1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file InstrRefBasedImpl.cpp
9 ///
10 /// This is a separate implementation of LiveDebugValues, see
11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
12 ///
13 /// This pass propagates variable locations between basic blocks, resolving
14 /// control flow conflicts between them. The problem is much like SSA
15 /// construction, where each DBG_VALUE instruction assigns the *value* that
16 /// a variable has, and every instruction where the variable is in scope uses
17 /// that variable. The resulting map of instruction-to-value is then translated
18 /// into a register (or spill) location for each variable over each instruction.
19 ///
20 /// This pass determines which DBG_VALUE dominates which instructions, or if
21 /// none do, where values must be merged (like PHI nodes). The added
22 /// complication is that because codegen has already finished, a PHI node may
23 /// be needed for a variable location to be correct, but no register or spill
24 /// slot merges the necessary values. In these circumstances, the variable
25 /// location is dropped.
26 ///
27 /// What makes this analysis non-trivial is loops: we cannot tell in advance
28 /// whether a variable location is live throughout a loop, or whether its
29 /// location is clobbered (or redefined by another DBG_VALUE), without
30 /// exploring all the way through.
31 ///
32 /// To make this simpler we perform two kinds of analysis. First, we identify
33 /// every value defined by every instruction (ignoring those that only move
34 /// another value), then compute a map of which values are available for each
35 /// instruction. This is stronger than a reaching-def analysis, as we create
36 /// PHI values where other values merge.
37 ///
38 /// Secondly, for each variable, we effectively re-construct SSA using each
39 /// DBG_VALUE as a def. The DBG_VALUEs read a value-number computed by the
40 /// first analysis from the location they refer to. We can then compute the
41 /// dominance frontiers of where a variable has a value, and create PHI nodes
42 /// where they merge.
43 /// This isn't precisely SSA-construction though, because the function shape
44 /// is pre-defined. If a variable location requires a PHI node, but no
45 /// PHI for the relevant values is present in the function (as computed by the
46 /// first analysis), the location must be dropped.
47 ///
48 /// Once both are complete, we can pass back over all instructions knowing:
49 ///  * What _value_ each variable should contain, either defined by an
50 ///    instruction or where control flow merges
51 ///  * What the location of that value is (if any).
52 /// Allowing us to create appropriate live-in DBG_VALUEs, and DBG_VALUEs when
53 /// a value moves location. After this pass runs, all variable locations within
54 /// a block should be specified by DBG_VALUEs within that block, allowing
55 /// DbgEntityHistoryCalculator to focus on individual blocks.
56 ///
57 /// This pass is able to go fast because the size of the first
58 /// reaching-definition analysis is proportional to the working-set size of
59 /// the function, which the compiler tries to keep small. (It's also
60 /// proportional to the number of blocks). Additionally, we repeatedly perform
61 /// the second reaching-definition analysis with only the variables and blocks
62 /// in a single lexical scope, exploiting their locality.
63 ///
64 /// Determining where PHIs happen is trickier with this approach, and it comes
65 /// to a head in the major problem for LiveDebugValues: is a value live-through
66 /// a loop, or not? Your garden-variety dataflow analysis aims to build a set of
67 /// facts about a function, however this analysis needs to generate new value
68 /// numbers at joins.
69 ///
70 /// To do this, consider a lattice of all definition values, from instructions
71 /// and from PHIs. Each PHI is characterised by the RPO number of the block it
72 /// occurs in. Each value pair A, B can be ordered by RPO(A) < RPO(B):
73 /// with non-PHI values at the top, and any PHI value in the last block (by RPO
74 /// order) at the bottom.
75 ///
76 /// (Awkwardly: lower-down-the _lattice_ means a greater RPO _number_. Below,
77 /// "rank" always refers to the former).
78 ///
79 /// At any join, for each register, we consider:
80 ///  * All incoming values, and
81 ///  * The PREVIOUS live-in value at this join.
82 /// If all incoming values agree: that's the live-in value. If they do not, the
83 /// incoming values are ranked according to the partial order, and the NEXT
84 /// LOWEST rank after the PREVIOUS live-in value is picked (multiple values of
85 /// the same rank are ignored as conflicting). If there are no candidate values,
86 /// or if the rank of the live-in would be lower than the rank of the current
87 /// blocks PHIs, create a new PHI value.
88 ///
89 /// Intuitively: if it's not immediately obvious what value a join should result
90 /// in, we iteratively descend from instruction-definitions down through PHI
91 /// values, getting closer to the current block each time. If the current block
92 /// is a loop head, this ordering is effectively searching outer levels of
93 /// loops, to find a value that's live-through the current loop.
94 ///
95 /// If there is no value that's live-through this loop, a PHI is created for
96 /// this location instead. We can't use a lower-ranked PHI because by definition
97 /// it doesn't dominate the current block. We can't create a PHI value any
98 /// earlier, because we risk creating a PHI value at a location where values do
99 /// not in fact merge, thus misrepresenting the truth, and not making the true
100 /// live-through value for variable locations.
101 ///
102 /// This algorithm applies to both calculating the availability of values in
103 /// the first analysis, and the location of variables in the second. However
104 /// for the second we add an extra dimension of pain: creating a variable
105 /// location PHI is only valid if, for each incoming edge,
106 ///  * There is a value for the variable on the incoming edge, and
107 ///  * All the edges have that value in the same register.
108 /// Or put another way: we can only create a variable-location PHI if there is
109 /// a matching machine-location PHI, each input to which is the variables value
110 /// in the predecessor block.
111 ///
112 /// To accommodate this difference, each point on the lattice is split in
113 /// two: a "proposed" PHI and "definite" PHI. Any PHI that can immediately
114 /// have a location determined are "definite" PHIs, and no further work is
115 /// needed. Otherwise, a location that all non-backedge predecessors agree
116 /// on is picked and propagated as a "proposed" PHI value. If that PHI value
117 /// is truly live-through, it'll appear on the loop backedges on the next
118 /// dataflow iteration, after which the block live-in moves to be a "definite"
119 /// PHI. If it's not truly live-through, the variable value will be downgraded
120 /// further as we explore the lattice, or remains "proposed" and is considered
121 /// invalid once dataflow completes.
122 ///
123 /// ### Terminology
124 ///
125 /// A machine location is a register or spill slot, a value is something that's
126 /// defined by an instruction or PHI node, while a variable value is the value
127 /// assigned to a variable. A variable location is a machine location, that must
128 /// contain the appropriate variable value. A value that is a PHI node is
129 /// occasionally called an mphi.
130 ///
131 /// The first dataflow problem is the "machine value location" problem,
132 /// because we're determining which machine locations contain which values.
133 /// The "locations" are constant: what's unknown is what value they contain.
134 ///
135 /// The second dataflow problem (the one for variables) is the "variable value
136 /// problem", because it's determining what values a variable has, rather than
137 /// what location those values are placed in. Unfortunately, it's not that
138 /// simple, because producing a PHI value always involves picking a location.
139 /// This is an imperfection that we just have to accept, at least for now.
140 ///
141 /// TODO:
142 ///   Overlapping fragments
143 ///   Entry values
144 ///   Add back DEBUG statements for debugging this
145 ///   Collect statistics
146 ///
147 //===----------------------------------------------------------------------===//
148 
149 #include "llvm/ADT/DenseMap.h"
150 #include "llvm/ADT/PostOrderIterator.h"
151 #include "llvm/ADT/STLExtras.h"
152 #include "llvm/ADT/SmallPtrSet.h"
153 #include "llvm/ADT/SmallSet.h"
154 #include "llvm/ADT/SmallVector.h"
155 #include "llvm/ADT/Statistic.h"
156 #include "llvm/ADT/UniqueVector.h"
157 #include "llvm/CodeGen/LexicalScopes.h"
158 #include "llvm/CodeGen/MachineBasicBlock.h"
159 #include "llvm/CodeGen/MachineFrameInfo.h"
160 #include "llvm/CodeGen/MachineFunction.h"
161 #include "llvm/CodeGen/MachineFunctionPass.h"
162 #include "llvm/CodeGen/MachineInstr.h"
163 #include "llvm/CodeGen/MachineInstrBuilder.h"
164 #include "llvm/CodeGen/MachineInstrBundle.h"
165 #include "llvm/CodeGen/MachineMemOperand.h"
166 #include "llvm/CodeGen/MachineOperand.h"
167 #include "llvm/CodeGen/PseudoSourceValue.h"
168 #include "llvm/CodeGen/RegisterScavenging.h"
169 #include "llvm/CodeGen/TargetFrameLowering.h"
170 #include "llvm/CodeGen/TargetInstrInfo.h"
171 #include "llvm/CodeGen/TargetLowering.h"
172 #include "llvm/CodeGen/TargetPassConfig.h"
173 #include "llvm/CodeGen/TargetRegisterInfo.h"
174 #include "llvm/CodeGen/TargetSubtargetInfo.h"
175 #include "llvm/Config/llvm-config.h"
176 #include "llvm/IR/DIBuilder.h"
177 #include "llvm/IR/DebugInfoMetadata.h"
178 #include "llvm/IR/DebugLoc.h"
179 #include "llvm/IR/Function.h"
180 #include "llvm/IR/Module.h"
181 #include "llvm/InitializePasses.h"
182 #include "llvm/MC/MCRegisterInfo.h"
183 #include "llvm/Pass.h"
184 #include "llvm/Support/Casting.h"
185 #include "llvm/Support/Compiler.h"
186 #include "llvm/Support/Debug.h"
187 #include "llvm/Support/TypeSize.h"
188 #include "llvm/Support/raw_ostream.h"
189 #include "llvm/Target/TargetMachine.h"
190 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
191 #include <algorithm>
192 #include <cassert>
193 #include <cstdint>
194 #include <functional>
195 #include <queue>
196 #include <tuple>
197 #include <utility>
198 #include <vector>
199 #include <limits.h>
200 #include <limits>
201 
202 #include "LiveDebugValues.h"
203 
204 using namespace llvm;
205 
206 // SSAUpdaterImple sets DEBUG_TYPE, change it.
207 #undef DEBUG_TYPE
208 #define DEBUG_TYPE "livedebugvalues"
209 
210 // Act more like the VarLoc implementation, by propagating some locations too
211 // far and ignoring some transfers.
212 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
213                                    cl::desc("Act like old LiveDebugValues did"),
214                                    cl::init(false));
215 
216 namespace {
217 
218 // The location at which a spilled value resides. It consists of a register and
219 // an offset.
220 struct SpillLoc {
221   unsigned SpillBase;
222   StackOffset SpillOffset;
223   bool operator==(const SpillLoc &Other) const {
224     return std::make_pair(SpillBase, SpillOffset) ==
225            std::make_pair(Other.SpillBase, Other.SpillOffset);
226   }
227   bool operator<(const SpillLoc &Other) const {
228     return std::make_tuple(SpillBase, SpillOffset.getFixed(),
229                     SpillOffset.getScalable()) <
230            std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(),
231                     Other.SpillOffset.getScalable());
232   }
233 };
234 
235 class LocIdx {
236   unsigned Location;
237 
238   // Default constructor is private, initializing to an illegal location number.
239   // Use only for "not an entry" elements in IndexedMaps.
240   LocIdx() : Location(UINT_MAX) { }
241 
242 public:
243   #define NUM_LOC_BITS 24
244   LocIdx(unsigned L) : Location(L) {
245     assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits");
246   }
247 
248   static LocIdx MakeIllegalLoc() {
249     return LocIdx();
250   }
251 
252   bool isIllegal() const {
253     return Location == UINT_MAX;
254   }
255 
256   uint64_t asU64() const {
257     return Location;
258   }
259 
260   bool operator==(unsigned L) const {
261     return Location == L;
262   }
263 
264   bool operator==(const LocIdx &L) const {
265     return Location == L.Location;
266   }
267 
268   bool operator!=(unsigned L) const {
269     return !(*this == L);
270   }
271 
272   bool operator!=(const LocIdx &L) const {
273     return !(*this == L);
274   }
275 
276   bool operator<(const LocIdx &Other) const {
277     return Location < Other.Location;
278   }
279 };
280 
281 class LocIdxToIndexFunctor {
282 public:
283   using argument_type = LocIdx;
284   unsigned operator()(const LocIdx &L) const {
285     return L.asU64();
286   }
287 };
288 
289 /// Unique identifier for a value defined by an instruction, as a value type.
290 /// Casts back and forth to a uint64_t. Probably replacable with something less
291 /// bit-constrained. Each value identifies the instruction and machine location
292 /// where the value is defined, although there may be no corresponding machine
293 /// operand for it (ex: regmasks clobbering values). The instructions are
294 /// one-based, and definitions that are PHIs have instruction number zero.
295 ///
296 /// The obvious limits of a 1M block function or 1M instruction blocks are
297 /// problematic; but by that point we should probably have bailed out of
298 /// trying to analyse the function.
299 class ValueIDNum {
300   uint64_t BlockNo : 20;         /// The block where the def happens.
301   uint64_t InstNo : 20;          /// The Instruction where the def happens.
302                                  /// One based, is distance from start of block.
303   uint64_t LocNo : NUM_LOC_BITS; /// The machine location where the def happens.
304 
305 public:
306   // XXX -- temporarily enabled while the live-in / live-out tables are moved
307   // to something more type-y
308   ValueIDNum() : BlockNo(0xFFFFF),
309                  InstNo(0xFFFFF),
310                  LocNo(0xFFFFFF) { }
311 
312   ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc)
313     : BlockNo(Block), InstNo(Inst), LocNo(Loc) { }
314 
315   ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc)
316     : BlockNo(Block), InstNo(Inst), LocNo(Loc.asU64()) { }
317 
318   uint64_t getBlock() const { return BlockNo; }
319   uint64_t getInst() const { return InstNo; }
320   uint64_t getLoc() const { return LocNo; }
321   bool isPHI() const { return InstNo == 0; }
322 
323   uint64_t asU64() const {
324     uint64_t TmpBlock = BlockNo;
325     uint64_t TmpInst = InstNo;
326     return TmpBlock << 44ull | TmpInst << NUM_LOC_BITS | LocNo;
327   }
328 
329   static ValueIDNum fromU64(uint64_t v) {
330     uint64_t L = (v & 0x3FFF);
331     return {v >> 44ull, ((v >> NUM_LOC_BITS) & 0xFFFFF), L};
332   }
333 
334   bool operator<(const ValueIDNum &Other) const {
335     return asU64() < Other.asU64();
336   }
337 
338   bool operator==(const ValueIDNum &Other) const {
339     return std::tie(BlockNo, InstNo, LocNo) ==
340            std::tie(Other.BlockNo, Other.InstNo, Other.LocNo);
341   }
342 
343   bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); }
344 
345   std::string asString(const std::string &mlocname) const {
346     return Twine("Value{bb: ")
347         .concat(Twine(BlockNo).concat(
348             Twine(", inst: ")
349                 .concat((InstNo ? Twine(InstNo) : Twine("live-in"))
350                             .concat(Twine(", loc: ").concat(Twine(mlocname)))
351                             .concat(Twine("}")))))
352         .str();
353   }
354 
355   static ValueIDNum EmptyValue;
356 };
357 
358 } // end anonymous namespace
359 
360 namespace {
361 
362 /// Meta qualifiers for a value. Pair of whatever expression is used to qualify
363 /// the the value, and Boolean of whether or not it's indirect.
364 class DbgValueProperties {
365 public:
366   DbgValueProperties(const DIExpression *DIExpr, bool Indirect)
367       : DIExpr(DIExpr), Indirect(Indirect) {}
368 
369   /// Extract properties from an existing DBG_VALUE instruction.
370   DbgValueProperties(const MachineInstr &MI) {
371     assert(MI.isDebugValue());
372     DIExpr = MI.getDebugExpression();
373     Indirect = MI.getOperand(1).isImm();
374   }
375 
376   bool operator==(const DbgValueProperties &Other) const {
377     return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect);
378   }
379 
380   bool operator!=(const DbgValueProperties &Other) const {
381     return !(*this == Other);
382   }
383 
384   const DIExpression *DIExpr;
385   bool Indirect;
386 };
387 
388 /// Tracker for what values are in machine locations. Listens to the Things
389 /// being Done by various instructions, and maintains a table of what machine
390 /// locations have what values (as defined by a ValueIDNum).
391 ///
392 /// There are potentially a much larger number of machine locations on the
393 /// target machine than the actual working-set size of the function. On x86 for
394 /// example, we're extremely unlikely to want to track values through control
395 /// or debug registers. To avoid doing so, MLocTracker has several layers of
396 /// indirection going on, with two kinds of ``location'':
397 ///  * A LocID uniquely identifies a register or spill location, with a
398 ///    predictable value.
399 ///  * A LocIdx is a key (in the database sense) for a LocID and a ValueIDNum.
400 /// Whenever a location is def'd or used by a MachineInstr, we automagically
401 /// create a new LocIdx for a location, but not otherwise. This ensures we only
402 /// account for locations that are actually used or defined. The cost is another
403 /// vector lookup (of LocID -> LocIdx) over any other implementation. This is
404 /// fairly cheap, and the compiler tries to reduce the working-set at any one
405 /// time in the function anyway.
406 ///
407 /// Register mask operands completely blow this out of the water; I've just
408 /// piled hacks on top of hacks to get around that.
409 class MLocTracker {
410 public:
411   MachineFunction &MF;
412   const TargetInstrInfo &TII;
413   const TargetRegisterInfo &TRI;
414   const TargetLowering &TLI;
415 
416   /// IndexedMap type, mapping from LocIdx to ValueIDNum.
417   using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>;
418 
419   /// Map of LocIdxes to the ValueIDNums that they store. This is tightly
420   /// packed, entries only exist for locations that are being tracked.
421   LocToValueType LocIdxToIDNum;
422 
423   /// "Map" of machine location IDs (i.e., raw register or spill number) to the
424   /// LocIdx key / number for that location. There are always at least as many
425   /// as the number of registers on the target -- if the value in the register
426   /// is not being tracked, then the LocIdx value will be zero. New entries are
427   /// appended if a new spill slot begins being tracked.
428   /// This, and the corresponding reverse map persist for the analysis of the
429   /// whole function, and is necessarying for decoding various vectors of
430   /// values.
431   std::vector<LocIdx> LocIDToLocIdx;
432 
433   /// Inverse map of LocIDToLocIdx.
434   IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID;
435 
436   /// Unique-ification of spill slots. Used to number them -- their LocID
437   /// number is the index in SpillLocs minus one plus NumRegs.
438   UniqueVector<SpillLoc> SpillLocs;
439 
440   // If we discover a new machine location, assign it an mphi with this
441   // block number.
442   unsigned CurBB;
443 
444   /// Cached local copy of the number of registers the target has.
445   unsigned NumRegs;
446 
447   /// Collection of register mask operands that have been observed. Second part
448   /// of pair indicates the instruction that they happened in. Used to
449   /// reconstruct where defs happened if we start tracking a location later
450   /// on.
451   SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks;
452 
453   /// Iterator for locations and the values they contain. Dereferencing
454   /// produces a struct/pair containing the LocIdx key for this location,
455   /// and a reference to the value currently stored. Simplifies the process
456   /// of seeking a particular location.
457   class MLocIterator {
458     LocToValueType &ValueMap;
459     LocIdx Idx;
460 
461   public:
462     class value_type {
463       public:
464       value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) { }
465       const LocIdx Idx;  /// Read-only index of this location.
466       ValueIDNum &Value; /// Reference to the stored value at this location.
467     };
468 
469     MLocIterator(LocToValueType &ValueMap, LocIdx Idx)
470       : ValueMap(ValueMap), Idx(Idx) { }
471 
472     bool operator==(const MLocIterator &Other) const {
473       assert(&ValueMap == &Other.ValueMap);
474       return Idx == Other.Idx;
475     }
476 
477     bool operator!=(const MLocIterator &Other) const {
478       return !(*this == Other);
479     }
480 
481     void operator++() {
482       Idx = LocIdx(Idx.asU64() + 1);
483     }
484 
485     value_type operator*() {
486       return value_type(Idx, ValueMap[LocIdx(Idx)]);
487     }
488   };
489 
490   MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
491               const TargetRegisterInfo &TRI, const TargetLowering &TLI)
492       : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
493         LocIdxToIDNum(ValueIDNum::EmptyValue),
494         LocIdxToLocID(0) {
495     NumRegs = TRI.getNumRegs();
496     reset();
497     LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
498     assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
499 
500     // Always track SP. This avoids the implicit clobbering caused by regmasks
501     // from affectings its values. (LiveDebugValues disbelieves calls and
502     // regmasks that claim to clobber SP).
503     Register SP = TLI.getStackPointerRegisterToSaveRestore();
504     if (SP) {
505       unsigned ID = getLocID(SP, false);
506       (void)lookupOrTrackRegister(ID);
507     }
508   }
509 
510   /// Produce location ID number for indexing LocIDToLocIdx. Takes the register
511   /// or spill number, and flag for whether it's a spill or not.
512   unsigned getLocID(Register RegOrSpill, bool isSpill) {
513     return (isSpill) ? RegOrSpill.id() + NumRegs - 1 : RegOrSpill.id();
514   }
515 
516   /// Accessor for reading the value at Idx.
517   ValueIDNum getNumAtPos(LocIdx Idx) const {
518     assert(Idx.asU64() < LocIdxToIDNum.size());
519     return LocIdxToIDNum[Idx];
520   }
521 
522   unsigned getNumLocs(void) const { return LocIdxToIDNum.size(); }
523 
524   /// Reset all locations to contain a PHI value at the designated block. Used
525   /// sometimes for actual PHI values, othertimes to indicate the block entry
526   /// value (before any more information is known).
527   void setMPhis(unsigned NewCurBB) {
528     CurBB = NewCurBB;
529     for (auto Location : locations())
530       Location.Value = {CurBB, 0, Location.Idx};
531   }
532 
533   /// Load values for each location from array of ValueIDNums. Take current
534   /// bbnum just in case we read a value from a hitherto untouched register.
535   void loadFromArray(ValueIDNum *Locs, unsigned NewCurBB) {
536     CurBB = NewCurBB;
537     // Iterate over all tracked locations, and load each locations live-in
538     // value into our local index.
539     for (auto Location : locations())
540       Location.Value = Locs[Location.Idx.asU64()];
541   }
542 
543   /// Wipe any un-necessary location records after traversing a block.
544   void reset(void) {
545     // We could reset all the location values too; however either loadFromArray
546     // or setMPhis should be called before this object is re-used. Just
547     // clear Masks, they're definitely not needed.
548     Masks.clear();
549   }
550 
551   /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of
552   /// the information in this pass uninterpretable.
553   void clear(void) {
554     reset();
555     LocIDToLocIdx.clear();
556     LocIdxToLocID.clear();
557     LocIdxToIDNum.clear();
558     //SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from 0
559     SpillLocs = decltype(SpillLocs)();
560 
561     LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
562   }
563 
564   /// Set a locaiton to a certain value.
565   void setMLoc(LocIdx L, ValueIDNum Num) {
566     assert(L.asU64() < LocIdxToIDNum.size());
567     LocIdxToIDNum[L] = Num;
568   }
569 
570   /// Create a LocIdx for an untracked register ID. Initialize it to either an
571   /// mphi value representing a live-in, or a recent register mask clobber.
572   LocIdx trackRegister(unsigned ID) {
573     assert(ID != 0);
574     LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
575     LocIdxToIDNum.grow(NewIdx);
576     LocIdxToLocID.grow(NewIdx);
577 
578     // Default: it's an mphi.
579     ValueIDNum ValNum = {CurBB, 0, NewIdx};
580     // Was this reg ever touched by a regmask?
581     for (const auto &MaskPair : reverse(Masks)) {
582       if (MaskPair.first->clobbersPhysReg(ID)) {
583         // There was an earlier def we skipped.
584         ValNum = {CurBB, MaskPair.second, NewIdx};
585         break;
586       }
587     }
588 
589     LocIdxToIDNum[NewIdx] = ValNum;
590     LocIdxToLocID[NewIdx] = ID;
591     return NewIdx;
592   }
593 
594   LocIdx lookupOrTrackRegister(unsigned ID) {
595     LocIdx &Index = LocIDToLocIdx[ID];
596     if (Index.isIllegal())
597       Index = trackRegister(ID);
598     return Index;
599   }
600 
601   /// Record a definition of the specified register at the given block / inst.
602   /// This doesn't take a ValueIDNum, because the definition and its location
603   /// are synonymous.
604   void defReg(Register R, unsigned BB, unsigned Inst) {
605     unsigned ID = getLocID(R, false);
606     LocIdx Idx = lookupOrTrackRegister(ID);
607     ValueIDNum ValueID = {BB, Inst, Idx};
608     LocIdxToIDNum[Idx] = ValueID;
609   }
610 
611   /// Set a register to a value number. To be used if the value number is
612   /// known in advance.
613   void setReg(Register R, ValueIDNum ValueID) {
614     unsigned ID = getLocID(R, false);
615     LocIdx Idx = lookupOrTrackRegister(ID);
616     LocIdxToIDNum[Idx] = ValueID;
617   }
618 
619   ValueIDNum readReg(Register R) {
620     unsigned ID = getLocID(R, false);
621     LocIdx Idx = lookupOrTrackRegister(ID);
622     return LocIdxToIDNum[Idx];
623   }
624 
625   /// Reset a register value to zero / empty. Needed to replicate the
626   /// VarLoc implementation where a copy to/from a register effectively
627   /// clears the contents of the source register. (Values can only have one
628   ///  machine location in VarLocBasedImpl).
629   void wipeRegister(Register R) {
630     unsigned ID = getLocID(R, false);
631     LocIdx Idx = LocIDToLocIdx[ID];
632     LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue;
633   }
634 
635   /// Determine the LocIdx of an existing register.
636   LocIdx getRegMLoc(Register R) {
637     unsigned ID = getLocID(R, false);
638     return LocIDToLocIdx[ID];
639   }
640 
641   /// Record a RegMask operand being executed. Defs any register we currently
642   /// track, stores a pointer to the mask in case we have to account for it
643   /// later.
644   void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID) {
645     // Ensure SP exists, so that we don't override it later.
646     Register SP = TLI.getStackPointerRegisterToSaveRestore();
647 
648     // Def any register we track have that isn't preserved. The regmask
649     // terminates the liveness of a register, meaning its value can't be
650     // relied upon -- we represent this by giving it a new value.
651     for (auto Location : locations()) {
652       unsigned ID = LocIdxToLocID[Location.Idx];
653       // Don't clobber SP, even if the mask says it's clobbered.
654       if (ID < NumRegs && ID != SP && MO->clobbersPhysReg(ID))
655         defReg(ID, CurBB, InstID);
656     }
657     Masks.push_back(std::make_pair(MO, InstID));
658   }
659 
660   /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked.
661   LocIdx getOrTrackSpillLoc(SpillLoc L) {
662     unsigned SpillID = SpillLocs.idFor(L);
663     if (SpillID == 0) {
664       SpillID = SpillLocs.insert(L);
665       unsigned L = getLocID(SpillID, true);
666       LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
667       LocIdxToIDNum.grow(Idx);
668       LocIdxToLocID.grow(Idx);
669       LocIDToLocIdx.push_back(Idx);
670       LocIdxToLocID[Idx] = L;
671       return Idx;
672     } else {
673       unsigned L = getLocID(SpillID, true);
674       LocIdx Idx = LocIDToLocIdx[L];
675       return Idx;
676     }
677   }
678 
679   /// Set the value stored in a spill slot.
680   void setSpill(SpillLoc L, ValueIDNum ValueID) {
681     LocIdx Idx = getOrTrackSpillLoc(L);
682     LocIdxToIDNum[Idx] = ValueID;
683   }
684 
685   /// Read whatever value is in a spill slot, or None if it isn't tracked.
686   Optional<ValueIDNum> readSpill(SpillLoc L) {
687     unsigned SpillID = SpillLocs.idFor(L);
688     if (SpillID == 0)
689       return None;
690 
691     unsigned LocID = getLocID(SpillID, true);
692     LocIdx Idx = LocIDToLocIdx[LocID];
693     return LocIdxToIDNum[Idx];
694   }
695 
696   /// Determine the LocIdx of a spill slot. Return None if it previously
697   /// hasn't had a value assigned.
698   Optional<LocIdx> getSpillMLoc(SpillLoc L) {
699     unsigned SpillID = SpillLocs.idFor(L);
700     if (SpillID == 0)
701       return None;
702     unsigned LocNo = getLocID(SpillID, true);
703     return LocIDToLocIdx[LocNo];
704   }
705 
706   /// Return true if Idx is a spill machine location.
707   bool isSpill(LocIdx Idx) const {
708     return LocIdxToLocID[Idx] >= NumRegs;
709   }
710 
711   MLocIterator begin() {
712     return MLocIterator(LocIdxToIDNum, 0);
713   }
714 
715   MLocIterator end() {
716     return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size());
717   }
718 
719   /// Return a range over all locations currently tracked.
720   iterator_range<MLocIterator> locations() {
721     return llvm::make_range(begin(), end());
722   }
723 
724   std::string LocIdxToName(LocIdx Idx) const {
725     unsigned ID = LocIdxToLocID[Idx];
726     if (ID >= NumRegs)
727       return Twine("slot ").concat(Twine(ID - NumRegs)).str();
728     else
729       return TRI.getRegAsmName(ID).str();
730   }
731 
732   std::string IDAsString(const ValueIDNum &Num) const {
733     std::string DefName = LocIdxToName(Num.getLoc());
734     return Num.asString(DefName);
735   }
736 
737   LLVM_DUMP_METHOD
738   void dump() {
739     for (auto Location : locations()) {
740       std::string MLocName = LocIdxToName(Location.Value.getLoc());
741       std::string DefName = Location.Value.asString(MLocName);
742       dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
743     }
744   }
745 
746   LLVM_DUMP_METHOD
747   void dump_mloc_map() {
748     for (auto Location : locations()) {
749       std::string foo = LocIdxToName(Location.Idx);
750       dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
751     }
752   }
753 
754   /// Create a DBG_VALUE based on  machine location \p MLoc. Qualify it with the
755   /// information in \pProperties, for variable Var. Don't insert it anywhere,
756   /// just return the builder for it.
757   MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var,
758                               const DbgValueProperties &Properties) {
759     DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
760                                   Var.getVariable()->getScope(),
761                                   const_cast<DILocation *>(Var.getInlinedAt()));
762     auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));
763 
764     const DIExpression *Expr = Properties.DIExpr;
765     if (!MLoc) {
766       // No location -> DBG_VALUE $noreg
767       MIB.addReg(0, RegState::Debug);
768       MIB.addReg(0, RegState::Debug);
769     } else if (LocIdxToLocID[*MLoc] >= NumRegs) {
770       unsigned LocID = LocIdxToLocID[*MLoc];
771       const SpillLoc &Spill = SpillLocs[LocID - NumRegs + 1];
772 
773       auto *TRI = MF.getSubtarget().getRegisterInfo();
774       Expr = TRI->prependOffsetExpression(Expr, DIExpression::ApplyOffset,
775                                           Spill.SpillOffset);
776       unsigned Base = Spill.SpillBase;
777       MIB.addReg(Base, RegState::Debug);
778       MIB.addImm(0);
779     } else {
780       unsigned LocID = LocIdxToLocID[*MLoc];
781       MIB.addReg(LocID, RegState::Debug);
782       if (Properties.Indirect)
783         MIB.addImm(0);
784       else
785         MIB.addReg(0, RegState::Debug);
786     }
787 
788     MIB.addMetadata(Var.getVariable());
789     MIB.addMetadata(Expr);
790     return MIB;
791   }
792 };
793 
794 /// Class recording the (high level) _value_ of a variable. Identifies either
795 /// the value of the variable as a ValueIDNum, or a constant MachineOperand.
796 /// This class also stores meta-information about how the value is qualified.
797 /// Used to reason about variable values when performing the second
798 /// (DebugVariable specific) dataflow analysis.
799 class DbgValue {
800 public:
801   union {
802     /// If Kind is Def, the value number that this value is based on.
803     ValueIDNum ID;
804     /// If Kind is Const, the MachineOperand defining this value.
805     MachineOperand MO;
806     /// For a NoVal DbgValue, which block it was generated in.
807     unsigned BlockNo;
808   };
809   /// Qualifiers for the ValueIDNum above.
810   DbgValueProperties Properties;
811 
812   typedef enum {
813     Undef,     // Represents a DBG_VALUE $noreg in the transfer function only.
814     Def,       // This value is defined by an inst, or is a PHI value.
815     Const,     // A constant value contained in the MachineOperand field.
816     Proposed,  // This is a tentative PHI value, which may be confirmed or
817                // invalidated later.
818     NoVal      // Empty DbgValue, generated during dataflow. BlockNo stores
819                // which block this was generated in.
820    } KindT;
821   /// Discriminator for whether this is a constant or an in-program value.
822   KindT Kind;
823 
824   DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind)
825     : ID(Val), Properties(Prop), Kind(Kind) {
826     assert(Kind == Def || Kind == Proposed);
827   }
828 
829   DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind)
830     : BlockNo(BlockNo), Properties(Prop), Kind(Kind) {
831     assert(Kind == NoVal);
832   }
833 
834   DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind)
835     : MO(MO), Properties(Prop), Kind(Kind) {
836     assert(Kind == Const);
837   }
838 
839   DbgValue(const DbgValueProperties &Prop, KindT Kind)
840     : Properties(Prop), Kind(Kind) {
841     assert(Kind == Undef &&
842            "Empty DbgValue constructor must pass in Undef kind");
843   }
844 
845   void dump(const MLocTracker *MTrack) const {
846     if (Kind == Const) {
847       MO.dump();
848     } else if (Kind == NoVal) {
849       dbgs() << "NoVal(" << BlockNo << ")";
850     } else if (Kind == Proposed) {
851       dbgs() << "VPHI(" << MTrack->IDAsString(ID) << ")";
852     } else {
853       assert(Kind == Def);
854       dbgs() << MTrack->IDAsString(ID);
855     }
856     if (Properties.Indirect)
857       dbgs() << " indir";
858     if (Properties.DIExpr)
859       dbgs() << " " << *Properties.DIExpr;
860   }
861 
862   bool operator==(const DbgValue &Other) const {
863     if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties))
864       return false;
865     else if (Kind == Proposed && ID != Other.ID)
866       return false;
867     else if (Kind == Def && ID != Other.ID)
868       return false;
869     else if (Kind == NoVal && BlockNo != Other.BlockNo)
870       return false;
871     else if (Kind == Const)
872       return MO.isIdenticalTo(Other.MO);
873 
874     return true;
875   }
876 
877   bool operator!=(const DbgValue &Other) const { return !(*this == Other); }
878 };
879 
880 /// Types for recording sets of variable fragments that overlap. For a given
881 /// local variable, we record all other fragments of that variable that could
882 /// overlap it, to reduce search time.
883 using FragmentOfVar =
884     std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
885 using OverlapMap =
886     DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
887 
888 /// Collection of DBG_VALUEs observed when traversing a block. Records each
889 /// variable and the value the DBG_VALUE refers to. Requires the machine value
890 /// location dataflow algorithm to have run already, so that values can be
891 /// identified.
892 class VLocTracker {
893 public:
894   /// Map DebugVariable to the latest Value it's defined to have.
895   /// Needs to be a MapVector because we determine order-in-the-input-MIR from
896   /// the order in this container.
897   /// We only retain the last DbgValue in each block for each variable, to
898   /// determine the blocks live-out variable value. The Vars container forms the
899   /// transfer function for this block, as part of the dataflow analysis. The
900   /// movement of values between locations inside of a block is handled at a
901   /// much later stage, in the TransferTracker class.
902   MapVector<DebugVariable, DbgValue> Vars;
903   DenseMap<DebugVariable, const DILocation *> Scopes;
904   MachineBasicBlock *MBB;
905 
906 public:
907   VLocTracker() {}
908 
909   void defVar(const MachineInstr &MI, const DbgValueProperties &Properties,
910               Optional<ValueIDNum> ID) {
911     assert(MI.isDebugValue() || MI.isDebugRef());
912     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
913                       MI.getDebugLoc()->getInlinedAt());
914     DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def)
915                         : DbgValue(Properties, DbgValue::Undef);
916 
917     // Attempt insertion; overwrite if it's already mapped.
918     auto Result = Vars.insert(std::make_pair(Var, Rec));
919     if (!Result.second)
920       Result.first->second = Rec;
921     Scopes[Var] = MI.getDebugLoc().get();
922   }
923 
924   void defVar(const MachineInstr &MI, const MachineOperand &MO) {
925     // Only DBG_VALUEs can define constant-valued variables.
926     assert(MI.isDebugValue());
927     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
928                       MI.getDebugLoc()->getInlinedAt());
929     DbgValueProperties Properties(MI);
930     DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const);
931 
932     // Attempt insertion; overwrite if it's already mapped.
933     auto Result = Vars.insert(std::make_pair(Var, Rec));
934     if (!Result.second)
935       Result.first->second = Rec;
936     Scopes[Var] = MI.getDebugLoc().get();
937   }
938 };
939 
940 /// Tracker for converting machine value locations and variable values into
941 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
942 /// specifying block live-in locations and transfers within blocks.
943 ///
944 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
945 /// and must be initialized with the set of variable values that are live-in to
946 /// the block. The caller then repeatedly calls process(). TransferTracker picks
947 /// out variable locations for the live-in variable values (if there _is_ a
948 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is
949 /// stepped through, transfers of values between machine locations are
950 /// identified and if profitable, a DBG_VALUE created.
951 ///
952 /// This is where debug use-before-defs would be resolved: a variable with an
953 /// unavailable value could materialize in the middle of a block, when the
954 /// value becomes available. Or, we could detect clobbers and re-specify the
955 /// variable in a backup location. (XXX these are unimplemented).
956 class TransferTracker {
957 public:
958   const TargetInstrInfo *TII;
959   const TargetLowering *TLI;
960   /// This machine location tracker is assumed to always contain the up-to-date
961   /// value mapping for all machine locations. TransferTracker only reads
962   /// information from it. (XXX make it const?)
963   MLocTracker *MTracker;
964   MachineFunction &MF;
965   bool ShouldEmitDebugEntryValues;
966 
967   /// Record of all changes in variable locations at a block position. Awkwardly
968   /// we allow inserting either before or after the point: MBB != nullptr
969   /// indicates it's before, otherwise after.
970   struct Transfer {
971     MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
972     MachineBasicBlock *MBB; /// non-null if we should insert after.
973     SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
974   };
975 
976   struct LocAndProperties {
977     LocIdx Loc;
978     DbgValueProperties Properties;
979   };
980 
981   /// Collection of transfers (DBG_VALUEs) to be inserted.
982   SmallVector<Transfer, 32> Transfers;
983 
984   /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
985   /// between TransferTrackers view of variable locations and MLocTrackers. For
986   /// example, MLocTracker observes all clobbers, but TransferTracker lazily
987   /// does not.
988   std::vector<ValueIDNum> VarLocs;
989 
990   /// Map from LocIdxes to which DebugVariables are based that location.
991   /// Mantained while stepping through the block. Not accurate if
992   /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
993   std::map<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
994 
995   /// Map from DebugVariable to it's current location and qualifying meta
996   /// information. To be used in conjunction with ActiveMLocs to construct
997   /// enough information for the DBG_VALUEs for a particular LocIdx.
998   DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;
999 
1000   /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
1001   SmallVector<MachineInstr *, 4> PendingDbgValues;
1002 
1003   /// Record of a use-before-def: created when a value that's live-in to the
1004   /// current block isn't available in any machine location, but it will be
1005   /// defined in this block.
1006   struct UseBeforeDef {
1007     /// Value of this variable, def'd in block.
1008     ValueIDNum ID;
1009     /// Identity of this variable.
1010     DebugVariable Var;
1011     /// Additional variable properties.
1012     DbgValueProperties Properties;
1013   };
1014 
1015   /// Map from instruction index (within the block) to the set of UseBeforeDefs
1016   /// that become defined at that instruction.
1017   DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
1018 
1019   /// The set of variables that are in UseBeforeDefs and can become a location
1020   /// once the relevant value is defined. An element being erased from this
1021   /// collection prevents the use-before-def materializing.
1022   DenseSet<DebugVariable> UseBeforeDefVariables;
1023 
1024   const TargetRegisterInfo &TRI;
1025   const BitVector &CalleeSavedRegs;
1026 
1027   TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
1028                   MachineFunction &MF, const TargetRegisterInfo &TRI,
1029                   const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
1030       : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
1031         CalleeSavedRegs(CalleeSavedRegs) {
1032     TLI = MF.getSubtarget().getTargetLowering();
1033     auto &TM = TPC.getTM<TargetMachine>();
1034     ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
1035   }
1036 
1037   /// Load object with live-in variable values. \p mlocs contains the live-in
1038   /// values in each machine location, while \p vlocs the live-in variable
1039   /// values. This method picks variable locations for the live-in variables,
1040   /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
1041   /// object fields to track variable locations as we step through the block.
1042   /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
1043   void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs,
1044                   SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
1045                   unsigned NumLocs) {
1046     ActiveMLocs.clear();
1047     ActiveVLocs.clear();
1048     VarLocs.clear();
1049     VarLocs.reserve(NumLocs);
1050     UseBeforeDefs.clear();
1051     UseBeforeDefVariables.clear();
1052 
1053     auto isCalleeSaved = [&](LocIdx L) {
1054       unsigned Reg = MTracker->LocIdxToLocID[L];
1055       if (Reg >= MTracker->NumRegs)
1056         return false;
1057       for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
1058         if (CalleeSavedRegs.test(*RAI))
1059           return true;
1060       return false;
1061     };
1062 
1063     // Map of the preferred location for each value.
1064     std::map<ValueIDNum, LocIdx> ValueToLoc;
1065 
1066     // Produce a map of value numbers to the current machine locs they live
1067     // in. When emulating VarLocBasedImpl, there should only be one
1068     // location; when not, we get to pick.
1069     for (auto Location : MTracker->locations()) {
1070       LocIdx Idx = Location.Idx;
1071       ValueIDNum &VNum = MLocs[Idx.asU64()];
1072       VarLocs.push_back(VNum);
1073       auto it = ValueToLoc.find(VNum);
1074       // In order of preference, pick:
1075       //  * Callee saved registers,
1076       //  * Other registers,
1077       //  * Spill slots.
1078       if (it == ValueToLoc.end() || MTracker->isSpill(it->second) ||
1079           (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) {
1080         // Insert, or overwrite if insertion failed.
1081         auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx));
1082         if (!PrefLocRes.second)
1083           PrefLocRes.first->second = Idx;
1084       }
1085     }
1086 
1087     // Now map variables to their picked LocIdxes.
1088     for (auto Var : VLocs) {
1089       if (Var.second.Kind == DbgValue::Const) {
1090         PendingDbgValues.push_back(
1091             emitMOLoc(Var.second.MO, Var.first, Var.second.Properties));
1092         continue;
1093       }
1094 
1095       // If the value has no location, we can't make a variable location.
1096       const ValueIDNum &Num = Var.second.ID;
1097       auto ValuesPreferredLoc = ValueToLoc.find(Num);
1098       if (ValuesPreferredLoc == ValueToLoc.end()) {
1099         // If it's a def that occurs in this block, register it as a
1100         // use-before-def to be resolved as we step through the block.
1101         if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI())
1102           addUseBeforeDef(Var.first, Var.second.Properties, Num);
1103         else
1104           recoverAsEntryValue(Var.first, Var.second.Properties, Num);
1105         continue;
1106       }
1107 
1108       LocIdx M = ValuesPreferredLoc->second;
1109       auto NewValue = LocAndProperties{M, Var.second.Properties};
1110       auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
1111       if (!Result.second)
1112         Result.first->second = NewValue;
1113       ActiveMLocs[M].insert(Var.first);
1114       PendingDbgValues.push_back(
1115           MTracker->emitLoc(M, Var.first, Var.second.Properties));
1116     }
1117     flushDbgValues(MBB.begin(), &MBB);
1118   }
1119 
1120   /// Record that \p Var has value \p ID, a value that becomes available
1121   /// later in the function.
1122   void addUseBeforeDef(const DebugVariable &Var,
1123                        const DbgValueProperties &Properties, ValueIDNum ID) {
1124     UseBeforeDef UBD = {ID, Var, Properties};
1125     UseBeforeDefs[ID.getInst()].push_back(UBD);
1126     UseBeforeDefVariables.insert(Var);
1127   }
1128 
1129   /// After the instruction at index \p Inst and position \p pos has been
1130   /// processed, check whether it defines a variable value in a use-before-def.
1131   /// If so, and the variable value hasn't changed since the start of the
1132   /// block, create a DBG_VALUE.
1133   void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
1134     auto MIt = UseBeforeDefs.find(Inst);
1135     if (MIt == UseBeforeDefs.end())
1136       return;
1137 
1138     for (auto &Use : MIt->second) {
1139       LocIdx L = Use.ID.getLoc();
1140 
1141       // If something goes very wrong, we might end up labelling a COPY
1142       // instruction or similar with an instruction number, where it doesn't
1143       // actually define a new value, instead it moves a value. In case this
1144       // happens, discard.
1145       if (MTracker->LocIdxToIDNum[L] != Use.ID)
1146         continue;
1147 
1148       // If a different debug instruction defined the variable value / location
1149       // since the start of the block, don't materialize this use-before-def.
1150       if (!UseBeforeDefVariables.count(Use.Var))
1151         continue;
1152 
1153       PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties));
1154     }
1155     flushDbgValues(pos, nullptr);
1156   }
1157 
1158   /// Helper to move created DBG_VALUEs into Transfers collection.
1159   void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
1160     if (PendingDbgValues.size() == 0)
1161       return;
1162 
1163     // Pick out the instruction start position.
1164     MachineBasicBlock::instr_iterator BundleStart;
1165     if (MBB && Pos == MBB->begin())
1166       BundleStart = MBB->instr_begin();
1167     else
1168       BundleStart = getBundleStart(Pos->getIterator());
1169 
1170     Transfers.push_back({BundleStart, MBB, PendingDbgValues});
1171     PendingDbgValues.clear();
1172   }
1173 
1174   bool isEntryValueVariable(const DebugVariable &Var,
1175                             const DIExpression *Expr) const {
1176     if (!Var.getVariable()->isParameter())
1177       return false;
1178 
1179     if (Var.getInlinedAt())
1180       return false;
1181 
1182     if (Expr->getNumElements() > 0)
1183       return false;
1184 
1185     return true;
1186   }
1187 
1188   bool isEntryValueValue(const ValueIDNum &Val) const {
1189     // Must be in entry block (block number zero), and be a PHI / live-in value.
1190     if (Val.getBlock() || !Val.isPHI())
1191       return false;
1192 
1193     // Entry values must enter in a register.
1194     if (MTracker->isSpill(Val.getLoc()))
1195       return false;
1196 
1197     Register SP = TLI->getStackPointerRegisterToSaveRestore();
1198     Register FP = TRI.getFrameRegister(MF);
1199     Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
1200     return Reg != SP && Reg != FP;
1201   }
1202 
1203   bool recoverAsEntryValue(const DebugVariable &Var, DbgValueProperties &Prop,
1204                            const ValueIDNum &Num) {
1205     // Is this variable location a candidate to be an entry value. First,
1206     // should we be trying this at all?
1207     if (!ShouldEmitDebugEntryValues)
1208       return false;
1209 
1210     // Is the variable appropriate for entry values (i.e., is a parameter).
1211     if (!isEntryValueVariable(Var, Prop.DIExpr))
1212       return false;
1213 
1214     // Is the value assigned to this variable still the entry value?
1215     if (!isEntryValueValue(Num))
1216       return false;
1217 
1218     // Emit a variable location using an entry value expression.
1219     DIExpression *NewExpr =
1220         DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue);
1221     Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
1222     MachineOperand MO = MachineOperand::CreateReg(Reg, false);
1223     MO.setIsDebug(true);
1224 
1225     PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect}));
1226     return true;
1227   }
1228 
1229   /// Change a variable value after encountering a DBG_VALUE inside a block.
1230   void redefVar(const MachineInstr &MI) {
1231     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
1232                       MI.getDebugLoc()->getInlinedAt());
1233     DbgValueProperties Properties(MI);
1234 
1235     const MachineOperand &MO = MI.getOperand(0);
1236 
1237     // Ignore non-register locations, we don't transfer those.
1238     if (!MO.isReg() || MO.getReg() == 0) {
1239       auto It = ActiveVLocs.find(Var);
1240       if (It != ActiveVLocs.end()) {
1241         ActiveMLocs[It->second.Loc].erase(Var);
1242         ActiveVLocs.erase(It);
1243      }
1244       // Any use-before-defs no longer apply.
1245       UseBeforeDefVariables.erase(Var);
1246       return;
1247     }
1248 
1249     Register Reg = MO.getReg();
1250     LocIdx NewLoc = MTracker->getRegMLoc(Reg);
1251     redefVar(MI, Properties, NewLoc);
1252   }
1253 
1254   /// Handle a change in variable location within a block. Terminate the
1255   /// variables current location, and record the value it now refers to, so
1256   /// that we can detect location transfers later on.
1257   void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
1258                 Optional<LocIdx> OptNewLoc) {
1259     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
1260                       MI.getDebugLoc()->getInlinedAt());
1261     // Any use-before-defs no longer apply.
1262     UseBeforeDefVariables.erase(Var);
1263 
1264     // Erase any previous location,
1265     auto It = ActiveVLocs.find(Var);
1266     if (It != ActiveVLocs.end())
1267       ActiveMLocs[It->second.Loc].erase(Var);
1268 
1269     // If there _is_ no new location, all we had to do was erase.
1270     if (!OptNewLoc)
1271       return;
1272     LocIdx NewLoc = *OptNewLoc;
1273 
1274     // Check whether our local copy of values-by-location in #VarLocs is out of
1275     // date. Wipe old tracking data for the location if it's been clobbered in
1276     // the meantime.
1277     if (MTracker->getNumAtPos(NewLoc) != VarLocs[NewLoc.asU64()]) {
1278       for (auto &P : ActiveMLocs[NewLoc]) {
1279         ActiveVLocs.erase(P);
1280       }
1281       ActiveMLocs[NewLoc.asU64()].clear();
1282       VarLocs[NewLoc.asU64()] = MTracker->getNumAtPos(NewLoc);
1283     }
1284 
1285     ActiveMLocs[NewLoc].insert(Var);
1286     if (It == ActiveVLocs.end()) {
1287       ActiveVLocs.insert(
1288           std::make_pair(Var, LocAndProperties{NewLoc, Properties}));
1289     } else {
1290       It->second.Loc = NewLoc;
1291       It->second.Properties = Properties;
1292     }
1293   }
1294 
1295   /// Account for a location \p mloc being clobbered. Examine the variable
1296   /// locations that will be terminated: and try to recover them by using
1297   /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
1298   /// explicitly terminate a location if it can't be recovered.
1299   void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
1300                    bool MakeUndef = true) {
1301     auto ActiveMLocIt = ActiveMLocs.find(MLoc);
1302     if (ActiveMLocIt == ActiveMLocs.end())
1303       return;
1304 
1305     // What was the old variable value?
1306     ValueIDNum OldValue = VarLocs[MLoc.asU64()];
1307     VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
1308 
1309     // Examine the remaining variable locations: if we can find the same value
1310     // again, we can recover the location.
1311     Optional<LocIdx> NewLoc = None;
1312     for (auto Loc : MTracker->locations())
1313       if (Loc.Value == OldValue)
1314         NewLoc = Loc.Idx;
1315 
1316     // If there is no location, and we weren't asked to make the variable
1317     // explicitly undef, then stop here.
1318     if (!NewLoc && !MakeUndef) {
1319       // Try and recover a few more locations with entry values.
1320       for (auto &Var : ActiveMLocIt->second) {
1321         auto &Prop = ActiveVLocs.find(Var)->second.Properties;
1322         recoverAsEntryValue(Var, Prop, OldValue);
1323       }
1324       flushDbgValues(Pos, nullptr);
1325       return;
1326     }
1327 
1328     // Examine all the variables based on this location.
1329     DenseSet<DebugVariable> NewMLocs;
1330     for (auto &Var : ActiveMLocIt->second) {
1331       auto ActiveVLocIt = ActiveVLocs.find(Var);
1332       // Re-state the variable location: if there's no replacement then NewLoc
1333       // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE
1334       // identifying the alternative location will be emitted.
1335       const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr;
1336       DbgValueProperties Properties(Expr, false);
1337       PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties));
1338 
1339       // Update machine locations <=> variable locations maps. Defer updating
1340       // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator.
1341       if (!NewLoc) {
1342         ActiveVLocs.erase(ActiveVLocIt);
1343       } else {
1344         ActiveVLocIt->second.Loc = *NewLoc;
1345         NewMLocs.insert(Var);
1346       }
1347     }
1348 
1349     // Commit any deferred ActiveMLoc changes.
1350     if (!NewMLocs.empty())
1351       for (auto &Var : NewMLocs)
1352         ActiveMLocs[*NewLoc].insert(Var);
1353 
1354     // We lazily track what locations have which values; if we've found a new
1355     // location for the clobbered value, remember it.
1356     if (NewLoc)
1357       VarLocs[NewLoc->asU64()] = OldValue;
1358 
1359     flushDbgValues(Pos, nullptr);
1360 
1361     ActiveMLocIt->second.clear();
1362   }
1363 
1364   /// Transfer variables based on \p Src to be based on \p Dst. This handles
1365   /// both register copies as well as spills and restores. Creates DBG_VALUEs
1366   /// describing the movement.
1367   void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
1368     // Does Src still contain the value num we expect? If not, it's been
1369     // clobbered in the meantime, and our variable locations are stale.
1370     if (VarLocs[Src.asU64()] != MTracker->getNumAtPos(Src))
1371       return;
1372 
1373     // assert(ActiveMLocs[Dst].size() == 0);
1374     //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
1375     ActiveMLocs[Dst] = ActiveMLocs[Src];
1376     VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
1377 
1378     // For each variable based on Src; create a location at Dst.
1379     for (auto &Var : ActiveMLocs[Src]) {
1380       auto ActiveVLocIt = ActiveVLocs.find(Var);
1381       assert(ActiveVLocIt != ActiveVLocs.end());
1382       ActiveVLocIt->second.Loc = Dst;
1383 
1384       assert(Dst != 0);
1385       MachineInstr *MI =
1386           MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
1387       PendingDbgValues.push_back(MI);
1388     }
1389     ActiveMLocs[Src].clear();
1390     flushDbgValues(Pos, nullptr);
1391 
1392     // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
1393     // about the old location.
1394     if (EmulateOldLDV)
1395       VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
1396   }
1397 
1398   MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
1399                                 const DebugVariable &Var,
1400                                 const DbgValueProperties &Properties) {
1401     DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
1402                                   Var.getVariable()->getScope(),
1403                                   const_cast<DILocation *>(Var.getInlinedAt()));
1404     auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
1405     MIB.add(MO);
1406     if (Properties.Indirect)
1407       MIB.addImm(0);
1408     else
1409       MIB.addReg(0);
1410     MIB.addMetadata(Var.getVariable());
1411     MIB.addMetadata(Properties.DIExpr);
1412     return MIB;
1413   }
1414 };
1415 
1416 class InstrRefBasedLDV : public LDVImpl {
1417 private:
1418   using FragmentInfo = DIExpression::FragmentInfo;
1419   using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
1420 
1421   // Helper while building OverlapMap, a map of all fragments seen for a given
1422   // DILocalVariable.
1423   using VarToFragments =
1424       DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
1425 
1426   /// Machine location/value transfer function, a mapping of which locations
1427   /// are assigned which new values.
1428   using MLocTransferMap = std::map<LocIdx, ValueIDNum>;
1429 
1430   /// Live in/out structure for the variable values: a per-block map of
1431   /// variables to their values. XXX, better name?
1432   using LiveIdxT =
1433       DenseMap<const MachineBasicBlock *, DenseMap<DebugVariable, DbgValue> *>;
1434 
1435   using VarAndLoc = std::pair<DebugVariable, DbgValue>;
1436 
1437   /// Type for a live-in value: the predecessor block, and its value.
1438   using InValueT = std::pair<MachineBasicBlock *, DbgValue *>;
1439 
1440   /// Vector (per block) of a collection (inner smallvector) of live-ins.
1441   /// Used as the result type for the variable value dataflow problem.
1442   using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>;
1443 
1444   const TargetRegisterInfo *TRI;
1445   const TargetInstrInfo *TII;
1446   const TargetFrameLowering *TFI;
1447   const MachineFrameInfo *MFI;
1448   BitVector CalleeSavedRegs;
1449   LexicalScopes LS;
1450   TargetPassConfig *TPC;
1451 
1452   /// Object to track machine locations as we step through a block. Could
1453   /// probably be a field rather than a pointer, as it's always used.
1454   MLocTracker *MTracker;
1455 
1456   /// Number of the current block LiveDebugValues is stepping through.
1457   unsigned CurBB;
1458 
1459   /// Number of the current instruction LiveDebugValues is evaluating.
1460   unsigned CurInst;
1461 
1462   /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl
1463   /// steps through a block. Reads the values at each location from the
1464   /// MLocTracker object.
1465   VLocTracker *VTracker;
1466 
1467   /// Tracker for transfers, listens to DBG_VALUEs and transfers of values
1468   /// between locations during stepping, creates new DBG_VALUEs when values move
1469   /// location.
1470   TransferTracker *TTracker;
1471 
1472   /// Blocks which are artificial, i.e. blocks which exclusively contain
1473   /// instructions without DebugLocs, or with line 0 locations.
1474   SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
1475 
1476   // Mapping of blocks to and from their RPOT order.
1477   DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
1478   DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
1479   DenseMap<unsigned, unsigned> BBNumToRPO;
1480 
1481   /// Pair of MachineInstr, and its 1-based offset into the containing block.
1482   using InstAndNum = std::pair<const MachineInstr *, unsigned>;
1483   /// Map from debug instruction number to the MachineInstr labelled with that
1484   /// number, and its location within the function. Used to transform
1485   /// instruction numbers in DBG_INSTR_REFs into machine value numbers.
1486   std::map<uint64_t, InstAndNum> DebugInstrNumToInstr;
1487 
1488   /// Record of where we observed a DBG_PHI instruction.
1489   class DebugPHIRecord {
1490   public:
1491     uint64_t InstrNum;      ///< Instruction number of this DBG_PHI.
1492     MachineBasicBlock *MBB; ///< Block where DBG_PHI occurred.
1493     ValueIDNum ValueRead;   ///< The value number read by the DBG_PHI.
1494     LocIdx ReadLoc;         ///< Register/Stack location the DBG_PHI reads.
1495 
1496     operator unsigned() const { return InstrNum; }
1497   };
1498 
1499   /// Map from instruction numbers defined by DBG_PHIs to a record of what that
1500   /// DBG_PHI read and where. Populated and edited during the machine value
1501   /// location problem -- we use LLVMs SSA Updater to fix changes by
1502   /// optimizations that destroy PHI instructions.
1503   SmallVector<DebugPHIRecord, 32> DebugPHINumToValue;
1504 
1505   // Map of overlapping variable fragments.
1506   OverlapMap OverlapFragments;
1507   VarToFragments SeenFragments;
1508 
1509   /// Tests whether this instruction is a spill to a stack slot.
1510   bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
1511 
1512   /// Decide if @MI is a spill instruction and return true if it is. We use 2
1513   /// criteria to make this decision:
1514   /// - Is this instruction a store to a spill slot?
1515   /// - Is there a register operand that is both used and killed?
1516   /// TODO: Store optimization can fold spills into other stores (including
1517   /// other spills). We do not handle this yet (more than one memory operand).
1518   bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
1519                        unsigned &Reg);
1520 
1521   /// If a given instruction is identified as a spill, return the spill slot
1522   /// and set \p Reg to the spilled register.
1523   Optional<SpillLoc> isRestoreInstruction(const MachineInstr &MI,
1524                                           MachineFunction *MF, unsigned &Reg);
1525 
1526   /// Given a spill instruction, extract the register and offset used to
1527   /// address the spill slot in a target independent way.
1528   SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
1529 
1530   /// Observe a single instruction while stepping through a block.
1531   void process(MachineInstr &MI, ValueIDNum **MLiveOuts = nullptr,
1532                ValueIDNum **MLiveIns = nullptr);
1533 
1534   /// Examines whether \p MI is a DBG_VALUE and notifies trackers.
1535   /// \returns true if MI was recognized and processed.
1536   bool transferDebugValue(const MachineInstr &MI);
1537 
1538   /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers.
1539   /// \returns true if MI was recognized and processed.
1540   bool transferDebugInstrRef(MachineInstr &MI, ValueIDNum **MLiveOuts,
1541                              ValueIDNum **MLiveIns);
1542 
1543   /// Stores value-information about where this PHI occurred, and what
1544   /// instruction number is associated with it.
1545   /// \returns true if MI was recognized and processed.
1546   bool transferDebugPHI(MachineInstr &MI);
1547 
1548   /// Examines whether \p MI is copy instruction, and notifies trackers.
1549   /// \returns true if MI was recognized and processed.
1550   bool transferRegisterCopy(MachineInstr &MI);
1551 
1552   /// Examines whether \p MI is stack spill or restore  instruction, and
1553   /// notifies trackers. \returns true if MI was recognized and processed.
1554   bool transferSpillOrRestoreInst(MachineInstr &MI);
1555 
1556   /// Examines \p MI for any registers that it defines, and notifies trackers.
1557   void transferRegisterDef(MachineInstr &MI);
1558 
1559   /// Copy one location to the other, accounting for movement of subregisters
1560   /// too.
1561   void performCopy(Register Src, Register Dst);
1562 
1563   void accumulateFragmentMap(MachineInstr &MI);
1564 
1565   /// Determine the machine value number referred to by (potentially several)
1566   /// DBG_PHI instructions. Block duplication and tail folding can duplicate
1567   /// DBG_PHIs, shifting the position where values in registers merge, and
1568   /// forming another mini-ssa problem to solve.
1569   /// \p Here the position of a DBG_INSTR_REF seeking a machine value number
1570   /// \p InstrNum Debug instruction number defined by DBG_PHI instructions.
1571   /// \returns The machine value number at position Here, or None.
1572   Optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF,
1573                                       ValueIDNum **MLiveOuts,
1574                                       ValueIDNum **MLiveIns, MachineInstr &Here,
1575                                       uint64_t InstrNum);
1576 
1577   /// Step through the function, recording register definitions and movements
1578   /// in an MLocTracker. Convert the observations into a per-block transfer
1579   /// function in \p MLocTransfer, suitable for using with the machine value
1580   /// location dataflow problem.
1581   void
1582   produceMLocTransferFunction(MachineFunction &MF,
1583                               SmallVectorImpl<MLocTransferMap> &MLocTransfer,
1584                               unsigned MaxNumBlocks);
1585 
1586   /// Solve the machine value location dataflow problem. Takes as input the
1587   /// transfer functions in \p MLocTransfer. Writes the output live-in and
1588   /// live-out arrays to the (initialized to zero) multidimensional arrays in
1589   /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block
1590   /// number, the inner by LocIdx.
1591   void mlocDataflow(ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
1592                     SmallVectorImpl<MLocTransferMap> &MLocTransfer);
1593 
1594   /// Perform a control flow join (lattice value meet) of the values in machine
1595   /// locations at \p MBB. Follows the algorithm described in the file-comment,
1596   /// reading live-outs of predecessors from \p OutLocs, the current live ins
1597   /// from \p InLocs, and assigning the newly computed live ins back into
1598   /// \p InLocs. \returns two bools -- the first indicates whether a change
1599   /// was made, the second whether a lattice downgrade occurred. If the latter
1600   /// is true, revisiting this block is necessary.
1601   std::tuple<bool, bool>
1602   mlocJoin(MachineBasicBlock &MBB,
1603            SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1604            ValueIDNum **OutLocs, ValueIDNum *InLocs);
1605 
1606   /// Solve the variable value dataflow problem, for a single lexical scope.
1607   /// Uses the algorithm from the file comment to resolve control flow joins,
1608   /// although there are extra hacks, see vlocJoin. Reads the
1609   /// locations of values from the \p MInLocs and \p MOutLocs arrays (see
1610   /// mlocDataflow) and reads the variable values transfer function from
1611   /// \p AllTheVlocs. Live-in and Live-out variable values are stored locally,
1612   /// with the live-ins permanently stored to \p Output once the fixedpoint is
1613   /// reached.
1614   /// \p VarsWeCareAbout contains a collection of the variables in \p Scope
1615   /// that we should be tracking.
1616   /// \p AssignBlocks contains the set of blocks that aren't in \p Scope, but
1617   /// which do contain DBG_VALUEs, which VarLocBasedImpl tracks locations
1618   /// through.
1619   void vlocDataflow(const LexicalScope *Scope, const DILocation *DILoc,
1620                     const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
1621                     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks,
1622                     LiveInsT &Output, ValueIDNum **MOutLocs,
1623                     ValueIDNum **MInLocs,
1624                     SmallVectorImpl<VLocTracker> &AllTheVLocs);
1625 
1626   /// Compute the live-ins to a block, considering control flow merges according
1627   /// to the method in the file comment. Live out and live in variable values
1628   /// are stored in \p VLOCOutLocs and \p VLOCInLocs. The live-ins for \p MBB
1629   /// are computed and stored into \p VLOCInLocs. \returns true if the live-ins
1630   /// are modified.
1631   /// \p InLocsT Output argument, storage for calculated live-ins.
1632   /// \returns two bools -- the first indicates whether a change
1633   /// was made, the second whether a lattice downgrade occurred. If the latter
1634   /// is true, revisiting this block is necessary.
1635   std::tuple<bool, bool>
1636   vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs,
1637            SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited,
1638            unsigned BBNum, const SmallSet<DebugVariable, 4> &AllVars,
1639            ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
1640            SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
1641            SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
1642            DenseMap<DebugVariable, DbgValue> &InLocsT);
1643 
1644   /// Continue exploration of the variable-value lattice, as explained in the
1645   /// file-level comment. \p OldLiveInLocation contains the current
1646   /// exploration position, from which we need to descend further. \p Values
1647   /// contains the set of live-in values, \p CurBlockRPONum the RPO number of
1648   /// the current block, and \p CandidateLocations a set of locations that
1649   /// should be considered as PHI locations, if we reach the bottom of the
1650   /// lattice. \returns true if we should downgrade; the value is the agreeing
1651   /// value number in a non-backedge predecessor.
1652   bool vlocDowngradeLattice(const MachineBasicBlock &MBB,
1653                             const DbgValue &OldLiveInLocation,
1654                             const SmallVectorImpl<InValueT> &Values,
1655                             unsigned CurBlockRPONum);
1656 
1657   /// For the given block and live-outs feeding into it, try to find a
1658   /// machine location where they all join. If a solution for all predecessors
1659   /// can't be found, a location where all non-backedge-predecessors join
1660   /// will be returned instead. While this method finds a join location, this
1661   /// says nothing as to whether it should be used.
1662   /// \returns Pair of value ID if found, and true when the correct value
1663   /// is available on all predecessor edges, or false if it's only available
1664   /// for non-backedge predecessors.
1665   std::tuple<Optional<ValueIDNum>, bool>
1666   pickVPHILoc(MachineBasicBlock &MBB, const DebugVariable &Var,
1667               const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs,
1668               ValueIDNum **MInLocs,
1669               const SmallVectorImpl<MachineBasicBlock *> &BlockOrders);
1670 
1671   /// Given the solutions to the two dataflow problems, machine value locations
1672   /// in \p MInLocs and live-in variable values in \p SavedLiveIns, runs the
1673   /// TransferTracker class over the function to produce live-in and transfer
1674   /// DBG_VALUEs, then inserts them. Groups of DBG_VALUEs are inserted in the
1675   /// order given by AllVarsNumbering -- this could be any stable order, but
1676   /// right now "order of appearence in function, when explored in RPO", so
1677   /// that we can compare explictly against VarLocBasedImpl.
1678   void emitLocations(MachineFunction &MF, LiveInsT SavedLiveIns,
1679                      ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
1680                      DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
1681                      const TargetPassConfig &TPC);
1682 
1683   /// Boilerplate computation of some initial sets, artifical blocks and
1684   /// RPOT block ordering.
1685   void initialSetup(MachineFunction &MF);
1686 
1687   bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC,
1688                     unsigned InputBBLimit, unsigned InputDbgValLimit) override;
1689 
1690 public:
1691   /// Default construct and initialize the pass.
1692   InstrRefBasedLDV();
1693 
1694   LLVM_DUMP_METHOD
1695   void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const;
1696 
1697   bool isCalleeSaved(LocIdx L) {
1698     unsigned Reg = MTracker->LocIdxToLocID[L];
1699     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1700       if (CalleeSavedRegs.test(*RAI))
1701         return true;
1702     return false;
1703   }
1704 };
1705 
1706 } // end anonymous namespace
1707 
1708 //===----------------------------------------------------------------------===//
1709 //            Implementation
1710 //===----------------------------------------------------------------------===//
1711 
1712 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
1713 
1714 /// Default construct and initialize the pass.
1715 InstrRefBasedLDV::InstrRefBasedLDV() {}
1716 
1717 //===----------------------------------------------------------------------===//
1718 //            Debug Range Extension Implementation
1719 //===----------------------------------------------------------------------===//
1720 
1721 #ifndef NDEBUG
1722 // Something to restore in the future.
1723 // void InstrRefBasedLDV::printVarLocInMBB(..)
1724 #endif
1725 
1726 SpillLoc
1727 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
1728   assert(MI.hasOneMemOperand() &&
1729          "Spill instruction does not have exactly one memory operand?");
1730   auto MMOI = MI.memoperands_begin();
1731   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1732   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
1733          "Inconsistent memory operand in spill instruction");
1734   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
1735   const MachineBasicBlock *MBB = MI.getParent();
1736   Register Reg;
1737   StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
1738   return {Reg, Offset};
1739 }
1740 
1741 /// End all previous ranges related to @MI and start a new range from @MI
1742 /// if it is a DBG_VALUE instr.
1743 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
1744   if (!MI.isDebugValue())
1745     return false;
1746 
1747   const DILocalVariable *Var = MI.getDebugVariable();
1748   const DIExpression *Expr = MI.getDebugExpression();
1749   const DILocation *DebugLoc = MI.getDebugLoc();
1750   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1751   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1752          "Expected inlined-at fields to agree");
1753 
1754   DebugVariable V(Var, Expr, InlinedAt);
1755   DbgValueProperties Properties(MI);
1756 
1757   // If there are no instructions in this lexical scope, do no location tracking
1758   // at all, this variable shouldn't get a legitimate location range.
1759   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1760   if (Scope == nullptr)
1761     return true; // handled it; by doing nothing
1762 
1763   const MachineOperand &MO = MI.getOperand(0);
1764 
1765   // MLocTracker needs to know that this register is read, even if it's only
1766   // read by a debug inst.
1767   if (MO.isReg() && MO.getReg() != 0)
1768     (void)MTracker->readReg(MO.getReg());
1769 
1770   // If we're preparing for the second analysis (variables), the machine value
1771   // locations are already solved, and we report this DBG_VALUE and the value
1772   // it refers to to VLocTracker.
1773   if (VTracker) {
1774     if (MO.isReg()) {
1775       // Feed defVar the new variable location, or if this is a
1776       // DBG_VALUE $noreg, feed defVar None.
1777       if (MO.getReg())
1778         VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg()));
1779       else
1780         VTracker->defVar(MI, Properties, None);
1781     } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
1782                MI.getOperand(0).isCImm()) {
1783       VTracker->defVar(MI, MI.getOperand(0));
1784     }
1785   }
1786 
1787   // If performing final tracking of transfers, report this variable definition
1788   // to the TransferTracker too.
1789   if (TTracker)
1790     TTracker->redefVar(MI);
1791   return true;
1792 }
1793 
1794 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
1795                                              ValueIDNum **MLiveOuts,
1796                                              ValueIDNum **MLiveIns) {
1797   if (!MI.isDebugRef())
1798     return false;
1799 
1800   // Only handle this instruction when we are building the variable value
1801   // transfer function.
1802   if (!VTracker)
1803     return false;
1804 
1805   unsigned InstNo = MI.getOperand(0).getImm();
1806   unsigned OpNo = MI.getOperand(1).getImm();
1807 
1808   const DILocalVariable *Var = MI.getDebugVariable();
1809   const DIExpression *Expr = MI.getDebugExpression();
1810   const DILocation *DebugLoc = MI.getDebugLoc();
1811   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1812   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1813          "Expected inlined-at fields to agree");
1814 
1815   DebugVariable V(Var, Expr, InlinedAt);
1816 
1817   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1818   if (Scope == nullptr)
1819     return true; // Handled by doing nothing. This variable is never in scope.
1820 
1821   const MachineFunction &MF = *MI.getParent()->getParent();
1822 
1823   // Various optimizations may have happened to the value during codegen,
1824   // recorded in the value substitution table. Apply any substitutions to
1825   // the instruction / operand number in this DBG_INSTR_REF, and collect
1826   // any subregister extractions performed during optimization.
1827 
1828   // Create dummy substitution with Src set, for lookup.
1829   auto SoughtSub =
1830       MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0);
1831 
1832   SmallVector<unsigned, 4> SeenSubregs;
1833   auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1834   while (LowerBoundIt != MF.DebugValueSubstitutions.end() &&
1835          LowerBoundIt->Src == SoughtSub.Src) {
1836     std::tie(InstNo, OpNo) = LowerBoundIt->Dest;
1837     SoughtSub.Src = LowerBoundIt->Dest;
1838     if (unsigned Subreg = LowerBoundIt->Subreg)
1839       SeenSubregs.push_back(Subreg);
1840     LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1841   }
1842 
1843   // Default machine value number is <None> -- if no instruction defines
1844   // the corresponding value, it must have been optimized out.
1845   Optional<ValueIDNum> NewID = None;
1846 
1847   // Try to lookup the instruction number, and find the machine value number
1848   // that it defines. It could be an instruction, or a PHI.
1849   auto InstrIt = DebugInstrNumToInstr.find(InstNo);
1850   auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(),
1851                                 DebugPHINumToValue.end(), InstNo);
1852   if (InstrIt != DebugInstrNumToInstr.end()) {
1853     const MachineInstr &TargetInstr = *InstrIt->second.first;
1854     uint64_t BlockNo = TargetInstr.getParent()->getNumber();
1855 
1856     // Pick out the designated operand.
1857     assert(OpNo < TargetInstr.getNumOperands());
1858     const MachineOperand &MO = TargetInstr.getOperand(OpNo);
1859 
1860     // Today, this can only be a register.
1861     assert(MO.isReg() && MO.isDef());
1862 
1863     unsigned LocID = MTracker->getLocID(MO.getReg(), false);
1864     LocIdx L = MTracker->LocIDToLocIdx[LocID];
1865     NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
1866   } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
1867     // It's actually a PHI value. Which value it is might not be obvious, use
1868     // the resolver helper to find out.
1869     NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns,
1870                            MI, InstNo);
1871   }
1872 
1873   // Apply any subregister extractions, in reverse. We might have seen code
1874   // like this:
1875   //    CALL64 @foo, implicit-def $rax
1876   //    %0:gr64 = COPY $rax
1877   //    %1:gr32 = COPY %0.sub_32bit
1878   //    %2:gr16 = COPY %1.sub_16bit
1879   //    %3:gr8  = COPY %2.sub_8bit
1880   // In which case each copy would have been recorded as a substitution with
1881   // a subregister qualifier. Apply those qualifiers now.
1882   if (NewID && !SeenSubregs.empty()) {
1883     unsigned Offset = 0;
1884     unsigned Size = 0;
1885 
1886     // Look at each subregister that we passed through, and progressively
1887     // narrow in, accumulating any offsets that occur. Substitutions should
1888     // only ever be the same or narrower width than what they read from;
1889     // iterate in reverse order so that we go from wide to small.
1890     for (unsigned Subreg : reverse(SeenSubregs)) {
1891       unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
1892       unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
1893       Offset += ThisOffset;
1894       Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
1895     }
1896 
1897     // If that worked, look for an appropriate subregister with the register
1898     // where the define happens. Don't look at values that were defined during
1899     // a stack write: we can't currently express register locations within
1900     // spills.
1901     LocIdx L = NewID->getLoc();
1902     if (NewID && !MTracker->isSpill(L)) {
1903       // Find the register class for the register where this def happened.
1904       // FIXME: no index for this?
1905       Register Reg = MTracker->LocIdxToLocID[L];
1906       const TargetRegisterClass *TRC = nullptr;
1907       for (auto *TRCI : TRI->regclasses())
1908         if (TRCI->contains(Reg))
1909           TRC = TRCI;
1910       assert(TRC && "Couldn't find target register class?");
1911 
1912       // If the register we have isn't the right size or in the right place,
1913       // Try to find a subregister inside it.
1914       unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
1915       if (Size != MainRegSize || Offset) {
1916         // Enumerate all subregisters, searching.
1917         Register NewReg = 0;
1918         for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1919           unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1920           unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
1921           unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
1922           if (SubregSize == Size && SubregOffset == Offset) {
1923             NewReg = *SRI;
1924             break;
1925           }
1926         }
1927 
1928         // If we didn't find anything: there's no way to express our value.
1929         if (!NewReg) {
1930           NewID = None;
1931         } else {
1932           // Re-state the value as being defined within the subregister
1933           // that we found.
1934           LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
1935           NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
1936         }
1937       }
1938     } else {
1939       // If we can't handle subregisters, unset the new value.
1940       NewID = None;
1941     }
1942   }
1943 
1944   // We, we have a value number or None. Tell the variable value tracker about
1945   // it. The rest of this LiveDebugValues implementation acts exactly the same
1946   // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that
1947   // aren't immediately available).
1948   DbgValueProperties Properties(Expr, false);
1949   VTracker->defVar(MI, Properties, NewID);
1950 
1951   // If we're on the final pass through the function, decompose this INSTR_REF
1952   // into a plain DBG_VALUE.
1953   if (!TTracker)
1954     return true;
1955 
1956   // Pick a location for the machine value number, if such a location exists.
1957   // (This information could be stored in TransferTracker to make it faster).
1958   Optional<LocIdx> FoundLoc = None;
1959   for (auto Location : MTracker->locations()) {
1960     LocIdx CurL = Location.Idx;
1961     ValueIDNum ID = MTracker->LocIdxToIDNum[CurL];
1962     if (NewID && ID == NewID) {
1963       // If this is the first location with that value, pick it. Otherwise,
1964       // consider whether it's a "longer term" location.
1965       if (!FoundLoc) {
1966         FoundLoc = CurL;
1967         continue;
1968       }
1969 
1970       if (MTracker->isSpill(CurL))
1971         FoundLoc = CurL; // Spills are a longer term location.
1972       else if (!MTracker->isSpill(*FoundLoc) &&
1973                !MTracker->isSpill(CurL) &&
1974                !isCalleeSaved(*FoundLoc) &&
1975                isCalleeSaved(CurL))
1976         FoundLoc = CurL; // Callee saved regs are longer term than normal.
1977     }
1978   }
1979 
1980   // Tell transfer tracker that the variable value has changed.
1981   TTracker->redefVar(MI, Properties, FoundLoc);
1982 
1983   // If there was a value with no location; but the value is defined in a
1984   // later instruction in this block, this is a block-local use-before-def.
1985   if (!FoundLoc && NewID && NewID->getBlock() == CurBB &&
1986       NewID->getInst() > CurInst)
1987     TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID);
1988 
1989   // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
1990   // This DBG_VALUE is potentially a $noreg / undefined location, if
1991   // FoundLoc is None.
1992   // (XXX -- could morph the DBG_INSTR_REF in the future).
1993   MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties);
1994   TTracker->PendingDbgValues.push_back(DbgMI);
1995   TTracker->flushDbgValues(MI.getIterator(), nullptr);
1996   return true;
1997 }
1998 
1999 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
2000   if (!MI.isDebugPHI())
2001     return false;
2002 
2003   // Analyse these only when solving the machine value location problem.
2004   if (VTracker || TTracker)
2005     return true;
2006 
2007   // First operand is the value location, either a stack slot or register.
2008   // Second is the debug instruction number of the original PHI.
2009   const MachineOperand &MO = MI.getOperand(0);
2010   unsigned InstrNum = MI.getOperand(1).getImm();
2011 
2012   if (MO.isReg()) {
2013     // The value is whatever's currently in the register. Read and record it,
2014     // to be analysed later.
2015     Register Reg = MO.getReg();
2016     ValueIDNum Num = MTracker->readReg(Reg);
2017     auto PHIRec = DebugPHIRecord(
2018         {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
2019     DebugPHINumToValue.push_back(PHIRec);
2020   } else {
2021     // The value is whatever's in this stack slot.
2022     assert(MO.isFI());
2023     unsigned FI = MO.getIndex();
2024 
2025     // If the stack slot is dead, then this was optimized away.
2026     // FIXME: stack slot colouring should account for slots that get merged.
2027     if (MFI->isDeadObjectIndex(FI))
2028       return true;
2029 
2030     // Identify this spill slot.
2031     Register Base;
2032     StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
2033     SpillLoc SL = {Base, Offs};
2034     Optional<ValueIDNum> Num = MTracker->readSpill(SL);
2035 
2036     if (!Num)
2037       // Nothing ever writes to this slot. Curious, but nothing we can do.
2038       return true;
2039 
2040     // Record this DBG_PHI for later analysis.
2041     auto DbgPHI = DebugPHIRecord(
2042         {InstrNum, MI.getParent(), *Num, *MTracker->getSpillMLoc(SL)});
2043     DebugPHINumToValue.push_back(DbgPHI);
2044   }
2045 
2046   return true;
2047 }
2048 
2049 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
2050   // Meta Instructions do not affect the debug liveness of any register they
2051   // define.
2052   if (MI.isImplicitDef()) {
2053     // Except when there's an implicit def, and the location it's defining has
2054     // no value number. The whole point of an implicit def is to announce that
2055     // the register is live, without be specific about it's value. So define
2056     // a value if there isn't one already.
2057     ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
2058     // Has a legitimate value -> ignore the implicit def.
2059     if (Num.getLoc() != 0)
2060       return;
2061     // Otherwise, def it here.
2062   } else if (MI.isMetaInstruction())
2063     return;
2064 
2065   MachineFunction *MF = MI.getMF();
2066   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2067   Register SP = TLI->getStackPointerRegisterToSaveRestore();
2068 
2069   // Find the regs killed by MI, and find regmasks of preserved regs.
2070   // Max out the number of statically allocated elements in `DeadRegs`, as this
2071   // prevents fallback to std::set::count() operations.
2072   SmallSet<uint32_t, 32> DeadRegs;
2073   SmallVector<const uint32_t *, 4> RegMasks;
2074   SmallVector<const MachineOperand *, 4> RegMaskPtrs;
2075   for (const MachineOperand &MO : MI.operands()) {
2076     // Determine whether the operand is a register def.
2077     if (MO.isReg() && MO.isDef() && MO.getReg() &&
2078         Register::isPhysicalRegister(MO.getReg()) &&
2079         !(MI.isCall() && MO.getReg() == SP)) {
2080       // Remove ranges of all aliased registers.
2081       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
2082         // FIXME: Can we break out of this loop early if no insertion occurs?
2083         DeadRegs.insert(*RAI);
2084     } else if (MO.isRegMask()) {
2085       RegMasks.push_back(MO.getRegMask());
2086       RegMaskPtrs.push_back(&MO);
2087     }
2088   }
2089 
2090   // Tell MLocTracker about all definitions, of regmasks and otherwise.
2091   for (uint32_t DeadReg : DeadRegs)
2092     MTracker->defReg(DeadReg, CurBB, CurInst);
2093 
2094   for (auto *MO : RegMaskPtrs)
2095     MTracker->writeRegMask(MO, CurBB, CurInst);
2096 
2097   if (!TTracker)
2098     return;
2099 
2100   // When committing variable values to locations: tell transfer tracker that
2101   // we've clobbered things. It may be able to recover the variable from a
2102   // different location.
2103 
2104   // Inform TTracker about any direct clobbers.
2105   for (uint32_t DeadReg : DeadRegs) {
2106     LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
2107     TTracker->clobberMloc(Loc, MI.getIterator(), false);
2108   }
2109 
2110   // Look for any clobbers performed by a register mask. Only test locations
2111   // that are actually being tracked.
2112   for (auto L : MTracker->locations()) {
2113     // Stack locations can't be clobbered by regmasks.
2114     if (MTracker->isSpill(L.Idx))
2115       continue;
2116 
2117     Register Reg = MTracker->LocIdxToLocID[L.Idx];
2118     for (auto *MO : RegMaskPtrs)
2119       if (MO->clobbersPhysReg(Reg))
2120         TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
2121   }
2122 }
2123 
2124 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
2125   ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
2126 
2127   MTracker->setReg(DstRegNum, SrcValue);
2128 
2129   // In all circumstances, re-def the super registers. It's definitely a new
2130   // value now. This doesn't uniquely identify the composition of subregs, for
2131   // example, two identical values in subregisters composed in different
2132   // places would not get equal value numbers.
2133   for (MCSuperRegIterator SRI(DstRegNum, TRI); SRI.isValid(); ++SRI)
2134     MTracker->defReg(*SRI, CurBB, CurInst);
2135 
2136   // If we're emulating VarLocBasedImpl, just define all the subregisters.
2137   // DBG_VALUEs of them will expect to be tracked from the DBG_VALUE, not
2138   // through prior copies.
2139   if (EmulateOldLDV) {
2140     for (MCSubRegIndexIterator DRI(DstRegNum, TRI); DRI.isValid(); ++DRI)
2141       MTracker->defReg(DRI.getSubReg(), CurBB, CurInst);
2142     return;
2143   }
2144 
2145   // Otherwise, actually copy subregisters from one location to another.
2146   // XXX: in addition, any subregisters of DstRegNum that don't line up with
2147   // the source register should be def'd.
2148   for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
2149     unsigned SrcSubReg = SRI.getSubReg();
2150     unsigned SubRegIdx = SRI.getSubRegIndex();
2151     unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
2152     if (!DstSubReg)
2153       continue;
2154 
2155     // Do copy. There are two matching subregisters, the source value should
2156     // have been def'd when the super-reg was, the latter might not be tracked
2157     // yet.
2158     // This will force SrcSubReg to be tracked, if it isn't yet.
2159     (void)MTracker->readReg(SrcSubReg);
2160     LocIdx SrcL = MTracker->getRegMLoc(SrcSubReg);
2161     assert(SrcL.asU64());
2162     (void)MTracker->readReg(DstSubReg);
2163     LocIdx DstL = MTracker->getRegMLoc(DstSubReg);
2164     assert(DstL.asU64());
2165     (void)DstL;
2166     ValueIDNum CpyValue = {SrcValue.getBlock(), SrcValue.getInst(), SrcL};
2167 
2168     MTracker->setReg(DstSubReg, CpyValue);
2169   }
2170 }
2171 
2172 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
2173                                           MachineFunction *MF) {
2174   // TODO: Handle multiple stores folded into one.
2175   if (!MI.hasOneMemOperand())
2176     return false;
2177 
2178   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
2179     return false; // This is not a spill instruction, since no valid size was
2180                   // returned from either function.
2181 
2182   return true;
2183 }
2184 
2185 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
2186                                        MachineFunction *MF, unsigned &Reg) {
2187   if (!isSpillInstruction(MI, MF))
2188     return false;
2189 
2190   int FI;
2191   Reg = TII->isStoreToStackSlotPostFE(MI, FI);
2192   return Reg != 0;
2193 }
2194 
2195 Optional<SpillLoc>
2196 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
2197                                        MachineFunction *MF, unsigned &Reg) {
2198   if (!MI.hasOneMemOperand())
2199     return None;
2200 
2201   // FIXME: Handle folded restore instructions with more than one memory
2202   // operand.
2203   if (MI.getRestoreSize(TII)) {
2204     Reg = MI.getOperand(0).getReg();
2205     return extractSpillBaseRegAndOffset(MI);
2206   }
2207   return None;
2208 }
2209 
2210 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
2211   // XXX -- it's too difficult to implement VarLocBasedImpl's  stack location
2212   // limitations under the new model. Therefore, when comparing them, compare
2213   // versions that don't attempt spills or restores at all.
2214   if (EmulateOldLDV)
2215     return false;
2216 
2217   MachineFunction *MF = MI.getMF();
2218   unsigned Reg;
2219   Optional<SpillLoc> Loc;
2220 
2221   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
2222 
2223   // First, if there are any DBG_VALUEs pointing at a spill slot that is
2224   // written to, terminate that variable location. The value in memory
2225   // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
2226   if (isSpillInstruction(MI, MF)) {
2227     Loc = extractSpillBaseRegAndOffset(MI);
2228 
2229     if (TTracker) {
2230       Optional<LocIdx> MLoc = MTracker->getSpillMLoc(*Loc);
2231       if (MLoc) {
2232         // Un-set this location before clobbering, so that we don't salvage
2233         // the variable location back to the same place.
2234         MTracker->setMLoc(*MLoc, ValueIDNum::EmptyValue);
2235         TTracker->clobberMloc(*MLoc, MI.getIterator());
2236       }
2237     }
2238   }
2239 
2240   // Try to recognise spill and restore instructions that may transfer a value.
2241   if (isLocationSpill(MI, MF, Reg)) {
2242     Loc = extractSpillBaseRegAndOffset(MI);
2243     auto ValueID = MTracker->readReg(Reg);
2244 
2245     // If the location is empty, produce a phi, signify it's the live-in value.
2246     if (ValueID.getLoc() == 0)
2247       ValueID = {CurBB, 0, MTracker->getRegMLoc(Reg)};
2248 
2249     MTracker->setSpill(*Loc, ValueID);
2250     auto OptSpillLocIdx = MTracker->getSpillMLoc(*Loc);
2251     assert(OptSpillLocIdx && "Spill slot set but has no LocIdx?");
2252     LocIdx SpillLocIdx = *OptSpillLocIdx;
2253 
2254     // Tell TransferTracker about this spill, produce DBG_VALUEs for it.
2255     if (TTracker)
2256       TTracker->transferMlocs(MTracker->getRegMLoc(Reg), SpillLocIdx,
2257                               MI.getIterator());
2258   } else {
2259     if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
2260       return false;
2261 
2262     // Is there a value to be restored?
2263     auto OptValueID = MTracker->readSpill(*Loc);
2264     if (OptValueID) {
2265       ValueIDNum ValueID = *OptValueID;
2266       LocIdx SpillLocIdx = *MTracker->getSpillMLoc(*Loc);
2267       // XXX -- can we recover sub-registers of this value? Until we can, first
2268       // overwrite all defs of the register being restored to.
2269       for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
2270         MTracker->defReg(*RAI, CurBB, CurInst);
2271 
2272       // Now override the reg we're restoring to.
2273       MTracker->setReg(Reg, ValueID);
2274 
2275       // Report this restore to the transfer tracker too.
2276       if (TTracker)
2277         TTracker->transferMlocs(SpillLocIdx, MTracker->getRegMLoc(Reg),
2278                                 MI.getIterator());
2279     } else {
2280       // There isn't anything in the location; not clear if this is a code path
2281       // that still runs. Def this register anyway just in case.
2282       for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
2283         MTracker->defReg(*RAI, CurBB, CurInst);
2284 
2285       // Force the spill slot to be tracked.
2286       LocIdx L = MTracker->getOrTrackSpillLoc(*Loc);
2287 
2288       // Set the restored value to be a machine phi number, signifying that it's
2289       // whatever the spills live-in value is in this block. Definitely has
2290       // a LocIdx due to the setSpill above.
2291       ValueIDNum ValueID = {CurBB, 0, L};
2292       MTracker->setReg(Reg, ValueID);
2293       MTracker->setSpill(*Loc, ValueID);
2294     }
2295   }
2296   return true;
2297 }
2298 
2299 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
2300   auto DestSrc = TII->isCopyInstr(MI);
2301   if (!DestSrc)
2302     return false;
2303 
2304   const MachineOperand *DestRegOp = DestSrc->Destination;
2305   const MachineOperand *SrcRegOp = DestSrc->Source;
2306 
2307   auto isCalleeSavedReg = [&](unsigned Reg) {
2308     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
2309       if (CalleeSavedRegs.test(*RAI))
2310         return true;
2311     return false;
2312   };
2313 
2314   Register SrcReg = SrcRegOp->getReg();
2315   Register DestReg = DestRegOp->getReg();
2316 
2317   // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
2318   if (SrcReg == DestReg)
2319     return true;
2320 
2321   // For emulating VarLocBasedImpl:
2322   // We want to recognize instructions where destination register is callee
2323   // saved register. If register that could be clobbered by the call is
2324   // included, there would be a great chance that it is going to be clobbered
2325   // soon. It is more likely that previous register, which is callee saved, is
2326   // going to stay unclobbered longer, even if it is killed.
2327   //
2328   // For InstrRefBasedImpl, we can track multiple locations per value, so
2329   // ignore this condition.
2330   if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
2331     return false;
2332 
2333   // InstrRefBasedImpl only followed killing copies.
2334   if (EmulateOldLDV && !SrcRegOp->isKill())
2335     return false;
2336 
2337   // Copy MTracker info, including subregs if available.
2338   InstrRefBasedLDV::performCopy(SrcReg, DestReg);
2339 
2340   // Only produce a transfer of DBG_VALUE within a block where old LDV
2341   // would have. We might make use of the additional value tracking in some
2342   // other way, later.
2343   if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
2344     TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
2345                             MTracker->getRegMLoc(DestReg), MI.getIterator());
2346 
2347   // VarLocBasedImpl would quit tracking the old location after copying.
2348   if (EmulateOldLDV && SrcReg != DestReg)
2349     MTracker->defReg(SrcReg, CurBB, CurInst);
2350 
2351   // Finally, the copy might have clobbered variables based on the destination
2352   // register. Tell TTracker about it, in case a backup location exists.
2353   if (TTracker) {
2354     for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
2355       LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
2356       TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false);
2357     }
2358   }
2359 
2360   return true;
2361 }
2362 
2363 /// Accumulate a mapping between each DILocalVariable fragment and other
2364 /// fragments of that DILocalVariable which overlap. This reduces work during
2365 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
2366 /// known-to-overlap fragments are present".
2367 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
2368 ///           fragment usage.
2369 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
2370   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
2371                       MI.getDebugLoc()->getInlinedAt());
2372   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
2373 
2374   // If this is the first sighting of this variable, then we are guaranteed
2375   // there are currently no overlapping fragments either. Initialize the set
2376   // of seen fragments, record no overlaps for the current one, and return.
2377   auto SeenIt = SeenFragments.find(MIVar.getVariable());
2378   if (SeenIt == SeenFragments.end()) {
2379     SmallSet<FragmentInfo, 4> OneFragment;
2380     OneFragment.insert(ThisFragment);
2381     SeenFragments.insert({MIVar.getVariable(), OneFragment});
2382 
2383     OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
2384     return;
2385   }
2386 
2387   // If this particular Variable/Fragment pair already exists in the overlap
2388   // map, it has already been accounted for.
2389   auto IsInOLapMap =
2390       OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
2391   if (!IsInOLapMap.second)
2392     return;
2393 
2394   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
2395   auto &AllSeenFragments = SeenIt->second;
2396 
2397   // Otherwise, examine all other seen fragments for this variable, with "this"
2398   // fragment being a previously unseen fragment. Record any pair of
2399   // overlapping fragments.
2400   for (auto &ASeenFragment : AllSeenFragments) {
2401     // Does this previously seen fragment overlap?
2402     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
2403       // Yes: Mark the current fragment as being overlapped.
2404       ThisFragmentsOverlaps.push_back(ASeenFragment);
2405       // Mark the previously seen fragment as being overlapped by the current
2406       // one.
2407       auto ASeenFragmentsOverlaps =
2408           OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
2409       assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
2410              "Previously seen var fragment has no vector of overlaps");
2411       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
2412     }
2413   }
2414 
2415   AllSeenFragments.insert(ThisFragment);
2416 }
2417 
2418 void InstrRefBasedLDV::process(MachineInstr &MI, ValueIDNum **MLiveOuts,
2419                                ValueIDNum **MLiveIns) {
2420   // Try to interpret an MI as a debug or transfer instruction. Only if it's
2421   // none of these should we interpret it's register defs as new value
2422   // definitions.
2423   if (transferDebugValue(MI))
2424     return;
2425   if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
2426     return;
2427   if (transferDebugPHI(MI))
2428     return;
2429   if (transferRegisterCopy(MI))
2430     return;
2431   if (transferSpillOrRestoreInst(MI))
2432     return;
2433   transferRegisterDef(MI);
2434 }
2435 
2436 void InstrRefBasedLDV::produceMLocTransferFunction(
2437     MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
2438     unsigned MaxNumBlocks) {
2439   // Because we try to optimize around register mask operands by ignoring regs
2440   // that aren't currently tracked, we set up something ugly for later: RegMask
2441   // operands that are seen earlier than the first use of a register, still need
2442   // to clobber that register in the transfer function. But this information
2443   // isn't actively recorded. Instead, we track each RegMask used in each block,
2444   // and accumulated the clobbered but untracked registers in each block into
2445   // the following bitvector. Later, if new values are tracked, we can add
2446   // appropriate clobbers.
2447   SmallVector<BitVector, 32> BlockMasks;
2448   BlockMasks.resize(MaxNumBlocks);
2449 
2450   // Reserve one bit per register for the masks described above.
2451   unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
2452   for (auto &BV : BlockMasks)
2453     BV.resize(TRI->getNumRegs(), true);
2454 
2455   // Step through all instructions and inhale the transfer function.
2456   for (auto &MBB : MF) {
2457     // Object fields that are read by trackers to know where we are in the
2458     // function.
2459     CurBB = MBB.getNumber();
2460     CurInst = 1;
2461 
2462     // Set all machine locations to a PHI value. For transfer function
2463     // production only, this signifies the live-in value to the block.
2464     MTracker->reset();
2465     MTracker->setMPhis(CurBB);
2466 
2467     // Step through each instruction in this block.
2468     for (auto &MI : MBB) {
2469       process(MI);
2470       // Also accumulate fragment map.
2471       if (MI.isDebugValue())
2472         accumulateFragmentMap(MI);
2473 
2474       // Create a map from the instruction number (if present) to the
2475       // MachineInstr and its position.
2476       if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
2477         auto InstrAndPos = std::make_pair(&MI, CurInst);
2478         auto InsertResult =
2479             DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
2480 
2481         // There should never be duplicate instruction numbers.
2482         assert(InsertResult.second);
2483         (void)InsertResult;
2484       }
2485 
2486       ++CurInst;
2487     }
2488 
2489     // Produce the transfer function, a map of machine location to new value. If
2490     // any machine location has the live-in phi value from the start of the
2491     // block, it's live-through and doesn't need recording in the transfer
2492     // function.
2493     for (auto Location : MTracker->locations()) {
2494       LocIdx Idx = Location.Idx;
2495       ValueIDNum &P = Location.Value;
2496       if (P.isPHI() && P.getLoc() == Idx.asU64())
2497         continue;
2498 
2499       // Insert-or-update.
2500       auto &TransferMap = MLocTransfer[CurBB];
2501       auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
2502       if (!Result.second)
2503         Result.first->second = P;
2504     }
2505 
2506     // Accumulate any bitmask operands into the clobberred reg mask for this
2507     // block.
2508     for (auto &P : MTracker->Masks) {
2509       BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
2510     }
2511   }
2512 
2513   // Compute a bitvector of all the registers that are tracked in this block.
2514   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2515   Register SP = TLI->getStackPointerRegisterToSaveRestore();
2516   BitVector UsedRegs(TRI->getNumRegs());
2517   for (auto Location : MTracker->locations()) {
2518     unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
2519     if (ID >= TRI->getNumRegs() || ID == SP)
2520       continue;
2521     UsedRegs.set(ID);
2522   }
2523 
2524   // Check that any regmask-clobber of a register that gets tracked, is not
2525   // live-through in the transfer function. It needs to be clobbered at the
2526   // very least.
2527   for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
2528     BitVector &BV = BlockMasks[I];
2529     BV.flip();
2530     BV &= UsedRegs;
2531     // This produces all the bits that we clobber, but also use. Check that
2532     // they're all clobbered or at least set in the designated transfer
2533     // elem.
2534     for (unsigned Bit : BV.set_bits()) {
2535       unsigned ID = MTracker->getLocID(Bit, false);
2536       LocIdx Idx = MTracker->LocIDToLocIdx[ID];
2537       auto &TransferMap = MLocTransfer[I];
2538 
2539       // Install a value representing the fact that this location is effectively
2540       // written to in this block. As there's no reserved value, instead use
2541       // a value number that is never generated. Pick the value number for the
2542       // first instruction in the block, def'ing this location, which we know
2543       // this block never used anyway.
2544       ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
2545       auto Result =
2546         TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
2547       if (!Result.second) {
2548         ValueIDNum &ValueID = Result.first->second;
2549         if (ValueID.getBlock() == I && ValueID.isPHI())
2550           // It was left as live-through. Set it to clobbered.
2551           ValueID = NotGeneratedNum;
2552       }
2553     }
2554   }
2555 }
2556 
2557 std::tuple<bool, bool>
2558 InstrRefBasedLDV::mlocJoin(MachineBasicBlock &MBB,
2559                            SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
2560                            ValueIDNum **OutLocs, ValueIDNum *InLocs) {
2561   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2562   bool Changed = false;
2563   bool DowngradeOccurred = false;
2564 
2565   // Collect predecessors that have been visited. Anything that hasn't been
2566   // visited yet is a backedge on the first iteration, and the meet of it's
2567   // lattice value for all locations will be unaffected.
2568   SmallVector<const MachineBasicBlock *, 8> BlockOrders;
2569   for (auto Pred : MBB.predecessors()) {
2570     if (Visited.count(Pred)) {
2571       BlockOrders.push_back(Pred);
2572     }
2573   }
2574 
2575   // Visit predecessors in RPOT order.
2576   auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
2577     return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
2578   };
2579   llvm::sort(BlockOrders, Cmp);
2580 
2581   // Skip entry block.
2582   if (BlockOrders.size() == 0)
2583     return std::tuple<bool, bool>(false, false);
2584 
2585   // Step through all machine locations, then look at each predecessor and
2586   // detect disagreements.
2587   unsigned ThisBlockRPO = BBToOrder.find(&MBB)->second;
2588   for (auto Location : MTracker->locations()) {
2589     LocIdx Idx = Location.Idx;
2590     // Pick out the first predecessors live-out value for this location. It's
2591     // guaranteed to be not a backedge, as we order by RPO.
2592     ValueIDNum BaseVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
2593 
2594     // Some flags for whether there's a disagreement, and whether it's a
2595     // disagreement with a backedge or not.
2596     bool Disagree = false;
2597     bool NonBackEdgeDisagree = false;
2598 
2599     // Loop around everything that wasn't 'base'.
2600     for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
2601       auto *MBB = BlockOrders[I];
2602       if (BaseVal != OutLocs[MBB->getNumber()][Idx.asU64()]) {
2603         // Live-out of a predecessor disagrees with the first predecessor.
2604         Disagree = true;
2605 
2606         // Test whether it's a disagreemnt in the backedges or not.
2607         if (BBToOrder.find(MBB)->second < ThisBlockRPO) // might be self b/e
2608           NonBackEdgeDisagree = true;
2609       }
2610     }
2611 
2612     bool OverRide = false;
2613     if (Disagree && !NonBackEdgeDisagree) {
2614       // Only the backedges disagree. Consider demoting the livein
2615       // lattice value, as per the file level comment. The value we consider
2616       // demoting to is the value that the non-backedge predecessors agree on.
2617       // The order of values is that non-PHIs are \top, a PHI at this block
2618       // \bot, and phis between the two are ordered by their RPO number.
2619       // If there's no agreement, or we've already demoted to this PHI value
2620       // before, replace with a PHI value at this block.
2621 
2622       // Calculate order numbers: zero means normal def, nonzero means RPO
2623       // number.
2624       unsigned BaseBlockRPONum = BBNumToRPO[BaseVal.getBlock()] + 1;
2625       if (!BaseVal.isPHI())
2626         BaseBlockRPONum = 0;
2627 
2628       ValueIDNum &InLocID = InLocs[Idx.asU64()];
2629       unsigned InLocRPONum = BBNumToRPO[InLocID.getBlock()] + 1;
2630       if (!InLocID.isPHI())
2631         InLocRPONum = 0;
2632 
2633       // Should we ignore the disagreeing backedges, and override with the
2634       // value the other predecessors agree on (in "base")?
2635       unsigned ThisBlockRPONum = BBNumToRPO[MBB.getNumber()] + 1;
2636       if (BaseBlockRPONum > InLocRPONum && BaseBlockRPONum < ThisBlockRPONum) {
2637         // Override.
2638         OverRide = true;
2639         DowngradeOccurred = true;
2640       }
2641     }
2642     // else: if we disagree in the non-backedges, then this is definitely
2643     // a control flow merge where different values merge. Make it a PHI.
2644 
2645     // Generate a phi...
2646     ValueIDNum PHI = {(uint64_t)MBB.getNumber(), 0, Idx};
2647     ValueIDNum NewVal = (Disagree && !OverRide) ? PHI : BaseVal;
2648     if (InLocs[Idx.asU64()] != NewVal) {
2649       Changed |= true;
2650       InLocs[Idx.asU64()] = NewVal;
2651     }
2652   }
2653 
2654   // TODO: Reimplement NumInserted and NumRemoved.
2655   return std::tuple<bool, bool>(Changed, DowngradeOccurred);
2656 }
2657 
2658 void InstrRefBasedLDV::mlocDataflow(
2659     ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
2660     SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2661   std::priority_queue<unsigned int, std::vector<unsigned int>,
2662                       std::greater<unsigned int>>
2663       Worklist, Pending;
2664 
2665   // We track what is on the current and pending worklist to avoid inserting
2666   // the same thing twice. We could avoid this with a custom priority queue,
2667   // but this is probably not worth it.
2668   SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
2669 
2670   // Initialize worklist with every block to be visited.
2671   for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
2672     Worklist.push(I);
2673     OnWorklist.insert(OrderToBB[I]);
2674   }
2675 
2676   MTracker->reset();
2677 
2678   // Set inlocs for entry block -- each as a PHI at the entry block. Represents
2679   // the incoming value to the function.
2680   MTracker->setMPhis(0);
2681   for (auto Location : MTracker->locations())
2682     MInLocs[0][Location.Idx.asU64()] = Location.Value;
2683 
2684   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
2685   while (!Worklist.empty() || !Pending.empty()) {
2686     // Vector for storing the evaluated block transfer function.
2687     SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
2688 
2689     while (!Worklist.empty()) {
2690       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
2691       CurBB = MBB->getNumber();
2692       Worklist.pop();
2693 
2694       // Join the values in all predecessor blocks.
2695       bool InLocsChanged, DowngradeOccurred;
2696       std::tie(InLocsChanged, DowngradeOccurred) =
2697           mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
2698       InLocsChanged |= Visited.insert(MBB).second;
2699 
2700       // If a downgrade occurred, book us in for re-examination on the next
2701       // iteration.
2702       if (DowngradeOccurred && OnPending.insert(MBB).second)
2703         Pending.push(BBToOrder[MBB]);
2704 
2705       // Don't examine transfer function if we've visited this loc at least
2706       // once, and inlocs haven't changed.
2707       if (!InLocsChanged)
2708         continue;
2709 
2710       // Load the current set of live-ins into MLocTracker.
2711       MTracker->loadFromArray(MInLocs[CurBB], CurBB);
2712 
2713       // Each element of the transfer function can be a new def, or a read of
2714       // a live-in value. Evaluate each element, and store to "ToRemap".
2715       ToRemap.clear();
2716       for (auto &P : MLocTransfer[CurBB]) {
2717         if (P.second.getBlock() == CurBB && P.second.isPHI()) {
2718           // This is a movement of whatever was live in. Read it.
2719           ValueIDNum NewID = MTracker->getNumAtPos(P.second.getLoc());
2720           ToRemap.push_back(std::make_pair(P.first, NewID));
2721         } else {
2722           // It's a def. Just set it.
2723           assert(P.second.getBlock() == CurBB);
2724           ToRemap.push_back(std::make_pair(P.first, P.second));
2725         }
2726       }
2727 
2728       // Commit the transfer function changes into mloc tracker, which
2729       // transforms the contents of the MLocTracker into the live-outs.
2730       for (auto &P : ToRemap)
2731         MTracker->setMLoc(P.first, P.second);
2732 
2733       // Now copy out-locs from mloc tracker into out-loc vector, checking
2734       // whether changes have occurred. These changes can have come from both
2735       // the transfer function, and mlocJoin.
2736       bool OLChanged = false;
2737       for (auto Location : MTracker->locations()) {
2738         OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
2739         MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
2740       }
2741 
2742       MTracker->reset();
2743 
2744       // No need to examine successors again if out-locs didn't change.
2745       if (!OLChanged)
2746         continue;
2747 
2748       // All successors should be visited: put any back-edges on the pending
2749       // list for the next dataflow iteration, and any other successors to be
2750       // visited this iteration, if they're not going to be already.
2751       for (auto s : MBB->successors()) {
2752         // Does branching to this successor represent a back-edge?
2753         if (BBToOrder[s] > BBToOrder[MBB]) {
2754           // No: visit it during this dataflow iteration.
2755           if (OnWorklist.insert(s).second)
2756             Worklist.push(BBToOrder[s]);
2757         } else {
2758           // Yes: visit it on the next iteration.
2759           if (OnPending.insert(s).second)
2760             Pending.push(BBToOrder[s]);
2761         }
2762       }
2763     }
2764 
2765     Worklist.swap(Pending);
2766     std::swap(OnPending, OnWorklist);
2767     OnPending.clear();
2768     // At this point, pending must be empty, since it was just the empty
2769     // worklist
2770     assert(Pending.empty() && "Pending should be empty");
2771   }
2772 
2773   // Once all the live-ins don't change on mlocJoin(), we've reached a
2774   // fixedpoint.
2775 }
2776 
2777 bool InstrRefBasedLDV::vlocDowngradeLattice(
2778     const MachineBasicBlock &MBB, const DbgValue &OldLiveInLocation,
2779     const SmallVectorImpl<InValueT> &Values, unsigned CurBlockRPONum) {
2780   // Ranking value preference: see file level comment, the highest rank is
2781   // a plain def, followed by PHI values in reverse post-order. Numerically,
2782   // we assign all defs the rank '0', all PHIs their blocks RPO number plus
2783   // one, and consider the lowest value the highest ranked.
2784   int OldLiveInRank = BBNumToRPO[OldLiveInLocation.ID.getBlock()] + 1;
2785   if (!OldLiveInLocation.ID.isPHI())
2786     OldLiveInRank = 0;
2787 
2788   // Allow any unresolvable conflict to be over-ridden.
2789   if (OldLiveInLocation.Kind == DbgValue::NoVal) {
2790     // Although if it was an unresolvable conflict from _this_ block, then
2791     // all other seeking of downgrades and PHIs must have failed before hand.
2792     if (OldLiveInLocation.BlockNo == (unsigned)MBB.getNumber())
2793       return false;
2794     OldLiveInRank = INT_MIN;
2795   }
2796 
2797   auto &InValue = *Values[0].second;
2798 
2799   if (InValue.Kind == DbgValue::Const || InValue.Kind == DbgValue::NoVal)
2800     return false;
2801 
2802   unsigned ThisRPO = BBNumToRPO[InValue.ID.getBlock()];
2803   int ThisRank = ThisRPO + 1;
2804   if (!InValue.ID.isPHI())
2805     ThisRank = 0;
2806 
2807   // Too far down the lattice?
2808   if (ThisRPO >= CurBlockRPONum)
2809     return false;
2810 
2811   // Higher in the lattice than what we've already explored?
2812   if (ThisRank <= OldLiveInRank)
2813     return false;
2814 
2815   return true;
2816 }
2817 
2818 std::tuple<Optional<ValueIDNum>, bool> InstrRefBasedLDV::pickVPHILoc(
2819     MachineBasicBlock &MBB, const DebugVariable &Var, const LiveIdxT &LiveOuts,
2820     ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
2821     const SmallVectorImpl<MachineBasicBlock *> &BlockOrders) {
2822   // Collect a set of locations from predecessor where its live-out value can
2823   // be found.
2824   SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
2825   unsigned NumLocs = MTracker->getNumLocs();
2826   unsigned BackEdgesStart = 0;
2827 
2828   for (auto p : BlockOrders) {
2829     // Pick out where backedges start in the list of predecessors. Relies on
2830     // BlockOrders being sorted by RPO.
2831     if (BBToOrder[p] < BBToOrder[&MBB])
2832       ++BackEdgesStart;
2833 
2834     // For each predecessor, create a new set of locations.
2835     Locs.resize(Locs.size() + 1);
2836     unsigned ThisBBNum = p->getNumber();
2837     auto LiveOutMap = LiveOuts.find(p);
2838     if (LiveOutMap == LiveOuts.end())
2839       // This predecessor isn't in scope, it must have no live-in/live-out
2840       // locations.
2841       continue;
2842 
2843     auto It = LiveOutMap->second->find(Var);
2844     if (It == LiveOutMap->second->end())
2845       // There's no value recorded for this variable in this predecessor,
2846       // leave an empty set of locations.
2847       continue;
2848 
2849     const DbgValue &OutVal = It->second;
2850 
2851     if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
2852       // Consts and no-values cannot have locations we can join on.
2853       continue;
2854 
2855     assert(OutVal.Kind == DbgValue::Proposed || OutVal.Kind == DbgValue::Def);
2856     ValueIDNum ValToLookFor = OutVal.ID;
2857 
2858     // Search the live-outs of the predecessor for the specified value.
2859     for (unsigned int I = 0; I < NumLocs; ++I) {
2860       if (MOutLocs[ThisBBNum][I] == ValToLookFor)
2861         Locs.back().push_back(LocIdx(I));
2862     }
2863   }
2864 
2865   // If there were no locations at all, return an empty result.
2866   if (Locs.empty())
2867     return std::tuple<Optional<ValueIDNum>, bool>(None, false);
2868 
2869   // Lambda for seeking a common location within a range of location-sets.
2870   using LocsIt = SmallVector<SmallVector<LocIdx, 4>, 8>::iterator;
2871   auto SeekLocation =
2872       [&Locs](llvm::iterator_range<LocsIt> SearchRange) -> Optional<LocIdx> {
2873     // Starting with the first set of locations, take the intersection with
2874     // subsequent sets.
2875     SmallVector<LocIdx, 4> base = Locs[0];
2876     for (auto &S : SearchRange) {
2877       SmallVector<LocIdx, 4> new_base;
2878       std::set_intersection(base.begin(), base.end(), S.begin(), S.end(),
2879                             std::inserter(new_base, new_base.begin()));
2880       base = new_base;
2881     }
2882     if (base.empty())
2883       return None;
2884 
2885     // We now have a set of LocIdxes that contain the right output value in
2886     // each of the predecessors. Pick the lowest; if there's a register loc,
2887     // that'll be it.
2888     return *base.begin();
2889   };
2890 
2891   // Search for a common location for all predecessors. If we can't, then fall
2892   // back to only finding a common location between non-backedge predecessors.
2893   bool ValidForAllLocs = true;
2894   auto TheLoc = SeekLocation(Locs);
2895   if (!TheLoc) {
2896     ValidForAllLocs = false;
2897     TheLoc =
2898         SeekLocation(make_range(Locs.begin(), Locs.begin() + BackEdgesStart));
2899   }
2900 
2901   if (!TheLoc)
2902     return std::tuple<Optional<ValueIDNum>, bool>(None, false);
2903 
2904   // Return a PHI-value-number for the found location.
2905   LocIdx L = *TheLoc;
2906   ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
2907   return std::tuple<Optional<ValueIDNum>, bool>(PHIVal, ValidForAllLocs);
2908 }
2909 
2910 std::tuple<bool, bool> InstrRefBasedLDV::vlocJoin(
2911     MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs,
2912     SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, unsigned BBNum,
2913     const SmallSet<DebugVariable, 4> &AllVars, ValueIDNum **MOutLocs,
2914     ValueIDNum **MInLocs,
2915     SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
2916     SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
2917     DenseMap<DebugVariable, DbgValue> &InLocsT) {
2918   bool DowngradeOccurred = false;
2919 
2920   // To emulate VarLocBasedImpl, process this block if it's not in scope but
2921   // _does_ assign a variable value. No live-ins for this scope are transferred
2922   // in though, so we can return immediately.
2923   if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB)) {
2924     if (VLOCVisited)
2925       return std::tuple<bool, bool>(true, false);
2926     return std::tuple<bool, bool>(false, false);
2927   }
2928 
2929   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2930   bool Changed = false;
2931 
2932   // Find any live-ins computed in a prior iteration.
2933   auto ILSIt = VLOCInLocs.find(&MBB);
2934   assert(ILSIt != VLOCInLocs.end());
2935   auto &ILS = *ILSIt->second;
2936 
2937   // Order predecessors by RPOT order, for exploring them in that order.
2938   SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
2939 
2940   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2941     return BBToOrder[A] < BBToOrder[B];
2942   };
2943 
2944   llvm::sort(BlockOrders, Cmp);
2945 
2946   unsigned CurBlockRPONum = BBToOrder[&MBB];
2947 
2948   // Force a re-visit to loop heads in the first dataflow iteration.
2949   // FIXME: if we could "propose" Const values this wouldn't be needed,
2950   // because they'd need to be confirmed before being emitted.
2951   if (!BlockOrders.empty() &&
2952       BBToOrder[BlockOrders[BlockOrders.size() - 1]] >= CurBlockRPONum &&
2953       VLOCVisited)
2954     DowngradeOccurred = true;
2955 
2956   auto ConfirmValue = [&InLocsT](const DebugVariable &DV, DbgValue VR) {
2957     auto Result = InLocsT.insert(std::make_pair(DV, VR));
2958     (void)Result;
2959     assert(Result.second);
2960   };
2961 
2962   auto ConfirmNoVal = [&ConfirmValue, &MBB](const DebugVariable &Var, const DbgValueProperties &Properties) {
2963     DbgValue NoLocPHIVal(MBB.getNumber(), Properties, DbgValue::NoVal);
2964 
2965     ConfirmValue(Var, NoLocPHIVal);
2966   };
2967 
2968   // Attempt to join the values for each variable.
2969   for (auto &Var : AllVars) {
2970     // Collect all the DbgValues for this variable.
2971     SmallVector<InValueT, 8> Values;
2972     bool Bail = false;
2973     unsigned BackEdgesStart = 0;
2974     for (auto p : BlockOrders) {
2975       // If the predecessor isn't in scope / to be explored, we'll never be
2976       // able to join any locations.
2977       if (!BlocksToExplore.contains(p)) {
2978         Bail = true;
2979         break;
2980       }
2981 
2982       // Don't attempt to handle unvisited predecessors: they're implicitly
2983       // "unknown"s in the lattice.
2984       if (VLOCVisited && !VLOCVisited->count(p))
2985         continue;
2986 
2987       // If the predecessors OutLocs is absent, there's not much we can do.
2988       auto OL = VLOCOutLocs.find(p);
2989       if (OL == VLOCOutLocs.end()) {
2990         Bail = true;
2991         break;
2992       }
2993 
2994       // No live-out value for this predecessor also means we can't produce
2995       // a joined value.
2996       auto VIt = OL->second->find(Var);
2997       if (VIt == OL->second->end()) {
2998         Bail = true;
2999         break;
3000       }
3001 
3002       // Keep track of where back-edges begin in the Values vector. Relies on
3003       // BlockOrders being sorted by RPO.
3004       unsigned ThisBBRPONum = BBToOrder[p];
3005       if (ThisBBRPONum < CurBlockRPONum)
3006         ++BackEdgesStart;
3007 
3008       Values.push_back(std::make_pair(p, &VIt->second));
3009     }
3010 
3011     // If there were no values, or one of the predecessors couldn't have a
3012     // value, then give up immediately. It's not safe to produce a live-in
3013     // value.
3014     if (Bail || Values.size() == 0)
3015       continue;
3016 
3017     // Enumeration identifying the current state of the predecessors values.
3018     enum {
3019       Unset = 0,
3020       Agreed,       // All preds agree on the variable value.
3021       PropDisagree, // All preds agree, but the value kind is Proposed in some.
3022       BEDisagree,   // Only back-edges disagree on variable value.
3023       PHINeeded,    // Non-back-edge predecessors have conflicing values.
3024       NoSolution    // Conflicting Value metadata makes solution impossible.
3025     } OurState = Unset;
3026 
3027     // All (non-entry) blocks have at least one non-backedge predecessor.
3028     // Pick the variable value from the first of these, to compare against
3029     // all others.
3030     const DbgValue &FirstVal = *Values[0].second;
3031     const ValueIDNum &FirstID = FirstVal.ID;
3032 
3033     // Scan for variable values that can't be resolved: if they have different
3034     // DIExpressions, different indirectness, or are mixed constants /
3035     // non-constants.
3036     for (auto &V : Values) {
3037       if (V.second->Properties != FirstVal.Properties)
3038         OurState = NoSolution;
3039       if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
3040         OurState = NoSolution;
3041     }
3042 
3043     // Flags diagnosing _how_ the values disagree.
3044     bool NonBackEdgeDisagree = false;
3045     bool DisagreeOnPHINess = false;
3046     bool IDDisagree = false;
3047     bool Disagree = false;
3048     if (OurState == Unset) {
3049       for (auto &V : Values) {
3050         if (*V.second == FirstVal)
3051           continue; // No disagreement.
3052 
3053         Disagree = true;
3054 
3055         // Flag whether the value number actually diagrees.
3056         if (V.second->ID != FirstID)
3057           IDDisagree = true;
3058 
3059         // Distinguish whether disagreement happens in backedges or not.
3060         // Relies on Values (and BlockOrders) being sorted by RPO.
3061         unsigned ThisBBRPONum = BBToOrder[V.first];
3062         if (ThisBBRPONum < CurBlockRPONum)
3063           NonBackEdgeDisagree = true;
3064 
3065         // Is there a difference in whether the value is definite or only
3066         // proposed?
3067         if (V.second->Kind != FirstVal.Kind &&
3068             (V.second->Kind == DbgValue::Proposed ||
3069              V.second->Kind == DbgValue::Def) &&
3070             (FirstVal.Kind == DbgValue::Proposed ||
3071              FirstVal.Kind == DbgValue::Def))
3072           DisagreeOnPHINess = true;
3073       }
3074 
3075       // Collect those flags together and determine an overall state for
3076       // what extend the predecessors agree on a live-in value.
3077       if (!Disagree)
3078         OurState = Agreed;
3079       else if (!IDDisagree && DisagreeOnPHINess)
3080         OurState = PropDisagree;
3081       else if (!NonBackEdgeDisagree)
3082         OurState = BEDisagree;
3083       else
3084         OurState = PHINeeded;
3085     }
3086 
3087     // An extra indicator: if we only disagree on whether the value is a
3088     // Def, or proposed, then also flag whether that disagreement happens
3089     // in backedges only.
3090     bool PropOnlyInBEs = Disagree && !IDDisagree && DisagreeOnPHINess &&
3091                          !NonBackEdgeDisagree && FirstVal.Kind == DbgValue::Def;
3092 
3093     const auto &Properties = FirstVal.Properties;
3094 
3095     auto OldLiveInIt = ILS.find(Var);
3096     const DbgValue *OldLiveInLocation =
3097         (OldLiveInIt != ILS.end()) ? &OldLiveInIt->second : nullptr;
3098 
3099     bool OverRide = false;
3100     if (OurState == BEDisagree && OldLiveInLocation) {
3101       // Only backedges disagree: we can consider downgrading. If there was a
3102       // previous live-in value, use it to work out whether the current
3103       // incoming value represents a lattice downgrade or not.
3104       OverRide =
3105           vlocDowngradeLattice(MBB, *OldLiveInLocation, Values, CurBlockRPONum);
3106     }
3107 
3108     // Use the current state of predecessor agreement and other flags to work
3109     // out what to do next. Possibilities include:
3110     //  * Accept a value all predecessors agree on, or accept one that
3111     //    represents a step down the exploration lattice,
3112     //  * Use a PHI value number, if one can be found,
3113     //  * Propose a PHI value number, and see if it gets confirmed later,
3114     //  * Emit a 'NoVal' value, indicating we couldn't resolve anything.
3115     if (OurState == Agreed) {
3116       // Easiest solution: all predecessors agree on the variable value.
3117       ConfirmValue(Var, FirstVal);
3118     } else if (OurState == BEDisagree && OverRide) {
3119       // Only backedges disagree, and the other predecessors have produced
3120       // a new live-in value further down the exploration lattice.
3121       DowngradeOccurred = true;
3122       ConfirmValue(Var, FirstVal);
3123     } else if (OurState == PropDisagree) {
3124       // Predecessors agree on value, but some say it's only a proposed value.
3125       // Propagate it as proposed: unless it was proposed in this block, in
3126       // which case we're able to confirm the value.
3127       if (FirstID.getBlock() == (uint64_t)MBB.getNumber() && FirstID.isPHI()) {
3128         ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def));
3129       } else if (PropOnlyInBEs) {
3130         // If only backedges disagree, a higher (in RPO) block confirmed this
3131         // location, and we need to propagate it into this loop.
3132         ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def));
3133       } else {
3134         // Otherwise; a Def meeting a Proposed is still a Proposed.
3135         ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Proposed));
3136       }
3137     } else if ((OurState == PHINeeded || OurState == BEDisagree)) {
3138       // Predecessors disagree and can't be downgraded: this can only be
3139       // solved with a PHI. Use pickVPHILoc to go look for one.
3140       Optional<ValueIDNum> VPHI;
3141       bool AllEdgesVPHI = false;
3142       std::tie(VPHI, AllEdgesVPHI) =
3143           pickVPHILoc(MBB, Var, VLOCOutLocs, MOutLocs, MInLocs, BlockOrders);
3144 
3145       if (VPHI && AllEdgesVPHI) {
3146         // There's a PHI value that's valid for all predecessors -- we can use
3147         // it. If any of the non-backedge predecessors have proposed values
3148         // though, this PHI is also only proposed, until the predecessors are
3149         // confirmed.
3150         DbgValue::KindT K = DbgValue::Def;
3151         for (unsigned int I = 0; I < BackEdgesStart; ++I)
3152           if (Values[I].second->Kind == DbgValue::Proposed)
3153             K = DbgValue::Proposed;
3154 
3155         ConfirmValue(Var, DbgValue(*VPHI, Properties, K));
3156       } else if (VPHI) {
3157         // There's a PHI value, but it's only legal for backedges. Leave this
3158         // as a proposed PHI value: it might come back on the backedges,
3159         // and allow us to confirm it in the future.
3160         DbgValue NoBEValue = DbgValue(*VPHI, Properties, DbgValue::Proposed);
3161         ConfirmValue(Var, NoBEValue);
3162       } else {
3163         ConfirmNoVal(Var, Properties);
3164       }
3165     } else {
3166       // Otherwise: we don't know. Emit a "phi but no real loc" phi.
3167       ConfirmNoVal(Var, Properties);
3168     }
3169   }
3170 
3171   // Store newly calculated in-locs into VLOCInLocs, if they've changed.
3172   Changed = ILS != InLocsT;
3173   if (Changed)
3174     ILS = InLocsT;
3175 
3176   return std::tuple<bool, bool>(Changed, DowngradeOccurred);
3177 }
3178 
3179 void InstrRefBasedLDV::vlocDataflow(
3180     const LexicalScope *Scope, const DILocation *DILoc,
3181     const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
3182     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
3183     ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
3184     SmallVectorImpl<VLocTracker> &AllTheVLocs) {
3185   // This method is much like mlocDataflow: but focuses on a single
3186   // LexicalScope at a time. Pick out a set of blocks and variables that are
3187   // to have their value assignments solved, then run our dataflow algorithm
3188   // until a fixedpoint is reached.
3189   std::priority_queue<unsigned int, std::vector<unsigned int>,
3190                       std::greater<unsigned int>>
3191       Worklist, Pending;
3192   SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
3193 
3194   // The set of blocks we'll be examining.
3195   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
3196 
3197   // The order in which to examine them (RPO).
3198   SmallVector<MachineBasicBlock *, 8> BlockOrders;
3199 
3200   // RPO ordering function.
3201   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3202     return BBToOrder[A] < BBToOrder[B];
3203   };
3204 
3205   LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
3206 
3207   // A separate container to distinguish "blocks we're exploring" versus
3208   // "blocks that are potentially in scope. See comment at start of vlocJoin.
3209   SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore;
3210 
3211   // Old LiveDebugValues tracks variable locations that come out of blocks
3212   // not in scope, where DBG_VALUEs occur. This is something we could
3213   // legitimately ignore, but lets allow it for now.
3214   if (EmulateOldLDV)
3215     BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
3216 
3217   // We also need to propagate variable values through any artificial blocks
3218   // that immediately follow blocks in scope.
3219   DenseSet<const MachineBasicBlock *> ToAdd;
3220 
3221   // Helper lambda: For a given block in scope, perform a depth first search
3222   // of all the artificial successors, adding them to the ToAdd collection.
3223   auto AccumulateArtificialBlocks =
3224       [this, &ToAdd, &BlocksToExplore,
3225        &InScopeBlocks](const MachineBasicBlock *MBB) {
3226         // Depth-first-search state: each node is a block and which successor
3227         // we're currently exploring.
3228         SmallVector<std::pair<const MachineBasicBlock *,
3229                               MachineBasicBlock::const_succ_iterator>,
3230                     8>
3231             DFS;
3232 
3233         // Find any artificial successors not already tracked.
3234         for (auto *succ : MBB->successors()) {
3235           if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ))
3236             continue;
3237           if (!ArtificialBlocks.count(succ))
3238             continue;
3239           DFS.push_back(std::make_pair(succ, succ->succ_begin()));
3240           ToAdd.insert(succ);
3241         }
3242 
3243         // Search all those blocks, depth first.
3244         while (!DFS.empty()) {
3245           const MachineBasicBlock *CurBB = DFS.back().first;
3246           MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
3247           // Walk back if we've explored this blocks successors to the end.
3248           if (CurSucc == CurBB->succ_end()) {
3249             DFS.pop_back();
3250             continue;
3251           }
3252 
3253           // If the current successor is artificial and unexplored, descend into
3254           // it.
3255           if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
3256             DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin()));
3257             ToAdd.insert(*CurSucc);
3258             continue;
3259           }
3260 
3261           ++CurSucc;
3262         }
3263       };
3264 
3265   // Search in-scope blocks and those containing a DBG_VALUE from this scope
3266   // for artificial successors.
3267   for (auto *MBB : BlocksToExplore)
3268     AccumulateArtificialBlocks(MBB);
3269   for (auto *MBB : InScopeBlocks)
3270     AccumulateArtificialBlocks(MBB);
3271 
3272   BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
3273   InScopeBlocks.insert(ToAdd.begin(), ToAdd.end());
3274 
3275   // Single block scope: not interesting! No propagation at all. Note that
3276   // this could probably go above ArtificialBlocks without damage, but
3277   // that then produces output differences from original-live-debug-values,
3278   // which propagates from a single block into many artificial ones.
3279   if (BlocksToExplore.size() == 1)
3280     return;
3281 
3282   // Picks out relevants blocks RPO order and sort them.
3283   for (auto *MBB : BlocksToExplore)
3284     BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
3285 
3286   llvm::sort(BlockOrders, Cmp);
3287   unsigned NumBlocks = BlockOrders.size();
3288 
3289   // Allocate some vectors for storing the live ins and live outs. Large.
3290   SmallVector<DenseMap<DebugVariable, DbgValue>, 32> LiveIns, LiveOuts;
3291   LiveIns.resize(NumBlocks);
3292   LiveOuts.resize(NumBlocks);
3293 
3294   // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
3295   // vlocJoin.
3296   LiveIdxT LiveOutIdx, LiveInIdx;
3297   LiveOutIdx.reserve(NumBlocks);
3298   LiveInIdx.reserve(NumBlocks);
3299   for (unsigned I = 0; I < NumBlocks; ++I) {
3300     LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
3301     LiveInIdx[BlockOrders[I]] = &LiveIns[I];
3302   }
3303 
3304   for (auto *MBB : BlockOrders) {
3305     Worklist.push(BBToOrder[MBB]);
3306     OnWorklist.insert(MBB);
3307   }
3308 
3309   // Iterate over all the blocks we selected, propagating variable values.
3310   bool FirstTrip = true;
3311   SmallPtrSet<const MachineBasicBlock *, 16> VLOCVisited;
3312   while (!Worklist.empty() || !Pending.empty()) {
3313     while (!Worklist.empty()) {
3314       auto *MBB = OrderToBB[Worklist.top()];
3315       CurBB = MBB->getNumber();
3316       Worklist.pop();
3317 
3318       DenseMap<DebugVariable, DbgValue> JoinedInLocs;
3319 
3320       // Join values from predecessors. Updates LiveInIdx, and writes output
3321       // into JoinedInLocs.
3322       bool InLocsChanged, DowngradeOccurred;
3323       std::tie(InLocsChanged, DowngradeOccurred) = vlocJoin(
3324           *MBB, LiveOutIdx, LiveInIdx, (FirstTrip) ? &VLOCVisited : nullptr,
3325           CurBB, VarsWeCareAbout, MOutLocs, MInLocs, InScopeBlocks,
3326           BlocksToExplore, JoinedInLocs);
3327 
3328       bool FirstVisit = VLOCVisited.insert(MBB).second;
3329 
3330       // Always explore transfer function if inlocs changed, or if we've not
3331       // visited this block before.
3332       InLocsChanged |= FirstVisit;
3333 
3334       // If a downgrade occurred, book us in for re-examination on the next
3335       // iteration.
3336       if (DowngradeOccurred && OnPending.insert(MBB).second)
3337         Pending.push(BBToOrder[MBB]);
3338 
3339       if (!InLocsChanged)
3340         continue;
3341 
3342       // Do transfer function.
3343       auto &VTracker = AllTheVLocs[MBB->getNumber()];
3344       for (auto &Transfer : VTracker.Vars) {
3345         // Is this var we're mangling in this scope?
3346         if (VarsWeCareAbout.count(Transfer.first)) {
3347           // Erase on empty transfer (DBG_VALUE $noreg).
3348           if (Transfer.second.Kind == DbgValue::Undef) {
3349             JoinedInLocs.erase(Transfer.first);
3350           } else {
3351             // Insert new variable value; or overwrite.
3352             auto NewValuePair = std::make_pair(Transfer.first, Transfer.second);
3353             auto Result = JoinedInLocs.insert(NewValuePair);
3354             if (!Result.second)
3355               Result.first->second = Transfer.second;
3356           }
3357         }
3358       }
3359 
3360       // Did the live-out locations change?
3361       bool OLChanged = JoinedInLocs != *LiveOutIdx[MBB];
3362 
3363       // If they haven't changed, there's no need to explore further.
3364       if (!OLChanged)
3365         continue;
3366 
3367       // Commit to the live-out record.
3368       *LiveOutIdx[MBB] = JoinedInLocs;
3369 
3370       // We should visit all successors. Ensure we'll visit any non-backedge
3371       // successors during this dataflow iteration; book backedge successors
3372       // to be visited next time around.
3373       for (auto s : MBB->successors()) {
3374         // Ignore out of scope / not-to-be-explored successors.
3375         if (LiveInIdx.find(s) == LiveInIdx.end())
3376           continue;
3377 
3378         if (BBToOrder[s] > BBToOrder[MBB]) {
3379           if (OnWorklist.insert(s).second)
3380             Worklist.push(BBToOrder[s]);
3381         } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
3382           Pending.push(BBToOrder[s]);
3383         }
3384       }
3385     }
3386     Worklist.swap(Pending);
3387     std::swap(OnWorklist, OnPending);
3388     OnPending.clear();
3389     assert(Pending.empty());
3390     FirstTrip = false;
3391   }
3392 
3393   // Dataflow done. Now what? Save live-ins. Ignore any that are still marked
3394   // as being variable-PHIs, because those did not have their machine-PHI
3395   // value confirmed. Such variable values are places that could have been
3396   // PHIs, but are not.
3397   for (auto *MBB : BlockOrders) {
3398     auto &VarMap = *LiveInIdx[MBB];
3399     for (auto &P : VarMap) {
3400       if (P.second.Kind == DbgValue::Proposed ||
3401           P.second.Kind == DbgValue::NoVal)
3402         continue;
3403       Output[MBB->getNumber()].push_back(P);
3404     }
3405   }
3406 
3407   BlockOrders.clear();
3408   BlocksToExplore.clear();
3409 }
3410 
3411 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3412 void InstrRefBasedLDV::dump_mloc_transfer(
3413     const MLocTransferMap &mloc_transfer) const {
3414   for (auto &P : mloc_transfer) {
3415     std::string foo = MTracker->LocIdxToName(P.first);
3416     std::string bar = MTracker->IDAsString(P.second);
3417     dbgs() << "Loc " << foo << " --> " << bar << "\n";
3418   }
3419 }
3420 #endif
3421 
3422 void InstrRefBasedLDV::emitLocations(
3423     MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MOutLocs,
3424     ValueIDNum **MInLocs, DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
3425     const TargetPassConfig &TPC) {
3426   TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC);
3427   unsigned NumLocs = MTracker->getNumLocs();
3428 
3429   // For each block, load in the machine value locations and variable value
3430   // live-ins, then step through each instruction in the block. New DBG_VALUEs
3431   // to be inserted will be created along the way.
3432   for (MachineBasicBlock &MBB : MF) {
3433     unsigned bbnum = MBB.getNumber();
3434     MTracker->reset();
3435     MTracker->loadFromArray(MInLocs[bbnum], bbnum);
3436     TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()],
3437                          NumLocs);
3438 
3439     CurBB = bbnum;
3440     CurInst = 1;
3441     for (auto &MI : MBB) {
3442       process(MI, MOutLocs, MInLocs);
3443       TTracker->checkInstForNewValues(CurInst, MI.getIterator());
3444       ++CurInst;
3445     }
3446   }
3447 
3448   // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer
3449   // in DWARF in different orders. Use the order that they appear when walking
3450   // through each block / each instruction, stored in AllVarsNumbering.
3451   auto OrderDbgValues = [&](const MachineInstr *A,
3452                             const MachineInstr *B) -> bool {
3453     DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(),
3454                        A->getDebugLoc()->getInlinedAt());
3455     DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(),
3456                        B->getDebugLoc()->getInlinedAt());
3457     return AllVarsNumbering.find(VarA)->second <
3458            AllVarsNumbering.find(VarB)->second;
3459   };
3460 
3461   // Go through all the transfers recorded in the TransferTracker -- this is
3462   // both the live-ins to a block, and any movements of values that happen
3463   // in the middle.
3464   for (auto &P : TTracker->Transfers) {
3465     // Sort them according to appearance order.
3466     llvm::sort(P.Insts, OrderDbgValues);
3467     // Insert either before or after the designated point...
3468     if (P.MBB) {
3469       MachineBasicBlock &MBB = *P.MBB;
3470       for (auto *MI : P.Insts) {
3471         MBB.insert(P.Pos, MI);
3472       }
3473     } else {
3474       // Terminators, like tail calls, can clobber things. Don't try and place
3475       // transfers after them.
3476       if (P.Pos->isTerminator())
3477         continue;
3478 
3479       MachineBasicBlock &MBB = *P.Pos->getParent();
3480       for (auto *MI : P.Insts) {
3481         MBB.insertAfterBundle(P.Pos, MI);
3482       }
3483     }
3484   }
3485 }
3486 
3487 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
3488   // Build some useful data structures.
3489   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
3490     if (const DebugLoc &DL = MI.getDebugLoc())
3491       return DL.getLine() != 0;
3492     return false;
3493   };
3494   // Collect a set of all the artificial blocks.
3495   for (auto &MBB : MF)
3496     if (none_of(MBB.instrs(), hasNonArtificialLocation))
3497       ArtificialBlocks.insert(&MBB);
3498 
3499   // Compute mappings of block <=> RPO order.
3500   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
3501   unsigned int RPONumber = 0;
3502   for (MachineBasicBlock *MBB : RPOT) {
3503     OrderToBB[RPONumber] = MBB;
3504     BBToOrder[MBB] = RPONumber;
3505     BBNumToRPO[MBB->getNumber()] = RPONumber;
3506     ++RPONumber;
3507   }
3508 
3509   // Order value substitutions by their "source" operand pair, for quick lookup.
3510   llvm::sort(MF.DebugValueSubstitutions);
3511 
3512 #ifdef EXPENSIVE_CHECKS
3513   // As an expensive check, test whether there are any duplicate substitution
3514   // sources in the collection.
3515   if (MF.DebugValueSubstitutions.size() > 2) {
3516     for (auto It = MF.DebugValueSubstitutions.begin();
3517          It != std::prev(MF.DebugValueSubstitutions.end()); ++It) {
3518       assert(It->Src != std::next(It)->Src && "Duplicate variable location "
3519                                               "substitution seen");
3520     }
3521   }
3522 #endif
3523 }
3524 
3525 /// Calculate the liveness information for the given machine function and
3526 /// extend ranges across basic blocks.
3527 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC,
3528                                     unsigned InputBBLimit,
3529                                     unsigned InputDbgValLimit) {
3530   // No subprogram means this function contains no debuginfo.
3531   if (!MF.getFunction().getSubprogram())
3532     return false;
3533 
3534   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
3535   this->TPC = TPC;
3536 
3537   TRI = MF.getSubtarget().getRegisterInfo();
3538   TII = MF.getSubtarget().getInstrInfo();
3539   TFI = MF.getSubtarget().getFrameLowering();
3540   TFI->getCalleeSaves(MF, CalleeSavedRegs);
3541   MFI = &MF.getFrameInfo();
3542   LS.initialize(MF);
3543 
3544   MTracker =
3545       new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
3546   VTracker = nullptr;
3547   TTracker = nullptr;
3548 
3549   SmallVector<MLocTransferMap, 32> MLocTransfer;
3550   SmallVector<VLocTracker, 8> vlocs;
3551   LiveInsT SavedLiveIns;
3552 
3553   int MaxNumBlocks = -1;
3554   for (auto &MBB : MF)
3555     MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
3556   assert(MaxNumBlocks >= 0);
3557   ++MaxNumBlocks;
3558 
3559   MLocTransfer.resize(MaxNumBlocks);
3560   vlocs.resize(MaxNumBlocks);
3561   SavedLiveIns.resize(MaxNumBlocks);
3562 
3563   initialSetup(MF);
3564 
3565   produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
3566 
3567   // Allocate and initialize two array-of-arrays for the live-in and live-out
3568   // machine values. The outer dimension is the block number; while the inner
3569   // dimension is a LocIdx from MLocTracker.
3570   ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks];
3571   ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks];
3572   unsigned NumLocs = MTracker->getNumLocs();
3573   for (int i = 0; i < MaxNumBlocks; ++i) {
3574     MOutLocs[i] = new ValueIDNum[NumLocs];
3575     MInLocs[i] = new ValueIDNum[NumLocs];
3576   }
3577 
3578   // Solve the machine value dataflow problem using the MLocTransfer function,
3579   // storing the computed live-ins / live-outs into the array-of-arrays. We use
3580   // both live-ins and live-outs for decision making in the variable value
3581   // dataflow problem.
3582   mlocDataflow(MInLocs, MOutLocs, MLocTransfer);
3583 
3584   // Patch up debug phi numbers, turning unknown block-live-in values into
3585   // either live-through machine values, or PHIs.
3586   for (auto &DBG_PHI : DebugPHINumToValue) {
3587     // Identify unresolved block-live-ins.
3588     ValueIDNum &Num = DBG_PHI.ValueRead;
3589     if (!Num.isPHI())
3590       continue;
3591 
3592     unsigned BlockNo = Num.getBlock();
3593     LocIdx LocNo = Num.getLoc();
3594     Num = MInLocs[BlockNo][LocNo.asU64()];
3595   }
3596   // Later, we'll be looking up ranges of instruction numbers.
3597   llvm::sort(DebugPHINumToValue);
3598 
3599   // Walk back through each block / instruction, collecting DBG_VALUE
3600   // instructions and recording what machine value their operands refer to.
3601   for (auto &OrderPair : OrderToBB) {
3602     MachineBasicBlock &MBB = *OrderPair.second;
3603     CurBB = MBB.getNumber();
3604     VTracker = &vlocs[CurBB];
3605     VTracker->MBB = &MBB;
3606     MTracker->loadFromArray(MInLocs[CurBB], CurBB);
3607     CurInst = 1;
3608     for (auto &MI : MBB) {
3609       process(MI, MOutLocs, MInLocs);
3610       ++CurInst;
3611     }
3612     MTracker->reset();
3613   }
3614 
3615   // Number all variables in the order that they appear, to be used as a stable
3616   // insertion order later.
3617   DenseMap<DebugVariable, unsigned> AllVarsNumbering;
3618 
3619   // Map from one LexicalScope to all the variables in that scope.
3620   DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars;
3621 
3622   // Map from One lexical scope to all blocks in that scope.
3623   DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>
3624       ScopeToBlocks;
3625 
3626   // Store a DILocation that describes a scope.
3627   DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation;
3628 
3629   // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
3630   // the order is unimportant, it just has to be stable.
3631   unsigned VarAssignCount = 0;
3632   for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
3633     auto *MBB = OrderToBB[I];
3634     auto *VTracker = &vlocs[MBB->getNumber()];
3635     // Collect each variable with a DBG_VALUE in this block.
3636     for (auto &idx : VTracker->Vars) {
3637       const auto &Var = idx.first;
3638       const DILocation *ScopeLoc = VTracker->Scopes[Var];
3639       assert(ScopeLoc != nullptr);
3640       auto *Scope = LS.findLexicalScope(ScopeLoc);
3641 
3642       // No insts in scope -> shouldn't have been recorded.
3643       assert(Scope != nullptr);
3644 
3645       AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
3646       ScopeToVars[Scope].insert(Var);
3647       ScopeToBlocks[Scope].insert(VTracker->MBB);
3648       ScopeToDILocation[Scope] = ScopeLoc;
3649       ++VarAssignCount;
3650     }
3651   }
3652 
3653   // If we have an extremely large number of variable assignments and blocks,
3654   // bail out at this point. We've burnt some time doing analysis already,
3655   // however we should cut our losses.
3656   if (MaxNumBlocks > (int)InputBBLimit && VarAssignCount > InputDbgValLimit) {
3657     LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName()
3658                       << " has " << MaxNumBlocks << " basic blocks and "
3659                       << VarAssignCount
3660                       << " variable assignments, exceeding limits.\n");
3661     return false;
3662   }
3663 
3664   // OK. Iterate over scopes: there might be something to be said for
3665   // ordering them by size/locality, but that's for the future. For each scope,
3666   // solve the variable value problem, producing a map of variables to values
3667   // in SavedLiveIns.
3668   for (auto &P : ScopeToVars) {
3669     vlocDataflow(P.first, ScopeToDILocation[P.first], P.second,
3670                  ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs,
3671                  vlocs);
3672   }
3673 
3674   // Using the computed value locations and variable values for each block,
3675   // create the DBG_VALUE instructions representing the extended variable
3676   // locations.
3677   emitLocations(MF, SavedLiveIns, MOutLocs, MInLocs, AllVarsNumbering, *TPC);
3678 
3679   for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) {
3680     delete[] MOutLocs[Idx];
3681     delete[] MInLocs[Idx];
3682   }
3683   delete[] MOutLocs;
3684   delete[] MInLocs;
3685 
3686   // Did we actually make any changes? If we created any DBG_VALUEs, then yes.
3687   bool Changed = TTracker->Transfers.size() != 0;
3688 
3689   delete MTracker;
3690   delete TTracker;
3691   MTracker = nullptr;
3692   VTracker = nullptr;
3693   TTracker = nullptr;
3694 
3695   ArtificialBlocks.clear();
3696   OrderToBB.clear();
3697   BBToOrder.clear();
3698   BBNumToRPO.clear();
3699   DebugInstrNumToInstr.clear();
3700   DebugPHINumToValue.clear();
3701 
3702   return Changed;
3703 }
3704 
3705 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
3706   return new InstrRefBasedLDV();
3707 }
3708 
3709 namespace {
3710 class LDVSSABlock;
3711 class LDVSSAUpdater;
3712 
3713 // Pick a type to identify incoming block values as we construct SSA. We
3714 // can't use anything more robust than an integer unfortunately, as SSAUpdater
3715 // expects to zero-initialize the type.
3716 typedef uint64_t BlockValueNum;
3717 
3718 /// Represents an SSA PHI node for the SSA updater class. Contains the block
3719 /// this PHI is in, the value number it would have, and the expected incoming
3720 /// values from parent blocks.
3721 class LDVSSAPhi {
3722 public:
3723   SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
3724   LDVSSABlock *ParentBlock;
3725   BlockValueNum PHIValNum;
3726   LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
3727       : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
3728 
3729   LDVSSABlock *getParent() { return ParentBlock; }
3730 };
3731 
3732 /// Thin wrapper around a block predecessor iterator. Only difference from a
3733 /// normal block iterator is that it dereferences to an LDVSSABlock.
3734 class LDVSSABlockIterator {
3735 public:
3736   MachineBasicBlock::pred_iterator PredIt;
3737   LDVSSAUpdater &Updater;
3738 
3739   LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
3740                       LDVSSAUpdater &Updater)
3741       : PredIt(PredIt), Updater(Updater) {}
3742 
3743   bool operator!=(const LDVSSABlockIterator &OtherIt) const {
3744     return OtherIt.PredIt != PredIt;
3745   }
3746 
3747   LDVSSABlockIterator &operator++() {
3748     ++PredIt;
3749     return *this;
3750   }
3751 
3752   LDVSSABlock *operator*();
3753 };
3754 
3755 /// Thin wrapper around a block for SSA Updater interface. Necessary because
3756 /// we need to track the PHI value(s) that we may have observed as necessary
3757 /// in this block.
3758 class LDVSSABlock {
3759 public:
3760   MachineBasicBlock &BB;
3761   LDVSSAUpdater &Updater;
3762   using PHIListT = SmallVector<LDVSSAPhi, 1>;
3763   /// List of PHIs in this block. There should only ever be one.
3764   PHIListT PHIList;
3765 
3766   LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
3767       : BB(BB), Updater(Updater) {}
3768 
3769   LDVSSABlockIterator succ_begin() {
3770     return LDVSSABlockIterator(BB.succ_begin(), Updater);
3771   }
3772 
3773   LDVSSABlockIterator succ_end() {
3774     return LDVSSABlockIterator(BB.succ_end(), Updater);
3775   }
3776 
3777   /// SSAUpdater has requested a PHI: create that within this block record.
3778   LDVSSAPhi *newPHI(BlockValueNum Value) {
3779     PHIList.emplace_back(Value, this);
3780     return &PHIList.back();
3781   }
3782 
3783   /// SSAUpdater wishes to know what PHIs already exist in this block.
3784   PHIListT &phis() { return PHIList; }
3785 };
3786 
3787 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
3788 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
3789 // SSAUpdaterTraits<LDVSSAUpdater>.
3790 class LDVSSAUpdater {
3791 public:
3792   /// Map of value numbers to PHI records.
3793   DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
3794   /// Map of which blocks generate Undef values -- blocks that are not
3795   /// dominated by any Def.
3796   DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
3797   /// Map of machine blocks to our own records of them.
3798   DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
3799   /// Machine location where any PHI must occur.
3800   LocIdx Loc;
3801   /// Table of live-in machine value numbers for blocks / locations.
3802   ValueIDNum **MLiveIns;
3803 
3804   LDVSSAUpdater(LocIdx L, ValueIDNum **MLiveIns) : Loc(L), MLiveIns(MLiveIns) {}
3805 
3806   void reset() {
3807     for (auto &Block : BlockMap)
3808       delete Block.second;
3809 
3810     PHIs.clear();
3811     UndefMap.clear();
3812     BlockMap.clear();
3813   }
3814 
3815   ~LDVSSAUpdater() { reset(); }
3816 
3817   /// For a given MBB, create a wrapper block for it. Stores it in the
3818   /// LDVSSAUpdater block map.
3819   LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
3820     auto it = BlockMap.find(BB);
3821     if (it == BlockMap.end()) {
3822       BlockMap[BB] = new LDVSSABlock(*BB, *this);
3823       it = BlockMap.find(BB);
3824     }
3825     return it->second;
3826   }
3827 
3828   /// Find the live-in value number for the given block. Looks up the value at
3829   /// the PHI location on entry.
3830   BlockValueNum getValue(LDVSSABlock *LDVBB) {
3831     return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64();
3832   }
3833 };
3834 
3835 LDVSSABlock *LDVSSABlockIterator::operator*() {
3836   return Updater.getSSALDVBlock(*PredIt);
3837 }
3838 
3839 #ifndef NDEBUG
3840 
3841 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
3842   out << "SSALDVPHI " << PHI.PHIValNum;
3843   return out;
3844 }
3845 
3846 #endif
3847 
3848 } // namespace
3849 
3850 namespace llvm {
3851 
3852 /// Template specialization to give SSAUpdater access to CFG and value
3853 /// information. SSAUpdater calls methods in these traits, passing in the
3854 /// LDVSSAUpdater object, to learn about blocks and the values they define.
3855 /// It also provides methods to create PHI nodes and track them.
3856 template <> class SSAUpdaterTraits<LDVSSAUpdater> {
3857 public:
3858   using BlkT = LDVSSABlock;
3859   using ValT = BlockValueNum;
3860   using PhiT = LDVSSAPhi;
3861   using BlkSucc_iterator = LDVSSABlockIterator;
3862 
3863   // Methods to access block successors -- dereferencing to our wrapper class.
3864   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
3865   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
3866 
3867   /// Iterator for PHI operands.
3868   class PHI_iterator {
3869   private:
3870     LDVSSAPhi *PHI;
3871     unsigned Idx;
3872 
3873   public:
3874     explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
3875         : PHI(P), Idx(0) {}
3876     PHI_iterator(LDVSSAPhi *P, bool) // end iterator
3877         : PHI(P), Idx(PHI->IncomingValues.size()) {}
3878 
3879     PHI_iterator &operator++() {
3880       Idx++;
3881       return *this;
3882     }
3883     bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
3884     bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
3885 
3886     BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
3887 
3888     LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
3889   };
3890 
3891   static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
3892 
3893   static inline PHI_iterator PHI_end(PhiT *PHI) {
3894     return PHI_iterator(PHI, true);
3895   }
3896 
3897   /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
3898   /// vector.
3899   static void FindPredecessorBlocks(LDVSSABlock *BB,
3900                                     SmallVectorImpl<LDVSSABlock *> *Preds) {
3901     for (MachineBasicBlock::pred_iterator PI = BB->BB.pred_begin(),
3902                                           E = BB->BB.pred_end();
3903          PI != E; ++PI)
3904       Preds->push_back(BB->Updater.getSSALDVBlock(*PI));
3905   }
3906 
3907   /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
3908   /// register. For LiveDebugValues, represents a block identified as not having
3909   /// any DBG_PHI predecessors.
3910   static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
3911     // Create a value number for this block -- it needs to be unique and in the
3912     // "undef" collection, so that we know it's not real. Use a number
3913     // representing a PHI into this block.
3914     BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
3915     Updater->UndefMap[&BB->BB] = Num;
3916     return Num;
3917   }
3918 
3919   /// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
3920   /// SSAUpdater will populate it with information about incoming values. The
3921   /// value number of this PHI is whatever the  machine value number problem
3922   /// solution determined it to be. This includes non-phi values if SSAUpdater
3923   /// tries to create a PHI where the incoming values are identical.
3924   static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
3925                                    LDVSSAUpdater *Updater) {
3926     BlockValueNum PHIValNum = Updater->getValue(BB);
3927     LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
3928     Updater->PHIs[PHIValNum] = PHI;
3929     return PHIValNum;
3930   }
3931 
3932   /// AddPHIOperand - Add the specified value as an operand of the PHI for
3933   /// the specified predecessor block.
3934   static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
3935     PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
3936   }
3937 
3938   /// ValueIsPHI - Check if the instruction that defines the specified value
3939   /// is a PHI instruction.
3940   static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3941     auto PHIIt = Updater->PHIs.find(Val);
3942     if (PHIIt == Updater->PHIs.end())
3943       return nullptr;
3944     return PHIIt->second;
3945   }
3946 
3947   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
3948   /// operands, i.e., it was just added.
3949   static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3950     LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
3951     if (PHI && PHI->IncomingValues.size() == 0)
3952       return PHI;
3953     return nullptr;
3954   }
3955 
3956   /// GetPHIValue - For the specified PHI instruction, return the value
3957   /// that it defines.
3958   static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
3959 };
3960 
3961 } // end namespace llvm
3962 
3963 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(MachineFunction &MF,
3964                                                       ValueIDNum **MLiveOuts,
3965                                                       ValueIDNum **MLiveIns,
3966                                                       MachineInstr &Here,
3967                                                       uint64_t InstrNum) {
3968   // Pick out records of DBG_PHI instructions that have been observed. If there
3969   // are none, then we cannot compute a value number.
3970   auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
3971                                     DebugPHINumToValue.end(), InstrNum);
3972   auto LowerIt = RangePair.first;
3973   auto UpperIt = RangePair.second;
3974 
3975   // No DBG_PHI means there can be no location.
3976   if (LowerIt == UpperIt)
3977     return None;
3978 
3979   // If there's only one DBG_PHI, then that is our value number.
3980   if (std::distance(LowerIt, UpperIt) == 1)
3981     return LowerIt->ValueRead;
3982 
3983   auto DBGPHIRange = make_range(LowerIt, UpperIt);
3984 
3985   // Pick out the location (physreg, slot) where any PHIs must occur. It's
3986   // technically possible for us to merge values in different registers in each
3987   // block, but highly unlikely that LLVM will generate such code after register
3988   // allocation.
3989   LocIdx Loc = LowerIt->ReadLoc;
3990 
3991   // We have several DBG_PHIs, and a use position (the Here inst). All each
3992   // DBG_PHI does is identify a value at a program position. We can treat each
3993   // DBG_PHI like it's a Def of a value, and the use position is a Use of a
3994   // value, just like SSA. We use the bulk-standard LLVM SSA updater class to
3995   // determine which Def is used at the Use, and any PHIs that happen along
3996   // the way.
3997   // Adapted LLVM SSA Updater:
3998   LDVSSAUpdater Updater(Loc, MLiveIns);
3999   // Map of which Def or PHI is the current value in each block.
4000   DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
4001   // Set of PHIs that we have created along the way.
4002   SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
4003 
4004   // Each existing DBG_PHI is a Def'd value under this model. Record these Defs
4005   // for the SSAUpdater.
4006   for (const auto &DBG_PHI : DBGPHIRange) {
4007     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
4008     const ValueIDNum &Num = DBG_PHI.ValueRead;
4009     AvailableValues.insert(std::make_pair(Block, Num.asU64()));
4010   }
4011 
4012   LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
4013   const auto &AvailIt = AvailableValues.find(HereBlock);
4014   if (AvailIt != AvailableValues.end()) {
4015     // Actually, we already know what the value is -- the Use is in the same
4016     // block as the Def.
4017     return ValueIDNum::fromU64(AvailIt->second);
4018   }
4019 
4020   // Otherwise, we must use the SSA Updater. It will identify the value number
4021   // that we are to use, and the PHIs that must happen along the way.
4022   SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
4023   BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
4024   ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
4025 
4026   // We have the number for a PHI, or possibly live-through value, to be used
4027   // at this Use. There are a number of things we have to check about it though:
4028   //  * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
4029   //    Use was not completely dominated by DBG_PHIs and we should abort.
4030   //  * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
4031   //    we've left SSA form. Validate that the inputs to each PHI are the
4032   //    expected values.
4033   //  * Is a PHI we've created actually a merging of values, or are all the
4034   //    predecessor values the same, leading to a non-PHI machine value number?
4035   //    (SSAUpdater doesn't know that either). Remap validated PHIs into the
4036   //    the ValidatedValues collection below to sort this out.
4037   DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
4038 
4039   // Define all the input DBG_PHI values in ValidatedValues.
4040   for (const auto &DBG_PHI : DBGPHIRange) {
4041     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
4042     const ValueIDNum &Num = DBG_PHI.ValueRead;
4043     ValidatedValues.insert(std::make_pair(Block, Num));
4044   }
4045 
4046   // Sort PHIs to validate into RPO-order.
4047   SmallVector<LDVSSAPhi *, 8> SortedPHIs;
4048   for (auto &PHI : CreatedPHIs)
4049     SortedPHIs.push_back(PHI);
4050 
4051   std::sort(
4052       SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) {
4053         return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
4054       });
4055 
4056   for (auto &PHI : SortedPHIs) {
4057     ValueIDNum ThisBlockValueNum =
4058         MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()];
4059 
4060     // Are all these things actually defined?
4061     for (auto &PHIIt : PHI->IncomingValues) {
4062       // Any undef input means DBG_PHIs didn't dominate the use point.
4063       if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end())
4064         return None;
4065 
4066       ValueIDNum ValueToCheck;
4067       ValueIDNum *BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()];
4068 
4069       auto VVal = ValidatedValues.find(PHIIt.first);
4070       if (VVal == ValidatedValues.end()) {
4071         // We cross a loop, and this is a backedge. LLVMs tail duplication
4072         // happens so late that DBG_PHI instructions should not be able to
4073         // migrate into loops -- meaning we can only be live-through this
4074         // loop.
4075         ValueToCheck = ThisBlockValueNum;
4076       } else {
4077         // Does the block have as a live-out, in the location we're examining,
4078         // the value that we expect? If not, it's been moved or clobbered.
4079         ValueToCheck = VVal->second;
4080       }
4081 
4082       if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
4083         return None;
4084     }
4085 
4086     // Record this value as validated.
4087     ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
4088   }
4089 
4090   // All the PHIs are valid: we can return what the SSAUpdater said our value
4091   // number was.
4092   return Result;
4093 }
4094