1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file InstrRefBasedImpl.cpp
9 ///
10 /// This is a separate implementation of LiveDebugValues, see
11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
12 ///
13 /// This pass propagates variable locations between basic blocks, resolving
14 /// control flow conflicts between them. The problem is much like SSA
15 /// construction, where each DBG_VALUE instruction assigns the *value* that
16 /// a variable has, and every instruction where the variable is in scope uses
17 /// that variable. The resulting map of instruction-to-value is then translated
18 /// into a register (or spill) location for each variable over each instruction.
19 ///
20 /// This pass determines which DBG_VALUE dominates which instructions, or if
21 /// none do, where values must be merged (like PHI nodes). The added
22 /// complication is that because codegen has already finished, a PHI node may
23 /// be needed for a variable location to be correct, but no register or spill
24 /// slot merges the necessary values. In these circumstances, the variable
25 /// location is dropped.
26 ///
27 /// What makes this analysis non-trivial is loops: we cannot tell in advance
28 /// whether a variable location is live throughout a loop, or whether its
29 /// location is clobbered (or redefined by another DBG_VALUE), without
30 /// exploring all the way through.
31 ///
32 /// To make this simpler we perform two kinds of analysis. First, we identify
33 /// every value defined by every instruction (ignoring those that only move
34 /// another value), then compute a map of which values are available for each
35 /// instruction. This is stronger than a reaching-def analysis, as we create
36 /// PHI values where other values merge.
37 ///
38 /// Secondly, for each variable, we effectively re-construct SSA using each
39 /// DBG_VALUE as a def. The DBG_VALUEs read a value-number computed by the
40 /// first analysis from the location they refer to. We can then compute the
41 /// dominance frontiers of where a variable has a value, and create PHI nodes
42 /// where they merge.
43 /// This isn't precisely SSA-construction though, because the function shape
44 /// is pre-defined. If a variable location requires a PHI node, but no
45 /// PHI for the relevant values is present in the function (as computed by the
46 /// first analysis), the location must be dropped.
47 ///
48 /// Once both are complete, we can pass back over all instructions knowing:
49 ///  * What _value_ each variable should contain, either defined by an
50 ///    instruction or where control flow merges
51 ///  * What the location of that value is (if any).
52 /// Allowing us to create appropriate live-in DBG_VALUEs, and DBG_VALUEs when
53 /// a value moves location. After this pass runs, all variable locations within
54 /// a block should be specified by DBG_VALUEs within that block, allowing
55 /// DbgEntityHistoryCalculator to focus on individual blocks.
56 ///
57 /// This pass is able to go fast because the size of the first
58 /// reaching-definition analysis is proportional to the working-set size of
59 /// the function, which the compiler tries to keep small. (It's also
60 /// proportional to the number of blocks). Additionally, we repeatedly perform
61 /// the second reaching-definition analysis with only the variables and blocks
62 /// in a single lexical scope, exploiting their locality.
63 ///
64 /// Determining where PHIs happen is trickier with this approach, and it comes
65 /// to a head in the major problem for LiveDebugValues: is a value live-through
66 /// a loop, or not? Your garden-variety dataflow analysis aims to build a set of
67 /// facts about a function, however this analysis needs to generate new value
68 /// numbers at joins.
69 ///
70 /// To do this, consider a lattice of all definition values, from instructions
71 /// and from PHIs. Each PHI is characterised by the RPO number of the block it
72 /// occurs in. Each value pair A, B can be ordered by RPO(A) < RPO(B):
73 /// with non-PHI values at the top, and any PHI value in the last block (by RPO
74 /// order) at the bottom.
75 ///
76 /// (Awkwardly: lower-down-the _lattice_ means a greater RPO _number_. Below,
77 /// "rank" always refers to the former).
78 ///
79 /// At any join, for each register, we consider:
80 ///  * All incoming values, and
81 ///  * The PREVIOUS live-in value at this join.
82 /// If all incoming values agree: that's the live-in value. If they do not, the
83 /// incoming values are ranked according to the partial order, and the NEXT
84 /// LOWEST rank after the PREVIOUS live-in value is picked (multiple values of
85 /// the same rank are ignored as conflicting). If there are no candidate values,
86 /// or if the rank of the live-in would be lower than the rank of the current
87 /// blocks PHIs, create a new PHI value.
88 ///
89 /// Intuitively: if it's not immediately obvious what value a join should result
90 /// in, we iteratively descend from instruction-definitions down through PHI
91 /// values, getting closer to the current block each time. If the current block
92 /// is a loop head, this ordering is effectively searching outer levels of
93 /// loops, to find a value that's live-through the current loop.
94 ///
95 /// If there is no value that's live-through this loop, a PHI is created for
96 /// this location instead. We can't use a lower-ranked PHI because by definition
97 /// it doesn't dominate the current block. We can't create a PHI value any
98 /// earlier, because we risk creating a PHI value at a location where values do
99 /// not in fact merge, thus misrepresenting the truth, and not making the true
100 /// live-through value for variable locations.
101 ///
102 /// This algorithm applies to both calculating the availability of values in
103 /// the first analysis, and the location of variables in the second. However
104 /// for the second we add an extra dimension of pain: creating a variable
105 /// location PHI is only valid if, for each incoming edge,
106 ///  * There is a value for the variable on the incoming edge, and
107 ///  * All the edges have that value in the same register.
108 /// Or put another way: we can only create a variable-location PHI if there is
109 /// a matching machine-location PHI, each input to which is the variables value
110 /// in the predecessor block.
111 ///
112 /// To accommodate this difference, each point on the lattice is split in
113 /// two: a "proposed" PHI and "definite" PHI. Any PHI that can immediately
114 /// have a location determined are "definite" PHIs, and no further work is
115 /// needed. Otherwise, a location that all non-backedge predecessors agree
116 /// on is picked and propagated as a "proposed" PHI value. If that PHI value
117 /// is truly live-through, it'll appear on the loop backedges on the next
118 /// dataflow iteration, after which the block live-in moves to be a "definite"
119 /// PHI. If it's not truly live-through, the variable value will be downgraded
120 /// further as we explore the lattice, or remains "proposed" and is considered
121 /// invalid once dataflow completes.
122 ///
123 /// ### Terminology
124 ///
125 /// A machine location is a register or spill slot, a value is something that's
126 /// defined by an instruction or PHI node, while a variable value is the value
127 /// assigned to a variable. A variable location is a machine location, that must
128 /// contain the appropriate variable value. A value that is a PHI node is
129 /// occasionally called an mphi.
130 ///
131 /// The first dataflow problem is the "machine value location" problem,
132 /// because we're determining which machine locations contain which values.
133 /// The "locations" are constant: what's unknown is what value they contain.
134 ///
135 /// The second dataflow problem (the one for variables) is the "variable value
136 /// problem", because it's determining what values a variable has, rather than
137 /// what location those values are placed in. Unfortunately, it's not that
138 /// simple, because producing a PHI value always involves picking a location.
139 /// This is an imperfection that we just have to accept, at least for now.
140 ///
141 /// TODO:
142 ///   Overlapping fragments
143 ///   Entry values
144 ///   Add back DEBUG statements for debugging this
145 ///   Collect statistics
146 ///
147 //===----------------------------------------------------------------------===//
148 
149 #include "llvm/ADT/DenseMap.h"
150 #include "llvm/ADT/PostOrderIterator.h"
151 #include "llvm/ADT/STLExtras.h"
152 #include "llvm/ADT/SmallPtrSet.h"
153 #include "llvm/ADT/SmallSet.h"
154 #include "llvm/ADT/SmallVector.h"
155 #include "llvm/ADT/Statistic.h"
156 #include "llvm/ADT/UniqueVector.h"
157 #include "llvm/CodeGen/LexicalScopes.h"
158 #include "llvm/CodeGen/MachineBasicBlock.h"
159 #include "llvm/CodeGen/MachineFrameInfo.h"
160 #include "llvm/CodeGen/MachineFunction.h"
161 #include "llvm/CodeGen/MachineFunctionPass.h"
162 #include "llvm/CodeGen/MachineInstr.h"
163 #include "llvm/CodeGen/MachineInstrBuilder.h"
164 #include "llvm/CodeGen/MachineInstrBundle.h"
165 #include "llvm/CodeGen/MachineMemOperand.h"
166 #include "llvm/CodeGen/MachineOperand.h"
167 #include "llvm/CodeGen/PseudoSourceValue.h"
168 #include "llvm/CodeGen/RegisterScavenging.h"
169 #include "llvm/CodeGen/TargetFrameLowering.h"
170 #include "llvm/CodeGen/TargetInstrInfo.h"
171 #include "llvm/CodeGen/TargetLowering.h"
172 #include "llvm/CodeGen/TargetPassConfig.h"
173 #include "llvm/CodeGen/TargetRegisterInfo.h"
174 #include "llvm/CodeGen/TargetSubtargetInfo.h"
175 #include "llvm/Config/llvm-config.h"
176 #include "llvm/IR/DIBuilder.h"
177 #include "llvm/IR/DebugInfoMetadata.h"
178 #include "llvm/IR/DebugLoc.h"
179 #include "llvm/IR/Function.h"
180 #include "llvm/IR/Module.h"
181 #include "llvm/InitializePasses.h"
182 #include "llvm/MC/MCRegisterInfo.h"
183 #include "llvm/Pass.h"
184 #include "llvm/Support/Casting.h"
185 #include "llvm/Support/Compiler.h"
186 #include "llvm/Support/Debug.h"
187 #include "llvm/Support/TypeSize.h"
188 #include "llvm/Support/raw_ostream.h"
189 #include "llvm/Target/TargetMachine.h"
190 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
191 #include <algorithm>
192 #include <cassert>
193 #include <cstdint>
194 #include <functional>
195 #include <queue>
196 #include <tuple>
197 #include <utility>
198 #include <vector>
199 #include <limits.h>
200 #include <limits>
201 
202 #include "LiveDebugValues.h"
203 
204 using namespace llvm;
205 
206 // SSAUpdaterImple sets DEBUG_TYPE, change it.
207 #undef DEBUG_TYPE
208 #define DEBUG_TYPE "livedebugvalues"
209 
210 // Act more like the VarLoc implementation, by propagating some locations too
211 // far and ignoring some transfers.
212 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
213                                    cl::desc("Act like old LiveDebugValues did"),
214                                    cl::init(false));
215 
216 // Rely on isStoreToStackSlotPostFE and similar to observe all stack spills.
217 static cl::opt<bool>
218     ObserveAllStackops("observe-all-stack-ops", cl::Hidden,
219                        cl::desc("Allow non-kill spill and restores"),
220                        cl::init(false));
221 
222 namespace {
223 
224 // The location at which a spilled value resides. It consists of a register and
225 // an offset.
226 struct SpillLoc {
227   unsigned SpillBase;
228   StackOffset SpillOffset;
229   bool operator==(const SpillLoc &Other) const {
230     return std::make_pair(SpillBase, SpillOffset) ==
231            std::make_pair(Other.SpillBase, Other.SpillOffset);
232   }
233   bool operator<(const SpillLoc &Other) const {
234     return std::make_tuple(SpillBase, SpillOffset.getFixed(),
235                     SpillOffset.getScalable()) <
236            std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(),
237                     Other.SpillOffset.getScalable());
238   }
239 };
240 
241 class LocIdx {
242   unsigned Location;
243 
244   // Default constructor is private, initializing to an illegal location number.
245   // Use only for "not an entry" elements in IndexedMaps.
246   LocIdx() : Location(UINT_MAX) { }
247 
248 public:
249   #define NUM_LOC_BITS 24
250   LocIdx(unsigned L) : Location(L) {
251     assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits");
252   }
253 
254   static LocIdx MakeIllegalLoc() {
255     return LocIdx();
256   }
257 
258   bool isIllegal() const {
259     return Location == UINT_MAX;
260   }
261 
262   uint64_t asU64() const {
263     return Location;
264   }
265 
266   bool operator==(unsigned L) const {
267     return Location == L;
268   }
269 
270   bool operator==(const LocIdx &L) const {
271     return Location == L.Location;
272   }
273 
274   bool operator!=(unsigned L) const {
275     return !(*this == L);
276   }
277 
278   bool operator!=(const LocIdx &L) const {
279     return !(*this == L);
280   }
281 
282   bool operator<(const LocIdx &Other) const {
283     return Location < Other.Location;
284   }
285 };
286 
287 class LocIdxToIndexFunctor {
288 public:
289   using argument_type = LocIdx;
290   unsigned operator()(const LocIdx &L) const {
291     return L.asU64();
292   }
293 };
294 
295 /// Unique identifier for a value defined by an instruction, as a value type.
296 /// Casts back and forth to a uint64_t. Probably replacable with something less
297 /// bit-constrained. Each value identifies the instruction and machine location
298 /// where the value is defined, although there may be no corresponding machine
299 /// operand for it (ex: regmasks clobbering values). The instructions are
300 /// one-based, and definitions that are PHIs have instruction number zero.
301 ///
302 /// The obvious limits of a 1M block function or 1M instruction blocks are
303 /// problematic; but by that point we should probably have bailed out of
304 /// trying to analyse the function.
305 class ValueIDNum {
306   uint64_t BlockNo : 20;         /// The block where the def happens.
307   uint64_t InstNo : 20;          /// The Instruction where the def happens.
308                                  /// One based, is distance from start of block.
309   uint64_t LocNo : NUM_LOC_BITS; /// The machine location where the def happens.
310 
311 public:
312   // XXX -- temporarily enabled while the live-in / live-out tables are moved
313   // to something more type-y
314   ValueIDNum() : BlockNo(0xFFFFF),
315                  InstNo(0xFFFFF),
316                  LocNo(0xFFFFFF) { }
317 
318   ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc)
319     : BlockNo(Block), InstNo(Inst), LocNo(Loc) { }
320 
321   ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc)
322     : BlockNo(Block), InstNo(Inst), LocNo(Loc.asU64()) { }
323 
324   uint64_t getBlock() const { return BlockNo; }
325   uint64_t getInst() const { return InstNo; }
326   uint64_t getLoc() const { return LocNo; }
327   bool isPHI() const { return InstNo == 0; }
328 
329   uint64_t asU64() const {
330     uint64_t TmpBlock = BlockNo;
331     uint64_t TmpInst = InstNo;
332     return TmpBlock << 44ull | TmpInst << NUM_LOC_BITS | LocNo;
333   }
334 
335   static ValueIDNum fromU64(uint64_t v) {
336     uint64_t L = (v & 0x3FFF);
337     return {v >> 44ull, ((v >> NUM_LOC_BITS) & 0xFFFFF), L};
338   }
339 
340   bool operator<(const ValueIDNum &Other) const {
341     return asU64() < Other.asU64();
342   }
343 
344   bool operator==(const ValueIDNum &Other) const {
345     return std::tie(BlockNo, InstNo, LocNo) ==
346            std::tie(Other.BlockNo, Other.InstNo, Other.LocNo);
347   }
348 
349   bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); }
350 
351   std::string asString(const std::string &mlocname) const {
352     return Twine("Value{bb: ")
353         .concat(Twine(BlockNo).concat(
354             Twine(", inst: ")
355                 .concat((InstNo ? Twine(InstNo) : Twine("live-in"))
356                             .concat(Twine(", loc: ").concat(Twine(mlocname)))
357                             .concat(Twine("}")))))
358         .str();
359   }
360 
361   static ValueIDNum EmptyValue;
362 };
363 
364 } // end anonymous namespace
365 
366 namespace {
367 
368 /// Meta qualifiers for a value. Pair of whatever expression is used to qualify
369 /// the the value, and Boolean of whether or not it's indirect.
370 class DbgValueProperties {
371 public:
372   DbgValueProperties(const DIExpression *DIExpr, bool Indirect)
373       : DIExpr(DIExpr), Indirect(Indirect) {}
374 
375   /// Extract properties from an existing DBG_VALUE instruction.
376   DbgValueProperties(const MachineInstr &MI) {
377     assert(MI.isDebugValue());
378     DIExpr = MI.getDebugExpression();
379     Indirect = MI.getOperand(1).isImm();
380   }
381 
382   bool operator==(const DbgValueProperties &Other) const {
383     return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect);
384   }
385 
386   bool operator!=(const DbgValueProperties &Other) const {
387     return !(*this == Other);
388   }
389 
390   const DIExpression *DIExpr;
391   bool Indirect;
392 };
393 
394 /// Tracker for what values are in machine locations. Listens to the Things
395 /// being Done by various instructions, and maintains a table of what machine
396 /// locations have what values (as defined by a ValueIDNum).
397 ///
398 /// There are potentially a much larger number of machine locations on the
399 /// target machine than the actual working-set size of the function. On x86 for
400 /// example, we're extremely unlikely to want to track values through control
401 /// or debug registers. To avoid doing so, MLocTracker has several layers of
402 /// indirection going on, with two kinds of ``location'':
403 ///  * A LocID uniquely identifies a register or spill location, with a
404 ///    predictable value.
405 ///  * A LocIdx is a key (in the database sense) for a LocID and a ValueIDNum.
406 /// Whenever a location is def'd or used by a MachineInstr, we automagically
407 /// create a new LocIdx for a location, but not otherwise. This ensures we only
408 /// account for locations that are actually used or defined. The cost is another
409 /// vector lookup (of LocID -> LocIdx) over any other implementation. This is
410 /// fairly cheap, and the compiler tries to reduce the working-set at any one
411 /// time in the function anyway.
412 ///
413 /// Register mask operands completely blow this out of the water; I've just
414 /// piled hacks on top of hacks to get around that.
415 class MLocTracker {
416 public:
417   MachineFunction &MF;
418   const TargetInstrInfo &TII;
419   const TargetRegisterInfo &TRI;
420   const TargetLowering &TLI;
421 
422   /// IndexedMap type, mapping from LocIdx to ValueIDNum.
423   using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>;
424 
425   /// Map of LocIdxes to the ValueIDNums that they store. This is tightly
426   /// packed, entries only exist for locations that are being tracked.
427   LocToValueType LocIdxToIDNum;
428 
429   /// "Map" of machine location IDs (i.e., raw register or spill number) to the
430   /// LocIdx key / number for that location. There are always at least as many
431   /// as the number of registers on the target -- if the value in the register
432   /// is not being tracked, then the LocIdx value will be zero. New entries are
433   /// appended if a new spill slot begins being tracked.
434   /// This, and the corresponding reverse map persist for the analysis of the
435   /// whole function, and is necessarying for decoding various vectors of
436   /// values.
437   std::vector<LocIdx> LocIDToLocIdx;
438 
439   /// Inverse map of LocIDToLocIdx.
440   IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID;
441 
442   /// Unique-ification of spill slots. Used to number them -- their LocID
443   /// number is the index in SpillLocs minus one plus NumRegs.
444   UniqueVector<SpillLoc> SpillLocs;
445 
446   // If we discover a new machine location, assign it an mphi with this
447   // block number.
448   unsigned CurBB;
449 
450   /// Cached local copy of the number of registers the target has.
451   unsigned NumRegs;
452 
453   /// Collection of register mask operands that have been observed. Second part
454   /// of pair indicates the instruction that they happened in. Used to
455   /// reconstruct where defs happened if we start tracking a location later
456   /// on.
457   SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks;
458 
459   /// Iterator for locations and the values they contain. Dereferencing
460   /// produces a struct/pair containing the LocIdx key for this location,
461   /// and a reference to the value currently stored. Simplifies the process
462   /// of seeking a particular location.
463   class MLocIterator {
464     LocToValueType &ValueMap;
465     LocIdx Idx;
466 
467   public:
468     class value_type {
469       public:
470       value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) { }
471       const LocIdx Idx;  /// Read-only index of this location.
472       ValueIDNum &Value; /// Reference to the stored value at this location.
473     };
474 
475     MLocIterator(LocToValueType &ValueMap, LocIdx Idx)
476       : ValueMap(ValueMap), Idx(Idx) { }
477 
478     bool operator==(const MLocIterator &Other) const {
479       assert(&ValueMap == &Other.ValueMap);
480       return Idx == Other.Idx;
481     }
482 
483     bool operator!=(const MLocIterator &Other) const {
484       return !(*this == Other);
485     }
486 
487     void operator++() {
488       Idx = LocIdx(Idx.asU64() + 1);
489     }
490 
491     value_type operator*() {
492       return value_type(Idx, ValueMap[LocIdx(Idx)]);
493     }
494   };
495 
496   MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
497               const TargetRegisterInfo &TRI, const TargetLowering &TLI)
498       : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
499         LocIdxToIDNum(ValueIDNum::EmptyValue),
500         LocIdxToLocID(0) {
501     NumRegs = TRI.getNumRegs();
502     reset();
503     LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
504     assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
505 
506     // Always track SP. This avoids the implicit clobbering caused by regmasks
507     // from affectings its values. (LiveDebugValues disbelieves calls and
508     // regmasks that claim to clobber SP).
509     Register SP = TLI.getStackPointerRegisterToSaveRestore();
510     if (SP) {
511       unsigned ID = getLocID(SP, false);
512       (void)lookupOrTrackRegister(ID);
513     }
514   }
515 
516   /// Produce location ID number for indexing LocIDToLocIdx. Takes the register
517   /// or spill number, and flag for whether it's a spill or not.
518   unsigned getLocID(Register RegOrSpill, bool isSpill) {
519     return (isSpill) ? RegOrSpill.id() + NumRegs - 1 : RegOrSpill.id();
520   }
521 
522   /// Accessor for reading the value at Idx.
523   ValueIDNum getNumAtPos(LocIdx Idx) const {
524     assert(Idx.asU64() < LocIdxToIDNum.size());
525     return LocIdxToIDNum[Idx];
526   }
527 
528   unsigned getNumLocs(void) const { return LocIdxToIDNum.size(); }
529 
530   /// Reset all locations to contain a PHI value at the designated block. Used
531   /// sometimes for actual PHI values, othertimes to indicate the block entry
532   /// value (before any more information is known).
533   void setMPhis(unsigned NewCurBB) {
534     CurBB = NewCurBB;
535     for (auto Location : locations())
536       Location.Value = {CurBB, 0, Location.Idx};
537   }
538 
539   /// Load values for each location from array of ValueIDNums. Take current
540   /// bbnum just in case we read a value from a hitherto untouched register.
541   void loadFromArray(ValueIDNum *Locs, unsigned NewCurBB) {
542     CurBB = NewCurBB;
543     // Iterate over all tracked locations, and load each locations live-in
544     // value into our local index.
545     for (auto Location : locations())
546       Location.Value = Locs[Location.Idx.asU64()];
547   }
548 
549   /// Wipe any un-necessary location records after traversing a block.
550   void reset(void) {
551     // We could reset all the location values too; however either loadFromArray
552     // or setMPhis should be called before this object is re-used. Just
553     // clear Masks, they're definitely not needed.
554     Masks.clear();
555   }
556 
557   /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of
558   /// the information in this pass uninterpretable.
559   void clear(void) {
560     reset();
561     LocIDToLocIdx.clear();
562     LocIdxToLocID.clear();
563     LocIdxToIDNum.clear();
564     //SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from 0
565     SpillLocs = decltype(SpillLocs)();
566 
567     LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
568   }
569 
570   /// Set a locaiton to a certain value.
571   void setMLoc(LocIdx L, ValueIDNum Num) {
572     assert(L.asU64() < LocIdxToIDNum.size());
573     LocIdxToIDNum[L] = Num;
574   }
575 
576   /// Create a LocIdx for an untracked register ID. Initialize it to either an
577   /// mphi value representing a live-in, or a recent register mask clobber.
578   LocIdx trackRegister(unsigned ID) {
579     assert(ID != 0);
580     LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
581     LocIdxToIDNum.grow(NewIdx);
582     LocIdxToLocID.grow(NewIdx);
583 
584     // Default: it's an mphi.
585     ValueIDNum ValNum = {CurBB, 0, NewIdx};
586     // Was this reg ever touched by a regmask?
587     for (const auto &MaskPair : reverse(Masks)) {
588       if (MaskPair.first->clobbersPhysReg(ID)) {
589         // There was an earlier def we skipped.
590         ValNum = {CurBB, MaskPair.second, NewIdx};
591         break;
592       }
593     }
594 
595     LocIdxToIDNum[NewIdx] = ValNum;
596     LocIdxToLocID[NewIdx] = ID;
597     return NewIdx;
598   }
599 
600   LocIdx lookupOrTrackRegister(unsigned ID) {
601     LocIdx &Index = LocIDToLocIdx[ID];
602     if (Index.isIllegal())
603       Index = trackRegister(ID);
604     return Index;
605   }
606 
607   /// Record a definition of the specified register at the given block / inst.
608   /// This doesn't take a ValueIDNum, because the definition and its location
609   /// are synonymous.
610   void defReg(Register R, unsigned BB, unsigned Inst) {
611     unsigned ID = getLocID(R, false);
612     LocIdx Idx = lookupOrTrackRegister(ID);
613     ValueIDNum ValueID = {BB, Inst, Idx};
614     LocIdxToIDNum[Idx] = ValueID;
615   }
616 
617   /// Set a register to a value number. To be used if the value number is
618   /// known in advance.
619   void setReg(Register R, ValueIDNum ValueID) {
620     unsigned ID = getLocID(R, false);
621     LocIdx Idx = lookupOrTrackRegister(ID);
622     LocIdxToIDNum[Idx] = ValueID;
623   }
624 
625   ValueIDNum readReg(Register R) {
626     unsigned ID = getLocID(R, false);
627     LocIdx Idx = lookupOrTrackRegister(ID);
628     return LocIdxToIDNum[Idx];
629   }
630 
631   /// Reset a register value to zero / empty. Needed to replicate the
632   /// VarLoc implementation where a copy to/from a register effectively
633   /// clears the contents of the source register. (Values can only have one
634   ///  machine location in VarLocBasedImpl).
635   void wipeRegister(Register R) {
636     unsigned ID = getLocID(R, false);
637     LocIdx Idx = LocIDToLocIdx[ID];
638     LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue;
639   }
640 
641   /// Determine the LocIdx of an existing register.
642   LocIdx getRegMLoc(Register R) {
643     unsigned ID = getLocID(R, false);
644     return LocIDToLocIdx[ID];
645   }
646 
647   /// Record a RegMask operand being executed. Defs any register we currently
648   /// track, stores a pointer to the mask in case we have to account for it
649   /// later.
650   void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID) {
651     // Ensure SP exists, so that we don't override it later.
652     Register SP = TLI.getStackPointerRegisterToSaveRestore();
653 
654     // Def any register we track have that isn't preserved. The regmask
655     // terminates the liveness of a register, meaning its value can't be
656     // relied upon -- we represent this by giving it a new value.
657     for (auto Location : locations()) {
658       unsigned ID = LocIdxToLocID[Location.Idx];
659       // Don't clobber SP, even if the mask says it's clobbered.
660       if (ID < NumRegs && ID != SP && MO->clobbersPhysReg(ID))
661         defReg(ID, CurBB, InstID);
662     }
663     Masks.push_back(std::make_pair(MO, InstID));
664   }
665 
666   /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked.
667   LocIdx getOrTrackSpillLoc(SpillLoc L) {
668     unsigned SpillID = SpillLocs.idFor(L);
669     if (SpillID == 0) {
670       SpillID = SpillLocs.insert(L);
671       unsigned L = getLocID(SpillID, true);
672       LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
673       LocIdxToIDNum.grow(Idx);
674       LocIdxToLocID.grow(Idx);
675       LocIDToLocIdx.push_back(Idx);
676       LocIdxToLocID[Idx] = L;
677       return Idx;
678     } else {
679       unsigned L = getLocID(SpillID, true);
680       LocIdx Idx = LocIDToLocIdx[L];
681       return Idx;
682     }
683   }
684 
685   /// Set the value stored in a spill slot.
686   void setSpill(SpillLoc L, ValueIDNum ValueID) {
687     LocIdx Idx = getOrTrackSpillLoc(L);
688     LocIdxToIDNum[Idx] = ValueID;
689   }
690 
691   /// Read whatever value is in a spill slot, or None if it isn't tracked.
692   Optional<ValueIDNum> readSpill(SpillLoc L) {
693     unsigned SpillID = SpillLocs.idFor(L);
694     if (SpillID == 0)
695       return None;
696 
697     unsigned LocID = getLocID(SpillID, true);
698     LocIdx Idx = LocIDToLocIdx[LocID];
699     return LocIdxToIDNum[Idx];
700   }
701 
702   /// Determine the LocIdx of a spill slot. Return None if it previously
703   /// hasn't had a value assigned.
704   Optional<LocIdx> getSpillMLoc(SpillLoc L) {
705     unsigned SpillID = SpillLocs.idFor(L);
706     if (SpillID == 0)
707       return None;
708     unsigned LocNo = getLocID(SpillID, true);
709     return LocIDToLocIdx[LocNo];
710   }
711 
712   /// Return true if Idx is a spill machine location.
713   bool isSpill(LocIdx Idx) const {
714     return LocIdxToLocID[Idx] >= NumRegs;
715   }
716 
717   MLocIterator begin() {
718     return MLocIterator(LocIdxToIDNum, 0);
719   }
720 
721   MLocIterator end() {
722     return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size());
723   }
724 
725   /// Return a range over all locations currently tracked.
726   iterator_range<MLocIterator> locations() {
727     return llvm::make_range(begin(), end());
728   }
729 
730   std::string LocIdxToName(LocIdx Idx) const {
731     unsigned ID = LocIdxToLocID[Idx];
732     if (ID >= NumRegs)
733       return Twine("slot ").concat(Twine(ID - NumRegs)).str();
734     else
735       return TRI.getRegAsmName(ID).str();
736   }
737 
738   std::string IDAsString(const ValueIDNum &Num) const {
739     std::string DefName = LocIdxToName(Num.getLoc());
740     return Num.asString(DefName);
741   }
742 
743   LLVM_DUMP_METHOD
744   void dump() {
745     for (auto Location : locations()) {
746       std::string MLocName = LocIdxToName(Location.Value.getLoc());
747       std::string DefName = Location.Value.asString(MLocName);
748       dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
749     }
750   }
751 
752   LLVM_DUMP_METHOD
753   void dump_mloc_map() {
754     for (auto Location : locations()) {
755       std::string foo = LocIdxToName(Location.Idx);
756       dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
757     }
758   }
759 
760   /// Create a DBG_VALUE based on  machine location \p MLoc. Qualify it with the
761   /// information in \pProperties, for variable Var. Don't insert it anywhere,
762   /// just return the builder for it.
763   MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var,
764                               const DbgValueProperties &Properties) {
765     DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
766                                   Var.getVariable()->getScope(),
767                                   const_cast<DILocation *>(Var.getInlinedAt()));
768     auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));
769 
770     const DIExpression *Expr = Properties.DIExpr;
771     if (!MLoc) {
772       // No location -> DBG_VALUE $noreg
773       MIB.addReg(0, RegState::Debug);
774       MIB.addReg(0, RegState::Debug);
775     } else if (LocIdxToLocID[*MLoc] >= NumRegs) {
776       unsigned LocID = LocIdxToLocID[*MLoc];
777       const SpillLoc &Spill = SpillLocs[LocID - NumRegs + 1];
778 
779       auto *TRI = MF.getSubtarget().getRegisterInfo();
780       Expr = TRI->prependOffsetExpression(Expr, DIExpression::ApplyOffset,
781                                           Spill.SpillOffset);
782       unsigned Base = Spill.SpillBase;
783       MIB.addReg(Base, RegState::Debug);
784       MIB.addImm(0);
785     } else {
786       unsigned LocID = LocIdxToLocID[*MLoc];
787       MIB.addReg(LocID, RegState::Debug);
788       if (Properties.Indirect)
789         MIB.addImm(0);
790       else
791         MIB.addReg(0, RegState::Debug);
792     }
793 
794     MIB.addMetadata(Var.getVariable());
795     MIB.addMetadata(Expr);
796     return MIB;
797   }
798 };
799 
800 /// Class recording the (high level) _value_ of a variable. Identifies either
801 /// the value of the variable as a ValueIDNum, or a constant MachineOperand.
802 /// This class also stores meta-information about how the value is qualified.
803 /// Used to reason about variable values when performing the second
804 /// (DebugVariable specific) dataflow analysis.
805 class DbgValue {
806 public:
807   union {
808     /// If Kind is Def, the value number that this value is based on.
809     ValueIDNum ID;
810     /// If Kind is Const, the MachineOperand defining this value.
811     MachineOperand MO;
812     /// For a NoVal DbgValue, which block it was generated in.
813     unsigned BlockNo;
814   };
815   /// Qualifiers for the ValueIDNum above.
816   DbgValueProperties Properties;
817 
818   typedef enum {
819     Undef,     // Represents a DBG_VALUE $noreg in the transfer function only.
820     Def,       // This value is defined by an inst, or is a PHI value.
821     Const,     // A constant value contained in the MachineOperand field.
822     Proposed,  // This is a tentative PHI value, which may be confirmed or
823                // invalidated later.
824     NoVal      // Empty DbgValue, generated during dataflow. BlockNo stores
825                // which block this was generated in.
826    } KindT;
827   /// Discriminator for whether this is a constant or an in-program value.
828   KindT Kind;
829 
830   DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind)
831     : ID(Val), Properties(Prop), Kind(Kind) {
832     assert(Kind == Def || Kind == Proposed);
833   }
834 
835   DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind)
836     : BlockNo(BlockNo), Properties(Prop), Kind(Kind) {
837     assert(Kind == NoVal);
838   }
839 
840   DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind)
841     : MO(MO), Properties(Prop), Kind(Kind) {
842     assert(Kind == Const);
843   }
844 
845   DbgValue(const DbgValueProperties &Prop, KindT Kind)
846     : Properties(Prop), Kind(Kind) {
847     assert(Kind == Undef &&
848            "Empty DbgValue constructor must pass in Undef kind");
849   }
850 
851   void dump(const MLocTracker *MTrack) const {
852     if (Kind == Const) {
853       MO.dump();
854     } else if (Kind == NoVal) {
855       dbgs() << "NoVal(" << BlockNo << ")";
856     } else if (Kind == Proposed) {
857       dbgs() << "VPHI(" << MTrack->IDAsString(ID) << ")";
858     } else {
859       assert(Kind == Def);
860       dbgs() << MTrack->IDAsString(ID);
861     }
862     if (Properties.Indirect)
863       dbgs() << " indir";
864     if (Properties.DIExpr)
865       dbgs() << " " << *Properties.DIExpr;
866   }
867 
868   bool operator==(const DbgValue &Other) const {
869     if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties))
870       return false;
871     else if (Kind == Proposed && ID != Other.ID)
872       return false;
873     else if (Kind == Def && ID != Other.ID)
874       return false;
875     else if (Kind == NoVal && BlockNo != Other.BlockNo)
876       return false;
877     else if (Kind == Const)
878       return MO.isIdenticalTo(Other.MO);
879 
880     return true;
881   }
882 
883   bool operator!=(const DbgValue &Other) const { return !(*this == Other); }
884 };
885 
886 /// Types for recording sets of variable fragments that overlap. For a given
887 /// local variable, we record all other fragments of that variable that could
888 /// overlap it, to reduce search time.
889 using FragmentOfVar =
890     std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
891 using OverlapMap =
892     DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
893 
894 /// Collection of DBG_VALUEs observed when traversing a block. Records each
895 /// variable and the value the DBG_VALUE refers to. Requires the machine value
896 /// location dataflow algorithm to have run already, so that values can be
897 /// identified.
898 class VLocTracker {
899 public:
900   /// Map DebugVariable to the latest Value it's defined to have.
901   /// Needs to be a MapVector because we determine order-in-the-input-MIR from
902   /// the order in this container.
903   /// We only retain the last DbgValue in each block for each variable, to
904   /// determine the blocks live-out variable value. The Vars container forms the
905   /// transfer function for this block, as part of the dataflow analysis. The
906   /// movement of values between locations inside of a block is handled at a
907   /// much later stage, in the TransferTracker class.
908   MapVector<DebugVariable, DbgValue> Vars;
909   DenseMap<DebugVariable, const DILocation *> Scopes;
910   MachineBasicBlock *MBB;
911 
912 public:
913   VLocTracker() {}
914 
915   void defVar(const MachineInstr &MI, const DbgValueProperties &Properties,
916               Optional<ValueIDNum> ID) {
917     assert(MI.isDebugValue() || MI.isDebugRef());
918     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
919                       MI.getDebugLoc()->getInlinedAt());
920     DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def)
921                         : DbgValue(Properties, DbgValue::Undef);
922 
923     // Attempt insertion; overwrite if it's already mapped.
924     auto Result = Vars.insert(std::make_pair(Var, Rec));
925     if (!Result.second)
926       Result.first->second = Rec;
927     Scopes[Var] = MI.getDebugLoc().get();
928   }
929 
930   void defVar(const MachineInstr &MI, const MachineOperand &MO) {
931     // Only DBG_VALUEs can define constant-valued variables.
932     assert(MI.isDebugValue());
933     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
934                       MI.getDebugLoc()->getInlinedAt());
935     DbgValueProperties Properties(MI);
936     DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const);
937 
938     // Attempt insertion; overwrite if it's already mapped.
939     auto Result = Vars.insert(std::make_pair(Var, Rec));
940     if (!Result.second)
941       Result.first->second = Rec;
942     Scopes[Var] = MI.getDebugLoc().get();
943   }
944 };
945 
946 /// Tracker for converting machine value locations and variable values into
947 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
948 /// specifying block live-in locations and transfers within blocks.
949 ///
950 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
951 /// and must be initialized with the set of variable values that are live-in to
952 /// the block. The caller then repeatedly calls process(). TransferTracker picks
953 /// out variable locations for the live-in variable values (if there _is_ a
954 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is
955 /// stepped through, transfers of values between machine locations are
956 /// identified and if profitable, a DBG_VALUE created.
957 ///
958 /// This is where debug use-before-defs would be resolved: a variable with an
959 /// unavailable value could materialize in the middle of a block, when the
960 /// value becomes available. Or, we could detect clobbers and re-specify the
961 /// variable in a backup location. (XXX these are unimplemented).
962 class TransferTracker {
963 public:
964   const TargetInstrInfo *TII;
965   const TargetLowering *TLI;
966   /// This machine location tracker is assumed to always contain the up-to-date
967   /// value mapping for all machine locations. TransferTracker only reads
968   /// information from it. (XXX make it const?)
969   MLocTracker *MTracker;
970   MachineFunction &MF;
971   bool ShouldEmitDebugEntryValues;
972 
973   /// Record of all changes in variable locations at a block position. Awkwardly
974   /// we allow inserting either before or after the point: MBB != nullptr
975   /// indicates it's before, otherwise after.
976   struct Transfer {
977     MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
978     MachineBasicBlock *MBB; /// non-null if we should insert after.
979     SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
980   };
981 
982   struct LocAndProperties {
983     LocIdx Loc;
984     DbgValueProperties Properties;
985   };
986 
987   /// Collection of transfers (DBG_VALUEs) to be inserted.
988   SmallVector<Transfer, 32> Transfers;
989 
990   /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
991   /// between TransferTrackers view of variable locations and MLocTrackers. For
992   /// example, MLocTracker observes all clobbers, but TransferTracker lazily
993   /// does not.
994   std::vector<ValueIDNum> VarLocs;
995 
996   /// Map from LocIdxes to which DebugVariables are based that location.
997   /// Mantained while stepping through the block. Not accurate if
998   /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
999   std::map<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
1000 
1001   /// Map from DebugVariable to it's current location and qualifying meta
1002   /// information. To be used in conjunction with ActiveMLocs to construct
1003   /// enough information for the DBG_VALUEs for a particular LocIdx.
1004   DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;
1005 
1006   /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
1007   SmallVector<MachineInstr *, 4> PendingDbgValues;
1008 
1009   /// Record of a use-before-def: created when a value that's live-in to the
1010   /// current block isn't available in any machine location, but it will be
1011   /// defined in this block.
1012   struct UseBeforeDef {
1013     /// Value of this variable, def'd in block.
1014     ValueIDNum ID;
1015     /// Identity of this variable.
1016     DebugVariable Var;
1017     /// Additional variable properties.
1018     DbgValueProperties Properties;
1019   };
1020 
1021   /// Map from instruction index (within the block) to the set of UseBeforeDefs
1022   /// that become defined at that instruction.
1023   DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
1024 
1025   /// The set of variables that are in UseBeforeDefs and can become a location
1026   /// once the relevant value is defined. An element being erased from this
1027   /// collection prevents the use-before-def materializing.
1028   DenseSet<DebugVariable> UseBeforeDefVariables;
1029 
1030   const TargetRegisterInfo &TRI;
1031   const BitVector &CalleeSavedRegs;
1032 
1033   TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
1034                   MachineFunction &MF, const TargetRegisterInfo &TRI,
1035                   const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
1036       : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
1037         CalleeSavedRegs(CalleeSavedRegs) {
1038     TLI = MF.getSubtarget().getTargetLowering();
1039     auto &TM = TPC.getTM<TargetMachine>();
1040     ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
1041   }
1042 
1043   /// Load object with live-in variable values. \p mlocs contains the live-in
1044   /// values in each machine location, while \p vlocs the live-in variable
1045   /// values. This method picks variable locations for the live-in variables,
1046   /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
1047   /// object fields to track variable locations as we step through the block.
1048   /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
1049   void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs,
1050                   SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
1051                   unsigned NumLocs) {
1052     ActiveMLocs.clear();
1053     ActiveVLocs.clear();
1054     VarLocs.clear();
1055     VarLocs.reserve(NumLocs);
1056     UseBeforeDefs.clear();
1057     UseBeforeDefVariables.clear();
1058 
1059     auto isCalleeSaved = [&](LocIdx L) {
1060       unsigned Reg = MTracker->LocIdxToLocID[L];
1061       if (Reg >= MTracker->NumRegs)
1062         return false;
1063       for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
1064         if (CalleeSavedRegs.test(*RAI))
1065           return true;
1066       return false;
1067     };
1068 
1069     // Map of the preferred location for each value.
1070     std::map<ValueIDNum, LocIdx> ValueToLoc;
1071 
1072     // Produce a map of value numbers to the current machine locs they live
1073     // in. When emulating VarLocBasedImpl, there should only be one
1074     // location; when not, we get to pick.
1075     for (auto Location : MTracker->locations()) {
1076       LocIdx Idx = Location.Idx;
1077       ValueIDNum &VNum = MLocs[Idx.asU64()];
1078       VarLocs.push_back(VNum);
1079       auto it = ValueToLoc.find(VNum);
1080       // In order of preference, pick:
1081       //  * Callee saved registers,
1082       //  * Other registers,
1083       //  * Spill slots.
1084       if (it == ValueToLoc.end() || MTracker->isSpill(it->second) ||
1085           (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) {
1086         // Insert, or overwrite if insertion failed.
1087         auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx));
1088         if (!PrefLocRes.second)
1089           PrefLocRes.first->second = Idx;
1090       }
1091     }
1092 
1093     // Now map variables to their picked LocIdxes.
1094     for (auto Var : VLocs) {
1095       if (Var.second.Kind == DbgValue::Const) {
1096         PendingDbgValues.push_back(
1097             emitMOLoc(Var.second.MO, Var.first, Var.second.Properties));
1098         continue;
1099       }
1100 
1101       // If the value has no location, we can't make a variable location.
1102       const ValueIDNum &Num = Var.second.ID;
1103       auto ValuesPreferredLoc = ValueToLoc.find(Num);
1104       if (ValuesPreferredLoc == ValueToLoc.end()) {
1105         // If it's a def that occurs in this block, register it as a
1106         // use-before-def to be resolved as we step through the block.
1107         if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI())
1108           addUseBeforeDef(Var.first, Var.second.Properties, Num);
1109         else
1110           recoverAsEntryValue(Var.first, Var.second.Properties, Num);
1111         continue;
1112       }
1113 
1114       LocIdx M = ValuesPreferredLoc->second;
1115       auto NewValue = LocAndProperties{M, Var.second.Properties};
1116       auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
1117       if (!Result.second)
1118         Result.first->second = NewValue;
1119       ActiveMLocs[M].insert(Var.first);
1120       PendingDbgValues.push_back(
1121           MTracker->emitLoc(M, Var.first, Var.second.Properties));
1122     }
1123     flushDbgValues(MBB.begin(), &MBB);
1124   }
1125 
1126   /// Record that \p Var has value \p ID, a value that becomes available
1127   /// later in the function.
1128   void addUseBeforeDef(const DebugVariable &Var,
1129                        const DbgValueProperties &Properties, ValueIDNum ID) {
1130     UseBeforeDef UBD = {ID, Var, Properties};
1131     UseBeforeDefs[ID.getInst()].push_back(UBD);
1132     UseBeforeDefVariables.insert(Var);
1133   }
1134 
1135   /// After the instruction at index \p Inst and position \p pos has been
1136   /// processed, check whether it defines a variable value in a use-before-def.
1137   /// If so, and the variable value hasn't changed since the start of the
1138   /// block, create a DBG_VALUE.
1139   void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
1140     auto MIt = UseBeforeDefs.find(Inst);
1141     if (MIt == UseBeforeDefs.end())
1142       return;
1143 
1144     for (auto &Use : MIt->second) {
1145       LocIdx L = Use.ID.getLoc();
1146 
1147       // If something goes very wrong, we might end up labelling a COPY
1148       // instruction or similar with an instruction number, where it doesn't
1149       // actually define a new value, instead it moves a value. In case this
1150       // happens, discard.
1151       if (MTracker->LocIdxToIDNum[L] != Use.ID)
1152         continue;
1153 
1154       // If a different debug instruction defined the variable value / location
1155       // since the start of the block, don't materialize this use-before-def.
1156       if (!UseBeforeDefVariables.count(Use.Var))
1157         continue;
1158 
1159       PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties));
1160     }
1161     flushDbgValues(pos, nullptr);
1162   }
1163 
1164   /// Helper to move created DBG_VALUEs into Transfers collection.
1165   void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
1166     if (PendingDbgValues.size() == 0)
1167       return;
1168 
1169     // Pick out the instruction start position.
1170     MachineBasicBlock::instr_iterator BundleStart;
1171     if (MBB && Pos == MBB->begin())
1172       BundleStart = MBB->instr_begin();
1173     else
1174       BundleStart = getBundleStart(Pos->getIterator());
1175 
1176     Transfers.push_back({BundleStart, MBB, PendingDbgValues});
1177     PendingDbgValues.clear();
1178   }
1179 
1180   bool isEntryValueVariable(const DebugVariable &Var,
1181                             const DIExpression *Expr) const {
1182     if (!Var.getVariable()->isParameter())
1183       return false;
1184 
1185     if (Var.getInlinedAt())
1186       return false;
1187 
1188     if (Expr->getNumElements() > 0)
1189       return false;
1190 
1191     return true;
1192   }
1193 
1194   bool isEntryValueValue(const ValueIDNum &Val) const {
1195     // Must be in entry block (block number zero), and be a PHI / live-in value.
1196     if (Val.getBlock() || !Val.isPHI())
1197       return false;
1198 
1199     // Entry values must enter in a register.
1200     if (MTracker->isSpill(Val.getLoc()))
1201       return false;
1202 
1203     Register SP = TLI->getStackPointerRegisterToSaveRestore();
1204     Register FP = TRI.getFrameRegister(MF);
1205     Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
1206     return Reg != SP && Reg != FP;
1207   }
1208 
1209   bool recoverAsEntryValue(const DebugVariable &Var, DbgValueProperties &Prop,
1210                            const ValueIDNum &Num) {
1211     // Is this variable location a candidate to be an entry value. First,
1212     // should we be trying this at all?
1213     if (!ShouldEmitDebugEntryValues)
1214       return false;
1215 
1216     // Is the variable appropriate for entry values (i.e., is a parameter).
1217     if (!isEntryValueVariable(Var, Prop.DIExpr))
1218       return false;
1219 
1220     // Is the value assigned to this variable still the entry value?
1221     if (!isEntryValueValue(Num))
1222       return false;
1223 
1224     // Emit a variable location using an entry value expression.
1225     DIExpression *NewExpr =
1226         DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue);
1227     Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
1228     MachineOperand MO = MachineOperand::CreateReg(Reg, false);
1229     MO.setIsDebug(true);
1230 
1231     PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect}));
1232     return true;
1233   }
1234 
1235   /// Change a variable value after encountering a DBG_VALUE inside a block.
1236   void redefVar(const MachineInstr &MI) {
1237     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
1238                       MI.getDebugLoc()->getInlinedAt());
1239     DbgValueProperties Properties(MI);
1240 
1241     const MachineOperand &MO = MI.getOperand(0);
1242 
1243     // Ignore non-register locations, we don't transfer those.
1244     if (!MO.isReg() || MO.getReg() == 0) {
1245       auto It = ActiveVLocs.find(Var);
1246       if (It != ActiveVLocs.end()) {
1247         ActiveMLocs[It->second.Loc].erase(Var);
1248         ActiveVLocs.erase(It);
1249      }
1250       // Any use-before-defs no longer apply.
1251       UseBeforeDefVariables.erase(Var);
1252       return;
1253     }
1254 
1255     Register Reg = MO.getReg();
1256     LocIdx NewLoc = MTracker->getRegMLoc(Reg);
1257     redefVar(MI, Properties, NewLoc);
1258   }
1259 
1260   /// Handle a change in variable location within a block. Terminate the
1261   /// variables current location, and record the value it now refers to, so
1262   /// that we can detect location transfers later on.
1263   void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
1264                 Optional<LocIdx> OptNewLoc) {
1265     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
1266                       MI.getDebugLoc()->getInlinedAt());
1267     // Any use-before-defs no longer apply.
1268     UseBeforeDefVariables.erase(Var);
1269 
1270     // Erase any previous location,
1271     auto It = ActiveVLocs.find(Var);
1272     if (It != ActiveVLocs.end())
1273       ActiveMLocs[It->second.Loc].erase(Var);
1274 
1275     // If there _is_ no new location, all we had to do was erase.
1276     if (!OptNewLoc)
1277       return;
1278     LocIdx NewLoc = *OptNewLoc;
1279 
1280     // Check whether our local copy of values-by-location in #VarLocs is out of
1281     // date. Wipe old tracking data for the location if it's been clobbered in
1282     // the meantime.
1283     if (MTracker->getNumAtPos(NewLoc) != VarLocs[NewLoc.asU64()]) {
1284       for (auto &P : ActiveMLocs[NewLoc]) {
1285         ActiveVLocs.erase(P);
1286       }
1287       ActiveMLocs[NewLoc.asU64()].clear();
1288       VarLocs[NewLoc.asU64()] = MTracker->getNumAtPos(NewLoc);
1289     }
1290 
1291     ActiveMLocs[NewLoc].insert(Var);
1292     if (It == ActiveVLocs.end()) {
1293       ActiveVLocs.insert(
1294           std::make_pair(Var, LocAndProperties{NewLoc, Properties}));
1295     } else {
1296       It->second.Loc = NewLoc;
1297       It->second.Properties = Properties;
1298     }
1299   }
1300 
1301   /// Account for a location \p mloc being clobbered. Examine the variable
1302   /// locations that will be terminated: and try to recover them by using
1303   /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
1304   /// explicitly terminate a location if it can't be recovered.
1305   void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
1306                    bool MakeUndef = true) {
1307     auto ActiveMLocIt = ActiveMLocs.find(MLoc);
1308     if (ActiveMLocIt == ActiveMLocs.end())
1309       return;
1310 
1311     // What was the old variable value?
1312     ValueIDNum OldValue = VarLocs[MLoc.asU64()];
1313     VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
1314 
1315     // Examine the remaining variable locations: if we can find the same value
1316     // again, we can recover the location.
1317     Optional<LocIdx> NewLoc = None;
1318     for (auto Loc : MTracker->locations())
1319       if (Loc.Value == OldValue)
1320         NewLoc = Loc.Idx;
1321 
1322     // If there is no location, and we weren't asked to make the variable
1323     // explicitly undef, then stop here.
1324     if (!NewLoc && !MakeUndef) {
1325       // Try and recover a few more locations with entry values.
1326       for (auto &Var : ActiveMLocIt->second) {
1327         auto &Prop = ActiveVLocs.find(Var)->second.Properties;
1328         recoverAsEntryValue(Var, Prop, OldValue);
1329       }
1330       flushDbgValues(Pos, nullptr);
1331       return;
1332     }
1333 
1334     // Examine all the variables based on this location.
1335     DenseSet<DebugVariable> NewMLocs;
1336     for (auto &Var : ActiveMLocIt->second) {
1337       auto ActiveVLocIt = ActiveVLocs.find(Var);
1338       // Re-state the variable location: if there's no replacement then NewLoc
1339       // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE
1340       // identifying the alternative location will be emitted.
1341       const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr;
1342       DbgValueProperties Properties(Expr, false);
1343       PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties));
1344 
1345       // Update machine locations <=> variable locations maps. Defer updating
1346       // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator.
1347       if (!NewLoc) {
1348         ActiveVLocs.erase(ActiveVLocIt);
1349       } else {
1350         ActiveVLocIt->second.Loc = *NewLoc;
1351         NewMLocs.insert(Var);
1352       }
1353     }
1354 
1355     // Commit any deferred ActiveMLoc changes.
1356     if (!NewMLocs.empty())
1357       for (auto &Var : NewMLocs)
1358         ActiveMLocs[*NewLoc].insert(Var);
1359 
1360     // We lazily track what locations have which values; if we've found a new
1361     // location for the clobbered value, remember it.
1362     if (NewLoc)
1363       VarLocs[NewLoc->asU64()] = OldValue;
1364 
1365     flushDbgValues(Pos, nullptr);
1366 
1367     ActiveMLocIt->second.clear();
1368   }
1369 
1370   /// Transfer variables based on \p Src to be based on \p Dst. This handles
1371   /// both register copies as well as spills and restores. Creates DBG_VALUEs
1372   /// describing the movement.
1373   void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
1374     // Does Src still contain the value num we expect? If not, it's been
1375     // clobbered in the meantime, and our variable locations are stale.
1376     if (VarLocs[Src.asU64()] != MTracker->getNumAtPos(Src))
1377       return;
1378 
1379     // assert(ActiveMLocs[Dst].size() == 0);
1380     //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
1381     ActiveMLocs[Dst] = ActiveMLocs[Src];
1382     VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
1383 
1384     // For each variable based on Src; create a location at Dst.
1385     for (auto &Var : ActiveMLocs[Src]) {
1386       auto ActiveVLocIt = ActiveVLocs.find(Var);
1387       assert(ActiveVLocIt != ActiveVLocs.end());
1388       ActiveVLocIt->second.Loc = Dst;
1389 
1390       assert(Dst != 0);
1391       MachineInstr *MI =
1392           MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
1393       PendingDbgValues.push_back(MI);
1394     }
1395     ActiveMLocs[Src].clear();
1396     flushDbgValues(Pos, nullptr);
1397 
1398     // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
1399     // about the old location.
1400     if (EmulateOldLDV)
1401       VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
1402   }
1403 
1404   MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
1405                                 const DebugVariable &Var,
1406                                 const DbgValueProperties &Properties) {
1407     DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
1408                                   Var.getVariable()->getScope(),
1409                                   const_cast<DILocation *>(Var.getInlinedAt()));
1410     auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
1411     MIB.add(MO);
1412     if (Properties.Indirect)
1413       MIB.addImm(0);
1414     else
1415       MIB.addReg(0);
1416     MIB.addMetadata(Var.getVariable());
1417     MIB.addMetadata(Properties.DIExpr);
1418     return MIB;
1419   }
1420 };
1421 
1422 class InstrRefBasedLDV : public LDVImpl {
1423 private:
1424   using FragmentInfo = DIExpression::FragmentInfo;
1425   using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
1426 
1427   // Helper while building OverlapMap, a map of all fragments seen for a given
1428   // DILocalVariable.
1429   using VarToFragments =
1430       DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
1431 
1432   /// Machine location/value transfer function, a mapping of which locations
1433   /// are assigned which new values.
1434   using MLocTransferMap = std::map<LocIdx, ValueIDNum>;
1435 
1436   /// Live in/out structure for the variable values: a per-block map of
1437   /// variables to their values. XXX, better name?
1438   using LiveIdxT =
1439       DenseMap<const MachineBasicBlock *, DenseMap<DebugVariable, DbgValue> *>;
1440 
1441   using VarAndLoc = std::pair<DebugVariable, DbgValue>;
1442 
1443   /// Type for a live-in value: the predecessor block, and its value.
1444   using InValueT = std::pair<MachineBasicBlock *, DbgValue *>;
1445 
1446   /// Vector (per block) of a collection (inner smallvector) of live-ins.
1447   /// Used as the result type for the variable value dataflow problem.
1448   using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>;
1449 
1450   const TargetRegisterInfo *TRI;
1451   const TargetInstrInfo *TII;
1452   const TargetFrameLowering *TFI;
1453   const MachineFrameInfo *MFI;
1454   BitVector CalleeSavedRegs;
1455   LexicalScopes LS;
1456   TargetPassConfig *TPC;
1457 
1458   /// Object to track machine locations as we step through a block. Could
1459   /// probably be a field rather than a pointer, as it's always used.
1460   MLocTracker *MTracker;
1461 
1462   /// Number of the current block LiveDebugValues is stepping through.
1463   unsigned CurBB;
1464 
1465   /// Number of the current instruction LiveDebugValues is evaluating.
1466   unsigned CurInst;
1467 
1468   /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl
1469   /// steps through a block. Reads the values at each location from the
1470   /// MLocTracker object.
1471   VLocTracker *VTracker;
1472 
1473   /// Tracker for transfers, listens to DBG_VALUEs and transfers of values
1474   /// between locations during stepping, creates new DBG_VALUEs when values move
1475   /// location.
1476   TransferTracker *TTracker;
1477 
1478   /// Blocks which are artificial, i.e. blocks which exclusively contain
1479   /// instructions without DebugLocs, or with line 0 locations.
1480   SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
1481 
1482   // Mapping of blocks to and from their RPOT order.
1483   DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
1484   DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
1485   DenseMap<unsigned, unsigned> BBNumToRPO;
1486 
1487   /// Pair of MachineInstr, and its 1-based offset into the containing block.
1488   using InstAndNum = std::pair<const MachineInstr *, unsigned>;
1489   /// Map from debug instruction number to the MachineInstr labelled with that
1490   /// number, and its location within the function. Used to transform
1491   /// instruction numbers in DBG_INSTR_REFs into machine value numbers.
1492   std::map<uint64_t, InstAndNum> DebugInstrNumToInstr;
1493 
1494   /// Record of where we observed a DBG_PHI instruction.
1495   class DebugPHIRecord {
1496   public:
1497     uint64_t InstrNum;      ///< Instruction number of this DBG_PHI.
1498     MachineBasicBlock *MBB; ///< Block where DBG_PHI occurred.
1499     ValueIDNum ValueRead;   ///< The value number read by the DBG_PHI.
1500     LocIdx ReadLoc;         ///< Register/Stack location the DBG_PHI reads.
1501 
1502     operator unsigned() const { return InstrNum; }
1503   };
1504 
1505   /// Map from instruction numbers defined by DBG_PHIs to a record of what that
1506   /// DBG_PHI read and where. Populated and edited during the machine value
1507   /// location problem -- we use LLVMs SSA Updater to fix changes by
1508   /// optimizations that destroy PHI instructions.
1509   SmallVector<DebugPHIRecord, 32> DebugPHINumToValue;
1510 
1511   // Map of overlapping variable fragments.
1512   OverlapMap OverlapFragments;
1513   VarToFragments SeenFragments;
1514 
1515   /// Tests whether this instruction is a spill to a stack slot.
1516   bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
1517 
1518   /// Decide if @MI is a spill instruction and return true if it is. We use 2
1519   /// criteria to make this decision:
1520   /// - Is this instruction a store to a spill slot?
1521   /// - Is there a register operand that is both used and killed?
1522   /// TODO: Store optimization can fold spills into other stores (including
1523   /// other spills). We do not handle this yet (more than one memory operand).
1524   bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
1525                        unsigned &Reg);
1526 
1527   /// If a given instruction is identified as a spill, return the spill slot
1528   /// and set \p Reg to the spilled register.
1529   Optional<SpillLoc> isRestoreInstruction(const MachineInstr &MI,
1530                                           MachineFunction *MF, unsigned &Reg);
1531 
1532   /// Given a spill instruction, extract the register and offset used to
1533   /// address the spill slot in a target independent way.
1534   SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
1535 
1536   /// Observe a single instruction while stepping through a block.
1537   void process(MachineInstr &MI, ValueIDNum **MLiveOuts = nullptr,
1538                ValueIDNum **MLiveIns = nullptr);
1539 
1540   /// Examines whether \p MI is a DBG_VALUE and notifies trackers.
1541   /// \returns true if MI was recognized and processed.
1542   bool transferDebugValue(const MachineInstr &MI);
1543 
1544   /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers.
1545   /// \returns true if MI was recognized and processed.
1546   bool transferDebugInstrRef(MachineInstr &MI, ValueIDNum **MLiveOuts,
1547                              ValueIDNum **MLiveIns);
1548 
1549   /// Stores value-information about where this PHI occurred, and what
1550   /// instruction number is associated with it.
1551   /// \returns true if MI was recognized and processed.
1552   bool transferDebugPHI(MachineInstr &MI);
1553 
1554   /// Examines whether \p MI is copy instruction, and notifies trackers.
1555   /// \returns true if MI was recognized and processed.
1556   bool transferRegisterCopy(MachineInstr &MI);
1557 
1558   /// Examines whether \p MI is stack spill or restore  instruction, and
1559   /// notifies trackers. \returns true if MI was recognized and processed.
1560   bool transferSpillOrRestoreInst(MachineInstr &MI);
1561 
1562   /// Examines \p MI for any registers that it defines, and notifies trackers.
1563   void transferRegisterDef(MachineInstr &MI);
1564 
1565   /// Copy one location to the other, accounting for movement of subregisters
1566   /// too.
1567   void performCopy(Register Src, Register Dst);
1568 
1569   void accumulateFragmentMap(MachineInstr &MI);
1570 
1571   /// Determine the machine value number referred to by (potentially several)
1572   /// DBG_PHI instructions. Block duplication and tail folding can duplicate
1573   /// DBG_PHIs, shifting the position where values in registers merge, and
1574   /// forming another mini-ssa problem to solve.
1575   /// \p Here the position of a DBG_INSTR_REF seeking a machine value number
1576   /// \p InstrNum Debug instruction number defined by DBG_PHI instructions.
1577   /// \returns The machine value number at position Here, or None.
1578   Optional<ValueIDNum> resolveDbgPHIs(MachineFunction &MF,
1579                                       ValueIDNum **MLiveOuts,
1580                                       ValueIDNum **MLiveIns, MachineInstr &Here,
1581                                       uint64_t InstrNum);
1582 
1583   /// Step through the function, recording register definitions and movements
1584   /// in an MLocTracker. Convert the observations into a per-block transfer
1585   /// function in \p MLocTransfer, suitable for using with the machine value
1586   /// location dataflow problem.
1587   void
1588   produceMLocTransferFunction(MachineFunction &MF,
1589                               SmallVectorImpl<MLocTransferMap> &MLocTransfer,
1590                               unsigned MaxNumBlocks);
1591 
1592   /// Solve the machine value location dataflow problem. Takes as input the
1593   /// transfer functions in \p MLocTransfer. Writes the output live-in and
1594   /// live-out arrays to the (initialized to zero) multidimensional arrays in
1595   /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block
1596   /// number, the inner by LocIdx.
1597   void mlocDataflow(ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
1598                     SmallVectorImpl<MLocTransferMap> &MLocTransfer);
1599 
1600   /// Perform a control flow join (lattice value meet) of the values in machine
1601   /// locations at \p MBB. Follows the algorithm described in the file-comment,
1602   /// reading live-outs of predecessors from \p OutLocs, the current live ins
1603   /// from \p InLocs, and assigning the newly computed live ins back into
1604   /// \p InLocs. \returns two bools -- the first indicates whether a change
1605   /// was made, the second whether a lattice downgrade occurred. If the latter
1606   /// is true, revisiting this block is necessary.
1607   std::tuple<bool, bool>
1608   mlocJoin(MachineBasicBlock &MBB,
1609            SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1610            ValueIDNum **OutLocs, ValueIDNum *InLocs);
1611 
1612   /// Solve the variable value dataflow problem, for a single lexical scope.
1613   /// Uses the algorithm from the file comment to resolve control flow joins,
1614   /// although there are extra hacks, see vlocJoin. Reads the
1615   /// locations of values from the \p MInLocs and \p MOutLocs arrays (see
1616   /// mlocDataflow) and reads the variable values transfer function from
1617   /// \p AllTheVlocs. Live-in and Live-out variable values are stored locally,
1618   /// with the live-ins permanently stored to \p Output once the fixedpoint is
1619   /// reached.
1620   /// \p VarsWeCareAbout contains a collection of the variables in \p Scope
1621   /// that we should be tracking.
1622   /// \p AssignBlocks contains the set of blocks that aren't in \p Scope, but
1623   /// which do contain DBG_VALUEs, which VarLocBasedImpl tracks locations
1624   /// through.
1625   void vlocDataflow(const LexicalScope *Scope, const DILocation *DILoc,
1626                     const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
1627                     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks,
1628                     LiveInsT &Output, ValueIDNum **MOutLocs,
1629                     ValueIDNum **MInLocs,
1630                     SmallVectorImpl<VLocTracker> &AllTheVLocs);
1631 
1632   /// Compute the live-ins to a block, considering control flow merges according
1633   /// to the method in the file comment. Live out and live in variable values
1634   /// are stored in \p VLOCOutLocs and \p VLOCInLocs. The live-ins for \p MBB
1635   /// are computed and stored into \p VLOCInLocs. \returns true if the live-ins
1636   /// are modified.
1637   /// \p InLocsT Output argument, storage for calculated live-ins.
1638   /// \returns two bools -- the first indicates whether a change
1639   /// was made, the second whether a lattice downgrade occurred. If the latter
1640   /// is true, revisiting this block is necessary.
1641   std::tuple<bool, bool>
1642   vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs,
1643            SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited,
1644            unsigned BBNum, const SmallSet<DebugVariable, 4> &AllVars,
1645            ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
1646            SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
1647            SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
1648            DenseMap<DebugVariable, DbgValue> &InLocsT);
1649 
1650   /// Continue exploration of the variable-value lattice, as explained in the
1651   /// file-level comment. \p OldLiveInLocation contains the current
1652   /// exploration position, from which we need to descend further. \p Values
1653   /// contains the set of live-in values, \p CurBlockRPONum the RPO number of
1654   /// the current block, and \p CandidateLocations a set of locations that
1655   /// should be considered as PHI locations, if we reach the bottom of the
1656   /// lattice. \returns true if we should downgrade; the value is the agreeing
1657   /// value number in a non-backedge predecessor.
1658   bool vlocDowngradeLattice(const MachineBasicBlock &MBB,
1659                             const DbgValue &OldLiveInLocation,
1660                             const SmallVectorImpl<InValueT> &Values,
1661                             unsigned CurBlockRPONum);
1662 
1663   /// For the given block and live-outs feeding into it, try to find a
1664   /// machine location where they all join. If a solution for all predecessors
1665   /// can't be found, a location where all non-backedge-predecessors join
1666   /// will be returned instead. While this method finds a join location, this
1667   /// says nothing as to whether it should be used.
1668   /// \returns Pair of value ID if found, and true when the correct value
1669   /// is available on all predecessor edges, or false if it's only available
1670   /// for non-backedge predecessors.
1671   std::tuple<Optional<ValueIDNum>, bool>
1672   pickVPHILoc(MachineBasicBlock &MBB, const DebugVariable &Var,
1673               const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs,
1674               ValueIDNum **MInLocs,
1675               const SmallVectorImpl<MachineBasicBlock *> &BlockOrders);
1676 
1677   /// Given the solutions to the two dataflow problems, machine value locations
1678   /// in \p MInLocs and live-in variable values in \p SavedLiveIns, runs the
1679   /// TransferTracker class over the function to produce live-in and transfer
1680   /// DBG_VALUEs, then inserts them. Groups of DBG_VALUEs are inserted in the
1681   /// order given by AllVarsNumbering -- this could be any stable order, but
1682   /// right now "order of appearence in function, when explored in RPO", so
1683   /// that we can compare explictly against VarLocBasedImpl.
1684   void emitLocations(MachineFunction &MF, LiveInsT SavedLiveIns,
1685                      ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
1686                      DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
1687                      const TargetPassConfig &TPC);
1688 
1689   /// Boilerplate computation of some initial sets, artifical blocks and
1690   /// RPOT block ordering.
1691   void initialSetup(MachineFunction &MF);
1692 
1693   bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override;
1694 
1695 public:
1696   /// Default construct and initialize the pass.
1697   InstrRefBasedLDV();
1698 
1699   LLVM_DUMP_METHOD
1700   void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const;
1701 
1702   bool isCalleeSaved(LocIdx L) {
1703     unsigned Reg = MTracker->LocIdxToLocID[L];
1704     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1705       if (CalleeSavedRegs.test(*RAI))
1706         return true;
1707     return false;
1708   }
1709 };
1710 
1711 } // end anonymous namespace
1712 
1713 //===----------------------------------------------------------------------===//
1714 //            Implementation
1715 //===----------------------------------------------------------------------===//
1716 
1717 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
1718 
1719 /// Default construct and initialize the pass.
1720 InstrRefBasedLDV::InstrRefBasedLDV() {}
1721 
1722 //===----------------------------------------------------------------------===//
1723 //            Debug Range Extension Implementation
1724 //===----------------------------------------------------------------------===//
1725 
1726 #ifndef NDEBUG
1727 // Something to restore in the future.
1728 // void InstrRefBasedLDV::printVarLocInMBB(..)
1729 #endif
1730 
1731 SpillLoc
1732 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
1733   assert(MI.hasOneMemOperand() &&
1734          "Spill instruction does not have exactly one memory operand?");
1735   auto MMOI = MI.memoperands_begin();
1736   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
1737   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
1738          "Inconsistent memory operand in spill instruction");
1739   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
1740   const MachineBasicBlock *MBB = MI.getParent();
1741   Register Reg;
1742   StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
1743   return {Reg, Offset};
1744 }
1745 
1746 /// End all previous ranges related to @MI and start a new range from @MI
1747 /// if it is a DBG_VALUE instr.
1748 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
1749   if (!MI.isDebugValue())
1750     return false;
1751 
1752   const DILocalVariable *Var = MI.getDebugVariable();
1753   const DIExpression *Expr = MI.getDebugExpression();
1754   const DILocation *DebugLoc = MI.getDebugLoc();
1755   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1756   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1757          "Expected inlined-at fields to agree");
1758 
1759   DebugVariable V(Var, Expr, InlinedAt);
1760   DbgValueProperties Properties(MI);
1761 
1762   // If there are no instructions in this lexical scope, do no location tracking
1763   // at all, this variable shouldn't get a legitimate location range.
1764   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1765   if (Scope == nullptr)
1766     return true; // handled it; by doing nothing
1767 
1768   const MachineOperand &MO = MI.getOperand(0);
1769 
1770   // MLocTracker needs to know that this register is read, even if it's only
1771   // read by a debug inst.
1772   if (MO.isReg() && MO.getReg() != 0)
1773     (void)MTracker->readReg(MO.getReg());
1774 
1775   // If we're preparing for the second analysis (variables), the machine value
1776   // locations are already solved, and we report this DBG_VALUE and the value
1777   // it refers to to VLocTracker.
1778   if (VTracker) {
1779     if (MO.isReg()) {
1780       // Feed defVar the new variable location, or if this is a
1781       // DBG_VALUE $noreg, feed defVar None.
1782       if (MO.getReg())
1783         VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg()));
1784       else
1785         VTracker->defVar(MI, Properties, None);
1786     } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
1787                MI.getOperand(0).isCImm()) {
1788       VTracker->defVar(MI, MI.getOperand(0));
1789     }
1790   }
1791 
1792   // If performing final tracking of transfers, report this variable definition
1793   // to the TransferTracker too.
1794   if (TTracker)
1795     TTracker->redefVar(MI);
1796   return true;
1797 }
1798 
1799 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
1800                                              ValueIDNum **MLiveOuts,
1801                                              ValueIDNum **MLiveIns) {
1802   if (!MI.isDebugRef())
1803     return false;
1804 
1805   // Only handle this instruction when we are building the variable value
1806   // transfer function.
1807   if (!VTracker)
1808     return false;
1809 
1810   unsigned InstNo = MI.getOperand(0).getImm();
1811   unsigned OpNo = MI.getOperand(1).getImm();
1812 
1813   const DILocalVariable *Var = MI.getDebugVariable();
1814   const DIExpression *Expr = MI.getDebugExpression();
1815   const DILocation *DebugLoc = MI.getDebugLoc();
1816   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1817   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1818          "Expected inlined-at fields to agree");
1819 
1820   DebugVariable V(Var, Expr, InlinedAt);
1821 
1822   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
1823   if (Scope == nullptr)
1824     return true; // Handled by doing nothing. This variable is never in scope.
1825 
1826   const MachineFunction &MF = *MI.getParent()->getParent();
1827 
1828   // Various optimizations may have happened to the value during codegen,
1829   // recorded in the value substitution table. Apply any substitutions to
1830   // the instruction / operand number in this DBG_INSTR_REF.
1831   auto Sub = MF.DebugValueSubstitutions.find(std::make_pair(InstNo, OpNo));
1832   // Collect any subregister extractions performed during optimization.
1833   SmallVector<unsigned, 4> SeenSubregs;
1834   while (Sub != MF.DebugValueSubstitutions.end()) {
1835     std::tie(InstNo, OpNo) = Sub->second.Dest;
1836     unsigned Subreg = Sub->second.Subreg;
1837     if (Subreg)
1838       SeenSubregs.push_back(Subreg);
1839     Sub = MF.DebugValueSubstitutions.find(std::make_pair(InstNo, OpNo));
1840   }
1841 
1842   // Default machine value number is <None> -- if no instruction defines
1843   // the corresponding value, it must have been optimized out.
1844   Optional<ValueIDNum> NewID = None;
1845 
1846   // Try to lookup the instruction number, and find the machine value number
1847   // that it defines. It could be an instruction, or a PHI.
1848   auto InstrIt = DebugInstrNumToInstr.find(InstNo);
1849   auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(),
1850                                 DebugPHINumToValue.end(), InstNo);
1851   if (InstrIt != DebugInstrNumToInstr.end()) {
1852     const MachineInstr &TargetInstr = *InstrIt->second.first;
1853     uint64_t BlockNo = TargetInstr.getParent()->getNumber();
1854 
1855     // Pick out the designated operand.
1856     assert(OpNo < TargetInstr.getNumOperands());
1857     const MachineOperand &MO = TargetInstr.getOperand(OpNo);
1858 
1859     // Today, this can only be a register.
1860     assert(MO.isReg() && MO.isDef());
1861 
1862     unsigned LocID = MTracker->getLocID(MO.getReg(), false);
1863     LocIdx L = MTracker->LocIDToLocIdx[LocID];
1864     NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
1865   } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
1866     // It's actually a PHI value. Which value it is might not be obvious, use
1867     // the resolver helper to find out.
1868     NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns,
1869                            MI, InstNo);
1870   }
1871 
1872   // Apply any subregister extractions, in reverse. We might have seen code
1873   // like this:
1874   //    CALL64 @foo, implicit-def $rax
1875   //    %0:gr64 = COPY $rax
1876   //    %1:gr32 = COPY %0.sub_32bit
1877   //    %2:gr16 = COPY %1.sub_16bit
1878   //    %3:gr8  = COPY %2.sub_8bit
1879   // In which case each copy would have been recorded as a substitution with
1880   // a subregister qualifier. Apply those qualifiers now.
1881   if (NewID && !SeenSubregs.empty()) {
1882     unsigned Offset = 0;
1883     unsigned Size = 0;
1884 
1885     // Look at each subregister that we passed through, and progressively
1886     // narrow in, accumulating any offsets that occur. Substitutions should
1887     // only ever be the same or narrower width than what they read from;
1888     // iterate in reverse order so that we go from wide to small.
1889     for (unsigned Subreg : reverse(SeenSubregs)) {
1890       unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
1891       unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
1892       Offset += ThisOffset;
1893       Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
1894     }
1895 
1896     // If that worked, look for an appropriate subregister with the register
1897     // where the define happens. Don't look at values that were defined during
1898     // a stack write: we can't currently express register locations within
1899     // spills.
1900     LocIdx L = NewID->getLoc();
1901     if (NewID && !MTracker->isSpill(L)) {
1902       // Find the register class for the register where this def happened.
1903       // FIXME: no index for this?
1904       Register Reg = MTracker->LocIdxToLocID[L];
1905       const TargetRegisterClass *TRC = nullptr;
1906       for (auto *TRCI : TRI->regclasses())
1907         if (TRCI->contains(Reg))
1908           TRC = TRCI;
1909       assert(TRC && "Couldn't find target register class?");
1910 
1911       // If the register we have isn't the right size or in the right place,
1912       // Try to find a subregister inside it.
1913       unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
1914       if (Size != MainRegSize || Offset) {
1915         // Enumerate all subregisters, searching.
1916         Register NewReg = 0;
1917         for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1918           unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1919           unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
1920           unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
1921           if (SubregSize == Size && SubregOffset == Offset) {
1922             NewReg = *SRI;
1923             break;
1924           }
1925         }
1926 
1927         // If we didn't find anything: there's no way to express our value.
1928         if (!NewReg) {
1929           NewID = None;
1930         } else {
1931           // Re-state the value as being defined within the subregister
1932           // that we found.
1933           LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
1934           NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
1935         }
1936       }
1937     } else {
1938       // If we can't handle subregisters, unset the new value.
1939       NewID = None;
1940     }
1941   }
1942 
1943   // We, we have a value number or None. Tell the variable value tracker about
1944   // it. The rest of this LiveDebugValues implementation acts exactly the same
1945   // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that
1946   // aren't immediately available).
1947   DbgValueProperties Properties(Expr, false);
1948   VTracker->defVar(MI, Properties, NewID);
1949 
1950   // If we're on the final pass through the function, decompose this INSTR_REF
1951   // into a plain DBG_VALUE.
1952   if (!TTracker)
1953     return true;
1954 
1955   // Pick a location for the machine value number, if such a location exists.
1956   // (This information could be stored in TransferTracker to make it faster).
1957   Optional<LocIdx> FoundLoc = None;
1958   for (auto Location : MTracker->locations()) {
1959     LocIdx CurL = Location.Idx;
1960     ValueIDNum ID = MTracker->LocIdxToIDNum[CurL];
1961     if (NewID && ID == NewID) {
1962       // If this is the first location with that value, pick it. Otherwise,
1963       // consider whether it's a "longer term" location.
1964       if (!FoundLoc) {
1965         FoundLoc = CurL;
1966         continue;
1967       }
1968 
1969       if (MTracker->isSpill(CurL))
1970         FoundLoc = CurL; // Spills are a longer term location.
1971       else if (!MTracker->isSpill(*FoundLoc) &&
1972                !MTracker->isSpill(CurL) &&
1973                !isCalleeSaved(*FoundLoc) &&
1974                isCalleeSaved(CurL))
1975         FoundLoc = CurL; // Callee saved regs are longer term than normal.
1976     }
1977   }
1978 
1979   // Tell transfer tracker that the variable value has changed.
1980   TTracker->redefVar(MI, Properties, FoundLoc);
1981 
1982   // If there was a value with no location; but the value is defined in a
1983   // later instruction in this block, this is a block-local use-before-def.
1984   if (!FoundLoc && NewID && NewID->getBlock() == CurBB &&
1985       NewID->getInst() > CurInst)
1986     TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID);
1987 
1988   // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
1989   // This DBG_VALUE is potentially a $noreg / undefined location, if
1990   // FoundLoc is None.
1991   // (XXX -- could morph the DBG_INSTR_REF in the future).
1992   MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties);
1993   TTracker->PendingDbgValues.push_back(DbgMI);
1994   TTracker->flushDbgValues(MI.getIterator(), nullptr);
1995   return true;
1996 }
1997 
1998 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
1999   if (!MI.isDebugPHI())
2000     return false;
2001 
2002   // Analyse these only when solving the machine value location problem.
2003   if (VTracker || TTracker)
2004     return true;
2005 
2006   // First operand is the value location, either a stack slot or register.
2007   // Second is the debug instruction number of the original PHI.
2008   const MachineOperand &MO = MI.getOperand(0);
2009   unsigned InstrNum = MI.getOperand(1).getImm();
2010 
2011   if (MO.isReg()) {
2012     // The value is whatever's currently in the register. Read and record it,
2013     // to be analysed later.
2014     Register Reg = MO.getReg();
2015     ValueIDNum Num = MTracker->readReg(Reg);
2016     auto PHIRec = DebugPHIRecord(
2017         {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
2018     DebugPHINumToValue.push_back(PHIRec);
2019   } else {
2020     // The value is whatever's in this stack slot.
2021     assert(MO.isFI());
2022     unsigned FI = MO.getIndex();
2023 
2024     // If the stack slot is dead, then this was optimized away.
2025     // FIXME: stack slot colouring should account for slots that get merged.
2026     if (MFI->isDeadObjectIndex(FI))
2027       return true;
2028 
2029     // Identify this spill slot.
2030     Register Base;
2031     StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
2032     SpillLoc SL = {Base, Offs};
2033     Optional<ValueIDNum> Num = MTracker->readSpill(SL);
2034 
2035     if (!Num)
2036       // Nothing ever writes to this slot. Curious, but nothing we can do.
2037       return true;
2038 
2039     // Record this DBG_PHI for later analysis.
2040     auto DbgPHI = DebugPHIRecord(
2041         {InstrNum, MI.getParent(), *Num, *MTracker->getSpillMLoc(SL)});
2042     DebugPHINumToValue.push_back(DbgPHI);
2043   }
2044 
2045   return true;
2046 }
2047 
2048 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
2049   // Meta Instructions do not affect the debug liveness of any register they
2050   // define.
2051   if (MI.isImplicitDef()) {
2052     // Except when there's an implicit def, and the location it's defining has
2053     // no value number. The whole point of an implicit def is to announce that
2054     // the register is live, without be specific about it's value. So define
2055     // a value if there isn't one already.
2056     ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
2057     // Has a legitimate value -> ignore the implicit def.
2058     if (Num.getLoc() != 0)
2059       return;
2060     // Otherwise, def it here.
2061   } else if (MI.isMetaInstruction())
2062     return;
2063 
2064   MachineFunction *MF = MI.getMF();
2065   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2066   Register SP = TLI->getStackPointerRegisterToSaveRestore();
2067 
2068   // Find the regs killed by MI, and find regmasks of preserved regs.
2069   // Max out the number of statically allocated elements in `DeadRegs`, as this
2070   // prevents fallback to std::set::count() operations.
2071   SmallSet<uint32_t, 32> DeadRegs;
2072   SmallVector<const uint32_t *, 4> RegMasks;
2073   SmallVector<const MachineOperand *, 4> RegMaskPtrs;
2074   for (const MachineOperand &MO : MI.operands()) {
2075     // Determine whether the operand is a register def.
2076     if (MO.isReg() && MO.isDef() && MO.getReg() &&
2077         Register::isPhysicalRegister(MO.getReg()) &&
2078         !(MI.isCall() && MO.getReg() == SP)) {
2079       // Remove ranges of all aliased registers.
2080       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
2081         // FIXME: Can we break out of this loop early if no insertion occurs?
2082         DeadRegs.insert(*RAI);
2083     } else if (MO.isRegMask()) {
2084       RegMasks.push_back(MO.getRegMask());
2085       RegMaskPtrs.push_back(&MO);
2086     }
2087   }
2088 
2089   // Tell MLocTracker about all definitions, of regmasks and otherwise.
2090   for (uint32_t DeadReg : DeadRegs)
2091     MTracker->defReg(DeadReg, CurBB, CurInst);
2092 
2093   for (auto *MO : RegMaskPtrs)
2094     MTracker->writeRegMask(MO, CurBB, CurInst);
2095 
2096   if (!TTracker)
2097     return;
2098 
2099   // When committing variable values to locations: tell transfer tracker that
2100   // we've clobbered things. It may be able to recover the variable from a
2101   // different location.
2102 
2103   // Inform TTracker about any direct clobbers.
2104   for (uint32_t DeadReg : DeadRegs) {
2105     LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
2106     TTracker->clobberMloc(Loc, MI.getIterator(), false);
2107   }
2108 
2109   // Look for any clobbers performed by a register mask. Only test locations
2110   // that are actually being tracked.
2111   for (auto L : MTracker->locations()) {
2112     // Stack locations can't be clobbered by regmasks.
2113     if (MTracker->isSpill(L.Idx))
2114       continue;
2115 
2116     Register Reg = MTracker->LocIdxToLocID[L.Idx];
2117     for (auto *MO : RegMaskPtrs)
2118       if (MO->clobbersPhysReg(Reg))
2119         TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
2120   }
2121 }
2122 
2123 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
2124   ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
2125 
2126   MTracker->setReg(DstRegNum, SrcValue);
2127 
2128   // In all circumstances, re-def the super registers. It's definitely a new
2129   // value now. This doesn't uniquely identify the composition of subregs, for
2130   // example, two identical values in subregisters composed in different
2131   // places would not get equal value numbers.
2132   for (MCSuperRegIterator SRI(DstRegNum, TRI); SRI.isValid(); ++SRI)
2133     MTracker->defReg(*SRI, CurBB, CurInst);
2134 
2135   // If we're emulating VarLocBasedImpl, just define all the subregisters.
2136   // DBG_VALUEs of them will expect to be tracked from the DBG_VALUE, not
2137   // through prior copies.
2138   if (EmulateOldLDV) {
2139     for (MCSubRegIndexIterator DRI(DstRegNum, TRI); DRI.isValid(); ++DRI)
2140       MTracker->defReg(DRI.getSubReg(), CurBB, CurInst);
2141     return;
2142   }
2143 
2144   // Otherwise, actually copy subregisters from one location to another.
2145   // XXX: in addition, any subregisters of DstRegNum that don't line up with
2146   // the source register should be def'd.
2147   for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
2148     unsigned SrcSubReg = SRI.getSubReg();
2149     unsigned SubRegIdx = SRI.getSubRegIndex();
2150     unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
2151     if (!DstSubReg)
2152       continue;
2153 
2154     // Do copy. There are two matching subregisters, the source value should
2155     // have been def'd when the super-reg was, the latter might not be tracked
2156     // yet.
2157     // This will force SrcSubReg to be tracked, if it isn't yet.
2158     (void)MTracker->readReg(SrcSubReg);
2159     LocIdx SrcL = MTracker->getRegMLoc(SrcSubReg);
2160     assert(SrcL.asU64());
2161     (void)MTracker->readReg(DstSubReg);
2162     LocIdx DstL = MTracker->getRegMLoc(DstSubReg);
2163     assert(DstL.asU64());
2164     (void)DstL;
2165     ValueIDNum CpyValue = {SrcValue.getBlock(), SrcValue.getInst(), SrcL};
2166 
2167     MTracker->setReg(DstSubReg, CpyValue);
2168   }
2169 }
2170 
2171 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
2172                                           MachineFunction *MF) {
2173   // TODO: Handle multiple stores folded into one.
2174   if (!MI.hasOneMemOperand())
2175     return false;
2176 
2177   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
2178     return false; // This is not a spill instruction, since no valid size was
2179                   // returned from either function.
2180 
2181   return true;
2182 }
2183 
2184 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
2185                                        MachineFunction *MF, unsigned &Reg) {
2186   if (!isSpillInstruction(MI, MF))
2187     return false;
2188 
2189   // XXX FIXME: On x86, isStoreToStackSlotPostFE returns '1' instead of an
2190   // actual register number.
2191   if (ObserveAllStackops) {
2192     int FI;
2193     Reg = TII->isStoreToStackSlotPostFE(MI, FI);
2194     return Reg != 0;
2195   }
2196 
2197   auto isKilledReg = [&](const MachineOperand MO, unsigned &Reg) {
2198     if (!MO.isReg() || !MO.isUse()) {
2199       Reg = 0;
2200       return false;
2201     }
2202     Reg = MO.getReg();
2203     return MO.isKill();
2204   };
2205 
2206   for (const MachineOperand &MO : MI.operands()) {
2207     // In a spill instruction generated by the InlineSpiller the spilled
2208     // register has its kill flag set.
2209     if (isKilledReg(MO, Reg))
2210       return true;
2211     if (Reg != 0) {
2212       // Check whether next instruction kills the spilled register.
2213       // FIXME: Current solution does not cover search for killed register in
2214       // bundles and instructions further down the chain.
2215       auto NextI = std::next(MI.getIterator());
2216       // Skip next instruction that points to basic block end iterator.
2217       if (MI.getParent()->end() == NextI)
2218         continue;
2219       unsigned RegNext;
2220       for (const MachineOperand &MONext : NextI->operands()) {
2221         // Return true if we came across the register from the
2222         // previous spill instruction that is killed in NextI.
2223         if (isKilledReg(MONext, RegNext) && RegNext == Reg)
2224           return true;
2225       }
2226     }
2227   }
2228   // Return false if we didn't find spilled register.
2229   return false;
2230 }
2231 
2232 Optional<SpillLoc>
2233 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
2234                                        MachineFunction *MF, unsigned &Reg) {
2235   if (!MI.hasOneMemOperand())
2236     return None;
2237 
2238   // FIXME: Handle folded restore instructions with more than one memory
2239   // operand.
2240   if (MI.getRestoreSize(TII)) {
2241     Reg = MI.getOperand(0).getReg();
2242     return extractSpillBaseRegAndOffset(MI);
2243   }
2244   return None;
2245 }
2246 
2247 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
2248   // XXX -- it's too difficult to implement VarLocBasedImpl's  stack location
2249   // limitations under the new model. Therefore, when comparing them, compare
2250   // versions that don't attempt spills or restores at all.
2251   if (EmulateOldLDV)
2252     return false;
2253 
2254   MachineFunction *MF = MI.getMF();
2255   unsigned Reg;
2256   Optional<SpillLoc> Loc;
2257 
2258   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
2259 
2260   // First, if there are any DBG_VALUEs pointing at a spill slot that is
2261   // written to, terminate that variable location. The value in memory
2262   // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
2263   if (isSpillInstruction(MI, MF)) {
2264     Loc = extractSpillBaseRegAndOffset(MI);
2265 
2266     if (TTracker) {
2267       Optional<LocIdx> MLoc = MTracker->getSpillMLoc(*Loc);
2268       if (MLoc) {
2269         // Un-set this location before clobbering, so that we don't salvage
2270         // the variable location back to the same place.
2271         MTracker->setMLoc(*MLoc, ValueIDNum::EmptyValue);
2272         TTracker->clobberMloc(*MLoc, MI.getIterator());
2273       }
2274     }
2275   }
2276 
2277   // Try to recognise spill and restore instructions that may transfer a value.
2278   if (isLocationSpill(MI, MF, Reg)) {
2279     Loc = extractSpillBaseRegAndOffset(MI);
2280     auto ValueID = MTracker->readReg(Reg);
2281 
2282     // If the location is empty, produce a phi, signify it's the live-in value.
2283     if (ValueID.getLoc() == 0)
2284       ValueID = {CurBB, 0, MTracker->getRegMLoc(Reg)};
2285 
2286     MTracker->setSpill(*Loc, ValueID);
2287     auto OptSpillLocIdx = MTracker->getSpillMLoc(*Loc);
2288     assert(OptSpillLocIdx && "Spill slot set but has no LocIdx?");
2289     LocIdx SpillLocIdx = *OptSpillLocIdx;
2290 
2291     // Tell TransferTracker about this spill, produce DBG_VALUEs for it.
2292     if (TTracker)
2293       TTracker->transferMlocs(MTracker->getRegMLoc(Reg), SpillLocIdx,
2294                               MI.getIterator());
2295   } else {
2296     if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
2297       return false;
2298 
2299     // Is there a value to be restored?
2300     auto OptValueID = MTracker->readSpill(*Loc);
2301     if (OptValueID) {
2302       ValueIDNum ValueID = *OptValueID;
2303       LocIdx SpillLocIdx = *MTracker->getSpillMLoc(*Loc);
2304       // XXX -- can we recover sub-registers of this value? Until we can, first
2305       // overwrite all defs of the register being restored to.
2306       for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
2307         MTracker->defReg(*RAI, CurBB, CurInst);
2308 
2309       // Now override the reg we're restoring to.
2310       MTracker->setReg(Reg, ValueID);
2311 
2312       // Report this restore to the transfer tracker too.
2313       if (TTracker)
2314         TTracker->transferMlocs(SpillLocIdx, MTracker->getRegMLoc(Reg),
2315                                 MI.getIterator());
2316     } else {
2317       // There isn't anything in the location; not clear if this is a code path
2318       // that still runs. Def this register anyway just in case.
2319       for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
2320         MTracker->defReg(*RAI, CurBB, CurInst);
2321 
2322       // Force the spill slot to be tracked.
2323       LocIdx L = MTracker->getOrTrackSpillLoc(*Loc);
2324 
2325       // Set the restored value to be a machine phi number, signifying that it's
2326       // whatever the spills live-in value is in this block. Definitely has
2327       // a LocIdx due to the setSpill above.
2328       ValueIDNum ValueID = {CurBB, 0, L};
2329       MTracker->setReg(Reg, ValueID);
2330       MTracker->setSpill(*Loc, ValueID);
2331     }
2332   }
2333   return true;
2334 }
2335 
2336 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
2337   auto DestSrc = TII->isCopyInstr(MI);
2338   if (!DestSrc)
2339     return false;
2340 
2341   const MachineOperand *DestRegOp = DestSrc->Destination;
2342   const MachineOperand *SrcRegOp = DestSrc->Source;
2343 
2344   auto isCalleeSavedReg = [&](unsigned Reg) {
2345     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
2346       if (CalleeSavedRegs.test(*RAI))
2347         return true;
2348     return false;
2349   };
2350 
2351   Register SrcReg = SrcRegOp->getReg();
2352   Register DestReg = DestRegOp->getReg();
2353 
2354   // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
2355   if (SrcReg == DestReg)
2356     return true;
2357 
2358   // For emulating VarLocBasedImpl:
2359   // We want to recognize instructions where destination register is callee
2360   // saved register. If register that could be clobbered by the call is
2361   // included, there would be a great chance that it is going to be clobbered
2362   // soon. It is more likely that previous register, which is callee saved, is
2363   // going to stay unclobbered longer, even if it is killed.
2364   //
2365   // For InstrRefBasedImpl, we can track multiple locations per value, so
2366   // ignore this condition.
2367   if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
2368     return false;
2369 
2370   // InstrRefBasedImpl only followed killing copies.
2371   if (EmulateOldLDV && !SrcRegOp->isKill())
2372     return false;
2373 
2374   // Copy MTracker info, including subregs if available.
2375   InstrRefBasedLDV::performCopy(SrcReg, DestReg);
2376 
2377   // Only produce a transfer of DBG_VALUE within a block where old LDV
2378   // would have. We might make use of the additional value tracking in some
2379   // other way, later.
2380   if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
2381     TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
2382                             MTracker->getRegMLoc(DestReg), MI.getIterator());
2383 
2384   // VarLocBasedImpl would quit tracking the old location after copying.
2385   if (EmulateOldLDV && SrcReg != DestReg)
2386     MTracker->defReg(SrcReg, CurBB, CurInst);
2387 
2388   // Finally, the copy might have clobbered variables based on the destination
2389   // register. Tell TTracker about it, in case a backup location exists.
2390   if (TTracker) {
2391     for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
2392       LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
2393       TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false);
2394     }
2395   }
2396 
2397   return true;
2398 }
2399 
2400 /// Accumulate a mapping between each DILocalVariable fragment and other
2401 /// fragments of that DILocalVariable which overlap. This reduces work during
2402 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
2403 /// known-to-overlap fragments are present".
2404 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
2405 ///           fragment usage.
2406 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
2407   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
2408                       MI.getDebugLoc()->getInlinedAt());
2409   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
2410 
2411   // If this is the first sighting of this variable, then we are guaranteed
2412   // there are currently no overlapping fragments either. Initialize the set
2413   // of seen fragments, record no overlaps for the current one, and return.
2414   auto SeenIt = SeenFragments.find(MIVar.getVariable());
2415   if (SeenIt == SeenFragments.end()) {
2416     SmallSet<FragmentInfo, 4> OneFragment;
2417     OneFragment.insert(ThisFragment);
2418     SeenFragments.insert({MIVar.getVariable(), OneFragment});
2419 
2420     OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
2421     return;
2422   }
2423 
2424   // If this particular Variable/Fragment pair already exists in the overlap
2425   // map, it has already been accounted for.
2426   auto IsInOLapMap =
2427       OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
2428   if (!IsInOLapMap.second)
2429     return;
2430 
2431   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
2432   auto &AllSeenFragments = SeenIt->second;
2433 
2434   // Otherwise, examine all other seen fragments for this variable, with "this"
2435   // fragment being a previously unseen fragment. Record any pair of
2436   // overlapping fragments.
2437   for (auto &ASeenFragment : AllSeenFragments) {
2438     // Does this previously seen fragment overlap?
2439     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
2440       // Yes: Mark the current fragment as being overlapped.
2441       ThisFragmentsOverlaps.push_back(ASeenFragment);
2442       // Mark the previously seen fragment as being overlapped by the current
2443       // one.
2444       auto ASeenFragmentsOverlaps =
2445           OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
2446       assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
2447              "Previously seen var fragment has no vector of overlaps");
2448       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
2449     }
2450   }
2451 
2452   AllSeenFragments.insert(ThisFragment);
2453 }
2454 
2455 void InstrRefBasedLDV::process(MachineInstr &MI, ValueIDNum **MLiveOuts,
2456                                ValueIDNum **MLiveIns) {
2457   // Try to interpret an MI as a debug or transfer instruction. Only if it's
2458   // none of these should we interpret it's register defs as new value
2459   // definitions.
2460   if (transferDebugValue(MI))
2461     return;
2462   if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
2463     return;
2464   if (transferDebugPHI(MI))
2465     return;
2466   if (transferRegisterCopy(MI))
2467     return;
2468   if (transferSpillOrRestoreInst(MI))
2469     return;
2470   transferRegisterDef(MI);
2471 }
2472 
2473 void InstrRefBasedLDV::produceMLocTransferFunction(
2474     MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
2475     unsigned MaxNumBlocks) {
2476   // Because we try to optimize around register mask operands by ignoring regs
2477   // that aren't currently tracked, we set up something ugly for later: RegMask
2478   // operands that are seen earlier than the first use of a register, still need
2479   // to clobber that register in the transfer function. But this information
2480   // isn't actively recorded. Instead, we track each RegMask used in each block,
2481   // and accumulated the clobbered but untracked registers in each block into
2482   // the following bitvector. Later, if new values are tracked, we can add
2483   // appropriate clobbers.
2484   SmallVector<BitVector, 32> BlockMasks;
2485   BlockMasks.resize(MaxNumBlocks);
2486 
2487   // Reserve one bit per register for the masks described above.
2488   unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
2489   for (auto &BV : BlockMasks)
2490     BV.resize(TRI->getNumRegs(), true);
2491 
2492   // Step through all instructions and inhale the transfer function.
2493   for (auto &MBB : MF) {
2494     // Object fields that are read by trackers to know where we are in the
2495     // function.
2496     CurBB = MBB.getNumber();
2497     CurInst = 1;
2498 
2499     // Set all machine locations to a PHI value. For transfer function
2500     // production only, this signifies the live-in value to the block.
2501     MTracker->reset();
2502     MTracker->setMPhis(CurBB);
2503 
2504     // Step through each instruction in this block.
2505     for (auto &MI : MBB) {
2506       process(MI);
2507       // Also accumulate fragment map.
2508       if (MI.isDebugValue())
2509         accumulateFragmentMap(MI);
2510 
2511       // Create a map from the instruction number (if present) to the
2512       // MachineInstr and its position.
2513       if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
2514         auto InstrAndPos = std::make_pair(&MI, CurInst);
2515         auto InsertResult =
2516             DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
2517 
2518         // There should never be duplicate instruction numbers.
2519         assert(InsertResult.second);
2520         (void)InsertResult;
2521       }
2522 
2523       ++CurInst;
2524     }
2525 
2526     // Produce the transfer function, a map of machine location to new value. If
2527     // any machine location has the live-in phi value from the start of the
2528     // block, it's live-through and doesn't need recording in the transfer
2529     // function.
2530     for (auto Location : MTracker->locations()) {
2531       LocIdx Idx = Location.Idx;
2532       ValueIDNum &P = Location.Value;
2533       if (P.isPHI() && P.getLoc() == Idx.asU64())
2534         continue;
2535 
2536       // Insert-or-update.
2537       auto &TransferMap = MLocTransfer[CurBB];
2538       auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
2539       if (!Result.second)
2540         Result.first->second = P;
2541     }
2542 
2543     // Accumulate any bitmask operands into the clobberred reg mask for this
2544     // block.
2545     for (auto &P : MTracker->Masks) {
2546       BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
2547     }
2548   }
2549 
2550   // Compute a bitvector of all the registers that are tracked in this block.
2551   const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2552   Register SP = TLI->getStackPointerRegisterToSaveRestore();
2553   BitVector UsedRegs(TRI->getNumRegs());
2554   for (auto Location : MTracker->locations()) {
2555     unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
2556     if (ID >= TRI->getNumRegs() || ID == SP)
2557       continue;
2558     UsedRegs.set(ID);
2559   }
2560 
2561   // Check that any regmask-clobber of a register that gets tracked, is not
2562   // live-through in the transfer function. It needs to be clobbered at the
2563   // very least.
2564   for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
2565     BitVector &BV = BlockMasks[I];
2566     BV.flip();
2567     BV &= UsedRegs;
2568     // This produces all the bits that we clobber, but also use. Check that
2569     // they're all clobbered or at least set in the designated transfer
2570     // elem.
2571     for (unsigned Bit : BV.set_bits()) {
2572       unsigned ID = MTracker->getLocID(Bit, false);
2573       LocIdx Idx = MTracker->LocIDToLocIdx[ID];
2574       auto &TransferMap = MLocTransfer[I];
2575 
2576       // Install a value representing the fact that this location is effectively
2577       // written to in this block. As there's no reserved value, instead use
2578       // a value number that is never generated. Pick the value number for the
2579       // first instruction in the block, def'ing this location, which we know
2580       // this block never used anyway.
2581       ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
2582       auto Result =
2583         TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
2584       if (!Result.second) {
2585         ValueIDNum &ValueID = Result.first->second;
2586         if (ValueID.getBlock() == I && ValueID.isPHI())
2587           // It was left as live-through. Set it to clobbered.
2588           ValueID = NotGeneratedNum;
2589       }
2590     }
2591   }
2592 }
2593 
2594 std::tuple<bool, bool>
2595 InstrRefBasedLDV::mlocJoin(MachineBasicBlock &MBB,
2596                            SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
2597                            ValueIDNum **OutLocs, ValueIDNum *InLocs) {
2598   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2599   bool Changed = false;
2600   bool DowngradeOccurred = false;
2601 
2602   // Collect predecessors that have been visited. Anything that hasn't been
2603   // visited yet is a backedge on the first iteration, and the meet of it's
2604   // lattice value for all locations will be unaffected.
2605   SmallVector<const MachineBasicBlock *, 8> BlockOrders;
2606   for (auto Pred : MBB.predecessors()) {
2607     if (Visited.count(Pred)) {
2608       BlockOrders.push_back(Pred);
2609     }
2610   }
2611 
2612   // Visit predecessors in RPOT order.
2613   auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
2614     return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
2615   };
2616   llvm::sort(BlockOrders, Cmp);
2617 
2618   // Skip entry block.
2619   if (BlockOrders.size() == 0)
2620     return std::tuple<bool, bool>(false, false);
2621 
2622   // Step through all machine locations, then look at each predecessor and
2623   // detect disagreements.
2624   unsigned ThisBlockRPO = BBToOrder.find(&MBB)->second;
2625   for (auto Location : MTracker->locations()) {
2626     LocIdx Idx = Location.Idx;
2627     // Pick out the first predecessors live-out value for this location. It's
2628     // guaranteed to be not a backedge, as we order by RPO.
2629     ValueIDNum BaseVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
2630 
2631     // Some flags for whether there's a disagreement, and whether it's a
2632     // disagreement with a backedge or not.
2633     bool Disagree = false;
2634     bool NonBackEdgeDisagree = false;
2635 
2636     // Loop around everything that wasn't 'base'.
2637     for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
2638       auto *MBB = BlockOrders[I];
2639       if (BaseVal != OutLocs[MBB->getNumber()][Idx.asU64()]) {
2640         // Live-out of a predecessor disagrees with the first predecessor.
2641         Disagree = true;
2642 
2643         // Test whether it's a disagreemnt in the backedges or not.
2644         if (BBToOrder.find(MBB)->second < ThisBlockRPO) // might be self b/e
2645           NonBackEdgeDisagree = true;
2646       }
2647     }
2648 
2649     bool OverRide = false;
2650     if (Disagree && !NonBackEdgeDisagree) {
2651       // Only the backedges disagree. Consider demoting the livein
2652       // lattice value, as per the file level comment. The value we consider
2653       // demoting to is the value that the non-backedge predecessors agree on.
2654       // The order of values is that non-PHIs are \top, a PHI at this block
2655       // \bot, and phis between the two are ordered by their RPO number.
2656       // If there's no agreement, or we've already demoted to this PHI value
2657       // before, replace with a PHI value at this block.
2658 
2659       // Calculate order numbers: zero means normal def, nonzero means RPO
2660       // number.
2661       unsigned BaseBlockRPONum = BBNumToRPO[BaseVal.getBlock()] + 1;
2662       if (!BaseVal.isPHI())
2663         BaseBlockRPONum = 0;
2664 
2665       ValueIDNum &InLocID = InLocs[Idx.asU64()];
2666       unsigned InLocRPONum = BBNumToRPO[InLocID.getBlock()] + 1;
2667       if (!InLocID.isPHI())
2668         InLocRPONum = 0;
2669 
2670       // Should we ignore the disagreeing backedges, and override with the
2671       // value the other predecessors agree on (in "base")?
2672       unsigned ThisBlockRPONum = BBNumToRPO[MBB.getNumber()] + 1;
2673       if (BaseBlockRPONum > InLocRPONum && BaseBlockRPONum < ThisBlockRPONum) {
2674         // Override.
2675         OverRide = true;
2676         DowngradeOccurred = true;
2677       }
2678     }
2679     // else: if we disagree in the non-backedges, then this is definitely
2680     // a control flow merge where different values merge. Make it a PHI.
2681 
2682     // Generate a phi...
2683     ValueIDNum PHI = {(uint64_t)MBB.getNumber(), 0, Idx};
2684     ValueIDNum NewVal = (Disagree && !OverRide) ? PHI : BaseVal;
2685     if (InLocs[Idx.asU64()] != NewVal) {
2686       Changed |= true;
2687       InLocs[Idx.asU64()] = NewVal;
2688     }
2689   }
2690 
2691   // TODO: Reimplement NumInserted and NumRemoved.
2692   return std::tuple<bool, bool>(Changed, DowngradeOccurred);
2693 }
2694 
2695 void InstrRefBasedLDV::mlocDataflow(
2696     ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
2697     SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
2698   std::priority_queue<unsigned int, std::vector<unsigned int>,
2699                       std::greater<unsigned int>>
2700       Worklist, Pending;
2701 
2702   // We track what is on the current and pending worklist to avoid inserting
2703   // the same thing twice. We could avoid this with a custom priority queue,
2704   // but this is probably not worth it.
2705   SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
2706 
2707   // Initialize worklist with every block to be visited.
2708   for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
2709     Worklist.push(I);
2710     OnWorklist.insert(OrderToBB[I]);
2711   }
2712 
2713   MTracker->reset();
2714 
2715   // Set inlocs for entry block -- each as a PHI at the entry block. Represents
2716   // the incoming value to the function.
2717   MTracker->setMPhis(0);
2718   for (auto Location : MTracker->locations())
2719     MInLocs[0][Location.Idx.asU64()] = Location.Value;
2720 
2721   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
2722   while (!Worklist.empty() || !Pending.empty()) {
2723     // Vector for storing the evaluated block transfer function.
2724     SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
2725 
2726     while (!Worklist.empty()) {
2727       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
2728       CurBB = MBB->getNumber();
2729       Worklist.pop();
2730 
2731       // Join the values in all predecessor blocks.
2732       bool InLocsChanged, DowngradeOccurred;
2733       std::tie(InLocsChanged, DowngradeOccurred) =
2734           mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
2735       InLocsChanged |= Visited.insert(MBB).second;
2736 
2737       // If a downgrade occurred, book us in for re-examination on the next
2738       // iteration.
2739       if (DowngradeOccurred && OnPending.insert(MBB).second)
2740         Pending.push(BBToOrder[MBB]);
2741 
2742       // Don't examine transfer function if we've visited this loc at least
2743       // once, and inlocs haven't changed.
2744       if (!InLocsChanged)
2745         continue;
2746 
2747       // Load the current set of live-ins into MLocTracker.
2748       MTracker->loadFromArray(MInLocs[CurBB], CurBB);
2749 
2750       // Each element of the transfer function can be a new def, or a read of
2751       // a live-in value. Evaluate each element, and store to "ToRemap".
2752       ToRemap.clear();
2753       for (auto &P : MLocTransfer[CurBB]) {
2754         if (P.second.getBlock() == CurBB && P.second.isPHI()) {
2755           // This is a movement of whatever was live in. Read it.
2756           ValueIDNum NewID = MTracker->getNumAtPos(P.second.getLoc());
2757           ToRemap.push_back(std::make_pair(P.first, NewID));
2758         } else {
2759           // It's a def. Just set it.
2760           assert(P.second.getBlock() == CurBB);
2761           ToRemap.push_back(std::make_pair(P.first, P.second));
2762         }
2763       }
2764 
2765       // Commit the transfer function changes into mloc tracker, which
2766       // transforms the contents of the MLocTracker into the live-outs.
2767       for (auto &P : ToRemap)
2768         MTracker->setMLoc(P.first, P.second);
2769 
2770       // Now copy out-locs from mloc tracker into out-loc vector, checking
2771       // whether changes have occurred. These changes can have come from both
2772       // the transfer function, and mlocJoin.
2773       bool OLChanged = false;
2774       for (auto Location : MTracker->locations()) {
2775         OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
2776         MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
2777       }
2778 
2779       MTracker->reset();
2780 
2781       // No need to examine successors again if out-locs didn't change.
2782       if (!OLChanged)
2783         continue;
2784 
2785       // All successors should be visited: put any back-edges on the pending
2786       // list for the next dataflow iteration, and any other successors to be
2787       // visited this iteration, if they're not going to be already.
2788       for (auto s : MBB->successors()) {
2789         // Does branching to this successor represent a back-edge?
2790         if (BBToOrder[s] > BBToOrder[MBB]) {
2791           // No: visit it during this dataflow iteration.
2792           if (OnWorklist.insert(s).second)
2793             Worklist.push(BBToOrder[s]);
2794         } else {
2795           // Yes: visit it on the next iteration.
2796           if (OnPending.insert(s).second)
2797             Pending.push(BBToOrder[s]);
2798         }
2799       }
2800     }
2801 
2802     Worklist.swap(Pending);
2803     std::swap(OnPending, OnWorklist);
2804     OnPending.clear();
2805     // At this point, pending must be empty, since it was just the empty
2806     // worklist
2807     assert(Pending.empty() && "Pending should be empty");
2808   }
2809 
2810   // Once all the live-ins don't change on mlocJoin(), we've reached a
2811   // fixedpoint.
2812 }
2813 
2814 bool InstrRefBasedLDV::vlocDowngradeLattice(
2815     const MachineBasicBlock &MBB, const DbgValue &OldLiveInLocation,
2816     const SmallVectorImpl<InValueT> &Values, unsigned CurBlockRPONum) {
2817   // Ranking value preference: see file level comment, the highest rank is
2818   // a plain def, followed by PHI values in reverse post-order. Numerically,
2819   // we assign all defs the rank '0', all PHIs their blocks RPO number plus
2820   // one, and consider the lowest value the highest ranked.
2821   int OldLiveInRank = BBNumToRPO[OldLiveInLocation.ID.getBlock()] + 1;
2822   if (!OldLiveInLocation.ID.isPHI())
2823     OldLiveInRank = 0;
2824 
2825   // Allow any unresolvable conflict to be over-ridden.
2826   if (OldLiveInLocation.Kind == DbgValue::NoVal) {
2827     // Although if it was an unresolvable conflict from _this_ block, then
2828     // all other seeking of downgrades and PHIs must have failed before hand.
2829     if (OldLiveInLocation.BlockNo == (unsigned)MBB.getNumber())
2830       return false;
2831     OldLiveInRank = INT_MIN;
2832   }
2833 
2834   auto &InValue = *Values[0].second;
2835 
2836   if (InValue.Kind == DbgValue::Const || InValue.Kind == DbgValue::NoVal)
2837     return false;
2838 
2839   unsigned ThisRPO = BBNumToRPO[InValue.ID.getBlock()];
2840   int ThisRank = ThisRPO + 1;
2841   if (!InValue.ID.isPHI())
2842     ThisRank = 0;
2843 
2844   // Too far down the lattice?
2845   if (ThisRPO >= CurBlockRPONum)
2846     return false;
2847 
2848   // Higher in the lattice than what we've already explored?
2849   if (ThisRank <= OldLiveInRank)
2850     return false;
2851 
2852   return true;
2853 }
2854 
2855 std::tuple<Optional<ValueIDNum>, bool> InstrRefBasedLDV::pickVPHILoc(
2856     MachineBasicBlock &MBB, const DebugVariable &Var, const LiveIdxT &LiveOuts,
2857     ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
2858     const SmallVectorImpl<MachineBasicBlock *> &BlockOrders) {
2859   // Collect a set of locations from predecessor where its live-out value can
2860   // be found.
2861   SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
2862   unsigned NumLocs = MTracker->getNumLocs();
2863   unsigned BackEdgesStart = 0;
2864 
2865   for (auto p : BlockOrders) {
2866     // Pick out where backedges start in the list of predecessors. Relies on
2867     // BlockOrders being sorted by RPO.
2868     if (BBToOrder[p] < BBToOrder[&MBB])
2869       ++BackEdgesStart;
2870 
2871     // For each predecessor, create a new set of locations.
2872     Locs.resize(Locs.size() + 1);
2873     unsigned ThisBBNum = p->getNumber();
2874     auto LiveOutMap = LiveOuts.find(p);
2875     if (LiveOutMap == LiveOuts.end())
2876       // This predecessor isn't in scope, it must have no live-in/live-out
2877       // locations.
2878       continue;
2879 
2880     auto It = LiveOutMap->second->find(Var);
2881     if (It == LiveOutMap->second->end())
2882       // There's no value recorded for this variable in this predecessor,
2883       // leave an empty set of locations.
2884       continue;
2885 
2886     const DbgValue &OutVal = It->second;
2887 
2888     if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
2889       // Consts and no-values cannot have locations we can join on.
2890       continue;
2891 
2892     assert(OutVal.Kind == DbgValue::Proposed || OutVal.Kind == DbgValue::Def);
2893     ValueIDNum ValToLookFor = OutVal.ID;
2894 
2895     // Search the live-outs of the predecessor for the specified value.
2896     for (unsigned int I = 0; I < NumLocs; ++I) {
2897       if (MOutLocs[ThisBBNum][I] == ValToLookFor)
2898         Locs.back().push_back(LocIdx(I));
2899     }
2900   }
2901 
2902   // If there were no locations at all, return an empty result.
2903   if (Locs.empty())
2904     return std::tuple<Optional<ValueIDNum>, bool>(None, false);
2905 
2906   // Lambda for seeking a common location within a range of location-sets.
2907   using LocsIt = SmallVector<SmallVector<LocIdx, 4>, 8>::iterator;
2908   auto SeekLocation =
2909       [&Locs](llvm::iterator_range<LocsIt> SearchRange) -> Optional<LocIdx> {
2910     // Starting with the first set of locations, take the intersection with
2911     // subsequent sets.
2912     SmallVector<LocIdx, 4> base = Locs[0];
2913     for (auto &S : SearchRange) {
2914       SmallVector<LocIdx, 4> new_base;
2915       std::set_intersection(base.begin(), base.end(), S.begin(), S.end(),
2916                             std::inserter(new_base, new_base.begin()));
2917       base = new_base;
2918     }
2919     if (base.empty())
2920       return None;
2921 
2922     // We now have a set of LocIdxes that contain the right output value in
2923     // each of the predecessors. Pick the lowest; if there's a register loc,
2924     // that'll be it.
2925     return *base.begin();
2926   };
2927 
2928   // Search for a common location for all predecessors. If we can't, then fall
2929   // back to only finding a common location between non-backedge predecessors.
2930   bool ValidForAllLocs = true;
2931   auto TheLoc = SeekLocation(Locs);
2932   if (!TheLoc) {
2933     ValidForAllLocs = false;
2934     TheLoc =
2935         SeekLocation(make_range(Locs.begin(), Locs.begin() + BackEdgesStart));
2936   }
2937 
2938   if (!TheLoc)
2939     return std::tuple<Optional<ValueIDNum>, bool>(None, false);
2940 
2941   // Return a PHI-value-number for the found location.
2942   LocIdx L = *TheLoc;
2943   ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
2944   return std::tuple<Optional<ValueIDNum>, bool>(PHIVal, ValidForAllLocs);
2945 }
2946 
2947 std::tuple<bool, bool> InstrRefBasedLDV::vlocJoin(
2948     MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs,
2949     SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, unsigned BBNum,
2950     const SmallSet<DebugVariable, 4> &AllVars, ValueIDNum **MOutLocs,
2951     ValueIDNum **MInLocs,
2952     SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
2953     SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
2954     DenseMap<DebugVariable, DbgValue> &InLocsT) {
2955   bool DowngradeOccurred = false;
2956 
2957   // To emulate VarLocBasedImpl, process this block if it's not in scope but
2958   // _does_ assign a variable value. No live-ins for this scope are transferred
2959   // in though, so we can return immediately.
2960   if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB)) {
2961     if (VLOCVisited)
2962       return std::tuple<bool, bool>(true, false);
2963     return std::tuple<bool, bool>(false, false);
2964   }
2965 
2966   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2967   bool Changed = false;
2968 
2969   // Find any live-ins computed in a prior iteration.
2970   auto ILSIt = VLOCInLocs.find(&MBB);
2971   assert(ILSIt != VLOCInLocs.end());
2972   auto &ILS = *ILSIt->second;
2973 
2974   // Order predecessors by RPOT order, for exploring them in that order.
2975   SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
2976 
2977   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2978     return BBToOrder[A] < BBToOrder[B];
2979   };
2980 
2981   llvm::sort(BlockOrders, Cmp);
2982 
2983   unsigned CurBlockRPONum = BBToOrder[&MBB];
2984 
2985   // Force a re-visit to loop heads in the first dataflow iteration.
2986   // FIXME: if we could "propose" Const values this wouldn't be needed,
2987   // because they'd need to be confirmed before being emitted.
2988   if (!BlockOrders.empty() &&
2989       BBToOrder[BlockOrders[BlockOrders.size() - 1]] >= CurBlockRPONum &&
2990       VLOCVisited)
2991     DowngradeOccurred = true;
2992 
2993   auto ConfirmValue = [&InLocsT](const DebugVariable &DV, DbgValue VR) {
2994     auto Result = InLocsT.insert(std::make_pair(DV, VR));
2995     (void)Result;
2996     assert(Result.second);
2997   };
2998 
2999   auto ConfirmNoVal = [&ConfirmValue, &MBB](const DebugVariable &Var, const DbgValueProperties &Properties) {
3000     DbgValue NoLocPHIVal(MBB.getNumber(), Properties, DbgValue::NoVal);
3001 
3002     ConfirmValue(Var, NoLocPHIVal);
3003   };
3004 
3005   // Attempt to join the values for each variable.
3006   for (auto &Var : AllVars) {
3007     // Collect all the DbgValues for this variable.
3008     SmallVector<InValueT, 8> Values;
3009     bool Bail = false;
3010     unsigned BackEdgesStart = 0;
3011     for (auto p : BlockOrders) {
3012       // If the predecessor isn't in scope / to be explored, we'll never be
3013       // able to join any locations.
3014       if (!BlocksToExplore.contains(p)) {
3015         Bail = true;
3016         break;
3017       }
3018 
3019       // Don't attempt to handle unvisited predecessors: they're implicitly
3020       // "unknown"s in the lattice.
3021       if (VLOCVisited && !VLOCVisited->count(p))
3022         continue;
3023 
3024       // If the predecessors OutLocs is absent, there's not much we can do.
3025       auto OL = VLOCOutLocs.find(p);
3026       if (OL == VLOCOutLocs.end()) {
3027         Bail = true;
3028         break;
3029       }
3030 
3031       // No live-out value for this predecessor also means we can't produce
3032       // a joined value.
3033       auto VIt = OL->second->find(Var);
3034       if (VIt == OL->second->end()) {
3035         Bail = true;
3036         break;
3037       }
3038 
3039       // Keep track of where back-edges begin in the Values vector. Relies on
3040       // BlockOrders being sorted by RPO.
3041       unsigned ThisBBRPONum = BBToOrder[p];
3042       if (ThisBBRPONum < CurBlockRPONum)
3043         ++BackEdgesStart;
3044 
3045       Values.push_back(std::make_pair(p, &VIt->second));
3046     }
3047 
3048     // If there were no values, or one of the predecessors couldn't have a
3049     // value, then give up immediately. It's not safe to produce a live-in
3050     // value.
3051     if (Bail || Values.size() == 0)
3052       continue;
3053 
3054     // Enumeration identifying the current state of the predecessors values.
3055     enum {
3056       Unset = 0,
3057       Agreed,       // All preds agree on the variable value.
3058       PropDisagree, // All preds agree, but the value kind is Proposed in some.
3059       BEDisagree,   // Only back-edges disagree on variable value.
3060       PHINeeded,    // Non-back-edge predecessors have conflicing values.
3061       NoSolution    // Conflicting Value metadata makes solution impossible.
3062     } OurState = Unset;
3063 
3064     // All (non-entry) blocks have at least one non-backedge predecessor.
3065     // Pick the variable value from the first of these, to compare against
3066     // all others.
3067     const DbgValue &FirstVal = *Values[0].second;
3068     const ValueIDNum &FirstID = FirstVal.ID;
3069 
3070     // Scan for variable values that can't be resolved: if they have different
3071     // DIExpressions, different indirectness, or are mixed constants /
3072     // non-constants.
3073     for (auto &V : Values) {
3074       if (V.second->Properties != FirstVal.Properties)
3075         OurState = NoSolution;
3076       if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
3077         OurState = NoSolution;
3078     }
3079 
3080     // Flags diagnosing _how_ the values disagree.
3081     bool NonBackEdgeDisagree = false;
3082     bool DisagreeOnPHINess = false;
3083     bool IDDisagree = false;
3084     bool Disagree = false;
3085     if (OurState == Unset) {
3086       for (auto &V : Values) {
3087         if (*V.second == FirstVal)
3088           continue; // No disagreement.
3089 
3090         Disagree = true;
3091 
3092         // Flag whether the value number actually diagrees.
3093         if (V.second->ID != FirstID)
3094           IDDisagree = true;
3095 
3096         // Distinguish whether disagreement happens in backedges or not.
3097         // Relies on Values (and BlockOrders) being sorted by RPO.
3098         unsigned ThisBBRPONum = BBToOrder[V.first];
3099         if (ThisBBRPONum < CurBlockRPONum)
3100           NonBackEdgeDisagree = true;
3101 
3102         // Is there a difference in whether the value is definite or only
3103         // proposed?
3104         if (V.second->Kind != FirstVal.Kind &&
3105             (V.second->Kind == DbgValue::Proposed ||
3106              V.second->Kind == DbgValue::Def) &&
3107             (FirstVal.Kind == DbgValue::Proposed ||
3108              FirstVal.Kind == DbgValue::Def))
3109           DisagreeOnPHINess = true;
3110       }
3111 
3112       // Collect those flags together and determine an overall state for
3113       // what extend the predecessors agree on a live-in value.
3114       if (!Disagree)
3115         OurState = Agreed;
3116       else if (!IDDisagree && DisagreeOnPHINess)
3117         OurState = PropDisagree;
3118       else if (!NonBackEdgeDisagree)
3119         OurState = BEDisagree;
3120       else
3121         OurState = PHINeeded;
3122     }
3123 
3124     // An extra indicator: if we only disagree on whether the value is a
3125     // Def, or proposed, then also flag whether that disagreement happens
3126     // in backedges only.
3127     bool PropOnlyInBEs = Disagree && !IDDisagree && DisagreeOnPHINess &&
3128                          !NonBackEdgeDisagree && FirstVal.Kind == DbgValue::Def;
3129 
3130     const auto &Properties = FirstVal.Properties;
3131 
3132     auto OldLiveInIt = ILS.find(Var);
3133     const DbgValue *OldLiveInLocation =
3134         (OldLiveInIt != ILS.end()) ? &OldLiveInIt->second : nullptr;
3135 
3136     bool OverRide = false;
3137     if (OurState == BEDisagree && OldLiveInLocation) {
3138       // Only backedges disagree: we can consider downgrading. If there was a
3139       // previous live-in value, use it to work out whether the current
3140       // incoming value represents a lattice downgrade or not.
3141       OverRide =
3142           vlocDowngradeLattice(MBB, *OldLiveInLocation, Values, CurBlockRPONum);
3143     }
3144 
3145     // Use the current state of predecessor agreement and other flags to work
3146     // out what to do next. Possibilities include:
3147     //  * Accept a value all predecessors agree on, or accept one that
3148     //    represents a step down the exploration lattice,
3149     //  * Use a PHI value number, if one can be found,
3150     //  * Propose a PHI value number, and see if it gets confirmed later,
3151     //  * Emit a 'NoVal' value, indicating we couldn't resolve anything.
3152     if (OurState == Agreed) {
3153       // Easiest solution: all predecessors agree on the variable value.
3154       ConfirmValue(Var, FirstVal);
3155     } else if (OurState == BEDisagree && OverRide) {
3156       // Only backedges disagree, and the other predecessors have produced
3157       // a new live-in value further down the exploration lattice.
3158       DowngradeOccurred = true;
3159       ConfirmValue(Var, FirstVal);
3160     } else if (OurState == PropDisagree) {
3161       // Predecessors agree on value, but some say it's only a proposed value.
3162       // Propagate it as proposed: unless it was proposed in this block, in
3163       // which case we're able to confirm the value.
3164       if (FirstID.getBlock() == (uint64_t)MBB.getNumber() && FirstID.isPHI()) {
3165         ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def));
3166       } else if (PropOnlyInBEs) {
3167         // If only backedges disagree, a higher (in RPO) block confirmed this
3168         // location, and we need to propagate it into this loop.
3169         ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def));
3170       } else {
3171         // Otherwise; a Def meeting a Proposed is still a Proposed.
3172         ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Proposed));
3173       }
3174     } else if ((OurState == PHINeeded || OurState == BEDisagree)) {
3175       // Predecessors disagree and can't be downgraded: this can only be
3176       // solved with a PHI. Use pickVPHILoc to go look for one.
3177       Optional<ValueIDNum> VPHI;
3178       bool AllEdgesVPHI = false;
3179       std::tie(VPHI, AllEdgesVPHI) =
3180           pickVPHILoc(MBB, Var, VLOCOutLocs, MOutLocs, MInLocs, BlockOrders);
3181 
3182       if (VPHI && AllEdgesVPHI) {
3183         // There's a PHI value that's valid for all predecessors -- we can use
3184         // it. If any of the non-backedge predecessors have proposed values
3185         // though, this PHI is also only proposed, until the predecessors are
3186         // confirmed.
3187         DbgValue::KindT K = DbgValue::Def;
3188         for (unsigned int I = 0; I < BackEdgesStart; ++I)
3189           if (Values[I].second->Kind == DbgValue::Proposed)
3190             K = DbgValue::Proposed;
3191 
3192         ConfirmValue(Var, DbgValue(*VPHI, Properties, K));
3193       } else if (VPHI) {
3194         // There's a PHI value, but it's only legal for backedges. Leave this
3195         // as a proposed PHI value: it might come back on the backedges,
3196         // and allow us to confirm it in the future.
3197         DbgValue NoBEValue = DbgValue(*VPHI, Properties, DbgValue::Proposed);
3198         ConfirmValue(Var, NoBEValue);
3199       } else {
3200         ConfirmNoVal(Var, Properties);
3201       }
3202     } else {
3203       // Otherwise: we don't know. Emit a "phi but no real loc" phi.
3204       ConfirmNoVal(Var, Properties);
3205     }
3206   }
3207 
3208   // Store newly calculated in-locs into VLOCInLocs, if they've changed.
3209   Changed = ILS != InLocsT;
3210   if (Changed)
3211     ILS = InLocsT;
3212 
3213   return std::tuple<bool, bool>(Changed, DowngradeOccurred);
3214 }
3215 
3216 void InstrRefBasedLDV::vlocDataflow(
3217     const LexicalScope *Scope, const DILocation *DILoc,
3218     const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
3219     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
3220     ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
3221     SmallVectorImpl<VLocTracker> &AllTheVLocs) {
3222   // This method is much like mlocDataflow: but focuses on a single
3223   // LexicalScope at a time. Pick out a set of blocks and variables that are
3224   // to have their value assignments solved, then run our dataflow algorithm
3225   // until a fixedpoint is reached.
3226   std::priority_queue<unsigned int, std::vector<unsigned int>,
3227                       std::greater<unsigned int>>
3228       Worklist, Pending;
3229   SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
3230 
3231   // The set of blocks we'll be examining.
3232   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
3233 
3234   // The order in which to examine them (RPO).
3235   SmallVector<MachineBasicBlock *, 8> BlockOrders;
3236 
3237   // RPO ordering function.
3238   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3239     return BBToOrder[A] < BBToOrder[B];
3240   };
3241 
3242   LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
3243 
3244   // A separate container to distinguish "blocks we're exploring" versus
3245   // "blocks that are potentially in scope. See comment at start of vlocJoin.
3246   SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore;
3247 
3248   // Old LiveDebugValues tracks variable locations that come out of blocks
3249   // not in scope, where DBG_VALUEs occur. This is something we could
3250   // legitimately ignore, but lets allow it for now.
3251   if (EmulateOldLDV)
3252     BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
3253 
3254   // We also need to propagate variable values through any artificial blocks
3255   // that immediately follow blocks in scope.
3256   DenseSet<const MachineBasicBlock *> ToAdd;
3257 
3258   // Helper lambda: For a given block in scope, perform a depth first search
3259   // of all the artificial successors, adding them to the ToAdd collection.
3260   auto AccumulateArtificialBlocks =
3261       [this, &ToAdd, &BlocksToExplore,
3262        &InScopeBlocks](const MachineBasicBlock *MBB) {
3263         // Depth-first-search state: each node is a block and which successor
3264         // we're currently exploring.
3265         SmallVector<std::pair<const MachineBasicBlock *,
3266                               MachineBasicBlock::const_succ_iterator>,
3267                     8>
3268             DFS;
3269 
3270         // Find any artificial successors not already tracked.
3271         for (auto *succ : MBB->successors()) {
3272           if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ))
3273             continue;
3274           if (!ArtificialBlocks.count(succ))
3275             continue;
3276           DFS.push_back(std::make_pair(succ, succ->succ_begin()));
3277           ToAdd.insert(succ);
3278         }
3279 
3280         // Search all those blocks, depth first.
3281         while (!DFS.empty()) {
3282           const MachineBasicBlock *CurBB = DFS.back().first;
3283           MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
3284           // Walk back if we've explored this blocks successors to the end.
3285           if (CurSucc == CurBB->succ_end()) {
3286             DFS.pop_back();
3287             continue;
3288           }
3289 
3290           // If the current successor is artificial and unexplored, descend into
3291           // it.
3292           if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
3293             DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin()));
3294             ToAdd.insert(*CurSucc);
3295             continue;
3296           }
3297 
3298           ++CurSucc;
3299         }
3300       };
3301 
3302   // Search in-scope blocks and those containing a DBG_VALUE from this scope
3303   // for artificial successors.
3304   for (auto *MBB : BlocksToExplore)
3305     AccumulateArtificialBlocks(MBB);
3306   for (auto *MBB : InScopeBlocks)
3307     AccumulateArtificialBlocks(MBB);
3308 
3309   BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
3310   InScopeBlocks.insert(ToAdd.begin(), ToAdd.end());
3311 
3312   // Single block scope: not interesting! No propagation at all. Note that
3313   // this could probably go above ArtificialBlocks without damage, but
3314   // that then produces output differences from original-live-debug-values,
3315   // which propagates from a single block into many artificial ones.
3316   if (BlocksToExplore.size() == 1)
3317     return;
3318 
3319   // Picks out relevants blocks RPO order and sort them.
3320   for (auto *MBB : BlocksToExplore)
3321     BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
3322 
3323   llvm::sort(BlockOrders, Cmp);
3324   unsigned NumBlocks = BlockOrders.size();
3325 
3326   // Allocate some vectors for storing the live ins and live outs. Large.
3327   SmallVector<DenseMap<DebugVariable, DbgValue>, 32> LiveIns, LiveOuts;
3328   LiveIns.resize(NumBlocks);
3329   LiveOuts.resize(NumBlocks);
3330 
3331   // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
3332   // vlocJoin.
3333   LiveIdxT LiveOutIdx, LiveInIdx;
3334   LiveOutIdx.reserve(NumBlocks);
3335   LiveInIdx.reserve(NumBlocks);
3336   for (unsigned I = 0; I < NumBlocks; ++I) {
3337     LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
3338     LiveInIdx[BlockOrders[I]] = &LiveIns[I];
3339   }
3340 
3341   for (auto *MBB : BlockOrders) {
3342     Worklist.push(BBToOrder[MBB]);
3343     OnWorklist.insert(MBB);
3344   }
3345 
3346   // Iterate over all the blocks we selected, propagating variable values.
3347   bool FirstTrip = true;
3348   SmallPtrSet<const MachineBasicBlock *, 16> VLOCVisited;
3349   while (!Worklist.empty() || !Pending.empty()) {
3350     while (!Worklist.empty()) {
3351       auto *MBB = OrderToBB[Worklist.top()];
3352       CurBB = MBB->getNumber();
3353       Worklist.pop();
3354 
3355       DenseMap<DebugVariable, DbgValue> JoinedInLocs;
3356 
3357       // Join values from predecessors. Updates LiveInIdx, and writes output
3358       // into JoinedInLocs.
3359       bool InLocsChanged, DowngradeOccurred;
3360       std::tie(InLocsChanged, DowngradeOccurred) = vlocJoin(
3361           *MBB, LiveOutIdx, LiveInIdx, (FirstTrip) ? &VLOCVisited : nullptr,
3362           CurBB, VarsWeCareAbout, MOutLocs, MInLocs, InScopeBlocks,
3363           BlocksToExplore, JoinedInLocs);
3364 
3365       bool FirstVisit = VLOCVisited.insert(MBB).second;
3366 
3367       // Always explore transfer function if inlocs changed, or if we've not
3368       // visited this block before.
3369       InLocsChanged |= FirstVisit;
3370 
3371       // If a downgrade occurred, book us in for re-examination on the next
3372       // iteration.
3373       if (DowngradeOccurred && OnPending.insert(MBB).second)
3374         Pending.push(BBToOrder[MBB]);
3375 
3376       if (!InLocsChanged)
3377         continue;
3378 
3379       // Do transfer function.
3380       auto &VTracker = AllTheVLocs[MBB->getNumber()];
3381       for (auto &Transfer : VTracker.Vars) {
3382         // Is this var we're mangling in this scope?
3383         if (VarsWeCareAbout.count(Transfer.first)) {
3384           // Erase on empty transfer (DBG_VALUE $noreg).
3385           if (Transfer.second.Kind == DbgValue::Undef) {
3386             JoinedInLocs.erase(Transfer.first);
3387           } else {
3388             // Insert new variable value; or overwrite.
3389             auto NewValuePair = std::make_pair(Transfer.first, Transfer.second);
3390             auto Result = JoinedInLocs.insert(NewValuePair);
3391             if (!Result.second)
3392               Result.first->second = Transfer.second;
3393           }
3394         }
3395       }
3396 
3397       // Did the live-out locations change?
3398       bool OLChanged = JoinedInLocs != *LiveOutIdx[MBB];
3399 
3400       // If they haven't changed, there's no need to explore further.
3401       if (!OLChanged)
3402         continue;
3403 
3404       // Commit to the live-out record.
3405       *LiveOutIdx[MBB] = JoinedInLocs;
3406 
3407       // We should visit all successors. Ensure we'll visit any non-backedge
3408       // successors during this dataflow iteration; book backedge successors
3409       // to be visited next time around.
3410       for (auto s : MBB->successors()) {
3411         // Ignore out of scope / not-to-be-explored successors.
3412         if (LiveInIdx.find(s) == LiveInIdx.end())
3413           continue;
3414 
3415         if (BBToOrder[s] > BBToOrder[MBB]) {
3416           if (OnWorklist.insert(s).second)
3417             Worklist.push(BBToOrder[s]);
3418         } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
3419           Pending.push(BBToOrder[s]);
3420         }
3421       }
3422     }
3423     Worklist.swap(Pending);
3424     std::swap(OnWorklist, OnPending);
3425     OnPending.clear();
3426     assert(Pending.empty());
3427     FirstTrip = false;
3428   }
3429 
3430   // Dataflow done. Now what? Save live-ins. Ignore any that are still marked
3431   // as being variable-PHIs, because those did not have their machine-PHI
3432   // value confirmed. Such variable values are places that could have been
3433   // PHIs, but are not.
3434   for (auto *MBB : BlockOrders) {
3435     auto &VarMap = *LiveInIdx[MBB];
3436     for (auto &P : VarMap) {
3437       if (P.second.Kind == DbgValue::Proposed ||
3438           P.second.Kind == DbgValue::NoVal)
3439         continue;
3440       Output[MBB->getNumber()].push_back(P);
3441     }
3442   }
3443 
3444   BlockOrders.clear();
3445   BlocksToExplore.clear();
3446 }
3447 
3448 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3449 void InstrRefBasedLDV::dump_mloc_transfer(
3450     const MLocTransferMap &mloc_transfer) const {
3451   for (auto &P : mloc_transfer) {
3452     std::string foo = MTracker->LocIdxToName(P.first);
3453     std::string bar = MTracker->IDAsString(P.second);
3454     dbgs() << "Loc " << foo << " --> " << bar << "\n";
3455   }
3456 }
3457 #endif
3458 
3459 void InstrRefBasedLDV::emitLocations(
3460     MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MOutLocs,
3461     ValueIDNum **MInLocs, DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
3462     const TargetPassConfig &TPC) {
3463   TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC);
3464   unsigned NumLocs = MTracker->getNumLocs();
3465 
3466   // For each block, load in the machine value locations and variable value
3467   // live-ins, then step through each instruction in the block. New DBG_VALUEs
3468   // to be inserted will be created along the way.
3469   for (MachineBasicBlock &MBB : MF) {
3470     unsigned bbnum = MBB.getNumber();
3471     MTracker->reset();
3472     MTracker->loadFromArray(MInLocs[bbnum], bbnum);
3473     TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()],
3474                          NumLocs);
3475 
3476     CurBB = bbnum;
3477     CurInst = 1;
3478     for (auto &MI : MBB) {
3479       process(MI, MOutLocs, MInLocs);
3480       TTracker->checkInstForNewValues(CurInst, MI.getIterator());
3481       ++CurInst;
3482     }
3483   }
3484 
3485   // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer
3486   // in DWARF in different orders. Use the order that they appear when walking
3487   // through each block / each instruction, stored in AllVarsNumbering.
3488   auto OrderDbgValues = [&](const MachineInstr *A,
3489                             const MachineInstr *B) -> bool {
3490     DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(),
3491                        A->getDebugLoc()->getInlinedAt());
3492     DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(),
3493                        B->getDebugLoc()->getInlinedAt());
3494     return AllVarsNumbering.find(VarA)->second <
3495            AllVarsNumbering.find(VarB)->second;
3496   };
3497 
3498   // Go through all the transfers recorded in the TransferTracker -- this is
3499   // both the live-ins to a block, and any movements of values that happen
3500   // in the middle.
3501   for (auto &P : TTracker->Transfers) {
3502     // Sort them according to appearance order.
3503     llvm::sort(P.Insts, OrderDbgValues);
3504     // Insert either before or after the designated point...
3505     if (P.MBB) {
3506       MachineBasicBlock &MBB = *P.MBB;
3507       for (auto *MI : P.Insts) {
3508         MBB.insert(P.Pos, MI);
3509       }
3510     } else {
3511       // Terminators, like tail calls, can clobber things. Don't try and place
3512       // transfers after them.
3513       if (P.Pos->isTerminator())
3514         continue;
3515 
3516       MachineBasicBlock &MBB = *P.Pos->getParent();
3517       for (auto *MI : P.Insts) {
3518         MBB.insertAfterBundle(P.Pos, MI);
3519       }
3520     }
3521   }
3522 }
3523 
3524 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
3525   // Build some useful data structures.
3526   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
3527     if (const DebugLoc &DL = MI.getDebugLoc())
3528       return DL.getLine() != 0;
3529     return false;
3530   };
3531   // Collect a set of all the artificial blocks.
3532   for (auto &MBB : MF)
3533     if (none_of(MBB.instrs(), hasNonArtificialLocation))
3534       ArtificialBlocks.insert(&MBB);
3535 
3536   // Compute mappings of block <=> RPO order.
3537   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
3538   unsigned int RPONumber = 0;
3539   for (MachineBasicBlock *MBB : RPOT) {
3540     OrderToBB[RPONumber] = MBB;
3541     BBToOrder[MBB] = RPONumber;
3542     BBNumToRPO[MBB->getNumber()] = RPONumber;
3543     ++RPONumber;
3544   }
3545 }
3546 
3547 /// Calculate the liveness information for the given machine function and
3548 /// extend ranges across basic blocks.
3549 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
3550                                     TargetPassConfig *TPC) {
3551   // No subprogram means this function contains no debuginfo.
3552   if (!MF.getFunction().getSubprogram())
3553     return false;
3554 
3555   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
3556   this->TPC = TPC;
3557 
3558   TRI = MF.getSubtarget().getRegisterInfo();
3559   TII = MF.getSubtarget().getInstrInfo();
3560   TFI = MF.getSubtarget().getFrameLowering();
3561   TFI->getCalleeSaves(MF, CalleeSavedRegs);
3562   MFI = &MF.getFrameInfo();
3563   LS.initialize(MF);
3564 
3565   MTracker =
3566       new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
3567   VTracker = nullptr;
3568   TTracker = nullptr;
3569 
3570   SmallVector<MLocTransferMap, 32> MLocTransfer;
3571   SmallVector<VLocTracker, 8> vlocs;
3572   LiveInsT SavedLiveIns;
3573 
3574   int MaxNumBlocks = -1;
3575   for (auto &MBB : MF)
3576     MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
3577   assert(MaxNumBlocks >= 0);
3578   ++MaxNumBlocks;
3579 
3580   MLocTransfer.resize(MaxNumBlocks);
3581   vlocs.resize(MaxNumBlocks);
3582   SavedLiveIns.resize(MaxNumBlocks);
3583 
3584   initialSetup(MF);
3585 
3586   produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
3587 
3588   // Allocate and initialize two array-of-arrays for the live-in and live-out
3589   // machine values. The outer dimension is the block number; while the inner
3590   // dimension is a LocIdx from MLocTracker.
3591   ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks];
3592   ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks];
3593   unsigned NumLocs = MTracker->getNumLocs();
3594   for (int i = 0; i < MaxNumBlocks; ++i) {
3595     MOutLocs[i] = new ValueIDNum[NumLocs];
3596     MInLocs[i] = new ValueIDNum[NumLocs];
3597   }
3598 
3599   // Solve the machine value dataflow problem using the MLocTransfer function,
3600   // storing the computed live-ins / live-outs into the array-of-arrays. We use
3601   // both live-ins and live-outs for decision making in the variable value
3602   // dataflow problem.
3603   mlocDataflow(MInLocs, MOutLocs, MLocTransfer);
3604 
3605   // Patch up debug phi numbers, turning unknown block-live-in values into
3606   // either live-through machine values, or PHIs.
3607   for (auto &DBG_PHI : DebugPHINumToValue) {
3608     // Identify unresolved block-live-ins.
3609     ValueIDNum &Num = DBG_PHI.ValueRead;
3610     if (!Num.isPHI())
3611       continue;
3612 
3613     unsigned BlockNo = Num.getBlock();
3614     LocIdx LocNo = Num.getLoc();
3615     Num = MInLocs[BlockNo][LocNo.asU64()];
3616   }
3617   // Later, we'll be looking up ranges of instruction numbers.
3618   llvm::sort(DebugPHINumToValue);
3619 
3620   // Walk back through each block / instruction, collecting DBG_VALUE
3621   // instructions and recording what machine value their operands refer to.
3622   for (auto &OrderPair : OrderToBB) {
3623     MachineBasicBlock &MBB = *OrderPair.second;
3624     CurBB = MBB.getNumber();
3625     VTracker = &vlocs[CurBB];
3626     VTracker->MBB = &MBB;
3627     MTracker->loadFromArray(MInLocs[CurBB], CurBB);
3628     CurInst = 1;
3629     for (auto &MI : MBB) {
3630       process(MI, MOutLocs, MInLocs);
3631       ++CurInst;
3632     }
3633     MTracker->reset();
3634   }
3635 
3636   // Number all variables in the order that they appear, to be used as a stable
3637   // insertion order later.
3638   DenseMap<DebugVariable, unsigned> AllVarsNumbering;
3639 
3640   // Map from one LexicalScope to all the variables in that scope.
3641   DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars;
3642 
3643   // Map from One lexical scope to all blocks in that scope.
3644   DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>
3645       ScopeToBlocks;
3646 
3647   // Store a DILocation that describes a scope.
3648   DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation;
3649 
3650   // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
3651   // the order is unimportant, it just has to be stable.
3652   for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
3653     auto *MBB = OrderToBB[I];
3654     auto *VTracker = &vlocs[MBB->getNumber()];
3655     // Collect each variable with a DBG_VALUE in this block.
3656     for (auto &idx : VTracker->Vars) {
3657       const auto &Var = idx.first;
3658       const DILocation *ScopeLoc = VTracker->Scopes[Var];
3659       assert(ScopeLoc != nullptr);
3660       auto *Scope = LS.findLexicalScope(ScopeLoc);
3661 
3662       // No insts in scope -> shouldn't have been recorded.
3663       assert(Scope != nullptr);
3664 
3665       AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
3666       ScopeToVars[Scope].insert(Var);
3667       ScopeToBlocks[Scope].insert(VTracker->MBB);
3668       ScopeToDILocation[Scope] = ScopeLoc;
3669     }
3670   }
3671 
3672   // OK. Iterate over scopes: there might be something to be said for
3673   // ordering them by size/locality, but that's for the future. For each scope,
3674   // solve the variable value problem, producing a map of variables to values
3675   // in SavedLiveIns.
3676   for (auto &P : ScopeToVars) {
3677     vlocDataflow(P.first, ScopeToDILocation[P.first], P.second,
3678                  ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs,
3679                  vlocs);
3680   }
3681 
3682   // Using the computed value locations and variable values for each block,
3683   // create the DBG_VALUE instructions representing the extended variable
3684   // locations.
3685   emitLocations(MF, SavedLiveIns, MOutLocs, MInLocs, AllVarsNumbering, *TPC);
3686 
3687   for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) {
3688     delete[] MOutLocs[Idx];
3689     delete[] MInLocs[Idx];
3690   }
3691   delete[] MOutLocs;
3692   delete[] MInLocs;
3693 
3694   // Did we actually make any changes? If we created any DBG_VALUEs, then yes.
3695   bool Changed = TTracker->Transfers.size() != 0;
3696 
3697   delete MTracker;
3698   delete TTracker;
3699   MTracker = nullptr;
3700   VTracker = nullptr;
3701   TTracker = nullptr;
3702 
3703   ArtificialBlocks.clear();
3704   OrderToBB.clear();
3705   BBToOrder.clear();
3706   BBNumToRPO.clear();
3707   DebugInstrNumToInstr.clear();
3708   DebugPHINumToValue.clear();
3709 
3710   return Changed;
3711 }
3712 
3713 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
3714   return new InstrRefBasedLDV();
3715 }
3716 
3717 namespace {
3718 class LDVSSABlock;
3719 class LDVSSAUpdater;
3720 
3721 // Pick a type to identify incoming block values as we construct SSA. We
3722 // can't use anything more robust than an integer unfortunately, as SSAUpdater
3723 // expects to zero-initialize the type.
3724 typedef uint64_t BlockValueNum;
3725 
3726 /// Represents an SSA PHI node for the SSA updater class. Contains the block
3727 /// this PHI is in, the value number it would have, and the expected incoming
3728 /// values from parent blocks.
3729 class LDVSSAPhi {
3730 public:
3731   SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
3732   LDVSSABlock *ParentBlock;
3733   BlockValueNum PHIValNum;
3734   LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
3735       : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
3736 
3737   LDVSSABlock *getParent() { return ParentBlock; }
3738 };
3739 
3740 /// Thin wrapper around a block predecessor iterator. Only difference from a
3741 /// normal block iterator is that it dereferences to an LDVSSABlock.
3742 class LDVSSABlockIterator {
3743 public:
3744   MachineBasicBlock::pred_iterator PredIt;
3745   LDVSSAUpdater &Updater;
3746 
3747   LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
3748                       LDVSSAUpdater &Updater)
3749       : PredIt(PredIt), Updater(Updater) {}
3750 
3751   bool operator!=(const LDVSSABlockIterator &OtherIt) const {
3752     return OtherIt.PredIt != PredIt;
3753   }
3754 
3755   LDVSSABlockIterator &operator++() {
3756     ++PredIt;
3757     return *this;
3758   }
3759 
3760   LDVSSABlock *operator*();
3761 };
3762 
3763 /// Thin wrapper around a block for SSA Updater interface. Necessary because
3764 /// we need to track the PHI value(s) that we may have observed as necessary
3765 /// in this block.
3766 class LDVSSABlock {
3767 public:
3768   MachineBasicBlock &BB;
3769   LDVSSAUpdater &Updater;
3770   using PHIListT = SmallVector<LDVSSAPhi, 1>;
3771   /// List of PHIs in this block. There should only ever be one.
3772   PHIListT PHIList;
3773 
3774   LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
3775       : BB(BB), Updater(Updater) {}
3776 
3777   LDVSSABlockIterator succ_begin() {
3778     return LDVSSABlockIterator(BB.succ_begin(), Updater);
3779   }
3780 
3781   LDVSSABlockIterator succ_end() {
3782     return LDVSSABlockIterator(BB.succ_end(), Updater);
3783   }
3784 
3785   /// SSAUpdater has requested a PHI: create that within this block record.
3786   LDVSSAPhi *newPHI(BlockValueNum Value) {
3787     PHIList.emplace_back(Value, this);
3788     return &PHIList.back();
3789   }
3790 
3791   /// SSAUpdater wishes to know what PHIs already exist in this block.
3792   PHIListT &phis() { return PHIList; }
3793 };
3794 
3795 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
3796 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
3797 // SSAUpdaterTraits<LDVSSAUpdater>.
3798 class LDVSSAUpdater {
3799 public:
3800   /// Map of value numbers to PHI records.
3801   DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
3802   /// Map of which blocks generate Undef values -- blocks that are not
3803   /// dominated by any Def.
3804   DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
3805   /// Map of machine blocks to our own records of them.
3806   DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
3807   /// Machine location where any PHI must occur.
3808   LocIdx Loc;
3809   /// Table of live-in machine value numbers for blocks / locations.
3810   ValueIDNum **MLiveIns;
3811 
3812   LDVSSAUpdater(LocIdx L, ValueIDNum **MLiveIns) : Loc(L), MLiveIns(MLiveIns) {}
3813 
3814   void reset() {
3815     for (auto &Block : BlockMap)
3816       delete Block.second;
3817 
3818     PHIs.clear();
3819     UndefMap.clear();
3820     BlockMap.clear();
3821   }
3822 
3823   ~LDVSSAUpdater() { reset(); }
3824 
3825   /// For a given MBB, create a wrapper block for it. Stores it in the
3826   /// LDVSSAUpdater block map.
3827   LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
3828     auto it = BlockMap.find(BB);
3829     if (it == BlockMap.end()) {
3830       BlockMap[BB] = new LDVSSABlock(*BB, *this);
3831       it = BlockMap.find(BB);
3832     }
3833     return it->second;
3834   }
3835 
3836   /// Find the live-in value number for the given block. Looks up the value at
3837   /// the PHI location on entry.
3838   BlockValueNum getValue(LDVSSABlock *LDVBB) {
3839     return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64();
3840   }
3841 };
3842 
3843 LDVSSABlock *LDVSSABlockIterator::operator*() {
3844   return Updater.getSSALDVBlock(*PredIt);
3845 }
3846 
3847 #ifndef NDEBUG
3848 
3849 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
3850   out << "SSALDVPHI " << PHI.PHIValNum;
3851   return out;
3852 }
3853 
3854 #endif
3855 
3856 } // namespace
3857 
3858 namespace llvm {
3859 
3860 /// Template specialization to give SSAUpdater access to CFG and value
3861 /// information. SSAUpdater calls methods in these traits, passing in the
3862 /// LDVSSAUpdater object, to learn about blocks and the values they define.
3863 /// It also provides methods to create PHI nodes and track them.
3864 template <> class SSAUpdaterTraits<LDVSSAUpdater> {
3865 public:
3866   using BlkT = LDVSSABlock;
3867   using ValT = BlockValueNum;
3868   using PhiT = LDVSSAPhi;
3869   using BlkSucc_iterator = LDVSSABlockIterator;
3870 
3871   // Methods to access block successors -- dereferencing to our wrapper class.
3872   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
3873   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
3874 
3875   /// Iterator for PHI operands.
3876   class PHI_iterator {
3877   private:
3878     LDVSSAPhi *PHI;
3879     unsigned Idx;
3880 
3881   public:
3882     explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
3883         : PHI(P), Idx(0) {}
3884     PHI_iterator(LDVSSAPhi *P, bool) // end iterator
3885         : PHI(P), Idx(PHI->IncomingValues.size()) {}
3886 
3887     PHI_iterator &operator++() {
3888       Idx++;
3889       return *this;
3890     }
3891     bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
3892     bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
3893 
3894     BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
3895 
3896     LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
3897   };
3898 
3899   static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
3900 
3901   static inline PHI_iterator PHI_end(PhiT *PHI) {
3902     return PHI_iterator(PHI, true);
3903   }
3904 
3905   /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
3906   /// vector.
3907   static void FindPredecessorBlocks(LDVSSABlock *BB,
3908                                     SmallVectorImpl<LDVSSABlock *> *Preds) {
3909     for (MachineBasicBlock::pred_iterator PI = BB->BB.pred_begin(),
3910                                           E = BB->BB.pred_end();
3911          PI != E; ++PI)
3912       Preds->push_back(BB->Updater.getSSALDVBlock(*PI));
3913   }
3914 
3915   /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
3916   /// register. For LiveDebugValues, represents a block identified as not having
3917   /// any DBG_PHI predecessors.
3918   static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
3919     // Create a value number for this block -- it needs to be unique and in the
3920     // "undef" collection, so that we know it's not real. Use a number
3921     // representing a PHI into this block.
3922     BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
3923     Updater->UndefMap[&BB->BB] = Num;
3924     return Num;
3925   }
3926 
3927   /// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
3928   /// SSAUpdater will populate it with information about incoming values. The
3929   /// value number of this PHI is whatever the  machine value number problem
3930   /// solution determined it to be. This includes non-phi values if SSAUpdater
3931   /// tries to create a PHI where the incoming values are identical.
3932   static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
3933                                    LDVSSAUpdater *Updater) {
3934     BlockValueNum PHIValNum = Updater->getValue(BB);
3935     LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
3936     Updater->PHIs[PHIValNum] = PHI;
3937     return PHIValNum;
3938   }
3939 
3940   /// AddPHIOperand - Add the specified value as an operand of the PHI for
3941   /// the specified predecessor block.
3942   static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
3943     PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
3944   }
3945 
3946   /// ValueIsPHI - Check if the instruction that defines the specified value
3947   /// is a PHI instruction.
3948   static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3949     auto PHIIt = Updater->PHIs.find(Val);
3950     if (PHIIt == Updater->PHIs.end())
3951       return nullptr;
3952     return PHIIt->second;
3953   }
3954 
3955   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
3956   /// operands, i.e., it was just added.
3957   static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3958     LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
3959     if (PHI && PHI->IncomingValues.size() == 0)
3960       return PHI;
3961     return nullptr;
3962   }
3963 
3964   /// GetPHIValue - For the specified PHI instruction, return the value
3965   /// that it defines.
3966   static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
3967 };
3968 
3969 } // end namespace llvm
3970 
3971 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(MachineFunction &MF,
3972                                                       ValueIDNum **MLiveOuts,
3973                                                       ValueIDNum **MLiveIns,
3974                                                       MachineInstr &Here,
3975                                                       uint64_t InstrNum) {
3976   // Pick out records of DBG_PHI instructions that have been observed. If there
3977   // are none, then we cannot compute a value number.
3978   auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
3979                                     DebugPHINumToValue.end(), InstrNum);
3980   auto LowerIt = RangePair.first;
3981   auto UpperIt = RangePair.second;
3982 
3983   // No DBG_PHI means there can be no location.
3984   if (LowerIt == UpperIt)
3985     return None;
3986 
3987   // If there's only one DBG_PHI, then that is our value number.
3988   if (std::distance(LowerIt, UpperIt) == 1)
3989     return LowerIt->ValueRead;
3990 
3991   auto DBGPHIRange = make_range(LowerIt, UpperIt);
3992 
3993   // Pick out the location (physreg, slot) where any PHIs must occur. It's
3994   // technically possible for us to merge values in different registers in each
3995   // block, but highly unlikely that LLVM will generate such code after register
3996   // allocation.
3997   LocIdx Loc = LowerIt->ReadLoc;
3998 
3999   // We have several DBG_PHIs, and a use position (the Here inst). All each
4000   // DBG_PHI does is identify a value at a program position. We can treat each
4001   // DBG_PHI like it's a Def of a value, and the use position is a Use of a
4002   // value, just like SSA. We use the bulk-standard LLVM SSA updater class to
4003   // determine which Def is used at the Use, and any PHIs that happen along
4004   // the way.
4005   // Adapted LLVM SSA Updater:
4006   LDVSSAUpdater Updater(Loc, MLiveIns);
4007   // Map of which Def or PHI is the current value in each block.
4008   DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
4009   // Set of PHIs that we have created along the way.
4010   SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
4011 
4012   // Each existing DBG_PHI is a Def'd value under this model. Record these Defs
4013   // for the SSAUpdater.
4014   for (const auto &DBG_PHI : DBGPHIRange) {
4015     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
4016     const ValueIDNum &Num = DBG_PHI.ValueRead;
4017     AvailableValues.insert(std::make_pair(Block, Num.asU64()));
4018   }
4019 
4020   LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
4021   const auto &AvailIt = AvailableValues.find(HereBlock);
4022   if (AvailIt != AvailableValues.end()) {
4023     // Actually, we already know what the value is -- the Use is in the same
4024     // block as the Def.
4025     return ValueIDNum::fromU64(AvailIt->second);
4026   }
4027 
4028   // Otherwise, we must use the SSA Updater. It will identify the value number
4029   // that we are to use, and the PHIs that must happen along the way.
4030   SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
4031   BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
4032   ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
4033 
4034   // We have the number for a PHI, or possibly live-through value, to be used
4035   // at this Use. There are a number of things we have to check about it though:
4036   //  * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
4037   //    Use was not completely dominated by DBG_PHIs and we should abort.
4038   //  * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
4039   //    we've left SSA form. Validate that the inputs to each PHI are the
4040   //    expected values.
4041   //  * Is a PHI we've created actually a merging of values, or are all the
4042   //    predecessor values the same, leading to a non-PHI machine value number?
4043   //    (SSAUpdater doesn't know that either). Remap validated PHIs into the
4044   //    the ValidatedValues collection below to sort this out.
4045   DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
4046 
4047   // Define all the input DBG_PHI values in ValidatedValues.
4048   for (const auto &DBG_PHI : DBGPHIRange) {
4049     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
4050     const ValueIDNum &Num = DBG_PHI.ValueRead;
4051     ValidatedValues.insert(std::make_pair(Block, Num));
4052   }
4053 
4054   // Sort PHIs to validate into RPO-order.
4055   SmallVector<LDVSSAPhi *, 8> SortedPHIs;
4056   for (auto &PHI : CreatedPHIs)
4057     SortedPHIs.push_back(PHI);
4058 
4059   std::sort(
4060       SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) {
4061         return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
4062       });
4063 
4064   for (auto &PHI : SortedPHIs) {
4065     ValueIDNum ThisBlockValueNum =
4066         MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()];
4067 
4068     // Are all these things actually defined?
4069     for (auto &PHIIt : PHI->IncomingValues) {
4070       // Any undef input means DBG_PHIs didn't dominate the use point.
4071       if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end())
4072         return None;
4073 
4074       ValueIDNum ValueToCheck;
4075       ValueIDNum *BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()];
4076 
4077       auto VVal = ValidatedValues.find(PHIIt.first);
4078       if (VVal == ValidatedValues.end()) {
4079         // We cross a loop, and this is a backedge. LLVMs tail duplication
4080         // happens so late that DBG_PHI instructions should not be able to
4081         // migrate into loops -- meaning we can only be live-through this
4082         // loop.
4083         ValueToCheck = ThisBlockValueNum;
4084       } else {
4085         // Does the block have as a live-out, in the location we're examining,
4086         // the value that we expect? If not, it's been moved or clobbered.
4087         ValueToCheck = VVal->second;
4088       }
4089 
4090       if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
4091         return None;
4092     }
4093 
4094     // Record this value as validated.
4095     ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
4096   }
4097 
4098   // All the PHIs are valid: we can return what the SSAUpdater said our value
4099   // number was.
4100   return Result;
4101 }
4102