1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file InstrRefBasedImpl.cpp
9 ///
10 /// This is a separate implementation of LiveDebugValues, see
11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
12 ///
13 /// This pass propagates variable locations between basic blocks, resolving
14 /// control flow conflicts between them. The problem is SSA construction, where
15 /// each debug instruction assigns the *value* that a variable has, and every
16 /// instruction where the variable is in scope uses that variable. The resulting
17 /// map of instruction-to-value is then translated into a register (or spill)
18 /// location for each variable over each instruction.
19 ///
20 /// The primary difference from normal SSA construction is that we cannot
21 /// _create_ PHI values that contain variable values. CodeGen has already
22 /// completed, and we can't alter it just to make debug-info complete. Thus:
23 /// we can identify function positions where we would like a PHI value for a
24 /// variable, but must search the MachineFunction to see whether such a PHI is
25 /// available. If no such PHI exists, the variable location must be dropped.
26 ///
27 /// To achieve this, we perform two kinds of analysis. First, we identify
28 /// every value defined by every instruction (ignoring those that only move
29 /// another value), then re-compute an SSA-form representation of the
30 /// MachineFunction, using value propagation to eliminate any un-necessary
31 /// PHI values. This gives us a map of every value computed in the function,
32 /// and its location within the register file / stack.
33 ///
34 /// Secondly, for each variable we perform the same analysis, where each debug
35 /// instruction is considered a def, and every instruction where the variable
36 /// is in lexical scope as a use. Value propagation is used again to eliminate
37 /// any un-necessary PHIs. This gives us a map of each variable to the value
38 /// it should have in a block.
39 ///
40 /// Once both are complete, we have two maps for each block:
41 ///  * Variables to the values they should have,
42 ///  * Values to the register / spill slot they are located in.
43 /// After which we can marry-up variable values with a location, and emit
44 /// DBG_VALUE instructions specifying those locations. Variable locations may
45 /// be dropped in this process due to the desired variable value not being
46 /// resident in any machine location, or because there is no PHI value in any
47 /// location that accurately represents the desired value.  The building of
48 /// location lists for each block is left to DbgEntityHistoryCalculator.
49 ///
50 /// This pass is kept efficient because the size of the first SSA problem
51 /// is proportional to the working-set size of the function, which the compiler
52 /// tries to keep small. (It's also proportional to the number of blocks).
53 /// Additionally, we repeatedly perform the second SSA problem analysis with
54 /// only the variables and blocks in a single lexical scope, exploiting their
55 /// locality.
56 ///
57 /// ### Terminology
58 ///
59 /// A machine location is a register or spill slot, a value is something that's
60 /// defined by an instruction or PHI node, while a variable value is the value
61 /// assigned to a variable. A variable location is a machine location, that must
62 /// contain the appropriate variable value. A value that is a PHI node is
63 /// occasionally called an mphi.
64 ///
65 /// The first SSA problem is the "machine value location" problem,
66 /// because we're determining which machine locations contain which values.
67 /// The "locations" are constant: what's unknown is what value they contain.
68 ///
69 /// The second SSA problem (the one for variables) is the "variable value
70 /// problem", because it's determining what values a variable has, rather than
71 /// what location those values are placed in.
72 ///
73 /// TODO:
74 ///   Overlapping fragments
75 ///   Entry values
76 ///   Add back DEBUG statements for debugging this
77 ///   Collect statistics
78 ///
79 //===----------------------------------------------------------------------===//
80 
81 #include "llvm/ADT/DenseMap.h"
82 #include "llvm/ADT/PostOrderIterator.h"
83 #include "llvm/ADT/STLExtras.h"
84 #include "llvm/ADT/SmallPtrSet.h"
85 #include "llvm/ADT/SmallSet.h"
86 #include "llvm/ADT/SmallVector.h"
87 #include "llvm/ADT/Statistic.h"
88 #include "llvm/Analysis/IteratedDominanceFrontier.h"
89 #include "llvm/CodeGen/LexicalScopes.h"
90 #include "llvm/CodeGen/MachineBasicBlock.h"
91 #include "llvm/CodeGen/MachineDominators.h"
92 #include "llvm/CodeGen/MachineFrameInfo.h"
93 #include "llvm/CodeGen/MachineFunction.h"
94 #include "llvm/CodeGen/MachineFunctionPass.h"
95 #include "llvm/CodeGen/MachineInstr.h"
96 #include "llvm/CodeGen/MachineInstrBuilder.h"
97 #include "llvm/CodeGen/MachineInstrBundle.h"
98 #include "llvm/CodeGen/MachineMemOperand.h"
99 #include "llvm/CodeGen/MachineOperand.h"
100 #include "llvm/CodeGen/PseudoSourceValue.h"
101 #include "llvm/CodeGen/RegisterScavenging.h"
102 #include "llvm/CodeGen/TargetFrameLowering.h"
103 #include "llvm/CodeGen/TargetInstrInfo.h"
104 #include "llvm/CodeGen/TargetLowering.h"
105 #include "llvm/CodeGen/TargetPassConfig.h"
106 #include "llvm/CodeGen/TargetRegisterInfo.h"
107 #include "llvm/CodeGen/TargetSubtargetInfo.h"
108 #include "llvm/Config/llvm-config.h"
109 #include "llvm/IR/DIBuilder.h"
110 #include "llvm/IR/DebugInfoMetadata.h"
111 #include "llvm/IR/DebugLoc.h"
112 #include "llvm/IR/Function.h"
113 #include "llvm/IR/Module.h"
114 #include "llvm/InitializePasses.h"
115 #include "llvm/MC/MCRegisterInfo.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/Compiler.h"
119 #include "llvm/Support/Debug.h"
120 #include "llvm/Support/TypeSize.h"
121 #include "llvm/Support/raw_ostream.h"
122 #include "llvm/Target/TargetMachine.h"
123 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
124 #include <algorithm>
125 #include <cassert>
126 #include <cstdint>
127 #include <functional>
128 #include <limits.h>
129 #include <limits>
130 #include <queue>
131 #include <tuple>
132 #include <utility>
133 #include <vector>
134 
135 #include "InstrRefBasedImpl.h"
136 #include "LiveDebugValues.h"
137 
138 using namespace llvm;
139 using namespace LiveDebugValues;
140 
141 // SSAUpdaterImple sets DEBUG_TYPE, change it.
142 #undef DEBUG_TYPE
143 #define DEBUG_TYPE "livedebugvalues"
144 
145 // Act more like the VarLoc implementation, by propagating some locations too
146 // far and ignoring some transfers.
147 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
148                                    cl::desc("Act like old LiveDebugValues did"),
149                                    cl::init(false));
150 
151 /// Tracker for converting machine value locations and variable values into
152 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
153 /// specifying block live-in locations and transfers within blocks.
154 ///
155 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
156 /// and must be initialized with the set of variable values that are live-in to
157 /// the block. The caller then repeatedly calls process(). TransferTracker picks
158 /// out variable locations for the live-in variable values (if there _is_ a
159 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is
160 /// stepped through, transfers of values between machine locations are
161 /// identified and if profitable, a DBG_VALUE created.
162 ///
163 /// This is where debug use-before-defs would be resolved: a variable with an
164 /// unavailable value could materialize in the middle of a block, when the
165 /// value becomes available. Or, we could detect clobbers and re-specify the
166 /// variable in a backup location. (XXX these are unimplemented).
167 class TransferTracker {
168 public:
169   const TargetInstrInfo *TII;
170   const TargetLowering *TLI;
171   /// This machine location tracker is assumed to always contain the up-to-date
172   /// value mapping for all machine locations. TransferTracker only reads
173   /// information from it. (XXX make it const?)
174   MLocTracker *MTracker;
175   MachineFunction &MF;
176   bool ShouldEmitDebugEntryValues;
177 
178   /// Record of all changes in variable locations at a block position. Awkwardly
179   /// we allow inserting either before or after the point: MBB != nullptr
180   /// indicates it's before, otherwise after.
181   struct Transfer {
182     MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
183     MachineBasicBlock *MBB; /// non-null if we should insert after.
184     SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
185   };
186 
187   struct LocAndProperties {
188     LocIdx Loc;
189     DbgValueProperties Properties;
190   };
191 
192   /// Collection of transfers (DBG_VALUEs) to be inserted.
193   SmallVector<Transfer, 32> Transfers;
194 
195   /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
196   /// between TransferTrackers view of variable locations and MLocTrackers. For
197   /// example, MLocTracker observes all clobbers, but TransferTracker lazily
198   /// does not.
199   std::vector<ValueIDNum> VarLocs;
200 
201   /// Map from LocIdxes to which DebugVariables are based that location.
202   /// Mantained while stepping through the block. Not accurate if
203   /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
204   std::map<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
205 
206   /// Map from DebugVariable to it's current location and qualifying meta
207   /// information. To be used in conjunction with ActiveMLocs to construct
208   /// enough information for the DBG_VALUEs for a particular LocIdx.
209   DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;
210 
211   /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
212   SmallVector<MachineInstr *, 4> PendingDbgValues;
213 
214   /// Record of a use-before-def: created when a value that's live-in to the
215   /// current block isn't available in any machine location, but it will be
216   /// defined in this block.
217   struct UseBeforeDef {
218     /// Value of this variable, def'd in block.
219     ValueIDNum ID;
220     /// Identity of this variable.
221     DebugVariable Var;
222     /// Additional variable properties.
223     DbgValueProperties Properties;
224   };
225 
226   /// Map from instruction index (within the block) to the set of UseBeforeDefs
227   /// that become defined at that instruction.
228   DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
229 
230   /// The set of variables that are in UseBeforeDefs and can become a location
231   /// once the relevant value is defined. An element being erased from this
232   /// collection prevents the use-before-def materializing.
233   DenseSet<DebugVariable> UseBeforeDefVariables;
234 
235   const TargetRegisterInfo &TRI;
236   const BitVector &CalleeSavedRegs;
237 
238   TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
239                   MachineFunction &MF, const TargetRegisterInfo &TRI,
240                   const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
241       : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
242         CalleeSavedRegs(CalleeSavedRegs) {
243     TLI = MF.getSubtarget().getTargetLowering();
244     auto &TM = TPC.getTM<TargetMachine>();
245     ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
246   }
247 
248   /// Load object with live-in variable values. \p mlocs contains the live-in
249   /// values in each machine location, while \p vlocs the live-in variable
250   /// values. This method picks variable locations for the live-in variables,
251   /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
252   /// object fields to track variable locations as we step through the block.
253   /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
254   void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs,
255                   SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
256                   unsigned NumLocs) {
257     ActiveMLocs.clear();
258     ActiveVLocs.clear();
259     VarLocs.clear();
260     VarLocs.reserve(NumLocs);
261     UseBeforeDefs.clear();
262     UseBeforeDefVariables.clear();
263 
264     auto isCalleeSaved = [&](LocIdx L) {
265       unsigned Reg = MTracker->LocIdxToLocID[L];
266       if (Reg >= MTracker->NumRegs)
267         return false;
268       for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
269         if (CalleeSavedRegs.test(*RAI))
270           return true;
271       return false;
272     };
273 
274     // Map of the preferred location for each value.
275     std::map<ValueIDNum, LocIdx> ValueToLoc;
276 
277     // Produce a map of value numbers to the current machine locs they live
278     // in. When emulating VarLocBasedImpl, there should only be one
279     // location; when not, we get to pick.
280     for (auto Location : MTracker->locations()) {
281       LocIdx Idx = Location.Idx;
282       ValueIDNum &VNum = MLocs[Idx.asU64()];
283       VarLocs.push_back(VNum);
284       auto it = ValueToLoc.find(VNum);
285       // In order of preference, pick:
286       //  * Callee saved registers,
287       //  * Other registers,
288       //  * Spill slots.
289       if (it == ValueToLoc.end() || MTracker->isSpill(it->second) ||
290           (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) {
291         // Insert, or overwrite if insertion failed.
292         auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx));
293         if (!PrefLocRes.second)
294           PrefLocRes.first->second = Idx;
295       }
296     }
297 
298     // Now map variables to their picked LocIdxes.
299     for (auto Var : VLocs) {
300       if (Var.second.Kind == DbgValue::Const) {
301         PendingDbgValues.push_back(
302             emitMOLoc(*Var.second.MO, Var.first, Var.second.Properties));
303         continue;
304       }
305 
306       // If the value has no location, we can't make a variable location.
307       const ValueIDNum &Num = Var.second.ID;
308       auto ValuesPreferredLoc = ValueToLoc.find(Num);
309       if (ValuesPreferredLoc == ValueToLoc.end()) {
310         // If it's a def that occurs in this block, register it as a
311         // use-before-def to be resolved as we step through the block.
312         if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI())
313           addUseBeforeDef(Var.first, Var.second.Properties, Num);
314         else
315           recoverAsEntryValue(Var.first, Var.second.Properties, Num);
316         continue;
317       }
318 
319       LocIdx M = ValuesPreferredLoc->second;
320       auto NewValue = LocAndProperties{M, Var.second.Properties};
321       auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
322       if (!Result.second)
323         Result.first->second = NewValue;
324       ActiveMLocs[M].insert(Var.first);
325       PendingDbgValues.push_back(
326           MTracker->emitLoc(M, Var.first, Var.second.Properties));
327     }
328     flushDbgValues(MBB.begin(), &MBB);
329   }
330 
331   /// Record that \p Var has value \p ID, a value that becomes available
332   /// later in the function.
333   void addUseBeforeDef(const DebugVariable &Var,
334                        const DbgValueProperties &Properties, ValueIDNum ID) {
335     UseBeforeDef UBD = {ID, Var, Properties};
336     UseBeforeDefs[ID.getInst()].push_back(UBD);
337     UseBeforeDefVariables.insert(Var);
338   }
339 
340   /// After the instruction at index \p Inst and position \p pos has been
341   /// processed, check whether it defines a variable value in a use-before-def.
342   /// If so, and the variable value hasn't changed since the start of the
343   /// block, create a DBG_VALUE.
344   void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
345     auto MIt = UseBeforeDefs.find(Inst);
346     if (MIt == UseBeforeDefs.end())
347       return;
348 
349     for (auto &Use : MIt->second) {
350       LocIdx L = Use.ID.getLoc();
351 
352       // If something goes very wrong, we might end up labelling a COPY
353       // instruction or similar with an instruction number, where it doesn't
354       // actually define a new value, instead it moves a value. In case this
355       // happens, discard.
356       if (MTracker->readMLoc(L) != Use.ID)
357         continue;
358 
359       // If a different debug instruction defined the variable value / location
360       // since the start of the block, don't materialize this use-before-def.
361       if (!UseBeforeDefVariables.count(Use.Var))
362         continue;
363 
364       PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties));
365     }
366     flushDbgValues(pos, nullptr);
367   }
368 
369   /// Helper to move created DBG_VALUEs into Transfers collection.
370   void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
371     if (PendingDbgValues.size() == 0)
372       return;
373 
374     // Pick out the instruction start position.
375     MachineBasicBlock::instr_iterator BundleStart;
376     if (MBB && Pos == MBB->begin())
377       BundleStart = MBB->instr_begin();
378     else
379       BundleStart = getBundleStart(Pos->getIterator());
380 
381     Transfers.push_back({BundleStart, MBB, PendingDbgValues});
382     PendingDbgValues.clear();
383   }
384 
385   bool isEntryValueVariable(const DebugVariable &Var,
386                             const DIExpression *Expr) const {
387     if (!Var.getVariable()->isParameter())
388       return false;
389 
390     if (Var.getInlinedAt())
391       return false;
392 
393     if (Expr->getNumElements() > 0)
394       return false;
395 
396     return true;
397   }
398 
399   bool isEntryValueValue(const ValueIDNum &Val) const {
400     // Must be in entry block (block number zero), and be a PHI / live-in value.
401     if (Val.getBlock() || !Val.isPHI())
402       return false;
403 
404     // Entry values must enter in a register.
405     if (MTracker->isSpill(Val.getLoc()))
406       return false;
407 
408     Register SP = TLI->getStackPointerRegisterToSaveRestore();
409     Register FP = TRI.getFrameRegister(MF);
410     Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
411     return Reg != SP && Reg != FP;
412   }
413 
414   bool recoverAsEntryValue(const DebugVariable &Var, DbgValueProperties &Prop,
415                            const ValueIDNum &Num) {
416     // Is this variable location a candidate to be an entry value. First,
417     // should we be trying this at all?
418     if (!ShouldEmitDebugEntryValues)
419       return false;
420 
421     // Is the variable appropriate for entry values (i.e., is a parameter).
422     if (!isEntryValueVariable(Var, Prop.DIExpr))
423       return false;
424 
425     // Is the value assigned to this variable still the entry value?
426     if (!isEntryValueValue(Num))
427       return false;
428 
429     // Emit a variable location using an entry value expression.
430     DIExpression *NewExpr =
431         DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue);
432     Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
433     MachineOperand MO = MachineOperand::CreateReg(Reg, false);
434 
435     PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect}));
436     return true;
437   }
438 
439   /// Change a variable value after encountering a DBG_VALUE inside a block.
440   void redefVar(const MachineInstr &MI) {
441     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
442                       MI.getDebugLoc()->getInlinedAt());
443     DbgValueProperties Properties(MI);
444 
445     const MachineOperand &MO = MI.getOperand(0);
446 
447     // Ignore non-register locations, we don't transfer those.
448     if (!MO.isReg() || MO.getReg() == 0) {
449       auto It = ActiveVLocs.find(Var);
450       if (It != ActiveVLocs.end()) {
451         ActiveMLocs[It->second.Loc].erase(Var);
452         ActiveVLocs.erase(It);
453      }
454       // Any use-before-defs no longer apply.
455       UseBeforeDefVariables.erase(Var);
456       return;
457     }
458 
459     Register Reg = MO.getReg();
460     LocIdx NewLoc = MTracker->getRegMLoc(Reg);
461     redefVar(MI, Properties, NewLoc);
462   }
463 
464   /// Handle a change in variable location within a block. Terminate the
465   /// variables current location, and record the value it now refers to, so
466   /// that we can detect location transfers later on.
467   void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
468                 Optional<LocIdx> OptNewLoc) {
469     DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
470                       MI.getDebugLoc()->getInlinedAt());
471     // Any use-before-defs no longer apply.
472     UseBeforeDefVariables.erase(Var);
473 
474     // Erase any previous location,
475     auto It = ActiveVLocs.find(Var);
476     if (It != ActiveVLocs.end())
477       ActiveMLocs[It->second.Loc].erase(Var);
478 
479     // If there _is_ no new location, all we had to do was erase.
480     if (!OptNewLoc)
481       return;
482     LocIdx NewLoc = *OptNewLoc;
483 
484     // Check whether our local copy of values-by-location in #VarLocs is out of
485     // date. Wipe old tracking data for the location if it's been clobbered in
486     // the meantime.
487     if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) {
488       for (auto &P : ActiveMLocs[NewLoc]) {
489         ActiveVLocs.erase(P);
490       }
491       ActiveMLocs[NewLoc.asU64()].clear();
492       VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc);
493     }
494 
495     ActiveMLocs[NewLoc].insert(Var);
496     if (It == ActiveVLocs.end()) {
497       ActiveVLocs.insert(
498           std::make_pair(Var, LocAndProperties{NewLoc, Properties}));
499     } else {
500       It->second.Loc = NewLoc;
501       It->second.Properties = Properties;
502     }
503   }
504 
505   /// Account for a location \p mloc being clobbered. Examine the variable
506   /// locations that will be terminated: and try to recover them by using
507   /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
508   /// explicitly terminate a location if it can't be recovered.
509   void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
510                    bool MakeUndef = true) {
511     auto ActiveMLocIt = ActiveMLocs.find(MLoc);
512     if (ActiveMLocIt == ActiveMLocs.end())
513       return;
514 
515     // What was the old variable value?
516     ValueIDNum OldValue = VarLocs[MLoc.asU64()];
517     VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
518 
519     // Examine the remaining variable locations: if we can find the same value
520     // again, we can recover the location.
521     Optional<LocIdx> NewLoc = None;
522     for (auto Loc : MTracker->locations())
523       if (Loc.Value == OldValue)
524         NewLoc = Loc.Idx;
525 
526     // If there is no location, and we weren't asked to make the variable
527     // explicitly undef, then stop here.
528     if (!NewLoc && !MakeUndef) {
529       // Try and recover a few more locations with entry values.
530       for (auto &Var : ActiveMLocIt->second) {
531         auto &Prop = ActiveVLocs.find(Var)->second.Properties;
532         recoverAsEntryValue(Var, Prop, OldValue);
533       }
534       flushDbgValues(Pos, nullptr);
535       return;
536     }
537 
538     // Examine all the variables based on this location.
539     DenseSet<DebugVariable> NewMLocs;
540     for (auto &Var : ActiveMLocIt->second) {
541       auto ActiveVLocIt = ActiveVLocs.find(Var);
542       // Re-state the variable location: if there's no replacement then NewLoc
543       // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE
544       // identifying the alternative location will be emitted.
545       const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr;
546       DbgValueProperties Properties(Expr, false);
547       PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties));
548 
549       // Update machine locations <=> variable locations maps. Defer updating
550       // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator.
551       if (!NewLoc) {
552         ActiveVLocs.erase(ActiveVLocIt);
553       } else {
554         ActiveVLocIt->second.Loc = *NewLoc;
555         NewMLocs.insert(Var);
556       }
557     }
558 
559     // Commit any deferred ActiveMLoc changes.
560     if (!NewMLocs.empty())
561       for (auto &Var : NewMLocs)
562         ActiveMLocs[*NewLoc].insert(Var);
563 
564     // We lazily track what locations have which values; if we've found a new
565     // location for the clobbered value, remember it.
566     if (NewLoc)
567       VarLocs[NewLoc->asU64()] = OldValue;
568 
569     flushDbgValues(Pos, nullptr);
570 
571     ActiveMLocIt->second.clear();
572   }
573 
574   /// Transfer variables based on \p Src to be based on \p Dst. This handles
575   /// both register copies as well as spills and restores. Creates DBG_VALUEs
576   /// describing the movement.
577   void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
578     // Does Src still contain the value num we expect? If not, it's been
579     // clobbered in the meantime, and our variable locations are stale.
580     if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src))
581       return;
582 
583     // assert(ActiveMLocs[Dst].size() == 0);
584     //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
585     ActiveMLocs[Dst] = ActiveMLocs[Src];
586     VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
587 
588     // For each variable based on Src; create a location at Dst.
589     for (auto &Var : ActiveMLocs[Src]) {
590       auto ActiveVLocIt = ActiveVLocs.find(Var);
591       assert(ActiveVLocIt != ActiveVLocs.end());
592       ActiveVLocIt->second.Loc = Dst;
593 
594       MachineInstr *MI =
595           MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
596       PendingDbgValues.push_back(MI);
597     }
598     ActiveMLocs[Src].clear();
599     flushDbgValues(Pos, nullptr);
600 
601     // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
602     // about the old location.
603     if (EmulateOldLDV)
604       VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
605   }
606 
607   MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
608                                 const DebugVariable &Var,
609                                 const DbgValueProperties &Properties) {
610     DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
611                                   Var.getVariable()->getScope(),
612                                   const_cast<DILocation *>(Var.getInlinedAt()));
613     auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
614     MIB.add(MO);
615     if (Properties.Indirect)
616       MIB.addImm(0);
617     else
618       MIB.addReg(0);
619     MIB.addMetadata(Var.getVariable());
620     MIB.addMetadata(Properties.DIExpr);
621     return MIB;
622   }
623 };
624 
625 //===----------------------------------------------------------------------===//
626 //            Implementation
627 //===----------------------------------------------------------------------===//
628 
629 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
630 
631 #ifndef NDEBUG
632 void DbgValue::dump(const MLocTracker *MTrack) const {
633   if (Kind == Const) {
634     MO->dump();
635   } else if (Kind == NoVal) {
636     dbgs() << "NoVal(" << BlockNo << ")";
637   } else if (Kind == VPHI) {
638     dbgs() << "VPHI(" << BlockNo << "," << MTrack->IDAsString(ID) << ")";
639   } else {
640     assert(Kind == Def);
641     dbgs() << MTrack->IDAsString(ID);
642   }
643   if (Properties.Indirect)
644     dbgs() << " indir";
645   if (Properties.DIExpr)
646     dbgs() << " " << *Properties.DIExpr;
647 }
648 #endif
649 
650 MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
651                          const TargetRegisterInfo &TRI,
652                          const TargetLowering &TLI)
653     : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
654       LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) {
655   NumRegs = TRI.getNumRegs();
656   reset();
657   LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
658   assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
659 
660   // Always track SP. This avoids the implicit clobbering caused by regmasks
661   // from affectings its values. (LiveDebugValues disbelieves calls and
662   // regmasks that claim to clobber SP).
663   Register SP = TLI.getStackPointerRegisterToSaveRestore();
664   if (SP) {
665     unsigned ID = getLocID(SP);
666     (void)lookupOrTrackRegister(ID);
667 
668     for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI)
669       SPAliases.insert(*RAI);
670   }
671 
672   // Build some common stack positions -- full registers being spilt to the
673   // stack.
674   StackSlotIdxes.insert({{8, 0}, 0});
675   StackSlotIdxes.insert({{16, 0}, 1});
676   StackSlotIdxes.insert({{32, 0}, 2});
677   StackSlotIdxes.insert({{64, 0}, 3});
678   StackSlotIdxes.insert({{128, 0}, 4});
679   StackSlotIdxes.insert({{256, 0}, 5});
680   StackSlotIdxes.insert({{512, 0}, 6});
681 
682   // Traverse all the subregister idxes, and ensure there's an index for them.
683   // Duplicates are no problem: we're interested in their position in the
684   // stack slot, we don't want to type the slot.
685   for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) {
686     unsigned Size = TRI.getSubRegIdxSize(I);
687     unsigned Offs = TRI.getSubRegIdxOffset(I);
688     unsigned Idx = StackSlotIdxes.size();
689 
690     // Some subregs have -1, -2 and so forth fed into their fields, to mean
691     // special backend things. Ignore those.
692     if (Size > 60000 || Offs > 60000)
693       continue;
694 
695     StackSlotIdxes.insert({{Size, Offs}, Idx});
696   }
697 
698   for (auto &Idx : StackSlotIdxes)
699     StackIdxesToPos[Idx.second] = Idx.first;
700 
701   NumSlotIdxes = StackSlotIdxes.size();
702 }
703 
704 LocIdx MLocTracker::trackRegister(unsigned ID) {
705   assert(ID != 0);
706   LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
707   LocIdxToIDNum.grow(NewIdx);
708   LocIdxToLocID.grow(NewIdx);
709 
710   // Default: it's an mphi.
711   ValueIDNum ValNum = {CurBB, 0, NewIdx};
712   // Was this reg ever touched by a regmask?
713   for (const auto &MaskPair : reverse(Masks)) {
714     if (MaskPair.first->clobbersPhysReg(ID)) {
715       // There was an earlier def we skipped.
716       ValNum = {CurBB, MaskPair.second, NewIdx};
717       break;
718     }
719   }
720 
721   LocIdxToIDNum[NewIdx] = ValNum;
722   LocIdxToLocID[NewIdx] = ID;
723   return NewIdx;
724 }
725 
726 void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB,
727                                unsigned InstID) {
728   // Def any register we track have that isn't preserved. The regmask
729   // terminates the liveness of a register, meaning its value can't be
730   // relied upon -- we represent this by giving it a new value.
731   for (auto Location : locations()) {
732     unsigned ID = LocIdxToLocID[Location.Idx];
733     // Don't clobber SP, even if the mask says it's clobbered.
734     if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID))
735       defReg(ID, CurBB, InstID);
736   }
737   Masks.push_back(std::make_pair(MO, InstID));
738 }
739 
740 SpillLocationNo MLocTracker::getOrTrackSpillLoc(SpillLoc L) {
741   SpillLocationNo SpillID(SpillLocs.idFor(L));
742   if (SpillID.id() == 0) {
743     // Spill location is untracked: create record for this one, and all
744     // subregister slots too.
745     SpillID = SpillLocationNo(SpillLocs.insert(L));
746     for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) {
747       unsigned L = getSpillIDWithIdx(SpillID, StackIdx);
748       LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
749       LocIdxToIDNum.grow(Idx);
750       LocIdxToLocID.grow(Idx);
751       LocIDToLocIdx.push_back(Idx);
752       LocIdxToLocID[Idx] = L;
753       // Initialize to PHI value; corresponds to the location's live-in value
754       // during transfer function construction.
755       LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx);
756     }
757   }
758   return SpillID;
759 }
760 
761 std::string MLocTracker::LocIdxToName(LocIdx Idx) const {
762   unsigned ID = LocIdxToLocID[Idx];
763   if (ID >= NumRegs) {
764     StackSlotPos Pos = locIDToSpillIdx(ID);
765     ID -= NumRegs;
766     unsigned Slot = ID / NumSlotIdxes;
767     return Twine("slot ")
768         .concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first)
769         .concat(Twine(" offs ").concat(Twine(Pos.second))))))
770         .str();
771   } else {
772     return TRI.getRegAsmName(ID).str();
773   }
774 }
775 
776 std::string MLocTracker::IDAsString(const ValueIDNum &Num) const {
777   std::string DefName = LocIdxToName(Num.getLoc());
778   return Num.asString(DefName);
779 }
780 
781 #ifndef NDEBUG
782 LLVM_DUMP_METHOD void MLocTracker::dump() {
783   for (auto Location : locations()) {
784     std::string MLocName = LocIdxToName(Location.Value.getLoc());
785     std::string DefName = Location.Value.asString(MLocName);
786     dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
787   }
788 }
789 
790 LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() {
791   for (auto Location : locations()) {
792     std::string foo = LocIdxToName(Location.Idx);
793     dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
794   }
795 }
796 #endif
797 
798 MachineInstrBuilder MLocTracker::emitLoc(Optional<LocIdx> MLoc,
799                                          const DebugVariable &Var,
800                                          const DbgValueProperties &Properties) {
801   DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
802                                 Var.getVariable()->getScope(),
803                                 const_cast<DILocation *>(Var.getInlinedAt()));
804   auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));
805 
806   const DIExpression *Expr = Properties.DIExpr;
807   if (!MLoc) {
808     // No location -> DBG_VALUE $noreg
809     MIB.addReg(0);
810     MIB.addReg(0);
811   } else if (LocIdxToLocID[*MLoc] >= NumRegs) {
812     unsigned LocID = LocIdxToLocID[*MLoc];
813     SpillLocationNo SpillID = locIDToSpill(LocID);
814     StackSlotPos StackIdx = locIDToSpillIdx(LocID);
815     unsigned short Offset = StackIdx.second;
816 
817     // TODO: support variables that are located in spill slots, with non-zero
818     // offsets from the start of the spill slot. It would require some more
819     // complex DIExpression calculations. This doesn't seem to be produced by
820     // LLVM right now, so don't try and support it.
821     // Accept no-subregister slots and subregisters where the offset is zero.
822     // The consumer should already have type information to work out how large
823     // the variable is.
824     if (Offset == 0) {
825       const SpillLoc &Spill = SpillLocs[SpillID.id()];
826       Expr = TRI.prependOffsetExpression(Expr, DIExpression::ApplyOffset,
827                                          Spill.SpillOffset);
828       unsigned Base = Spill.SpillBase;
829       MIB.addReg(Base);
830       MIB.addImm(0);
831     } else {
832       // This is a stack location with a weird subregister offset: emit an undef
833       // DBG_VALUE instead.
834       MIB.addReg(0);
835       MIB.addReg(0);
836     }
837   } else {
838     // Non-empty, non-stack slot, must be a plain register.
839     unsigned LocID = LocIdxToLocID[*MLoc];
840     MIB.addReg(LocID);
841     if (Properties.Indirect)
842       MIB.addImm(0);
843     else
844       MIB.addReg(0);
845   }
846 
847   MIB.addMetadata(Var.getVariable());
848   MIB.addMetadata(Expr);
849   return MIB;
850 }
851 
852 /// Default construct and initialize the pass.
853 InstrRefBasedLDV::InstrRefBasedLDV() {}
854 
855 bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const {
856   unsigned Reg = MTracker->LocIdxToLocID[L];
857   for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
858     if (CalleeSavedRegs.test(*RAI))
859       return true;
860   return false;
861 }
862 
863 //===----------------------------------------------------------------------===//
864 //            Debug Range Extension Implementation
865 //===----------------------------------------------------------------------===//
866 
867 #ifndef NDEBUG
868 // Something to restore in the future.
869 // void InstrRefBasedLDV::printVarLocInMBB(..)
870 #endif
871 
872 SpillLocationNo
873 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
874   assert(MI.hasOneMemOperand() &&
875          "Spill instruction does not have exactly one memory operand?");
876   auto MMOI = MI.memoperands_begin();
877   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
878   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
879          "Inconsistent memory operand in spill instruction");
880   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
881   const MachineBasicBlock *MBB = MI.getParent();
882   Register Reg;
883   StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
884   return MTracker->getOrTrackSpillLoc({Reg, Offset});
885 }
886 
887 /// End all previous ranges related to @MI and start a new range from @MI
888 /// if it is a DBG_VALUE instr.
889 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
890   if (!MI.isDebugValue())
891     return false;
892 
893   const DILocalVariable *Var = MI.getDebugVariable();
894   const DIExpression *Expr = MI.getDebugExpression();
895   const DILocation *DebugLoc = MI.getDebugLoc();
896   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
897   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
898          "Expected inlined-at fields to agree");
899 
900   DebugVariable V(Var, Expr, InlinedAt);
901   DbgValueProperties Properties(MI);
902 
903   // If there are no instructions in this lexical scope, do no location tracking
904   // at all, this variable shouldn't get a legitimate location range.
905   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
906   if (Scope == nullptr)
907     return true; // handled it; by doing nothing
908 
909   // For now, ignore DBG_VALUE_LISTs when extending ranges. Allow it to
910   // contribute to locations in this block, but don't propagate further.
911   // Interpret it like a DBG_VALUE $noreg.
912   if (MI.isDebugValueList()) {
913     if (VTracker)
914       VTracker->defVar(MI, Properties, None);
915     if (TTracker)
916       TTracker->redefVar(MI, Properties, None);
917     return true;
918   }
919 
920   const MachineOperand &MO = MI.getOperand(0);
921 
922   // MLocTracker needs to know that this register is read, even if it's only
923   // read by a debug inst.
924   if (MO.isReg() && MO.getReg() != 0)
925     (void)MTracker->readReg(MO.getReg());
926 
927   // If we're preparing for the second analysis (variables), the machine value
928   // locations are already solved, and we report this DBG_VALUE and the value
929   // it refers to to VLocTracker.
930   if (VTracker) {
931     if (MO.isReg()) {
932       // Feed defVar the new variable location, or if this is a
933       // DBG_VALUE $noreg, feed defVar None.
934       if (MO.getReg())
935         VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg()));
936       else
937         VTracker->defVar(MI, Properties, None);
938     } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
939                MI.getOperand(0).isCImm()) {
940       VTracker->defVar(MI, MI.getOperand(0));
941     }
942   }
943 
944   // If performing final tracking of transfers, report this variable definition
945   // to the TransferTracker too.
946   if (TTracker)
947     TTracker->redefVar(MI);
948   return true;
949 }
950 
951 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
952                                              ValueIDNum **MLiveOuts,
953                                              ValueIDNum **MLiveIns) {
954   if (!MI.isDebugRef())
955     return false;
956 
957   // Only handle this instruction when we are building the variable value
958   // transfer function.
959   if (!VTracker)
960     return false;
961 
962   unsigned InstNo = MI.getOperand(0).getImm();
963   unsigned OpNo = MI.getOperand(1).getImm();
964 
965   const DILocalVariable *Var = MI.getDebugVariable();
966   const DIExpression *Expr = MI.getDebugExpression();
967   const DILocation *DebugLoc = MI.getDebugLoc();
968   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
969   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
970          "Expected inlined-at fields to agree");
971 
972   DebugVariable V(Var, Expr, InlinedAt);
973 
974   auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
975   if (Scope == nullptr)
976     return true; // Handled by doing nothing. This variable is never in scope.
977 
978   const MachineFunction &MF = *MI.getParent()->getParent();
979 
980   // Various optimizations may have happened to the value during codegen,
981   // recorded in the value substitution table. Apply any substitutions to
982   // the instruction / operand number in this DBG_INSTR_REF, and collect
983   // any subregister extractions performed during optimization.
984 
985   // Create dummy substitution with Src set, for lookup.
986   auto SoughtSub =
987       MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0);
988 
989   SmallVector<unsigned, 4> SeenSubregs;
990   auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
991   while (LowerBoundIt != MF.DebugValueSubstitutions.end() &&
992          LowerBoundIt->Src == SoughtSub.Src) {
993     std::tie(InstNo, OpNo) = LowerBoundIt->Dest;
994     SoughtSub.Src = LowerBoundIt->Dest;
995     if (unsigned Subreg = LowerBoundIt->Subreg)
996       SeenSubregs.push_back(Subreg);
997     LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
998   }
999 
1000   // Default machine value number is <None> -- if no instruction defines
1001   // the corresponding value, it must have been optimized out.
1002   Optional<ValueIDNum> NewID = None;
1003 
1004   // Try to lookup the instruction number, and find the machine value number
1005   // that it defines. It could be an instruction, or a PHI.
1006   auto InstrIt = DebugInstrNumToInstr.find(InstNo);
1007   auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(),
1008                                 DebugPHINumToValue.end(), InstNo);
1009   if (InstrIt != DebugInstrNumToInstr.end()) {
1010     const MachineInstr &TargetInstr = *InstrIt->second.first;
1011     uint64_t BlockNo = TargetInstr.getParent()->getNumber();
1012 
1013     // Pick out the designated operand.
1014     assert(OpNo < TargetInstr.getNumOperands());
1015     const MachineOperand &MO = TargetInstr.getOperand(OpNo);
1016 
1017     // Today, this can only be a register.
1018     assert(MO.isReg() && MO.isDef());
1019 
1020     unsigned LocID = MTracker->getLocID(MO.getReg());
1021     LocIdx L = MTracker->LocIDToLocIdx[LocID];
1022     NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
1023   } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
1024     // It's actually a PHI value. Which value it is might not be obvious, use
1025     // the resolver helper to find out.
1026     NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns,
1027                            MI, InstNo);
1028   }
1029 
1030   // Apply any subregister extractions, in reverse. We might have seen code
1031   // like this:
1032   //    CALL64 @foo, implicit-def $rax
1033   //    %0:gr64 = COPY $rax
1034   //    %1:gr32 = COPY %0.sub_32bit
1035   //    %2:gr16 = COPY %1.sub_16bit
1036   //    %3:gr8  = COPY %2.sub_8bit
1037   // In which case each copy would have been recorded as a substitution with
1038   // a subregister qualifier. Apply those qualifiers now.
1039   if (NewID && !SeenSubregs.empty()) {
1040     unsigned Offset = 0;
1041     unsigned Size = 0;
1042 
1043     // Look at each subregister that we passed through, and progressively
1044     // narrow in, accumulating any offsets that occur. Substitutions should
1045     // only ever be the same or narrower width than what they read from;
1046     // iterate in reverse order so that we go from wide to small.
1047     for (unsigned Subreg : reverse(SeenSubregs)) {
1048       unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
1049       unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
1050       Offset += ThisOffset;
1051       Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
1052     }
1053 
1054     // If that worked, look for an appropriate subregister with the register
1055     // where the define happens. Don't look at values that were defined during
1056     // a stack write: we can't currently express register locations within
1057     // spills.
1058     LocIdx L = NewID->getLoc();
1059     if (NewID && !MTracker->isSpill(L)) {
1060       // Find the register class for the register where this def happened.
1061       // FIXME: no index for this?
1062       Register Reg = MTracker->LocIdxToLocID[L];
1063       const TargetRegisterClass *TRC = nullptr;
1064       for (auto *TRCI : TRI->regclasses())
1065         if (TRCI->contains(Reg))
1066           TRC = TRCI;
1067       assert(TRC && "Couldn't find target register class?");
1068 
1069       // If the register we have isn't the right size or in the right place,
1070       // Try to find a subregister inside it.
1071       unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
1072       if (Size != MainRegSize || Offset) {
1073         // Enumerate all subregisters, searching.
1074         Register NewReg = 0;
1075         for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1076           unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1077           unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
1078           unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
1079           if (SubregSize == Size && SubregOffset == Offset) {
1080             NewReg = *SRI;
1081             break;
1082           }
1083         }
1084 
1085         // If we didn't find anything: there's no way to express our value.
1086         if (!NewReg) {
1087           NewID = None;
1088         } else {
1089           // Re-state the value as being defined within the subregister
1090           // that we found.
1091           LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
1092           NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
1093         }
1094       }
1095     } else {
1096       // If we can't handle subregisters, unset the new value.
1097       NewID = None;
1098     }
1099   }
1100 
1101   // We, we have a value number or None. Tell the variable value tracker about
1102   // it. The rest of this LiveDebugValues implementation acts exactly the same
1103   // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that
1104   // aren't immediately available).
1105   DbgValueProperties Properties(Expr, false);
1106   VTracker->defVar(MI, Properties, NewID);
1107 
1108   // If we're on the final pass through the function, decompose this INSTR_REF
1109   // into a plain DBG_VALUE.
1110   if (!TTracker)
1111     return true;
1112 
1113   // Pick a location for the machine value number, if such a location exists.
1114   // (This information could be stored in TransferTracker to make it faster).
1115   Optional<LocIdx> FoundLoc = None;
1116   for (auto Location : MTracker->locations()) {
1117     LocIdx CurL = Location.Idx;
1118     ValueIDNum ID = MTracker->readMLoc(CurL);
1119     if (NewID && ID == NewID) {
1120       // If this is the first location with that value, pick it. Otherwise,
1121       // consider whether it's a "longer term" location.
1122       if (!FoundLoc) {
1123         FoundLoc = CurL;
1124         continue;
1125       }
1126 
1127       if (MTracker->isSpill(CurL))
1128         FoundLoc = CurL; // Spills are a longer term location.
1129       else if (!MTracker->isSpill(*FoundLoc) &&
1130                !MTracker->isSpill(CurL) &&
1131                !isCalleeSaved(*FoundLoc) &&
1132                isCalleeSaved(CurL))
1133         FoundLoc = CurL; // Callee saved regs are longer term than normal.
1134     }
1135   }
1136 
1137   // Tell transfer tracker that the variable value has changed.
1138   TTracker->redefVar(MI, Properties, FoundLoc);
1139 
1140   // If there was a value with no location; but the value is defined in a
1141   // later instruction in this block, this is a block-local use-before-def.
1142   if (!FoundLoc && NewID && NewID->getBlock() == CurBB &&
1143       NewID->getInst() > CurInst)
1144     TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID);
1145 
1146   // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
1147   // This DBG_VALUE is potentially a $noreg / undefined location, if
1148   // FoundLoc is None.
1149   // (XXX -- could morph the DBG_INSTR_REF in the future).
1150   MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties);
1151   TTracker->PendingDbgValues.push_back(DbgMI);
1152   TTracker->flushDbgValues(MI.getIterator(), nullptr);
1153   return true;
1154 }
1155 
1156 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
1157   if (!MI.isDebugPHI())
1158     return false;
1159 
1160   // Analyse these only when solving the machine value location problem.
1161   if (VTracker || TTracker)
1162     return true;
1163 
1164   // First operand is the value location, either a stack slot or register.
1165   // Second is the debug instruction number of the original PHI.
1166   const MachineOperand &MO = MI.getOperand(0);
1167   unsigned InstrNum = MI.getOperand(1).getImm();
1168 
1169   if (MO.isReg()) {
1170     // The value is whatever's currently in the register. Read and record it,
1171     // to be analysed later.
1172     Register Reg = MO.getReg();
1173     ValueIDNum Num = MTracker->readReg(Reg);
1174     auto PHIRec = DebugPHIRecord(
1175         {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
1176     DebugPHINumToValue.push_back(PHIRec);
1177 
1178     // Ensure this register is tracked.
1179     for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1180       MTracker->lookupOrTrackRegister(*RAI);
1181   } else {
1182     // The value is whatever's in this stack slot.
1183     assert(MO.isFI());
1184     unsigned FI = MO.getIndex();
1185 
1186     // If the stack slot is dead, then this was optimized away.
1187     // FIXME: stack slot colouring should account for slots that get merged.
1188     if (MFI->isDeadObjectIndex(FI))
1189       return true;
1190 
1191     // Identify this spill slot, ensure it's tracked.
1192     Register Base;
1193     StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
1194     SpillLoc SL = {Base, Offs};
1195     SpillLocationNo SpillNo = MTracker->getOrTrackSpillLoc(SL);
1196 
1197     // Problem: what value should we extract from the stack? LLVM does not
1198     // record what size the last store to the slot was, and it would become
1199     // sketchy after stack slot colouring anyway. Take a look at what values
1200     // are stored on the stack, and pick the largest one that wasn't def'd
1201     // by a spill (i.e., the value most likely to have been def'd in a register
1202     // and then spilt.
1203     std::array<unsigned, 4> CandidateSizes = {64, 32, 16, 8};
1204     Optional<ValueIDNum> Result = None;
1205     Optional<LocIdx> SpillLoc = None;
1206     for (unsigned int I = 0; I < CandidateSizes.size(); ++I) {
1207       unsigned SpillID = MTracker->getLocID(SpillNo, {CandidateSizes[I], 0});
1208       SpillLoc = MTracker->getSpillMLoc(SpillID);
1209       ValueIDNum Val = MTracker->readMLoc(*SpillLoc);
1210       // If this value was defined in it's own position, then it was probably
1211       // an aliasing index of a small value that was spilt.
1212       if (Val.getLoc() != SpillLoc->asU64()) {
1213         Result = Val;
1214         break;
1215       }
1216     }
1217 
1218     // If we didn't find anything, we're probably looking at a PHI, or a memory
1219     // store folded into an instruction. FIXME: Take a guess that's it's 64
1220     // bits. This isn't ideal, but tracking the size that the spill is
1221     // "supposed" to be is more complex, and benefits a small number of
1222     // locations.
1223     if (!Result) {
1224       unsigned SpillID = MTracker->getLocID(SpillNo, {64, 0});
1225       SpillLoc = MTracker->getSpillMLoc(SpillID);
1226       Result = MTracker->readMLoc(*SpillLoc);
1227     }
1228 
1229     // Record this DBG_PHI for later analysis.
1230     auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), *Result, *SpillLoc});
1231     DebugPHINumToValue.push_back(DbgPHI);
1232   }
1233 
1234   return true;
1235 }
1236 
1237 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
1238   // Meta Instructions do not affect the debug liveness of any register they
1239   // define.
1240   if (MI.isImplicitDef()) {
1241     // Except when there's an implicit def, and the location it's defining has
1242     // no value number. The whole point of an implicit def is to announce that
1243     // the register is live, without be specific about it's value. So define
1244     // a value if there isn't one already.
1245     ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
1246     // Has a legitimate value -> ignore the implicit def.
1247     if (Num.getLoc() != 0)
1248       return;
1249     // Otherwise, def it here.
1250   } else if (MI.isMetaInstruction())
1251     return;
1252 
1253   // Find the regs killed by MI, and find regmasks of preserved regs.
1254   // Max out the number of statically allocated elements in `DeadRegs`, as this
1255   // prevents fallback to std::set::count() operations.
1256   SmallSet<uint32_t, 32> DeadRegs;
1257   SmallVector<const uint32_t *, 4> RegMasks;
1258   SmallVector<const MachineOperand *, 4> RegMaskPtrs;
1259   for (const MachineOperand &MO : MI.operands()) {
1260     // Determine whether the operand is a register def.
1261     if (MO.isReg() && MO.isDef() && MO.getReg() &&
1262         Register::isPhysicalRegister(MO.getReg()) &&
1263         !(MI.isCall() && MTracker->SPAliases.count(MO.getReg()))) {
1264       // Remove ranges of all aliased registers.
1265       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1266         // FIXME: Can we break out of this loop early if no insertion occurs?
1267         DeadRegs.insert(*RAI);
1268     } else if (MO.isRegMask()) {
1269       RegMasks.push_back(MO.getRegMask());
1270       RegMaskPtrs.push_back(&MO);
1271     }
1272   }
1273 
1274   // Tell MLocTracker about all definitions, of regmasks and otherwise.
1275   for (uint32_t DeadReg : DeadRegs)
1276     MTracker->defReg(DeadReg, CurBB, CurInst);
1277 
1278   for (auto *MO : RegMaskPtrs)
1279     MTracker->writeRegMask(MO, CurBB, CurInst);
1280 
1281   if (!TTracker)
1282     return;
1283 
1284   // When committing variable values to locations: tell transfer tracker that
1285   // we've clobbered things. It may be able to recover the variable from a
1286   // different location.
1287 
1288   // Inform TTracker about any direct clobbers.
1289   for (uint32_t DeadReg : DeadRegs) {
1290     LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
1291     TTracker->clobberMloc(Loc, MI.getIterator(), false);
1292   }
1293 
1294   // Look for any clobbers performed by a register mask. Only test locations
1295   // that are actually being tracked.
1296   for (auto L : MTracker->locations()) {
1297     // Stack locations can't be clobbered by regmasks.
1298     if (MTracker->isSpill(L.Idx))
1299       continue;
1300 
1301     Register Reg = MTracker->LocIdxToLocID[L.Idx];
1302     for (auto *MO : RegMaskPtrs)
1303       if (MO->clobbersPhysReg(Reg))
1304         TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
1305   }
1306 }
1307 
1308 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
1309   // In all circumstances, re-def all aliases. It's definitely a new value now.
1310   for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI)
1311     MTracker->defReg(*RAI, CurBB, CurInst);
1312 
1313   ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
1314   MTracker->setReg(DstRegNum, SrcValue);
1315 
1316   // Copy subregisters from one location to another.
1317   for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
1318     unsigned SrcSubReg = SRI.getSubReg();
1319     unsigned SubRegIdx = SRI.getSubRegIndex();
1320     unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
1321     if (!DstSubReg)
1322       continue;
1323 
1324     // Do copy. There are two matching subregisters, the source value should
1325     // have been def'd when the super-reg was, the latter might not be tracked
1326     // yet.
1327     // This will force SrcSubReg to be tracked, if it isn't yet. Will read
1328     // mphi values if it wasn't tracked.
1329     LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg);
1330     LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg);
1331     (void)SrcL;
1332     (void)DstL;
1333     ValueIDNum CpyValue = MTracker->readReg(SrcSubReg);
1334 
1335     MTracker->setReg(DstSubReg, CpyValue);
1336   }
1337 }
1338 
1339 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
1340                                           MachineFunction *MF) {
1341   // TODO: Handle multiple stores folded into one.
1342   if (!MI.hasOneMemOperand())
1343     return false;
1344 
1345   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1346     return false; // This is not a spill instruction, since no valid size was
1347                   // returned from either function.
1348 
1349   return true;
1350 }
1351 
1352 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
1353                                        MachineFunction *MF, unsigned &Reg) {
1354   if (!isSpillInstruction(MI, MF))
1355     return false;
1356 
1357   int FI;
1358   Reg = TII->isStoreToStackSlotPostFE(MI, FI);
1359   return Reg != 0;
1360 }
1361 
1362 Optional<SpillLocationNo>
1363 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1364                                        MachineFunction *MF, unsigned &Reg) {
1365   if (!MI.hasOneMemOperand())
1366     return None;
1367 
1368   // FIXME: Handle folded restore instructions with more than one memory
1369   // operand.
1370   if (MI.getRestoreSize(TII)) {
1371     Reg = MI.getOperand(0).getReg();
1372     return extractSpillBaseRegAndOffset(MI);
1373   }
1374   return None;
1375 }
1376 
1377 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
1378   // XXX -- it's too difficult to implement VarLocBasedImpl's  stack location
1379   // limitations under the new model. Therefore, when comparing them, compare
1380   // versions that don't attempt spills or restores at all.
1381   if (EmulateOldLDV)
1382     return false;
1383 
1384   // Strictly limit ourselves to plain loads and stores, not all instructions
1385   // that can access the stack.
1386   int DummyFI = -1;
1387   if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) &&
1388       !TII->isLoadFromStackSlotPostFE(MI, DummyFI))
1389     return false;
1390 
1391   MachineFunction *MF = MI.getMF();
1392   unsigned Reg;
1393 
1394   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
1395 
1396   // First, if there are any DBG_VALUEs pointing at a spill slot that is
1397   // written to, terminate that variable location. The value in memory
1398   // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
1399   if (isSpillInstruction(MI, MF)) {
1400     SpillLocationNo Loc = extractSpillBaseRegAndOffset(MI);
1401 
1402     // Un-set this location and clobber, so that earlier locations don't
1403     // continue past this store.
1404     for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) {
1405       unsigned SpillID = MTracker->getSpillIDWithIdx(Loc, SlotIdx);
1406       Optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID);
1407       if (!MLoc)
1408         continue;
1409 
1410       // We need to over-write the stack slot with something (here, a def at
1411       // this instruction) to ensure no values are preserved in this stack slot
1412       // after the spill. It also prevents TTracker from trying to recover the
1413       // location and re-installing it in the same place.
1414       ValueIDNum Def(CurBB, CurInst, *MLoc);
1415       MTracker->setMLoc(*MLoc, Def);
1416       if (TTracker)
1417         TTracker->clobberMloc(*MLoc, MI.getIterator());
1418     }
1419   }
1420 
1421   // Try to recognise spill and restore instructions that may transfer a value.
1422   if (isLocationSpill(MI, MF, Reg)) {
1423     SpillLocationNo Loc = extractSpillBaseRegAndOffset(MI);
1424 
1425     auto DoTransfer = [&](Register SrcReg, unsigned SpillID) {
1426       auto ReadValue = MTracker->readReg(SrcReg);
1427       LocIdx DstLoc = MTracker->getSpillMLoc(SpillID);
1428       MTracker->setMLoc(DstLoc, ReadValue);
1429 
1430       if (TTracker) {
1431         LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg);
1432         TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator());
1433       }
1434     };
1435 
1436     // Then, transfer subreg bits.
1437     for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1438       // Ensure this reg is tracked,
1439       (void)MTracker->lookupOrTrackRegister(*SRI);
1440       unsigned SubregIdx = TRI->getSubRegIndex(Reg, *SRI);
1441       unsigned SpillID = MTracker->getLocID(Loc, SubregIdx);
1442       DoTransfer(*SRI, SpillID);
1443     }
1444 
1445     // Directly lookup size of main source reg, and transfer.
1446     unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
1447     unsigned SpillID = MTracker->getLocID(Loc, {Size, 0});
1448     DoTransfer(Reg, SpillID);
1449   } else {
1450     Optional<SpillLocationNo> OptLoc = isRestoreInstruction(MI, MF, Reg);
1451     if (!OptLoc)
1452       return false;
1453     SpillLocationNo Loc = *OptLoc;
1454 
1455     // Assumption: we're reading from the base of the stack slot, not some
1456     // offset into it. It seems very unlikely LLVM would ever generate
1457     // restores where this wasn't true. This then becomes a question of what
1458     // subregisters in the destination register line up with positions in the
1459     // stack slot.
1460 
1461     // Def all registers that alias the destination.
1462     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1463       MTracker->defReg(*RAI, CurBB, CurInst);
1464 
1465     // Now find subregisters within the destination register, and load values
1466     // from stack slot positions.
1467     auto DoTransfer = [&](Register DestReg, unsigned SpillID) {
1468       LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID);
1469       auto ReadValue = MTracker->readMLoc(SrcIdx);
1470       MTracker->setReg(DestReg, ReadValue);
1471 
1472       if (TTracker) {
1473         LocIdx DstLoc = MTracker->getRegMLoc(DestReg);
1474         TTracker->transferMlocs(SrcIdx, DstLoc, MI.getIterator());
1475       }
1476     };
1477 
1478     for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
1479       unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
1480       unsigned SpillID = MTracker->getLocID(Loc, Subreg);
1481       DoTransfer(*SRI, SpillID);
1482     }
1483 
1484     // Directly look up this registers slot idx by size, and transfer.
1485     unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
1486     unsigned SpillID = MTracker->getLocID(Loc, {Size, 0});
1487     DoTransfer(Reg, SpillID);
1488   }
1489   return true;
1490 }
1491 
1492 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
1493   auto DestSrc = TII->isCopyInstr(MI);
1494   if (!DestSrc)
1495     return false;
1496 
1497   const MachineOperand *DestRegOp = DestSrc->Destination;
1498   const MachineOperand *SrcRegOp = DestSrc->Source;
1499 
1500   auto isCalleeSavedReg = [&](unsigned Reg) {
1501     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1502       if (CalleeSavedRegs.test(*RAI))
1503         return true;
1504     return false;
1505   };
1506 
1507   Register SrcReg = SrcRegOp->getReg();
1508   Register DestReg = DestRegOp->getReg();
1509 
1510   // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
1511   if (SrcReg == DestReg)
1512     return true;
1513 
1514   // For emulating VarLocBasedImpl:
1515   // We want to recognize instructions where destination register is callee
1516   // saved register. If register that could be clobbered by the call is
1517   // included, there would be a great chance that it is going to be clobbered
1518   // soon. It is more likely that previous register, which is callee saved, is
1519   // going to stay unclobbered longer, even if it is killed.
1520   //
1521   // For InstrRefBasedImpl, we can track multiple locations per value, so
1522   // ignore this condition.
1523   if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
1524     return false;
1525 
1526   // InstrRefBasedImpl only followed killing copies.
1527   if (EmulateOldLDV && !SrcRegOp->isKill())
1528     return false;
1529 
1530   // Copy MTracker info, including subregs if available.
1531   InstrRefBasedLDV::performCopy(SrcReg, DestReg);
1532 
1533   // Only produce a transfer of DBG_VALUE within a block where old LDV
1534   // would have. We might make use of the additional value tracking in some
1535   // other way, later.
1536   if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
1537     TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
1538                             MTracker->getRegMLoc(DestReg), MI.getIterator());
1539 
1540   // VarLocBasedImpl would quit tracking the old location after copying.
1541   if (EmulateOldLDV && SrcReg != DestReg)
1542     MTracker->defReg(SrcReg, CurBB, CurInst);
1543 
1544   // Finally, the copy might have clobbered variables based on the destination
1545   // register. Tell TTracker about it, in case a backup location exists.
1546   if (TTracker) {
1547     for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
1548       LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
1549       TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false);
1550     }
1551   }
1552 
1553   return true;
1554 }
1555 
1556 /// Accumulate a mapping between each DILocalVariable fragment and other
1557 /// fragments of that DILocalVariable which overlap. This reduces work during
1558 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
1559 /// known-to-overlap fragments are present".
1560 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
1561 ///           fragment usage.
1562 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
1563   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
1564                       MI.getDebugLoc()->getInlinedAt());
1565   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
1566 
1567   // If this is the first sighting of this variable, then we are guaranteed
1568   // there are currently no overlapping fragments either. Initialize the set
1569   // of seen fragments, record no overlaps for the current one, and return.
1570   auto SeenIt = SeenFragments.find(MIVar.getVariable());
1571   if (SeenIt == SeenFragments.end()) {
1572     SmallSet<FragmentInfo, 4> OneFragment;
1573     OneFragment.insert(ThisFragment);
1574     SeenFragments.insert({MIVar.getVariable(), OneFragment});
1575 
1576     OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1577     return;
1578   }
1579 
1580   // If this particular Variable/Fragment pair already exists in the overlap
1581   // map, it has already been accounted for.
1582   auto IsInOLapMap =
1583       OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1584   if (!IsInOLapMap.second)
1585     return;
1586 
1587   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
1588   auto &AllSeenFragments = SeenIt->second;
1589 
1590   // Otherwise, examine all other seen fragments for this variable, with "this"
1591   // fragment being a previously unseen fragment. Record any pair of
1592   // overlapping fragments.
1593   for (auto &ASeenFragment : AllSeenFragments) {
1594     // Does this previously seen fragment overlap?
1595     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
1596       // Yes: Mark the current fragment as being overlapped.
1597       ThisFragmentsOverlaps.push_back(ASeenFragment);
1598       // Mark the previously seen fragment as being overlapped by the current
1599       // one.
1600       auto ASeenFragmentsOverlaps =
1601           OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
1602       assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
1603              "Previously seen var fragment has no vector of overlaps");
1604       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
1605     }
1606   }
1607 
1608   AllSeenFragments.insert(ThisFragment);
1609 }
1610 
1611 void InstrRefBasedLDV::process(MachineInstr &MI, ValueIDNum **MLiveOuts,
1612                                ValueIDNum **MLiveIns) {
1613   // Try to interpret an MI as a debug or transfer instruction. Only if it's
1614   // none of these should we interpret it's register defs as new value
1615   // definitions.
1616   if (transferDebugValue(MI))
1617     return;
1618   if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
1619     return;
1620   if (transferDebugPHI(MI))
1621     return;
1622   if (transferRegisterCopy(MI))
1623     return;
1624   if (transferSpillOrRestoreInst(MI))
1625     return;
1626   transferRegisterDef(MI);
1627 }
1628 
1629 void InstrRefBasedLDV::produceMLocTransferFunction(
1630     MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
1631     unsigned MaxNumBlocks) {
1632   // Because we try to optimize around register mask operands by ignoring regs
1633   // that aren't currently tracked, we set up something ugly for later: RegMask
1634   // operands that are seen earlier than the first use of a register, still need
1635   // to clobber that register in the transfer function. But this information
1636   // isn't actively recorded. Instead, we track each RegMask used in each block,
1637   // and accumulated the clobbered but untracked registers in each block into
1638   // the following bitvector. Later, if new values are tracked, we can add
1639   // appropriate clobbers.
1640   SmallVector<BitVector, 32> BlockMasks;
1641   BlockMasks.resize(MaxNumBlocks);
1642 
1643   // Reserve one bit per register for the masks described above.
1644   unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
1645   for (auto &BV : BlockMasks)
1646     BV.resize(TRI->getNumRegs(), true);
1647 
1648   // Step through all instructions and inhale the transfer function.
1649   for (auto &MBB : MF) {
1650     // Object fields that are read by trackers to know where we are in the
1651     // function.
1652     CurBB = MBB.getNumber();
1653     CurInst = 1;
1654 
1655     // Set all machine locations to a PHI value. For transfer function
1656     // production only, this signifies the live-in value to the block.
1657     MTracker->reset();
1658     MTracker->setMPhis(CurBB);
1659 
1660     // Step through each instruction in this block.
1661     for (auto &MI : MBB) {
1662       process(MI);
1663       // Also accumulate fragment map.
1664       if (MI.isDebugValue())
1665         accumulateFragmentMap(MI);
1666 
1667       // Create a map from the instruction number (if present) to the
1668       // MachineInstr and its position.
1669       if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
1670         auto InstrAndPos = std::make_pair(&MI, CurInst);
1671         auto InsertResult =
1672             DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
1673 
1674         // There should never be duplicate instruction numbers.
1675         assert(InsertResult.second);
1676         (void)InsertResult;
1677       }
1678 
1679       ++CurInst;
1680     }
1681 
1682     // Produce the transfer function, a map of machine location to new value. If
1683     // any machine location has the live-in phi value from the start of the
1684     // block, it's live-through and doesn't need recording in the transfer
1685     // function.
1686     for (auto Location : MTracker->locations()) {
1687       LocIdx Idx = Location.Idx;
1688       ValueIDNum &P = Location.Value;
1689       if (P.isPHI() && P.getLoc() == Idx.asU64())
1690         continue;
1691 
1692       // Insert-or-update.
1693       auto &TransferMap = MLocTransfer[CurBB];
1694       auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
1695       if (!Result.second)
1696         Result.first->second = P;
1697     }
1698 
1699     // Accumulate any bitmask operands into the clobberred reg mask for this
1700     // block.
1701     for (auto &P : MTracker->Masks) {
1702       BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
1703     }
1704   }
1705 
1706   // Compute a bitvector of all the registers that are tracked in this block.
1707   BitVector UsedRegs(TRI->getNumRegs());
1708   for (auto Location : MTracker->locations()) {
1709     unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
1710     // Ignore stack slots, and aliases of the stack pointer.
1711     if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID))
1712       continue;
1713     UsedRegs.set(ID);
1714   }
1715 
1716   // Check that any regmask-clobber of a register that gets tracked, is not
1717   // live-through in the transfer function. It needs to be clobbered at the
1718   // very least.
1719   for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
1720     BitVector &BV = BlockMasks[I];
1721     BV.flip();
1722     BV &= UsedRegs;
1723     // This produces all the bits that we clobber, but also use. Check that
1724     // they're all clobbered or at least set in the designated transfer
1725     // elem.
1726     for (unsigned Bit : BV.set_bits()) {
1727       unsigned ID = MTracker->getLocID(Bit);
1728       LocIdx Idx = MTracker->LocIDToLocIdx[ID];
1729       auto &TransferMap = MLocTransfer[I];
1730 
1731       // Install a value representing the fact that this location is effectively
1732       // written to in this block. As there's no reserved value, instead use
1733       // a value number that is never generated. Pick the value number for the
1734       // first instruction in the block, def'ing this location, which we know
1735       // this block never used anyway.
1736       ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
1737       auto Result =
1738         TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
1739       if (!Result.second) {
1740         ValueIDNum &ValueID = Result.first->second;
1741         if (ValueID.getBlock() == I && ValueID.isPHI())
1742           // It was left as live-through. Set it to clobbered.
1743           ValueID = NotGeneratedNum;
1744       }
1745     }
1746   }
1747 }
1748 
1749 bool InstrRefBasedLDV::mlocJoin(
1750     MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1751     ValueIDNum **OutLocs, ValueIDNum *InLocs) {
1752   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
1753   bool Changed = false;
1754 
1755   // Handle value-propagation when control flow merges on entry to a block. For
1756   // any location without a PHI already placed, the location has the same value
1757   // as its predecessors. If a PHI is placed, test to see whether it's now a
1758   // redundant PHI that we can eliminate.
1759 
1760   SmallVector<const MachineBasicBlock *, 8> BlockOrders;
1761   for (auto Pred : MBB.predecessors())
1762     BlockOrders.push_back(Pred);
1763 
1764   // Visit predecessors in RPOT order.
1765   auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
1766     return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
1767   };
1768   llvm::sort(BlockOrders, Cmp);
1769 
1770   // Skip entry block.
1771   if (BlockOrders.size() == 0)
1772     return false;
1773 
1774   // Step through all machine locations, look at each predecessor and test
1775   // whether we can eliminate redundant PHIs.
1776   for (auto Location : MTracker->locations()) {
1777     LocIdx Idx = Location.Idx;
1778 
1779     // Pick out the first predecessors live-out value for this location. It's
1780     // guaranteed to not be a backedge, as we order by RPO.
1781     ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
1782 
1783     // If we've already eliminated a PHI here, do no further checking, just
1784     // propagate the first live-in value into this block.
1785     if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) {
1786       if (InLocs[Idx.asU64()] != FirstVal) {
1787         InLocs[Idx.asU64()] = FirstVal;
1788         Changed |= true;
1789       }
1790       continue;
1791     }
1792 
1793     // We're now examining a PHI to see whether it's un-necessary. Loop around
1794     // the other live-in values and test whether they're all the same.
1795     bool Disagree = false;
1796     for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
1797       const MachineBasicBlock *PredMBB = BlockOrders[I];
1798       const ValueIDNum &PredLiveOut =
1799           OutLocs[PredMBB->getNumber()][Idx.asU64()];
1800 
1801       // Incoming values agree, continue trying to eliminate this PHI.
1802       if (FirstVal == PredLiveOut)
1803         continue;
1804 
1805       // We can also accept a PHI value that feeds back into itself.
1806       if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx))
1807         continue;
1808 
1809       // Live-out of a predecessor disagrees with the first predecessor.
1810       Disagree = true;
1811     }
1812 
1813     // No disagreement? No PHI. Otherwise, leave the PHI in live-ins.
1814     if (!Disagree) {
1815       InLocs[Idx.asU64()] = FirstVal;
1816       Changed |= true;
1817     }
1818   }
1819 
1820   // TODO: Reimplement NumInserted and NumRemoved.
1821   return Changed;
1822 }
1823 
1824 void InstrRefBasedLDV::placeMLocPHIs(MachineFunction &MF,
1825                               SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
1826                               ValueIDNum **MInLocs,
1827                               SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
1828   // To avoid repeatedly running the PHI placement algorithm, leverage the
1829   // fact that a def of register MUST also def its register units. Find the
1830   // units for registers, place PHIs for them, and then replicate them for
1831   // aliasing registers. Some inputs that are never def'd (DBG_PHIs of
1832   // arguments) don't lead to register units being tracked, just place PHIs for
1833   // those registers directly. Do the same for stack slots.
1834   SmallSet<Register, 32> RegUnitsToPHIUp;
1835   SmallSet<LocIdx, 32> LocsToPHI;
1836   for (auto Location : MTracker->locations()) {
1837     LocIdx L = Location.Idx;
1838     if (MTracker->isSpill(L)) {
1839       LocsToPHI.insert(L);
1840       continue;
1841     }
1842 
1843     Register R = MTracker->LocIdxToLocID[L];
1844     SmallSet<Register, 8> FoundRegUnits;
1845     bool AnyIllegal = false;
1846     for (MCRegUnitIterator RUI(R.asMCReg(), TRI); RUI.isValid(); ++RUI) {
1847       for (MCRegUnitRootIterator URoot(*RUI, TRI); URoot.isValid(); ++URoot){
1848         if (!MTracker->isRegisterTracked(*URoot)) {
1849           // Not all roots were loaded into the tracking map: this register
1850           // isn't actually def'd anywhere, we only read from it. Generate PHIs
1851           // for this reg, but don't iterate units.
1852           AnyIllegal = true;
1853         } else {
1854           FoundRegUnits.insert(*URoot);
1855         }
1856       }
1857     }
1858 
1859     if (AnyIllegal) {
1860       LocsToPHI.insert(L);
1861       continue;
1862     }
1863 
1864     RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end());
1865   }
1866 
1867   // Lambda to fetch PHIs for a given location, and write into the PHIBlocks
1868   // collection.
1869   SmallVector<MachineBasicBlock *, 32> PHIBlocks;
1870   auto CollectPHIsForLoc = [&](LocIdx L) {
1871     // Collect the set of defs.
1872     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
1873     for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
1874       MachineBasicBlock *MBB = OrderToBB[I];
1875       const auto &TransferFunc = MLocTransfer[MBB->getNumber()];
1876       if (TransferFunc.find(L) != TransferFunc.end())
1877         DefBlocks.insert(MBB);
1878     }
1879 
1880     // The entry block defs the location too: it's the live-in / argument value.
1881     // Only insert if there are other defs though; everything is trivially live
1882     // through otherwise.
1883     if (!DefBlocks.empty())
1884       DefBlocks.insert(&*MF.begin());
1885 
1886     // Ask the SSA construction algorithm where we should put PHIs. Clear
1887     // anything that might have been hanging around from earlier.
1888     PHIBlocks.clear();
1889     BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks);
1890   };
1891 
1892   // For spill slots, and locations with no reg units, just place PHIs.
1893   for (LocIdx L : LocsToPHI) {
1894     CollectPHIsForLoc(L);
1895     // Install those PHI values into the live-in value array.
1896     for (const MachineBasicBlock *MBB : PHIBlocks)
1897       MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L);
1898   }
1899 
1900   // For reg units, place PHIs, and then place them for any aliasing registers.
1901   for (Register R : RegUnitsToPHIUp) {
1902     LocIdx L = MTracker->lookupOrTrackRegister(R);
1903     CollectPHIsForLoc(L);
1904 
1905     // Install those PHI values into the live-in value array.
1906     for (const MachineBasicBlock *MBB : PHIBlocks)
1907       MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L);
1908 
1909     // Now find aliases and install PHIs for those.
1910     for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) {
1911       // Super-registers that are "above" the largest register read/written by
1912       // the function will alias, but will not be tracked.
1913       if (!MTracker->isRegisterTracked(*RAI))
1914         continue;
1915 
1916       LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI);
1917       for (const MachineBasicBlock *MBB : PHIBlocks)
1918         MInLocs[MBB->getNumber()][AliasLoc.asU64()] =
1919             ValueIDNum(MBB->getNumber(), 0, AliasLoc);
1920     }
1921   }
1922 }
1923 
1924 void InstrRefBasedLDV::buildMLocValueMap(
1925     MachineFunction &MF, ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
1926     SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
1927   std::priority_queue<unsigned int, std::vector<unsigned int>,
1928                       std::greater<unsigned int>>
1929       Worklist, Pending;
1930 
1931   // We track what is on the current and pending worklist to avoid inserting
1932   // the same thing twice. We could avoid this with a custom priority queue,
1933   // but this is probably not worth it.
1934   SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
1935 
1936   // Initialize worklist with every block to be visited. Also produce list of
1937   // all blocks.
1938   SmallPtrSet<MachineBasicBlock *, 32> AllBlocks;
1939   for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
1940     Worklist.push(I);
1941     OnWorklist.insert(OrderToBB[I]);
1942     AllBlocks.insert(OrderToBB[I]);
1943   }
1944 
1945   // Initialize entry block to PHIs. These represent arguments.
1946   for (auto Location : MTracker->locations())
1947     MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx);
1948 
1949   MTracker->reset();
1950 
1951   // Start by placing PHIs, using the usual SSA constructor algorithm. Consider
1952   // any machine-location that isn't live-through a block to be def'd in that
1953   // block.
1954   placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer);
1955 
1956   // Propagate values to eliminate redundant PHIs. At the same time, this
1957   // produces the table of Block x Location => Value for the entry to each
1958   // block.
1959   // The kind of PHIs we can eliminate are, for example, where one path in a
1960   // conditional spills and restores a register, and the register still has
1961   // the same value once control flow joins, unbeknowns to the PHI placement
1962   // code. Propagating values allows us to identify such un-necessary PHIs and
1963   // remove them.
1964   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
1965   while (!Worklist.empty() || !Pending.empty()) {
1966     // Vector for storing the evaluated block transfer function.
1967     SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
1968 
1969     while (!Worklist.empty()) {
1970       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
1971       CurBB = MBB->getNumber();
1972       Worklist.pop();
1973 
1974       // Join the values in all predecessor blocks.
1975       bool InLocsChanged;
1976       InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
1977       InLocsChanged |= Visited.insert(MBB).second;
1978 
1979       // Don't examine transfer function if we've visited this loc at least
1980       // once, and inlocs haven't changed.
1981       if (!InLocsChanged)
1982         continue;
1983 
1984       // Load the current set of live-ins into MLocTracker.
1985       MTracker->loadFromArray(MInLocs[CurBB], CurBB);
1986 
1987       // Each element of the transfer function can be a new def, or a read of
1988       // a live-in value. Evaluate each element, and store to "ToRemap".
1989       ToRemap.clear();
1990       for (auto &P : MLocTransfer[CurBB]) {
1991         if (P.second.getBlock() == CurBB && P.second.isPHI()) {
1992           // This is a movement of whatever was live in. Read it.
1993           ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc());
1994           ToRemap.push_back(std::make_pair(P.first, NewID));
1995         } else {
1996           // It's a def. Just set it.
1997           assert(P.second.getBlock() == CurBB);
1998           ToRemap.push_back(std::make_pair(P.first, P.second));
1999         }
2000       }
2001 
2002       // Commit the transfer function changes into mloc tracker, which
2003       // transforms the contents of the MLocTracker into the live-outs.
2004       for (auto &P : ToRemap)
2005         MTracker->setMLoc(P.first, P.second);
2006 
2007       // Now copy out-locs from mloc tracker into out-loc vector, checking
2008       // whether changes have occurred. These changes can have come from both
2009       // the transfer function, and mlocJoin.
2010       bool OLChanged = false;
2011       for (auto Location : MTracker->locations()) {
2012         OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
2013         MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
2014       }
2015 
2016       MTracker->reset();
2017 
2018       // No need to examine successors again if out-locs didn't change.
2019       if (!OLChanged)
2020         continue;
2021 
2022       // All successors should be visited: put any back-edges on the pending
2023       // list for the next pass-through, and any other successors to be
2024       // visited this pass, if they're not going to be already.
2025       for (auto s : MBB->successors()) {
2026         // Does branching to this successor represent a back-edge?
2027         if (BBToOrder[s] > BBToOrder[MBB]) {
2028           // No: visit it during this dataflow iteration.
2029           if (OnWorklist.insert(s).second)
2030             Worklist.push(BBToOrder[s]);
2031         } else {
2032           // Yes: visit it on the next iteration.
2033           if (OnPending.insert(s).second)
2034             Pending.push(BBToOrder[s]);
2035         }
2036       }
2037     }
2038 
2039     Worklist.swap(Pending);
2040     std::swap(OnPending, OnWorklist);
2041     OnPending.clear();
2042     // At this point, pending must be empty, since it was just the empty
2043     // worklist
2044     assert(Pending.empty() && "Pending should be empty");
2045   }
2046 
2047   // Once all the live-ins don't change on mlocJoin(), we've eliminated all
2048   // redundant PHIs.
2049 }
2050 
2051 // Boilerplate for feeding MachineBasicBlocks into IDF calculator. Provide
2052 // template specialisations for graph traits and a successor enumerator.
2053 namespace llvm {
2054 template <> struct GraphTraits<MachineBasicBlock> {
2055   using NodeRef = MachineBasicBlock *;
2056   using ChildIteratorType = MachineBasicBlock::succ_iterator;
2057 
2058   static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
2059   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
2060   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
2061 };
2062 
2063 template <> struct GraphTraits<const MachineBasicBlock> {
2064   using NodeRef = const MachineBasicBlock *;
2065   using ChildIteratorType = MachineBasicBlock::const_succ_iterator;
2066 
2067   static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
2068   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
2069   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
2070 };
2071 
2072 using MachineDomTreeBase = DomTreeBase<MachineBasicBlock>::NodeType;
2073 using MachineDomTreeChildGetter =
2074     typename IDFCalculatorDetail::ChildrenGetterTy<MachineDomTreeBase, false>;
2075 
2076 namespace IDFCalculatorDetail {
2077 template <>
2078 typename MachineDomTreeChildGetter::ChildrenTy
2079 MachineDomTreeChildGetter::get(const NodeRef &N) {
2080   return {N->succ_begin(), N->succ_end()};
2081 }
2082 } // namespace IDFCalculatorDetail
2083 } // namespace llvm
2084 
2085 void InstrRefBasedLDV::BlockPHIPlacement(
2086     const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
2087     const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
2088     SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) {
2089   // Apply IDF calculator to the designated set of location defs, storing
2090   // required PHIs into PHIBlocks. Uses the dominator tree stored in the
2091   // InstrRefBasedLDV object.
2092   IDFCalculatorDetail::ChildrenGetterTy<MachineDomTreeBase, false> foo;
2093   IDFCalculatorBase<MachineDomTreeBase, false> IDF(DomTree->getBase(), foo);
2094 
2095   IDF.setLiveInBlocks(AllBlocks);
2096   IDF.setDefiningBlocks(DefBlocks);
2097   IDF.calculate(PHIBlocks);
2098 }
2099 
2100 Optional<ValueIDNum> InstrRefBasedLDV::pickVPHILoc(
2101     const MachineBasicBlock &MBB, const DebugVariable &Var,
2102     const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs,
2103     const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
2104   // Collect a set of locations from predecessor where its live-out value can
2105   // be found.
2106   SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
2107   SmallVector<const DbgValueProperties *, 4> Properties;
2108   unsigned NumLocs = MTracker->getNumLocs();
2109 
2110   // No predecessors means no PHIs.
2111   if (BlockOrders.empty())
2112     return None;
2113 
2114   for (auto p : BlockOrders) {
2115     unsigned ThisBBNum = p->getNumber();
2116     auto OutValIt = LiveOuts.find(p);
2117     if (OutValIt == LiveOuts.end())
2118       // If we have a predecessor not in scope, we'll never find a PHI position.
2119       return None;
2120     const DbgValue &OutVal = *OutValIt->second;
2121 
2122     if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
2123       // Consts and no-values cannot have locations we can join on.
2124       return None;
2125 
2126     Properties.push_back(&OutVal.Properties);
2127 
2128     // Create new empty vector of locations.
2129     Locs.resize(Locs.size() + 1);
2130 
2131     // If the live-in value is a def, find the locations where that value is
2132     // present. Do the same for VPHIs where we know the VPHI value.
2133     if (OutVal.Kind == DbgValue::Def ||
2134         (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() &&
2135          OutVal.ID != ValueIDNum::EmptyValue)) {
2136       ValueIDNum ValToLookFor = OutVal.ID;
2137       // Search the live-outs of the predecessor for the specified value.
2138       for (unsigned int I = 0; I < NumLocs; ++I) {
2139         if (MOutLocs[ThisBBNum][I] == ValToLookFor)
2140           Locs.back().push_back(LocIdx(I));
2141       }
2142     } else {
2143       assert(OutVal.Kind == DbgValue::VPHI);
2144       // For VPHIs where we don't know the location, we definitely can't find
2145       // a join loc.
2146       if (OutVal.BlockNo != MBB.getNumber())
2147         return None;
2148 
2149       // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e.
2150       // a value that's live-through the whole loop. (It has to be a backedge,
2151       // because a block can't dominate itself). We can accept as a PHI location
2152       // any location where the other predecessors agree, _and_ the machine
2153       // locations feed back into themselves. Therefore, add all self-looping
2154       // machine-value PHI locations.
2155       for (unsigned int I = 0; I < NumLocs; ++I) {
2156         ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I));
2157         if (MOutLocs[ThisBBNum][I] == MPHI)
2158           Locs.back().push_back(LocIdx(I));
2159       }
2160     }
2161   }
2162 
2163   // We should have found locations for all predecessors, or returned.
2164   assert(Locs.size() == BlockOrders.size());
2165 
2166   // Check that all properties are the same. We can't pick a location if they're
2167   // not.
2168   const DbgValueProperties *Properties0 = Properties[0];
2169   for (auto *Prop : Properties)
2170     if (*Prop != *Properties0)
2171       return None;
2172 
2173   // Starting with the first set of locations, take the intersection with
2174   // subsequent sets.
2175   SmallVector<LocIdx, 4> CandidateLocs = Locs[0];
2176   for (unsigned int I = 1; I < Locs.size(); ++I) {
2177     auto &LocVec = Locs[I];
2178     SmallVector<LocIdx, 4> NewCandidates;
2179     std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(),
2180                           LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin()));
2181     CandidateLocs = NewCandidates;
2182   }
2183   if (CandidateLocs.empty())
2184     return None;
2185 
2186   // We now have a set of LocIdxes that contain the right output value in
2187   // each of the predecessors. Pick the lowest; if there's a register loc,
2188   // that'll be it.
2189   LocIdx L = *CandidateLocs.begin();
2190 
2191   // Return a PHI-value-number for the found location.
2192   ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
2193   return PHIVal;
2194 }
2195 
2196 bool InstrRefBasedLDV::vlocJoin(
2197     MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
2198     SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
2199     SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
2200     DbgValue &LiveIn) {
2201   // To emulate VarLocBasedImpl, process this block if it's not in scope but
2202   // _does_ assign a variable value. No live-ins for this scope are transferred
2203   // in though, so we can return immediately.
2204   if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB))
2205     return false;
2206 
2207   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
2208   bool Changed = false;
2209 
2210   // Order predecessors by RPOT order, for exploring them in that order.
2211   SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
2212 
2213   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2214     return BBToOrder[A] < BBToOrder[B];
2215   };
2216 
2217   llvm::sort(BlockOrders, Cmp);
2218 
2219   unsigned CurBlockRPONum = BBToOrder[&MBB];
2220 
2221   // Collect all the incoming DbgValues for this variable, from predecessor
2222   // live-out values.
2223   SmallVector<InValueT, 8> Values;
2224   bool Bail = false;
2225   int BackEdgesStart = 0;
2226   for (auto p : BlockOrders) {
2227     // If the predecessor isn't in scope / to be explored, we'll never be
2228     // able to join any locations.
2229     if (!BlocksToExplore.contains(p)) {
2230       Bail = true;
2231       break;
2232     }
2233 
2234     // All Live-outs will have been initialized.
2235     DbgValue &OutLoc = *VLOCOutLocs.find(p)->second;
2236 
2237     // Keep track of where back-edges begin in the Values vector. Relies on
2238     // BlockOrders being sorted by RPO.
2239     unsigned ThisBBRPONum = BBToOrder[p];
2240     if (ThisBBRPONum < CurBlockRPONum)
2241       ++BackEdgesStart;
2242 
2243     Values.push_back(std::make_pair(p, &OutLoc));
2244   }
2245 
2246   // If there were no values, or one of the predecessors couldn't have a
2247   // value, then give up immediately. It's not safe to produce a live-in
2248   // value. Leave as whatever it was before.
2249   if (Bail || Values.size() == 0)
2250     return false;
2251 
2252   // All (non-entry) blocks have at least one non-backedge predecessor.
2253   // Pick the variable value from the first of these, to compare against
2254   // all others.
2255   const DbgValue &FirstVal = *Values[0].second;
2256 
2257   // If the old live-in value is not a PHI then either a) no PHI is needed
2258   // here, or b) we eliminated the PHI that was here. If so, we can just
2259   // propagate in the first parent's incoming value.
2260   if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) {
2261     Changed = LiveIn != FirstVal;
2262     if (Changed)
2263       LiveIn = FirstVal;
2264     return Changed;
2265   }
2266 
2267   // Scan for variable values that can never be resolved: if they have
2268   // different DIExpressions, different indirectness, or are mixed constants /
2269   // non-constants.
2270   for (auto &V : Values) {
2271     if (V.second->Properties != FirstVal.Properties)
2272       return false;
2273     if (V.second->Kind == DbgValue::NoVal)
2274       return false;
2275     if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
2276       return false;
2277   }
2278 
2279   // Try to eliminate this PHI. Do the incoming values all agree?
2280   bool Disagree = false;
2281   for (auto &V : Values) {
2282     if (*V.second == FirstVal)
2283       continue; // No disagreement.
2284 
2285     // Eliminate if a backedge feeds a VPHI back into itself.
2286     if (V.second->Kind == DbgValue::VPHI &&
2287         V.second->BlockNo == MBB.getNumber() &&
2288         // Is this a backedge?
2289         std::distance(Values.begin(), &V) >= BackEdgesStart)
2290       continue;
2291 
2292     Disagree = true;
2293   }
2294 
2295   // No disagreement -> live-through value.
2296   if (!Disagree) {
2297     Changed = LiveIn != FirstVal;
2298     if (Changed)
2299       LiveIn = FirstVal;
2300     return Changed;
2301   } else {
2302     // Otherwise use a VPHI.
2303     DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI);
2304     Changed = LiveIn != VPHI;
2305     if (Changed)
2306       LiveIn = VPHI;
2307     return Changed;
2308   }
2309 }
2310 
2311 void InstrRefBasedLDV::buildVLocValueMap(const DILocation *DILoc,
2312     const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
2313     SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
2314     ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
2315     SmallVectorImpl<VLocTracker> &AllTheVLocs) {
2316   // This method is much like buildMLocValueMap: but focuses on a single
2317   // LexicalScope at a time. Pick out a set of blocks and variables that are
2318   // to have their value assignments solved, then run our dataflow algorithm
2319   // until a fixedpoint is reached.
2320   std::priority_queue<unsigned int, std::vector<unsigned int>,
2321                       std::greater<unsigned int>>
2322       Worklist, Pending;
2323   SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
2324 
2325   // The set of blocks we'll be examining.
2326   SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
2327 
2328   // The order in which to examine them (RPO).
2329   SmallVector<MachineBasicBlock *, 8> BlockOrders;
2330 
2331   // RPO ordering function.
2332   auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
2333     return BBToOrder[A] < BBToOrder[B];
2334   };
2335 
2336   LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
2337 
2338   // A separate container to distinguish "blocks we're exploring" versus
2339   // "blocks that are potentially in scope. See comment at start of vlocJoin.
2340   SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore;
2341 
2342   // Old LiveDebugValues tracks variable locations that come out of blocks
2343   // not in scope, where DBG_VALUEs occur. This is something we could
2344   // legitimately ignore, but lets allow it for now.
2345   if (EmulateOldLDV)
2346     BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
2347 
2348   // We also need to propagate variable values through any artificial blocks
2349   // that immediately follow blocks in scope.
2350   DenseSet<const MachineBasicBlock *> ToAdd;
2351 
2352   // Helper lambda: For a given block in scope, perform a depth first search
2353   // of all the artificial successors, adding them to the ToAdd collection.
2354   auto AccumulateArtificialBlocks =
2355       [this, &ToAdd, &BlocksToExplore,
2356        &InScopeBlocks](const MachineBasicBlock *MBB) {
2357         // Depth-first-search state: each node is a block and which successor
2358         // we're currently exploring.
2359         SmallVector<std::pair<const MachineBasicBlock *,
2360                               MachineBasicBlock::const_succ_iterator>,
2361                     8>
2362             DFS;
2363 
2364         // Find any artificial successors not already tracked.
2365         for (auto *succ : MBB->successors()) {
2366           if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ))
2367             continue;
2368           if (!ArtificialBlocks.count(succ))
2369             continue;
2370           DFS.push_back(std::make_pair(succ, succ->succ_begin()));
2371           ToAdd.insert(succ);
2372         }
2373 
2374         // Search all those blocks, depth first.
2375         while (!DFS.empty()) {
2376           const MachineBasicBlock *CurBB = DFS.back().first;
2377           MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
2378           // Walk back if we've explored this blocks successors to the end.
2379           if (CurSucc == CurBB->succ_end()) {
2380             DFS.pop_back();
2381             continue;
2382           }
2383 
2384           // If the current successor is artificial and unexplored, descend into
2385           // it.
2386           if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
2387             DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin()));
2388             ToAdd.insert(*CurSucc);
2389             continue;
2390           }
2391 
2392           ++CurSucc;
2393         }
2394       };
2395 
2396   // Search in-scope blocks and those containing a DBG_VALUE from this scope
2397   // for artificial successors.
2398   for (auto *MBB : BlocksToExplore)
2399     AccumulateArtificialBlocks(MBB);
2400   for (auto *MBB : InScopeBlocks)
2401     AccumulateArtificialBlocks(MBB);
2402 
2403   BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
2404   InScopeBlocks.insert(ToAdd.begin(), ToAdd.end());
2405 
2406   // Single block scope: not interesting! No propagation at all. Note that
2407   // this could probably go above ArtificialBlocks without damage, but
2408   // that then produces output differences from original-live-debug-values,
2409   // which propagates from a single block into many artificial ones.
2410   if (BlocksToExplore.size() == 1)
2411     return;
2412 
2413   // Convert a const set to a non-const set. LexicalScopes
2414   // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones.
2415   // (Neither of them mutate anything).
2416   SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore;
2417   for (const auto *MBB : BlocksToExplore)
2418     MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB));
2419 
2420   // Picks out relevants blocks RPO order and sort them.
2421   for (auto *MBB : BlocksToExplore)
2422     BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
2423 
2424   llvm::sort(BlockOrders, Cmp);
2425   unsigned NumBlocks = BlockOrders.size();
2426 
2427   // Allocate some vectors for storing the live ins and live outs. Large.
2428   SmallVector<DbgValue, 32> LiveIns, LiveOuts;
2429   LiveIns.reserve(NumBlocks);
2430   LiveOuts.reserve(NumBlocks);
2431 
2432   // Initialize all values to start as NoVals. This signifies "it's live
2433   // through, but we don't know what it is".
2434   DbgValueProperties EmptyProperties(EmptyExpr, false);
2435   for (unsigned int I = 0; I < NumBlocks; ++I) {
2436     DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
2437     LiveIns.push_back(EmptyDbgValue);
2438     LiveOuts.push_back(EmptyDbgValue);
2439   }
2440 
2441   // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
2442   // vlocJoin.
2443   LiveIdxT LiveOutIdx, LiveInIdx;
2444   LiveOutIdx.reserve(NumBlocks);
2445   LiveInIdx.reserve(NumBlocks);
2446   for (unsigned I = 0; I < NumBlocks; ++I) {
2447     LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
2448     LiveInIdx[BlockOrders[I]] = &LiveIns[I];
2449   }
2450 
2451   // Loop over each variable and place PHIs for it, then propagate values
2452   // between blocks. This keeps the locality of working on one lexical scope at
2453   // at time, but avoids re-processing variable values because some other
2454   // variable has been assigned.
2455   for (auto &Var : VarsWeCareAbout) {
2456     // Re-initialize live-ins and live-outs, to clear the remains of previous
2457     // variables live-ins / live-outs.
2458     for (unsigned int I = 0; I < NumBlocks; ++I) {
2459       DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
2460       LiveIns[I] = EmptyDbgValue;
2461       LiveOuts[I] = EmptyDbgValue;
2462     }
2463 
2464     // Place PHIs for variable values, using the LLVM IDF calculator.
2465     // Collect the set of blocks where variables are def'd.
2466     SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
2467     for (const MachineBasicBlock *ExpMBB : BlocksToExplore) {
2468       auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars;
2469       if (TransferFunc.find(Var) != TransferFunc.end())
2470         DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB));
2471     }
2472 
2473     SmallVector<MachineBasicBlock *, 32> PHIBlocks;
2474 
2475     // Request the set of PHIs we should insert for this variable.
2476     BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks);
2477 
2478     // Insert PHIs into the per-block live-in tables for this variable.
2479     for (MachineBasicBlock *PHIMBB : PHIBlocks) {
2480       unsigned BlockNo = PHIMBB->getNumber();
2481       DbgValue *LiveIn = LiveInIdx[PHIMBB];
2482       *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI);
2483     }
2484 
2485     for (auto *MBB : BlockOrders) {
2486       Worklist.push(BBToOrder[MBB]);
2487       OnWorklist.insert(MBB);
2488     }
2489 
2490     // Iterate over all the blocks we selected, propagating the variables value.
2491     // This loop does two things:
2492     //  * Eliminates un-necessary VPHIs in vlocJoin,
2493     //  * Evaluates the blocks transfer function (i.e. variable assignments) and
2494     //    stores the result to the blocks live-outs.
2495     // Always evaluate the transfer function on the first iteration, and when
2496     // the live-ins change thereafter.
2497     bool FirstTrip = true;
2498     while (!Worklist.empty() || !Pending.empty()) {
2499       while (!Worklist.empty()) {
2500         auto *MBB = OrderToBB[Worklist.top()];
2501         CurBB = MBB->getNumber();
2502         Worklist.pop();
2503 
2504         auto LiveInsIt = LiveInIdx.find(MBB);
2505         assert(LiveInsIt != LiveInIdx.end());
2506         DbgValue *LiveIn = LiveInsIt->second;
2507 
2508         // Join values from predecessors. Updates LiveInIdx, and writes output
2509         // into JoinedInLocs.
2510         bool InLocsChanged =
2511             vlocJoin(*MBB, LiveOutIdx, InScopeBlocks, BlocksToExplore, *LiveIn);
2512 
2513         SmallVector<const MachineBasicBlock *, 8> Preds;
2514         for (const auto *Pred : MBB->predecessors())
2515           Preds.push_back(Pred);
2516 
2517         // If this block's live-in value is a VPHI, try to pick a machine-value
2518         // for it. This makes the machine-value available and propagated
2519         // through all blocks by the time value propagation finishes. We can't
2520         // do this any earlier as it needs to read the block live-outs.
2521         if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) {
2522           // There's a small possibility that on a preceeding path, a VPHI is
2523           // eliminated and transitions from VPHI-with-location to
2524           // live-through-value. As a result, the selected location of any VPHI
2525           // might change, so we need to re-compute it on each iteration.
2526           Optional<ValueIDNum> ValueNum =
2527               pickVPHILoc(*MBB, Var, LiveOutIdx, MOutLocs, Preds);
2528 
2529           if (ValueNum) {
2530             InLocsChanged |= LiveIn->ID != *ValueNum;
2531             LiveIn->ID = *ValueNum;
2532           }
2533         }
2534 
2535         if (!InLocsChanged && !FirstTrip)
2536           continue;
2537 
2538         DbgValue *LiveOut = LiveOutIdx[MBB];
2539         bool OLChanged = false;
2540 
2541         // Do transfer function.
2542         auto &VTracker = AllTheVLocs[MBB->getNumber()];
2543         auto TransferIt = VTracker.Vars.find(Var);
2544         if (TransferIt != VTracker.Vars.end()) {
2545           // Erase on empty transfer (DBG_VALUE $noreg).
2546           if (TransferIt->second.Kind == DbgValue::Undef) {
2547             DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal);
2548             if (*LiveOut != NewVal) {
2549               *LiveOut = NewVal;
2550               OLChanged = true;
2551             }
2552           } else {
2553             // Insert new variable value; or overwrite.
2554             if (*LiveOut != TransferIt->second) {
2555               *LiveOut = TransferIt->second;
2556               OLChanged = true;
2557             }
2558           }
2559         } else {
2560           // Just copy live-ins to live-outs, for anything not transferred.
2561           if (*LiveOut != *LiveIn) {
2562             *LiveOut = *LiveIn;
2563             OLChanged = true;
2564           }
2565         }
2566 
2567         // If no live-out value changed, there's no need to explore further.
2568         if (!OLChanged)
2569           continue;
2570 
2571         // We should visit all successors. Ensure we'll visit any non-backedge
2572         // successors during this dataflow iteration; book backedge successors
2573         // to be visited next time around.
2574         for (auto s : MBB->successors()) {
2575           // Ignore out of scope / not-to-be-explored successors.
2576           if (LiveInIdx.find(s) == LiveInIdx.end())
2577             continue;
2578 
2579           if (BBToOrder[s] > BBToOrder[MBB]) {
2580             if (OnWorklist.insert(s).second)
2581               Worklist.push(BBToOrder[s]);
2582           } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
2583             Pending.push(BBToOrder[s]);
2584           }
2585         }
2586       }
2587       Worklist.swap(Pending);
2588       std::swap(OnWorklist, OnPending);
2589       OnPending.clear();
2590       assert(Pending.empty());
2591       FirstTrip = false;
2592     }
2593 
2594     // Save live-ins to output vector. Ignore any that are still marked as being
2595     // VPHIs with no location -- those are variables that we know the value of,
2596     // but are not actually available in the register file.
2597     for (auto *MBB : BlockOrders) {
2598       DbgValue *BlockLiveIn = LiveInIdx[MBB];
2599       if (BlockLiveIn->Kind == DbgValue::NoVal)
2600         continue;
2601       if (BlockLiveIn->Kind == DbgValue::VPHI &&
2602           BlockLiveIn->ID == ValueIDNum::EmptyValue)
2603         continue;
2604       if (BlockLiveIn->Kind == DbgValue::VPHI)
2605         BlockLiveIn->Kind = DbgValue::Def;
2606       Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn));
2607     }
2608   } // Per-variable loop.
2609 
2610   BlockOrders.clear();
2611   BlocksToExplore.clear();
2612 }
2613 
2614 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2615 void InstrRefBasedLDV::dump_mloc_transfer(
2616     const MLocTransferMap &mloc_transfer) const {
2617   for (auto &P : mloc_transfer) {
2618     std::string foo = MTracker->LocIdxToName(P.first);
2619     std::string bar = MTracker->IDAsString(P.second);
2620     dbgs() << "Loc " << foo << " --> " << bar << "\n";
2621   }
2622 }
2623 #endif
2624 
2625 void InstrRefBasedLDV::emitLocations(
2626     MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MOutLocs,
2627     ValueIDNum **MInLocs, DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
2628     const TargetPassConfig &TPC) {
2629   TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC);
2630   unsigned NumLocs = MTracker->getNumLocs();
2631 
2632   // For each block, load in the machine value locations and variable value
2633   // live-ins, then step through each instruction in the block. New DBG_VALUEs
2634   // to be inserted will be created along the way.
2635   for (MachineBasicBlock &MBB : MF) {
2636     unsigned bbnum = MBB.getNumber();
2637     MTracker->reset();
2638     MTracker->loadFromArray(MInLocs[bbnum], bbnum);
2639     TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()],
2640                          NumLocs);
2641 
2642     CurBB = bbnum;
2643     CurInst = 1;
2644     for (auto &MI : MBB) {
2645       process(MI, MOutLocs, MInLocs);
2646       TTracker->checkInstForNewValues(CurInst, MI.getIterator());
2647       ++CurInst;
2648     }
2649   }
2650 
2651   // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer
2652   // in DWARF in different orders. Use the order that they appear when walking
2653   // through each block / each instruction, stored in AllVarsNumbering.
2654   auto OrderDbgValues = [&](const MachineInstr *A,
2655                             const MachineInstr *B) -> bool {
2656     DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(),
2657                        A->getDebugLoc()->getInlinedAt());
2658     DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(),
2659                        B->getDebugLoc()->getInlinedAt());
2660     return AllVarsNumbering.find(VarA)->second <
2661            AllVarsNumbering.find(VarB)->second;
2662   };
2663 
2664   // Go through all the transfers recorded in the TransferTracker -- this is
2665   // both the live-ins to a block, and any movements of values that happen
2666   // in the middle.
2667   for (auto &P : TTracker->Transfers) {
2668     // Sort them according to appearance order.
2669     llvm::sort(P.Insts, OrderDbgValues);
2670     // Insert either before or after the designated point...
2671     if (P.MBB) {
2672       MachineBasicBlock &MBB = *P.MBB;
2673       for (auto *MI : P.Insts) {
2674         MBB.insert(P.Pos, MI);
2675       }
2676     } else {
2677       // Terminators, like tail calls, can clobber things. Don't try and place
2678       // transfers after them.
2679       if (P.Pos->isTerminator())
2680         continue;
2681 
2682       MachineBasicBlock &MBB = *P.Pos->getParent();
2683       for (auto *MI : P.Insts) {
2684         MBB.insertAfterBundle(P.Pos, MI);
2685       }
2686     }
2687   }
2688 }
2689 
2690 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
2691   // Build some useful data structures.
2692 
2693   LLVMContext &Context = MF.getFunction().getContext();
2694   EmptyExpr = DIExpression::get(Context, {});
2695 
2696   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
2697     if (const DebugLoc &DL = MI.getDebugLoc())
2698       return DL.getLine() != 0;
2699     return false;
2700   };
2701   // Collect a set of all the artificial blocks.
2702   for (auto &MBB : MF)
2703     if (none_of(MBB.instrs(), hasNonArtificialLocation))
2704       ArtificialBlocks.insert(&MBB);
2705 
2706   // Compute mappings of block <=> RPO order.
2707   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
2708   unsigned int RPONumber = 0;
2709   for (MachineBasicBlock *MBB : RPOT) {
2710     OrderToBB[RPONumber] = MBB;
2711     BBToOrder[MBB] = RPONumber;
2712     BBNumToRPO[MBB->getNumber()] = RPONumber;
2713     ++RPONumber;
2714   }
2715 
2716   // Order value substitutions by their "source" operand pair, for quick lookup.
2717   llvm::sort(MF.DebugValueSubstitutions);
2718 
2719 #ifdef EXPENSIVE_CHECKS
2720   // As an expensive check, test whether there are any duplicate substitution
2721   // sources in the collection.
2722   if (MF.DebugValueSubstitutions.size() > 2) {
2723     for (auto It = MF.DebugValueSubstitutions.begin();
2724          It != std::prev(MF.DebugValueSubstitutions.end()); ++It) {
2725       assert(It->Src != std::next(It)->Src && "Duplicate variable location "
2726                                               "substitution seen");
2727     }
2728   }
2729 #endif
2730 }
2731 
2732 /// Calculate the liveness information for the given machine function and
2733 /// extend ranges across basic blocks.
2734 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
2735                                     MachineDominatorTree *DomTree,
2736                                     TargetPassConfig *TPC,
2737                                     unsigned InputBBLimit,
2738                                     unsigned InputDbgValLimit) {
2739   // No subprogram means this function contains no debuginfo.
2740   if (!MF.getFunction().getSubprogram())
2741     return false;
2742 
2743   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
2744   this->TPC = TPC;
2745 
2746   this->DomTree = DomTree;
2747   TRI = MF.getSubtarget().getRegisterInfo();
2748   MRI = &MF.getRegInfo();
2749   TII = MF.getSubtarget().getInstrInfo();
2750   TFI = MF.getSubtarget().getFrameLowering();
2751   TFI->getCalleeSaves(MF, CalleeSavedRegs);
2752   MFI = &MF.getFrameInfo();
2753   LS.initialize(MF);
2754 
2755   MTracker =
2756       new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
2757   VTracker = nullptr;
2758   TTracker = nullptr;
2759 
2760   SmallVector<MLocTransferMap, 32> MLocTransfer;
2761   SmallVector<VLocTracker, 8> vlocs;
2762   LiveInsT SavedLiveIns;
2763 
2764   int MaxNumBlocks = -1;
2765   for (auto &MBB : MF)
2766     MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
2767   assert(MaxNumBlocks >= 0);
2768   ++MaxNumBlocks;
2769 
2770   MLocTransfer.resize(MaxNumBlocks);
2771   vlocs.resize(MaxNumBlocks);
2772   SavedLiveIns.resize(MaxNumBlocks);
2773 
2774   initialSetup(MF);
2775 
2776   produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
2777 
2778   // Allocate and initialize two array-of-arrays for the live-in and live-out
2779   // machine values. The outer dimension is the block number; while the inner
2780   // dimension is a LocIdx from MLocTracker.
2781   ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks];
2782   ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks];
2783   unsigned NumLocs = MTracker->getNumLocs();
2784   for (int i = 0; i < MaxNumBlocks; ++i) {
2785     // These all auto-initialize to ValueIDNum::EmptyValue
2786     MOutLocs[i] = new ValueIDNum[NumLocs];
2787     MInLocs[i] = new ValueIDNum[NumLocs];
2788   }
2789 
2790   // Solve the machine value dataflow problem using the MLocTransfer function,
2791   // storing the computed live-ins / live-outs into the array-of-arrays. We use
2792   // both live-ins and live-outs for decision making in the variable value
2793   // dataflow problem.
2794   buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer);
2795 
2796   // Patch up debug phi numbers, turning unknown block-live-in values into
2797   // either live-through machine values, or PHIs.
2798   for (auto &DBG_PHI : DebugPHINumToValue) {
2799     // Identify unresolved block-live-ins.
2800     ValueIDNum &Num = DBG_PHI.ValueRead;
2801     if (!Num.isPHI())
2802       continue;
2803 
2804     unsigned BlockNo = Num.getBlock();
2805     LocIdx LocNo = Num.getLoc();
2806     Num = MInLocs[BlockNo][LocNo.asU64()];
2807   }
2808   // Later, we'll be looking up ranges of instruction numbers.
2809   llvm::sort(DebugPHINumToValue);
2810 
2811   // Walk back through each block / instruction, collecting DBG_VALUE
2812   // instructions and recording what machine value their operands refer to.
2813   for (auto &OrderPair : OrderToBB) {
2814     MachineBasicBlock &MBB = *OrderPair.second;
2815     CurBB = MBB.getNumber();
2816     VTracker = &vlocs[CurBB];
2817     VTracker->MBB = &MBB;
2818     MTracker->loadFromArray(MInLocs[CurBB], CurBB);
2819     CurInst = 1;
2820     for (auto &MI : MBB) {
2821       process(MI, MOutLocs, MInLocs);
2822       ++CurInst;
2823     }
2824     MTracker->reset();
2825   }
2826 
2827   // Number all variables in the order that they appear, to be used as a stable
2828   // insertion order later.
2829   DenseMap<DebugVariable, unsigned> AllVarsNumbering;
2830 
2831   // Map from one LexicalScope to all the variables in that scope.
2832   DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars;
2833 
2834   // Map from One lexical scope to all blocks in that scope.
2835   DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>
2836       ScopeToBlocks;
2837 
2838   // Store a DILocation that describes a scope.
2839   DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation;
2840 
2841   // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
2842   // the order is unimportant, it just has to be stable.
2843   unsigned VarAssignCount = 0;
2844   for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
2845     auto *MBB = OrderToBB[I];
2846     auto *VTracker = &vlocs[MBB->getNumber()];
2847     // Collect each variable with a DBG_VALUE in this block.
2848     for (auto &idx : VTracker->Vars) {
2849       const auto &Var = idx.first;
2850       const DILocation *ScopeLoc = VTracker->Scopes[Var];
2851       assert(ScopeLoc != nullptr);
2852       auto *Scope = LS.findLexicalScope(ScopeLoc);
2853 
2854       // No insts in scope -> shouldn't have been recorded.
2855       assert(Scope != nullptr);
2856 
2857       AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
2858       ScopeToVars[Scope].insert(Var);
2859       ScopeToBlocks[Scope].insert(VTracker->MBB);
2860       ScopeToDILocation[Scope] = ScopeLoc;
2861       ++VarAssignCount;
2862     }
2863   }
2864 
2865   bool Changed = false;
2866 
2867   // If we have an extremely large number of variable assignments and blocks,
2868   // bail out at this point. We've burnt some time doing analysis already,
2869   // however we should cut our losses.
2870   if ((unsigned)MaxNumBlocks > InputBBLimit &&
2871       VarAssignCount > InputDbgValLimit) {
2872     LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName()
2873                       << " has " << MaxNumBlocks << " basic blocks and "
2874                       << VarAssignCount
2875                       << " variable assignments, exceeding limits.\n");
2876   } else {
2877     // Compute the extended ranges, iterating over scopes. There might be
2878     // something to be said for ordering them by size/locality, but that's for
2879     // the future. For each scope, solve the variable value problem, producing
2880     // a map of variables to values in SavedLiveIns.
2881     for (auto &P : ScopeToVars) {
2882       buildVLocValueMap(ScopeToDILocation[P.first], P.second,
2883                    ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs,
2884                    vlocs);
2885     }
2886 
2887     // Using the computed value locations and variable values for each block,
2888     // create the DBG_VALUE instructions representing the extended variable
2889     // locations.
2890     emitLocations(MF, SavedLiveIns, MOutLocs, MInLocs, AllVarsNumbering, *TPC);
2891 
2892     // Did we actually make any changes? If we created any DBG_VALUEs, then yes.
2893     Changed = TTracker->Transfers.size() != 0;
2894   }
2895 
2896   // Common clean-up of memory.
2897   for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) {
2898     delete[] MOutLocs[Idx];
2899     delete[] MInLocs[Idx];
2900   }
2901   delete[] MOutLocs;
2902   delete[] MInLocs;
2903 
2904   delete MTracker;
2905   delete TTracker;
2906   MTracker = nullptr;
2907   VTracker = nullptr;
2908   TTracker = nullptr;
2909 
2910   ArtificialBlocks.clear();
2911   OrderToBB.clear();
2912   BBToOrder.clear();
2913   BBNumToRPO.clear();
2914   DebugInstrNumToInstr.clear();
2915   DebugPHINumToValue.clear();
2916 
2917   return Changed;
2918 }
2919 
2920 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
2921   return new InstrRefBasedLDV();
2922 }
2923 
2924 namespace {
2925 class LDVSSABlock;
2926 class LDVSSAUpdater;
2927 
2928 // Pick a type to identify incoming block values as we construct SSA. We
2929 // can't use anything more robust than an integer unfortunately, as SSAUpdater
2930 // expects to zero-initialize the type.
2931 typedef uint64_t BlockValueNum;
2932 
2933 /// Represents an SSA PHI node for the SSA updater class. Contains the block
2934 /// this PHI is in, the value number it would have, and the expected incoming
2935 /// values from parent blocks.
2936 class LDVSSAPhi {
2937 public:
2938   SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
2939   LDVSSABlock *ParentBlock;
2940   BlockValueNum PHIValNum;
2941   LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
2942       : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
2943 
2944   LDVSSABlock *getParent() { return ParentBlock; }
2945 };
2946 
2947 /// Thin wrapper around a block predecessor iterator. Only difference from a
2948 /// normal block iterator is that it dereferences to an LDVSSABlock.
2949 class LDVSSABlockIterator {
2950 public:
2951   MachineBasicBlock::pred_iterator PredIt;
2952   LDVSSAUpdater &Updater;
2953 
2954   LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
2955                       LDVSSAUpdater &Updater)
2956       : PredIt(PredIt), Updater(Updater) {}
2957 
2958   bool operator!=(const LDVSSABlockIterator &OtherIt) const {
2959     return OtherIt.PredIt != PredIt;
2960   }
2961 
2962   LDVSSABlockIterator &operator++() {
2963     ++PredIt;
2964     return *this;
2965   }
2966 
2967   LDVSSABlock *operator*();
2968 };
2969 
2970 /// Thin wrapper around a block for SSA Updater interface. Necessary because
2971 /// we need to track the PHI value(s) that we may have observed as necessary
2972 /// in this block.
2973 class LDVSSABlock {
2974 public:
2975   MachineBasicBlock &BB;
2976   LDVSSAUpdater &Updater;
2977   using PHIListT = SmallVector<LDVSSAPhi, 1>;
2978   /// List of PHIs in this block. There should only ever be one.
2979   PHIListT PHIList;
2980 
2981   LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
2982       : BB(BB), Updater(Updater) {}
2983 
2984   LDVSSABlockIterator succ_begin() {
2985     return LDVSSABlockIterator(BB.succ_begin(), Updater);
2986   }
2987 
2988   LDVSSABlockIterator succ_end() {
2989     return LDVSSABlockIterator(BB.succ_end(), Updater);
2990   }
2991 
2992   /// SSAUpdater has requested a PHI: create that within this block record.
2993   LDVSSAPhi *newPHI(BlockValueNum Value) {
2994     PHIList.emplace_back(Value, this);
2995     return &PHIList.back();
2996   }
2997 
2998   /// SSAUpdater wishes to know what PHIs already exist in this block.
2999   PHIListT &phis() { return PHIList; }
3000 };
3001 
3002 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
3003 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
3004 // SSAUpdaterTraits<LDVSSAUpdater>.
3005 class LDVSSAUpdater {
3006 public:
3007   /// Map of value numbers to PHI records.
3008   DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
3009   /// Map of which blocks generate Undef values -- blocks that are not
3010   /// dominated by any Def.
3011   DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
3012   /// Map of machine blocks to our own records of them.
3013   DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
3014   /// Machine location where any PHI must occur.
3015   LocIdx Loc;
3016   /// Table of live-in machine value numbers for blocks / locations.
3017   ValueIDNum **MLiveIns;
3018 
3019   LDVSSAUpdater(LocIdx L, ValueIDNum **MLiveIns) : Loc(L), MLiveIns(MLiveIns) {}
3020 
3021   void reset() {
3022     for (auto &Block : BlockMap)
3023       delete Block.second;
3024 
3025     PHIs.clear();
3026     UndefMap.clear();
3027     BlockMap.clear();
3028   }
3029 
3030   ~LDVSSAUpdater() { reset(); }
3031 
3032   /// For a given MBB, create a wrapper block for it. Stores it in the
3033   /// LDVSSAUpdater block map.
3034   LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
3035     auto it = BlockMap.find(BB);
3036     if (it == BlockMap.end()) {
3037       BlockMap[BB] = new LDVSSABlock(*BB, *this);
3038       it = BlockMap.find(BB);
3039     }
3040     return it->second;
3041   }
3042 
3043   /// Find the live-in value number for the given block. Looks up the value at
3044   /// the PHI location on entry.
3045   BlockValueNum getValue(LDVSSABlock *LDVBB) {
3046     return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64();
3047   }
3048 };
3049 
3050 LDVSSABlock *LDVSSABlockIterator::operator*() {
3051   return Updater.getSSALDVBlock(*PredIt);
3052 }
3053 
3054 #ifndef NDEBUG
3055 
3056 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
3057   out << "SSALDVPHI " << PHI.PHIValNum;
3058   return out;
3059 }
3060 
3061 #endif
3062 
3063 } // namespace
3064 
3065 namespace llvm {
3066 
3067 /// Template specialization to give SSAUpdater access to CFG and value
3068 /// information. SSAUpdater calls methods in these traits, passing in the
3069 /// LDVSSAUpdater object, to learn about blocks and the values they define.
3070 /// It also provides methods to create PHI nodes and track them.
3071 template <> class SSAUpdaterTraits<LDVSSAUpdater> {
3072 public:
3073   using BlkT = LDVSSABlock;
3074   using ValT = BlockValueNum;
3075   using PhiT = LDVSSAPhi;
3076   using BlkSucc_iterator = LDVSSABlockIterator;
3077 
3078   // Methods to access block successors -- dereferencing to our wrapper class.
3079   static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
3080   static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
3081 
3082   /// Iterator for PHI operands.
3083   class PHI_iterator {
3084   private:
3085     LDVSSAPhi *PHI;
3086     unsigned Idx;
3087 
3088   public:
3089     explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
3090         : PHI(P), Idx(0) {}
3091     PHI_iterator(LDVSSAPhi *P, bool) // end iterator
3092         : PHI(P), Idx(PHI->IncomingValues.size()) {}
3093 
3094     PHI_iterator &operator++() {
3095       Idx++;
3096       return *this;
3097     }
3098     bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
3099     bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
3100 
3101     BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
3102 
3103     LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
3104   };
3105 
3106   static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
3107 
3108   static inline PHI_iterator PHI_end(PhiT *PHI) {
3109     return PHI_iterator(PHI, true);
3110   }
3111 
3112   /// FindPredecessorBlocks - Put the predecessors of BB into the Preds
3113   /// vector.
3114   static void FindPredecessorBlocks(LDVSSABlock *BB,
3115                                     SmallVectorImpl<LDVSSABlock *> *Preds) {
3116     for (MachineBasicBlock::pred_iterator PI = BB->BB.pred_begin(),
3117                                           E = BB->BB.pred_end();
3118          PI != E; ++PI)
3119       Preds->push_back(BB->Updater.getSSALDVBlock(*PI));
3120   }
3121 
3122   /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
3123   /// register. For LiveDebugValues, represents a block identified as not having
3124   /// any DBG_PHI predecessors.
3125   static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
3126     // Create a value number for this block -- it needs to be unique and in the
3127     // "undef" collection, so that we know it's not real. Use a number
3128     // representing a PHI into this block.
3129     BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
3130     Updater->UndefMap[&BB->BB] = Num;
3131     return Num;
3132   }
3133 
3134   /// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
3135   /// SSAUpdater will populate it with information about incoming values. The
3136   /// value number of this PHI is whatever the  machine value number problem
3137   /// solution determined it to be. This includes non-phi values if SSAUpdater
3138   /// tries to create a PHI where the incoming values are identical.
3139   static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
3140                                    LDVSSAUpdater *Updater) {
3141     BlockValueNum PHIValNum = Updater->getValue(BB);
3142     LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
3143     Updater->PHIs[PHIValNum] = PHI;
3144     return PHIValNum;
3145   }
3146 
3147   /// AddPHIOperand - Add the specified value as an operand of the PHI for
3148   /// the specified predecessor block.
3149   static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
3150     PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
3151   }
3152 
3153   /// ValueIsPHI - Check if the instruction that defines the specified value
3154   /// is a PHI instruction.
3155   static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3156     auto PHIIt = Updater->PHIs.find(Val);
3157     if (PHIIt == Updater->PHIs.end())
3158       return nullptr;
3159     return PHIIt->second;
3160   }
3161 
3162   /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
3163   /// operands, i.e., it was just added.
3164   static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
3165     LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
3166     if (PHI && PHI->IncomingValues.size() == 0)
3167       return PHI;
3168     return nullptr;
3169   }
3170 
3171   /// GetPHIValue - For the specified PHI instruction, return the value
3172   /// that it defines.
3173   static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
3174 };
3175 
3176 } // end namespace llvm
3177 
3178 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(MachineFunction &MF,
3179                                                       ValueIDNum **MLiveOuts,
3180                                                       ValueIDNum **MLiveIns,
3181                                                       MachineInstr &Here,
3182                                                       uint64_t InstrNum) {
3183   // Pick out records of DBG_PHI instructions that have been observed. If there
3184   // are none, then we cannot compute a value number.
3185   auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
3186                                     DebugPHINumToValue.end(), InstrNum);
3187   auto LowerIt = RangePair.first;
3188   auto UpperIt = RangePair.second;
3189 
3190   // No DBG_PHI means there can be no location.
3191   if (LowerIt == UpperIt)
3192     return None;
3193 
3194   // If there's only one DBG_PHI, then that is our value number.
3195   if (std::distance(LowerIt, UpperIt) == 1)
3196     return LowerIt->ValueRead;
3197 
3198   auto DBGPHIRange = make_range(LowerIt, UpperIt);
3199 
3200   // Pick out the location (physreg, slot) where any PHIs must occur. It's
3201   // technically possible for us to merge values in different registers in each
3202   // block, but highly unlikely that LLVM will generate such code after register
3203   // allocation.
3204   LocIdx Loc = LowerIt->ReadLoc;
3205 
3206   // We have several DBG_PHIs, and a use position (the Here inst). All each
3207   // DBG_PHI does is identify a value at a program position. We can treat each
3208   // DBG_PHI like it's a Def of a value, and the use position is a Use of a
3209   // value, just like SSA. We use the bulk-standard LLVM SSA updater class to
3210   // determine which Def is used at the Use, and any PHIs that happen along
3211   // the way.
3212   // Adapted LLVM SSA Updater:
3213   LDVSSAUpdater Updater(Loc, MLiveIns);
3214   // Map of which Def or PHI is the current value in each block.
3215   DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
3216   // Set of PHIs that we have created along the way.
3217   SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
3218 
3219   // Each existing DBG_PHI is a Def'd value under this model. Record these Defs
3220   // for the SSAUpdater.
3221   for (const auto &DBG_PHI : DBGPHIRange) {
3222     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3223     const ValueIDNum &Num = DBG_PHI.ValueRead;
3224     AvailableValues.insert(std::make_pair(Block, Num.asU64()));
3225   }
3226 
3227   LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
3228   const auto &AvailIt = AvailableValues.find(HereBlock);
3229   if (AvailIt != AvailableValues.end()) {
3230     // Actually, we already know what the value is -- the Use is in the same
3231     // block as the Def.
3232     return ValueIDNum::fromU64(AvailIt->second);
3233   }
3234 
3235   // Otherwise, we must use the SSA Updater. It will identify the value number
3236   // that we are to use, and the PHIs that must happen along the way.
3237   SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
3238   BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
3239   ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
3240 
3241   // We have the number for a PHI, or possibly live-through value, to be used
3242   // at this Use. There are a number of things we have to check about it though:
3243   //  * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
3244   //    Use was not completely dominated by DBG_PHIs and we should abort.
3245   //  * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
3246   //    we've left SSA form. Validate that the inputs to each PHI are the
3247   //    expected values.
3248   //  * Is a PHI we've created actually a merging of values, or are all the
3249   //    predecessor values the same, leading to a non-PHI machine value number?
3250   //    (SSAUpdater doesn't know that either). Remap validated PHIs into the
3251   //    the ValidatedValues collection below to sort this out.
3252   DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
3253 
3254   // Define all the input DBG_PHI values in ValidatedValues.
3255   for (const auto &DBG_PHI : DBGPHIRange) {
3256     LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
3257     const ValueIDNum &Num = DBG_PHI.ValueRead;
3258     ValidatedValues.insert(std::make_pair(Block, Num));
3259   }
3260 
3261   // Sort PHIs to validate into RPO-order.
3262   SmallVector<LDVSSAPhi *, 8> SortedPHIs;
3263   for (auto &PHI : CreatedPHIs)
3264     SortedPHIs.push_back(PHI);
3265 
3266   std::sort(
3267       SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) {
3268         return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
3269       });
3270 
3271   for (auto &PHI : SortedPHIs) {
3272     ValueIDNum ThisBlockValueNum =
3273         MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()];
3274 
3275     // Are all these things actually defined?
3276     for (auto &PHIIt : PHI->IncomingValues) {
3277       // Any undef input means DBG_PHIs didn't dominate the use point.
3278       if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end())
3279         return None;
3280 
3281       ValueIDNum ValueToCheck;
3282       ValueIDNum *BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()];
3283 
3284       auto VVal = ValidatedValues.find(PHIIt.first);
3285       if (VVal == ValidatedValues.end()) {
3286         // We cross a loop, and this is a backedge. LLVMs tail duplication
3287         // happens so late that DBG_PHI instructions should not be able to
3288         // migrate into loops -- meaning we can only be live-through this
3289         // loop.
3290         ValueToCheck = ThisBlockValueNum;
3291       } else {
3292         // Does the block have as a live-out, in the location we're examining,
3293         // the value that we expect? If not, it's been moved or clobbered.
3294         ValueToCheck = VVal->second;
3295       }
3296 
3297       if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
3298         return None;
3299     }
3300 
3301     // Record this value as validated.
3302     ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
3303   }
3304 
3305   // All the PHIs are valid: we can return what the SSAUpdater said our value
3306   // number was.
3307   return Result;
3308 }
3309