1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file InstrRefBasedImpl.cpp 9 /// 10 /// This is a separate implementation of LiveDebugValues, see 11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information. 12 /// 13 /// This pass propagates variable locations between basic blocks, resolving 14 /// control flow conflicts between them. The problem is much like SSA 15 /// construction, where each DBG_VALUE instruction assigns the *value* that 16 /// a variable has, and every instruction where the variable is in scope uses 17 /// that variable. The resulting map of instruction-to-value is then translated 18 /// into a register (or spill) location for each variable over each instruction. 19 /// 20 /// This pass determines which DBG_VALUE dominates which instructions, or if 21 /// none do, where values must be merged (like PHI nodes). The added 22 /// complication is that because codegen has already finished, a PHI node may 23 /// be needed for a variable location to be correct, but no register or spill 24 /// slot merges the necessary values. In these circumstances, the variable 25 /// location is dropped. 26 /// 27 /// What makes this analysis non-trivial is loops: we cannot tell in advance 28 /// whether a variable location is live throughout a loop, or whether its 29 /// location is clobbered (or redefined by another DBG_VALUE), without 30 /// exploring all the way through. 31 /// 32 /// To make this simpler we perform two kinds of analysis. First, we identify 33 /// every value defined by every instruction (ignoring those that only move 34 /// another value), then compute a map of which values are available for each 35 /// instruction. This is stronger than a reaching-def analysis, as we create 36 /// PHI values where other values merge. 37 /// 38 /// Secondly, for each variable, we effectively re-construct SSA using each 39 /// DBG_VALUE as a def. The DBG_VALUEs read a value-number computed by the 40 /// first analysis from the location they refer to. We can then compute the 41 /// dominance frontiers of where a variable has a value, and create PHI nodes 42 /// where they merge. 43 /// This isn't precisely SSA-construction though, because the function shape 44 /// is pre-defined. If a variable location requires a PHI node, but no 45 /// PHI for the relevant values is present in the function (as computed by the 46 /// first analysis), the location must be dropped. 47 /// 48 /// Once both are complete, we can pass back over all instructions knowing: 49 /// * What _value_ each variable should contain, either defined by an 50 /// instruction or where control flow merges 51 /// * What the location of that value is (if any). 52 /// Allowing us to create appropriate live-in DBG_VALUEs, and DBG_VALUEs when 53 /// a value moves location. After this pass runs, all variable locations within 54 /// a block should be specified by DBG_VALUEs within that block, allowing 55 /// DbgEntityHistoryCalculator to focus on individual blocks. 56 /// 57 /// This pass is able to go fast because the size of the first 58 /// reaching-definition analysis is proportional to the working-set size of 59 /// the function, which the compiler tries to keep small. (It's also 60 /// proportional to the number of blocks). Additionally, we repeatedly perform 61 /// the second reaching-definition analysis with only the variables and blocks 62 /// in a single lexical scope, exploiting their locality. 63 /// 64 /// Determining where PHIs happen is trickier with this approach, and it comes 65 /// to a head in the major problem for LiveDebugValues: is a value live-through 66 /// a loop, or not? Your garden-variety dataflow analysis aims to build a set of 67 /// facts about a function, however this analysis needs to generate new value 68 /// numbers at joins. 69 /// 70 /// To do this, consider a lattice of all definition values, from instructions 71 /// and from PHIs. Each PHI is characterised by the RPO number of the block it 72 /// occurs in. Each value pair A, B can be ordered by RPO(A) < RPO(B): 73 /// with non-PHI values at the top, and any PHI value in the last block (by RPO 74 /// order) at the bottom. 75 /// 76 /// (Awkwardly: lower-down-the _lattice_ means a greater RPO _number_. Below, 77 /// "rank" always refers to the former). 78 /// 79 /// At any join, for each register, we consider: 80 /// * All incoming values, and 81 /// * The PREVIOUS live-in value at this join. 82 /// If all incoming values agree: that's the live-in value. If they do not, the 83 /// incoming values are ranked according to the partial order, and the NEXT 84 /// LOWEST rank after the PREVIOUS live-in value is picked (multiple values of 85 /// the same rank are ignored as conflicting). If there are no candidate values, 86 /// or if the rank of the live-in would be lower than the rank of the current 87 /// blocks PHIs, create a new PHI value. 88 /// 89 /// Intuitively: if it's not immediately obvious what value a join should result 90 /// in, we iteratively descend from instruction-definitions down through PHI 91 /// values, getting closer to the current block each time. If the current block 92 /// is a loop head, this ordering is effectively searching outer levels of 93 /// loops, to find a value that's live-through the current loop. 94 /// 95 /// If there is no value that's live-through this loop, a PHI is created for 96 /// this location instead. We can't use a lower-ranked PHI because by definition 97 /// it doesn't dominate the current block. We can't create a PHI value any 98 /// earlier, because we risk creating a PHI value at a location where values do 99 /// not in fact merge, thus misrepresenting the truth, and not making the true 100 /// live-through value for variable locations. 101 /// 102 /// This algorithm applies to both calculating the availability of values in 103 /// the first analysis, and the location of variables in the second. However 104 /// for the second we add an extra dimension of pain: creating a variable 105 /// location PHI is only valid if, for each incoming edge, 106 /// * There is a value for the variable on the incoming edge, and 107 /// * All the edges have that value in the same register. 108 /// Or put another way: we can only create a variable-location PHI if there is 109 /// a matching machine-location PHI, each input to which is the variables value 110 /// in the predecessor block. 111 /// 112 /// To accomodate this difference, each point on the lattice is split in 113 /// two: a "proposed" PHI and "definite" PHI. Any PHI that can immediately 114 /// have a location determined are "definite" PHIs, and no further work is 115 /// needed. Otherwise, a location that all non-backedge predecessors agree 116 /// on is picked and propagated as a "proposed" PHI value. If that PHI value 117 /// is truly live-through, it'll appear on the loop backedges on the next 118 /// dataflow iteration, after which the block live-in moves to be a "definite" 119 /// PHI. If it's not truly live-through, the variable value will be downgraded 120 /// further as we explore the lattice, or remains "proposed" and is considered 121 /// invalid once dataflow completes. 122 /// 123 /// ### Terminology 124 /// 125 /// A machine location is a register or spill slot, a value is something that's 126 /// defined by an instruction or PHI node, while a variable value is the value 127 /// assigned to a variable. A variable location is a machine location, that must 128 /// contain the appropriate variable value. A value that is a PHI node is 129 /// occasionally called an mphi. 130 /// 131 /// The first dataflow problem is the "machine value location" problem, 132 /// because we're determining which machine locations contain which values. 133 /// The "locations" are constant: what's unknown is what value they contain. 134 /// 135 /// The second dataflow problem (the one for variables) is the "variable value 136 /// problem", because it's determining what values a variable has, rather than 137 /// what location those values are placed in. Unfortunately, it's not that 138 /// simple, because producing a PHI value always involves picking a location. 139 /// This is an imperfection that we just have to accept, at least for now. 140 /// 141 /// TODO: 142 /// Overlapping fragments 143 /// Entry values 144 /// Add back DEBUG statements for debugging this 145 /// Collect statistics 146 /// 147 //===----------------------------------------------------------------------===// 148 149 #include "llvm/ADT/DenseMap.h" 150 #include "llvm/ADT/PostOrderIterator.h" 151 #include "llvm/ADT/SmallPtrSet.h" 152 #include "llvm/ADT/SmallSet.h" 153 #include "llvm/ADT/SmallVector.h" 154 #include "llvm/ADT/Statistic.h" 155 #include "llvm/ADT/UniqueVector.h" 156 #include "llvm/CodeGen/LexicalScopes.h" 157 #include "llvm/CodeGen/MachineBasicBlock.h" 158 #include "llvm/CodeGen/MachineFrameInfo.h" 159 #include "llvm/CodeGen/MachineFunction.h" 160 #include "llvm/CodeGen/MachineFunctionPass.h" 161 #include "llvm/CodeGen/MachineInstr.h" 162 #include "llvm/CodeGen/MachineInstrBuilder.h" 163 #include "llvm/CodeGen/MachineMemOperand.h" 164 #include "llvm/CodeGen/MachineOperand.h" 165 #include "llvm/CodeGen/PseudoSourceValue.h" 166 #include "llvm/CodeGen/RegisterScavenging.h" 167 #include "llvm/CodeGen/TargetFrameLowering.h" 168 #include "llvm/CodeGen/TargetInstrInfo.h" 169 #include "llvm/CodeGen/TargetLowering.h" 170 #include "llvm/CodeGen/TargetPassConfig.h" 171 #include "llvm/CodeGen/TargetRegisterInfo.h" 172 #include "llvm/CodeGen/TargetSubtargetInfo.h" 173 #include "llvm/Config/llvm-config.h" 174 #include "llvm/IR/DIBuilder.h" 175 #include "llvm/IR/DebugInfoMetadata.h" 176 #include "llvm/IR/DebugLoc.h" 177 #include "llvm/IR/Function.h" 178 #include "llvm/IR/Module.h" 179 #include "llvm/InitializePasses.h" 180 #include "llvm/MC/MCRegisterInfo.h" 181 #include "llvm/Pass.h" 182 #include "llvm/Support/Casting.h" 183 #include "llvm/Support/Compiler.h" 184 #include "llvm/Support/Debug.h" 185 #include "llvm/Support/raw_ostream.h" 186 #include <algorithm> 187 #include <cassert> 188 #include <cstdint> 189 #include <functional> 190 #include <queue> 191 #include <tuple> 192 #include <utility> 193 #include <vector> 194 #include <limits.h> 195 #include <limits> 196 197 #include "LiveDebugValues.h" 198 199 using namespace llvm; 200 201 #define DEBUG_TYPE "livedebugvalues" 202 203 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted"); 204 STATISTIC(NumRemoved, "Number of DBG_VALUE instructions removed"); 205 206 // Act more like the VarLoc implementation, by propagating some locations too 207 // far and ignoring some transfers. 208 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden, 209 cl::desc("Act like old LiveDebugValues did"), 210 cl::init(false)); 211 212 // Rely on isStoreToStackSlotPostFE and similar to observe all stack spills. 213 static cl::opt<bool> 214 ObserveAllStackops("observe-all-stack-ops", cl::Hidden, 215 cl::desc("Allow non-kill spill and restores"), 216 cl::init(false)); 217 218 namespace { 219 220 // The location at which a spilled value resides. It consists of a register and 221 // an offset. 222 struct SpillLoc { 223 unsigned SpillBase; 224 int SpillOffset; 225 bool operator==(const SpillLoc &Other) const { 226 return std::tie(SpillBase, SpillOffset) == 227 std::tie(Other.SpillBase, Other.SpillOffset); 228 } 229 bool operator<(const SpillLoc &Other) const { 230 return std::tie(SpillBase, SpillOffset) < 231 std::tie(Other.SpillBase, Other.SpillOffset); 232 } 233 }; 234 235 class LocIdx { 236 unsigned Location; 237 238 // Default constructor is private, initializing to an illegal location number. 239 // Use only for "not an entry" elements in IndexedMaps. 240 LocIdx() : Location(UINT_MAX) { } 241 242 public: 243 #define NUM_LOC_BITS 24 244 LocIdx(unsigned L) : Location(L) { 245 assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits"); 246 } 247 248 static LocIdx MakeIllegalLoc() { 249 return LocIdx(); 250 } 251 252 bool isIllegal() const { 253 return Location == UINT_MAX; 254 } 255 256 uint64_t asU64() const { 257 return Location; 258 } 259 260 bool operator==(unsigned L) const { 261 return Location == L; 262 } 263 264 bool operator==(const LocIdx &L) const { 265 return Location == L.Location; 266 } 267 268 bool operator!=(unsigned L) const { 269 return !(*this == L); 270 } 271 272 bool operator!=(const LocIdx &L) const { 273 return !(*this == L); 274 } 275 276 bool operator<(const LocIdx &Other) const { 277 return Location < Other.Location; 278 } 279 }; 280 281 class LocIdxToIndexFunctor { 282 public: 283 using argument_type = LocIdx; 284 unsigned operator()(const LocIdx &L) const { 285 return L.asU64(); 286 } 287 }; 288 289 /// Unique identifier for a value defined by an instruction, as a value type. 290 /// Casts back and forth to a uint64_t. Probably replacable with something less 291 /// bit-constrained. Each value identifies the instruction and machine location 292 /// where the value is defined, although there may be no corresponding machine 293 /// operand for it (ex: regmasks clobbering values). The instructions are 294 /// one-based, and definitions that are PHIs have instruction number zero. 295 /// 296 /// The obvious limits of a 1M block function or 1M instruction blocks are 297 /// problematic; but by that point we should probably have bailed out of 298 /// trying to analyse the function. 299 class ValueIDNum { 300 uint64_t BlockNo : 20; /// The block where the def happens. 301 uint64_t InstNo : 20; /// The Instruction where the def happens. 302 /// One based, is distance from start of block. 303 uint64_t LocNo : NUM_LOC_BITS; /// The machine location where the def happens. 304 305 public: 306 // XXX -- temporarily enabled while the live-in / live-out tables are moved 307 // to something more type-y 308 ValueIDNum() : BlockNo(0xFFFFF), 309 InstNo(0xFFFFF), 310 LocNo(0xFFFFFF) { } 311 312 ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc) 313 : BlockNo(Block), InstNo(Inst), LocNo(Loc) { } 314 315 ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc) 316 : BlockNo(Block), InstNo(Inst), LocNo(Loc.asU64()) { } 317 318 uint64_t getBlock() const { return BlockNo; } 319 uint64_t getInst() const { return InstNo; } 320 uint64_t getLoc() const { return LocNo; } 321 bool isPHI() const { return InstNo == 0; } 322 323 uint64_t asU64() const { 324 uint64_t TmpBlock = BlockNo; 325 uint64_t TmpInst = InstNo; 326 return TmpBlock << 44ull | TmpInst << NUM_LOC_BITS | LocNo; 327 } 328 329 static ValueIDNum fromU64(uint64_t v) { 330 uint64_t L = (v & 0x3FFF); 331 return {v >> 44ull, ((v >> NUM_LOC_BITS) & 0xFFFFF), L}; 332 } 333 334 bool operator<(const ValueIDNum &Other) const { 335 return asU64() < Other.asU64(); 336 } 337 338 bool operator==(const ValueIDNum &Other) const { 339 return std::tie(BlockNo, InstNo, LocNo) == 340 std::tie(Other.BlockNo, Other.InstNo, Other.LocNo); 341 } 342 343 bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); } 344 345 std::string asString(const std::string &mlocname) const { 346 return Twine("bb ") 347 .concat(Twine(BlockNo).concat(Twine(" inst ").concat( 348 Twine(InstNo).concat(Twine(" loc ").concat(Twine(mlocname)))))) 349 .str(); 350 } 351 352 static ValueIDNum EmptyValue; 353 }; 354 355 } // end anonymous namespace 356 357 namespace { 358 359 /// Meta qualifiers for a value. Pair of whatever expression is used to qualify 360 /// the the value, and Boolean of whether or not it's indirect. 361 class DbgValueProperties { 362 public: 363 DbgValueProperties(const DIExpression *DIExpr, bool Indirect) 364 : DIExpr(DIExpr), Indirect(Indirect) {} 365 366 /// Extract properties from an existing DBG_VALUE instruction. 367 DbgValueProperties(const MachineInstr &MI) { 368 assert(MI.isDebugValue()); 369 DIExpr = MI.getDebugExpression(); 370 Indirect = MI.getOperand(1).isImm(); 371 } 372 373 bool operator==(const DbgValueProperties &Other) const { 374 return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect); 375 } 376 377 bool operator!=(const DbgValueProperties &Other) const { 378 return !(*this == Other); 379 } 380 381 const DIExpression *DIExpr; 382 bool Indirect; 383 }; 384 385 /// Tracker for what values are in machine locations. Listens to the Things 386 /// being Done by various instructions, and maintains a table of what machine 387 /// locations have what values (as defined by a ValueIDNum). 388 /// 389 /// There are potentially a much larger number of machine locations on the 390 /// target machine than the actual working-set size of the function. On x86 for 391 /// example, we're extremely unlikely to want to track values through control 392 /// or debug registers. To avoid doing so, MLocTracker has several layers of 393 /// indirection going on, with two kinds of ``location'': 394 /// * A LocID uniquely identifies a register or spill location, with a 395 /// predictable value. 396 /// * A LocIdx is a key (in the database sense) for a LocID and a ValueIDNum. 397 /// Whenever a location is def'd or used by a MachineInstr, we automagically 398 /// create a new LocIdx for a location, but not otherwise. This ensures we only 399 /// account for locations that are actually used or defined. The cost is another 400 /// vector lookup (of LocID -> LocIdx) over any other implementation. This is 401 /// fairly cheap, and the compiler tries to reduce the working-set at any one 402 /// time in the function anyway. 403 /// 404 /// Register mask operands completely blow this out of the water; I've just 405 /// piled hacks on top of hacks to get around that. 406 class MLocTracker { 407 public: 408 MachineFunction &MF; 409 const TargetInstrInfo &TII; 410 const TargetRegisterInfo &TRI; 411 const TargetLowering &TLI; 412 413 /// IndexedMap type, mapping from LocIdx to ValueIDNum. 414 typedef IndexedMap<ValueIDNum, LocIdxToIndexFunctor> LocToValueType; 415 416 /// Map of LocIdxes to the ValueIDNums that they store. This is tightly 417 /// packed, entries only exist for locations that are being tracked. 418 LocToValueType LocIdxToIDNum; 419 420 /// "Map" of machine location IDs (i.e., raw register or spill number) to the 421 /// LocIdx key / number for that location. There are always at least as many 422 /// as the number of registers on the target -- if the value in the register 423 /// is not being tracked, then the LocIdx value will be zero. New entries are 424 /// appended if a new spill slot begins being tracked. 425 /// This, and the corresponding reverse map persist for the analysis of the 426 /// whole function, and is necessarying for decoding various vectors of 427 /// values. 428 std::vector<LocIdx> LocIDToLocIdx; 429 430 /// Inverse map of LocIDToLocIdx. 431 IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID; 432 433 /// Unique-ification of spill slots. Used to number them -- their LocID 434 /// number is the index in SpillLocs minus one plus NumRegs. 435 UniqueVector<SpillLoc> SpillLocs; 436 437 // If we discover a new machine location, assign it an mphi with this 438 // block number. 439 unsigned CurBB; 440 441 /// Cached local copy of the number of registers the target has. 442 unsigned NumRegs; 443 444 /// Collection of register mask operands that have been observed. Second part 445 /// of pair indicates the instruction that they happened in. Used to 446 /// reconstruct where defs happened if we start tracking a location later 447 /// on. 448 SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks; 449 450 /// Iterator for locations and the values they contain. Dereferencing 451 /// produces a struct/pair containing the LocIdx key for this location, 452 /// and a reference to the value currently stored. Simplifies the process 453 /// of seeking a particular location. 454 class MLocIterator { 455 LocToValueType &ValueMap; 456 LocIdx Idx; 457 458 public: 459 class value_type { 460 public: 461 value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) { } 462 const LocIdx Idx; /// Read-only index of this location. 463 ValueIDNum &Value; /// Reference to the stored value at this location. 464 }; 465 466 MLocIterator(LocToValueType &ValueMap, LocIdx Idx) 467 : ValueMap(ValueMap), Idx(Idx) { } 468 469 bool operator==(const MLocIterator &Other) const { 470 assert(&ValueMap == &Other.ValueMap); 471 return Idx == Other.Idx; 472 } 473 474 bool operator!=(const MLocIterator &Other) const { 475 return !(*this == Other); 476 } 477 478 void operator++() { 479 Idx = LocIdx(Idx.asU64() + 1); 480 } 481 482 value_type operator*() { 483 return value_type(Idx, ValueMap[LocIdx(Idx)]); 484 } 485 }; 486 487 MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII, 488 const TargetRegisterInfo &TRI, const TargetLowering &TLI) 489 : MF(MF), TII(TII), TRI(TRI), TLI(TLI), 490 LocIdxToIDNum(ValueIDNum::EmptyValue), 491 LocIdxToLocID(0) { 492 NumRegs = TRI.getNumRegs(); 493 reset(); 494 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); 495 assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure 496 497 // Always track SP. This avoids the implicit clobbering caused by regmasks 498 // from affectings its values. (LiveDebugValues disbelieves calls and 499 // regmasks that claim to clobber SP). 500 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 501 if (SP) { 502 unsigned ID = getLocID(SP, false); 503 (void)lookupOrTrackRegister(ID); 504 } 505 } 506 507 /// Produce location ID number for indexing LocIDToLocIdx. Takes the register 508 /// or spill number, and flag for whether it's a spill or not. 509 unsigned getLocID(unsigned RegOrSpill, bool isSpill) { 510 return (isSpill) ? RegOrSpill + NumRegs - 1 : RegOrSpill; 511 } 512 513 /// Accessor for reading the value at Idx. 514 ValueIDNum getNumAtPos(LocIdx Idx) const { 515 assert(Idx.asU64() < LocIdxToIDNum.size()); 516 return LocIdxToIDNum[Idx]; 517 } 518 519 unsigned getNumLocs(void) const { return LocIdxToIDNum.size(); } 520 521 /// Reset all locations to contain a PHI value at the designated block. Used 522 /// sometimes for actual PHI values, othertimes to indicate the block entry 523 /// value (before any more information is known). 524 void setMPhis(unsigned NewCurBB) { 525 CurBB = NewCurBB; 526 for (auto Location : locations()) 527 Location.Value = {CurBB, 0, Location.Idx}; 528 } 529 530 /// Load values for each location from array of ValueIDNums. Take current 531 /// bbnum just in case we read a value from a hitherto untouched register. 532 void loadFromArray(ValueIDNum *Locs, unsigned NewCurBB) { 533 CurBB = NewCurBB; 534 // Iterate over all tracked locations, and load each locations live-in 535 // value into our local index. 536 for (auto Location : locations()) 537 Location.Value = Locs[Location.Idx.asU64()]; 538 } 539 540 /// Wipe any un-necessary location records after traversing a block. 541 void reset(void) { 542 // We could reset all the location values too; however either loadFromArray 543 // or setMPhis should be called before this object is re-used. Just 544 // clear Masks, they're definitely not needed. 545 Masks.clear(); 546 } 547 548 /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of 549 /// the information in this pass uninterpretable. 550 void clear(void) { 551 reset(); 552 LocIDToLocIdx.clear(); 553 LocIdxToLocID.clear(); 554 LocIdxToIDNum.clear(); 555 //SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from 0 556 SpillLocs = decltype(SpillLocs)(); 557 558 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); 559 } 560 561 /// Set a locaiton to a certain value. 562 void setMLoc(LocIdx L, ValueIDNum Num) { 563 assert(L.asU64() < LocIdxToIDNum.size()); 564 LocIdxToIDNum[L] = Num; 565 } 566 567 /// Create a LocIdx for an untracked register ID. Initialize it to either an 568 /// mphi value representing a live-in, or a recent register mask clobber. 569 LocIdx trackRegister(unsigned ID) { 570 assert(ID != 0); 571 LocIdx NewIdx = LocIdx(LocIdxToIDNum.size()); 572 LocIdxToIDNum.grow(NewIdx); 573 LocIdxToLocID.grow(NewIdx); 574 575 // Default: it's an mphi. 576 ValueIDNum ValNum = {CurBB, 0, NewIdx}; 577 // Was this reg ever touched by a regmask? 578 for (const auto &MaskPair : reverse(Masks)) { 579 if (MaskPair.first->clobbersPhysReg(ID)) { 580 // There was an earlier def we skipped. 581 ValNum = {CurBB, MaskPair.second, NewIdx}; 582 break; 583 } 584 } 585 586 LocIdxToIDNum[NewIdx] = ValNum; 587 LocIdxToLocID[NewIdx] = ID; 588 return NewIdx; 589 } 590 591 LocIdx lookupOrTrackRegister(unsigned ID) { 592 LocIdx &Index = LocIDToLocIdx[ID]; 593 if (Index.isIllegal()) 594 Index = trackRegister(ID); 595 return Index; 596 } 597 598 /// Record a definition of the specified register at the given block / inst. 599 /// This doesn't take a ValueIDNum, because the definition and its location 600 /// are synonymous. 601 void defReg(Register R, unsigned BB, unsigned Inst) { 602 unsigned ID = getLocID(R, false); 603 LocIdx Idx = lookupOrTrackRegister(ID); 604 ValueIDNum ValueID = {BB, Inst, Idx}; 605 LocIdxToIDNum[Idx] = ValueID; 606 } 607 608 /// Set a register to a value number. To be used if the value number is 609 /// known in advance. 610 void setReg(Register R, ValueIDNum ValueID) { 611 unsigned ID = getLocID(R, false); 612 LocIdx Idx = lookupOrTrackRegister(ID); 613 LocIdxToIDNum[Idx] = ValueID; 614 } 615 616 ValueIDNum readReg(Register R) { 617 unsigned ID = getLocID(R, false); 618 LocIdx Idx = lookupOrTrackRegister(ID); 619 return LocIdxToIDNum[Idx]; 620 } 621 622 /// Reset a register value to zero / empty. Needed to replicate the 623 /// VarLoc implementation where a copy to/from a register effectively 624 /// clears the contents of the source register. (Values can only have one 625 /// machine location in VarLocBasedImpl). 626 void wipeRegister(Register R) { 627 unsigned ID = getLocID(R, false); 628 LocIdx Idx = LocIDToLocIdx[ID]; 629 LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue; 630 } 631 632 /// Determine the LocIdx of an existing register. 633 LocIdx getRegMLoc(Register R) { 634 unsigned ID = getLocID(R, false); 635 return LocIDToLocIdx[ID]; 636 } 637 638 /// Record a RegMask operand being executed. Defs any register we currently 639 /// track, stores a pointer to the mask in case we have to account for it 640 /// later. 641 void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID) { 642 // Ensure SP exists, so that we don't override it later. 643 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 644 645 // Def any register we track have that isn't preserved. The regmask 646 // terminates the liveness of a register, meaning its value can't be 647 // relied upon -- we represent this by giving it a new value. 648 for (auto Location : locations()) { 649 unsigned ID = LocIdxToLocID[Location.Idx]; 650 // Don't clobber SP, even if the mask says it's clobbered. 651 if (ID < NumRegs && ID != SP && MO->clobbersPhysReg(ID)) 652 defReg(ID, CurBB, InstID); 653 } 654 Masks.push_back(std::make_pair(MO, InstID)); 655 } 656 657 /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked. 658 LocIdx getOrTrackSpillLoc(SpillLoc L) { 659 unsigned SpillID = SpillLocs.idFor(L); 660 if (SpillID == 0) { 661 SpillID = SpillLocs.insert(L); 662 unsigned L = getLocID(SpillID, true); 663 LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx 664 LocIdxToIDNum.grow(Idx); 665 LocIdxToLocID.grow(Idx); 666 LocIDToLocIdx.push_back(Idx); 667 LocIdxToLocID[Idx] = L; 668 return Idx; 669 } else { 670 unsigned L = getLocID(SpillID, true); 671 LocIdx Idx = LocIDToLocIdx[L]; 672 return Idx; 673 } 674 } 675 676 /// Set the value stored in a spill slot. 677 void setSpill(SpillLoc L, ValueIDNum ValueID) { 678 LocIdx Idx = getOrTrackSpillLoc(L); 679 LocIdxToIDNum[Idx] = ValueID; 680 } 681 682 /// Read whatever value is in a spill slot, or None if it isn't tracked. 683 Optional<ValueIDNum> readSpill(SpillLoc L) { 684 unsigned SpillID = SpillLocs.idFor(L); 685 if (SpillID == 0) 686 return None; 687 688 unsigned LocID = getLocID(SpillID, true); 689 LocIdx Idx = LocIDToLocIdx[LocID]; 690 return LocIdxToIDNum[Idx]; 691 } 692 693 /// Determine the LocIdx of a spill slot. Return None if it previously 694 /// hasn't had a value assigned. 695 Optional<LocIdx> getSpillMLoc(SpillLoc L) { 696 unsigned SpillID = SpillLocs.idFor(L); 697 if (SpillID == 0) 698 return None; 699 unsigned LocNo = getLocID(SpillID, true); 700 return LocIDToLocIdx[LocNo]; 701 } 702 703 /// Return true if Idx is a spill machine location. 704 bool isSpill(LocIdx Idx) const { 705 return LocIdxToLocID[Idx] >= NumRegs; 706 } 707 708 MLocIterator begin() { 709 return MLocIterator(LocIdxToIDNum, 0); 710 } 711 712 MLocIterator end() { 713 return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size()); 714 } 715 716 /// Return a range over all locations currently tracked. 717 iterator_range<MLocIterator> locations() { 718 return llvm::make_range(begin(), end()); 719 } 720 721 std::string LocIdxToName(LocIdx Idx) const { 722 unsigned ID = LocIdxToLocID[Idx]; 723 if (ID >= NumRegs) 724 return Twine("slot ").concat(Twine(ID - NumRegs)).str(); 725 else 726 return TRI.getRegAsmName(ID).str(); 727 } 728 729 std::string IDAsString(const ValueIDNum &Num) const { 730 std::string DefName = LocIdxToName(Num.getLoc()); 731 return Num.asString(DefName); 732 } 733 734 LLVM_DUMP_METHOD 735 void dump() { 736 for (auto Location : locations()) { 737 std::string MLocName = LocIdxToName(Location.Value.getLoc()); 738 std::string DefName = Location.Value.asString(MLocName); 739 dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n"; 740 } 741 } 742 743 LLVM_DUMP_METHOD 744 void dump_mloc_map() { 745 for (auto Location : locations()) { 746 std::string foo = LocIdxToName(Location.Idx); 747 dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n"; 748 } 749 } 750 751 /// Create a DBG_VALUE based on machine location \p MLoc. Qualify it with the 752 /// information in \pProperties, for variable Var. Don't insert it anywhere, 753 /// just return the builder for it. 754 MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var, 755 const DbgValueProperties &Properties) { 756 DebugLoc DL = 757 DebugLoc::get(0, 0, Var.getVariable()->getScope(), Var.getInlinedAt()); 758 auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE)); 759 760 const DIExpression *Expr = Properties.DIExpr; 761 if (!MLoc) { 762 // No location -> DBG_VALUE $noreg 763 MIB.addReg(0, RegState::Debug); 764 MIB.addReg(0, RegState::Debug); 765 } else if (LocIdxToLocID[*MLoc] >= NumRegs) { 766 unsigned LocID = LocIdxToLocID[*MLoc]; 767 const SpillLoc &Spill = SpillLocs[LocID - NumRegs + 1]; 768 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, 769 Spill.SpillOffset); 770 unsigned Base = Spill.SpillBase; 771 MIB.addReg(Base, RegState::Debug); 772 MIB.addImm(0); 773 } else { 774 unsigned LocID = LocIdxToLocID[*MLoc]; 775 MIB.addReg(LocID, RegState::Debug); 776 if (Properties.Indirect) 777 MIB.addImm(0); 778 else 779 MIB.addReg(0, RegState::Debug); 780 } 781 782 MIB.addMetadata(Var.getVariable()); 783 MIB.addMetadata(Expr); 784 return MIB; 785 } 786 }; 787 788 /// Class recording the (high level) _value_ of a variable. Identifies either 789 /// the value of the variable as a ValueIDNum, or a constant MachineOperand. 790 /// This class also stores meta-information about how the value is qualified. 791 /// Used to reason about variable values when performing the second 792 /// (DebugVariable specific) dataflow analysis. 793 class DbgValue { 794 public: 795 union { 796 /// If Kind is Def, the value number that this value is based on. 797 ValueIDNum ID; 798 /// If Kind is Const, the MachineOperand defining this value. 799 MachineOperand MO; 800 /// For a NoVal DbgValue, which block it was generated in. 801 unsigned BlockNo; 802 }; 803 /// Qualifiers for the ValueIDNum above. 804 DbgValueProperties Properties; 805 806 typedef enum { 807 Undef, // Represents a DBG_VALUE $noreg in the transfer function only. 808 Def, // This value is defined by an inst, or is a PHI value. 809 Const, // A constant value contained in the MachineOperand field. 810 Proposed, // This is a tentative PHI value, which may be confirmed or 811 // invalidated later. 812 NoVal // Empty DbgValue, generated during dataflow. BlockNo stores 813 // which block this was generated in. 814 } KindT; 815 /// Discriminator for whether this is a constant or an in-program value. 816 KindT Kind; 817 818 DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind) 819 : ID(Val), Properties(Prop), Kind(Kind) { 820 assert(Kind == Def || Kind == Proposed); 821 } 822 823 DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind) 824 : BlockNo(BlockNo), Properties(Prop), Kind(Kind) { 825 assert(Kind == NoVal); 826 } 827 828 DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind) 829 : MO(MO), Properties(Prop), Kind(Kind) { 830 assert(Kind == Const); 831 } 832 833 DbgValue(const DbgValueProperties &Prop, KindT Kind) 834 : Properties(Prop), Kind(Kind) { 835 assert(Kind == Undef && 836 "Empty DbgValue constructor must pass in Undef kind"); 837 } 838 839 void dump(const MLocTracker *MTrack) const { 840 if (Kind == Const) { 841 MO.dump(); 842 } else if (Kind == NoVal) { 843 dbgs() << "NoVal(" << BlockNo << ")"; 844 } else if (Kind == Proposed) { 845 dbgs() << "VPHI(" << MTrack->IDAsString(ID) << ")"; 846 } else { 847 assert(Kind == Def); 848 dbgs() << MTrack->IDAsString(ID); 849 } 850 if (Properties.Indirect) 851 dbgs() << " indir"; 852 if (Properties.DIExpr) 853 dbgs() << " " << *Properties.DIExpr; 854 } 855 856 bool operator==(const DbgValue &Other) const { 857 if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties)) 858 return false; 859 else if (Kind == Proposed && ID != Other.ID) 860 return false; 861 else if (Kind == Def && ID != Other.ID) 862 return false; 863 else if (Kind == NoVal && BlockNo != Other.BlockNo) 864 return false; 865 else if (Kind == Const) 866 return MO.isIdenticalTo(Other.MO); 867 868 return true; 869 } 870 871 bool operator!=(const DbgValue &Other) const { return !(*this == Other); } 872 }; 873 874 /// Types for recording sets of variable fragments that overlap. For a given 875 /// local variable, we record all other fragments of that variable that could 876 /// overlap it, to reduce search time. 877 using FragmentOfVar = 878 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; 879 using OverlapMap = 880 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; 881 882 /// Collection of DBG_VALUEs observed when traversing a block. Records each 883 /// variable and the value the DBG_VALUE refers to. Requires the machine value 884 /// location dataflow algorithm to have run already, so that values can be 885 /// identified. 886 class VLocTracker { 887 public: 888 /// Map DebugVariable to the latest Value it's defined to have. 889 /// Needs to be a MapVector because we determine order-in-the-input-MIR from 890 /// the order in this container. 891 /// We only retain the last DbgValue in each block for each variable, to 892 /// determine the blocks live-out variable value. The Vars container forms the 893 /// transfer function for this block, as part of the dataflow analysis. The 894 /// movement of values between locations inside of a block is handled at a 895 /// much later stage, in the TransferTracker class. 896 MapVector<DebugVariable, DbgValue> Vars; 897 DenseMap<DebugVariable, const DILocation *> Scopes; 898 MachineBasicBlock *MBB; 899 900 public: 901 VLocTracker() {} 902 903 void defVar(const MachineInstr &MI, Optional<ValueIDNum> ID) { 904 // XXX skipping overlapping fragments for now. 905 assert(MI.isDebugValue()); 906 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 907 MI.getDebugLoc()->getInlinedAt()); 908 DbgValueProperties Properties(MI); 909 DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def) 910 : DbgValue(Properties, DbgValue::Undef); 911 912 // Attempt insertion; overwrite if it's already mapped. 913 auto Result = Vars.insert(std::make_pair(Var, Rec)); 914 if (!Result.second) 915 Result.first->second = Rec; 916 Scopes[Var] = MI.getDebugLoc().get(); 917 } 918 919 void defVar(const MachineInstr &MI, const MachineOperand &MO) { 920 // XXX skipping overlapping fragments for now. 921 assert(MI.isDebugValue()); 922 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 923 MI.getDebugLoc()->getInlinedAt()); 924 DbgValueProperties Properties(MI); 925 DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const); 926 927 // Attempt insertion; overwrite if it's already mapped. 928 auto Result = Vars.insert(std::make_pair(Var, Rec)); 929 if (!Result.second) 930 Result.first->second = Rec; 931 Scopes[Var] = MI.getDebugLoc().get(); 932 } 933 }; 934 935 /// Tracker for converting machine value locations and variable values into 936 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs 937 /// specifying block live-in locations and transfers within blocks. 938 /// 939 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker 940 /// and must be initialized with the set of variable values that are live-in to 941 /// the block. The caller then repeatedly calls process(). TransferTracker picks 942 /// out variable locations for the live-in variable values (if there _is_ a 943 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is 944 /// stepped through, transfers of values between machine locations are 945 /// identified and if profitable, a DBG_VALUE created. 946 /// 947 /// This is where debug use-before-defs would be resolved: a variable with an 948 /// unavailable value could materialize in the middle of a block, when the 949 /// value becomes available. Or, we could detect clobbers and re-specify the 950 /// variable in a backup location. (XXX these are unimplemented). 951 class TransferTracker { 952 public: 953 const TargetInstrInfo *TII; 954 /// This machine location tracker is assumed to always contain the up-to-date 955 /// value mapping for all machine locations. TransferTracker only reads 956 /// information from it. (XXX make it const?) 957 MLocTracker *MTracker; 958 MachineFunction &MF; 959 960 /// Record of all changes in variable locations at a block position. Awkwardly 961 /// we allow inserting either before or after the point: MBB != nullptr 962 /// indicates it's before, otherwise after. 963 struct Transfer { 964 MachineBasicBlock::iterator Pos; /// Position to insert DBG_VALUes 965 MachineBasicBlock *MBB; /// non-null if we should insert after. 966 SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert. 967 }; 968 969 typedef struct { 970 LocIdx Loc; 971 DbgValueProperties Properties; 972 } LocAndProperties; 973 974 /// Collection of transfers (DBG_VALUEs) to be inserted. 975 SmallVector<Transfer, 32> Transfers; 976 977 /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences 978 /// between TransferTrackers view of variable locations and MLocTrackers. For 979 /// example, MLocTracker observes all clobbers, but TransferTracker lazily 980 /// does not. 981 std::vector<ValueIDNum> VarLocs; 982 983 /// Map from LocIdxes to which DebugVariables are based that location. 984 /// Mantained while stepping through the block. Not accurate if 985 /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx]. 986 std::map<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs; 987 988 /// Map from DebugVariable to it's current location and qualifying meta 989 /// information. To be used in conjunction with ActiveMLocs to construct 990 /// enough information for the DBG_VALUEs for a particular LocIdx. 991 DenseMap<DebugVariable, LocAndProperties> ActiveVLocs; 992 993 /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection. 994 SmallVector<MachineInstr *, 4> PendingDbgValues; 995 996 const TargetRegisterInfo &TRI; 997 const BitVector &CalleeSavedRegs; 998 999 TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker, 1000 MachineFunction &MF, const TargetRegisterInfo &TRI, 1001 const BitVector &CalleeSavedRegs) 1002 : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI), 1003 CalleeSavedRegs(CalleeSavedRegs) {} 1004 1005 /// Load object with live-in variable values. \p mlocs contains the live-in 1006 /// values in each machine location, while \p vlocs the live-in variable 1007 /// values. This method picks variable locations for the live-in variables, 1008 /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other 1009 /// object fields to track variable locations as we step through the block. 1010 /// FIXME: could just examine mloctracker instead of passing in \p mlocs? 1011 void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs, 1012 SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs, 1013 unsigned NumLocs) { 1014 ActiveMLocs.clear(); 1015 ActiveVLocs.clear(); 1016 VarLocs.clear(); 1017 VarLocs.reserve(NumLocs); 1018 1019 auto isCalleeSaved = [&](LocIdx L) { 1020 unsigned Reg = MTracker->LocIdxToLocID[L]; 1021 if (Reg >= MTracker->NumRegs) 1022 return false; 1023 for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI) 1024 if (CalleeSavedRegs.test(*RAI)) 1025 return true; 1026 return false; 1027 }; 1028 1029 // Map of the preferred location for each value. 1030 std::map<ValueIDNum, LocIdx> ValueToLoc; 1031 1032 // Produce a map of value numbers to the current machine locs they live 1033 // in. When emulating VarLocBasedImpl, there should only be one 1034 // location; when not, we get to pick. 1035 for (auto Location : MTracker->locations()) { 1036 LocIdx Idx = Location.Idx; 1037 ValueIDNum &VNum = MLocs[Idx.asU64()]; 1038 VarLocs.push_back(VNum); 1039 auto it = ValueToLoc.find(VNum); 1040 // In order of preference, pick: 1041 // * Callee saved registers, 1042 // * Other registers, 1043 // * Spill slots. 1044 if (it == ValueToLoc.end() || MTracker->isSpill(it->second) || 1045 (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) { 1046 // Insert, or overwrite if insertion failed. 1047 auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx)); 1048 if (!PrefLocRes.second) 1049 PrefLocRes.first->second = Idx; 1050 } 1051 } 1052 1053 // Now map variables to their picked LocIdxes. 1054 for (auto Var : VLocs) { 1055 if (Var.second.Kind == DbgValue::Const) { 1056 PendingDbgValues.push_back( 1057 emitMOLoc(Var.second.MO, Var.first, Var.second.Properties)); 1058 continue; 1059 } 1060 1061 // If the value has no location, we can't make a variable location. 1062 auto ValuesPreferredLoc = ValueToLoc.find(Var.second.ID); 1063 if (ValuesPreferredLoc == ValueToLoc.end()) 1064 continue; 1065 1066 LocIdx M = ValuesPreferredLoc->second; 1067 auto NewValue = LocAndProperties{M, Var.second.Properties}; 1068 auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue)); 1069 if (!Result.second) 1070 Result.first->second = NewValue; 1071 ActiveMLocs[M].insert(Var.first); 1072 PendingDbgValues.push_back( 1073 MTracker->emitLoc(M, Var.first, Var.second.Properties)); 1074 } 1075 flushDbgValues(MBB.begin(), &MBB); 1076 } 1077 1078 /// Helper to move created DBG_VALUEs into Transfers collection. 1079 void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) { 1080 if (PendingDbgValues.size() > 0) { 1081 Transfers.push_back({Pos, MBB, PendingDbgValues}); 1082 PendingDbgValues.clear(); 1083 } 1084 } 1085 1086 /// Handle a DBG_VALUE within a block. Terminate the variables current 1087 /// location, and record the value its DBG_VALUE refers to, so that we can 1088 /// detect location transfers later on. 1089 void redefVar(const MachineInstr &MI) { 1090 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 1091 MI.getDebugLoc()->getInlinedAt()); 1092 const MachineOperand &MO = MI.getOperand(0); 1093 1094 // Erase any previous location, 1095 auto It = ActiveVLocs.find(Var); 1096 if (It != ActiveVLocs.end()) { 1097 ActiveMLocs[It->second.Loc].erase(Var); 1098 } 1099 1100 // Insert a new variable location. Ignore non-register locations, we don't 1101 // transfer those, and can't currently describe spill locs independently of 1102 // regs. 1103 // (This is because a spill location is a DBG_VALUE of the stack pointer). 1104 if (!MO.isReg() || MO.getReg() == 0) { 1105 if (It != ActiveVLocs.end()) 1106 ActiveVLocs.erase(It); 1107 return; 1108 } 1109 1110 Register Reg = MO.getReg(); 1111 LocIdx MLoc = MTracker->getRegMLoc(Reg); 1112 DbgValueProperties Properties(MI); 1113 1114 // Check whether our local copy of values-by-location in #VarLocs is out of 1115 // date. Wipe old tracking data for the location if it's been clobbered in 1116 // the meantime. 1117 if (MTracker->getNumAtPos(MLoc) != VarLocs[MLoc.asU64()]) { 1118 for (auto &P : ActiveMLocs[MLoc.asU64()]) { 1119 ActiveVLocs.erase(P); 1120 } 1121 ActiveMLocs[MLoc].clear(); 1122 VarLocs[MLoc.asU64()] = MTracker->getNumAtPos(MLoc); 1123 } 1124 1125 ActiveMLocs[MLoc].insert(Var); 1126 if (It == ActiveVLocs.end()) { 1127 ActiveVLocs.insert(std::make_pair(Var, LocAndProperties{MLoc, Properties})); 1128 } else { 1129 It->second.Loc = MLoc; 1130 It->second.Properties = Properties; 1131 } 1132 } 1133 1134 /// Explicitly terminate variable locations based on \p mloc. Creates undef 1135 /// DBG_VALUEs for any variables that were located there, and clears 1136 /// #ActiveMLoc / #ActiveVLoc tracking information for that location. 1137 void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos) { 1138 assert(MTracker->isSpill(MLoc)); 1139 auto ActiveMLocIt = ActiveMLocs.find(MLoc); 1140 if (ActiveMLocIt == ActiveMLocs.end()) 1141 return; 1142 1143 VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue; 1144 1145 for (auto &Var : ActiveMLocIt->second) { 1146 auto ActiveVLocIt = ActiveVLocs.find(Var); 1147 // Create an undef. We can't feed in a nullptr DIExpression alas, 1148 // so use the variables last expression. Pass None as the location. 1149 const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr; 1150 DbgValueProperties Properties(Expr, false); 1151 PendingDbgValues.push_back(MTracker->emitLoc(None, Var, Properties)); 1152 ActiveVLocs.erase(ActiveVLocIt); 1153 } 1154 flushDbgValues(Pos, nullptr); 1155 1156 ActiveMLocIt->second.clear(); 1157 } 1158 1159 /// Transfer variables based on \p Src to be based on \p Dst. This handles 1160 /// both register copies as well as spills and restores. Creates DBG_VALUEs 1161 /// describing the movement. 1162 void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) { 1163 // Does Src still contain the value num we expect? If not, it's been 1164 // clobbered in the meantime, and our variable locations are stale. 1165 if (VarLocs[Src.asU64()] != MTracker->getNumAtPos(Src)) 1166 return; 1167 1168 // assert(ActiveMLocs[Dst].size() == 0); 1169 //^^^ Legitimate scenario on account of un-clobbered slot being assigned to? 1170 ActiveMLocs[Dst] = ActiveMLocs[Src]; 1171 VarLocs[Dst.asU64()] = VarLocs[Src.asU64()]; 1172 1173 // For each variable based on Src; create a location at Dst. 1174 for (auto &Var : ActiveMLocs[Src]) { 1175 auto ActiveVLocIt = ActiveVLocs.find(Var); 1176 assert(ActiveVLocIt != ActiveVLocs.end()); 1177 ActiveVLocIt->second.Loc = Dst; 1178 1179 assert(Dst != 0); 1180 MachineInstr *MI = 1181 MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties); 1182 PendingDbgValues.push_back(MI); 1183 } 1184 ActiveMLocs[Src].clear(); 1185 flushDbgValues(Pos, nullptr); 1186 1187 // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data 1188 // about the old location. 1189 if (EmulateOldLDV) 1190 VarLocs[Src.asU64()] = ValueIDNum::EmptyValue; 1191 } 1192 1193 MachineInstrBuilder emitMOLoc(const MachineOperand &MO, 1194 const DebugVariable &Var, 1195 const DbgValueProperties &Properties) { 1196 DebugLoc DL = 1197 DebugLoc::get(0, 0, Var.getVariable()->getScope(), Var.getInlinedAt()); 1198 auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)); 1199 MIB.add(MO); 1200 if (Properties.Indirect) 1201 MIB.addImm(0); 1202 else 1203 MIB.addReg(0); 1204 MIB.addMetadata(Var.getVariable()); 1205 MIB.addMetadata(Properties.DIExpr); 1206 return MIB; 1207 } 1208 }; 1209 1210 class InstrRefBasedLDV : public LDVImpl { 1211 private: 1212 using FragmentInfo = DIExpression::FragmentInfo; 1213 using OptFragmentInfo = Optional<DIExpression::FragmentInfo>; 1214 1215 // Helper while building OverlapMap, a map of all fragments seen for a given 1216 // DILocalVariable. 1217 using VarToFragments = 1218 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; 1219 1220 /// Machine location/value transfer function, a mapping of which locations 1221 // are assigned which new values. 1222 typedef std::map<LocIdx, ValueIDNum> MLocTransferMap; 1223 1224 /// Live in/out structure for the variable values: a per-block map of 1225 /// variables to their values. XXX, better name? 1226 typedef DenseMap<const MachineBasicBlock *, 1227 DenseMap<DebugVariable, DbgValue> *> 1228 LiveIdxT; 1229 1230 typedef std::pair<DebugVariable, DbgValue> VarAndLoc; 1231 1232 /// Type for a live-in value: the predecessor block, and its value. 1233 typedef std::pair<MachineBasicBlock *, DbgValue *> InValueT; 1234 1235 /// Vector (per block) of a collection (inner smallvector) of live-ins. 1236 /// Used as the result type for the variable value dataflow problem. 1237 typedef SmallVector<SmallVector<VarAndLoc, 8>, 8> LiveInsT; 1238 1239 const TargetRegisterInfo *TRI; 1240 const TargetInstrInfo *TII; 1241 const TargetFrameLowering *TFI; 1242 BitVector CalleeSavedRegs; 1243 LexicalScopes LS; 1244 TargetPassConfig *TPC; 1245 1246 /// Object to track machine locations as we step through a block. Could 1247 /// probably be a field rather than a pointer, as it's always used. 1248 MLocTracker *MTracker; 1249 1250 /// Number of the current block LiveDebugValues is stepping through. 1251 unsigned CurBB; 1252 1253 /// Number of the current instruction LiveDebugValues is evaluating. 1254 unsigned CurInst; 1255 1256 /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl 1257 /// steps through a block. Reads the values at each location from the 1258 /// MLocTracker object. 1259 VLocTracker *VTracker; 1260 1261 /// Tracker for transfers, listens to DBG_VALUEs and transfers of values 1262 /// between locations during stepping, creates new DBG_VALUEs when values move 1263 /// location. 1264 TransferTracker *TTracker; 1265 1266 /// Blocks which are artificial, i.e. blocks which exclusively contain 1267 /// instructions without DebugLocs, or with line 0 locations. 1268 SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks; 1269 1270 // Mapping of blocks to and from their RPOT order. 1271 DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; 1272 DenseMap<MachineBasicBlock *, unsigned int> BBToOrder; 1273 DenseMap<unsigned, unsigned> BBNumToRPO; 1274 1275 // Map of overlapping variable fragments. 1276 OverlapMap OverlapFragments; 1277 VarToFragments SeenFragments; 1278 1279 /// Tests whether this instruction is a spill to a stack slot. 1280 bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF); 1281 1282 /// Decide if @MI is a spill instruction and return true if it is. We use 2 1283 /// criteria to make this decision: 1284 /// - Is this instruction a store to a spill slot? 1285 /// - Is there a register operand that is both used and killed? 1286 /// TODO: Store optimization can fold spills into other stores (including 1287 /// other spills). We do not handle this yet (more than one memory operand). 1288 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, 1289 unsigned &Reg); 1290 1291 /// If a given instruction is identified as a spill, return the spill slot 1292 /// and set \p Reg to the spilled register. 1293 Optional<SpillLoc> isRestoreInstruction(const MachineInstr &MI, 1294 MachineFunction *MF, unsigned &Reg); 1295 1296 /// Given a spill instruction, extract the register and offset used to 1297 /// address the spill slot in a target independent way. 1298 SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); 1299 1300 /// Observe a single instruction while stepping through a block. 1301 void process(MachineInstr &MI); 1302 1303 /// Examines whether \p MI is a DBG_VALUE and notifies trackers. 1304 /// \returns true if MI was recognized and processed. 1305 bool transferDebugValue(const MachineInstr &MI); 1306 1307 /// Examines whether \p MI is copy instruction, and notifies trackers. 1308 /// \returns true if MI was recognized and processed. 1309 bool transferRegisterCopy(MachineInstr &MI); 1310 1311 /// Examines whether \p MI is stack spill or restore instruction, and 1312 /// notifies trackers. \returns true if MI was recognized and processed. 1313 bool transferSpillOrRestoreInst(MachineInstr &MI); 1314 1315 /// Examines \p MI for any registers that it defines, and notifies trackers. 1316 /// \returns true if MI was recognized and processed. 1317 void transferRegisterDef(MachineInstr &MI); 1318 1319 /// Copy one location to the other, accounting for movement of subregisters 1320 /// too. 1321 void performCopy(Register Src, Register Dst); 1322 1323 void accumulateFragmentMap(MachineInstr &MI); 1324 1325 /// Step through the function, recording register definitions and movements 1326 /// in an MLocTracker. Convert the observations into a per-block transfer 1327 /// function in \p MLocTransfer, suitable for using with the machine value 1328 /// location dataflow problem. Do the same with VLoc trackers in \p VLocs, 1329 /// although the precise machine value numbers can't be known until after 1330 /// the machine value number problem is solved. 1331 void produceTransferFunctions(MachineFunction &MF, 1332 SmallVectorImpl<MLocTransferMap> &MLocTransfer, 1333 unsigned MaxNumBlocks, 1334 SmallVectorImpl<VLocTracker> &VLocs); 1335 1336 /// Solve the machine value location dataflow problem. Takes as input the 1337 /// transfer functions in \p MLocTransfer. Writes the output live-in and 1338 /// live-out arrays to the (initialized to zero) multidimensional arrays in 1339 /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block 1340 /// number, the inner by LocIdx. 1341 void mlocDataflow(ValueIDNum **MInLocs, ValueIDNum **MOutLocs, 1342 SmallVectorImpl<MLocTransferMap> &MLocTransfer); 1343 1344 /// Perform a control flow join (lattice value meet) of the values in machine 1345 /// locations at \p MBB. Follows the algorithm described in the file-comment, 1346 /// reading live-outs of predecessors from \p OutLocs, the current live ins 1347 /// from \p InLocs, and assigning the newly computed live ins back into 1348 /// \p InLocs. \returns two bools -- the first indicates whether a change 1349 /// was made, the second whether a lattice downgrade occurred. If the latter 1350 /// is true, revisiting this block is necessary. 1351 std::tuple<bool, bool> 1352 mlocJoin(MachineBasicBlock &MBB, 1353 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1354 ValueIDNum **OutLocs, ValueIDNum *InLocs); 1355 1356 /// Solve the variable value dataflow problem, for a single lexical scope. 1357 /// Uses the algorithm from the file comment to resolve control flow joins, 1358 /// although there are extra hacks, see vlocJoin. Reads the 1359 /// locations of values from the \p MInLocs and \p MOutLocs arrays (see 1360 /// mlocDataflow) and reads the variable values transfer function from 1361 /// \p AllTheVlocs. Live-in and Live-out variable values are stored locally, 1362 /// with the live-ins permanently stored to \p Output once the fixedpoint is 1363 /// reached. 1364 /// \p VarsWeCareAbout contains a collection of the variables in \p Scope 1365 /// that we should be tracking. 1366 /// \p AssignBlocks contains the set of blocks that aren't in \p Scope, but 1367 /// which do contain DBG_VALUEs, which VarLocBasedImpl tracks locations 1368 /// through. 1369 void vlocDataflow(const LexicalScope *Scope, const DILocation *DILoc, 1370 const SmallSet<DebugVariable, 4> &VarsWeCareAbout, 1371 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, 1372 LiveInsT &Output, ValueIDNum **MOutLocs, 1373 ValueIDNum **MInLocs, 1374 SmallVectorImpl<VLocTracker> &AllTheVLocs); 1375 1376 /// Compute the live-ins to a block, considering control flow merges according 1377 /// to the method in the file comment. Live out and live in variable values 1378 /// are stored in \p VLOCOutLocs and \p VLOCInLocs. The live-ins for \p MBB 1379 /// are computed and stored into \p VLOCInLocs. \returns true if the live-ins 1380 /// are modified. 1381 /// \p InLocsT Output argument, storage for calculated live-ins. 1382 /// \returns two bools -- the first indicates whether a change 1383 /// was made, the second whether a lattice downgrade occurred. If the latter 1384 /// is true, revisiting this block is necessary. 1385 std::tuple<bool, bool> 1386 vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs, 1387 SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, 1388 unsigned BBNum, const SmallSet<DebugVariable, 4> &AllVars, 1389 ValueIDNum **MOutLocs, ValueIDNum **MInLocs, 1390 SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks, 1391 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, 1392 DenseMap<DebugVariable, DbgValue> &InLocsT); 1393 1394 /// Continue exploration of the variable-value lattice, as explained in the 1395 /// file-level comment. \p OldLiveInLocation contains the current 1396 /// exploration position, from which we need to descend further. \p Values 1397 /// contains the set of live-in values, \p CurBlockRPONum the RPO number of 1398 /// the current block, and \p CandidateLocations a set of locations that 1399 /// should be considered as PHI locations, if we reach the bottom of the 1400 /// lattice. \returns true if we should downgrade; the value is the agreeing 1401 /// value number in a non-backedge predecessor. 1402 bool vlocDowngradeLattice(const MachineBasicBlock &MBB, 1403 const DbgValue &OldLiveInLocation, 1404 const SmallVectorImpl<InValueT> &Values, 1405 unsigned CurBlockRPONum); 1406 1407 /// For the given block and live-outs feeding into it, try to find a 1408 /// machine location where they all join. If a solution for all predecessors 1409 /// can't be found, a location where all non-backedge-predecessors join 1410 /// will be returned instead. While this method finds a join location, this 1411 /// says nothing as to whether it should be used. 1412 /// \returns Pair of value ID if found, and true when the correct value 1413 /// is available on all predecessor edges, or false if it's only available 1414 /// for non-backedge predecessors. 1415 std::tuple<Optional<ValueIDNum>, bool> 1416 pickVPHILoc(MachineBasicBlock &MBB, const DebugVariable &Var, 1417 const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs, 1418 ValueIDNum **MInLocs, 1419 const SmallVectorImpl<MachineBasicBlock *> &BlockOrders); 1420 1421 /// Given the solutions to the two dataflow problems, machine value locations 1422 /// in \p MInLocs and live-in variable values in \p SavedLiveIns, runs the 1423 /// TransferTracker class over the function to produce live-in and transfer 1424 /// DBG_VALUEs, then inserts them. Groups of DBG_VALUEs are inserted in the 1425 /// order given by AllVarsNumbering -- this could be any stable order, but 1426 /// right now "order of appearence in function, when explored in RPO", so 1427 /// that we can compare explictly against VarLocBasedImpl. 1428 void emitLocations(MachineFunction &MF, LiveInsT SavedLiveIns, 1429 ValueIDNum **MInLocs, 1430 DenseMap<DebugVariable, unsigned> &AllVarsNumbering); 1431 1432 /// Boilerplate computation of some initial sets, artifical blocks and 1433 /// RPOT block ordering. 1434 void initialSetup(MachineFunction &MF); 1435 1436 bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override; 1437 1438 public: 1439 /// Default construct and initialize the pass. 1440 InstrRefBasedLDV(); 1441 1442 LLVM_DUMP_METHOD 1443 void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const; 1444 1445 bool isCalleeSaved(LocIdx L) { 1446 unsigned Reg = MTracker->LocIdxToLocID[L]; 1447 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1448 if (CalleeSavedRegs.test(*RAI)) 1449 return true; 1450 return false; 1451 } 1452 }; 1453 1454 } // end anonymous namespace 1455 1456 //===----------------------------------------------------------------------===// 1457 // Implementation 1458 //===----------------------------------------------------------------------===// 1459 1460 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX}; 1461 1462 /// Default construct and initialize the pass. 1463 InstrRefBasedLDV::InstrRefBasedLDV() {} 1464 1465 //===----------------------------------------------------------------------===// 1466 // Debug Range Extension Implementation 1467 //===----------------------------------------------------------------------===// 1468 1469 #ifndef NDEBUG 1470 // Something to restore in the future. 1471 // void InstrRefBasedLDV::printVarLocInMBB(..) 1472 #endif 1473 1474 SpillLoc 1475 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { 1476 assert(MI.hasOneMemOperand() && 1477 "Spill instruction does not have exactly one memory operand?"); 1478 auto MMOI = MI.memoperands_begin(); 1479 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 1480 assert(PVal->kind() == PseudoSourceValue::FixedStack && 1481 "Inconsistent memory operand in spill instruction"); 1482 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); 1483 const MachineBasicBlock *MBB = MI.getParent(); 1484 Register Reg; 1485 int Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); 1486 return {Reg, Offset}; 1487 } 1488 1489 /// End all previous ranges related to @MI and start a new range from @MI 1490 /// if it is a DBG_VALUE instr. 1491 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) { 1492 if (!MI.isDebugValue()) 1493 return false; 1494 1495 const DILocalVariable *Var = MI.getDebugVariable(); 1496 const DIExpression *Expr = MI.getDebugExpression(); 1497 const DILocation *DebugLoc = MI.getDebugLoc(); 1498 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 1499 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 1500 "Expected inlined-at fields to agree"); 1501 1502 DebugVariable V(Var, Expr, InlinedAt); 1503 1504 // If there are no instructions in this lexical scope, do no location tracking 1505 // at all, this variable shouldn't get a legitimate location range. 1506 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); 1507 if (Scope == nullptr) 1508 return true; // handled it; by doing nothing 1509 1510 const MachineOperand &MO = MI.getOperand(0); 1511 1512 // MLocTracker needs to know that this register is read, even if it's only 1513 // read by a debug inst. 1514 if (MO.isReg() && MO.getReg() != 0) 1515 (void)MTracker->readReg(MO.getReg()); 1516 1517 // If we're preparing for the second analysis (variables), the machine value 1518 // locations are already solved, and we report this DBG_VALUE and the value 1519 // it refers to to VLocTracker. 1520 if (VTracker) { 1521 if (MO.isReg()) { 1522 // Feed defVar the new variable location, or if this is a 1523 // DBG_VALUE $noreg, feed defVar None. 1524 if (MO.getReg()) 1525 VTracker->defVar(MI, MTracker->readReg(MO.getReg())); 1526 else 1527 VTracker->defVar(MI, None); 1528 } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() || 1529 MI.getOperand(0).isCImm()) { 1530 VTracker->defVar(MI, MI.getOperand(0)); 1531 } 1532 } 1533 1534 // If performing final tracking of transfers, report this variable definition 1535 // to the TransferTracker too. 1536 if (TTracker) 1537 TTracker->redefVar(MI); 1538 return true; 1539 } 1540 1541 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) { 1542 // Meta Instructions do not affect the debug liveness of any register they 1543 // define. 1544 if (MI.isImplicitDef()) { 1545 // Except when there's an implicit def, and the location it's defining has 1546 // no value number. The whole point of an implicit def is to announce that 1547 // the register is live, without be specific about it's value. So define 1548 // a value if there isn't one already. 1549 ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg()); 1550 // Has a legitimate value -> ignore the implicit def. 1551 if (Num.getLoc() != 0) 1552 return; 1553 // Otherwise, def it here. 1554 } else if (MI.isMetaInstruction()) 1555 return; 1556 1557 MachineFunction *MF = MI.getMF(); 1558 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1559 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 1560 1561 // Find the regs killed by MI, and find regmasks of preserved regs. 1562 // Max out the number of statically allocated elements in `DeadRegs`, as this 1563 // prevents fallback to std::set::count() operations. 1564 SmallSet<uint32_t, 32> DeadRegs; 1565 SmallVector<const uint32_t *, 4> RegMasks; 1566 SmallVector<const MachineOperand *, 4> RegMaskPtrs; 1567 for (const MachineOperand &MO : MI.operands()) { 1568 // Determine whether the operand is a register def. 1569 if (MO.isReg() && MO.isDef() && MO.getReg() && 1570 Register::isPhysicalRegister(MO.getReg()) && 1571 !(MI.isCall() && MO.getReg() == SP)) { 1572 // Remove ranges of all aliased registers. 1573 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1574 // FIXME: Can we break out of this loop early if no insertion occurs? 1575 DeadRegs.insert(*RAI); 1576 } else if (MO.isRegMask()) { 1577 RegMasks.push_back(MO.getRegMask()); 1578 RegMaskPtrs.push_back(&MO); 1579 } 1580 } 1581 1582 // Tell MLocTracker about all definitions, of regmasks and otherwise. 1583 for (uint32_t DeadReg : DeadRegs) 1584 MTracker->defReg(DeadReg, CurBB, CurInst); 1585 1586 for (auto *MO : RegMaskPtrs) 1587 MTracker->writeRegMask(MO, CurBB, CurInst); 1588 } 1589 1590 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) { 1591 ValueIDNum SrcValue = MTracker->readReg(SrcRegNum); 1592 1593 MTracker->setReg(DstRegNum, SrcValue); 1594 1595 // In all circumstances, re-def the super registers. It's definitely a new 1596 // value now. This doesn't uniquely identify the composition of subregs, for 1597 // example, two identical values in subregisters composed in different 1598 // places would not get equal value numbers. 1599 for (MCSuperRegIterator SRI(DstRegNum, TRI); SRI.isValid(); ++SRI) 1600 MTracker->defReg(*SRI, CurBB, CurInst); 1601 1602 // If we're emulating VarLocBasedImpl, just define all the subregisters. 1603 // DBG_VALUEs of them will expect to be tracked from the DBG_VALUE, not 1604 // through prior copies. 1605 if (EmulateOldLDV) { 1606 for (MCSubRegIndexIterator DRI(DstRegNum, TRI); DRI.isValid(); ++DRI) 1607 MTracker->defReg(DRI.getSubReg(), CurBB, CurInst); 1608 return; 1609 } 1610 1611 // Otherwise, actually copy subregisters from one location to another. 1612 // XXX: in addition, any subregisters of DstRegNum that don't line up with 1613 // the source register should be def'd. 1614 for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) { 1615 unsigned SrcSubReg = SRI.getSubReg(); 1616 unsigned SubRegIdx = SRI.getSubRegIndex(); 1617 unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx); 1618 if (!DstSubReg) 1619 continue; 1620 1621 // Do copy. There are two matching subregisters, the source value should 1622 // have been def'd when the super-reg was, the latter might not be tracked 1623 // yet. 1624 // This will force SrcSubReg to be tracked, if it isn't yet. 1625 (void)MTracker->readReg(SrcSubReg); 1626 LocIdx SrcL = MTracker->getRegMLoc(SrcSubReg); 1627 assert(SrcL.asU64()); 1628 (void)MTracker->readReg(DstSubReg); 1629 LocIdx DstL = MTracker->getRegMLoc(DstSubReg); 1630 assert(DstL.asU64()); 1631 (void)DstL; 1632 ValueIDNum CpyValue = {SrcValue.getBlock(), SrcValue.getInst(), SrcL}; 1633 1634 MTracker->setReg(DstSubReg, CpyValue); 1635 } 1636 } 1637 1638 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI, 1639 MachineFunction *MF) { 1640 // TODO: Handle multiple stores folded into one. 1641 if (!MI.hasOneMemOperand()) 1642 return false; 1643 1644 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) 1645 return false; // This is not a spill instruction, since no valid size was 1646 // returned from either function. 1647 1648 return true; 1649 } 1650 1651 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI, 1652 MachineFunction *MF, unsigned &Reg) { 1653 if (!isSpillInstruction(MI, MF)) 1654 return false; 1655 1656 // XXX FIXME: On x86, isStoreToStackSlotPostFE returns '1' instead of an 1657 // actual register number. 1658 if (ObserveAllStackops) { 1659 int FI; 1660 Reg = TII->isStoreToStackSlotPostFE(MI, FI); 1661 return Reg != 0; 1662 } 1663 1664 auto isKilledReg = [&](const MachineOperand MO, unsigned &Reg) { 1665 if (!MO.isReg() || !MO.isUse()) { 1666 Reg = 0; 1667 return false; 1668 } 1669 Reg = MO.getReg(); 1670 return MO.isKill(); 1671 }; 1672 1673 for (const MachineOperand &MO : MI.operands()) { 1674 // In a spill instruction generated by the InlineSpiller the spilled 1675 // register has its kill flag set. 1676 if (isKilledReg(MO, Reg)) 1677 return true; 1678 if (Reg != 0) { 1679 // Check whether next instruction kills the spilled register. 1680 // FIXME: Current solution does not cover search for killed register in 1681 // bundles and instructions further down the chain. 1682 auto NextI = std::next(MI.getIterator()); 1683 // Skip next instruction that points to basic block end iterator. 1684 if (MI.getParent()->end() == NextI) 1685 continue; 1686 unsigned RegNext; 1687 for (const MachineOperand &MONext : NextI->operands()) { 1688 // Return true if we came across the register from the 1689 // previous spill instruction that is killed in NextI. 1690 if (isKilledReg(MONext, RegNext) && RegNext == Reg) 1691 return true; 1692 } 1693 } 1694 } 1695 // Return false if we didn't find spilled register. 1696 return false; 1697 } 1698 1699 Optional<SpillLoc> 1700 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI, 1701 MachineFunction *MF, unsigned &Reg) { 1702 if (!MI.hasOneMemOperand()) 1703 return None; 1704 1705 // FIXME: Handle folded restore instructions with more than one memory 1706 // operand. 1707 if (MI.getRestoreSize(TII)) { 1708 Reg = MI.getOperand(0).getReg(); 1709 return extractSpillBaseRegAndOffset(MI); 1710 } 1711 return None; 1712 } 1713 1714 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) { 1715 // XXX -- it's too difficult to implement VarLocBasedImpl's stack location 1716 // limitations under the new model. Therefore, when comparing them, compare 1717 // versions that don't attempt spills or restores at all. 1718 if (EmulateOldLDV) 1719 return false; 1720 1721 MachineFunction *MF = MI.getMF(); 1722 unsigned Reg; 1723 Optional<SpillLoc> Loc; 1724 1725 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); 1726 1727 // First, if there are any DBG_VALUEs pointing at a spill slot that is 1728 // written to, terminate that variable location. The value in memory 1729 // will have changed. DbgEntityHistoryCalculator doesn't try to detect this. 1730 if (isSpillInstruction(MI, MF)) { 1731 Loc = extractSpillBaseRegAndOffset(MI); 1732 1733 if (TTracker) { 1734 Optional<LocIdx> MLoc = MTracker->getSpillMLoc(*Loc); 1735 if (MLoc) 1736 TTracker->clobberMloc(*MLoc, MI.getIterator()); 1737 } 1738 } 1739 1740 // Try to recognise spill and restore instructions that may transfer a value. 1741 if (isLocationSpill(MI, MF, Reg)) { 1742 Loc = extractSpillBaseRegAndOffset(MI); 1743 auto ValueID = MTracker->readReg(Reg); 1744 1745 // If the location is empty, produce a phi, signify it's the live-in value. 1746 if (ValueID.getLoc() == 0) 1747 ValueID = {CurBB, 0, MTracker->getRegMLoc(Reg)}; 1748 1749 MTracker->setSpill(*Loc, ValueID); 1750 auto OptSpillLocIdx = MTracker->getSpillMLoc(*Loc); 1751 assert(OptSpillLocIdx && "Spill slot set but has no LocIdx?"); 1752 LocIdx SpillLocIdx = *OptSpillLocIdx; 1753 1754 // Tell TransferTracker about this spill, produce DBG_VALUEs for it. 1755 if (TTracker) 1756 TTracker->transferMlocs(MTracker->getRegMLoc(Reg), SpillLocIdx, 1757 MI.getIterator()); 1758 1759 // VarLocBasedImpl would, at this point, stop tracking the source 1760 // register of the store. 1761 if (EmulateOldLDV) { 1762 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1763 MTracker->defReg(*RAI, CurBB, CurInst); 1764 } 1765 } else { 1766 if (!(Loc = isRestoreInstruction(MI, MF, Reg))) 1767 return false; 1768 1769 // Is there a value to be restored? 1770 auto OptValueID = MTracker->readSpill(*Loc); 1771 if (OptValueID) { 1772 ValueIDNum ValueID = *OptValueID; 1773 LocIdx SpillLocIdx = *MTracker->getSpillMLoc(*Loc); 1774 // XXX -- can we recover sub-registers of this value? Until we can, first 1775 // overwrite all defs of the register being restored to. 1776 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1777 MTracker->defReg(*RAI, CurBB, CurInst); 1778 1779 // Now override the reg we're restoring to. 1780 MTracker->setReg(Reg, ValueID); 1781 1782 // Report this restore to the transfer tracker too. 1783 if (TTracker) 1784 TTracker->transferMlocs(SpillLocIdx, MTracker->getRegMLoc(Reg), 1785 MI.getIterator()); 1786 } else { 1787 // There isn't anything in the location; not clear if this is a code path 1788 // that still runs. Def this register anyway just in case. 1789 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1790 MTracker->defReg(*RAI, CurBB, CurInst); 1791 1792 // Force the spill slot to be tracked. 1793 LocIdx L = MTracker->getOrTrackSpillLoc(*Loc); 1794 1795 // Set the restored value to be a machine phi number, signifying that it's 1796 // whatever the spills live-in value is in this block. Definitely has 1797 // a LocIdx due to the setSpill above. 1798 ValueIDNum ValueID = {CurBB, 0, L}; 1799 MTracker->setReg(Reg, ValueID); 1800 MTracker->setSpill(*Loc, ValueID); 1801 } 1802 } 1803 return true; 1804 } 1805 1806 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) { 1807 auto DestSrc = TII->isCopyInstr(MI); 1808 if (!DestSrc) 1809 return false; 1810 1811 const MachineOperand *DestRegOp = DestSrc->Destination; 1812 const MachineOperand *SrcRegOp = DestSrc->Source; 1813 1814 auto isCalleeSavedReg = [&](unsigned Reg) { 1815 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1816 if (CalleeSavedRegs.test(*RAI)) 1817 return true; 1818 return false; 1819 }; 1820 1821 Register SrcReg = SrcRegOp->getReg(); 1822 Register DestReg = DestRegOp->getReg(); 1823 1824 // Ignore identity copies. Yep, these make it as far as LiveDebugValues. 1825 if (SrcReg == DestReg) 1826 return true; 1827 1828 // For emulating VarLocBasedImpl: 1829 // We want to recognize instructions where destination register is callee 1830 // saved register. If register that could be clobbered by the call is 1831 // included, there would be a great chance that it is going to be clobbered 1832 // soon. It is more likely that previous register, which is callee saved, is 1833 // going to stay unclobbered longer, even if it is killed. 1834 // 1835 // For InstrRefBasedImpl, we can track multiple locations per value, so 1836 // ignore this condition. 1837 if (EmulateOldLDV && !isCalleeSavedReg(DestReg)) 1838 return false; 1839 1840 // InstrRefBasedImpl only followed killing copies. 1841 if (EmulateOldLDV && !SrcRegOp->isKill()) 1842 return false; 1843 1844 // Copy MTracker info, including subregs if available. 1845 InstrRefBasedLDV::performCopy(SrcReg, DestReg); 1846 1847 // Only produce a transfer of DBG_VALUE within a block where old LDV 1848 // would have. We might make use of the additional value tracking in some 1849 // other way, later. 1850 if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill()) 1851 TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg), 1852 MTracker->getRegMLoc(DestReg), MI.getIterator()); 1853 1854 // VarLocBasedImpl would quit tracking the old location after copying. 1855 if (EmulateOldLDV && SrcReg != DestReg) 1856 MTracker->defReg(SrcReg, CurBB, CurInst); 1857 1858 return true; 1859 } 1860 1861 /// Accumulate a mapping between each DILocalVariable fragment and other 1862 /// fragments of that DILocalVariable which overlap. This reduces work during 1863 /// the data-flow stage from "Find any overlapping fragments" to "Check if the 1864 /// known-to-overlap fragments are present". 1865 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for 1866 /// fragment usage. 1867 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) { 1868 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), 1869 MI.getDebugLoc()->getInlinedAt()); 1870 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); 1871 1872 // If this is the first sighting of this variable, then we are guaranteed 1873 // there are currently no overlapping fragments either. Initialize the set 1874 // of seen fragments, record no overlaps for the current one, and return. 1875 auto SeenIt = SeenFragments.find(MIVar.getVariable()); 1876 if (SeenIt == SeenFragments.end()) { 1877 SmallSet<FragmentInfo, 4> OneFragment; 1878 OneFragment.insert(ThisFragment); 1879 SeenFragments.insert({MIVar.getVariable(), OneFragment}); 1880 1881 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1882 return; 1883 } 1884 1885 // If this particular Variable/Fragment pair already exists in the overlap 1886 // map, it has already been accounted for. 1887 auto IsInOLapMap = 1888 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1889 if (!IsInOLapMap.second) 1890 return; 1891 1892 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; 1893 auto &AllSeenFragments = SeenIt->second; 1894 1895 // Otherwise, examine all other seen fragments for this variable, with "this" 1896 // fragment being a previously unseen fragment. Record any pair of 1897 // overlapping fragments. 1898 for (auto &ASeenFragment : AllSeenFragments) { 1899 // Does this previously seen fragment overlap? 1900 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { 1901 // Yes: Mark the current fragment as being overlapped. 1902 ThisFragmentsOverlaps.push_back(ASeenFragment); 1903 // Mark the previously seen fragment as being overlapped by the current 1904 // one. 1905 auto ASeenFragmentsOverlaps = 1906 OverlapFragments.find({MIVar.getVariable(), ASeenFragment}); 1907 assert(ASeenFragmentsOverlaps != OverlapFragments.end() && 1908 "Previously seen var fragment has no vector of overlaps"); 1909 ASeenFragmentsOverlaps->second.push_back(ThisFragment); 1910 } 1911 } 1912 1913 AllSeenFragments.insert(ThisFragment); 1914 } 1915 1916 void InstrRefBasedLDV::process(MachineInstr &MI) { 1917 // Try to interpret an MI as a debug or transfer instruction. Only if it's 1918 // none of these should we interpret it's register defs as new value 1919 // definitions. 1920 if (transferDebugValue(MI)) 1921 return; 1922 if (transferRegisterCopy(MI)) 1923 return; 1924 if (transferSpillOrRestoreInst(MI)) 1925 return; 1926 transferRegisterDef(MI); 1927 } 1928 1929 void InstrRefBasedLDV::produceTransferFunctions( 1930 MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer, 1931 unsigned MaxNumBlocks, SmallVectorImpl<VLocTracker> &VLocs) { 1932 // Because we try to optimize around register mask operands by ignoring regs 1933 // that aren't currently tracked, we set up something ugly for later: RegMask 1934 // operands that are seen earlier than the first use of a register, still need 1935 // to clobber that register in the transfer function. But this information 1936 // isn't actively recorded. Instead, we track each RegMask used in each block, 1937 // and accumulated the clobbered but untracked registers in each block into 1938 // the following bitvector. Later, if new values are tracked, we can add 1939 // appropriate clobbers. 1940 SmallVector<BitVector, 32> BlockMasks; 1941 BlockMasks.resize(MaxNumBlocks); 1942 1943 // Reserve one bit per register for the masks described above. 1944 unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs()); 1945 for (auto &BV : BlockMasks) 1946 BV.resize(TRI->getNumRegs(), true); 1947 1948 // Step through all instructions and inhale the transfer function. 1949 for (auto &MBB : MF) { 1950 // Object fields that are read by trackers to know where we are in the 1951 // function. 1952 CurBB = MBB.getNumber(); 1953 CurInst = 1; 1954 1955 // Set all machine locations to a PHI value. For transfer function 1956 // production only, this signifies the live-in value to the block. 1957 MTracker->reset(); 1958 MTracker->setMPhis(CurBB); 1959 1960 VTracker = &VLocs[CurBB]; 1961 VTracker->MBB = &MBB; 1962 1963 // Step through each instruction in this block. 1964 for (auto &MI : MBB) { 1965 process(MI); 1966 // Also accumulate fragment map. 1967 if (MI.isDebugValue()) 1968 accumulateFragmentMap(MI); 1969 ++CurInst; 1970 } 1971 1972 // Produce the transfer function, a map of machine location to new value. If 1973 // any machine location has the live-in phi value from the start of the 1974 // block, it's live-through and doesn't need recording in the transfer 1975 // function. 1976 for (auto Location : MTracker->locations()) { 1977 LocIdx Idx = Location.Idx; 1978 ValueIDNum &P = Location.Value; 1979 if (P.isPHI() && P.getLoc() == Idx.asU64()) 1980 continue; 1981 1982 // Insert-or-update. 1983 auto &TransferMap = MLocTransfer[CurBB]; 1984 auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P)); 1985 if (!Result.second) 1986 Result.first->second = P; 1987 } 1988 1989 // Accumulate any bitmask operands into the clobberred reg mask for this 1990 // block. 1991 for (auto &P : MTracker->Masks) { 1992 BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords); 1993 } 1994 } 1995 1996 // Compute a bitvector of all the registers that are tracked in this block. 1997 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 1998 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 1999 BitVector UsedRegs(TRI->getNumRegs()); 2000 for (auto Location : MTracker->locations()) { 2001 unsigned ID = MTracker->LocIdxToLocID[Location.Idx]; 2002 if (ID >= TRI->getNumRegs() || ID == SP) 2003 continue; 2004 UsedRegs.set(ID); 2005 } 2006 2007 // Check that any regmask-clobber of a register that gets tracked, is not 2008 // live-through in the transfer function. It needs to be clobbered at the 2009 // very least. 2010 for (unsigned int I = 0; I < MaxNumBlocks; ++I) { 2011 BitVector &BV = BlockMasks[I]; 2012 BV.flip(); 2013 BV &= UsedRegs; 2014 // This produces all the bits that we clobber, but also use. Check that 2015 // they're all clobbered or at least set in the designated transfer 2016 // elem. 2017 for (unsigned Bit : BV.set_bits()) { 2018 unsigned ID = MTracker->getLocID(Bit, false); 2019 LocIdx Idx = MTracker->LocIDToLocIdx[ID]; 2020 auto &TransferMap = MLocTransfer[I]; 2021 2022 // Install a value representing the fact that this location is effectively 2023 // written to in this block. As there's no reserved value, instead use 2024 // a value number that is never generated. Pick the value number for the 2025 // first instruction in the block, def'ing this location, which we know 2026 // this block never used anyway. 2027 ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx); 2028 auto Result = 2029 TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum)); 2030 if (!Result.second) { 2031 ValueIDNum &ValueID = Result.first->second; 2032 if (ValueID.getBlock() == I && ValueID.isPHI()) 2033 // It was left as live-through. Set it to clobbered. 2034 ValueID = NotGeneratedNum; 2035 } 2036 } 2037 } 2038 } 2039 2040 std::tuple<bool, bool> 2041 InstrRefBasedLDV::mlocJoin(MachineBasicBlock &MBB, 2042 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 2043 ValueIDNum **OutLocs, ValueIDNum *InLocs) { 2044 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 2045 bool Changed = false; 2046 bool DowngradeOccurred = false; 2047 2048 // Collect predecessors that have been visited. Anything that hasn't been 2049 // visited yet is a backedge on the first iteration, and the meet of it's 2050 // lattice value for all locations will be unaffected. 2051 SmallVector<const MachineBasicBlock *, 8> BlockOrders; 2052 for (auto Pred : MBB.predecessors()) { 2053 if (Visited.count(Pred)) { 2054 BlockOrders.push_back(Pred); 2055 } 2056 } 2057 2058 // Visit predecessors in RPOT order. 2059 auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) { 2060 return BBToOrder.find(A)->second < BBToOrder.find(B)->second; 2061 }; 2062 llvm::sort(BlockOrders.begin(), BlockOrders.end(), Cmp); 2063 2064 // Skip entry block. 2065 if (BlockOrders.size() == 0) 2066 return std::tuple<bool, bool>(false, false); 2067 2068 // Step through all machine locations, then look at each predecessor and 2069 // detect disagreements. 2070 unsigned ThisBlockRPO = BBToOrder.find(&MBB)->second; 2071 for (auto Location : MTracker->locations()) { 2072 LocIdx Idx = Location.Idx; 2073 // Pick out the first predecessors live-out value for this location. It's 2074 // guaranteed to be not a backedge, as we order by RPO. 2075 ValueIDNum BaseVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()]; 2076 2077 // Some flags for whether there's a disagreement, and whether it's a 2078 // disagreement with a backedge or not. 2079 bool Disagree = false; 2080 bool NonBackEdgeDisagree = false; 2081 2082 // Loop around everything that wasn't 'base'. 2083 for (unsigned int I = 1; I < BlockOrders.size(); ++I) { 2084 auto *MBB = BlockOrders[I]; 2085 if (BaseVal != OutLocs[MBB->getNumber()][Idx.asU64()]) { 2086 // Live-out of a predecessor disagrees with the first predecessor. 2087 Disagree = true; 2088 2089 // Test whether it's a disagreemnt in the backedges or not. 2090 if (BBToOrder.find(MBB)->second < ThisBlockRPO) // might be self b/e 2091 NonBackEdgeDisagree = true; 2092 } 2093 } 2094 2095 bool OverRide = false; 2096 if (Disagree && !NonBackEdgeDisagree) { 2097 // Only the backedges disagree. Consider demoting the livein 2098 // lattice value, as per the file level comment. The value we consider 2099 // demoting to is the value that the non-backedge predecessors agree on. 2100 // The order of values is that non-PHIs are \top, a PHI at this block 2101 // \bot, and phis between the two are ordered by their RPO number. 2102 // If there's no agreement, or we've already demoted to this PHI value 2103 // before, replace with a PHI value at this block. 2104 2105 // Calculate order numbers: zero means normal def, nonzero means RPO 2106 // number. 2107 unsigned BaseBlockRPONum = BBNumToRPO[BaseVal.getBlock()] + 1; 2108 if (!BaseVal.isPHI()) 2109 BaseBlockRPONum = 0; 2110 2111 ValueIDNum &InLocID = InLocs[Idx.asU64()]; 2112 unsigned InLocRPONum = BBNumToRPO[InLocID.getBlock()] + 1; 2113 if (!InLocID.isPHI()) 2114 InLocRPONum = 0; 2115 2116 // Should we ignore the disagreeing backedges, and override with the 2117 // value the other predecessors agree on (in "base")? 2118 unsigned ThisBlockRPONum = BBNumToRPO[MBB.getNumber()] + 1; 2119 if (BaseBlockRPONum > InLocRPONum && BaseBlockRPONum < ThisBlockRPONum) { 2120 // Override. 2121 OverRide = true; 2122 DowngradeOccurred = true; 2123 } 2124 } 2125 // else: if we disagree in the non-backedges, then this is definitely 2126 // a control flow merge where different values merge. Make it a PHI. 2127 2128 // Generate a phi... 2129 ValueIDNum PHI = {(uint64_t)MBB.getNumber(), 0, Idx}; 2130 ValueIDNum NewVal = (Disagree && !OverRide) ? PHI : BaseVal; 2131 if (InLocs[Idx.asU64()] != NewVal) { 2132 Changed |= true; 2133 InLocs[Idx.asU64()] = NewVal; 2134 } 2135 } 2136 2137 // Uhhhhhh, reimplement NumInserted and NumRemoved pls. 2138 return std::tuple<bool, bool>(Changed, DowngradeOccurred); 2139 } 2140 2141 void InstrRefBasedLDV::mlocDataflow( 2142 ValueIDNum **MInLocs, ValueIDNum **MOutLocs, 2143 SmallVectorImpl<MLocTransferMap> &MLocTransfer) { 2144 std::priority_queue<unsigned int, std::vector<unsigned int>, 2145 std::greater<unsigned int>> 2146 Worklist, Pending; 2147 2148 // We track what is on the current and pending worklist to avoid inserting 2149 // the same thing twice. We could avoid this with a custom priority queue, 2150 // but this is probably not worth it. 2151 SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist; 2152 2153 // Initialize worklist with every block to be visited. 2154 for (unsigned int I = 0; I < BBToOrder.size(); ++I) { 2155 Worklist.push(I); 2156 OnWorklist.insert(OrderToBB[I]); 2157 } 2158 2159 MTracker->reset(); 2160 2161 // Set inlocs for entry block -- each as a PHI at the entry block. Represents 2162 // the incoming value to the function. 2163 MTracker->setMPhis(0); 2164 for (auto Location : MTracker->locations()) 2165 MInLocs[0][Location.Idx.asU64()] = Location.Value; 2166 2167 SmallPtrSet<const MachineBasicBlock *, 16> Visited; 2168 while (!Worklist.empty() || !Pending.empty()) { 2169 // Vector for storing the evaluated block transfer function. 2170 SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap; 2171 2172 while (!Worklist.empty()) { 2173 MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; 2174 CurBB = MBB->getNumber(); 2175 Worklist.pop(); 2176 2177 // Join the values in all predecessor blocks. 2178 bool InLocsChanged, DowngradeOccurred; 2179 std::tie(InLocsChanged, DowngradeOccurred) = 2180 mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]); 2181 InLocsChanged |= Visited.insert(MBB).second; 2182 2183 // If a downgrade occurred, book us in for re-examination on the next 2184 // iteration. 2185 if (DowngradeOccurred && OnPending.insert(MBB).second) 2186 Pending.push(BBToOrder[MBB]); 2187 2188 // Don't examine transfer function if we've visited this loc at least 2189 // once, and inlocs haven't changed. 2190 if (!InLocsChanged) 2191 continue; 2192 2193 // Load the current set of live-ins into MLocTracker. 2194 MTracker->loadFromArray(MInLocs[CurBB], CurBB); 2195 2196 // Each element of the transfer function can be a new def, or a read of 2197 // a live-in value. Evaluate each element, and store to "ToRemap". 2198 ToRemap.clear(); 2199 for (auto &P : MLocTransfer[CurBB]) { 2200 if (P.second.getBlock() == CurBB && P.second.isPHI()) { 2201 // This is a movement of whatever was live in. Read it. 2202 ValueIDNum NewID = MTracker->getNumAtPos(P.second.getLoc()); 2203 ToRemap.push_back(std::make_pair(P.first, NewID)); 2204 } else { 2205 // It's a def. Just set it. 2206 assert(P.second.getBlock() == CurBB); 2207 ToRemap.push_back(std::make_pair(P.first, P.second)); 2208 } 2209 } 2210 2211 // Commit the transfer function changes into mloc tracker, which 2212 // transforms the contents of the MLocTracker into the live-outs. 2213 for (auto &P : ToRemap) 2214 MTracker->setMLoc(P.first, P.second); 2215 2216 // Now copy out-locs from mloc tracker into out-loc vector, checking 2217 // whether changes have occurred. These changes can have come from both 2218 // the transfer function, and mlocJoin. 2219 bool OLChanged = false; 2220 for (auto Location : MTracker->locations()) { 2221 OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value; 2222 MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value; 2223 } 2224 2225 MTracker->reset(); 2226 2227 // No need to examine successors again if out-locs didn't change. 2228 if (!OLChanged) 2229 continue; 2230 2231 // All successors should be visited: put any back-edges on the pending 2232 // list for the next dataflow iteration, and any other successors to be 2233 // visited this iteration, if they're not going to be already. 2234 for (auto s : MBB->successors()) { 2235 // Does branching to this successor represent a back-edge? 2236 if (BBToOrder[s] > BBToOrder[MBB]) { 2237 // No: visit it during this dataflow iteration. 2238 if (OnWorklist.insert(s).second) 2239 Worklist.push(BBToOrder[s]); 2240 } else { 2241 // Yes: visit it on the next iteration. 2242 if (OnPending.insert(s).second) 2243 Pending.push(BBToOrder[s]); 2244 } 2245 } 2246 } 2247 2248 Worklist.swap(Pending); 2249 std::swap(OnPending, OnWorklist); 2250 OnPending.clear(); 2251 // At this point, pending must be empty, since it was just the empty 2252 // worklist 2253 assert(Pending.empty() && "Pending should be empty"); 2254 } 2255 2256 // Once all the live-ins don't change on mlocJoin(), we've reached a 2257 // fixedpoint. 2258 } 2259 2260 bool InstrRefBasedLDV::vlocDowngradeLattice( 2261 const MachineBasicBlock &MBB, const DbgValue &OldLiveInLocation, 2262 const SmallVectorImpl<InValueT> &Values, unsigned CurBlockRPONum) { 2263 // Ranking value preference: see file level comment, the highest rank is 2264 // a plain def, followed by PHI values in reverse post-order. Numerically, 2265 // we assign all defs the rank '0', all PHIs their blocks RPO number plus 2266 // one, and consider the lowest value the highest ranked. 2267 int OldLiveInRank = BBNumToRPO[OldLiveInLocation.ID.getBlock()] + 1; 2268 if (!OldLiveInLocation.ID.isPHI()) 2269 OldLiveInRank = 0; 2270 2271 // Allow any unresolvable conflict to be over-ridden. 2272 if (OldLiveInLocation.Kind == DbgValue::NoVal) { 2273 // Although if it was an unresolvable conflict from _this_ block, then 2274 // all other seeking of downgrades and PHIs must have failed before hand. 2275 if (OldLiveInLocation.BlockNo == (unsigned)MBB.getNumber()) 2276 return false; 2277 OldLiveInRank = INT_MIN; 2278 } 2279 2280 auto &InValue = *Values[0].second; 2281 2282 if (InValue.Kind == DbgValue::Const || InValue.Kind == DbgValue::NoVal) 2283 return false; 2284 2285 unsigned ThisRPO = BBNumToRPO[InValue.ID.getBlock()]; 2286 int ThisRank = ThisRPO + 1; 2287 if (!InValue.ID.isPHI()) 2288 ThisRank = 0; 2289 2290 // Too far down the lattice? 2291 if (ThisRPO >= CurBlockRPONum) 2292 return false; 2293 2294 // Higher in the lattice than what we've already explored? 2295 if (ThisRank <= OldLiveInRank) 2296 return false; 2297 2298 return true; 2299 } 2300 2301 std::tuple<Optional<ValueIDNum>, bool> InstrRefBasedLDV::pickVPHILoc( 2302 MachineBasicBlock &MBB, const DebugVariable &Var, const LiveIdxT &LiveOuts, 2303 ValueIDNum **MOutLocs, ValueIDNum **MInLocs, 2304 const SmallVectorImpl<MachineBasicBlock *> &BlockOrders) { 2305 // Collect a set of locations from predecessor where its live-out value can 2306 // be found. 2307 SmallVector<SmallVector<LocIdx, 4>, 8> Locs; 2308 unsigned NumLocs = MTracker->getNumLocs(); 2309 unsigned BackEdgesStart = 0; 2310 2311 for (auto p : BlockOrders) { 2312 // Pick out where backedges start in the list of predecessors. Relies on 2313 // BlockOrders being sorted by RPO. 2314 if (BBToOrder[p] < BBToOrder[&MBB]) 2315 ++BackEdgesStart; 2316 2317 // For each predecessor, create a new set of locations. 2318 Locs.resize(Locs.size() + 1); 2319 unsigned ThisBBNum = p->getNumber(); 2320 auto LiveOutMap = LiveOuts.find(p); 2321 if (LiveOutMap == LiveOuts.end()) 2322 // This predecessor isn't in scope, it must have no live-in/live-out 2323 // locations. 2324 continue; 2325 2326 auto It = LiveOutMap->second->find(Var); 2327 if (It == LiveOutMap->second->end()) 2328 // There's no value recorded for this variable in this predecessor, 2329 // leave an empty set of locations. 2330 continue; 2331 2332 const DbgValue &OutVal = It->second; 2333 2334 if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal) 2335 // Consts and no-values cannot have locations we can join on. 2336 continue; 2337 2338 assert(OutVal.Kind == DbgValue::Proposed || OutVal.Kind == DbgValue::Def); 2339 ValueIDNum ValToLookFor = OutVal.ID; 2340 2341 // Search the live-outs of the predecessor for the specified value. 2342 for (unsigned int I = 0; I < NumLocs; ++I) { 2343 if (MOutLocs[ThisBBNum][I] == ValToLookFor) 2344 Locs.back().push_back(LocIdx(I)); 2345 } 2346 } 2347 2348 // If there were no locations at all, return an empty result. 2349 if (Locs.empty()) 2350 return std::tuple<Optional<ValueIDNum>, bool>(None, false); 2351 2352 // Lambda for seeking a common location within a range of location-sets. 2353 typedef SmallVector<SmallVector<LocIdx, 4>, 8>::iterator LocsIt; 2354 auto SeekLocation = 2355 [&Locs](llvm::iterator_range<LocsIt> SearchRange) -> Optional<LocIdx> { 2356 // Starting with the first set of locations, take the intersection with 2357 // subsequent sets. 2358 SmallVector<LocIdx, 4> base = Locs[0]; 2359 for (auto &S : SearchRange) { 2360 SmallVector<LocIdx, 4> new_base; 2361 std::set_intersection(base.begin(), base.end(), S.begin(), S.end(), 2362 std::inserter(new_base, new_base.begin())); 2363 base = new_base; 2364 } 2365 if (base.empty()) 2366 return None; 2367 2368 // We now have a set of LocIdxes that contain the right output value in 2369 // each of the predecessors. Pick the lowest; if there's a register loc, 2370 // that'll be it. 2371 return *base.begin(); 2372 }; 2373 2374 // Search for a common location for all predecessors. If we can't, then fall 2375 // back to only finding a common location between non-backedge predecessors. 2376 bool ValidForAllLocs = true; 2377 auto TheLoc = SeekLocation(Locs); 2378 if (!TheLoc) { 2379 ValidForAllLocs = false; 2380 TheLoc = 2381 SeekLocation(make_range(Locs.begin(), Locs.begin() + BackEdgesStart)); 2382 } 2383 2384 if (!TheLoc) 2385 return std::tuple<Optional<ValueIDNum>, bool>(None, false); 2386 2387 // Return a PHI-value-number for the found location. 2388 LocIdx L = *TheLoc; 2389 ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L}; 2390 return std::tuple<Optional<ValueIDNum>, bool>(PHIVal, ValidForAllLocs); 2391 } 2392 2393 std::tuple<bool, bool> InstrRefBasedLDV::vlocJoin( 2394 MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs, 2395 SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, unsigned BBNum, 2396 const SmallSet<DebugVariable, 4> &AllVars, ValueIDNum **MOutLocs, 2397 ValueIDNum **MInLocs, 2398 SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks, 2399 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, 2400 DenseMap<DebugVariable, DbgValue> &InLocsT) { 2401 bool DowngradeOccurred = false; 2402 2403 // To emulate VarLocBasedImpl, process this block if it's not in scope but 2404 // _does_ assign a variable value. No live-ins for this scope are transferred 2405 // in though, so we can return immediately. 2406 if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB)) { 2407 if (VLOCVisited) 2408 return std::tuple<bool, bool>(true, false); 2409 return std::tuple<bool, bool>(false, false); 2410 } 2411 2412 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 2413 bool Changed = false; 2414 2415 // Find any live-ins computed in a prior iteration. 2416 auto ILSIt = VLOCInLocs.find(&MBB); 2417 assert(ILSIt != VLOCInLocs.end()); 2418 auto &ILS = *ILSIt->second; 2419 2420 // Order predecessors by RPOT order, for exploring them in that order. 2421 SmallVector<MachineBasicBlock *, 8> BlockOrders; 2422 for (auto p : MBB.predecessors()) 2423 BlockOrders.push_back(p); 2424 2425 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 2426 return BBToOrder[A] < BBToOrder[B]; 2427 }; 2428 2429 llvm::sort(BlockOrders.begin(), BlockOrders.end(), Cmp); 2430 2431 unsigned CurBlockRPONum = BBToOrder[&MBB]; 2432 2433 // Force a re-visit to loop heads in the first dataflow iteration. 2434 // FIXME: if we could "propose" Const values this wouldn't be needed, 2435 // because they'd need to be confirmed before being emitted. 2436 if (!BlockOrders.empty() && 2437 BBToOrder[BlockOrders[BlockOrders.size() - 1]] >= CurBlockRPONum && 2438 VLOCVisited) 2439 DowngradeOccurred = true; 2440 2441 auto ConfirmValue = [&InLocsT](const DebugVariable &DV, DbgValue VR) { 2442 auto Result = InLocsT.insert(std::make_pair(DV, VR)); 2443 (void)Result; 2444 assert(Result.second); 2445 }; 2446 2447 auto ConfirmNoVal = [&ConfirmValue, &MBB](const DebugVariable &Var, const DbgValueProperties &Properties) { 2448 DbgValue NoLocPHIVal(MBB.getNumber(), Properties, DbgValue::NoVal); 2449 2450 ConfirmValue(Var, NoLocPHIVal); 2451 }; 2452 2453 // Attempt to join the values for each variable. 2454 for (auto &Var : AllVars) { 2455 // Collect all the DbgValues for this variable. 2456 SmallVector<InValueT, 8> Values; 2457 bool Bail = false; 2458 unsigned BackEdgesStart = 0; 2459 for (auto p : BlockOrders) { 2460 // If the predecessor isn't in scope / to be explored, we'll never be 2461 // able to join any locations. 2462 if (BlocksToExplore.find(p) == BlocksToExplore.end()) { 2463 Bail = true; 2464 break; 2465 } 2466 2467 // Don't attempt to handle unvisited predecessors: they're implicitly 2468 // "unknown"s in the lattice. 2469 if (VLOCVisited && !VLOCVisited->count(p)) 2470 continue; 2471 2472 // If the predecessors OutLocs is absent, there's not much we can do. 2473 auto OL = VLOCOutLocs.find(p); 2474 if (OL == VLOCOutLocs.end()) { 2475 Bail = true; 2476 break; 2477 } 2478 2479 // No live-out value for this predecessor also means we can't produce 2480 // a joined value. 2481 auto VIt = OL->second->find(Var); 2482 if (VIt == OL->second->end()) { 2483 Bail = true; 2484 break; 2485 } 2486 2487 // Keep track of where back-edges begin in the Values vector. Relies on 2488 // BlockOrders being sorted by RPO. 2489 unsigned ThisBBRPONum = BBToOrder[p]; 2490 if (ThisBBRPONum < CurBlockRPONum) 2491 ++BackEdgesStart; 2492 2493 Values.push_back(std::make_pair(p, &VIt->second)); 2494 } 2495 2496 // If there were no values, or one of the predecessors couldn't have a 2497 // value, then give up immediately. It's not safe to produce a live-in 2498 // value. 2499 if (Bail || Values.size() == 0) 2500 continue; 2501 2502 // Enumeration identifying the current state of the predecessors values. 2503 enum { 2504 Unset = 0, 2505 Agreed, // All preds agree on the variable value. 2506 PropDisagree, // All preds agree, but the value kind is Proposed in some. 2507 BEDisagree, // Only back-edges disagree on variable value. 2508 PHINeeded, // Non-back-edge predecessors have conflicing values. 2509 NoSolution // Conflicting Value metadata makes solution impossible. 2510 } OurState = Unset; 2511 2512 // All (non-entry) blocks have at least one non-backedge predecessor. 2513 // Pick the variable value from the first of these, to compare against 2514 // all others. 2515 const DbgValue &FirstVal = *Values[0].second; 2516 const ValueIDNum &FirstID = FirstVal.ID; 2517 2518 // Scan for variable values that can't be resolved: if they have different 2519 // DIExpressions, different indirectness, or are mixed constants / 2520 // non-constants. 2521 for (auto &V : Values) { 2522 if (V.second->Properties != FirstVal.Properties) 2523 OurState = NoSolution; 2524 if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const) 2525 OurState = NoSolution; 2526 } 2527 2528 // Flags diagnosing _how_ the values disagree. 2529 bool NonBackEdgeDisagree = false; 2530 bool DisagreeOnPHINess = false; 2531 bool IDDisagree = false; 2532 bool Disagree = false; 2533 if (OurState == Unset) { 2534 for (auto &V : Values) { 2535 if (*V.second == FirstVal) 2536 continue; // No disagreement. 2537 2538 Disagree = true; 2539 2540 // Flag whether the value number actually diagrees. 2541 if (V.second->ID != FirstID) 2542 IDDisagree = true; 2543 2544 // Distinguish whether disagreement happens in backedges or not. 2545 // Relies on Values (and BlockOrders) being sorted by RPO. 2546 unsigned ThisBBRPONum = BBToOrder[V.first]; 2547 if (ThisBBRPONum < CurBlockRPONum) 2548 NonBackEdgeDisagree = true; 2549 2550 // Is there a difference in whether the value is definite or only 2551 // proposed? 2552 if (V.second->Kind != FirstVal.Kind && 2553 (V.second->Kind == DbgValue::Proposed || 2554 V.second->Kind == DbgValue::Def) && 2555 (FirstVal.Kind == DbgValue::Proposed || 2556 FirstVal.Kind == DbgValue::Def)) 2557 DisagreeOnPHINess = true; 2558 } 2559 2560 // Collect those flags together and determine an overall state for 2561 // what extend the predecessors agree on a live-in value. 2562 if (!Disagree) 2563 OurState = Agreed; 2564 else if (!IDDisagree && DisagreeOnPHINess) 2565 OurState = PropDisagree; 2566 else if (!NonBackEdgeDisagree) 2567 OurState = BEDisagree; 2568 else 2569 OurState = PHINeeded; 2570 } 2571 2572 // An extra indicator: if we only disagree on whether the value is a 2573 // Def, or proposed, then also flag whether that disagreement happens 2574 // in backedges only. 2575 bool PropOnlyInBEs = Disagree && !IDDisagree && DisagreeOnPHINess && 2576 !NonBackEdgeDisagree && FirstVal.Kind == DbgValue::Def; 2577 2578 const auto &Properties = FirstVal.Properties; 2579 2580 auto OldLiveInIt = ILS.find(Var); 2581 const DbgValue *OldLiveInLocation = 2582 (OldLiveInIt != ILS.end()) ? &OldLiveInIt->second : nullptr; 2583 2584 bool OverRide = false; 2585 if (OurState == BEDisagree && OldLiveInLocation) { 2586 // Only backedges disagree: we can consider downgrading. If there was a 2587 // previous live-in value, use it to work out whether the current 2588 // incoming value represents a lattice downgrade or not. 2589 OverRide = 2590 vlocDowngradeLattice(MBB, *OldLiveInLocation, Values, CurBlockRPONum); 2591 } 2592 2593 // Use the current state of predecessor agreement and other flags to work 2594 // out what to do next. Possibilities include: 2595 // * Accept a value all predecessors agree on, or accept one that 2596 // represents a step down the exploration lattice, 2597 // * Use a PHI value number, if one can be found, 2598 // * Propose a PHI value number, and see if it gets confirmed later, 2599 // * Emit a 'NoVal' value, indicating we couldn't resolve anything. 2600 if (OurState == Agreed) { 2601 // Easiest solution: all predecessors agree on the variable value. 2602 ConfirmValue(Var, FirstVal); 2603 } else if (OurState == BEDisagree && OverRide) { 2604 // Only backedges disagree, and the other predecessors have produced 2605 // a new live-in value further down the exploration lattice. 2606 DowngradeOccurred = true; 2607 ConfirmValue(Var, FirstVal); 2608 } else if (OurState == PropDisagree) { 2609 // Predecessors agree on value, but some say it's only a proposed value. 2610 // Propagate it as proposed: unless it was proposed in this block, in 2611 // which case we're able to confirm the value. 2612 if (FirstID.getBlock() == (uint64_t)MBB.getNumber() && FirstID.isPHI()) { 2613 ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def)); 2614 } else if (PropOnlyInBEs) { 2615 // If only backedges disagree, a higher (in RPO) block confirmed this 2616 // location, and we need to propagate it into this loop. 2617 ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def)); 2618 } else { 2619 // Otherwise; a Def meeting a Proposed is still a Proposed. 2620 ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Proposed)); 2621 } 2622 } else if ((OurState == PHINeeded || OurState == BEDisagree)) { 2623 // Predecessors disagree and can't be downgraded: this can only be 2624 // solved with a PHI. Use pickVPHILoc to go look for one. 2625 Optional<ValueIDNum> VPHI; 2626 bool AllEdgesVPHI = false; 2627 std::tie(VPHI, AllEdgesVPHI) = 2628 pickVPHILoc(MBB, Var, VLOCOutLocs, MOutLocs, MInLocs, BlockOrders); 2629 2630 if (VPHI && AllEdgesVPHI) { 2631 // There's a PHI value that's valid for all predecessors -- we can use 2632 // it. If any of the non-backedge predecessors have proposed values 2633 // though, this PHI is also only proposed, until the predecessors are 2634 // confirmed. 2635 DbgValue::KindT K = DbgValue::Def; 2636 for (unsigned int I = 0; I < BackEdgesStart; ++I) 2637 if (Values[I].second->Kind == DbgValue::Proposed) 2638 K = DbgValue::Proposed; 2639 2640 ConfirmValue(Var, DbgValue(*VPHI, Properties, K)); 2641 } else if (VPHI) { 2642 // There's a PHI value, but it's only legal for backedges. Leave this 2643 // as a proposed PHI value: it might come back on the backedges, 2644 // and allow us to confirm it in the future. 2645 DbgValue NoBEValue = DbgValue(*VPHI, Properties, DbgValue::Proposed); 2646 ConfirmValue(Var, NoBEValue); 2647 } else { 2648 ConfirmNoVal(Var, Properties); 2649 } 2650 } else { 2651 // Otherwise: we don't know. Emit a "phi but no real loc" phi. 2652 ConfirmNoVal(Var, Properties); 2653 } 2654 } 2655 2656 // Store newly calculated in-locs into VLOCInLocs, if they've changed. 2657 Changed = ILS != InLocsT; 2658 if (Changed) 2659 ILS = InLocsT; 2660 2661 return std::tuple<bool, bool>(Changed, DowngradeOccurred); 2662 } 2663 2664 void InstrRefBasedLDV::vlocDataflow( 2665 const LexicalScope *Scope, const DILocation *DILoc, 2666 const SmallSet<DebugVariable, 4> &VarsWeCareAbout, 2667 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output, 2668 ValueIDNum **MOutLocs, ValueIDNum **MInLocs, 2669 SmallVectorImpl<VLocTracker> &AllTheVLocs) { 2670 // This method is much like mlocDataflow: but focuses on a single 2671 // LexicalScope at a time. Pick out a set of blocks and variables that are 2672 // to have their value assignments solved, then run our dataflow algorithm 2673 // until a fixedpoint is reached. 2674 std::priority_queue<unsigned int, std::vector<unsigned int>, 2675 std::greater<unsigned int>> 2676 Worklist, Pending; 2677 SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending; 2678 2679 // The set of blocks we'll be examining. 2680 SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore; 2681 2682 // The order in which to examine them (RPO). 2683 SmallVector<MachineBasicBlock *, 8> BlockOrders; 2684 2685 // RPO ordering function. 2686 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 2687 return BBToOrder[A] < BBToOrder[B]; 2688 }; 2689 2690 LS.getMachineBasicBlocks(DILoc, BlocksToExplore); 2691 2692 // A separate container to distinguish "blocks we're exploring" versus 2693 // "blocks that are potentially in scope. See comment at start of vlocJoin. 2694 SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore; 2695 2696 // Old LiveDebugValues tracks variable locations that come out of blocks 2697 // not in scope, where DBG_VALUEs occur. This is something we could 2698 // legitimately ignore, but lets allow it for now. 2699 if (EmulateOldLDV) 2700 BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end()); 2701 2702 // We also need to propagate variable values through any artificial blocks 2703 // that immediately follow blocks in scope. 2704 DenseSet<const MachineBasicBlock *> ToAdd; 2705 2706 // Helper lambda: For a given block in scope, perform a depth first search 2707 // of all the artificial successors, adding them to the ToAdd collection. 2708 auto AccumulateArtificialBlocks = 2709 [this, &ToAdd, &BlocksToExplore, 2710 &InScopeBlocks](const MachineBasicBlock *MBB) { 2711 // Depth-first-search state: each node is a block and which successor 2712 // we're currently exploring. 2713 SmallVector<std::pair<const MachineBasicBlock *, 2714 MachineBasicBlock::const_succ_iterator>, 2715 8> 2716 DFS; 2717 2718 // Find any artificial successors not already tracked. 2719 for (auto *succ : MBB->successors()) { 2720 if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ)) 2721 continue; 2722 if (!ArtificialBlocks.count(succ)) 2723 continue; 2724 DFS.push_back(std::make_pair(succ, succ->succ_begin())); 2725 ToAdd.insert(succ); 2726 } 2727 2728 // Search all those blocks, depth first. 2729 while (!DFS.empty()) { 2730 const MachineBasicBlock *CurBB = DFS.back().first; 2731 MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second; 2732 // Walk back if we've explored this blocks successors to the end. 2733 if (CurSucc == CurBB->succ_end()) { 2734 DFS.pop_back(); 2735 continue; 2736 } 2737 2738 // If the current successor is artificial and unexplored, descend into 2739 // it. 2740 if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) { 2741 DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin())); 2742 ToAdd.insert(*CurSucc); 2743 continue; 2744 } 2745 2746 ++CurSucc; 2747 } 2748 }; 2749 2750 // Search in-scope blocks and those containing a DBG_VALUE from this scope 2751 // for artificial successors. 2752 for (auto *MBB : BlocksToExplore) 2753 AccumulateArtificialBlocks(MBB); 2754 for (auto *MBB : InScopeBlocks) 2755 AccumulateArtificialBlocks(MBB); 2756 2757 BlocksToExplore.insert(ToAdd.begin(), ToAdd.end()); 2758 InScopeBlocks.insert(ToAdd.begin(), ToAdd.end()); 2759 2760 // Single block scope: not interesting! No propagation at all. Note that 2761 // this could probably go above ArtificialBlocks without damage, but 2762 // that then produces output differences from original-live-debug-values, 2763 // which propagates from a single block into many artificial ones. 2764 if (BlocksToExplore.size() == 1) 2765 return; 2766 2767 // Picks out relevants blocks RPO order and sort them. 2768 for (auto *MBB : BlocksToExplore) 2769 BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB)); 2770 2771 llvm::sort(BlockOrders.begin(), BlockOrders.end(), Cmp); 2772 unsigned NumBlocks = BlockOrders.size(); 2773 2774 // Allocate some vectors for storing the live ins and live outs. Large. 2775 SmallVector<DenseMap<DebugVariable, DbgValue>, 32> LiveIns, LiveOuts; 2776 LiveIns.resize(NumBlocks); 2777 LiveOuts.resize(NumBlocks); 2778 2779 // Produce by-MBB indexes of live-in/live-outs, to ease lookup within 2780 // vlocJoin. 2781 LiveIdxT LiveOutIdx, LiveInIdx; 2782 LiveOutIdx.reserve(NumBlocks); 2783 LiveInIdx.reserve(NumBlocks); 2784 for (unsigned I = 0; I < NumBlocks; ++I) { 2785 LiveOutIdx[BlockOrders[I]] = &LiveOuts[I]; 2786 LiveInIdx[BlockOrders[I]] = &LiveIns[I]; 2787 } 2788 2789 for (auto *MBB : BlockOrders) { 2790 Worklist.push(BBToOrder[MBB]); 2791 OnWorklist.insert(MBB); 2792 } 2793 2794 // Iterate over all the blocks we selected, propagating variable values. 2795 bool FirstTrip = true; 2796 SmallPtrSet<const MachineBasicBlock *, 16> VLOCVisited; 2797 while (!Worklist.empty() || !Pending.empty()) { 2798 while (!Worklist.empty()) { 2799 auto *MBB = OrderToBB[Worklist.top()]; 2800 CurBB = MBB->getNumber(); 2801 Worklist.pop(); 2802 2803 DenseMap<DebugVariable, DbgValue> JoinedInLocs; 2804 2805 // Join values from predecessors. Updates LiveInIdx, and writes output 2806 // into JoinedInLocs. 2807 bool InLocsChanged, DowngradeOccurred; 2808 std::tie(InLocsChanged, DowngradeOccurred) = vlocJoin( 2809 *MBB, LiveOutIdx, LiveInIdx, (FirstTrip) ? &VLOCVisited : nullptr, 2810 CurBB, VarsWeCareAbout, MOutLocs, MInLocs, InScopeBlocks, 2811 BlocksToExplore, JoinedInLocs); 2812 2813 auto &VTracker = AllTheVLocs[MBB->getNumber()]; 2814 bool FirstVisit = VLOCVisited.insert(MBB).second; 2815 2816 // Always explore transfer function if inlocs changed, or if we've not 2817 // visited this block before. 2818 InLocsChanged |= FirstVisit; 2819 2820 // If a downgrade occurred, book us in for re-examination on the next 2821 // iteration. 2822 if (DowngradeOccurred && OnPending.insert(MBB).second) 2823 Pending.push(BBToOrder[MBB]); 2824 2825 // Patch up the variable value transfer function to use the live-in 2826 // machine values, now that that problem is solved. 2827 if (FirstVisit) { 2828 for (auto &Transfer : VTracker.Vars) { 2829 if (Transfer.second.Kind == DbgValue::Def && 2830 Transfer.second.ID.getBlock() == CurBB && 2831 Transfer.second.ID.isPHI()) { 2832 LocIdx Loc = Transfer.second.ID.getLoc(); 2833 Transfer.second.ID = MInLocs[CurBB][Loc.asU64()]; 2834 } 2835 } 2836 } 2837 2838 if (!InLocsChanged) 2839 continue; 2840 2841 // Do transfer function. 2842 for (auto &Transfer : VTracker.Vars) { 2843 // Is this var we're mangling in this scope? 2844 if (VarsWeCareAbout.count(Transfer.first)) { 2845 // Erase on empty transfer (DBG_VALUE $noreg). 2846 if (Transfer.second.Kind == DbgValue::Undef) { 2847 JoinedInLocs.erase(Transfer.first); 2848 } else { 2849 // Insert new variable value; or overwrite. 2850 auto NewValuePair = std::make_pair(Transfer.first, Transfer.second); 2851 auto Result = JoinedInLocs.insert(NewValuePair); 2852 if (!Result.second) 2853 Result.first->second = Transfer.second; 2854 } 2855 } 2856 } 2857 2858 // Did the live-out locations change? 2859 bool OLChanged = JoinedInLocs != *LiveOutIdx[MBB]; 2860 2861 // If they haven't changed, there's no need to explore further. 2862 if (!OLChanged) 2863 continue; 2864 2865 // Commit to the live-out record. 2866 *LiveOutIdx[MBB] = JoinedInLocs; 2867 2868 // We should visit all successors. Ensure we'll visit any non-backedge 2869 // successors during this dataflow iteration; book backedge successors 2870 // to be visited next time around. 2871 for (auto s : MBB->successors()) { 2872 // Ignore out of scope / not-to-be-explored successors. 2873 if (LiveInIdx.find(s) == LiveInIdx.end()) 2874 continue; 2875 2876 if (BBToOrder[s] > BBToOrder[MBB]) { 2877 if (OnWorklist.insert(s).second) 2878 Worklist.push(BBToOrder[s]); 2879 } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) { 2880 Pending.push(BBToOrder[s]); 2881 } 2882 } 2883 } 2884 Worklist.swap(Pending); 2885 std::swap(OnWorklist, OnPending); 2886 OnPending.clear(); 2887 assert(Pending.empty()); 2888 FirstTrip = false; 2889 } 2890 2891 // Dataflow done. Now what? Save live-ins. Ignore any that are still marked 2892 // as being variable-PHIs, because those did not have their machine-PHI 2893 // value confirmed. Such variable values are places that could have been 2894 // PHIs, but are not. 2895 for (auto *MBB : BlockOrders) { 2896 auto &VarMap = *LiveInIdx[MBB]; 2897 for (auto &P : VarMap) { 2898 if (P.second.Kind == DbgValue::Proposed || 2899 P.second.Kind == DbgValue::NoVal) 2900 continue; 2901 Output[MBB->getNumber()].push_back(P); 2902 } 2903 } 2904 2905 BlockOrders.clear(); 2906 BlocksToExplore.clear(); 2907 } 2908 2909 void InstrRefBasedLDV::dump_mloc_transfer( 2910 const MLocTransferMap &mloc_transfer) const { 2911 for (auto &P : mloc_transfer) { 2912 std::string foo = MTracker->LocIdxToName(P.first); 2913 std::string bar = MTracker->IDAsString(P.second); 2914 dbgs() << "Loc " << foo << " --> " << bar << "\n"; 2915 } 2916 } 2917 2918 void InstrRefBasedLDV::emitLocations( 2919 MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MInLocs, 2920 DenseMap<DebugVariable, unsigned> &AllVarsNumbering) { 2921 TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs); 2922 unsigned NumLocs = MTracker->getNumLocs(); 2923 2924 // For each block, load in the machine value locations and variable value 2925 // live-ins, then step through each instruction in the block. New DBG_VALUEs 2926 // to be inserted will be created along the way. 2927 for (MachineBasicBlock &MBB : MF) { 2928 unsigned bbnum = MBB.getNumber(); 2929 MTracker->reset(); 2930 MTracker->loadFromArray(MInLocs[bbnum], bbnum); 2931 TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()], 2932 NumLocs); 2933 2934 CurBB = bbnum; 2935 CurInst = 1; 2936 for (auto &MI : MBB) { 2937 process(MI); 2938 ++CurInst; 2939 } 2940 } 2941 2942 // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer 2943 // in DWARF in different orders. Use the order that they appear when walking 2944 // through each block / each instruction, stored in AllVarsNumbering. 2945 auto OrderDbgValues = [&](const MachineInstr *A, 2946 const MachineInstr *B) -> bool { 2947 DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(), 2948 A->getDebugLoc()->getInlinedAt()); 2949 DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(), 2950 B->getDebugLoc()->getInlinedAt()); 2951 return AllVarsNumbering.find(VarA)->second < 2952 AllVarsNumbering.find(VarB)->second; 2953 }; 2954 2955 // Go through all the transfers recorded in the TransferTracker -- this is 2956 // both the live-ins to a block, and any movements of values that happen 2957 // in the middle. 2958 for (auto &P : TTracker->Transfers) { 2959 // Sort them according to appearance order. 2960 llvm::sort(P.Insts.begin(), P.Insts.end(), OrderDbgValues); 2961 // Insert either before or after the designated point... 2962 if (P.MBB) { 2963 MachineBasicBlock &MBB = *P.MBB; 2964 for (auto *MI : P.Insts) { 2965 MBB.insert(P.Pos, MI); 2966 } 2967 } else { 2968 MachineBasicBlock &MBB = *P.Pos->getParent(); 2969 for (auto *MI : P.Insts) { 2970 MBB.insertAfter(P.Pos, MI); 2971 } 2972 } 2973 } 2974 } 2975 2976 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) { 2977 // Build some useful data structures. 2978 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { 2979 if (const DebugLoc &DL = MI.getDebugLoc()) 2980 return DL.getLine() != 0; 2981 return false; 2982 }; 2983 // Collect a set of all the artificial blocks. 2984 for (auto &MBB : MF) 2985 if (none_of(MBB.instrs(), hasNonArtificialLocation)) 2986 ArtificialBlocks.insert(&MBB); 2987 2988 // Compute mappings of block <=> RPO order. 2989 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 2990 unsigned int RPONumber = 0; 2991 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { 2992 OrderToBB[RPONumber] = *RI; 2993 BBToOrder[*RI] = RPONumber; 2994 BBNumToRPO[(*RI)->getNumber()] = RPONumber; 2995 ++RPONumber; 2996 } 2997 } 2998 2999 /// Calculate the liveness information for the given machine function and 3000 /// extend ranges across basic blocks. 3001 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF, 3002 TargetPassConfig *TPC) { 3003 // No subprogram means this function contains no debuginfo. 3004 if (!MF.getFunction().getSubprogram()) 3005 return false; 3006 3007 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); 3008 this->TPC = TPC; 3009 3010 TRI = MF.getSubtarget().getRegisterInfo(); 3011 TII = MF.getSubtarget().getInstrInfo(); 3012 TFI = MF.getSubtarget().getFrameLowering(); 3013 TFI->getCalleeSaves(MF, CalleeSavedRegs); 3014 LS.initialize(MF); 3015 3016 MTracker = 3017 new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering()); 3018 VTracker = nullptr; 3019 TTracker = nullptr; 3020 3021 SmallVector<MLocTransferMap, 32> MLocTransfer; 3022 SmallVector<VLocTracker, 8> vlocs; 3023 LiveInsT SavedLiveIns; 3024 3025 int MaxNumBlocks = -1; 3026 for (auto &MBB : MF) 3027 MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks); 3028 assert(MaxNumBlocks >= 0); 3029 ++MaxNumBlocks; 3030 3031 MLocTransfer.resize(MaxNumBlocks); 3032 vlocs.resize(MaxNumBlocks); 3033 SavedLiveIns.resize(MaxNumBlocks); 3034 3035 initialSetup(MF); 3036 3037 produceTransferFunctions(MF, MLocTransfer, MaxNumBlocks, vlocs); 3038 3039 // Allocate and initialize two array-of-arrays for the live-in and live-out 3040 // machine values. The outer dimension is the block number; while the inner 3041 // dimension is a LocIdx from MLocTracker. 3042 ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks]; 3043 ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks]; 3044 unsigned NumLocs = MTracker->getNumLocs(); 3045 for (int i = 0; i < MaxNumBlocks; ++i) { 3046 MOutLocs[i] = new ValueIDNum[NumLocs]; 3047 MInLocs[i] = new ValueIDNum[NumLocs]; 3048 } 3049 3050 // Solve the machine value dataflow problem using the MLocTransfer function, 3051 // storing the computed live-ins / live-outs into the array-of-arrays. We use 3052 // both live-ins and live-outs for decision making in the variable value 3053 // dataflow problem. 3054 mlocDataflow(MInLocs, MOutLocs, MLocTransfer); 3055 3056 // Number all variables in the order that they appear, to be used as a stable 3057 // insertion order later. 3058 DenseMap<DebugVariable, unsigned> AllVarsNumbering; 3059 3060 // Map from one LexicalScope to all the variables in that scope. 3061 DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars; 3062 3063 // Map from One lexical scope to all blocks in that scope. 3064 DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>> 3065 ScopeToBlocks; 3066 3067 // Store a DILocation that describes a scope. 3068 DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation; 3069 3070 // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise 3071 // the order is unimportant, it just has to be stable. 3072 for (unsigned int I = 0; I < OrderToBB.size(); ++I) { 3073 auto *MBB = OrderToBB[I]; 3074 auto *VTracker = &vlocs[MBB->getNumber()]; 3075 // Collect each variable with a DBG_VALUE in this block. 3076 for (auto &idx : VTracker->Vars) { 3077 const auto &Var = idx.first; 3078 const DILocation *ScopeLoc = VTracker->Scopes[Var]; 3079 assert(ScopeLoc != nullptr); 3080 auto *Scope = LS.findLexicalScope(ScopeLoc); 3081 3082 // No insts in scope -> shouldn't have been recorded. 3083 assert(Scope != nullptr); 3084 3085 AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size())); 3086 ScopeToVars[Scope].insert(Var); 3087 ScopeToBlocks[Scope].insert(VTracker->MBB); 3088 ScopeToDILocation[Scope] = ScopeLoc; 3089 } 3090 } 3091 3092 // OK. Iterate over scopes: there might be something to be said for 3093 // ordering them by size/locality, but that's for the future. For each scope, 3094 // solve the variable value problem, producing a map of variables to values 3095 // in SavedLiveIns. 3096 for (auto &P : ScopeToVars) { 3097 vlocDataflow(P.first, ScopeToDILocation[P.first], P.second, 3098 ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs, 3099 vlocs); 3100 } 3101 3102 // Using the computed value locations and variable values for each block, 3103 // create the DBG_VALUE instructions representing the extended variable 3104 // locations. 3105 emitLocations(MF, SavedLiveIns, MInLocs, AllVarsNumbering); 3106 3107 for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) { 3108 delete[] MOutLocs[Idx]; 3109 delete[] MInLocs[Idx]; 3110 } 3111 delete[] MOutLocs; 3112 delete[] MInLocs; 3113 3114 // Did we actually make any changes? If we created any DBG_VALUEs, then yes. 3115 bool Changed = TTracker->Transfers.size() != 0; 3116 3117 delete MTracker; 3118 VTracker = nullptr; 3119 TTracker = nullptr; 3120 3121 ArtificialBlocks.clear(); 3122 OrderToBB.clear(); 3123 BBToOrder.clear(); 3124 BBNumToRPO.clear(); 3125 3126 return Changed; 3127 } 3128 3129 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() { 3130 return new InstrRefBasedLDV(); 3131 } 3132