1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file InstrRefBasedImpl.cpp
9 ///
10 /// This is a separate implementation of LiveDebugValues, see
11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
12 ///
13 /// This pass propagates variable locations between basic blocks, resolving
14 /// control flow conflicts between them. The problem is SSA construction, where
15 /// each debug instruction assigns the *value* that a variable has, and every
16 /// instruction where the variable is in scope uses that variable. The resulting
17 /// map of instruction-to-value is then translated into a register (or spill)
18 /// location for each variable over each instruction.
19 ///
20 /// The primary difference from normal SSA construction is that we cannot
21 /// _create_ PHI values that contain variable values. CodeGen has already
22 /// completed, and we can't alter it just to make debug-info complete. Thus:
23 /// we can identify function positions where we would like a PHI value for a
24 /// variable, but must search the MachineFunction to see whether such a PHI is
25 /// available. If no such PHI exists, the variable location must be dropped.
26 ///
27 /// To achieve this, we perform two kinds of analysis. First, we identify
28 /// every value defined by every instruction (ignoring those that only move
29 /// another value), then re-compute an SSA-form representation of the
30 /// MachineFunction, using value propagation to eliminate any un-necessary
31 /// PHI values. This gives us a map of every value computed in the function,
32 /// and its location within the register file / stack.
33 ///
34 /// Secondly, for each variable we perform the same analysis, where each debug
35 /// instruction is considered a def, and every instruction where the variable
36 /// is in lexical scope as a use. Value propagation is used again to eliminate
37 /// any un-necessary PHIs. This gives us a map of each variable to the value
38 /// it should have in a block.
39 ///
40 /// Once both are complete, we have two maps for each block:
41 ///  * Variables to the values they should have,
42 ///  * Values to the register / spill slot they are located in.
43 /// After which we can marry-up variable values with a location, and emit
44 /// DBG_VALUE instructions specifying those locations. Variable locations may
45 /// be dropped in this process due to the desired variable value not being
46 /// resident in any machine location, or because there is no PHI value in any
47 /// location that accurately represents the desired value.  The building of
48 /// location lists for each block is left to DbgEntityHistoryCalculator.
49 ///
50 /// This pass is kept efficient because the size of the first SSA problem
51 /// is proportional to the working-set size of the function, which the compiler
52 /// tries to keep small. (It's also proportional to the number of blocks).
53 /// Additionally, we repeatedly perform the second SSA problem analysis with
54 /// only the variables and blocks in a single lexical scope, exploiting their
55 /// locality.
56 ///
57 /// ### Terminology
58 ///
59 /// A machine location is a register or spill slot, a value is something that's
60 /// defined by an instruction or PHI node, while a variable value is the value
61 /// assigned to a variable. A variable location is a machine location, that must
62 /// contain the appropriate variable value. A value that is a PHI node is
63 /// occasionally called an mphi.
64 ///
65 /// The first SSA problem is the "machine value location" problem,
66 /// because we're determining which machine locations contain which values.
67 /// The "locations" are constant: what's unknown is what value they contain.
68 ///
69 /// The second SSA problem (the one for variables) is the "variable value
70 /// problem", because it's determining what values a variable has, rather than
71 /// what location those values are placed in.
72 ///
73 /// TODO:
74 ///   Overlapping fragments
75 ///   Entry values
76 ///   Add back DEBUG statements for debugging this
77 ///   Collect statistics
78 ///
79 //===----------------------------------------------------------------------===//
80 
81 #include "llvm/ADT/DenseMap.h"
82 #include "llvm/ADT/PostOrderIterator.h"
83 #include "llvm/ADT/STLExtras.h"
84 #include "llvm/ADT/SmallPtrSet.h"
85 #include "llvm/ADT/SmallSet.h"
86 #include "llvm/ADT/SmallVector.h"
87 #include "llvm/BinaryFormat/Dwarf.h"
88 #include "llvm/CodeGen/LexicalScopes.h"
89 #include "llvm/CodeGen/MachineBasicBlock.h"
90 #include "llvm/CodeGen/MachineDominators.h"
91 #include "llvm/CodeGen/MachineFrameInfo.h"
92 #include "llvm/CodeGen/MachineFunction.h"
93 #include "llvm/CodeGen/MachineInstr.h"
94 #include "llvm/CodeGen/MachineInstrBuilder.h"
95 #include "llvm/CodeGen/MachineInstrBundle.h"
96 #include "llvm/CodeGen/MachineMemOperand.h"
97 #include "llvm/CodeGen/MachineOperand.h"
98 #include "llvm/CodeGen/PseudoSourceValue.h"
99 #include "llvm/CodeGen/TargetFrameLowering.h"
100 #include "llvm/CodeGen/TargetInstrInfo.h"
101 #include "llvm/CodeGen/TargetLowering.h"
102 #include "llvm/CodeGen/TargetPassConfig.h"
103 #include "llvm/CodeGen/TargetRegisterInfo.h"
104 #include "llvm/CodeGen/TargetSubtargetInfo.h"
105 #include "llvm/Config/llvm-config.h"
106 #include "llvm/IR/DebugInfoMetadata.h"
107 #include "llvm/IR/DebugLoc.h"
108 #include "llvm/IR/Function.h"
109 #include "llvm/MC/MCRegisterInfo.h"
110 #include "llvm/Support/Casting.h"
111 #include "llvm/Support/Compiler.h"
112 #include "llvm/Support/Debug.h"
113 #include "llvm/Support/GenericIteratedDominanceFrontier.h"
114 #include "llvm/Support/TypeSize.h"
115 #include "llvm/Support/raw_ostream.h"
116 #include "llvm/Target/TargetMachine.h"
117 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
118 #include <algorithm>
119 #include <cassert>
120 #include <climits>
121 #include <cstdint>
122 #include <functional>
123 #include <queue>
124 #include <tuple>
125 #include <utility>
126 #include <vector>
127 
128 #include "InstrRefBasedImpl.h"
129 #include "LiveDebugValues.h"
130 
131 using namespace llvm;
132 using namespace LiveDebugValues;
133 
134 // SSAUpdaterImple sets DEBUG_TYPE, change it.
135 #undef DEBUG_TYPE
136 #define DEBUG_TYPE "livedebugvalues"
137 
138 // Act more like the VarLoc implementation, by propagating some locations too
139 // far and ignoring some transfers.
140 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
141                                    cl::desc("Act like old LiveDebugValues did"),
142                                    cl::init(false));
143 
144 // Limit for the maximum number of stack slots we should track, past which we
145 // will ignore any spills. InstrRefBasedLDV gathers detailed information on all
146 // stack slots which leads to high memory consumption, and in some scenarios
147 // (such as asan with very many locals) the working set of the function can be
148 // very large, causing many spills. In these scenarios, it is very unlikely that
149 // the developer has hundreds of variables live at the same time that they're
150 // carefully thinking about -- instead, they probably autogenerated the code.
151 // When this happens, gracefully stop tracking excess spill slots, rather than
152 // consuming all the developer's memory.
153 static cl::opt<unsigned>
154     StackWorkingSetLimit("livedebugvalues-max-stack-slots", cl::Hidden,
155                          cl::desc("livedebugvalues-stack-ws-limit"),
156                          cl::init(250));
157 
158 /// Tracker for converting machine value locations and variable values into
159 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
160 /// specifying block live-in locations and transfers within blocks.
161 ///
162 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
163 /// and must be initialized with the set of variable values that are live-in to
164 /// the block. The caller then repeatedly calls process(). TransferTracker picks
165 /// out variable locations for the live-in variable values (if there _is_ a
166 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is
167 /// stepped through, transfers of values between machine locations are
168 /// identified and if profitable, a DBG_VALUE created.
169 ///
170 /// This is where debug use-before-defs would be resolved: a variable with an
171 /// unavailable value could materialize in the middle of a block, when the
172 /// value becomes available. Or, we could detect clobbers and re-specify the
173 /// variable in a backup location. (XXX these are unimplemented).
174 class TransferTracker {
175 public:
176   const TargetInstrInfo *TII;
177   const TargetLowering *TLI;
178   /// This machine location tracker is assumed to always contain the up-to-date
179   /// value mapping for all machine locations. TransferTracker only reads
180   /// information from it. (XXX make it const?)
181   MLocTracker *MTracker;
182   MachineFunction &MF;
183   bool ShouldEmitDebugEntryValues;
184 
185   /// Record of all changes in variable locations at a block position. Awkwardly
186   /// we allow inserting either before or after the point: MBB != nullptr
187   /// indicates it's before, otherwise after.
188   struct Transfer {
189     MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
190     MachineBasicBlock *MBB; /// non-null if we should insert after.
191     SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
192   };
193 
194   struct LocAndProperties {
195     LocIdx Loc;
196     DbgValueProperties Properties;
197   };
198 
199   /// Collection of transfers (DBG_VALUEs) to be inserted.
200   SmallVector<Transfer, 32> Transfers;
201 
202   /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
203   /// between TransferTrackers view of variable locations and MLocTrackers. For
204   /// example, MLocTracker observes all clobbers, but TransferTracker lazily
205   /// does not.
206   SmallVector<ValueIDNum, 32> VarLocs;
207 
208   /// Map from LocIdxes to which DebugVariables are based that location.
209   /// Mantained while stepping through the block. Not accurate if
210   /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
211   DenseMap<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
212 
213   /// Map from DebugVariable to it's current location and qualifying meta
214   /// information. To be used in conjunction with ActiveMLocs to construct
215   /// enough information for the DBG_VALUEs for a particular LocIdx.
216   DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;
217 
218   /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
219   SmallVector<MachineInstr *, 4> PendingDbgValues;
220 
221   /// Record of a use-before-def: created when a value that's live-in to the
222   /// current block isn't available in any machine location, but it will be
223   /// defined in this block.
224   struct UseBeforeDef {
225     /// Value of this variable, def'd in block.
226     ValueIDNum ID;
227     /// Identity of this variable.
228     DebugVariable Var;
229     /// Additional variable properties.
230     DbgValueProperties Properties;
231   };
232 
233   /// Map from instruction index (within the block) to the set of UseBeforeDefs
234   /// that become defined at that instruction.
235   DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
236 
237   /// The set of variables that are in UseBeforeDefs and can become a location
238   /// once the relevant value is defined. An element being erased from this
239   /// collection prevents the use-before-def materializing.
240   DenseSet<DebugVariable> UseBeforeDefVariables;
241 
242   const TargetRegisterInfo &TRI;
243   const BitVector &CalleeSavedRegs;
244 
245   TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
246                   MachineFunction &MF, const TargetRegisterInfo &TRI,
247                   const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
248       : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
249         CalleeSavedRegs(CalleeSavedRegs) {
250     TLI = MF.getSubtarget().getTargetLowering();
251     auto &TM = TPC.getTM<TargetMachine>();
252     ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
253   }
254 
255   /// Load object with live-in variable values. \p mlocs contains the live-in
256   /// values in each machine location, while \p vlocs the live-in variable
257   /// values. This method picks variable locations for the live-in variables,
258   /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
259   /// object fields to track variable locations as we step through the block.
260   /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
261   void
262   loadInlocs(MachineBasicBlock &MBB, ValueTable &MLocs,
263              const SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
264              unsigned NumLocs) {
265     ActiveMLocs.clear();
266     ActiveVLocs.clear();
267     VarLocs.clear();
268     VarLocs.reserve(NumLocs);
269     UseBeforeDefs.clear();
270     UseBeforeDefVariables.clear();
271 
272     auto isCalleeSaved = [&](LocIdx L) {
273       unsigned Reg = MTracker->LocIdxToLocID[L];
274       if (Reg >= MTracker->NumRegs)
275         return false;
276       for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
277         if (CalleeSavedRegs.test(*RAI))
278           return true;
279       return false;
280     };
281 
282     // Map of the preferred location for each value.
283     DenseMap<ValueIDNum, LocIdx> ValueToLoc;
284 
285     // Initialized the preferred-location map with illegal locations, to be
286     // filled in later.
287     for (auto &VLoc : VLocs)
288       if (VLoc.second.Kind == DbgValue::Def)
289         ValueToLoc.insert({VLoc.second.ID, LocIdx::MakeIllegalLoc()});
290 
291     ActiveMLocs.reserve(VLocs.size());
292     ActiveVLocs.reserve(VLocs.size());
293 
294     // Produce a map of value numbers to the current machine locs they live
295     // in. When emulating VarLocBasedImpl, there should only be one
296     // location; when not, we get to pick.
297     for (auto Location : MTracker->locations()) {
298       LocIdx Idx = Location.Idx;
299       ValueIDNum &VNum = MLocs[Idx.asU64()];
300       VarLocs.push_back(VNum);
301 
302       // Is there a variable that wants a location for this value? If not, skip.
303       auto VIt = ValueToLoc.find(VNum);
304       if (VIt == ValueToLoc.end())
305         continue;
306 
307       LocIdx CurLoc = VIt->second;
308       // In order of preference, pick:
309       //  * Callee saved registers,
310       //  * Other registers,
311       //  * Spill slots.
312       if (CurLoc.isIllegal() || MTracker->isSpill(CurLoc) ||
313           (!isCalleeSaved(CurLoc) && isCalleeSaved(Idx.asU64()))) {
314         // Insert, or overwrite if insertion failed.
315         VIt->second = Idx;
316       }
317     }
318 
319     // Now map variables to their picked LocIdxes.
320     for (const auto &Var : VLocs) {
321       if (Var.second.Kind == DbgValue::Const) {
322         PendingDbgValues.push_back(
323             emitMOLoc(*Var.second.MO, Var.first, Var.second.Properties));
324         continue;
325       }
326 
327       // If the value has no location, we can't make a variable location.
328       const ValueIDNum &Num = Var.second.ID;
329       auto ValuesPreferredLoc = ValueToLoc.find(Num);
330       if (ValuesPreferredLoc->second.isIllegal()) {
331         // If it's a def that occurs in this block, register it as a
332         // use-before-def to be resolved as we step through the block.
333         if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI())
334           addUseBeforeDef(Var.first, Var.second.Properties, Num);
335         else
336           recoverAsEntryValue(Var.first, Var.second.Properties, Num);
337         continue;
338       }
339 
340       LocIdx M = ValuesPreferredLoc->second;
341       auto NewValue = LocAndProperties{M, Var.second.Properties};
342       auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
343       if (!Result.second)
344         Result.first->second = NewValue;
345       ActiveMLocs[M].insert(Var.first);
346       PendingDbgValues.push_back(
347           MTracker->emitLoc(M, Var.first, Var.second.Properties));
348     }
349     flushDbgValues(MBB.begin(), &MBB);
350   }
351 
352   /// Record that \p Var has value \p ID, a value that becomes available
353   /// later in the function.
354   void addUseBeforeDef(const DebugVariable &Var,
355                        const DbgValueProperties &Properties, ValueIDNum ID) {
356     UseBeforeDef UBD = {ID, Var, Properties};
357     UseBeforeDefs[ID.getInst()].push_back(UBD);
358     UseBeforeDefVariables.insert(Var);
359   }
360 
361   /// After the instruction at index \p Inst and position \p pos has been
362   /// processed, check whether it defines a variable value in a use-before-def.
363   /// If so, and the variable value hasn't changed since the start of the
364   /// block, create a DBG_VALUE.
365   void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
366     auto MIt = UseBeforeDefs.find(Inst);
367     if (MIt == UseBeforeDefs.end())
368       return;
369 
370     for (auto &Use : MIt->second) {
371       LocIdx L = Use.ID.getLoc();
372 
373       // If something goes very wrong, we might end up labelling a COPY
374       // instruction or similar with an instruction number, where it doesn't
375       // actually define a new value, instead it moves a value. In case this
376       // happens, discard.
377       if (MTracker->readMLoc(L) != Use.ID)
378         continue;
379 
380       // If a different debug instruction defined the variable value / location
381       // since the start of the block, don't materialize this use-before-def.
382       if (!UseBeforeDefVariables.count(Use.Var))
383         continue;
384 
385       PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties));
386     }
387     flushDbgValues(pos, nullptr);
388   }
389 
390   /// Helper to move created DBG_VALUEs into Transfers collection.
391   void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
392     if (PendingDbgValues.size() == 0)
393       return;
394 
395     // Pick out the instruction start position.
396     MachineBasicBlock::instr_iterator BundleStart;
397     if (MBB && Pos == MBB->begin())
398       BundleStart = MBB->instr_begin();
399     else
400       BundleStart = getBundleStart(Pos->getIterator());
401 
402     Transfers.push_back({BundleStart, MBB, PendingDbgValues});
403     PendingDbgValues.clear();
404   }
405 
406   bool isEntryValueVariable(const DebugVariable &Var,
407                             const DIExpression *Expr) const {
408     if (!Var.getVariable()->isParameter())
409       return false;
410 
411     if (Var.getInlinedAt())
412       return false;
413 
414     if (Expr->getNumElements() > 0)
415       return false;
416 
417     return true;
418   }
419 
420   bool isEntryValueValue(const ValueIDNum &Val) const {
421     // Must be in entry block (block number zero), and be a PHI / live-in value.
422     if (Val.getBlock() || !Val.isPHI())
423       return false;
424 
425     // Entry values must enter in a register.
426     if (MTracker->isSpill(Val.getLoc()))
427       return false;
428 
429     Register SP = TLI->getStackPointerRegisterToSaveRestore();
430     Register FP = TRI.getFrameRegister(MF);
431     Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
432     return Reg != SP && Reg != FP;
433   }
434 
435   bool recoverAsEntryValue(const DebugVariable &Var,
436                            const DbgValueProperties &Prop,
437                            const ValueIDNum &Num) {
438     // Is this variable location a candidate to be an entry value. First,
439     // should we be trying this at all?
440     if (!ShouldEmitDebugEntryValues)
441       return false;
442 
443     // Is the variable appropriate for entry values (i.e., is a parameter).
444     if (!isEntryValueVariable(Var, Prop.DIExpr))
445       return false;
446 
447     // Is the value assigned to this variable still the entry value?
448     if (!isEntryValueValue(Num))
449       return false;
450 
451     // Emit a variable location using an entry value expression.
452     DIExpression *NewExpr =
453         DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue);
454     Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
455     MachineOperand MO = MachineOperand::CreateReg(Reg, false);
456 
457     PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect}));
458     return true;
459   }
460 
461   /// Change a variable value after encountering a DBG_VALUE inside a block.
462   void redefVar(const MachineInstr &MI) {
463     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
464                       MI.getDebugLoc()->getInlinedAt());
465     DbgValueProperties Properties(MI);
466 
467     const MachineOperand &MO = MI.getOperand(0);
468 
469     // Ignore non-register locations, we don't transfer those.
470     if (!MO.isReg() || MO.getReg() == 0) {
471       auto It = ActiveVLocs.find(Var);
472       if (It != ActiveVLocs.end()) {
473         ActiveMLocs[It->second.Loc].erase(Var);
474         ActiveVLocs.erase(It);
475      }
476       // Any use-before-defs no longer apply.
477       UseBeforeDefVariables.erase(Var);
478       return;
479     }
480 
481     Register Reg = MO.getReg();
482     LocIdx NewLoc = MTracker->getRegMLoc(Reg);
483     redefVar(MI, Properties, NewLoc);
484   }
485 
486   /// Handle a change in variable location within a block. Terminate the
487   /// variables current location, and record the value it now refers to, so
488   /// that we can detect location transfers later on.
489   void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
490                 Optional<LocIdx> OptNewLoc) {
491     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
492                       MI.getDebugLoc()->getInlinedAt());
493     // Any use-before-defs no longer apply.
494     UseBeforeDefVariables.erase(Var);
495 
496     // Erase any previous location,
497     auto It = ActiveVLocs.find(Var);
498     if (It != ActiveVLocs.end())
499       ActiveMLocs[It->second.Loc].erase(Var);
500 
501     // If there _is_ no new location, all we had to do was erase.
502     if (!OptNewLoc)
503       return;
504     LocIdx NewLoc = *OptNewLoc;
505 
506     // Check whether our local copy of values-by-location in #VarLocs is out of
507     // date. Wipe old tracking data for the location if it's been clobbered in
508     // the meantime.
509     if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) {
510       for (auto &P : ActiveMLocs[NewLoc]) {
511         ActiveVLocs.erase(P);
512       }
513       ActiveMLocs[NewLoc.asU64()].clear();
514       VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc);
515     }
516 
517     ActiveMLocs[NewLoc].insert(Var);
518     if (It == ActiveVLocs.end()) {
519       ActiveVLocs.insert(
520           std::make_pair(Var, LocAndProperties{NewLoc, Properties}));
521     } else {
522       It->second.Loc = NewLoc;
523       It->second.Properties = Properties;
524     }
525   }
526 
527   /// Account for a location \p mloc being clobbered. Examine the variable
528   /// locations that will be terminated: and try to recover them by using
529   /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
530   /// explicitly terminate a location if it can't be recovered.
531   void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
532                    bool MakeUndef = true) {
533     auto ActiveMLocIt = ActiveMLocs.find(MLoc);
534     if (ActiveMLocIt == ActiveMLocs.end())
535       return;
536 
537     // What was the old variable value?
538     ValueIDNum OldValue = VarLocs[MLoc.asU64()];
539     VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
540 
541     // Examine the remaining variable locations: if we can find the same value
542     // again, we can recover the location.
543     Optional<LocIdx> NewLoc = None;
544     for (auto Loc : MTracker->locations())
545       if (Loc.Value == OldValue)
546         NewLoc = Loc.Idx;
547 
548     // If there is no location, and we weren't asked to make the variable
549     // explicitly undef, then stop here.
550     if (!NewLoc && !MakeUndef) {
551       // Try and recover a few more locations with entry values.
552       for (auto &Var : ActiveMLocIt->second) {
553         auto &Prop = ActiveVLocs.find(Var)->second.Properties;
554         recoverAsEntryValue(Var, Prop, OldValue);
555       }
556       flushDbgValues(Pos, nullptr);
557       return;
558     }
559 
560     // Examine all the variables based on this location.
561     DenseSet<DebugVariable> NewMLocs;
562     for (auto &Var : ActiveMLocIt->second) {
563       auto ActiveVLocIt = ActiveVLocs.find(Var);
564       // Re-state the variable location: if there's no replacement then NewLoc
565       // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE
566       // identifying the alternative location will be emitted.
567       const DbgValueProperties &Properties = ActiveVLocIt->second.Properties;
568       PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties));
569 
570       // Update machine locations <=> variable locations maps. Defer updating
571       // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator.
572       if (!NewLoc) {
573         ActiveVLocs.erase(ActiveVLocIt);
574       } else {
575         ActiveVLocIt->second.Loc = *NewLoc;
576         NewMLocs.insert(Var);
577       }
578     }
579 
580     // Commit any deferred ActiveMLoc changes.
581     if (!NewMLocs.empty())
582       for (auto &Var : NewMLocs)
583         ActiveMLocs[*NewLoc].insert(Var);
584 
585     // We lazily track what locations have which values; if we've found a new
586     // location for the clobbered value, remember it.
587     if (NewLoc)
588       VarLocs[NewLoc->asU64()] = OldValue;
589 
590     flushDbgValues(Pos, nullptr);
591 
592     // Re-find ActiveMLocIt, iterator could have been invalidated.
593     ActiveMLocIt = ActiveMLocs.find(MLoc);
594     ActiveMLocIt->second.clear();
595   }
596 
597   /// Transfer variables based on \p Src to be based on \p Dst. This handles
598   /// both register copies as well as spills and restores. Creates DBG_VALUEs
599   /// describing the movement.
600   void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
601     // Does Src still contain the value num we expect? If not, it's been
602     // clobbered in the meantime, and our variable locations are stale.
603     if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src))
604       return;
605 
606     // assert(ActiveMLocs[Dst].size() == 0);
607     //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
608 
609     // Move set of active variables from one location to another.
610     auto MovingVars = ActiveMLocs[Src];
611     ActiveMLocs[Dst] = MovingVars;
612     VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
613 
614     // For each variable based on Src; create a location at Dst.
615     for (auto &Var : MovingVars) {
616       auto ActiveVLocIt = ActiveVLocs.find(Var);
617       assert(ActiveVLocIt != ActiveVLocs.end());
618       ActiveVLocIt->second.Loc = Dst;
619 
620       MachineInstr *MI =
621           MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
622       PendingDbgValues.push_back(MI);
623     }
624     ActiveMLocs[Src].clear();
625     flushDbgValues(Pos, nullptr);
626 
627     // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
628     // about the old location.
629     if (EmulateOldLDV)
630       VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
631   }
632 
633   MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
634                                 const DebugVariable &Var,
635                                 const DbgValueProperties &Properties) {
636     DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
637                                   Var.getVariable()->getScope(),
638                                   const_cast<DILocation *>(Var.getInlinedAt()));
639     auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
640     MIB.add(MO);
641     if (Properties.Indirect)
642       MIB.addImm(0);
643     else
644       MIB.addReg(0);
645     MIB.addMetadata(Var.getVariable());
646     MIB.addMetadata(Properties.DIExpr);
647     return MIB;
648   }
649 };
650 
651 //===----------------------------------------------------------------------===//
652 //            Implementation
653 //===----------------------------------------------------------------------===//
654 
655 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
656 ValueIDNum ValueIDNum::TombstoneValue = {UINT_MAX, UINT_MAX, UINT_MAX - 1};
657 
658 #ifndef NDEBUG
659 void DbgValue::dump(const MLocTracker *MTrack) const {
660   if (Kind == Const) {
661     MO->dump();
662   } else if (Kind == NoVal) {
663     dbgs() << "NoVal(" << BlockNo << ")";
664   } else if (Kind == VPHI) {
665     dbgs() << "VPHI(" << BlockNo << "," << MTrack->IDAsString(ID) << ")";
666   } else {
667     assert(Kind == Def);
668     dbgs() << MTrack->IDAsString(ID);
669   }
670   if (Properties.Indirect)
671     dbgs() << " indir";
672   if (Properties.DIExpr)
673     dbgs() << " " << *Properties.DIExpr;
674 }
675 #endif
676 
677 MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
678                          const TargetRegisterInfo &TRI,
679                          const TargetLowering &TLI)
680     : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
681       LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) {
682   NumRegs = TRI.getNumRegs();
683   reset();
684   LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
685   assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
686 
687   // Always track SP. This avoids the implicit clobbering caused by regmasks
688   // from affectings its values. (LiveDebugValues disbelieves calls and
689   // regmasks that claim to clobber SP).
690   Register SP = TLI.getStackPointerRegisterToSaveRestore();
691   if (SP) {
692     unsigned ID = getLocID(SP);
693     (void)lookupOrTrackRegister(ID);
694 
695     for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI)
696       SPAliases.insert(*RAI);
697   }
698 
699   // Build some common stack positions -- full registers being spilt to the
700   // stack.
701   StackSlotIdxes.insert({{8, 0}, 0});
702   StackSlotIdxes.insert({{16, 0}, 1});
703   StackSlotIdxes.insert({{32, 0}, 2});
704   StackSlotIdxes.insert({{64, 0}, 3});
705   StackSlotIdxes.insert({{128, 0}, 4});
706   StackSlotIdxes.insert({{256, 0}, 5});
707   StackSlotIdxes.insert({{512, 0}, 6});
708 
709   // Traverse all the subregister idxes, and ensure there's an index for them.
710   // Duplicates are no problem: we're interested in their position in the
711   // stack slot, we don't want to type the slot.
712   for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) {
713     unsigned Size = TRI.getSubRegIdxSize(I);
714     unsigned Offs = TRI.getSubRegIdxOffset(I);
715     unsigned Idx = StackSlotIdxes.size();
716 
717     // Some subregs have -1, -2 and so forth fed into their fields, to mean
718     // special backend things. Ignore those.
719     if (Size > 60000 || Offs > 60000)
720       continue;
721 
722     StackSlotIdxes.insert({{Size, Offs}, Idx});
723   }
724 
725   // There may also be strange register class sizes (think x86 fp80s).
726   for (const TargetRegisterClass *RC : TRI.regclasses()) {
727     unsigned Size = TRI.getRegSizeInBits(*RC);
728 
729     // We might see special reserved values as sizes, and classes for other
730     // stuff the machine tries to model. If it's more than 512 bits, then it
731     // is very unlikely to be a register than can be spilt.
732     if (Size > 512)
733       continue;
734 
735     unsigned Idx = StackSlotIdxes.size();
736     StackSlotIdxes.insert({{Size, 0}, Idx});
737   }
738 
739   for (auto &Idx : StackSlotIdxes)
740     StackIdxesToPos[Idx.second] = Idx.first;
741 
742   NumSlotIdxes = StackSlotIdxes.size();
743 }
744 
745 LocIdx MLocTracker::trackRegister(unsigned ID) {
746   assert(ID != 0);
747   LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
748   LocIdxToIDNum.grow(NewIdx);
749   LocIdxToLocID.grow(NewIdx);
750 
751   // Default: it's an mphi.
752   ValueIDNum ValNum = {CurBB, 0, NewIdx};
753   // Was this reg ever touched by a regmask?
754   for (const auto &MaskPair : reverse(Masks)) {
755     if (MaskPair.first->clobbersPhysReg(ID)) {
756       // There was an earlier def we skipped.
757       ValNum = {CurBB, MaskPair.second, NewIdx};
758       break;
759     }
760   }
761 
762   LocIdxToIDNum[NewIdx] = ValNum;
763   LocIdxToLocID[NewIdx] = ID;
764   return NewIdx;
765 }
766 
767 void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB,
768                                unsigned InstID) {
769   // Def any register we track have that isn't preserved. The regmask
770   // terminates the liveness of a register, meaning its value can't be
771   // relied upon -- we represent this by giving it a new value.
772   for (auto Location : locations()) {
773     unsigned ID = LocIdxToLocID[Location.Idx];
774     // Don't clobber SP, even if the mask says it's clobbered.
775     if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID))
776       defReg(ID, CurBB, InstID);
777   }
778   Masks.push_back(std::make_pair(MO, InstID));
779 }
780 
781 Optional<SpillLocationNo> MLocTracker::getOrTrackSpillLoc(SpillLoc L) {
782   SpillLocationNo SpillID(SpillLocs.idFor(L));
783 
784   if (SpillID.id() == 0) {
785     // If there is no location, and we have reached the limit of how many stack
786     // slots to track, then don't track this one.
787     if (SpillLocs.size() >= StackWorkingSetLimit)
788       return None;
789 
790     // Spill location is untracked: create record for this one, and all
791     // subregister slots too.
792     SpillID = SpillLocationNo(SpillLocs.insert(L));
793     for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) {
794       unsigned L = getSpillIDWithIdx(SpillID, StackIdx);
795       LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
796       LocIdxToIDNum.grow(Idx);
797       LocIdxToLocID.grow(Idx);
798       LocIDToLocIdx.push_back(Idx);
799       LocIdxToLocID[Idx] = L;
800       // Initialize to PHI value; corresponds to the location's live-in value
801       // during transfer function construction.
802       LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx);
803     }
804   }
805   return SpillID;
806 }
807 
808 std::string MLocTracker::LocIdxToName(LocIdx Idx) const {
809   unsigned ID = LocIdxToLocID[Idx];
810   if (ID >= NumRegs) {
811     StackSlotPos Pos = locIDToSpillIdx(ID);
812     ID -= NumRegs;
813     unsigned Slot = ID / NumSlotIdxes;
814     return Twine("slot ")
815         .concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first)
816         .concat(Twine(" offs ").concat(Twine(Pos.second))))))
817         .str();
818   } else {
819     return TRI.getRegAsmName(ID).str();
820   }
821 }
822 
823 std::string MLocTracker::IDAsString(const ValueIDNum &Num) const {
824   std::string DefName = LocIdxToName(Num.getLoc());
825   return Num.asString(DefName);
826 }
827 
828 #ifndef NDEBUG
829 LLVM_DUMP_METHOD void MLocTracker::dump() {
830   for (auto Location : locations()) {
831     std::string MLocName = LocIdxToName(Location.Value.getLoc());
832     std::string DefName = Location.Value.asString(MLocName);
833     dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
834   }
835 }
836 
837 LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() {
838   for (auto Location : locations()) {
839     std::string foo = LocIdxToName(Location.Idx);
840     dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
841   }
842 }
843 #endif
844 
845 MachineInstrBuilder MLocTracker::emitLoc(Optional<LocIdx> MLoc,
846                                          const DebugVariable &Var,
847                                          const DbgValueProperties &Properties) {
848   DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
849                                 Var.getVariable()->getScope(),
850                                 const_cast<DILocation *>(Var.getInlinedAt()));
851   auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));
852 
853   const DIExpression *Expr = Properties.DIExpr;
854   if (!MLoc) {
855     // No location -> DBG_VALUE $noreg
856     MIB.addReg(0);
857     MIB.addReg(0);
858   } else if (LocIdxToLocID[*MLoc] >= NumRegs) {
859     unsigned LocID = LocIdxToLocID[*MLoc];
860     SpillLocationNo SpillID = locIDToSpill(LocID);
861     StackSlotPos StackIdx = locIDToSpillIdx(LocID);
862     unsigned short Offset = StackIdx.second;
863 
864     // TODO: support variables that are located in spill slots, with non-zero
865     // offsets from the start of the spill slot. It would require some more
866     // complex DIExpression calculations. This doesn't seem to be produced by
867     // LLVM right now, so don't try and support it.
868     // Accept no-subregister slots and subregisters where the offset is zero.
869     // The consumer should already have type information to work out how large
870     // the variable is.
871     if (Offset == 0) {
872       const SpillLoc &Spill = SpillLocs[SpillID.id()];
873       unsigned Base = Spill.SpillBase;
874       MIB.addReg(Base);
875 
876       // There are several ways we can dereference things, and several inputs
877       // to consider:
878       // * NRVO variables will appear with IsIndirect set, but should have
879       //   nothing else in their DIExpressions,
880       // * Variables with DW_OP_stack_value in their expr already need an
881       //   explicit dereference of the stack location,
882       // * Values that don't match the variable size need DW_OP_deref_size,
883       // * Everything else can just become a simple location expression.
884 
885       // We need to use deref_size whenever there's a mismatch between the
886       // size of value and the size of variable portion being read.
887       // Additionally, we should use it whenever dealing with stack_value
888       // fragments, to avoid the consumer having to determine the deref size
889       // from DW_OP_piece.
890       bool UseDerefSize = false;
891       unsigned ValueSizeInBits = getLocSizeInBits(*MLoc);
892       unsigned DerefSizeInBytes = ValueSizeInBits / 8;
893       if (auto Fragment = Var.getFragment()) {
894         unsigned VariableSizeInBits = Fragment->SizeInBits;
895         if (VariableSizeInBits != ValueSizeInBits || Expr->isComplex())
896           UseDerefSize = true;
897       } else if (auto Size = Var.getVariable()->getSizeInBits()) {
898         if (*Size != ValueSizeInBits) {
899           UseDerefSize = true;
900         }
901       }
902 
903       if (Properties.Indirect) {
904         // This is something like an NRVO variable, where the pointer has been
905         // spilt to the stack. It should end up being a memory location, with
906         // the pointer to the variable loaded off the stack with a deref:
907         assert(!Expr->isComplex());
908         Expr = TRI.prependOffsetExpression(
909             Expr, DIExpression::ApplyOffset | DIExpression::DerefAfter,
910             Spill.SpillOffset);
911         MIB.addImm(0);
912       } else if (UseDerefSize) {
913         // We're loading a value off the stack that's not the same size as the
914         // variable. Add / subtract stack offset, explicitly deref with a size,
915         // and add DW_OP_stack_value if not already present.
916         SmallVector<uint64_t, 2> Ops = {dwarf::DW_OP_deref_size,
917                                         DerefSizeInBytes};
918         Expr = DIExpression::prependOpcodes(Expr, Ops, true);
919         unsigned Flags = DIExpression::StackValue | DIExpression::ApplyOffset;
920         Expr = TRI.prependOffsetExpression(Expr, Flags, Spill.SpillOffset);
921         MIB.addReg(0);
922       } else if (Expr->isComplex()) {
923         // A variable with no size ambiguity, but with extra elements in it's
924         // expression. Manually dereference the stack location.
925         assert(Expr->isComplex());
926         Expr = TRI.prependOffsetExpression(
927             Expr, DIExpression::ApplyOffset | DIExpression::DerefAfter,
928             Spill.SpillOffset);
929         MIB.addReg(0);
930       } else {
931         // A plain value that has been spilt to the stack, with no further
932         // context. Request a location expression, marking the DBG_VALUE as
933         // IsIndirect.
934         Expr = TRI.prependOffsetExpression(Expr, DIExpression::ApplyOffset,
935                                            Spill.SpillOffset);
936         MIB.addImm(0);
937       }
938     } else {
939       // This is a stack location with a weird subregister offset: emit an undef
940       // DBG_VALUE instead.
941       MIB.addReg(0);
942       MIB.addReg(0);
943     }
944   } else {
945     // Non-empty, non-stack slot, must be a plain register.
946     unsigned LocID = LocIdxToLocID[*MLoc];
947     MIB.addReg(LocID);
948     if (Properties.Indirect)
949       MIB.addImm(0);
950     else
951       MIB.addReg(0);
952   }
953 
954   MIB.addMetadata(Var.getVariable());
955   MIB.addMetadata(Expr);
956   return MIB;
957 }
958 
959 /// Default construct and initialize the pass.
960 InstrRefBasedLDV::InstrRefBasedLDV() = default;
961 
962 bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const {
963   unsigned Reg = MTracker->LocIdxToLocID[L];
964   for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
965     if (CalleeSavedRegs.test(*RAI))
966       return true;
967   return false;
968 }
969 
970 //===----------------------------------------------------------------------===//
971 //            Debug Range Extension Implementation
972 //===----------------------------------------------------------------------===//
973 
974 #ifndef NDEBUG
975 // Something to restore in the future.
976 // void InstrRefBasedLDV::printVarLocInMBB(..)
977 #endif
978 
979 Optional<SpillLocationNo>
980 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
981   assert(MI.hasOneMemOperand() &&
982          "Spill instruction does not have exactly one memory operand?");
983   auto MMOI = MI.memoperands_begin();
984   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
985   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
986          "Inconsistent memory operand in spill instruction");
987   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
988   const MachineBasicBlock *MBB = MI.getParent();
989   Register Reg;
990   StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
991   return MTracker->getOrTrackSpillLoc({Reg, Offset});
992 }
993 
994 Optional<LocIdx>
995 InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) {
996   Optional<SpillLocationNo> SpillLoc = extractSpillBaseRegAndOffset(MI);
997   if (!SpillLoc)
998     return None;
999 
1000   // Where in the stack slot is this value defined -- i.e., what size of value
1001   // is this? An important question, because it could be loaded into a register
1002   // from the stack at some point. Happily the memory operand will tell us
1003   // the size written to the stack.
1004   auto *MemOperand = *MI.memoperands_begin();
1005   unsigned SizeInBits = MemOperand->getSizeInBits();
1006 
1007   // Find that position in the stack indexes we're tracking.
1008   auto IdxIt = MTracker->StackSlotIdxes.find({SizeInBits, 0});
1009   if (IdxIt == MTracker->StackSlotIdxes.end())
1010     // That index is not tracked. This is suprising, and unlikely to ever
1011     // occur, but the safe action is to indicate the variable is optimised out.
1012     return None;
1013 
1014   unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillLoc, IdxIt->second);
1015   return MTracker->getSpillMLoc(SpillID);
1016 }
1017 
1018 /// End all previous ranges related to @MI and start a new range from @MI
1019 /// if it is a DBG_VALUE instr.
1020 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
1021   if (!MI.isDebugValue())
1022     return false;
1023 
1024   const DILocalVariable *Var = MI.getDebugVariable();
1025   const DIExpression *Expr = MI.getDebugExpression();
1026   const DILocation *DebugLoc = MI.getDebugLoc();
1027   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1028   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1029          "Expected inlined-at fields to agree");
1030 
1031   DebugVariable V(Var, Expr, InlinedAt);
1032   DbgValueProperties Properties(MI);
1033 
1034   // If there are no instructions in this lexical scope, do no location tracking
1035   // at all, this variable shouldn't get a legitimate location range.
1036   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1037   if (Scope == nullptr)
1038     return true; // handled it; by doing nothing
1039 
1040   // For now, ignore DBG_VALUE_LISTs when extending ranges. Allow it to
1041   // contribute to locations in this block, but don't propagate further.
1042   // Interpret it like a DBG_VALUE $noreg.
1043   if (MI.isDebugValueList()) {
1044     if (VTracker)
1045       VTracker->defVar(MI, Properties, None);
1046     if (TTracker)
1047       TTracker->redefVar(MI, Properties, None);
1048     return true;
1049   }
1050 
1051   const MachineOperand &MO = MI.getOperand(0);
1052 
1053   // MLocTracker needs to know that this register is read, even if it's only
1054   // read by a debug inst.
1055   if (MO.isReg() && MO.getReg() != 0)
1056     (void)MTracker->readReg(MO.getReg());
1057 
1058   // If we're preparing for the second analysis (variables), the machine value
1059   // locations are already solved, and we report this DBG_VALUE and the value
1060   // it refers to to VLocTracker.
1061   if (VTracker) {
1062     if (MO.isReg()) {
1063       // Feed defVar the new variable location, or if this is a
1064       // DBG_VALUE $noreg, feed defVar None.
1065       if (MO.getReg())
1066         VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg()));
1067       else
1068         VTracker->defVar(MI, Properties, None);
1069     } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
1070                MI.getOperand(0).isCImm()) {
1071       VTracker->defVar(MI, MI.getOperand(0));
1072     }
1073   }
1074 
1075   // If performing final tracking of transfers, report this variable definition
1076   // to the TransferTracker too.
1077   if (TTracker)
1078     TTracker->redefVar(MI);
1079   return true;
1080 }
1081 
1082 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
1083                                              const ValueTable *MLiveOuts,
1084                                              const ValueTable *MLiveIns) {
1085   if (!MI.isDebugRef())
1086     return false;
1087 
1088   // Only handle this instruction when we are building the variable value
1089   // transfer function.
1090   if (!VTracker && !TTracker)
1091     return false;
1092 
1093   unsigned InstNo = MI.getOperand(0).getImm();
1094   unsigned OpNo = MI.getOperand(1).getImm();
1095 
1096   const DILocalVariable *Var = MI.getDebugVariable();
1097   const DIExpression *Expr = MI.getDebugExpression();
1098   const DILocation *DebugLoc = MI.getDebugLoc();
1099   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1100   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1101          "Expected inlined-at fields to agree");
1102 
1103   DebugVariable V(Var, Expr, InlinedAt);
1104 
1105   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1106   if (Scope == nullptr)
1107     return true; // Handled by doing nothing. This variable is never in scope.
1108 
1109   const MachineFunction &MF = *MI.getParent()->getParent();
1110 
1111   // Various optimizations may have happened to the value during codegen,
1112   // recorded in the value substitution table. Apply any substitutions to
1113   // the instruction / operand number in this DBG_INSTR_REF, and collect
1114   // any subregister extractions performed during optimization.
1115 
1116   // Create dummy substitution with Src set, for lookup.
1117   auto SoughtSub =
1118       MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0);
1119 
1120   SmallVector<unsigned, 4> SeenSubregs;
1121   auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1122   while (LowerBoundIt != MF.DebugValueSubstitutions.end() &&
1123          LowerBoundIt->Src == SoughtSub.Src) {
1124     std::tie(InstNo, OpNo) = LowerBoundIt->Dest;
1125     SoughtSub.Src = LowerBoundIt->Dest;
1126     if (unsigned Subreg = LowerBoundIt->Subreg)
1127       SeenSubregs.push_back(Subreg);
1128     LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
1129   }
1130 
1131   // Default machine value number is <None> -- if no instruction defines
1132   // the corresponding value, it must have been optimized out.
1133   Optional<ValueIDNum> NewID = None;
1134 
1135   // Try to lookup the instruction number, and find the machine value number
1136   // that it defines. It could be an instruction, or a PHI.
1137   auto InstrIt = DebugInstrNumToInstr.find(InstNo);
1138   auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(),
1139                                 DebugPHINumToValue.end(), InstNo);
1140   if (InstrIt != DebugInstrNumToInstr.end()) {
1141     const MachineInstr &TargetInstr = *InstrIt->second.first;
1142     uint64_t BlockNo = TargetInstr.getParent()->getNumber();
1143 
1144     // Pick out the designated operand. It might be a memory reference, if
1145     // a register def was folded into a stack store.
1146     if (OpNo == MachineFunction::DebugOperandMemNumber &&
1147         TargetInstr.hasOneMemOperand()) {
1148       Optional<LocIdx> L = findLocationForMemOperand(TargetInstr);
1149       if (L)
1150         NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L);
1151     } else if (OpNo != MachineFunction::DebugOperandMemNumber) {
1152       // Permit the debug-info to be completely wrong: identifying a nonexistant
1153       // operand, or one that is not a register definition, means something
1154       // unexpected happened during optimisation. Broken debug-info, however,
1155       // shouldn't crash the compiler -- instead leave the variable value as
1156       // None, which will make it appear "optimised out".
1157       if (OpNo < TargetInstr.getNumOperands()) {
1158         const MachineOperand &MO = TargetInstr.getOperand(OpNo);
1159 
1160         if (MO.isReg() && MO.isDef() && MO.getReg()) {
1161           unsigned LocID = MTracker->getLocID(MO.getReg());
1162           LocIdx L = MTracker->LocIDToLocIdx[LocID];
1163           NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
1164         }
1165       }
1166 
1167       if (!NewID) {
1168         LLVM_DEBUG(
1169             { dbgs() << "Seen instruction reference to illegal operand\n"; });
1170       }
1171     }
1172     // else: NewID is left as None.
1173   } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
1174     // It's actually a PHI value. Which value it is might not be obvious, use
1175     // the resolver helper to find out.
1176     NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns,
1177                            MI, InstNo);
1178   }
1179 
1180   // Apply any subregister extractions, in reverse. We might have seen code
1181   // like this:
1182   //    CALL64 @foo, implicit-def $rax
1183   //    %0:gr64 = COPY $rax
1184   //    %1:gr32 = COPY %0.sub_32bit
1185   //    %2:gr16 = COPY %1.sub_16bit
1186   //    %3:gr8  = COPY %2.sub_8bit
1187   // In which case each copy would have been recorded as a substitution with
1188   // a subregister qualifier. Apply those qualifiers now.
1189   if (NewID && !SeenSubregs.empty()) {
1190     unsigned Offset = 0;
1191     unsigned Size = 0;
1192 
1193     // Look at each subregister that we passed through, and progressively
1194     // narrow in, accumulating any offsets that occur. Substitutions should
1195     // only ever be the same or narrower width than what they read from;
1196     // iterate in reverse order so that we go from wide to small.
1197     for (unsigned Subreg : reverse(SeenSubregs)) {
1198       unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
1199       unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
1200       Offset += ThisOffset;
1201       Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
1202     }
1203 
1204     // If that worked, look for an appropriate subregister with the register
1205     // where the define happens. Don't look at values that were defined during
1206     // a stack write: we can't currently express register locations within
1207     // spills.
1208     LocIdx L = NewID->getLoc();
1209     if (NewID && !MTracker->isSpill(L)) {
1210       // Find the register class for the register where this def happened.
1211       // FIXME: no index for this?
1212       Register Reg = MTracker->LocIdxToLocID[L];
1213       const TargetRegisterClass *TRC = nullptr;
1214       for (auto *TRCI : TRI->regclasses())
1215         if (TRCI->contains(Reg))
1216           TRC = TRCI;
1217       assert(TRC && "Couldn't find target register class?");
1218 
1219       // If the register we have isn't the right size or in the right place,
1220       // Try to find a subregister inside it.
1221       unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
1222       if (Size != MainRegSize || Offset) {
1223         // Enumerate all subregisters, searching.
1224         Register NewReg = 0;
1225         for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1226           unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1227           unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
1228           unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
1229           if (SubregSize == Size && SubregOffset == Offset) {
1230             NewReg = *SRI;
1231             break;
1232           }
1233         }
1234 
1235         // If we didn't find anything: there's no way to express our value.
1236         if (!NewReg) {
1237           NewID = None;
1238         } else {
1239           // Re-state the value as being defined within the subregister
1240           // that we found.
1241           LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
1242           NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
1243         }
1244       }
1245     } else {
1246       // If we can't handle subregisters, unset the new value.
1247       NewID = None;
1248     }
1249   }
1250 
1251   // We, we have a value number or None. Tell the variable value tracker about
1252   // it. The rest of this LiveDebugValues implementation acts exactly the same
1253   // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that
1254   // aren't immediately available).
1255   DbgValueProperties Properties(Expr, false);
1256   if (VTracker)
1257     VTracker->defVar(MI, Properties, NewID);
1258 
1259   // If we're on the final pass through the function, decompose this INSTR_REF
1260   // into a plain DBG_VALUE.
1261   if (!TTracker)
1262     return true;
1263 
1264   // Pick a location for the machine value number, if such a location exists.
1265   // (This information could be stored in TransferTracker to make it faster).
1266   Optional<LocIdx> FoundLoc = None;
1267   for (auto Location : MTracker->locations()) {
1268     LocIdx CurL = Location.Idx;
1269     ValueIDNum ID = MTracker->readMLoc(CurL);
1270     if (NewID && ID == NewID) {
1271       // If this is the first location with that value, pick it. Otherwise,
1272       // consider whether it's a "longer term" location.
1273       if (!FoundLoc) {
1274         FoundLoc = CurL;
1275         continue;
1276       }
1277 
1278       if (MTracker->isSpill(CurL))
1279         FoundLoc = CurL; // Spills are a longer term location.
1280       else if (!MTracker->isSpill(*FoundLoc) &&
1281                !MTracker->isSpill(CurL) &&
1282                !isCalleeSaved(*FoundLoc) &&
1283                isCalleeSaved(CurL))
1284         FoundLoc = CurL; // Callee saved regs are longer term than normal.
1285     }
1286   }
1287 
1288   // Tell transfer tracker that the variable value has changed.
1289   TTracker->redefVar(MI, Properties, FoundLoc);
1290 
1291   // If there was a value with no location; but the value is defined in a
1292   // later instruction in this block, this is a block-local use-before-def.
1293   if (!FoundLoc && NewID && NewID->getBlock() == CurBB &&
1294       NewID->getInst() > CurInst)
1295     TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID);
1296 
1297   // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
1298   // This DBG_VALUE is potentially a $noreg / undefined location, if
1299   // FoundLoc is None.
1300   // (XXX -- could morph the DBG_INSTR_REF in the future).
1301   MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties);
1302   TTracker->PendingDbgValues.push_back(DbgMI);
1303   TTracker->flushDbgValues(MI.getIterator(), nullptr);
1304   return true;
1305 }
1306 
1307 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
1308   if (!MI.isDebugPHI())
1309     return false;
1310 
1311   // Analyse these only when solving the machine value location problem.
1312   if (VTracker || TTracker)
1313     return true;
1314 
1315   // First operand is the value location, either a stack slot or register.
1316   // Second is the debug instruction number of the original PHI.
1317   const MachineOperand &MO = MI.getOperand(0);
1318   unsigned InstrNum = MI.getOperand(1).getImm();
1319 
1320   auto EmitBadPHI = [this, &MI, InstrNum](void) -> bool {
1321     // Helper lambda to do any accounting when we fail to find a location for
1322     // a DBG_PHI. This can happen if DBG_PHIs are malformed, or refer to a
1323     // dead stack slot, for example.
1324     // Record a DebugPHIRecord with an empty value + location.
1325     DebugPHINumToValue.push_back({InstrNum, MI.getParent(), None, None});
1326     return true;
1327   };
1328 
1329   if (MO.isReg() && MO.getReg()) {
1330     // The value is whatever's currently in the register. Read and record it,
1331     // to be analysed later.
1332     Register Reg = MO.getReg();
1333     ValueIDNum Num = MTracker->readReg(Reg);
1334     auto PHIRec = DebugPHIRecord(
1335         {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
1336     DebugPHINumToValue.push_back(PHIRec);
1337 
1338     // Ensure this register is tracked.
1339     for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1340       MTracker->lookupOrTrackRegister(*RAI);
1341   } else if (MO.isFI()) {
1342     // The value is whatever's in this stack slot.
1343     unsigned FI = MO.getIndex();
1344 
1345     // If the stack slot is dead, then this was optimized away.
1346     // FIXME: stack slot colouring should account for slots that get merged.
1347     if (MFI->isDeadObjectIndex(FI))
1348       return EmitBadPHI();
1349 
1350     // Identify this spill slot, ensure it's tracked.
1351     Register Base;
1352     StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
1353     SpillLoc SL = {Base, Offs};
1354     Optional<SpillLocationNo> SpillNo = MTracker->getOrTrackSpillLoc(SL);
1355 
1356     // We might be able to find a value, but have chosen not to, to avoid
1357     // tracking too much stack information.
1358     if (!SpillNo)
1359       return EmitBadPHI();
1360 
1361     // Any stack location DBG_PHI should have an associate bit-size.
1362     assert(MI.getNumOperands() == 3 && "Stack DBG_PHI with no size?");
1363     unsigned slotBitSize = MI.getOperand(2).getImm();
1364 
1365     unsigned SpillID = MTracker->getLocID(*SpillNo, {slotBitSize, 0});
1366     LocIdx SpillLoc = MTracker->getSpillMLoc(SpillID);
1367     ValueIDNum Result = MTracker->readMLoc(SpillLoc);
1368 
1369     // Record this DBG_PHI for later analysis.
1370     auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), Result, SpillLoc});
1371     DebugPHINumToValue.push_back(DbgPHI);
1372   } else {
1373     // Else: if the operand is neither a legal register or a stack slot, then
1374     // we're being fed illegal debug-info. Record an empty PHI, so that any
1375     // debug users trying to read this number will be put off trying to
1376     // interpret the value.
1377     LLVM_DEBUG(
1378         { dbgs() << "Seen DBG_PHI with unrecognised operand format\n"; });
1379     return EmitBadPHI();
1380   }
1381 
1382   return true;
1383 }
1384 
1385 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
1386   // Meta Instructions do not affect the debug liveness of any register they
1387   // define.
1388   if (MI.isImplicitDef()) {
1389     // Except when there's an implicit def, and the location it's defining has
1390     // no value number. The whole point of an implicit def is to announce that
1391     // the register is live, without be specific about it's value. So define
1392     // a value if there isn't one already.
1393     ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
1394     // Has a legitimate value -> ignore the implicit def.
1395     if (Num.getLoc() != 0)
1396       return;
1397     // Otherwise, def it here.
1398   } else if (MI.isMetaInstruction())
1399     return;
1400 
1401   // We always ignore SP defines on call instructions, they don't actually
1402   // change the value of the stack pointer... except for win32's _chkstk. This
1403   // is rare: filter quickly for the common case (no stack adjustments, not a
1404   // call, etc). If it is a call that modifies SP, recognise the SP register
1405   // defs.
1406   bool CallChangesSP = false;
1407   if (AdjustsStackInCalls && MI.isCall() && MI.getOperand(0).isSymbol() &&
1408       !strcmp(MI.getOperand(0).getSymbolName(), StackProbeSymbolName.data()))
1409     CallChangesSP = true;
1410 
1411   // Test whether we should ignore a def of this register due to it being part
1412   // of the stack pointer.
1413   auto IgnoreSPAlias = [this, &MI, CallChangesSP](Register R) -> bool {
1414     if (CallChangesSP)
1415       return false;
1416     return MI.isCall() && MTracker->SPAliases.count(R);
1417   };
1418 
1419   // Find the regs killed by MI, and find regmasks of preserved regs.
1420   // Max out the number of statically allocated elements in `DeadRegs`, as this
1421   // prevents fallback to std::set::count() operations.
1422   SmallSet<uint32_t, 32> DeadRegs;
1423   SmallVector<const uint32_t *, 4> RegMasks;
1424   SmallVector<const MachineOperand *, 4> RegMaskPtrs;
1425   for (const MachineOperand &MO : MI.operands()) {
1426     // Determine whether the operand is a register def.
1427     if (MO.isReg() && MO.isDef() && MO.getReg() &&
1428         Register::isPhysicalRegister(MO.getReg()) &&
1429         !IgnoreSPAlias(MO.getReg())) {
1430       // Remove ranges of all aliased registers.
1431       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1432         // FIXME: Can we break out of this loop early if no insertion occurs?
1433         DeadRegs.insert(*RAI);
1434     } else if (MO.isRegMask()) {
1435       RegMasks.push_back(MO.getRegMask());
1436       RegMaskPtrs.push_back(&MO);
1437     }
1438   }
1439 
1440   // Tell MLocTracker about all definitions, of regmasks and otherwise.
1441   for (uint32_t DeadReg : DeadRegs)
1442     MTracker->defReg(DeadReg, CurBB, CurInst);
1443 
1444   for (auto *MO : RegMaskPtrs)
1445     MTracker->writeRegMask(MO, CurBB, CurInst);
1446 
1447   // If this instruction writes to a spill slot, def that slot.
1448   if (hasFoldedStackStore(MI)) {
1449     if (Optional<SpillLocationNo> SpillNo = extractSpillBaseRegAndOffset(MI)) {
1450       for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
1451         unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
1452         LocIdx L = MTracker->getSpillMLoc(SpillID);
1453         MTracker->setMLoc(L, ValueIDNum(CurBB, CurInst, L));
1454       }
1455     }
1456   }
1457 
1458   if (!TTracker)
1459     return;
1460 
1461   // When committing variable values to locations: tell transfer tracker that
1462   // we've clobbered things. It may be able to recover the variable from a
1463   // different location.
1464 
1465   // Inform TTracker about any direct clobbers.
1466   for (uint32_t DeadReg : DeadRegs) {
1467     LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
1468     TTracker->clobberMloc(Loc, MI.getIterator(), false);
1469   }
1470 
1471   // Look for any clobbers performed by a register mask. Only test locations
1472   // that are actually being tracked.
1473   if (!RegMaskPtrs.empty()) {
1474     for (auto L : MTracker->locations()) {
1475       // Stack locations can't be clobbered by regmasks.
1476       if (MTracker->isSpill(L.Idx))
1477         continue;
1478 
1479       Register Reg = MTracker->LocIdxToLocID[L.Idx];
1480       if (IgnoreSPAlias(Reg))
1481         continue;
1482 
1483       for (auto *MO : RegMaskPtrs)
1484         if (MO->clobbersPhysReg(Reg))
1485           TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
1486     }
1487   }
1488 
1489   // Tell TTracker about any folded stack store.
1490   if (hasFoldedStackStore(MI)) {
1491     if (Optional<SpillLocationNo> SpillNo = extractSpillBaseRegAndOffset(MI)) {
1492       for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
1493         unsigned SpillID = MTracker->getSpillIDWithIdx(*SpillNo, I);
1494         LocIdx L = MTracker->getSpillMLoc(SpillID);
1495         TTracker->clobberMloc(L, MI.getIterator(), true);
1496       }
1497     }
1498   }
1499 }
1500 
1501 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
1502   // In all circumstances, re-def all aliases. It's definitely a new value now.
1503   for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI)
1504     MTracker->defReg(*RAI, CurBB, CurInst);
1505 
1506   ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
1507   MTracker->setReg(DstRegNum, SrcValue);
1508 
1509   // Copy subregisters from one location to another.
1510   for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
1511     unsigned SrcSubReg = SRI.getSubReg();
1512     unsigned SubRegIdx = SRI.getSubRegIndex();
1513     unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
1514     if (!DstSubReg)
1515       continue;
1516 
1517     // Do copy. There are two matching subregisters, the source value should
1518     // have been def'd when the super-reg was, the latter might not be tracked
1519     // yet.
1520     // This will force SrcSubReg to be tracked, if it isn't yet. Will read
1521     // mphi values if it wasn't tracked.
1522     LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg);
1523     LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg);
1524     (void)SrcL;
1525     (void)DstL;
1526     ValueIDNum CpyValue = MTracker->readReg(SrcSubReg);
1527 
1528     MTracker->setReg(DstSubReg, CpyValue);
1529   }
1530 }
1531 
1532 Optional<SpillLocationNo>
1533 InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
1534                                      MachineFunction *MF) {
1535   // TODO: Handle multiple stores folded into one.
1536   if (!MI.hasOneMemOperand())
1537     return None;
1538 
1539   // Reject any memory operand that's aliased -- we can't guarantee its value.
1540   auto MMOI = MI.memoperands_begin();
1541   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1542   if (PVal->isAliased(MFI))
1543     return None;
1544 
1545   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1546     return None; // This is not a spill instruction, since no valid size was
1547                  // returned from either function.
1548 
1549   return extractSpillBaseRegAndOffset(MI);
1550 }
1551 
1552 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
1553                                        MachineFunction *MF, unsigned &Reg) {
1554   if (!isSpillInstruction(MI, MF))
1555     return false;
1556 
1557   int FI;
1558   Reg = TII->isStoreToStackSlotPostFE(MI, FI);
1559   return Reg != 0;
1560 }
1561 
1562 Optional<SpillLocationNo>
1563 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1564                                        MachineFunction *MF, unsigned &Reg) {
1565   if (!MI.hasOneMemOperand())
1566     return None;
1567 
1568   // FIXME: Handle folded restore instructions with more than one memory
1569   // operand.
1570   if (MI.getRestoreSize(TII)) {
1571     Reg = MI.getOperand(0).getReg();
1572     return extractSpillBaseRegAndOffset(MI);
1573   }
1574   return None;
1575 }
1576 
1577 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
1578   // XXX -- it's too difficult to implement VarLocBasedImpl's  stack location
1579   // limitations under the new model. Therefore, when comparing them, compare
1580   // versions that don't attempt spills or restores at all.
1581   if (EmulateOldLDV)
1582     return false;
1583 
1584   // Strictly limit ourselves to plain loads and stores, not all instructions
1585   // that can access the stack.
1586   int DummyFI = -1;
1587   if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) &&
1588       !TII->isLoadFromStackSlotPostFE(MI, DummyFI))
1589     return false;
1590 
1591   MachineFunction *MF = MI.getMF();
1592   unsigned Reg;
1593 
1594   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
1595 
1596   // Strictly limit ourselves to plain loads and stores, not all instructions
1597   // that can access the stack.
1598   int FIDummy;
1599   if (!TII->isStoreToStackSlotPostFE(MI, FIDummy) &&
1600       !TII->isLoadFromStackSlotPostFE(MI, FIDummy))
1601     return false;
1602 
1603   // First, if there are any DBG_VALUEs pointing at a spill slot that is
1604   // written to, terminate that variable location. The value in memory
1605   // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
1606   if (Optional<SpillLocationNo> Loc = isSpillInstruction(MI, MF)) {
1607     // Un-set this location and clobber, so that earlier locations don't
1608     // continue past this store.
1609     for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) {
1610       unsigned SpillID = MTracker->getSpillIDWithIdx(*Loc, SlotIdx);
1611       Optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID);
1612       if (!MLoc)
1613         continue;
1614 
1615       // We need to over-write the stack slot with something (here, a def at
1616       // this instruction) to ensure no values are preserved in this stack slot
1617       // after the spill. It also prevents TTracker from trying to recover the
1618       // location and re-installing it in the same place.
1619       ValueIDNum Def(CurBB, CurInst, *MLoc);
1620       MTracker->setMLoc(*MLoc, Def);
1621       if (TTracker)
1622         TTracker->clobberMloc(*MLoc, MI.getIterator());
1623     }
1624   }
1625 
1626   // Try to recognise spill and restore instructions that may transfer a value.
1627   if (isLocationSpill(MI, MF, Reg)) {
1628     // isLocationSpill returning true should guarantee we can extract a
1629     // location.
1630     SpillLocationNo Loc = *extractSpillBaseRegAndOffset(MI);
1631 
1632     auto DoTransfer = [&](Register SrcReg, unsigned SpillID) {
1633       auto ReadValue = MTracker->readReg(SrcReg);
1634       LocIdx DstLoc = MTracker->getSpillMLoc(SpillID);
1635       MTracker->setMLoc(DstLoc, ReadValue);
1636 
1637       if (TTracker) {
1638         LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg);
1639         TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator());
1640       }
1641     };
1642 
1643     // Then, transfer subreg bits.
1644     for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1645       // Ensure this reg is tracked,
1646       (void)MTracker->lookupOrTrackRegister(*SRI);
1647       unsigned SubregIdx = TRI->getSubRegIndex(Reg, *SRI);
1648       unsigned SpillID = MTracker->getLocID(Loc, SubregIdx);
1649       DoTransfer(*SRI, SpillID);
1650     }
1651 
1652     // Directly lookup size of main source reg, and transfer.
1653     unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
1654     unsigned SpillID = MTracker->getLocID(Loc, {Size, 0});
1655     DoTransfer(Reg, SpillID);
1656   } else {
1657     Optional<SpillLocationNo> Loc = isRestoreInstruction(MI, MF, Reg);
1658     if (!Loc)
1659       return false;
1660 
1661     // Assumption: we're reading from the base of the stack slot, not some
1662     // offset into it. It seems very unlikely LLVM would ever generate
1663     // restores where this wasn't true. This then becomes a question of what
1664     // subregisters in the destination register line up with positions in the
1665     // stack slot.
1666 
1667     // Def all registers that alias the destination.
1668     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1669       MTracker->defReg(*RAI, CurBB, CurInst);
1670 
1671     // Now find subregisters within the destination register, and load values
1672     // from stack slot positions.
1673     auto DoTransfer = [&](Register DestReg, unsigned SpillID) {
1674       LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID);
1675       auto ReadValue = MTracker->readMLoc(SrcIdx);
1676       MTracker->setReg(DestReg, ReadValue);
1677     };
1678 
1679     for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1680       unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1681       unsigned SpillID = MTracker->getLocID(*Loc, Subreg);
1682       DoTransfer(*SRI, SpillID);
1683     }
1684 
1685     // Directly look up this registers slot idx by size, and transfer.
1686     unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
1687     unsigned SpillID = MTracker->getLocID(*Loc, {Size, 0});
1688     DoTransfer(Reg, SpillID);
1689   }
1690   return true;
1691 }
1692 
1693 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
1694   auto DestSrc = TII->isCopyInstr(MI);
1695   if (!DestSrc)
1696     return false;
1697 
1698   const MachineOperand *DestRegOp = DestSrc->Destination;
1699   const MachineOperand *SrcRegOp = DestSrc->Source;
1700 
1701   auto isCalleeSavedReg = [&](unsigned Reg) {
1702     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1703       if (CalleeSavedRegs.test(*RAI))
1704         return true;
1705     return false;
1706   };
1707 
1708   Register SrcReg = SrcRegOp->getReg();
1709   Register DestReg = DestRegOp->getReg();
1710 
1711   // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
1712   if (SrcReg == DestReg)
1713     return true;
1714 
1715   // For emulating VarLocBasedImpl:
1716   // We want to recognize instructions where destination register is callee
1717   // saved register. If register that could be clobbered by the call is
1718   // included, there would be a great chance that it is going to be clobbered
1719   // soon. It is more likely that previous register, which is callee saved, is
1720   // going to stay unclobbered longer, even if it is killed.
1721   //
1722   // For InstrRefBasedImpl, we can track multiple locations per value, so
1723   // ignore this condition.
1724   if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
1725     return false;
1726 
1727   // InstrRefBasedImpl only followed killing copies.
1728   if (EmulateOldLDV && !SrcRegOp->isKill())
1729     return false;
1730 
1731   // Copy MTracker info, including subregs if available.
1732   InstrRefBasedLDV::performCopy(SrcReg, DestReg);
1733 
1734   // Only produce a transfer of DBG_VALUE within a block where old LDV
1735   // would have. We might make use of the additional value tracking in some
1736   // other way, later.
1737   if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
1738     TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
1739                             MTracker->getRegMLoc(DestReg), MI.getIterator());
1740 
1741   // VarLocBasedImpl would quit tracking the old location after copying.
1742   if (EmulateOldLDV && SrcReg != DestReg)
1743     MTracker->defReg(SrcReg, CurBB, CurInst);
1744 
1745   // Finally, the copy might have clobbered variables based on the destination
1746   // register. Tell TTracker about it, in case a backup location exists.
1747   if (TTracker) {
1748     for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
1749       LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
1750       TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false);
1751     }
1752   }
1753 
1754   return true;
1755 }
1756 
1757 /// Accumulate a mapping between each DILocalVariable fragment and other
1758 /// fragments of that DILocalVariable which overlap. This reduces work during
1759 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
1760 /// known-to-overlap fragments are present".
1761 /// \param MI A previously unprocessed debug instruction to analyze for
1762 ///           fragment usage.
1763 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
1764   assert(MI.isDebugValue() || MI.isDebugRef());
1765   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
1766                       MI.getDebugLoc()->getInlinedAt());
1767   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
1768 
1769   // If this is the first sighting of this variable, then we are guaranteed
1770   // there are currently no overlapping fragments either. Initialize the set
1771   // of seen fragments, record no overlaps for the current one, and return.
1772   auto SeenIt = SeenFragments.find(MIVar.getVariable());
1773   if (SeenIt == SeenFragments.end()) {
1774     SmallSet<FragmentInfo, 4> OneFragment;
1775     OneFragment.insert(ThisFragment);
1776     SeenFragments.insert({MIVar.getVariable(), OneFragment});
1777 
1778     OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1779     return;
1780   }
1781 
1782   // If this particular Variable/Fragment pair already exists in the overlap
1783   // map, it has already been accounted for.
1784   auto IsInOLapMap =
1785       OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1786   if (!IsInOLapMap.second)
1787     return;
1788 
1789   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
1790   auto &AllSeenFragments = SeenIt->second;
1791 
1792   // Otherwise, examine all other seen fragments for this variable, with "this"
1793   // fragment being a previously unseen fragment. Record any pair of
1794   // overlapping fragments.
1795   for (auto &ASeenFragment : AllSeenFragments) {
1796     // Does this previously seen fragment overlap?
1797     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
1798       // Yes: Mark the current fragment as being overlapped.
1799       ThisFragmentsOverlaps.push_back(ASeenFragment);
1800       // Mark the previously seen fragment as being overlapped by the current
1801       // one.
1802       auto ASeenFragmentsOverlaps =
1803           OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
1804       assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
1805              "Previously seen var fragment has no vector of overlaps");
1806       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
1807     }
1808   }
1809 
1810   AllSeenFragments.insert(ThisFragment);
1811 }
1812 
1813 void InstrRefBasedLDV::process(MachineInstr &MI, const ValueTable *MLiveOuts,
1814                                const ValueTable *MLiveIns) {
1815   // Try to interpret an MI as a debug or transfer instruction. Only if it's
1816   // none of these should we interpret it's register defs as new value
1817   // definitions.
1818   if (transferDebugValue(MI))
1819     return;
1820   if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
1821     return;
1822   if (transferDebugPHI(MI))
1823     return;
1824   if (transferRegisterCopy(MI))
1825     return;
1826   if (transferSpillOrRestoreInst(MI))
1827     return;
1828   transferRegisterDef(MI);
1829 }
1830 
1831 void InstrRefBasedLDV::produceMLocTransferFunction(
1832     MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
1833     unsigned MaxNumBlocks) {
1834   // Because we try to optimize around register mask operands by ignoring regs
1835   // that aren't currently tracked, we set up something ugly for later: RegMask
1836   // operands that are seen earlier than the first use of a register, still need
1837   // to clobber that register in the transfer function. But this information
1838   // isn't actively recorded. Instead, we track each RegMask used in each block,
1839   // and accumulated the clobbered but untracked registers in each block into
1840   // the following bitvector. Later, if new values are tracked, we can add
1841   // appropriate clobbers.
1842   SmallVector<BitVector, 32> BlockMasks;
1843   BlockMasks.resize(MaxNumBlocks);
1844 
1845   // Reserve one bit per register for the masks described above.
1846   unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
1847   for (auto &BV : BlockMasks)
1848     BV.resize(TRI->getNumRegs(), true);
1849 
1850   // Step through all instructions and inhale the transfer function.
1851   for (auto &MBB : MF) {
1852     // Object fields that are read by trackers to know where we are in the
1853     // function.
1854     CurBB = MBB.getNumber();
1855     CurInst = 1;
1856 
1857     // Set all machine locations to a PHI value. For transfer function
1858     // production only, this signifies the live-in value to the block.
1859     MTracker->reset();
1860     MTracker->setMPhis(CurBB);
1861 
1862     // Step through each instruction in this block.
1863     for (auto &MI : MBB) {
1864       // Pass in an empty unique_ptr for the value tables when accumulating the
1865       // machine transfer function.
1866       process(MI, nullptr, nullptr);
1867 
1868       // Also accumulate fragment map.
1869       if (MI.isDebugValue() || MI.isDebugRef())
1870         accumulateFragmentMap(MI);
1871 
1872       // Create a map from the instruction number (if present) to the
1873       // MachineInstr and its position.
1874       if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
1875         auto InstrAndPos = std::make_pair(&MI, CurInst);
1876         auto InsertResult =
1877             DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
1878 
1879         // There should never be duplicate instruction numbers.
1880         assert(InsertResult.second);
1881         (void)InsertResult;
1882       }
1883 
1884       ++CurInst;
1885     }
1886 
1887     // Produce the transfer function, a map of machine location to new value. If
1888     // any machine location has the live-in phi value from the start of the
1889     // block, it's live-through and doesn't need recording in the transfer
1890     // function.
1891     for (auto Location : MTracker->locations()) {
1892       LocIdx Idx = Location.Idx;
1893       ValueIDNum &P = Location.Value;
1894       if (P.isPHI() && P.getLoc() == Idx.asU64())
1895         continue;
1896 
1897       // Insert-or-update.
1898       auto &TransferMap = MLocTransfer[CurBB];
1899       auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
1900       if (!Result.second)
1901         Result.first->second = P;
1902     }
1903 
1904     // Accumulate any bitmask operands into the clobberred reg mask for this
1905     // block.
1906     for (auto &P : MTracker->Masks) {
1907       BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
1908     }
1909   }
1910 
1911   // Compute a bitvector of all the registers that are tracked in this block.
1912   BitVector UsedRegs(TRI->getNumRegs());
1913   for (auto Location : MTracker->locations()) {
1914     unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
1915     // Ignore stack slots, and aliases of the stack pointer.
1916     if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID))
1917       continue;
1918     UsedRegs.set(ID);
1919   }
1920 
1921   // Check that any regmask-clobber of a register that gets tracked, is not
1922   // live-through in the transfer function. It needs to be clobbered at the
1923   // very least.
1924   for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
1925     BitVector &BV = BlockMasks[I];
1926     BV.flip();
1927     BV &= UsedRegs;
1928     // This produces all the bits that we clobber, but also use. Check that
1929     // they're all clobbered or at least set in the designated transfer
1930     // elem.
1931     for (unsigned Bit : BV.set_bits()) {
1932       unsigned ID = MTracker->getLocID(Bit);
1933       LocIdx Idx = MTracker->LocIDToLocIdx[ID];
1934       auto &TransferMap = MLocTransfer[I];
1935 
1936       // Install a value representing the fact that this location is effectively
1937       // written to in this block. As there's no reserved value, instead use
1938       // a value number that is never generated. Pick the value number for the
1939       // first instruction in the block, def'ing this location, which we know
1940       // this block never used anyway.
1941       ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
1942       auto Result =
1943         TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
1944       if (!Result.second) {
1945         ValueIDNum &ValueID = Result.first->second;
1946         if (ValueID.getBlock() == I && ValueID.isPHI())
1947           // It was left as live-through. Set it to clobbered.
1948           ValueID = NotGeneratedNum;
1949       }
1950     }
1951   }
1952 }
1953 
1954 bool InstrRefBasedLDV::mlocJoin(
1955     MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1956     FuncValueTable &OutLocs, ValueTable &InLocs) {
1957   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
1958   bool Changed = false;
1959 
1960   // Handle value-propagation when control flow merges on entry to a block. For
1961   // any location without a PHI already placed, the location has the same value
1962   // as its predecessors. If a PHI is placed, test to see whether it's now a
1963   // redundant PHI that we can eliminate.
1964 
1965   SmallVector<const MachineBasicBlock *, 8> BlockOrders;
1966   for (auto Pred : MBB.predecessors())
1967     BlockOrders.push_back(Pred);
1968 
1969   // Visit predecessors in RPOT order.
1970   auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
1971     return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
1972   };
1973   llvm::sort(BlockOrders, Cmp);
1974 
1975   // Skip entry block.
1976   if (BlockOrders.size() == 0)
1977     return false;
1978 
1979   // Step through all machine locations, look at each predecessor and test
1980   // whether we can eliminate redundant PHIs.
1981   for (auto Location : MTracker->locations()) {
1982     LocIdx Idx = Location.Idx;
1983 
1984     // Pick out the first predecessors live-out value for this location. It's
1985     // guaranteed to not be a backedge, as we order by RPO.
1986     ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
1987 
1988     // If we've already eliminated a PHI here, do no further checking, just
1989     // propagate the first live-in value into this block.
1990     if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) {
1991       if (InLocs[Idx.asU64()] != FirstVal) {
1992         InLocs[Idx.asU64()] = FirstVal;
1993         Changed |= true;
1994       }
1995       continue;
1996     }
1997 
1998     // We're now examining a PHI to see whether it's un-necessary. Loop around
1999     // the other live-in values and test whether they're all the same.
2000     bool Disagree = false;
2001     for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
2002       const MachineBasicBlock *PredMBB = BlockOrders[I];
2003       const ValueIDNum &PredLiveOut =
2004           OutLocs[PredMBB->getNumber()][Idx.asU64()];
2005 
2006       // Incoming values agree, continue trying to eliminate this PHI.
2007       if (FirstVal == PredLiveOut)
2008         continue;
2009 
2010       // We can also accept a PHI value that feeds back into itself.
2011       if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx))
2012         continue;
2013 
2014       // Live-out of a predecessor disagrees with the first predecessor.
2015       Disagree = true;
2016     }
2017 
2018     // No disagreement? No PHI. Otherwise, leave the PHI in live-ins.
2019     if (!Disagree) {
2020       InLocs[Idx.asU64()] = FirstVal;
2021       Changed |= true;
2022     }
2023   }
2024 
2025   // TODO: Reimplement NumInserted and NumRemoved.
2026   return Changed;
2027 }
2028 
2029 void InstrRefBasedLDV::findStackIndexInterference(
2030     SmallVectorImpl<unsigned> &Slots) {
2031   // We could spend a bit of time finding the exact, minimal, set of stack
2032   // indexes that interfere with each other, much like reg units. Or, we can
2033   // rely on the fact that:
2034   //  * The smallest / lowest index will interfere with everything at zero
2035   //    offset, which will be the largest set of registers,
2036   //  * Most indexes with non-zero offset will end up being interference units
2037   //    anyway.
2038   // So just pick those out and return them.
2039 
2040   // We can rely on a single-byte stack index existing already, because we
2041   // initialize them in MLocTracker.
2042   auto It = MTracker->StackSlotIdxes.find({8, 0});
2043   assert(It != MTracker->StackSlotIdxes.end());
2044   Slots.push_back(It->second);
2045 
2046   // Find anything that has a non-zero offset and add that too.
2047   for (auto &Pair : MTracker->StackSlotIdxes) {
2048     // Is offset zero? If so, ignore.
2049     if (!Pair.first.second)
2050       continue;
2051     Slots.push_back(Pair.second);
2052   }
2053 }
2054 
2055 void InstrRefBasedLDV::placeMLocPHIs(
2056     MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
2057     FuncValueTable &MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2058   SmallVector<unsigned, 4> StackUnits;
2059   findStackIndexInterference(StackUnits);
2060 
2061   // To avoid repeatedly running the PHI placement algorithm, leverage the
2062   // fact that a def of register MUST also def its register units. Find the
2063   // units for registers, place PHIs for them, and then replicate them for
2064   // aliasing registers. Some inputs that are never def'd (DBG_PHIs of
2065   // arguments) don't lead to register units being tracked, just place PHIs for
2066   // those registers directly. Stack slots have their own form of "unit",
2067   // store them to one side.
2068   SmallSet<Register, 32> RegUnitsToPHIUp;
2069   SmallSet<LocIdx, 32> NormalLocsToPHI;
2070   SmallSet<SpillLocationNo, 32> StackSlots;
2071   for (auto Location : MTracker->locations()) {
2072     LocIdx L = Location.Idx;
2073     if (MTracker->isSpill(L)) {
2074       StackSlots.insert(MTracker->locIDToSpill(MTracker->LocIdxToLocID[L]));
2075       continue;
2076     }
2077 
2078     Register R = MTracker->LocIdxToLocID[L];
2079     SmallSet<Register, 8> FoundRegUnits;
2080     bool AnyIllegal = false;
2081     for (MCRegUnitIterator RUI(R.asMCReg(), TRI); RUI.isValid(); ++RUI) {
2082       for (MCRegUnitRootIterator URoot(*RUI, TRI); URoot.isValid(); ++URoot){
2083         if (!MTracker->isRegisterTracked(*URoot)) {
2084           // Not all roots were loaded into the tracking map: this register
2085           // isn't actually def'd anywhere, we only read from it. Generate PHIs
2086           // for this reg, but don't iterate units.
2087           AnyIllegal = true;
2088         } else {
2089           FoundRegUnits.insert(*URoot);
2090         }
2091       }
2092     }
2093 
2094     if (AnyIllegal) {
2095       NormalLocsToPHI.insert(L);
2096       continue;
2097     }
2098 
2099     RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end());
2100   }
2101 
2102   // Lambda to fetch PHIs for a given location, and write into the PHIBlocks
2103   // collection.
2104   SmallVector<MachineBasicBlock *, 32> PHIBlocks;
2105   auto CollectPHIsForLoc = [&](LocIdx L) {
2106     // Collect the set of defs.
2107     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
2108     for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
2109       MachineBasicBlock *MBB = OrderToBB[I];
2110       const auto &TransferFunc = MLocTransfer[MBB->getNumber()];
2111       if (TransferFunc.find(L) != TransferFunc.end())
2112         DefBlocks.insert(MBB);
2113     }
2114 
2115     // The entry block defs the location too: it's the live-in / argument value.
2116     // Only insert if there are other defs though; everything is trivially live
2117     // through otherwise.
2118     if (!DefBlocks.empty())
2119       DefBlocks.insert(&*MF.begin());
2120 
2121     // Ask the SSA construction algorithm where we should put PHIs. Clear
2122     // anything that might have been hanging around from earlier.
2123     PHIBlocks.clear();
2124     BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks);
2125   };
2126 
2127   auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) {
2128     for (const MachineBasicBlock *MBB : PHIBlocks)
2129       MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L);
2130   };
2131 
2132   // For locations with no reg units, just place PHIs.
2133   for (LocIdx L : NormalLocsToPHI) {
2134     CollectPHIsForLoc(L);
2135     // Install those PHI values into the live-in value array.
2136     InstallPHIsAtLoc(L);
2137   }
2138 
2139   // For stack slots, calculate PHIs for the equivalent of the units, then
2140   // install for each index.
2141   for (SpillLocationNo Slot : StackSlots) {
2142     for (unsigned Idx : StackUnits) {
2143       unsigned SpillID = MTracker->getSpillIDWithIdx(Slot, Idx);
2144       LocIdx L = MTracker->getSpillMLoc(SpillID);
2145       CollectPHIsForLoc(L);
2146       InstallPHIsAtLoc(L);
2147 
2148       // Find anything that aliases this stack index, install PHIs for it too.
2149       unsigned Size, Offset;
2150       std::tie(Size, Offset) = MTracker->StackIdxesToPos[Idx];
2151       for (auto &Pair : MTracker->StackSlotIdxes) {
2152         unsigned ThisSize, ThisOffset;
2153         std::tie(ThisSize, ThisOffset) = Pair.first;
2154         if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset)
2155           continue;
2156 
2157         unsigned ThisID = MTracker->getSpillIDWithIdx(Slot, Pair.second);
2158         LocIdx ThisL = MTracker->getSpillMLoc(ThisID);
2159         InstallPHIsAtLoc(ThisL);
2160       }
2161     }
2162   }
2163 
2164   // For reg units, place PHIs, and then place them for any aliasing registers.
2165   for (Register R : RegUnitsToPHIUp) {
2166     LocIdx L = MTracker->lookupOrTrackRegister(R);
2167     CollectPHIsForLoc(L);
2168 
2169     // Install those PHI values into the live-in value array.
2170     InstallPHIsAtLoc(L);
2171 
2172     // Now find aliases and install PHIs for those.
2173     for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) {
2174       // Super-registers that are "above" the largest register read/written by
2175       // the function will alias, but will not be tracked.
2176       if (!MTracker->isRegisterTracked(*RAI))
2177         continue;
2178 
2179       LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI);
2180       InstallPHIsAtLoc(AliasLoc);
2181     }
2182   }
2183 }
2184 
2185 void InstrRefBasedLDV::buildMLocValueMap(
2186     MachineFunction &MF, FuncValueTable &MInLocs, FuncValueTable &MOutLocs,
2187     SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2188   std::priority_queue<unsigned int, std::vector<unsigned int>,
2189                       std::greater<unsigned int>>
2190       Worklist, Pending;
2191 
2192   // We track what is on the current and pending worklist to avoid inserting
2193   // the same thing twice. We could avoid this with a custom priority queue,
2194   // but this is probably not worth it.
2195   SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
2196 
2197   // Initialize worklist with every block to be visited. Also produce list of
2198   // all blocks.
2199   SmallPtrSet<MachineBasicBlock *, 32> AllBlocks;
2200   for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
2201     Worklist.push(I);
2202     OnWorklist.insert(OrderToBB[I]);
2203     AllBlocks.insert(OrderToBB[I]);
2204   }
2205 
2206   // Initialize entry block to PHIs. These represent arguments.
2207   for (auto Location : MTracker->locations())
2208     MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx);
2209 
2210   MTracker->reset();
2211 
2212   // Start by placing PHIs, using the usual SSA constructor algorithm. Consider
2213   // any machine-location that isn't live-through a block to be def'd in that
2214   // block.
2215   placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer);
2216 
2217   // Propagate values to eliminate redundant PHIs. At the same time, this
2218   // produces the table of Block x Location => Value for the entry to each
2219   // block.
2220   // The kind of PHIs we can eliminate are, for example, where one path in a
2221   // conditional spills and restores a register, and the register still has
2222   // the same value once control flow joins, unbeknowns to the PHI placement
2223   // code. Propagating values allows us to identify such un-necessary PHIs and
2224   // remove them.
2225   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
2226   while (!Worklist.empty() || !Pending.empty()) {
2227     // Vector for storing the evaluated block transfer function.
2228     SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
2229 
2230     while (!Worklist.empty()) {
2231       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
2232       CurBB = MBB->getNumber();
2233       Worklist.pop();
2234 
2235       // Join the values in all predecessor blocks.
2236       bool InLocsChanged;
2237       InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
2238       InLocsChanged |= Visited.insert(MBB).second;
2239 
2240       // Don't examine transfer function if we've visited this loc at least
2241       // once, and inlocs haven't changed.
2242       if (!InLocsChanged)
2243         continue;
2244 
2245       // Load the current set of live-ins into MLocTracker.
2246       MTracker->loadFromArray(MInLocs[CurBB], CurBB);
2247 
2248       // Each element of the transfer function can be a new def, or a read of
2249       // a live-in value. Evaluate each element, and store to "ToRemap".
2250       ToRemap.clear();
2251       for (auto &P : MLocTransfer[CurBB]) {
2252         if (P.second.getBlock() == CurBB && P.second.isPHI()) {
2253           // This is a movement of whatever was live in. Read it.
2254           ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc());
2255           ToRemap.push_back(std::make_pair(P.first, NewID));
2256         } else {
2257           // It's a def. Just set it.
2258           assert(P.second.getBlock() == CurBB);
2259           ToRemap.push_back(std::make_pair(P.first, P.second));
2260         }
2261       }
2262 
2263       // Commit the transfer function changes into mloc tracker, which
2264       // transforms the contents of the MLocTracker into the live-outs.
2265       for (auto &P : ToRemap)
2266         MTracker->setMLoc(P.first, P.second);
2267 
2268       // Now copy out-locs from mloc tracker into out-loc vector, checking
2269       // whether changes have occurred. These changes can have come from both
2270       // the transfer function, and mlocJoin.
2271       bool OLChanged = false;
2272       for (auto Location : MTracker->locations()) {
2273         OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
2274         MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
2275       }
2276 
2277       MTracker->reset();
2278 
2279       // No need to examine successors again if out-locs didn't change.
2280       if (!OLChanged)
2281         continue;
2282 
2283       // All successors should be visited: put any back-edges on the pending
2284       // list for the next pass-through, and any other successors to be
2285       // visited this pass, if they're not going to be already.
2286       for (auto s : MBB->successors()) {
2287         // Does branching to this successor represent a back-edge?
2288         if (BBToOrder[s] > BBToOrder[MBB]) {
2289           // No: visit it during this dataflow iteration.
2290           if (OnWorklist.insert(s).second)
2291             Worklist.push(BBToOrder[s]);
2292         } else {
2293           // Yes: visit it on the next iteration.
2294           if (OnPending.insert(s).second)
2295             Pending.push(BBToOrder[s]);
2296         }
2297       }
2298     }
2299 
2300     Worklist.swap(Pending);
2301     std::swap(OnPending, OnWorklist);
2302     OnPending.clear();
2303     // At this point, pending must be empty, since it was just the empty
2304     // worklist
2305     assert(Pending.empty() && "Pending should be empty");
2306   }
2307 
2308   // Once all the live-ins don't change on mlocJoin(), we've eliminated all
2309   // redundant PHIs.
2310 }
2311 
2312 void InstrRefBasedLDV::BlockPHIPlacement(
2313     const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
2314     const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
2315     SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) {
2316   // Apply IDF calculator to the designated set of location defs, storing
2317   // required PHIs into PHIBlocks. Uses the dominator tree stored in the
2318   // InstrRefBasedLDV object.
2319   IDFCalculatorBase<MachineBasicBlock, false> IDF(DomTree->getBase());
2320 
2321   IDF.setLiveInBlocks(AllBlocks);
2322   IDF.setDefiningBlocks(DefBlocks);
2323   IDF.calculate(PHIBlocks);
2324 }
2325 
2326 Optional<ValueIDNum> InstrRefBasedLDV::pickVPHILoc(
2327     const MachineBasicBlock &MBB, const DebugVariable &Var,
2328     const LiveIdxT &LiveOuts, FuncValueTable &MOutLocs,
2329     const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
2330   // Collect a set of locations from predecessor where its live-out value can
2331   // be found.
2332   SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
2333   SmallVector<const DbgValueProperties *, 4> Properties;
2334   unsigned NumLocs = MTracker->getNumLocs();
2335 
2336   // No predecessors means no PHIs.
2337   if (BlockOrders.empty())
2338     return None;
2339 
2340   for (auto p : BlockOrders) {
2341     unsigned ThisBBNum = p->getNumber();
2342     auto OutValIt = LiveOuts.find(p);
2343     if (OutValIt == LiveOuts.end())
2344       // If we have a predecessor not in scope, we'll never find a PHI position.
2345       return None;
2346     const DbgValue &OutVal = *OutValIt->second;
2347 
2348     if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
2349       // Consts and no-values cannot have locations we can join on.
2350       return None;
2351 
2352     Properties.push_back(&OutVal.Properties);
2353 
2354     // Create new empty vector of locations.
2355     Locs.resize(Locs.size() + 1);
2356 
2357     // If the live-in value is a def, find the locations where that value is
2358     // present. Do the same for VPHIs where we know the VPHI value.
2359     if (OutVal.Kind == DbgValue::Def ||
2360         (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() &&
2361          OutVal.ID != ValueIDNum::EmptyValue)) {
2362       ValueIDNum ValToLookFor = OutVal.ID;
2363       // Search the live-outs of the predecessor for the specified value.
2364       for (unsigned int I = 0; I < NumLocs; ++I) {
2365         if (MOutLocs[ThisBBNum][I] == ValToLookFor)
2366           Locs.back().push_back(LocIdx(I));
2367       }
2368     } else {
2369       assert(OutVal.Kind == DbgValue::VPHI);
2370       // For VPHIs where we don't know the location, we definitely can't find
2371       // a join loc.
2372       if (OutVal.BlockNo != MBB.getNumber())
2373         return None;
2374 
2375       // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e.
2376       // a value that's live-through the whole loop. (It has to be a backedge,
2377       // because a block can't dominate itself). We can accept as a PHI location
2378       // any location where the other predecessors agree, _and_ the machine
2379       // locations feed back into themselves. Therefore, add all self-looping
2380       // machine-value PHI locations.
2381       for (unsigned int I = 0; I < NumLocs; ++I) {
2382         ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I));
2383         if (MOutLocs[ThisBBNum][I] == MPHI)
2384           Locs.back().push_back(LocIdx(I));
2385       }
2386     }
2387   }
2388 
2389   // We should have found locations for all predecessors, or returned.
2390   assert(Locs.size() == BlockOrders.size());
2391 
2392   // Check that all properties are the same. We can't pick a location if they're
2393   // not.
2394   const DbgValueProperties *Properties0 = Properties[0];
2395   for (auto *Prop : Properties)
2396     if (*Prop != *Properties0)
2397       return None;
2398 
2399   // Starting with the first set of locations, take the intersection with
2400   // subsequent sets.
2401   SmallVector<LocIdx, 4> CandidateLocs = Locs[0];
2402   for (unsigned int I = 1; I < Locs.size(); ++I) {
2403     auto &LocVec = Locs[I];
2404     SmallVector<LocIdx, 4> NewCandidates;
2405     std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(),
2406                           LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin()));
2407     CandidateLocs = NewCandidates;
2408   }
2409   if (CandidateLocs.empty())
2410     return None;
2411 
2412   // We now have a set of LocIdxes that contain the right output value in
2413   // each of the predecessors. Pick the lowest; if there's a register loc,
2414   // that'll be it.
2415   LocIdx L = *CandidateLocs.begin();
2416 
2417   // Return a PHI-value-number for the found location.
2418   ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
2419   return PHIVal;
2420 }
2421 
2422 bool InstrRefBasedLDV::vlocJoin(
2423     MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
2424     SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
2425     DbgValue &LiveIn) {
2426   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2427   bool Changed = false;
2428 
2429   // Order predecessors by RPOT order, for exploring them in that order.
2430   SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
2431 
2432   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2433     return BBToOrder[A] < BBToOrder[B];
2434   };
2435 
2436   llvm::sort(BlockOrders, Cmp);
2437 
2438   unsigned CurBlockRPONum = BBToOrder[&MBB];
2439 
2440   // Collect all the incoming DbgValues for this variable, from predecessor
2441   // live-out values.
2442   SmallVector<InValueT, 8> Values;
2443   bool Bail = false;
2444   int BackEdgesStart = 0;
2445   for (auto p : BlockOrders) {
2446     // If the predecessor isn't in scope / to be explored, we'll never be
2447     // able to join any locations.
2448     if (!BlocksToExplore.contains(p)) {
2449       Bail = true;
2450       break;
2451     }
2452 
2453     // All Live-outs will have been initialized.
2454     DbgValue &OutLoc = *VLOCOutLocs.find(p)->second;
2455 
2456     // Keep track of where back-edges begin in the Values vector. Relies on
2457     // BlockOrders being sorted by RPO.
2458     unsigned ThisBBRPONum = BBToOrder[p];
2459     if (ThisBBRPONum < CurBlockRPONum)
2460       ++BackEdgesStart;
2461 
2462     Values.push_back(std::make_pair(p, &OutLoc));
2463   }
2464 
2465   // If there were no values, or one of the predecessors couldn't have a
2466   // value, then give up immediately. It's not safe to produce a live-in
2467   // value. Leave as whatever it was before.
2468   if (Bail || Values.size() == 0)
2469     return false;
2470 
2471   // All (non-entry) blocks have at least one non-backedge predecessor.
2472   // Pick the variable value from the first of these, to compare against
2473   // all others.
2474   const DbgValue &FirstVal = *Values[0].second;
2475 
2476   // If the old live-in value is not a PHI then either a) no PHI is needed
2477   // here, or b) we eliminated the PHI that was here. If so, we can just
2478   // propagate in the first parent's incoming value.
2479   if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) {
2480     Changed = LiveIn != FirstVal;
2481     if (Changed)
2482       LiveIn = FirstVal;
2483     return Changed;
2484   }
2485 
2486   // Scan for variable values that can never be resolved: if they have
2487   // different DIExpressions, different indirectness, or are mixed constants /
2488   // non-constants.
2489   for (auto &V : Values) {
2490     if (V.second->Properties != FirstVal.Properties)
2491       return false;
2492     if (V.second->Kind == DbgValue::NoVal)
2493       return false;
2494     if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
2495       return false;
2496   }
2497 
2498   // Try to eliminate this PHI. Do the incoming values all agree?
2499   bool Disagree = false;
2500   for (auto &V : Values) {
2501     if (*V.second == FirstVal)
2502       continue; // No disagreement.
2503 
2504     // Eliminate if a backedge feeds a VPHI back into itself.
2505     if (V.second->Kind == DbgValue::VPHI &&
2506         V.second->BlockNo == MBB.getNumber() &&
2507         // Is this a backedge?
2508         std::distance(Values.begin(), &V) >= BackEdgesStart)
2509       continue;
2510 
2511     Disagree = true;
2512   }
2513 
2514   // No disagreement -> live-through value.
2515   if (!Disagree) {
2516     Changed = LiveIn != FirstVal;
2517     if (Changed)
2518       LiveIn = FirstVal;
2519     return Changed;
2520   } else {
2521     // Otherwise use a VPHI.
2522     DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI);
2523     Changed = LiveIn != VPHI;
2524     if (Changed)
2525       LiveIn = VPHI;
2526     return Changed;
2527   }
2528 }
2529 
2530 void InstrRefBasedLDV::getBlocksForScope(
2531     const DILocation *DILoc,
2532     SmallPtrSetImpl<const MachineBasicBlock *> &BlocksToExplore,
2533     const SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks) {
2534   // Get the set of "normal" in-lexical-scope blocks.
2535   LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
2536 
2537   // VarLoc LiveDebugValues tracks variable locations that are defined in
2538   // blocks not in scope. This is something we could legitimately ignore, but
2539   // lets allow it for now for the sake of coverage.
2540   BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
2541 
2542   // Storage for artificial blocks we intend to add to BlocksToExplore.
2543   DenseSet<const MachineBasicBlock *> ToAdd;
2544 
2545   // To avoid needlessly dropping large volumes of variable locations, propagate
2546   // variables through aritifical blocks, i.e. those that don't have any
2547   // instructions in scope at all. To accurately replicate VarLoc
2548   // LiveDebugValues, this means exploring all artificial successors too.
2549   // Perform a depth-first-search to enumerate those blocks.
2550   for (auto *MBB : BlocksToExplore) {
2551     // Depth-first-search state: each node is a block and which successor
2552     // we're currently exploring.
2553     SmallVector<std::pair<const MachineBasicBlock *,
2554                           MachineBasicBlock::const_succ_iterator>,
2555                 8>
2556         DFS;
2557 
2558     // Find any artificial successors not already tracked.
2559     for (auto *succ : MBB->successors()) {
2560       if (BlocksToExplore.count(succ))
2561         continue;
2562       if (!ArtificialBlocks.count(succ))
2563         continue;
2564       ToAdd.insert(succ);
2565       DFS.push_back({succ, succ->succ_begin()});
2566     }
2567 
2568     // Search all those blocks, depth first.
2569     while (!DFS.empty()) {
2570       const MachineBasicBlock *CurBB = DFS.back().first;
2571       MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
2572       // Walk back if we've explored this blocks successors to the end.
2573       if (CurSucc == CurBB->succ_end()) {
2574         DFS.pop_back();
2575         continue;
2576       }
2577 
2578       // If the current successor is artificial and unexplored, descend into
2579       // it.
2580       if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
2581         ToAdd.insert(*CurSucc);
2582         DFS.push_back({*CurSucc, (*CurSucc)->succ_begin()});
2583         continue;
2584       }
2585 
2586       ++CurSucc;
2587     }
2588   };
2589 
2590   BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
2591 }
2592 
2593 void InstrRefBasedLDV::buildVLocValueMap(
2594     const DILocation *DILoc, const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
2595     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
2596     FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
2597     SmallVectorImpl<VLocTracker> &AllTheVLocs) {
2598   // This method is much like buildMLocValueMap: but focuses on a single
2599   // LexicalScope at a time. Pick out a set of blocks and variables that are
2600   // to have their value assignments solved, then run our dataflow algorithm
2601   // until a fixedpoint is reached.
2602   std::priority_queue<unsigned int, std::vector<unsigned int>,
2603                       std::greater<unsigned int>>
2604       Worklist, Pending;
2605   SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
2606 
2607   // The set of blocks we'll be examining.
2608   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
2609 
2610   // The order in which to examine them (RPO).
2611   SmallVector<MachineBasicBlock *, 8> BlockOrders;
2612 
2613   // RPO ordering function.
2614   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2615     return BBToOrder[A] < BBToOrder[B];
2616   };
2617 
2618   getBlocksForScope(DILoc, BlocksToExplore, AssignBlocks);
2619 
2620   // Single block scope: not interesting! No propagation at all. Note that
2621   // this could probably go above ArtificialBlocks without damage, but
2622   // that then produces output differences from original-live-debug-values,
2623   // which propagates from a single block into many artificial ones.
2624   if (BlocksToExplore.size() == 1)
2625     return;
2626 
2627   // Convert a const set to a non-const set. LexicalScopes
2628   // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones.
2629   // (Neither of them mutate anything).
2630   SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore;
2631   for (const auto *MBB : BlocksToExplore)
2632     MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB));
2633 
2634   // Picks out relevants blocks RPO order and sort them.
2635   for (auto *MBB : BlocksToExplore)
2636     BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
2637 
2638   llvm::sort(BlockOrders, Cmp);
2639   unsigned NumBlocks = BlockOrders.size();
2640 
2641   // Allocate some vectors for storing the live ins and live outs. Large.
2642   SmallVector<DbgValue, 32> LiveIns, LiveOuts;
2643   LiveIns.reserve(NumBlocks);
2644   LiveOuts.reserve(NumBlocks);
2645 
2646   // Initialize all values to start as NoVals. This signifies "it's live
2647   // through, but we don't know what it is".
2648   DbgValueProperties EmptyProperties(EmptyExpr, false);
2649   for (unsigned int I = 0; I < NumBlocks; ++I) {
2650     DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
2651     LiveIns.push_back(EmptyDbgValue);
2652     LiveOuts.push_back(EmptyDbgValue);
2653   }
2654 
2655   // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
2656   // vlocJoin.
2657   LiveIdxT LiveOutIdx, LiveInIdx;
2658   LiveOutIdx.reserve(NumBlocks);
2659   LiveInIdx.reserve(NumBlocks);
2660   for (unsigned I = 0; I < NumBlocks; ++I) {
2661     LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
2662     LiveInIdx[BlockOrders[I]] = &LiveIns[I];
2663   }
2664 
2665   // Loop over each variable and place PHIs for it, then propagate values
2666   // between blocks. This keeps the locality of working on one lexical scope at
2667   // at time, but avoids re-processing variable values because some other
2668   // variable has been assigned.
2669   for (auto &Var : VarsWeCareAbout) {
2670     // Re-initialize live-ins and live-outs, to clear the remains of previous
2671     // variables live-ins / live-outs.
2672     for (unsigned int I = 0; I < NumBlocks; ++I) {
2673       DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
2674       LiveIns[I] = EmptyDbgValue;
2675       LiveOuts[I] = EmptyDbgValue;
2676     }
2677 
2678     // Place PHIs for variable values, using the LLVM IDF calculator.
2679     // Collect the set of blocks where variables are def'd.
2680     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
2681     for (const MachineBasicBlock *ExpMBB : BlocksToExplore) {
2682       auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars;
2683       if (TransferFunc.find(Var) != TransferFunc.end())
2684         DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB));
2685     }
2686 
2687     SmallVector<MachineBasicBlock *, 32> PHIBlocks;
2688 
2689     // Request the set of PHIs we should insert for this variable. If there's
2690     // only one value definition, things are very simple.
2691     if (DefBlocks.size() == 1) {
2692       placePHIsForSingleVarDefinition(MutBlocksToExplore, *DefBlocks.begin(),
2693                                       AllTheVLocs, Var, Output);
2694       continue;
2695     }
2696 
2697     // Otherwise: we need to place PHIs through SSA and propagate values.
2698     BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks);
2699 
2700     // Insert PHIs into the per-block live-in tables for this variable.
2701     for (MachineBasicBlock *PHIMBB : PHIBlocks) {
2702       unsigned BlockNo = PHIMBB->getNumber();
2703       DbgValue *LiveIn = LiveInIdx[PHIMBB];
2704       *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI);
2705     }
2706 
2707     for (auto *MBB : BlockOrders) {
2708       Worklist.push(BBToOrder[MBB]);
2709       OnWorklist.insert(MBB);
2710     }
2711 
2712     // Iterate over all the blocks we selected, propagating the variables value.
2713     // This loop does two things:
2714     //  * Eliminates un-necessary VPHIs in vlocJoin,
2715     //  * Evaluates the blocks transfer function (i.e. variable assignments) and
2716     //    stores the result to the blocks live-outs.
2717     // Always evaluate the transfer function on the first iteration, and when
2718     // the live-ins change thereafter.
2719     bool FirstTrip = true;
2720     while (!Worklist.empty() || !Pending.empty()) {
2721       while (!Worklist.empty()) {
2722         auto *MBB = OrderToBB[Worklist.top()];
2723         CurBB = MBB->getNumber();
2724         Worklist.pop();
2725 
2726         auto LiveInsIt = LiveInIdx.find(MBB);
2727         assert(LiveInsIt != LiveInIdx.end());
2728         DbgValue *LiveIn = LiveInsIt->second;
2729 
2730         // Join values from predecessors. Updates LiveInIdx, and writes output
2731         // into JoinedInLocs.
2732         bool InLocsChanged =
2733             vlocJoin(*MBB, LiveOutIdx, BlocksToExplore, *LiveIn);
2734 
2735         SmallVector<const MachineBasicBlock *, 8> Preds;
2736         for (const auto *Pred : MBB->predecessors())
2737           Preds.push_back(Pred);
2738 
2739         // If this block's live-in value is a VPHI, try to pick a machine-value
2740         // for it. This makes the machine-value available and propagated
2741         // through all blocks by the time value propagation finishes. We can't
2742         // do this any earlier as it needs to read the block live-outs.
2743         if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) {
2744           // There's a small possibility that on a preceeding path, a VPHI is
2745           // eliminated and transitions from VPHI-with-location to
2746           // live-through-value. As a result, the selected location of any VPHI
2747           // might change, so we need to re-compute it on each iteration.
2748           Optional<ValueIDNum> ValueNum =
2749               pickVPHILoc(*MBB, Var, LiveOutIdx, MOutLocs, Preds);
2750 
2751           if (ValueNum) {
2752             InLocsChanged |= LiveIn->ID != *ValueNum;
2753             LiveIn->ID = *ValueNum;
2754           }
2755         }
2756 
2757         if (!InLocsChanged && !FirstTrip)
2758           continue;
2759 
2760         DbgValue *LiveOut = LiveOutIdx[MBB];
2761         bool OLChanged = false;
2762 
2763         // Do transfer function.
2764         auto &VTracker = AllTheVLocs[MBB->getNumber()];
2765         auto TransferIt = VTracker.Vars.find(Var);
2766         if (TransferIt != VTracker.Vars.end()) {
2767           // Erase on empty transfer (DBG_VALUE $noreg).
2768           if (TransferIt->second.Kind == DbgValue::Undef) {
2769             DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal);
2770             if (*LiveOut != NewVal) {
2771               *LiveOut = NewVal;
2772               OLChanged = true;
2773             }
2774           } else {
2775             // Insert new variable value; or overwrite.
2776             if (*LiveOut != TransferIt->second) {
2777               *LiveOut = TransferIt->second;
2778               OLChanged = true;
2779             }
2780           }
2781         } else {
2782           // Just copy live-ins to live-outs, for anything not transferred.
2783           if (*LiveOut != *LiveIn) {
2784             *LiveOut = *LiveIn;
2785             OLChanged = true;
2786           }
2787         }
2788 
2789         // If no live-out value changed, there's no need to explore further.
2790         if (!OLChanged)
2791           continue;
2792 
2793         // We should visit all successors. Ensure we'll visit any non-backedge
2794         // successors during this dataflow iteration; book backedge successors
2795         // to be visited next time around.
2796         for (auto s : MBB->successors()) {
2797           // Ignore out of scope / not-to-be-explored successors.
2798           if (LiveInIdx.find(s) == LiveInIdx.end())
2799             continue;
2800 
2801           if (BBToOrder[s] > BBToOrder[MBB]) {
2802             if (OnWorklist.insert(s).second)
2803               Worklist.push(BBToOrder[s]);
2804           } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
2805             Pending.push(BBToOrder[s]);
2806           }
2807         }
2808       }
2809       Worklist.swap(Pending);
2810       std::swap(OnWorklist, OnPending);
2811       OnPending.clear();
2812       assert(Pending.empty());
2813       FirstTrip = false;
2814     }
2815 
2816     // Save live-ins to output vector. Ignore any that are still marked as being
2817     // VPHIs with no location -- those are variables that we know the value of,
2818     // but are not actually available in the register file.
2819     for (auto *MBB : BlockOrders) {
2820       DbgValue *BlockLiveIn = LiveInIdx[MBB];
2821       if (BlockLiveIn->Kind == DbgValue::NoVal)
2822         continue;
2823       if (BlockLiveIn->Kind == DbgValue::VPHI &&
2824           BlockLiveIn->ID == ValueIDNum::EmptyValue)
2825         continue;
2826       if (BlockLiveIn->Kind == DbgValue::VPHI)
2827         BlockLiveIn->Kind = DbgValue::Def;
2828       assert(BlockLiveIn->Properties.DIExpr->getFragmentInfo() ==
2829              Var.getFragment() && "Fragment info missing during value prop");
2830       Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn));
2831     }
2832   } // Per-variable loop.
2833 
2834   BlockOrders.clear();
2835   BlocksToExplore.clear();
2836 }
2837 
2838 void InstrRefBasedLDV::placePHIsForSingleVarDefinition(
2839     const SmallPtrSetImpl<MachineBasicBlock *> &InScopeBlocks,
2840     MachineBasicBlock *AssignMBB, SmallVectorImpl<VLocTracker> &AllTheVLocs,
2841     const DebugVariable &Var, LiveInsT &Output) {
2842   // If there is a single definition of the variable, then working out it's
2843   // value everywhere is very simple: it's every block dominated by the
2844   // definition. At the dominance frontier, the usual algorithm would:
2845   //  * Place PHIs,
2846   //  * Propagate values into them,
2847   //  * Find there's no incoming variable value from the other incoming branches
2848   //    of the dominance frontier,
2849   //  * Specify there's no variable value in blocks past the frontier.
2850   // This is a common case, hence it's worth special-casing it.
2851 
2852   // Pick out the variables value from the block transfer function.
2853   VLocTracker &VLocs = AllTheVLocs[AssignMBB->getNumber()];
2854   auto ValueIt = VLocs.Vars.find(Var);
2855   const DbgValue &Value = ValueIt->second;
2856 
2857   // If it's an explicit assignment of "undef", that means there is no location
2858   // anyway, anywhere.
2859   if (Value.Kind == DbgValue::Undef)
2860     return;
2861 
2862   // Assign the variable value to entry to each dominated block that's in scope.
2863   // Skip the definition block -- it's assigned the variable value in the middle
2864   // of the block somewhere.
2865   for (auto *ScopeBlock : InScopeBlocks) {
2866     if (!DomTree->properlyDominates(AssignMBB, ScopeBlock))
2867       continue;
2868 
2869     Output[ScopeBlock->getNumber()].push_back({Var, Value});
2870   }
2871 
2872   // All blocks that aren't dominated have no live-in value, thus no variable
2873   // value will be given to them.
2874 }
2875 
2876 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2877 void InstrRefBasedLDV::dump_mloc_transfer(
2878     const MLocTransferMap &mloc_transfer) const {
2879   for (auto &P : mloc_transfer) {
2880     std::string foo = MTracker->LocIdxToName(P.first);
2881     std::string bar = MTracker->IDAsString(P.second);
2882     dbgs() << "Loc " << foo << " --> " << bar << "\n";
2883   }
2884 }
2885 #endif
2886 
2887 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
2888   // Build some useful data structures.
2889 
2890   LLVMContext &Context = MF.getFunction().getContext();
2891   EmptyExpr = DIExpression::get(Context, {});
2892 
2893   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
2894     if (const DebugLoc &DL = MI.getDebugLoc())
2895       return DL.getLine() != 0;
2896     return false;
2897   };
2898   // Collect a set of all the artificial blocks.
2899   for (auto &MBB : MF)
2900     if (none_of(MBB.instrs(), hasNonArtificialLocation))
2901       ArtificialBlocks.insert(&MBB);
2902 
2903   // Compute mappings of block <=> RPO order.
2904   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
2905   unsigned int RPONumber = 0;
2906   for (MachineBasicBlock *MBB : RPOT) {
2907     OrderToBB[RPONumber] = MBB;
2908     BBToOrder[MBB] = RPONumber;
2909     BBNumToRPO[MBB->getNumber()] = RPONumber;
2910     ++RPONumber;
2911   }
2912 
2913   // Order value substitutions by their "source" operand pair, for quick lookup.
2914   llvm::sort(MF.DebugValueSubstitutions);
2915 
2916 #ifdef EXPENSIVE_CHECKS
2917   // As an expensive check, test whether there are any duplicate substitution
2918   // sources in the collection.
2919   if (MF.DebugValueSubstitutions.size() > 2) {
2920     for (auto It = MF.DebugValueSubstitutions.begin();
2921          It != std::prev(MF.DebugValueSubstitutions.end()); ++It) {
2922       assert(It->Src != std::next(It)->Src && "Duplicate variable location "
2923                                               "substitution seen");
2924     }
2925   }
2926 #endif
2927 }
2928 
2929 // Produce an "ejection map" for blocks, i.e., what's the highest-numbered
2930 // lexical scope it's used in. When exploring in DFS order and we pass that
2931 // scope, the block can be processed and any tracking information freed.
2932 void InstrRefBasedLDV::makeDepthFirstEjectionMap(
2933     SmallVectorImpl<unsigned> &EjectionMap,
2934     const ScopeToDILocT &ScopeToDILocation,
2935     ScopeToAssignBlocksT &ScopeToAssignBlocks) {
2936   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
2937   SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
2938   auto *TopScope = LS.getCurrentFunctionScope();
2939 
2940   // Unlike lexical scope explorers, we explore in reverse order, to find the
2941   // "last" lexical scope used for each block early.
2942   WorkStack.push_back({TopScope, TopScope->getChildren().size() - 1});
2943 
2944   while (!WorkStack.empty()) {
2945     auto &ScopePosition = WorkStack.back();
2946     LexicalScope *WS = ScopePosition.first;
2947     ssize_t ChildNum = ScopePosition.second--;
2948 
2949     const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
2950     if (ChildNum >= 0) {
2951       // If ChildNum is positive, there are remaining children to explore.
2952       // Push the child and its children-count onto the stack.
2953       auto &ChildScope = Children[ChildNum];
2954       WorkStack.push_back(
2955           std::make_pair(ChildScope, ChildScope->getChildren().size() - 1));
2956     } else {
2957       WorkStack.pop_back();
2958 
2959       // We've explored all children and any later blocks: examine all blocks
2960       // in our scope. If they haven't yet had an ejection number set, then
2961       // this scope will be the last to use that block.
2962       auto DILocationIt = ScopeToDILocation.find(WS);
2963       if (DILocationIt != ScopeToDILocation.end()) {
2964         getBlocksForScope(DILocationIt->second, BlocksToExplore,
2965                           ScopeToAssignBlocks.find(WS)->second);
2966         for (auto *MBB : BlocksToExplore) {
2967           unsigned BBNum = MBB->getNumber();
2968           if (EjectionMap[BBNum] == 0)
2969             EjectionMap[BBNum] = WS->getDFSOut();
2970         }
2971 
2972         BlocksToExplore.clear();
2973       }
2974     }
2975   }
2976 }
2977 
2978 bool InstrRefBasedLDV::depthFirstVLocAndEmit(
2979     unsigned MaxNumBlocks, const ScopeToDILocT &ScopeToDILocation,
2980     const ScopeToVarsT &ScopeToVars, ScopeToAssignBlocksT &ScopeToAssignBlocks,
2981     LiveInsT &Output, FuncValueTable &MOutLocs, FuncValueTable &MInLocs,
2982     SmallVectorImpl<VLocTracker> &AllTheVLocs, MachineFunction &MF,
2983     DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
2984     const TargetPassConfig &TPC) {
2985   TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC);
2986   unsigned NumLocs = MTracker->getNumLocs();
2987   VTracker = nullptr;
2988 
2989   // No scopes? No variable locations.
2990   if (!LS.getCurrentFunctionScope())
2991     return false;
2992 
2993   // Build map from block number to the last scope that uses the block.
2994   SmallVector<unsigned, 16> EjectionMap;
2995   EjectionMap.resize(MaxNumBlocks, 0);
2996   makeDepthFirstEjectionMap(EjectionMap, ScopeToDILocation,
2997                             ScopeToAssignBlocks);
2998 
2999   // Helper lambda for ejecting a block -- if nothing is going to use the block,
3000   // we can translate the variable location information into DBG_VALUEs and then
3001   // free all of InstrRefBasedLDV's data structures.
3002   auto EjectBlock = [&](MachineBasicBlock &MBB) -> void {
3003     unsigned BBNum = MBB.getNumber();
3004     AllTheVLocs[BBNum].clear();
3005 
3006     // Prime the transfer-tracker, and then step through all the block
3007     // instructions, installing transfers.
3008     MTracker->reset();
3009     MTracker->loadFromArray(MInLocs[BBNum], BBNum);
3010     TTracker->loadInlocs(MBB, MInLocs[BBNum], Output[BBNum], NumLocs);
3011 
3012     CurBB = BBNum;
3013     CurInst = 1;
3014     for (auto &MI : MBB) {
3015       process(MI, MOutLocs.get(), MInLocs.get());
3016       TTracker->checkInstForNewValues(CurInst, MI.getIterator());
3017       ++CurInst;
3018     }
3019 
3020     // Free machine-location tables for this block.
3021     MInLocs[BBNum].reset();
3022     MOutLocs[BBNum].reset();
3023     // We don't need live-in variable values for this block either.
3024     Output[BBNum].clear();
3025     AllTheVLocs[BBNum].clear();
3026   };
3027 
3028   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
3029   SmallVector<std::pair<LexicalScope *, ssize_t>, 4> WorkStack;
3030   WorkStack.push_back({LS.getCurrentFunctionScope(), 0});
3031   unsigned HighestDFSIn = 0;
3032 
3033   // Proceed to explore in depth first order.
3034   while (!WorkStack.empty()) {
3035     auto &ScopePosition = WorkStack.back();
3036     LexicalScope *WS = ScopePosition.first;
3037     ssize_t ChildNum = ScopePosition.second++;
3038 
3039     // We obesrve scopes with children twice here, once descending in, once
3040     // ascending out of the scope nest. Use HighestDFSIn as a ratchet to ensure
3041     // we don't process a scope twice. Additionally, ignore scopes that don't
3042     // have a DILocation -- by proxy, this means we never tracked any variable
3043     // assignments in that scope.
3044     auto DILocIt = ScopeToDILocation.find(WS);
3045     if (HighestDFSIn <= WS->getDFSIn() && DILocIt != ScopeToDILocation.end()) {
3046       const DILocation *DILoc = DILocIt->second;
3047       auto &VarsWeCareAbout = ScopeToVars.find(WS)->second;
3048       auto &BlocksInScope = ScopeToAssignBlocks.find(WS)->second;
3049 
3050       buildVLocValueMap(DILoc, VarsWeCareAbout, BlocksInScope, Output, MOutLocs,
3051                         MInLocs, AllTheVLocs);
3052     }
3053 
3054     HighestDFSIn = std::max(HighestDFSIn, WS->getDFSIn());
3055 
3056     // Descend into any scope nests.
3057     const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
3058     if (ChildNum < (ssize_t)Children.size()) {
3059       // There are children to explore -- push onto stack and continue.
3060       auto &ChildScope = Children[ChildNum];
3061       WorkStack.push_back(std::make_pair(ChildScope, 0));
3062     } else {
3063       WorkStack.pop_back();
3064 
3065       // We've explored a leaf, or have explored all the children of a scope.
3066       // Try to eject any blocks where this is the last scope it's relevant to.
3067       auto DILocationIt = ScopeToDILocation.find(WS);
3068       if (DILocationIt == ScopeToDILocation.end())
3069         continue;
3070 
3071       getBlocksForScope(DILocationIt->second, BlocksToExplore,
3072                         ScopeToAssignBlocks.find(WS)->second);
3073       for (auto *MBB : BlocksToExplore)
3074         if (WS->getDFSOut() == EjectionMap[MBB->getNumber()])
3075           EjectBlock(const_cast<MachineBasicBlock &>(*MBB));
3076 
3077       BlocksToExplore.clear();
3078     }
3079   }
3080 
3081   // Some artificial blocks may not have been ejected, meaning they're not
3082   // connected to an actual legitimate scope. This can technically happen
3083   // with things like the entry block. In theory, we shouldn't need to do
3084   // anything for such out-of-scope blocks, but for the sake of being similar
3085   // to VarLocBasedLDV, eject these too.
3086   for (auto *MBB : ArtificialBlocks)
3087     if (MOutLocs[MBB->getNumber()])
3088       EjectBlock(*MBB);
3089 
3090   return emitTransfers(AllVarsNumbering);
3091 }
3092 
3093 bool InstrRefBasedLDV::emitTransfers(
3094     DenseMap<DebugVariable, unsigned> &AllVarsNumbering) {
3095   // Go through all the transfers recorded in the TransferTracker -- this is
3096   // both the live-ins to a block, and any movements of values that happen
3097   // in the middle.
3098   for (const auto &P : TTracker->Transfers) {
3099     // We have to insert DBG_VALUEs in a consistent order, otherwise they
3100     // appear in DWARF in different orders. Use the order that they appear
3101     // when walking through each block / each instruction, stored in
3102     // AllVarsNumbering.
3103     SmallVector<std::pair<unsigned, MachineInstr *>> Insts;
3104     for (MachineInstr *MI : P.Insts) {
3105       DebugVariable Var(MI->getDebugVariable(), MI->getDebugExpression(),
3106                         MI->getDebugLoc()->getInlinedAt());
3107       Insts.emplace_back(AllVarsNumbering.find(Var)->second, MI);
3108     }
3109     llvm::sort(Insts,
3110                [](const auto &A, const auto &B) { return A.first < B.first; });
3111 
3112     // Insert either before or after the designated point...
3113     if (P.MBB) {
3114       MachineBasicBlock &MBB = *P.MBB;
3115       for (const auto &Pair : Insts)
3116         MBB.insert(P.Pos, Pair.second);
3117     } else {
3118       // Terminators, like tail calls, can clobber things. Don't try and place
3119       // transfers after them.
3120       if (P.Pos->isTerminator())
3121         continue;
3122 
3123       MachineBasicBlock &MBB = *P.Pos->getParent();
3124       for (const auto &Pair : Insts)
3125         MBB.insertAfterBundle(P.Pos, Pair.second);
3126     }
3127   }
3128 
3129   return TTracker->Transfers.size() != 0;
3130 }
3131 
3132 /// Calculate the liveness information for the given machine function and
3133 /// extend ranges across basic blocks.
3134 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
3135                                     MachineDominatorTree *DomTree,
3136                                     TargetPassConfig *TPC,
3137                                     unsigned InputBBLimit,
3138                                     unsigned InputDbgValLimit) {
3139   // No subprogram means this function contains no debuginfo.
3140   if (!MF.getFunction().getSubprogram())
3141     return false;
3142 
3143   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
3144   this->TPC = TPC;
3145 
3146   this->DomTree = DomTree;
3147   TRI = MF.getSubtarget().getRegisterInfo();
3148   MRI = &MF.getRegInfo();
3149   TII = MF.getSubtarget().getInstrInfo();
3150   TFI = MF.getSubtarget().getFrameLowering();
3151   TFI->getCalleeSaves(MF, CalleeSavedRegs);
3152   MFI = &MF.getFrameInfo();
3153   LS.initialize(MF);
3154 
3155   const auto &STI = MF.getSubtarget();
3156   AdjustsStackInCalls = MFI->adjustsStack() &&
3157                         STI.getFrameLowering()->stackProbeFunctionModifiesSP();
3158   if (AdjustsStackInCalls)
3159     StackProbeSymbolName = STI.getTargetLowering()->getStackProbeSymbolName(MF);
3160 
3161   MTracker =
3162       new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
3163   VTracker = nullptr;
3164   TTracker = nullptr;
3165 
3166   SmallVector<MLocTransferMap, 32> MLocTransfer;
3167   SmallVector<VLocTracker, 8> vlocs;
3168   LiveInsT SavedLiveIns;
3169 
3170   int MaxNumBlocks = -1;
3171   for (auto &MBB : MF)
3172     MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
3173   assert(MaxNumBlocks >= 0);
3174   ++MaxNumBlocks;
3175 
3176   MLocTransfer.resize(MaxNumBlocks);
3177   vlocs.resize(MaxNumBlocks, VLocTracker(OverlapFragments, EmptyExpr));
3178   SavedLiveIns.resize(MaxNumBlocks);
3179 
3180   initialSetup(MF);
3181 
3182   produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
3183 
3184   // Allocate and initialize two array-of-arrays for the live-in and live-out
3185   // machine values. The outer dimension is the block number; while the inner
3186   // dimension is a LocIdx from MLocTracker.
3187   FuncValueTable MOutLocs = std::make_unique<ValueTable[]>(MaxNumBlocks);
3188   FuncValueTable MInLocs = std::make_unique<ValueTable[]>(MaxNumBlocks);
3189   unsigned NumLocs = MTracker->getNumLocs();
3190   for (int i = 0; i < MaxNumBlocks; ++i) {
3191     // These all auto-initialize to ValueIDNum::EmptyValue
3192     MOutLocs[i] = std::make_unique<ValueIDNum[]>(NumLocs);
3193     MInLocs[i] = std::make_unique<ValueIDNum[]>(NumLocs);
3194   }
3195 
3196   // Solve the machine value dataflow problem using the MLocTransfer function,
3197   // storing the computed live-ins / live-outs into the array-of-arrays. We use
3198   // both live-ins and live-outs for decision making in the variable value
3199   // dataflow problem.
3200   buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer);
3201 
3202   // Patch up debug phi numbers, turning unknown block-live-in values into
3203   // either live-through machine values, or PHIs.
3204   for (auto &DBG_PHI : DebugPHINumToValue) {
3205     // Identify unresolved block-live-ins.
3206     if (!DBG_PHI.ValueRead)
3207       continue;
3208 
3209     ValueIDNum &Num = *DBG_PHI.ValueRead;
3210     if (!Num.isPHI())
3211       continue;
3212 
3213     unsigned BlockNo = Num.getBlock();
3214     LocIdx LocNo = Num.getLoc();
3215     Num = MInLocs[BlockNo][LocNo.asU64()];
3216   }
3217   // Later, we'll be looking up ranges of instruction numbers.
3218   llvm::sort(DebugPHINumToValue);
3219 
3220   // Walk back through each block / instruction, collecting DBG_VALUE
3221   // instructions and recording what machine value their operands refer to.
3222   for (auto &OrderPair : OrderToBB) {
3223     MachineBasicBlock &MBB = *OrderPair.second;
3224     CurBB = MBB.getNumber();
3225     VTracker = &vlocs[CurBB];
3226     VTracker->MBB = &MBB;
3227     MTracker->loadFromArray(MInLocs[CurBB], CurBB);
3228     CurInst = 1;
3229     for (auto &MI : MBB) {
3230       process(MI, MOutLocs.get(), MInLocs.get());
3231       ++CurInst;
3232     }
3233     MTracker->reset();
3234   }
3235 
3236   // Number all variables in the order that they appear, to be used as a stable
3237   // insertion order later.
3238   DenseMap<DebugVariable, unsigned> AllVarsNumbering;
3239 
3240   // Map from one LexicalScope to all the variables in that scope.
3241   ScopeToVarsT ScopeToVars;
3242 
3243   // Map from One lexical scope to all blocks where assignments happen for
3244   // that scope.
3245   ScopeToAssignBlocksT ScopeToAssignBlocks;
3246 
3247   // Store map of DILocations that describes scopes.
3248   ScopeToDILocT ScopeToDILocation;
3249 
3250   // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
3251   // the order is unimportant, it just has to be stable.
3252   unsigned VarAssignCount = 0;
3253   for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
3254     auto *MBB = OrderToBB[I];
3255     auto *VTracker = &vlocs[MBB->getNumber()];
3256     // Collect each variable with a DBG_VALUE in this block.
3257     for (auto &idx : VTracker->Vars) {
3258       const auto &Var = idx.first;
3259       const DILocation *ScopeLoc = VTracker->Scopes[Var];
3260       assert(ScopeLoc != nullptr);
3261       auto *Scope = LS.findLexicalScope(ScopeLoc);
3262 
3263       // No insts in scope -> shouldn't have been recorded.
3264       assert(Scope != nullptr);
3265 
3266       AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
3267       ScopeToVars[Scope].insert(Var);
3268       ScopeToAssignBlocks[Scope].insert(VTracker->MBB);
3269       ScopeToDILocation[Scope] = ScopeLoc;
3270       ++VarAssignCount;
3271     }
3272   }
3273 
3274   bool Changed = false;
3275 
3276   // If we have an extremely large number of variable assignments and blocks,
3277   // bail out at this point. We've burnt some time doing analysis already,
3278   // however we should cut our losses.
3279   if ((unsigned)MaxNumBlocks > InputBBLimit &&
3280       VarAssignCount > InputDbgValLimit) {
3281     LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName()
3282                       << " has " << MaxNumBlocks << " basic blocks and "
3283                       << VarAssignCount
3284                       << " variable assignments, exceeding limits.\n");
3285   } else {
3286     // Optionally, solve the variable value problem and emit to blocks by using
3287     // a lexical-scope-depth search. It should be functionally identical to
3288     // the "else" block of this condition.
3289     Changed = depthFirstVLocAndEmit(
3290         MaxNumBlocks, ScopeToDILocation, ScopeToVars, ScopeToAssignBlocks,
3291         SavedLiveIns, MOutLocs, MInLocs, vlocs, MF, AllVarsNumbering, *TPC);
3292   }
3293 
3294   delete MTracker;
3295   delete TTracker;
3296   MTracker = nullptr;
3297   VTracker = nullptr;
3298   TTracker = nullptr;
3299 
3300   ArtificialBlocks.clear();
3301   OrderToBB.clear();
3302   BBToOrder.clear();
3303   BBNumToRPO.clear();
3304   DebugInstrNumToInstr.clear();
3305   DebugPHINumToValue.clear();
3306   OverlapFragments.clear();
3307   SeenFragments.clear();
3308   SeenDbgPHIs.clear();
3309 
3310   return Changed;
3311 }
3312 
3313 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
3314   return new InstrRefBasedLDV();
3315 }
3316 
3317 namespace {
3318 class LDVSSABlock;
3319 class LDVSSAUpdater;
3320 
3321 // Pick a type to identify incoming block values as we construct SSA. We
3322 // can't use anything more robust than an integer unfortunately, as SSAUpdater
3323 // expects to zero-initialize the type.
3324 typedef uint64_t BlockValueNum;
3325 
3326 /// Represents an SSA PHI node for the SSA updater class. Contains the block
3327 /// this PHI is in, the value number it would have, and the expected incoming
3328 /// values from parent blocks.
3329 class LDVSSAPhi {
3330 public:
3331   SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
3332   LDVSSABlock *ParentBlock;
3333   BlockValueNum PHIValNum;
3334   LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
3335       : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
3336 
3337   LDVSSABlock *getParent() { return ParentBlock; }
3338 };
3339 
3340 /// Thin wrapper around a block predecessor iterator. Only difference from a
3341 /// normal block iterator is that it dereferences to an LDVSSABlock.
3342 class LDVSSABlockIterator {
3343 public:
3344   MachineBasicBlock::pred_iterator PredIt;
3345   LDVSSAUpdater &Updater;
3346 
3347   LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
3348                       LDVSSAUpdater &Updater)
3349       : PredIt(PredIt), Updater(Updater) {}
3350 
3351   bool operator!=(const LDVSSABlockIterator &OtherIt) const {
3352     return OtherIt.PredIt != PredIt;
3353   }
3354 
3355   LDVSSABlockIterator &operator++() {
3356     ++PredIt;
3357     return *this;
3358   }
3359 
3360   LDVSSABlock *operator*();
3361 };
3362 
3363 /// Thin wrapper around a block for SSA Updater interface. Necessary because
3364 /// we need to track the PHI value(s) that we may have observed as necessary
3365 /// in this block.
3366 class LDVSSABlock {
3367 public:
3368   MachineBasicBlock &BB;
3369   LDVSSAUpdater &Updater;
3370   using PHIListT = SmallVector<LDVSSAPhi, 1>;
3371   /// List of PHIs in this block. There should only ever be one.
3372   PHIListT PHIList;
3373 
3374   LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
3375       : BB(BB), Updater(Updater) {}
3376 
3377   LDVSSABlockIterator succ_begin() {
3378     return LDVSSABlockIterator(BB.succ_begin(), Updater);
3379   }
3380 
3381   LDVSSABlockIterator succ_end() {
3382     return LDVSSABlockIterator(BB.succ_end(), Updater);
3383   }
3384 
3385   /// SSAUpdater has requested a PHI: create that within this block record.
3386   LDVSSAPhi *newPHI(BlockValueNum Value) {
3387     PHIList.emplace_back(Value, this);
3388     return &PHIList.back();
3389   }
3390 
3391   /// SSAUpdater wishes to know what PHIs already exist in this block.
3392   PHIListT &phis() { return PHIList; }
3393 };
3394 
3395 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
3396 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
3397 // SSAUpdaterTraits<LDVSSAUpdater>.
3398 class LDVSSAUpdater {
3399 public:
3400   /// Map of value numbers to PHI records.
3401   DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
3402   /// Map of which blocks generate Undef values -- blocks that are not
3403   /// dominated by any Def.
3404   DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
3405   /// Map of machine blocks to our own records of them.
3406   DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
3407   /// Machine location where any PHI must occur.
3408   LocIdx Loc;
3409   /// Table of live-in machine value numbers for blocks / locations.
3410   const ValueTable *MLiveIns;
3411 
3412   LDVSSAUpdater(LocIdx L, const ValueTable *MLiveIns)
3413       : Loc(L), MLiveIns(MLiveIns) {}
3414 
3415   void reset() {
3416     for (auto &Block : BlockMap)
3417       delete Block.second;
3418 
3419     PHIs.clear();
3420     UndefMap.clear();
3421     BlockMap.clear();
3422   }
3423 
3424   ~LDVSSAUpdater() { reset(); }
3425 
3426   /// For a given MBB, create a wrapper block for it. Stores it in the
3427   /// LDVSSAUpdater block map.
3428   LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
3429     auto it = BlockMap.find(BB);
3430     if (it == BlockMap.end()) {
3431       BlockMap[BB] = new LDVSSABlock(*BB, *this);
3432       it = BlockMap.find(BB);
3433     }
3434     return it->second;
3435   }
3436 
3437   /// Find the live-in value number for the given block. Looks up the value at
3438   /// the PHI location on entry.
3439   BlockValueNum getValue(LDVSSABlock *LDVBB) {
3440     return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64();
3441   }
3442 };
3443 
3444 LDVSSABlock *LDVSSABlockIterator::operator*() {
3445   return Updater.getSSALDVBlock(*PredIt);
3446 }
3447 
3448 #ifndef NDEBUG
3449 
3450 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
3451   out << "SSALDVPHI " << PHI.PHIValNum;
3452   return out;
3453 }
3454 
3455 #endif
3456 
3457 } // namespace
3458 
3459 namespace llvm {
3460 
3461 /// Template specialization to give SSAUpdater access to CFG and value
3462 /// information. SSAUpdater calls methods in these traits, passing in the
3463 /// LDVSSAUpdater object, to learn about blocks and the values they define.
3464 /// It also provides methods to create PHI nodes and track them.
3465 template <> class SSAUpdaterTraits<LDVSSAUpdater> {
3466 public:
3467   using BlkT = LDVSSABlock;
3468   using ValT = BlockValueNum;
3469   using PhiT = LDVSSAPhi;
3470   using BlkSucc_iterator = LDVSSABlockIterator;
3471 
3472   // Methods to access block successors -- dereferencing to our wrapper class.
3473   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
3474   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
3475 
3476   /// Iterator for PHI operands.
3477   class PHI_iterator {
3478   private:
3479     LDVSSAPhi *PHI;
3480     unsigned Idx;
3481 
3482   public:
3483     explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
3484         : PHI(P), Idx(0) {}
3485     PHI_iterator(LDVSSAPhi *P, bool) // end iterator
3486         : PHI(P), Idx(PHI->IncomingValues.size()) {}
3487 
3488     PHI_iterator &operator++() {
3489       Idx++;
3490       return *this;
3491     }
3492     bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
3493     bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
3494 
3495     BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
3496 
3497     LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
3498   };
3499 
3500   static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
3501 
3502   static inline PHI_iterator PHI_end(PhiT *PHI) {
3503     return PHI_iterator(PHI, true);
3504   }
3505 
3506   /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
3507   /// vector.
3508   static void FindPredecessorBlocks(LDVSSABlock *BB,
3509                                     SmallVectorImpl<LDVSSABlock *> *Preds) {
3510     for (MachineBasicBlock *Pred : BB->BB.predecessors())
3511       Preds->push_back(BB->Updater.getSSALDVBlock(Pred));
3512   }
3513 
3514   /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
3515   /// register. For LiveDebugValues, represents a block identified as not having
3516   /// any DBG_PHI predecessors.
3517   static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
3518     // Create a value number for this block -- it needs to be unique and in the
3519     // "undef" collection, so that we know it's not real. Use a number
3520     // representing a PHI into this block.
3521     BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
3522     Updater->UndefMap[&BB->BB] = Num;
3523     return Num;
3524   }
3525 
3526   /// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
3527   /// SSAUpdater will populate it with information about incoming values. The
3528   /// value number of this PHI is whatever the  machine value number problem
3529   /// solution determined it to be. This includes non-phi values if SSAUpdater
3530   /// tries to create a PHI where the incoming values are identical.
3531   static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
3532                                    LDVSSAUpdater *Updater) {
3533     BlockValueNum PHIValNum = Updater->getValue(BB);
3534     LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
3535     Updater->PHIs[PHIValNum] = PHI;
3536     return PHIValNum;
3537   }
3538 
3539   /// AddPHIOperand - Add the specified value as an operand of the PHI for
3540   /// the specified predecessor block.
3541   static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
3542     PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
3543   }
3544 
3545   /// ValueIsPHI - Check if the instruction that defines the specified value
3546   /// is a PHI instruction.
3547   static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3548     auto PHIIt = Updater->PHIs.find(Val);
3549     if (PHIIt == Updater->PHIs.end())
3550       return nullptr;
3551     return PHIIt->second;
3552   }
3553 
3554   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
3555   /// operands, i.e., it was just added.
3556   static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3557     LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
3558     if (PHI && PHI->IncomingValues.size() == 0)
3559       return PHI;
3560     return nullptr;
3561   }
3562 
3563   /// GetPHIValue - For the specified PHI instruction, return the value
3564   /// that it defines.
3565   static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
3566 };
3567 
3568 } // end namespace llvm
3569 
3570 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(
3571     MachineFunction &MF, const ValueTable *MLiveOuts,
3572     const ValueTable *MLiveIns, MachineInstr &Here, uint64_t InstrNum) {
3573   assert(MLiveOuts && MLiveIns &&
3574          "Tried to resolve DBG_PHI before location "
3575          "tables allocated?");
3576 
3577   // This function will be called twice per DBG_INSTR_REF, and might end up
3578   // computing lots of SSA information: memoize it.
3579   auto SeenDbgPHIIt = SeenDbgPHIs.find(&Here);
3580   if (SeenDbgPHIIt != SeenDbgPHIs.end())
3581     return SeenDbgPHIIt->second;
3582 
3583   Optional<ValueIDNum> Result =
3584       resolveDbgPHIsImpl(MF, MLiveOuts, MLiveIns, Here, InstrNum);
3585   SeenDbgPHIs.insert({&Here, Result});
3586   return Result;
3587 }
3588 
3589 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIsImpl(
3590     MachineFunction &MF, const ValueTable *MLiveOuts,
3591     const ValueTable *MLiveIns, MachineInstr &Here, uint64_t InstrNum) {
3592   // Pick out records of DBG_PHI instructions that have been observed. If there
3593   // are none, then we cannot compute a value number.
3594   auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
3595                                     DebugPHINumToValue.end(), InstrNum);
3596   auto LowerIt = RangePair.first;
3597   auto UpperIt = RangePair.second;
3598 
3599   // No DBG_PHI means there can be no location.
3600   if (LowerIt == UpperIt)
3601     return None;
3602 
3603   // If any DBG_PHIs referred to a location we didn't understand, don't try to
3604   // compute a value. There might be scenarios where we could recover a value
3605   // for some range of DBG_INSTR_REFs, but at this point we can have high
3606   // confidence that we've seen a bug.
3607   auto DBGPHIRange = make_range(LowerIt, UpperIt);
3608   for (const DebugPHIRecord &DBG_PHI : DBGPHIRange)
3609     if (!DBG_PHI.ValueRead)
3610       return None;
3611 
3612   // If there's only one DBG_PHI, then that is our value number.
3613   if (std::distance(LowerIt, UpperIt) == 1)
3614     return *LowerIt->ValueRead;
3615 
3616   // Pick out the location (physreg, slot) where any PHIs must occur. It's
3617   // technically possible for us to merge values in different registers in each
3618   // block, but highly unlikely that LLVM will generate such code after register
3619   // allocation.
3620   LocIdx Loc = *LowerIt->ReadLoc;
3621 
3622   // We have several DBG_PHIs, and a use position (the Here inst). All each
3623   // DBG_PHI does is identify a value at a program position. We can treat each
3624   // DBG_PHI like it's a Def of a value, and the use position is a Use of a
3625   // value, just like SSA. We use the bulk-standard LLVM SSA updater class to
3626   // determine which Def is used at the Use, and any PHIs that happen along
3627   // the way.
3628   // Adapted LLVM SSA Updater:
3629   LDVSSAUpdater Updater(Loc, MLiveIns);
3630   // Map of which Def or PHI is the current value in each block.
3631   DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
3632   // Set of PHIs that we have created along the way.
3633   SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
3634 
3635   // Each existing DBG_PHI is a Def'd value under this model. Record these Defs
3636   // for the SSAUpdater.
3637   for (const auto &DBG_PHI : DBGPHIRange) {
3638     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3639     const ValueIDNum &Num = *DBG_PHI.ValueRead;
3640     AvailableValues.insert(std::make_pair(Block, Num.asU64()));
3641   }
3642 
3643   LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
3644   const auto &AvailIt = AvailableValues.find(HereBlock);
3645   if (AvailIt != AvailableValues.end()) {
3646     // Actually, we already know what the value is -- the Use is in the same
3647     // block as the Def.
3648     return ValueIDNum::fromU64(AvailIt->second);
3649   }
3650 
3651   // Otherwise, we must use the SSA Updater. It will identify the value number
3652   // that we are to use, and the PHIs that must happen along the way.
3653   SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
3654   BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
3655   ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
3656 
3657   // We have the number for a PHI, or possibly live-through value, to be used
3658   // at this Use. There are a number of things we have to check about it though:
3659   //  * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
3660   //    Use was not completely dominated by DBG_PHIs and we should abort.
3661   //  * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
3662   //    we've left SSA form. Validate that the inputs to each PHI are the
3663   //    expected values.
3664   //  * Is a PHI we've created actually a merging of values, or are all the
3665   //    predecessor values the same, leading to a non-PHI machine value number?
3666   //    (SSAUpdater doesn't know that either). Remap validated PHIs into the
3667   //    the ValidatedValues collection below to sort this out.
3668   DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
3669 
3670   // Define all the input DBG_PHI values in ValidatedValues.
3671   for (const auto &DBG_PHI : DBGPHIRange) {
3672     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3673     const ValueIDNum &Num = *DBG_PHI.ValueRead;
3674     ValidatedValues.insert(std::make_pair(Block, Num));
3675   }
3676 
3677   // Sort PHIs to validate into RPO-order.
3678   SmallVector<LDVSSAPhi *, 8> SortedPHIs;
3679   for (auto &PHI : CreatedPHIs)
3680     SortedPHIs.push_back(PHI);
3681 
3682   std::sort(
3683       SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) {
3684         return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
3685       });
3686 
3687   for (auto &PHI : SortedPHIs) {
3688     ValueIDNum ThisBlockValueNum =
3689         MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()];
3690 
3691     // Are all these things actually defined?
3692     for (auto &PHIIt : PHI->IncomingValues) {
3693       // Any undef input means DBG_PHIs didn't dominate the use point.
3694       if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end())
3695         return None;
3696 
3697       ValueIDNum ValueToCheck;
3698       const ValueTable &BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()];
3699 
3700       auto VVal = ValidatedValues.find(PHIIt.first);
3701       if (VVal == ValidatedValues.end()) {
3702         // We cross a loop, and this is a backedge. LLVMs tail duplication
3703         // happens so late that DBG_PHI instructions should not be able to
3704         // migrate into loops -- meaning we can only be live-through this
3705         // loop.
3706         ValueToCheck = ThisBlockValueNum;
3707       } else {
3708         // Does the block have as a live-out, in the location we're examining,
3709         // the value that we expect? If not, it's been moved or clobbered.
3710         ValueToCheck = VVal->second;
3711       }
3712 
3713       if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
3714         return None;
3715     }
3716 
3717     // Record this value as validated.
3718     ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
3719   }
3720 
3721   // All the PHIs are valid: we can return what the SSAUpdater said our value
3722   // number was.
3723   return Result;
3724 }
3725