // No subprogram means this function contains no debuginfo. 3531 if (!MF.getFunction().getSubprogram()) 3532 return false; 3533 3534 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); 3535 this->TPC = TPC; 3536 3537 TRI = MF.getSubtarget().getRegisterInfo(); 3538 TII = MF.getSubtarget().getInstrInfo(); 3539 TFI = MF.getSubtarget().getFrameLowering(); 3540 TFI->getCalleeSaves(MF, CalleeSavedRegs); 3541 MFI = &MF.getFrameInfo(); 3542 LS.initialize(MF); 3543 3544 MTracker = 3545 new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering()); 3546 VTracker = nullptr; 3547 TTracker = nullptr; 3548 3549 SmallVector<MLocTransferMap, 32> MLocTransfer; 3550 SmallVector<VLocTracker, 8> vlocs; 3551 LiveInsT SavedLiveIns; 3552 3553 int MaxNumBlocks = -1; 3554 for (auto &MBB : MF) 3555 MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks); 3556 assert(MaxNumBlocks >= 0); 3557 ++MaxNumBlocks; 3558 3559 MLocTransfer.resize(MaxNumBlocks); 3560 vlocs.resize(MaxNumBlocks); 3561 SavedLiveIns.resize(MaxNumBlocks); 3562 3563 initialSetup(MF); 3564 3565 produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks); 3566 3567 // Allocate and initialize two array-of-arrays for the live-in and live-out 3568 // machine values. The outer dimension is the block number; while the inner 3569 // dimension is a LocIdx from MLocTracker. 3570 ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks]; 3571 ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks]; 3572 unsigned NumLocs = MTracker->getNumLocs(); 3573 for (int i = 0; i < MaxNumBlocks; ++i) { 3574 MOutLocs[i] = new ValueIDNum[NumLocs]; 3575 MInLocs[i] = new ValueIDNum[NumLocs]; 3576 } 3577 3578 // Solve the machine value dataflow problem using the MLocTransfer function, 3579 // storing the computed live-ins / live-outs into the array-of-arrays. We use 3580 // both live-ins and live-outs for decision making in the variable value 3581 // dataflow problem. 3582 mlocDataflow(MInLocs, MOutLocs, MLocTransfer); 3583 3584 // Patch up debug phi numbers, turning unknown block-live-in values into 3585 // either live-through machine values, or PHIs. 3586 for (auto &DBG_PHI : DebugPHINumToValue) { 3587 // Identify unresolved block-live-ins. 3588 ValueIDNum &Num = DBG_PHI.ValueRead; 3589 if (!Num.isPHI()) 3590 continue; 3591 3592 unsigned BlockNo = Num.getBlock(); 3593 LocIdx LocNo = Num.getLoc(); 3594 Num = MInLocs[BlockNo][LocNo.asU64()]; 3595 } 3596 // Later, we'll be looking up ranges of instruction numbers. 3597 llvm::sort(DebugPHINumToValue); 3598 3599 // Walk back through each block / instruction, collecting DBG_VALUE 3600 // instructions and recording what machine value their operands refer to. 3601 for (auto &OrderPair : OrderToBB) { 3602 MachineBasicBlock &MBB = *OrderPair.second; 3603 CurBB = MBB.getNumber(); 3604 VTracker = &vlocs[CurBB]; 3605 VTracker->MBB = &MBB; 3606 MTracker->loadFromArray(MInLocs[CurBB], CurBB); 3607 CurInst = 1; 3608 for (auto &MI : MBB) { 3609 process(MI, MOutLocs, MInLocs); 3610 ++CurInst; 3611 } 3612 MTracker->reset(); 3613 } 3614 3615 // Number all variables in the order that they appear, to be used as a stable 3616 // insertion order later. 3617 DenseMap<DebugVariable, unsigned> AllVarsNumbering; 3618 3619 // Map from one LexicalScope to all the variables in that scope. 3620 DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars; 3621 3622 // Map from One lexical scope to all blocks in that scope. 3623 DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>> 3624 ScopeToBlocks; 3625 3626 // Store a DILocation that describes a scope. 3627 DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation; 3628 3629 // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise 3630 // the order is unimportant, it just has to be stable. 3631 unsigned VarAssignCount = 0; 3632 for (unsigned int I = 0; I < OrderToBB.size(); ++I) { 3633 auto *MBB = OrderToBB[I]; 3634 auto *VTracker = &vlocs[MBB->getNumber()]; 3635 // Collect each variable with a DBG_VALUE in this block. 3636 for (auto &idx : VTracker->Vars) { 3637 const auto &Var = idx.first; 3638 const DILocation *ScopeLoc = VTracker->Scopes[Var]; 3639 assert(ScopeLoc != nullptr); 3640 auto *Scope = LS.findLexicalScope(ScopeLoc); 3641 3642 // No insts in scope -> shouldn't have been recorded. 3643 assert(Scope != nullptr); 3644 3645 AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size())); 3646 ScopeToVars[Scope].insert(Var); 3647 ScopeToBlocks[Scope].insert(VTracker->MBB); 3648 ScopeToDILocation[Scope] = ScopeLoc; 3649 ++VarAssignCount; 3650 } 3651 } 3652 3653 // If we have an extremely large number of variable assignments and blocks, 3654 // bail out at this point. We've burnt some time doing analysis already, 3655 // however we should cut our losses. 3656 if (MaxNumBlocks > (int)InputBBLimit && VarAssignCount > InputDbgValLimit) { 3657 LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName() 3658 << " has " << MaxNumBlocks << " basic blocks and " 3659 << VarAssignCount 3660 << " variable assignments, exceeding limits.\n"); 3661 return false; 3662 } 3663 3664 // OK. Iterate over scopes: there might be something to be said for 3665 // ordering them by size/locality, but that's for the future. For each scope, 3666 // solve the variable value problem, producing a map of variables to values 3667 // in SavedLiveIns. 3668 for (auto &P : ScopeToVars) { 3669 vlocDataflow(P.first, ScopeToDILocation[P.first], P.second, 3670 ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs, 3671 vlocs); 3672 } 3673 3674 // Using the computed value locations and variable values for each block, 3675 // create the DBG_VALUE instructions representing the extended variable 3676 // locations. 3677 emitLocations(MF, SavedLiveIns, MOutLocs, MInLocs, AllVarsNumbering, *TPC); 3678 3679 for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) { 3680 delete[] MOutLocs[Idx]; 3681 delete[] MInLocs[Idx]; 3682 } 3683 delete[] MOutLocs; 3684 delete[] MInLocs; 3685 3686 // Did we actually make any changes? If we created any DBG_VALUEs, then yes. 3687 bool Changed = TTracker->Transfers.size() != 0; 3688 3689 delete MTracker; 3690 delete TTracker; 3691 MTracker = nullptr; 3692 VTracker = nullptr; 3693 TTracker = nullptr; 3694 3695 ArtificialBlocks.clear(); 3696 OrderToBB.clear(); 3697 BBToOrder.clear(); 3698 BBNumToRPO.clear(); 3699 DebugInstrNumToInstr.clear(); 3700 DebugPHINumToValue.clear(); 3701 3702 return Changed; 3703 } 3704 3705 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() { 3706 return new InstrRefBasedLDV(); 3707 } 3708 3709 namespace { 3710 class LDVSSABlock; 3711 class LDVSSAUpdater; 3712 3713 // Pick a type to identify incoming block values as we construct SSA. We 3714 // can't use anything more robust than an integer unfortunately, as SSAUpdater 3715 // expects to zero-initialize the type. 3716 typedef uint64_t BlockValueNum; 3717 3718 /// Represents an SSA PHI node for the SSA updater class. Contains the block 3719 /// this PHI is in, the value number it would have, and the expected incoming 3720 /// values from parent blocks. 3721 class LDVSSAPhi { 3722 public: 3723 SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues; 3724 LDVSSABlock *ParentBlock; 3725 BlockValueNum PHIValNum; 3726 LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock) 3727 : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {} 3728 3729 LDVSSABlock *getParent() { return ParentBlock; } 3730 }; 3731 3732 /// Thin wrapper around a block predecessor iterator. Only difference from a 3733 /// normal block iterator is that it dereferences to an LDVSSABlock. 3734 class LDVSSABlockIterator { 3735 public: 3736 MachineBasicBlock::pred_iterator PredIt; 3737 LDVSSAUpdater &Updater; 3738 3739 LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt, 3740 LDVSSAUpdater &Updater) 3741 : PredIt(PredIt), Updater(Updater) {} 3742 3743 bool operator!=(const LDVSSABlockIterator &OtherIt) const { 3744 return OtherIt.PredIt != PredIt; 3745 } 3746 3747 LDVSSABlockIterator &operator++() { 3748 ++PredIt; 3749 return *this; 3750 } 3751 3752 LDVSSABlock *operator*(); 3753 }; 3754 3755 /// Thin wrapper around a block for SSA Updater interface. Necessary because 3756 /// we need to track the PHI value(s) that we may have observed as necessary 3757 /// in this block. 3758 class LDVSSABlock { 3759 public: 3760 MachineBasicBlock &BB; 3761 LDVSSAUpdater &Updater; 3762 using PHIListT = SmallVector<LDVSSAPhi, 1>; 3763 /// List of PHIs in this block. There should only ever be one. 3764 PHIListT PHIList; 3765 3766 LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater) 3767 : BB(BB), Updater(Updater) {} 3768 3769 LDVSSABlockIterator succ_begin() { 3770 return LDVSSABlockIterator(BB.succ_begin(), Updater); 3771 } 3772 3773 LDVSSABlockIterator succ_end() { 3774 return LDVSSABlockIterator(BB.succ_end(), Updater); 3775 } 3776 3777 /// SSAUpdater has requested a PHI: create that within this block record. 3778 LDVSSAPhi *newPHI(BlockValueNum Value) { 3779 PHIList.emplace_back(Value, this); 3780 return &PHIList.back(); 3781 } 3782 3783 /// SSAUpdater wishes to know what PHIs already exist in this block. 3784 PHIListT &phis() { return PHIList; } 3785 }; 3786 3787 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values 3788 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to 3789 // SSAUpdaterTraits<LDVSSAUpdater>. 3790 class LDVSSAUpdater { 3791 public: 3792 /// Map of value numbers to PHI records. 3793 DenseMap<BlockValueNum, LDVSSAPhi *> PHIs; 3794 /// Map of which blocks generate Undef values -- blocks that are not 3795 /// dominated by any Def. 3796 DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap; 3797 /// Map of machine blocks to our own records of them. 3798 DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap; 3799 /// Machine location where any PHI must occur. 3800 LocIdx Loc; 3801 /// Table of live-in machine value numbers for blocks / locations. 3802 ValueIDNum **MLiveIns; 3803 3804 LDVSSAUpdater(LocIdx L, ValueIDNum **MLiveIns) : Loc(L), MLiveIns(MLiveIns) {} 3805 3806 void reset() { 3807 for (auto &Block : BlockMap) 3808 delete Block.second; 3809 3810 PHIs.clear(); 3811 UndefMap.clear(); 3812 BlockMap.clear(); 3813 } 3814 3815 ~LDVSSAUpdater() { reset(); } 3816 3817 /// For a given MBB, create a wrapper block for it. Stores it in the 3818 /// LDVSSAUpdater block map. 3819 LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) { 3820 auto it = BlockMap.find(BB); 3821 if (it == BlockMap.end()) { 3822 BlockMap[BB] = new LDVSSABlock(*BB, *this); 3823 it = BlockMap.find(BB); 3824 } 3825 return it->second; 3826 } 3827 3828 /// Find the live-in value number for the given block. Looks up the value at 3829 /// the PHI location on entry. 3830 BlockValueNum getValue(LDVSSABlock *LDVBB) { 3831 return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64(); 3832 } 3833 }; 3834 3835 LDVSSABlock *LDVSSABlockIterator::operator*() { 3836 return Updater.getSSALDVBlock(*PredIt); 3837 } 3838 3839 #ifndef NDEBUG 3840 3841 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) { 3842 out << "SSALDVPHI " << PHI.PHIValNum; 3843 return out; 3844 } 3845 3846 #endif 3847 3848 } // namespace 3849 3850 namespace llvm { 3851 3852 /// Template specialization to give SSAUpdater access to CFG and value 3853 /// information. SSAUpdater calls methods in these traits, passing in the 3854 /// LDVSSAUpdater object, to learn about blocks and the values they define. 3855 /// It also provides methods to create PHI nodes and track them. 3856 template <> class SSAUpdaterTraits<LDVSSAUpdater> { 3857 public: 3858 using BlkT = LDVSSABlock; 3859 using ValT = BlockValueNum; 3860 using PhiT = LDVSSAPhi; 3861 using BlkSucc_iterator = LDVSSABlockIterator; 3862 3863 // Methods to access block successors -- dereferencing to our wrapper class. 3864 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); } 3865 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); } 3866 3867 /// Iterator for PHI operands. 3868 class PHI_iterator { 3869 private: 3870 LDVSSAPhi *PHI; 3871 unsigned Idx; 3872 3873 public: 3874 explicit PHI_iterator(LDVSSAPhi *P) // begin iterator 3875 : PHI(P), Idx(0) {} 3876 PHI_iterator(LDVSSAPhi *P, bool) // end iterator 3877 : PHI(P), Idx(PHI->IncomingValues.size()) {} 3878 3879 PHI_iterator &operator++() { 3880 Idx++; 3881 return *this; 3882 } 3883 bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; } 3884 bool operator!=(const PHI_iterator &X) const { return !operator==(X); } 3885 3886 BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; } 3887 3888 LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; } 3889 }; 3890 3891 static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } 3892 3893 static inline PHI_iterator PHI_end(PhiT *PHI) { 3894 return PHI_iterator(PHI, true); 3895 } 3896 3897 /// FindPredecessorBlocks - Put the predecessors of BB into the Preds 3898 /// vector. 3899 static void FindPredecessorBlocks(LDVSSABlock *BB, 3900 SmallVectorImpl<LDVSSABlock *> *Preds) { 3901 for (MachineBasicBlock::pred_iterator PI = BB->BB.pred_begin(), 3902 E = BB->BB.pred_end(); 3903 PI != E; ++PI) 3904 Preds->push_back(BB->Updater.getSSALDVBlock(*PI)); 3905 } 3906 3907 /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new 3908 /// register. For LiveDebugValues, represents a block identified as not having 3909 /// any DBG_PHI predecessors. 3910 static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) { 3911 // Create a value number for this block -- it needs to be unique and in the 3912 // "undef" collection, so that we know it's not real. Use a number 3913 // representing a PHI into this block. 3914 BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64(); 3915 Updater->UndefMap[&BB->BB] = Num; 3916 return Num; 3917 } 3918 3919 /// CreateEmptyPHI - Create a (representation of a) PHI in the given block. 3920 /// SSAUpdater will populate it with information about incoming values. The 3921 /// value number of this PHI is whatever the machine value number problem 3922 /// solution determined it to be. This includes non-phi values if SSAUpdater 3923 /// tries to create a PHI where the incoming values are identical. 3924 static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds, 3925 LDVSSAUpdater *Updater) { 3926 BlockValueNum PHIValNum = Updater->getValue(BB); 3927 LDVSSAPhi *PHI = BB->newPHI(PHIValNum); 3928 Updater->PHIs[PHIValNum] = PHI; 3929 return PHIValNum; 3930 } 3931 3932 /// AddPHIOperand - Add the specified value as an operand of the PHI for 3933 /// the specified predecessor block. 3934 static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) { 3935 PHI->IncomingValues.push_back(std::make_pair(Pred, Val)); 3936 } 3937 3938 /// ValueIsPHI - Check if the instruction that defines the specified value 3939 /// is a PHI instruction. 3940 static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) { 3941 auto PHIIt = Updater->PHIs.find(Val); 3942 if (PHIIt == Updater->PHIs.end()) 3943 return nullptr; 3944 return PHIIt->second; 3945 } 3946 3947 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source 3948 /// operands, i.e., it was just added. 3949 static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) { 3950 LDVSSAPhi *PHI = ValueIsPHI(Val, Updater); 3951 if (PHI && PHI->IncomingValues.size() == 0) 3952 return PHI; 3953 return nullptr; 3954 } 3955 3956 /// GetPHIValue - For the specified PHI instruction, return the value 3957 /// that it defines. 3958 static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; } 3959 }; 3960 3961 } // end namespace llvm 3962 3963 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(MachineFunction &MF, 3964 ValueIDNum **MLiveOuts, 3965 ValueIDNum **MLiveIns, 3966 MachineInstr &Here, 3967 uint64_t InstrNum) { 3968 // Pick out records of DBG_PHI instructions that have been observed. If there 3969 // are none, then we cannot compute a value number. 3970 auto RangePair = std::equal_range(DebugPHINumToValue.begin(), 3971 DebugPHINumToValue.end(), InstrNum); 3972 auto LowerIt = RangePair.first; 3973 auto UpperIt = RangePair.second; 3974 3975 // No DBG_PHI means there can be no location. 3976 if (LowerIt == UpperIt) 3977 return None; 3978 3979 // If there's only one DBG_PHI, then that is our value number. 3980 if (std::distance(LowerIt, UpperIt) == 1) 3981 return LowerIt->ValueRead; 3982 3983 auto DBGPHIRange = make_range(LowerIt, UpperIt); 3984 3985 // Pick out the location (physreg, slot) where any PHIs must occur. It's 3986 // technically possible for us to merge values in different registers in each 3987 // block, but highly unlikely that LLVM will generate such code after register 3988 // allocation. 3989 LocIdx Loc = LowerIt->ReadLoc; 3990 3991 // We have several DBG_PHIs, and a use position (the Here inst). All each 3992 // DBG_PHI does is identify a value at a program position. We can treat each 3993 // DBG_PHI like it's a Def of a value, and the use position is a Use of a 3994 // value, just like SSA. We use the bulk-standard LLVM SSA updater class to 3995 // determine which Def is used at the Use, and any PHIs that happen along 3996 // the way. 3997 // Adapted LLVM SSA Updater: 3998 LDVSSAUpdater Updater(Loc, MLiveIns); 3999 // Map of which Def or PHI is the current value in each block. 4000 DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues; 4001 // Set of PHIs that we have created along the way. 4002 SmallVector<LDVSSAPhi *, 8> CreatedPHIs; 4003 4004 // Each existing DBG_PHI is a Def'd value under this model. Record these Defs 4005 // for the SSAUpdater. 4006 for (const auto &DBG_PHI : DBGPHIRange) { 4007 LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB); 4008 const ValueIDNum &Num = DBG_PHI.ValueRead; 4009 AvailableValues.insert(std::make_pair(Block, Num.asU64())); 4010 } 4011 4012 LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent()); 4013 const auto &AvailIt = AvailableValues.find(HereBlock); 4014 if (AvailIt != AvailableValues.end()) { 4015 // Actually, we already know what the value is -- the Use is in the same 4016 // block as the Def. 4017 return ValueIDNum::fromU64(AvailIt->second); 4018 } 4019 4020 // Otherwise, we must use the SSA Updater. It will identify the value number 4021 // that we are to use, and the PHIs that must happen along the way. 4022 SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs); 4023 BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent())); 4024 ValueIDNum Result = ValueIDNum::fromU64(ResultInt); 4025 4026 // We have the number for a PHI, or possibly live-through value, to be used 4027 // at this Use. There are a number of things we have to check about it though: 4028 // * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this 4029 // Use was not completely dominated by DBG_PHIs and we should abort. 4030 // * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that 4031 // we've left SSA form. Validate that the inputs to each PHI are the 4032 // expected values. 4033 // * Is a PHI we've created actually a merging of values, or are all the 4034 // predecessor values the same, leading to a non-PHI machine value number? 4035 // (SSAUpdater doesn't know that either). Remap validated PHIs into the 4036 // the ValidatedValues collection below to sort this out. 4037 DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues; 4038 4039 // Define all the input DBG_PHI values in ValidatedValues. 4040 for (const auto &DBG_PHI : DBGPHIRange) { 4041 LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB); 4042 const ValueIDNum &Num = DBG_PHI.ValueRead; 4043 ValidatedValues.insert(std::make_pair(Block, Num)); 4044 } 4045 4046 // Sort PHIs to validate into RPO-order. 4047 SmallVector<LDVSSAPhi *, 8> SortedPHIs; 4048 for (auto &PHI : CreatedPHIs) 4049 SortedPHIs.push_back(PHI); 4050 4051 std::sort( 4052 SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) { 4053 return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB]; 4054 }); 4055 4056 for (auto &PHI : SortedPHIs) { 4057 ValueIDNum ThisBlockValueNum = 4058 MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()]; 4059 4060 // Are all these things actually defined? 4061 for (auto &PHIIt : PHI->IncomingValues) { 4062 // Any undef input means DBG_PHIs didn't dominate the use point. 4063 if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end()) 4064 return None; 4065 4066 ValueIDNum ValueToCheck; 4067 ValueIDNum *BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()]; 4068 4069 auto VVal = ValidatedValues.find(PHIIt.first); 4070 if (VVal == ValidatedValues.end()) { 4071 // We cross a loop, and this is a backedge. LLVMs tail duplication 4072 // happens so late that DBG_PHI instructions should not be able to 4073 // migrate into loops -- meaning we can only be live-through this 4074 // loop. 4075 ValueToCheck = ThisBlockValueNum; 4076 } else { 4077 // Does the block have as a live-out, in the location we're examining, 4078 // the value that we expect? If not, it's been moved or clobbered. 4079 ValueToCheck = VVal->second; 4080 } 4081 4082 if (BlockLiveOuts[Loc.asU64()] != ValueToCheck) 4083 return None; 4084 } 4085 4086 // Record this value as validated. 4087 ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum}); 4088 } 4089 4090 // All the PHIs are valid: we can return what the SSAUpdater said our value 4091 // number was. 4092 return Result; 4093 } 4094