1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file InstrRefBasedImpl.cpp 9 /// 10 /// This is a separate implementation of LiveDebugValues, see 11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information. 12 /// 13 /// This pass propagates variable locations between basic blocks, resolving 14 /// control flow conflicts between them. The problem is SSA construction, where 15 /// each debug instruction assigns the *value* that a variable has, and every 16 /// instruction where the variable is in scope uses that variable. The resulting 17 /// map of instruction-to-value is then translated into a register (or spill) 18 /// location for each variable over each instruction. 19 /// 20 /// The primary difference from normal SSA construction is that we cannot 21 /// _create_ PHI values that contain variable values. CodeGen has already 22 /// completed, and we can't alter it just to make debug-info complete. Thus: 23 /// we can identify function positions where we would like a PHI value for a 24 /// variable, but must search the MachineFunction to see whether such a PHI is 25 /// available. If no such PHI exists, the variable location must be dropped. 26 /// 27 /// To achieve this, we perform two kinds of analysis. First, we identify 28 /// every value defined by every instruction (ignoring those that only move 29 /// another value), then re-compute an SSA-form representation of the 30 /// MachineFunction, using value propagation to eliminate any un-necessary 31 /// PHI values. This gives us a map of every value computed in the function, 32 /// and its location within the register file / stack. 33 /// 34 /// Secondly, for each variable we perform the same analysis, where each debug 35 /// instruction is considered a def, and every instruction where the variable 36 /// is in lexical scope as a use. Value propagation is used again to eliminate 37 /// any un-necessary PHIs. This gives us a map of each variable to the value 38 /// it should have in a block. 39 /// 40 /// Once both are complete, we have two maps for each block: 41 /// * Variables to the values they should have, 42 /// * Values to the register / spill slot they are located in. 43 /// After which we can marry-up variable values with a location, and emit 44 /// DBG_VALUE instructions specifying those locations. Variable locations may 45 /// be dropped in this process due to the desired variable value not being 46 /// resident in any machine location, or because there is no PHI value in any 47 /// location that accurately represents the desired value. The building of 48 /// location lists for each block is left to DbgEntityHistoryCalculator. 49 /// 50 /// This pass is kept efficient because the size of the first SSA problem 51 /// is proportional to the working-set size of the function, which the compiler 52 /// tries to keep small. (It's also proportional to the number of blocks). 53 /// Additionally, we repeatedly perform the second SSA problem analysis with 54 /// only the variables and blocks in a single lexical scope, exploiting their 55 /// locality. 56 /// 57 /// ### Terminology 58 /// 59 /// A machine location is a register or spill slot, a value is something that's 60 /// defined by an instruction or PHI node, while a variable value is the value 61 /// assigned to a variable. A variable location is a machine location, that must 62 /// contain the appropriate variable value. A value that is a PHI node is 63 /// occasionally called an mphi. 64 /// 65 /// The first SSA problem is the "machine value location" problem, 66 /// because we're determining which machine locations contain which values. 67 /// The "locations" are constant: what's unknown is what value they contain. 68 /// 69 /// The second SSA problem (the one for variables) is the "variable value 70 /// problem", because it's determining what values a variable has, rather than 71 /// what location those values are placed in. 72 /// 73 /// TODO: 74 /// Overlapping fragments 75 /// Entry values 76 /// Add back DEBUG statements for debugging this 77 /// Collect statistics 78 /// 79 //===----------------------------------------------------------------------===// 80 81 #include "llvm/ADT/DenseMap.h" 82 #include "llvm/ADT/PostOrderIterator.h" 83 #include "llvm/ADT/STLExtras.h" 84 #include "llvm/ADT/SmallPtrSet.h" 85 #include "llvm/ADT/SmallSet.h" 86 #include "llvm/ADT/SmallVector.h" 87 #include "llvm/ADT/Statistic.h" 88 #include "llvm/Analysis/IteratedDominanceFrontier.h" 89 #include "llvm/CodeGen/LexicalScopes.h" 90 #include "llvm/CodeGen/MachineBasicBlock.h" 91 #include "llvm/CodeGen/MachineDominators.h" 92 #include "llvm/CodeGen/MachineFrameInfo.h" 93 #include "llvm/CodeGen/MachineFunction.h" 94 #include "llvm/CodeGen/MachineFunctionPass.h" 95 #include "llvm/CodeGen/MachineInstr.h" 96 #include "llvm/CodeGen/MachineInstrBuilder.h" 97 #include "llvm/CodeGen/MachineInstrBundle.h" 98 #include "llvm/CodeGen/MachineMemOperand.h" 99 #include "llvm/CodeGen/MachineOperand.h" 100 #include "llvm/CodeGen/PseudoSourceValue.h" 101 #include "llvm/CodeGen/RegisterScavenging.h" 102 #include "llvm/CodeGen/TargetFrameLowering.h" 103 #include "llvm/CodeGen/TargetInstrInfo.h" 104 #include "llvm/CodeGen/TargetLowering.h" 105 #include "llvm/CodeGen/TargetPassConfig.h" 106 #include "llvm/CodeGen/TargetRegisterInfo.h" 107 #include "llvm/CodeGen/TargetSubtargetInfo.h" 108 #include "llvm/Config/llvm-config.h" 109 #include "llvm/IR/DIBuilder.h" 110 #include "llvm/IR/DebugInfoMetadata.h" 111 #include "llvm/IR/DebugLoc.h" 112 #include "llvm/IR/Function.h" 113 #include "llvm/IR/Module.h" 114 #include "llvm/InitializePasses.h" 115 #include "llvm/MC/MCRegisterInfo.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/Compiler.h" 119 #include "llvm/Support/Debug.h" 120 #include "llvm/Support/TypeSize.h" 121 #include "llvm/Support/raw_ostream.h" 122 #include "llvm/Target/TargetMachine.h" 123 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h" 124 #include <algorithm> 125 #include <cassert> 126 #include <cstdint> 127 #include <functional> 128 #include <limits.h> 129 #include <limits> 130 #include <queue> 131 #include <tuple> 132 #include <utility> 133 #include <vector> 134 135 #include "InstrRefBasedImpl.h" 136 #include "LiveDebugValues.h" 137 138 using namespace llvm; 139 using namespace LiveDebugValues; 140 141 // SSAUpdaterImple sets DEBUG_TYPE, change it. 142 #undef DEBUG_TYPE 143 #define DEBUG_TYPE "livedebugvalues" 144 145 // Act more like the VarLoc implementation, by propagating some locations too 146 // far and ignoring some transfers. 147 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden, 148 cl::desc("Act like old LiveDebugValues did"), 149 cl::init(false)); 150 151 /// Tracker for converting machine value locations and variable values into 152 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs 153 /// specifying block live-in locations and transfers within blocks. 154 /// 155 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker 156 /// and must be initialized with the set of variable values that are live-in to 157 /// the block. The caller then repeatedly calls process(). TransferTracker picks 158 /// out variable locations for the live-in variable values (if there _is_ a 159 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is 160 /// stepped through, transfers of values between machine locations are 161 /// identified and if profitable, a DBG_VALUE created. 162 /// 163 /// This is where debug use-before-defs would be resolved: a variable with an 164 /// unavailable value could materialize in the middle of a block, when the 165 /// value becomes available. Or, we could detect clobbers and re-specify the 166 /// variable in a backup location. (XXX these are unimplemented). 167 class TransferTracker { 168 public: 169 const TargetInstrInfo *TII; 170 const TargetLowering *TLI; 171 /// This machine location tracker is assumed to always contain the up-to-date 172 /// value mapping for all machine locations. TransferTracker only reads 173 /// information from it. (XXX make it const?) 174 MLocTracker *MTracker; 175 MachineFunction &MF; 176 bool ShouldEmitDebugEntryValues; 177 178 /// Record of all changes in variable locations at a block position. Awkwardly 179 /// we allow inserting either before or after the point: MBB != nullptr 180 /// indicates it's before, otherwise after. 181 struct Transfer { 182 MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes 183 MachineBasicBlock *MBB; /// non-null if we should insert after. 184 SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert. 185 }; 186 187 struct LocAndProperties { 188 LocIdx Loc; 189 DbgValueProperties Properties; 190 }; 191 192 /// Collection of transfers (DBG_VALUEs) to be inserted. 193 SmallVector<Transfer, 32> Transfers; 194 195 /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences 196 /// between TransferTrackers view of variable locations and MLocTrackers. For 197 /// example, MLocTracker observes all clobbers, but TransferTracker lazily 198 /// does not. 199 SmallVector<ValueIDNum, 32> VarLocs; 200 201 /// Map from LocIdxes to which DebugVariables are based that location. 202 /// Mantained while stepping through the block. Not accurate if 203 /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx]. 204 DenseMap<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs; 205 206 /// Map from DebugVariable to it's current location and qualifying meta 207 /// information. To be used in conjunction with ActiveMLocs to construct 208 /// enough information for the DBG_VALUEs for a particular LocIdx. 209 DenseMap<DebugVariable, LocAndProperties> ActiveVLocs; 210 211 /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection. 212 SmallVector<MachineInstr *, 4> PendingDbgValues; 213 214 /// Record of a use-before-def: created when a value that's live-in to the 215 /// current block isn't available in any machine location, but it will be 216 /// defined in this block. 217 struct UseBeforeDef { 218 /// Value of this variable, def'd in block. 219 ValueIDNum ID; 220 /// Identity of this variable. 221 DebugVariable Var; 222 /// Additional variable properties. 223 DbgValueProperties Properties; 224 }; 225 226 /// Map from instruction index (within the block) to the set of UseBeforeDefs 227 /// that become defined at that instruction. 228 DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs; 229 230 /// The set of variables that are in UseBeforeDefs and can become a location 231 /// once the relevant value is defined. An element being erased from this 232 /// collection prevents the use-before-def materializing. 233 DenseSet<DebugVariable> UseBeforeDefVariables; 234 235 const TargetRegisterInfo &TRI; 236 const BitVector &CalleeSavedRegs; 237 238 TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker, 239 MachineFunction &MF, const TargetRegisterInfo &TRI, 240 const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC) 241 : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI), 242 CalleeSavedRegs(CalleeSavedRegs) { 243 TLI = MF.getSubtarget().getTargetLowering(); 244 auto &TM = TPC.getTM<TargetMachine>(); 245 ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues(); 246 } 247 248 /// Load object with live-in variable values. \p mlocs contains the live-in 249 /// values in each machine location, while \p vlocs the live-in variable 250 /// values. This method picks variable locations for the live-in variables, 251 /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other 252 /// object fields to track variable locations as we step through the block. 253 /// FIXME: could just examine mloctracker instead of passing in \p mlocs? 254 void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs, 255 SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs, 256 unsigned NumLocs) { 257 ActiveMLocs.clear(); 258 ActiveVLocs.clear(); 259 VarLocs.clear(); 260 VarLocs.reserve(NumLocs); 261 UseBeforeDefs.clear(); 262 UseBeforeDefVariables.clear(); 263 264 auto isCalleeSaved = [&](LocIdx L) { 265 unsigned Reg = MTracker->LocIdxToLocID[L]; 266 if (Reg >= MTracker->NumRegs) 267 return false; 268 for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI) 269 if (CalleeSavedRegs.test(*RAI)) 270 return true; 271 return false; 272 }; 273 274 // Map of the preferred location for each value. 275 std::map<ValueIDNum, LocIdx> ValueToLoc; 276 ActiveMLocs.reserve(VLocs.size()); 277 ActiveVLocs.reserve(VLocs.size()); 278 279 // Produce a map of value numbers to the current machine locs they live 280 // in. When emulating VarLocBasedImpl, there should only be one 281 // location; when not, we get to pick. 282 for (auto Location : MTracker->locations()) { 283 LocIdx Idx = Location.Idx; 284 ValueIDNum &VNum = MLocs[Idx.asU64()]; 285 VarLocs.push_back(VNum); 286 auto it = ValueToLoc.find(VNum); 287 // In order of preference, pick: 288 // * Callee saved registers, 289 // * Other registers, 290 // * Spill slots. 291 if (it == ValueToLoc.end() || MTracker->isSpill(it->second) || 292 (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) { 293 // Insert, or overwrite if insertion failed. 294 auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx)); 295 if (!PrefLocRes.second) 296 PrefLocRes.first->second = Idx; 297 } 298 } 299 300 // Now map variables to their picked LocIdxes. 301 for (auto Var : VLocs) { 302 if (Var.second.Kind == DbgValue::Const) { 303 PendingDbgValues.push_back( 304 emitMOLoc(*Var.second.MO, Var.first, Var.second.Properties)); 305 continue; 306 } 307 308 // If the value has no location, we can't make a variable location. 309 const ValueIDNum &Num = Var.second.ID; 310 auto ValuesPreferredLoc = ValueToLoc.find(Num); 311 if (ValuesPreferredLoc == ValueToLoc.end()) { 312 // If it's a def that occurs in this block, register it as a 313 // use-before-def to be resolved as we step through the block. 314 if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI()) 315 addUseBeforeDef(Var.first, Var.second.Properties, Num); 316 else 317 recoverAsEntryValue(Var.first, Var.second.Properties, Num); 318 continue; 319 } 320 321 LocIdx M = ValuesPreferredLoc->second; 322 auto NewValue = LocAndProperties{M, Var.second.Properties}; 323 auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue)); 324 if (!Result.second) 325 Result.first->second = NewValue; 326 ActiveMLocs[M].insert(Var.first); 327 PendingDbgValues.push_back( 328 MTracker->emitLoc(M, Var.first, Var.second.Properties)); 329 } 330 flushDbgValues(MBB.begin(), &MBB); 331 } 332 333 /// Record that \p Var has value \p ID, a value that becomes available 334 /// later in the function. 335 void addUseBeforeDef(const DebugVariable &Var, 336 const DbgValueProperties &Properties, ValueIDNum ID) { 337 UseBeforeDef UBD = {ID, Var, Properties}; 338 UseBeforeDefs[ID.getInst()].push_back(UBD); 339 UseBeforeDefVariables.insert(Var); 340 } 341 342 /// After the instruction at index \p Inst and position \p pos has been 343 /// processed, check whether it defines a variable value in a use-before-def. 344 /// If so, and the variable value hasn't changed since the start of the 345 /// block, create a DBG_VALUE. 346 void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) { 347 auto MIt = UseBeforeDefs.find(Inst); 348 if (MIt == UseBeforeDefs.end()) 349 return; 350 351 for (auto &Use : MIt->second) { 352 LocIdx L = Use.ID.getLoc(); 353 354 // If something goes very wrong, we might end up labelling a COPY 355 // instruction or similar with an instruction number, where it doesn't 356 // actually define a new value, instead it moves a value. In case this 357 // happens, discard. 358 if (MTracker->readMLoc(L) != Use.ID) 359 continue; 360 361 // If a different debug instruction defined the variable value / location 362 // since the start of the block, don't materialize this use-before-def. 363 if (!UseBeforeDefVariables.count(Use.Var)) 364 continue; 365 366 PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties)); 367 } 368 flushDbgValues(pos, nullptr); 369 } 370 371 /// Helper to move created DBG_VALUEs into Transfers collection. 372 void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) { 373 if (PendingDbgValues.size() == 0) 374 return; 375 376 // Pick out the instruction start position. 377 MachineBasicBlock::instr_iterator BundleStart; 378 if (MBB && Pos == MBB->begin()) 379 BundleStart = MBB->instr_begin(); 380 else 381 BundleStart = getBundleStart(Pos->getIterator()); 382 383 Transfers.push_back({BundleStart, MBB, PendingDbgValues}); 384 PendingDbgValues.clear(); 385 } 386 387 bool isEntryValueVariable(const DebugVariable &Var, 388 const DIExpression *Expr) const { 389 if (!Var.getVariable()->isParameter()) 390 return false; 391 392 if (Var.getInlinedAt()) 393 return false; 394 395 if (Expr->getNumElements() > 0) 396 return false; 397 398 return true; 399 } 400 401 bool isEntryValueValue(const ValueIDNum &Val) const { 402 // Must be in entry block (block number zero), and be a PHI / live-in value. 403 if (Val.getBlock() || !Val.isPHI()) 404 return false; 405 406 // Entry values must enter in a register. 407 if (MTracker->isSpill(Val.getLoc())) 408 return false; 409 410 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 411 Register FP = TRI.getFrameRegister(MF); 412 Register Reg = MTracker->LocIdxToLocID[Val.getLoc()]; 413 return Reg != SP && Reg != FP; 414 } 415 416 bool recoverAsEntryValue(const DebugVariable &Var, DbgValueProperties &Prop, 417 const ValueIDNum &Num) { 418 // Is this variable location a candidate to be an entry value. First, 419 // should we be trying this at all? 420 if (!ShouldEmitDebugEntryValues) 421 return false; 422 423 // Is the variable appropriate for entry values (i.e., is a parameter). 424 if (!isEntryValueVariable(Var, Prop.DIExpr)) 425 return false; 426 427 // Is the value assigned to this variable still the entry value? 428 if (!isEntryValueValue(Num)) 429 return false; 430 431 // Emit a variable location using an entry value expression. 432 DIExpression *NewExpr = 433 DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue); 434 Register Reg = MTracker->LocIdxToLocID[Num.getLoc()]; 435 MachineOperand MO = MachineOperand::CreateReg(Reg, false); 436 437 PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect})); 438 return true; 439 } 440 441 /// Change a variable value after encountering a DBG_VALUE inside a block. 442 void redefVar(const MachineInstr &MI) { 443 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 444 MI.getDebugLoc()->getInlinedAt()); 445 DbgValueProperties Properties(MI); 446 447 const MachineOperand &MO = MI.getOperand(0); 448 449 // Ignore non-register locations, we don't transfer those. 450 if (!MO.isReg() || MO.getReg() == 0) { 451 auto It = ActiveVLocs.find(Var); 452 if (It != ActiveVLocs.end()) { 453 ActiveMLocs[It->second.Loc].erase(Var); 454 ActiveVLocs.erase(It); 455 } 456 // Any use-before-defs no longer apply. 457 UseBeforeDefVariables.erase(Var); 458 return; 459 } 460 461 Register Reg = MO.getReg(); 462 LocIdx NewLoc = MTracker->getRegMLoc(Reg); 463 redefVar(MI, Properties, NewLoc); 464 } 465 466 /// Handle a change in variable location within a block. Terminate the 467 /// variables current location, and record the value it now refers to, so 468 /// that we can detect location transfers later on. 469 void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties, 470 Optional<LocIdx> OptNewLoc) { 471 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 472 MI.getDebugLoc()->getInlinedAt()); 473 // Any use-before-defs no longer apply. 474 UseBeforeDefVariables.erase(Var); 475 476 // Erase any previous location, 477 auto It = ActiveVLocs.find(Var); 478 if (It != ActiveVLocs.end()) 479 ActiveMLocs[It->second.Loc].erase(Var); 480 481 // If there _is_ no new location, all we had to do was erase. 482 if (!OptNewLoc) 483 return; 484 LocIdx NewLoc = *OptNewLoc; 485 486 // Check whether our local copy of values-by-location in #VarLocs is out of 487 // date. Wipe old tracking data for the location if it's been clobbered in 488 // the meantime. 489 if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) { 490 for (auto &P : ActiveMLocs[NewLoc]) { 491 ActiveVLocs.erase(P); 492 } 493 ActiveMLocs[NewLoc.asU64()].clear(); 494 VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc); 495 } 496 497 ActiveMLocs[NewLoc].insert(Var); 498 if (It == ActiveVLocs.end()) { 499 ActiveVLocs.insert( 500 std::make_pair(Var, LocAndProperties{NewLoc, Properties})); 501 } else { 502 It->second.Loc = NewLoc; 503 It->second.Properties = Properties; 504 } 505 } 506 507 /// Account for a location \p mloc being clobbered. Examine the variable 508 /// locations that will be terminated: and try to recover them by using 509 /// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to 510 /// explicitly terminate a location if it can't be recovered. 511 void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos, 512 bool MakeUndef = true) { 513 auto ActiveMLocIt = ActiveMLocs.find(MLoc); 514 if (ActiveMLocIt == ActiveMLocs.end()) 515 return; 516 517 // What was the old variable value? 518 ValueIDNum OldValue = VarLocs[MLoc.asU64()]; 519 VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue; 520 521 // Examine the remaining variable locations: if we can find the same value 522 // again, we can recover the location. 523 Optional<LocIdx> NewLoc = None; 524 for (auto Loc : MTracker->locations()) 525 if (Loc.Value == OldValue) 526 NewLoc = Loc.Idx; 527 528 // If there is no location, and we weren't asked to make the variable 529 // explicitly undef, then stop here. 530 if (!NewLoc && !MakeUndef) { 531 // Try and recover a few more locations with entry values. 532 for (auto &Var : ActiveMLocIt->second) { 533 auto &Prop = ActiveVLocs.find(Var)->second.Properties; 534 recoverAsEntryValue(Var, Prop, OldValue); 535 } 536 flushDbgValues(Pos, nullptr); 537 return; 538 } 539 540 // Examine all the variables based on this location. 541 DenseSet<DebugVariable> NewMLocs; 542 for (auto &Var : ActiveMLocIt->second) { 543 auto ActiveVLocIt = ActiveVLocs.find(Var); 544 // Re-state the variable location: if there's no replacement then NewLoc 545 // is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE 546 // identifying the alternative location will be emitted. 547 const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr; 548 DbgValueProperties Properties(Expr, false); 549 PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties)); 550 551 // Update machine locations <=> variable locations maps. Defer updating 552 // ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator. 553 if (!NewLoc) { 554 ActiveVLocs.erase(ActiveVLocIt); 555 } else { 556 ActiveVLocIt->second.Loc = *NewLoc; 557 NewMLocs.insert(Var); 558 } 559 } 560 561 // Commit any deferred ActiveMLoc changes. 562 if (!NewMLocs.empty()) 563 for (auto &Var : NewMLocs) 564 ActiveMLocs[*NewLoc].insert(Var); 565 566 // We lazily track what locations have which values; if we've found a new 567 // location for the clobbered value, remember it. 568 if (NewLoc) 569 VarLocs[NewLoc->asU64()] = OldValue; 570 571 flushDbgValues(Pos, nullptr); 572 573 // Re-find ActiveMLocIt, iterator could have been invalidated. 574 ActiveMLocIt = ActiveMLocs.find(MLoc); 575 ActiveMLocIt->second.clear(); 576 } 577 578 /// Transfer variables based on \p Src to be based on \p Dst. This handles 579 /// both register copies as well as spills and restores. Creates DBG_VALUEs 580 /// describing the movement. 581 void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) { 582 // Does Src still contain the value num we expect? If not, it's been 583 // clobbered in the meantime, and our variable locations are stale. 584 if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src)) 585 return; 586 587 // assert(ActiveMLocs[Dst].size() == 0); 588 //^^^ Legitimate scenario on account of un-clobbered slot being assigned to? 589 590 // Move set of active variables from one location to another. 591 auto MovingVars = ActiveMLocs[Src]; 592 ActiveMLocs[Dst] = MovingVars; 593 VarLocs[Dst.asU64()] = VarLocs[Src.asU64()]; 594 595 // For each variable based on Src; create a location at Dst. 596 for (auto &Var : MovingVars) { 597 auto ActiveVLocIt = ActiveVLocs.find(Var); 598 assert(ActiveVLocIt != ActiveVLocs.end()); 599 ActiveVLocIt->second.Loc = Dst; 600 601 MachineInstr *MI = 602 MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties); 603 PendingDbgValues.push_back(MI); 604 } 605 ActiveMLocs[Src].clear(); 606 flushDbgValues(Pos, nullptr); 607 608 // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data 609 // about the old location. 610 if (EmulateOldLDV) 611 VarLocs[Src.asU64()] = ValueIDNum::EmptyValue; 612 } 613 614 MachineInstrBuilder emitMOLoc(const MachineOperand &MO, 615 const DebugVariable &Var, 616 const DbgValueProperties &Properties) { 617 DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, 618 Var.getVariable()->getScope(), 619 const_cast<DILocation *>(Var.getInlinedAt())); 620 auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)); 621 MIB.add(MO); 622 if (Properties.Indirect) 623 MIB.addImm(0); 624 else 625 MIB.addReg(0); 626 MIB.addMetadata(Var.getVariable()); 627 MIB.addMetadata(Properties.DIExpr); 628 return MIB; 629 } 630 }; 631 632 //===----------------------------------------------------------------------===// 633 // Implementation 634 //===----------------------------------------------------------------------===// 635 636 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX}; 637 ValueIDNum ValueIDNum::TombstoneValue = {UINT_MAX, UINT_MAX, UINT_MAX - 1}; 638 639 #ifndef NDEBUG 640 void DbgValue::dump(const MLocTracker *MTrack) const { 641 if (Kind == Const) { 642 MO->dump(); 643 } else if (Kind == NoVal) { 644 dbgs() << "NoVal(" << BlockNo << ")"; 645 } else if (Kind == VPHI) { 646 dbgs() << "VPHI(" << BlockNo << "," << MTrack->IDAsString(ID) << ")"; 647 } else { 648 assert(Kind == Def); 649 dbgs() << MTrack->IDAsString(ID); 650 } 651 if (Properties.Indirect) 652 dbgs() << " indir"; 653 if (Properties.DIExpr) 654 dbgs() << " " << *Properties.DIExpr; 655 } 656 #endif 657 658 MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII, 659 const TargetRegisterInfo &TRI, 660 const TargetLowering &TLI) 661 : MF(MF), TII(TII), TRI(TRI), TLI(TLI), 662 LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) { 663 NumRegs = TRI.getNumRegs(); 664 reset(); 665 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); 666 assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure 667 668 // Always track SP. This avoids the implicit clobbering caused by regmasks 669 // from affectings its values. (LiveDebugValues disbelieves calls and 670 // regmasks that claim to clobber SP). 671 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 672 if (SP) { 673 unsigned ID = getLocID(SP); 674 (void)lookupOrTrackRegister(ID); 675 676 for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI) 677 SPAliases.insert(*RAI); 678 } 679 680 // Build some common stack positions -- full registers being spilt to the 681 // stack. 682 StackSlotIdxes.insert({{8, 0}, 0}); 683 StackSlotIdxes.insert({{16, 0}, 1}); 684 StackSlotIdxes.insert({{32, 0}, 2}); 685 StackSlotIdxes.insert({{64, 0}, 3}); 686 StackSlotIdxes.insert({{128, 0}, 4}); 687 StackSlotIdxes.insert({{256, 0}, 5}); 688 StackSlotIdxes.insert({{512, 0}, 6}); 689 690 // Traverse all the subregister idxes, and ensure there's an index for them. 691 // Duplicates are no problem: we're interested in their position in the 692 // stack slot, we don't want to type the slot. 693 for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) { 694 unsigned Size = TRI.getSubRegIdxSize(I); 695 unsigned Offs = TRI.getSubRegIdxOffset(I); 696 unsigned Idx = StackSlotIdxes.size(); 697 698 // Some subregs have -1, -2 and so forth fed into their fields, to mean 699 // special backend things. Ignore those. 700 if (Size > 60000 || Offs > 60000) 701 continue; 702 703 StackSlotIdxes.insert({{Size, Offs}, Idx}); 704 } 705 706 for (auto &Idx : StackSlotIdxes) 707 StackIdxesToPos[Idx.second] = Idx.first; 708 709 NumSlotIdxes = StackSlotIdxes.size(); 710 } 711 712 LocIdx MLocTracker::trackRegister(unsigned ID) { 713 assert(ID != 0); 714 LocIdx NewIdx = LocIdx(LocIdxToIDNum.size()); 715 LocIdxToIDNum.grow(NewIdx); 716 LocIdxToLocID.grow(NewIdx); 717 718 // Default: it's an mphi. 719 ValueIDNum ValNum = {CurBB, 0, NewIdx}; 720 // Was this reg ever touched by a regmask? 721 for (const auto &MaskPair : reverse(Masks)) { 722 if (MaskPair.first->clobbersPhysReg(ID)) { 723 // There was an earlier def we skipped. 724 ValNum = {CurBB, MaskPair.second, NewIdx}; 725 break; 726 } 727 } 728 729 LocIdxToIDNum[NewIdx] = ValNum; 730 LocIdxToLocID[NewIdx] = ID; 731 return NewIdx; 732 } 733 734 void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB, 735 unsigned InstID) { 736 // Def any register we track have that isn't preserved. The regmask 737 // terminates the liveness of a register, meaning its value can't be 738 // relied upon -- we represent this by giving it a new value. 739 for (auto Location : locations()) { 740 unsigned ID = LocIdxToLocID[Location.Idx]; 741 // Don't clobber SP, even if the mask says it's clobbered. 742 if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID)) 743 defReg(ID, CurBB, InstID); 744 } 745 Masks.push_back(std::make_pair(MO, InstID)); 746 } 747 748 SpillLocationNo MLocTracker::getOrTrackSpillLoc(SpillLoc L) { 749 SpillLocationNo SpillID(SpillLocs.idFor(L)); 750 if (SpillID.id() == 0) { 751 // Spill location is untracked: create record for this one, and all 752 // subregister slots too. 753 SpillID = SpillLocationNo(SpillLocs.insert(L)); 754 for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) { 755 unsigned L = getSpillIDWithIdx(SpillID, StackIdx); 756 LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx 757 LocIdxToIDNum.grow(Idx); 758 LocIdxToLocID.grow(Idx); 759 LocIDToLocIdx.push_back(Idx); 760 LocIdxToLocID[Idx] = L; 761 // Initialize to PHI value; corresponds to the location's live-in value 762 // during transfer function construction. 763 LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx); 764 } 765 } 766 return SpillID; 767 } 768 769 std::string MLocTracker::LocIdxToName(LocIdx Idx) const { 770 unsigned ID = LocIdxToLocID[Idx]; 771 if (ID >= NumRegs) { 772 StackSlotPos Pos = locIDToSpillIdx(ID); 773 ID -= NumRegs; 774 unsigned Slot = ID / NumSlotIdxes; 775 return Twine("slot ") 776 .concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first) 777 .concat(Twine(" offs ").concat(Twine(Pos.second)))))) 778 .str(); 779 } else { 780 return TRI.getRegAsmName(ID).str(); 781 } 782 } 783 784 std::string MLocTracker::IDAsString(const ValueIDNum &Num) const { 785 std::string DefName = LocIdxToName(Num.getLoc()); 786 return Num.asString(DefName); 787 } 788 789 #ifndef NDEBUG 790 LLVM_DUMP_METHOD void MLocTracker::dump() { 791 for (auto Location : locations()) { 792 std::string MLocName = LocIdxToName(Location.Value.getLoc()); 793 std::string DefName = Location.Value.asString(MLocName); 794 dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n"; 795 } 796 } 797 798 LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() { 799 for (auto Location : locations()) { 800 std::string foo = LocIdxToName(Location.Idx); 801 dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n"; 802 } 803 } 804 #endif 805 806 MachineInstrBuilder MLocTracker::emitLoc(Optional<LocIdx> MLoc, 807 const DebugVariable &Var, 808 const DbgValueProperties &Properties) { 809 DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, 810 Var.getVariable()->getScope(), 811 const_cast<DILocation *>(Var.getInlinedAt())); 812 auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE)); 813 814 const DIExpression *Expr = Properties.DIExpr; 815 if (!MLoc) { 816 // No location -> DBG_VALUE $noreg 817 MIB.addReg(0); 818 MIB.addReg(0); 819 } else if (LocIdxToLocID[*MLoc] >= NumRegs) { 820 unsigned LocID = LocIdxToLocID[*MLoc]; 821 SpillLocationNo SpillID = locIDToSpill(LocID); 822 StackSlotPos StackIdx = locIDToSpillIdx(LocID); 823 unsigned short Offset = StackIdx.second; 824 825 // TODO: support variables that are located in spill slots, with non-zero 826 // offsets from the start of the spill slot. It would require some more 827 // complex DIExpression calculations. This doesn't seem to be produced by 828 // LLVM right now, so don't try and support it. 829 // Accept no-subregister slots and subregisters where the offset is zero. 830 // The consumer should already have type information to work out how large 831 // the variable is. 832 if (Offset == 0) { 833 const SpillLoc &Spill = SpillLocs[SpillID.id()]; 834 Expr = TRI.prependOffsetExpression(Expr, DIExpression::ApplyOffset, 835 Spill.SpillOffset); 836 unsigned Base = Spill.SpillBase; 837 MIB.addReg(Base); 838 MIB.addImm(0); 839 } else { 840 // This is a stack location with a weird subregister offset: emit an undef 841 // DBG_VALUE instead. 842 MIB.addReg(0); 843 MIB.addReg(0); 844 } 845 } else { 846 // Non-empty, non-stack slot, must be a plain register. 847 unsigned LocID = LocIdxToLocID[*MLoc]; 848 MIB.addReg(LocID); 849 if (Properties.Indirect) 850 MIB.addImm(0); 851 else 852 MIB.addReg(0); 853 } 854 855 MIB.addMetadata(Var.getVariable()); 856 MIB.addMetadata(Expr); 857 return MIB; 858 } 859 860 /// Default construct and initialize the pass. 861 InstrRefBasedLDV::InstrRefBasedLDV() {} 862 863 bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const { 864 unsigned Reg = MTracker->LocIdxToLocID[L]; 865 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 866 if (CalleeSavedRegs.test(*RAI)) 867 return true; 868 return false; 869 } 870 871 //===----------------------------------------------------------------------===// 872 // Debug Range Extension Implementation 873 //===----------------------------------------------------------------------===// 874 875 #ifndef NDEBUG 876 // Something to restore in the future. 877 // void InstrRefBasedLDV::printVarLocInMBB(..) 878 #endif 879 880 SpillLocationNo 881 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { 882 assert(MI.hasOneMemOperand() && 883 "Spill instruction does not have exactly one memory operand?"); 884 auto MMOI = MI.memoperands_begin(); 885 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 886 assert(PVal->kind() == PseudoSourceValue::FixedStack && 887 "Inconsistent memory operand in spill instruction"); 888 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); 889 const MachineBasicBlock *MBB = MI.getParent(); 890 Register Reg; 891 StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); 892 return MTracker->getOrTrackSpillLoc({Reg, Offset}); 893 } 894 895 Optional<LocIdx> InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) { 896 SpillLocationNo SpillLoc = extractSpillBaseRegAndOffset(MI); 897 898 // Where in the stack slot is this value defined -- i.e., what size of value 899 // is this? An important question, because it could be loaded into a register 900 // from the stack at some point. Happily the memory operand will tell us 901 // the size written to the stack. 902 auto *MemOperand = *MI.memoperands_begin(); 903 unsigned SizeInBits = MemOperand->getSizeInBits(); 904 905 // Find that position in the stack indexes we're tracking. 906 auto IdxIt = MTracker->StackSlotIdxes.find({SizeInBits, 0}); 907 if (IdxIt == MTracker->StackSlotIdxes.end()) 908 // That index is not tracked. This is suprising, and unlikely to ever 909 // occur, but the safe action is to indicate the variable is optimised out. 910 return None; 911 912 unsigned SpillID = MTracker->getSpillIDWithIdx(SpillLoc, IdxIt->second); 913 return MTracker->getSpillMLoc(SpillID); 914 } 915 916 /// End all previous ranges related to @MI and start a new range from @MI 917 /// if it is a DBG_VALUE instr. 918 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) { 919 if (!MI.isDebugValue()) 920 return false; 921 922 const DILocalVariable *Var = MI.getDebugVariable(); 923 const DIExpression *Expr = MI.getDebugExpression(); 924 const DILocation *DebugLoc = MI.getDebugLoc(); 925 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 926 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 927 "Expected inlined-at fields to agree"); 928 929 DebugVariable V(Var, Expr, InlinedAt); 930 DbgValueProperties Properties(MI); 931 932 // If there are no instructions in this lexical scope, do no location tracking 933 // at all, this variable shouldn't get a legitimate location range. 934 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); 935 if (Scope == nullptr) 936 return true; // handled it; by doing nothing 937 938 // For now, ignore DBG_VALUE_LISTs when extending ranges. Allow it to 939 // contribute to locations in this block, but don't propagate further. 940 // Interpret it like a DBG_VALUE $noreg. 941 if (MI.isDebugValueList()) { 942 if (VTracker) 943 VTracker->defVar(MI, Properties, None); 944 if (TTracker) 945 TTracker->redefVar(MI, Properties, None); 946 return true; 947 } 948 949 const MachineOperand &MO = MI.getOperand(0); 950 951 // MLocTracker needs to know that this register is read, even if it's only 952 // read by a debug inst. 953 if (MO.isReg() && MO.getReg() != 0) 954 (void)MTracker->readReg(MO.getReg()); 955 956 // If we're preparing for the second analysis (variables), the machine value 957 // locations are already solved, and we report this DBG_VALUE and the value 958 // it refers to to VLocTracker. 959 if (VTracker) { 960 if (MO.isReg()) { 961 // Feed defVar the new variable location, or if this is a 962 // DBG_VALUE $noreg, feed defVar None. 963 if (MO.getReg()) 964 VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg())); 965 else 966 VTracker->defVar(MI, Properties, None); 967 } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() || 968 MI.getOperand(0).isCImm()) { 969 VTracker->defVar(MI, MI.getOperand(0)); 970 } 971 } 972 973 // If performing final tracking of transfers, report this variable definition 974 // to the TransferTracker too. 975 if (TTracker) 976 TTracker->redefVar(MI); 977 return true; 978 } 979 980 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI, 981 ValueIDNum **MLiveOuts, 982 ValueIDNum **MLiveIns) { 983 if (!MI.isDebugRef()) 984 return false; 985 986 // Only handle this instruction when we are building the variable value 987 // transfer function. 988 if (!VTracker) 989 return false; 990 991 unsigned InstNo = MI.getOperand(0).getImm(); 992 unsigned OpNo = MI.getOperand(1).getImm(); 993 994 const DILocalVariable *Var = MI.getDebugVariable(); 995 const DIExpression *Expr = MI.getDebugExpression(); 996 const DILocation *DebugLoc = MI.getDebugLoc(); 997 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 998 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 999 "Expected inlined-at fields to agree"); 1000 1001 DebugVariable V(Var, Expr, InlinedAt); 1002 1003 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); 1004 if (Scope == nullptr) 1005 return true; // Handled by doing nothing. This variable is never in scope. 1006 1007 const MachineFunction &MF = *MI.getParent()->getParent(); 1008 1009 // Various optimizations may have happened to the value during codegen, 1010 // recorded in the value substitution table. Apply any substitutions to 1011 // the instruction / operand number in this DBG_INSTR_REF, and collect 1012 // any subregister extractions performed during optimization. 1013 1014 // Create dummy substitution with Src set, for lookup. 1015 auto SoughtSub = 1016 MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0); 1017 1018 SmallVector<unsigned, 4> SeenSubregs; 1019 auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub); 1020 while (LowerBoundIt != MF.DebugValueSubstitutions.end() && 1021 LowerBoundIt->Src == SoughtSub.Src) { 1022 std::tie(InstNo, OpNo) = LowerBoundIt->Dest; 1023 SoughtSub.Src = LowerBoundIt->Dest; 1024 if (unsigned Subreg = LowerBoundIt->Subreg) 1025 SeenSubregs.push_back(Subreg); 1026 LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub); 1027 } 1028 1029 // Default machine value number is <None> -- if no instruction defines 1030 // the corresponding value, it must have been optimized out. 1031 Optional<ValueIDNum> NewID = None; 1032 1033 // Try to lookup the instruction number, and find the machine value number 1034 // that it defines. It could be an instruction, or a PHI. 1035 auto InstrIt = DebugInstrNumToInstr.find(InstNo); 1036 auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(), 1037 DebugPHINumToValue.end(), InstNo); 1038 if (InstrIt != DebugInstrNumToInstr.end()) { 1039 const MachineInstr &TargetInstr = *InstrIt->second.first; 1040 uint64_t BlockNo = TargetInstr.getParent()->getNumber(); 1041 1042 // Pick out the designated operand. It might be a memory reference, if 1043 // a register def was folded into a stack store. 1044 if (OpNo == MachineFunction::DebugOperandMemNumber && 1045 TargetInstr.hasOneMemOperand()) { 1046 Optional<LocIdx> L = findLocationForMemOperand(TargetInstr); 1047 if (L) 1048 NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L); 1049 } else if (OpNo != MachineFunction::DebugOperandMemNumber) { 1050 assert(OpNo < TargetInstr.getNumOperands()); 1051 const MachineOperand &MO = TargetInstr.getOperand(OpNo); 1052 1053 // Today, this can only be a register. 1054 assert(MO.isReg() && MO.isDef()); 1055 1056 unsigned LocID = MTracker->getLocID(MO.getReg()); 1057 LocIdx L = MTracker->LocIDToLocIdx[LocID]; 1058 NewID = ValueIDNum(BlockNo, InstrIt->second.second, L); 1059 } 1060 // else: NewID is left as None. 1061 } else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) { 1062 // It's actually a PHI value. Which value it is might not be obvious, use 1063 // the resolver helper to find out. 1064 NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns, 1065 MI, InstNo); 1066 } 1067 1068 // Apply any subregister extractions, in reverse. We might have seen code 1069 // like this: 1070 // CALL64 @foo, implicit-def $rax 1071 // %0:gr64 = COPY $rax 1072 // %1:gr32 = COPY %0.sub_32bit 1073 // %2:gr16 = COPY %1.sub_16bit 1074 // %3:gr8 = COPY %2.sub_8bit 1075 // In which case each copy would have been recorded as a substitution with 1076 // a subregister qualifier. Apply those qualifiers now. 1077 if (NewID && !SeenSubregs.empty()) { 1078 unsigned Offset = 0; 1079 unsigned Size = 0; 1080 1081 // Look at each subregister that we passed through, and progressively 1082 // narrow in, accumulating any offsets that occur. Substitutions should 1083 // only ever be the same or narrower width than what they read from; 1084 // iterate in reverse order so that we go from wide to small. 1085 for (unsigned Subreg : reverse(SeenSubregs)) { 1086 unsigned ThisSize = TRI->getSubRegIdxSize(Subreg); 1087 unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg); 1088 Offset += ThisOffset; 1089 Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize); 1090 } 1091 1092 // If that worked, look for an appropriate subregister with the register 1093 // where the define happens. Don't look at values that were defined during 1094 // a stack write: we can't currently express register locations within 1095 // spills. 1096 LocIdx L = NewID->getLoc(); 1097 if (NewID && !MTracker->isSpill(L)) { 1098 // Find the register class for the register where this def happened. 1099 // FIXME: no index for this? 1100 Register Reg = MTracker->LocIdxToLocID[L]; 1101 const TargetRegisterClass *TRC = nullptr; 1102 for (auto *TRCI : TRI->regclasses()) 1103 if (TRCI->contains(Reg)) 1104 TRC = TRCI; 1105 assert(TRC && "Couldn't find target register class?"); 1106 1107 // If the register we have isn't the right size or in the right place, 1108 // Try to find a subregister inside it. 1109 unsigned MainRegSize = TRI->getRegSizeInBits(*TRC); 1110 if (Size != MainRegSize || Offset) { 1111 // Enumerate all subregisters, searching. 1112 Register NewReg = 0; 1113 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) { 1114 unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI); 1115 unsigned SubregSize = TRI->getSubRegIdxSize(Subreg); 1116 unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg); 1117 if (SubregSize == Size && SubregOffset == Offset) { 1118 NewReg = *SRI; 1119 break; 1120 } 1121 } 1122 1123 // If we didn't find anything: there's no way to express our value. 1124 if (!NewReg) { 1125 NewID = None; 1126 } else { 1127 // Re-state the value as being defined within the subregister 1128 // that we found. 1129 LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg); 1130 NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc); 1131 } 1132 } 1133 } else { 1134 // If we can't handle subregisters, unset the new value. 1135 NewID = None; 1136 } 1137 } 1138 1139 // We, we have a value number or None. Tell the variable value tracker about 1140 // it. The rest of this LiveDebugValues implementation acts exactly the same 1141 // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that 1142 // aren't immediately available). 1143 DbgValueProperties Properties(Expr, false); 1144 VTracker->defVar(MI, Properties, NewID); 1145 1146 // If we're on the final pass through the function, decompose this INSTR_REF 1147 // into a plain DBG_VALUE. 1148 if (!TTracker) 1149 return true; 1150 1151 // Pick a location for the machine value number, if such a location exists. 1152 // (This information could be stored in TransferTracker to make it faster). 1153 Optional<LocIdx> FoundLoc = None; 1154 for (auto Location : MTracker->locations()) { 1155 LocIdx CurL = Location.Idx; 1156 ValueIDNum ID = MTracker->readMLoc(CurL); 1157 if (NewID && ID == NewID) { 1158 // If this is the first location with that value, pick it. Otherwise, 1159 // consider whether it's a "longer term" location. 1160 if (!FoundLoc) { 1161 FoundLoc = CurL; 1162 continue; 1163 } 1164 1165 if (MTracker->isSpill(CurL)) 1166 FoundLoc = CurL; // Spills are a longer term location. 1167 else if (!MTracker->isSpill(*FoundLoc) && 1168 !MTracker->isSpill(CurL) && 1169 !isCalleeSaved(*FoundLoc) && 1170 isCalleeSaved(CurL)) 1171 FoundLoc = CurL; // Callee saved regs are longer term than normal. 1172 } 1173 } 1174 1175 // Tell transfer tracker that the variable value has changed. 1176 TTracker->redefVar(MI, Properties, FoundLoc); 1177 1178 // If there was a value with no location; but the value is defined in a 1179 // later instruction in this block, this is a block-local use-before-def. 1180 if (!FoundLoc && NewID && NewID->getBlock() == CurBB && 1181 NewID->getInst() > CurInst) 1182 TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID); 1183 1184 // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant. 1185 // This DBG_VALUE is potentially a $noreg / undefined location, if 1186 // FoundLoc is None. 1187 // (XXX -- could morph the DBG_INSTR_REF in the future). 1188 MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties); 1189 TTracker->PendingDbgValues.push_back(DbgMI); 1190 TTracker->flushDbgValues(MI.getIterator(), nullptr); 1191 return true; 1192 } 1193 1194 bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) { 1195 if (!MI.isDebugPHI()) 1196 return false; 1197 1198 // Analyse these only when solving the machine value location problem. 1199 if (VTracker || TTracker) 1200 return true; 1201 1202 // First operand is the value location, either a stack slot or register. 1203 // Second is the debug instruction number of the original PHI. 1204 const MachineOperand &MO = MI.getOperand(0); 1205 unsigned InstrNum = MI.getOperand(1).getImm(); 1206 1207 if (MO.isReg()) { 1208 // The value is whatever's currently in the register. Read and record it, 1209 // to be analysed later. 1210 Register Reg = MO.getReg(); 1211 ValueIDNum Num = MTracker->readReg(Reg); 1212 auto PHIRec = DebugPHIRecord( 1213 {InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)}); 1214 DebugPHINumToValue.push_back(PHIRec); 1215 1216 // Ensure this register is tracked. 1217 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1218 MTracker->lookupOrTrackRegister(*RAI); 1219 } else { 1220 // The value is whatever's in this stack slot. 1221 assert(MO.isFI()); 1222 unsigned FI = MO.getIndex(); 1223 1224 // If the stack slot is dead, then this was optimized away. 1225 // FIXME: stack slot colouring should account for slots that get merged. 1226 if (MFI->isDeadObjectIndex(FI)) 1227 return true; 1228 1229 // Identify this spill slot, ensure it's tracked. 1230 Register Base; 1231 StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base); 1232 SpillLoc SL = {Base, Offs}; 1233 SpillLocationNo SpillNo = MTracker->getOrTrackSpillLoc(SL); 1234 1235 // Problem: what value should we extract from the stack? LLVM does not 1236 // record what size the last store to the slot was, and it would become 1237 // sketchy after stack slot colouring anyway. Take a look at what values 1238 // are stored on the stack, and pick the largest one that wasn't def'd 1239 // by a spill (i.e., the value most likely to have been def'd in a register 1240 // and then spilt. 1241 std::array<unsigned, 4> CandidateSizes = {64, 32, 16, 8}; 1242 Optional<ValueIDNum> Result = None; 1243 Optional<LocIdx> SpillLoc = None; 1244 for (unsigned int I = 0; I < CandidateSizes.size(); ++I) { 1245 unsigned SpillID = MTracker->getLocID(SpillNo, {CandidateSizes[I], 0}); 1246 SpillLoc = MTracker->getSpillMLoc(SpillID); 1247 ValueIDNum Val = MTracker->readMLoc(*SpillLoc); 1248 // If this value was defined in it's own position, then it was probably 1249 // an aliasing index of a small value that was spilt. 1250 if (Val.getLoc() != SpillLoc->asU64()) { 1251 Result = Val; 1252 break; 1253 } 1254 } 1255 1256 // If we didn't find anything, we're probably looking at a PHI, or a memory 1257 // store folded into an instruction. FIXME: Take a guess that's it's 64 1258 // bits. This isn't ideal, but tracking the size that the spill is 1259 // "supposed" to be is more complex, and benefits a small number of 1260 // locations. 1261 if (!Result) { 1262 unsigned SpillID = MTracker->getLocID(SpillNo, {64, 0}); 1263 SpillLoc = MTracker->getSpillMLoc(SpillID); 1264 Result = MTracker->readMLoc(*SpillLoc); 1265 } 1266 1267 // Record this DBG_PHI for later analysis. 1268 auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), *Result, *SpillLoc}); 1269 DebugPHINumToValue.push_back(DbgPHI); 1270 } 1271 1272 return true; 1273 } 1274 1275 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) { 1276 // Meta Instructions do not affect the debug liveness of any register they 1277 // define. 1278 if (MI.isImplicitDef()) { 1279 // Except when there's an implicit def, and the location it's defining has 1280 // no value number. The whole point of an implicit def is to announce that 1281 // the register is live, without be specific about it's value. So define 1282 // a value if there isn't one already. 1283 ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg()); 1284 // Has a legitimate value -> ignore the implicit def. 1285 if (Num.getLoc() != 0) 1286 return; 1287 // Otherwise, def it here. 1288 } else if (MI.isMetaInstruction()) 1289 return; 1290 1291 auto IgnoreSPAlias = [this, &MI](Register R) -> bool { 1292 return MI.isCall() && MTracker->SPAliases.count(R); 1293 }; 1294 1295 // Find the regs killed by MI, and find regmasks of preserved regs. 1296 // Max out the number of statically allocated elements in `DeadRegs`, as this 1297 // prevents fallback to std::set::count() operations. 1298 SmallSet<uint32_t, 32> DeadRegs; 1299 SmallVector<const uint32_t *, 4> RegMasks; 1300 SmallVector<const MachineOperand *, 4> RegMaskPtrs; 1301 for (const MachineOperand &MO : MI.operands()) { 1302 // Determine whether the operand is a register def. 1303 if (MO.isReg() && MO.isDef() && MO.getReg() && 1304 Register::isPhysicalRegister(MO.getReg()) && 1305 !IgnoreSPAlias(MO.getReg())) { 1306 // Remove ranges of all aliased registers. 1307 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1308 // FIXME: Can we break out of this loop early if no insertion occurs? 1309 DeadRegs.insert(*RAI); 1310 } else if (MO.isRegMask()) { 1311 RegMasks.push_back(MO.getRegMask()); 1312 RegMaskPtrs.push_back(&MO); 1313 } 1314 } 1315 1316 // Tell MLocTracker about all definitions, of regmasks and otherwise. 1317 for (uint32_t DeadReg : DeadRegs) 1318 MTracker->defReg(DeadReg, CurBB, CurInst); 1319 1320 for (auto *MO : RegMaskPtrs) 1321 MTracker->writeRegMask(MO, CurBB, CurInst); 1322 1323 // If this instruction writes to a spill slot, def that slot. 1324 if (hasFoldedStackStore(MI)) { 1325 SpillLocationNo SpillNo = extractSpillBaseRegAndOffset(MI); 1326 for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) { 1327 unsigned SpillID = MTracker->getSpillIDWithIdx(SpillNo, I); 1328 LocIdx L = MTracker->getSpillMLoc(SpillID); 1329 MTracker->setMLoc(L, ValueIDNum(CurBB, CurInst, L)); 1330 } 1331 } 1332 1333 if (!TTracker) 1334 return; 1335 1336 // When committing variable values to locations: tell transfer tracker that 1337 // we've clobbered things. It may be able to recover the variable from a 1338 // different location. 1339 1340 // Inform TTracker about any direct clobbers. 1341 for (uint32_t DeadReg : DeadRegs) { 1342 LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg); 1343 TTracker->clobberMloc(Loc, MI.getIterator(), false); 1344 } 1345 1346 // Look for any clobbers performed by a register mask. Only test locations 1347 // that are actually being tracked. 1348 for (auto L : MTracker->locations()) { 1349 // Stack locations can't be clobbered by regmasks. 1350 if (MTracker->isSpill(L.Idx)) 1351 continue; 1352 1353 Register Reg = MTracker->LocIdxToLocID[L.Idx]; 1354 if (IgnoreSPAlias(Reg)) 1355 continue; 1356 1357 for (auto *MO : RegMaskPtrs) 1358 if (MO->clobbersPhysReg(Reg)) 1359 TTracker->clobberMloc(L.Idx, MI.getIterator(), false); 1360 } 1361 1362 // Tell TTracker about any folded stack store. 1363 if (hasFoldedStackStore(MI)) { 1364 SpillLocationNo SpillNo = extractSpillBaseRegAndOffset(MI); 1365 for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) { 1366 unsigned SpillID = MTracker->getSpillIDWithIdx(SpillNo, I); 1367 LocIdx L = MTracker->getSpillMLoc(SpillID); 1368 TTracker->clobberMloc(L, MI.getIterator(), true); 1369 } 1370 } 1371 } 1372 1373 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) { 1374 // In all circumstances, re-def all aliases. It's definitely a new value now. 1375 for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI) 1376 MTracker->defReg(*RAI, CurBB, CurInst); 1377 1378 ValueIDNum SrcValue = MTracker->readReg(SrcRegNum); 1379 MTracker->setReg(DstRegNum, SrcValue); 1380 1381 // Copy subregisters from one location to another. 1382 for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) { 1383 unsigned SrcSubReg = SRI.getSubReg(); 1384 unsigned SubRegIdx = SRI.getSubRegIndex(); 1385 unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx); 1386 if (!DstSubReg) 1387 continue; 1388 1389 // Do copy. There are two matching subregisters, the source value should 1390 // have been def'd when the super-reg was, the latter might not be tracked 1391 // yet. 1392 // This will force SrcSubReg to be tracked, if it isn't yet. Will read 1393 // mphi values if it wasn't tracked. 1394 LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg); 1395 LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg); 1396 (void)SrcL; 1397 (void)DstL; 1398 ValueIDNum CpyValue = MTracker->readReg(SrcSubReg); 1399 1400 MTracker->setReg(DstSubReg, CpyValue); 1401 } 1402 } 1403 1404 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI, 1405 MachineFunction *MF) { 1406 // TODO: Handle multiple stores folded into one. 1407 if (!MI.hasOneMemOperand()) 1408 return false; 1409 1410 // Reject any memory operand that's aliased -- we can't guarantee its value. 1411 auto MMOI = MI.memoperands_begin(); 1412 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 1413 if (PVal->isAliased(MFI)) 1414 return false; 1415 1416 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) 1417 return false; // This is not a spill instruction, since no valid size was 1418 // returned from either function. 1419 1420 return true; 1421 } 1422 1423 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI, 1424 MachineFunction *MF, unsigned &Reg) { 1425 if (!isSpillInstruction(MI, MF)) 1426 return false; 1427 1428 int FI; 1429 Reg = TII->isStoreToStackSlotPostFE(MI, FI); 1430 return Reg != 0; 1431 } 1432 1433 Optional<SpillLocationNo> 1434 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI, 1435 MachineFunction *MF, unsigned &Reg) { 1436 if (!MI.hasOneMemOperand()) 1437 return None; 1438 1439 // FIXME: Handle folded restore instructions with more than one memory 1440 // operand. 1441 if (MI.getRestoreSize(TII)) { 1442 Reg = MI.getOperand(0).getReg(); 1443 return extractSpillBaseRegAndOffset(MI); 1444 } 1445 return None; 1446 } 1447 1448 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) { 1449 // XXX -- it's too difficult to implement VarLocBasedImpl's stack location 1450 // limitations under the new model. Therefore, when comparing them, compare 1451 // versions that don't attempt spills or restores at all. 1452 if (EmulateOldLDV) 1453 return false; 1454 1455 // Strictly limit ourselves to plain loads and stores, not all instructions 1456 // that can access the stack. 1457 int DummyFI = -1; 1458 if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) && 1459 !TII->isLoadFromStackSlotPostFE(MI, DummyFI)) 1460 return false; 1461 1462 MachineFunction *MF = MI.getMF(); 1463 unsigned Reg; 1464 1465 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); 1466 1467 // Strictly limit ourselves to plain loads and stores, not all instructions 1468 // that can access the stack. 1469 int FIDummy; 1470 if (!TII->isStoreToStackSlotPostFE(MI, FIDummy) && 1471 !TII->isLoadFromStackSlotPostFE(MI, FIDummy)) 1472 return false; 1473 1474 // First, if there are any DBG_VALUEs pointing at a spill slot that is 1475 // written to, terminate that variable location. The value in memory 1476 // will have changed. DbgEntityHistoryCalculator doesn't try to detect this. 1477 if (isSpillInstruction(MI, MF)) { 1478 SpillLocationNo Loc = extractSpillBaseRegAndOffset(MI); 1479 1480 // Un-set this location and clobber, so that earlier locations don't 1481 // continue past this store. 1482 for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) { 1483 unsigned SpillID = MTracker->getSpillIDWithIdx(Loc, SlotIdx); 1484 Optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID); 1485 if (!MLoc) 1486 continue; 1487 1488 // We need to over-write the stack slot with something (here, a def at 1489 // this instruction) to ensure no values are preserved in this stack slot 1490 // after the spill. It also prevents TTracker from trying to recover the 1491 // location and re-installing it in the same place. 1492 ValueIDNum Def(CurBB, CurInst, *MLoc); 1493 MTracker->setMLoc(*MLoc, Def); 1494 if (TTracker) 1495 TTracker->clobberMloc(*MLoc, MI.getIterator()); 1496 } 1497 } 1498 1499 // Try to recognise spill and restore instructions that may transfer a value. 1500 if (isLocationSpill(MI, MF, Reg)) { 1501 SpillLocationNo Loc = extractSpillBaseRegAndOffset(MI); 1502 1503 auto DoTransfer = [&](Register SrcReg, unsigned SpillID) { 1504 auto ReadValue = MTracker->readReg(SrcReg); 1505 LocIdx DstLoc = MTracker->getSpillMLoc(SpillID); 1506 MTracker->setMLoc(DstLoc, ReadValue); 1507 1508 if (TTracker) { 1509 LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg); 1510 TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator()); 1511 } 1512 }; 1513 1514 // Then, transfer subreg bits. 1515 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) { 1516 // Ensure this reg is tracked, 1517 (void)MTracker->lookupOrTrackRegister(*SRI); 1518 unsigned SubregIdx = TRI->getSubRegIndex(Reg, *SRI); 1519 unsigned SpillID = MTracker->getLocID(Loc, SubregIdx); 1520 DoTransfer(*SRI, SpillID); 1521 } 1522 1523 // Directly lookup size of main source reg, and transfer. 1524 unsigned Size = TRI->getRegSizeInBits(Reg, *MRI); 1525 unsigned SpillID = MTracker->getLocID(Loc, {Size, 0}); 1526 DoTransfer(Reg, SpillID); 1527 } else { 1528 Optional<SpillLocationNo> OptLoc = isRestoreInstruction(MI, MF, Reg); 1529 if (!OptLoc) 1530 return false; 1531 SpillLocationNo Loc = *OptLoc; 1532 1533 // Assumption: we're reading from the base of the stack slot, not some 1534 // offset into it. It seems very unlikely LLVM would ever generate 1535 // restores where this wasn't true. This then becomes a question of what 1536 // subregisters in the destination register line up with positions in the 1537 // stack slot. 1538 1539 // Def all registers that alias the destination. 1540 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1541 MTracker->defReg(*RAI, CurBB, CurInst); 1542 1543 // Now find subregisters within the destination register, and load values 1544 // from stack slot positions. 1545 auto DoTransfer = [&](Register DestReg, unsigned SpillID) { 1546 LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID); 1547 auto ReadValue = MTracker->readMLoc(SrcIdx); 1548 MTracker->setReg(DestReg, ReadValue); 1549 1550 if (TTracker) { 1551 LocIdx DstLoc = MTracker->getRegMLoc(DestReg); 1552 TTracker->transferMlocs(SrcIdx, DstLoc, MI.getIterator()); 1553 } 1554 }; 1555 1556 for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) { 1557 unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI); 1558 unsigned SpillID = MTracker->getLocID(Loc, Subreg); 1559 DoTransfer(*SRI, SpillID); 1560 } 1561 1562 // Directly look up this registers slot idx by size, and transfer. 1563 unsigned Size = TRI->getRegSizeInBits(Reg, *MRI); 1564 unsigned SpillID = MTracker->getLocID(Loc, {Size, 0}); 1565 DoTransfer(Reg, SpillID); 1566 } 1567 return true; 1568 } 1569 1570 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) { 1571 auto DestSrc = TII->isCopyInstr(MI); 1572 if (!DestSrc) 1573 return false; 1574 1575 const MachineOperand *DestRegOp = DestSrc->Destination; 1576 const MachineOperand *SrcRegOp = DestSrc->Source; 1577 1578 auto isCalleeSavedReg = [&](unsigned Reg) { 1579 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1580 if (CalleeSavedRegs.test(*RAI)) 1581 return true; 1582 return false; 1583 }; 1584 1585 Register SrcReg = SrcRegOp->getReg(); 1586 Register DestReg = DestRegOp->getReg(); 1587 1588 // Ignore identity copies. Yep, these make it as far as LiveDebugValues. 1589 if (SrcReg == DestReg) 1590 return true; 1591 1592 // For emulating VarLocBasedImpl: 1593 // We want to recognize instructions where destination register is callee 1594 // saved register. If register that could be clobbered by the call is 1595 // included, there would be a great chance that it is going to be clobbered 1596 // soon. It is more likely that previous register, which is callee saved, is 1597 // going to stay unclobbered longer, even if it is killed. 1598 // 1599 // For InstrRefBasedImpl, we can track multiple locations per value, so 1600 // ignore this condition. 1601 if (EmulateOldLDV && !isCalleeSavedReg(DestReg)) 1602 return false; 1603 1604 // InstrRefBasedImpl only followed killing copies. 1605 if (EmulateOldLDV && !SrcRegOp->isKill()) 1606 return false; 1607 1608 // Copy MTracker info, including subregs if available. 1609 InstrRefBasedLDV::performCopy(SrcReg, DestReg); 1610 1611 // Only produce a transfer of DBG_VALUE within a block where old LDV 1612 // would have. We might make use of the additional value tracking in some 1613 // other way, later. 1614 if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill()) 1615 TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg), 1616 MTracker->getRegMLoc(DestReg), MI.getIterator()); 1617 1618 // VarLocBasedImpl would quit tracking the old location after copying. 1619 if (EmulateOldLDV && SrcReg != DestReg) 1620 MTracker->defReg(SrcReg, CurBB, CurInst); 1621 1622 // Finally, the copy might have clobbered variables based on the destination 1623 // register. Tell TTracker about it, in case a backup location exists. 1624 if (TTracker) { 1625 for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) { 1626 LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI); 1627 TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false); 1628 } 1629 } 1630 1631 return true; 1632 } 1633 1634 /// Accumulate a mapping between each DILocalVariable fragment and other 1635 /// fragments of that DILocalVariable which overlap. This reduces work during 1636 /// the data-flow stage from "Find any overlapping fragments" to "Check if the 1637 /// known-to-overlap fragments are present". 1638 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for 1639 /// fragment usage. 1640 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) { 1641 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), 1642 MI.getDebugLoc()->getInlinedAt()); 1643 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); 1644 1645 // If this is the first sighting of this variable, then we are guaranteed 1646 // there are currently no overlapping fragments either. Initialize the set 1647 // of seen fragments, record no overlaps for the current one, and return. 1648 auto SeenIt = SeenFragments.find(MIVar.getVariable()); 1649 if (SeenIt == SeenFragments.end()) { 1650 SmallSet<FragmentInfo, 4> OneFragment; 1651 OneFragment.insert(ThisFragment); 1652 SeenFragments.insert({MIVar.getVariable(), OneFragment}); 1653 1654 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1655 return; 1656 } 1657 1658 // If this particular Variable/Fragment pair already exists in the overlap 1659 // map, it has already been accounted for. 1660 auto IsInOLapMap = 1661 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 1662 if (!IsInOLapMap.second) 1663 return; 1664 1665 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; 1666 auto &AllSeenFragments = SeenIt->second; 1667 1668 // Otherwise, examine all other seen fragments for this variable, with "this" 1669 // fragment being a previously unseen fragment. Record any pair of 1670 // overlapping fragments. 1671 for (auto &ASeenFragment : AllSeenFragments) { 1672 // Does this previously seen fragment overlap? 1673 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { 1674 // Yes: Mark the current fragment as being overlapped. 1675 ThisFragmentsOverlaps.push_back(ASeenFragment); 1676 // Mark the previously seen fragment as being overlapped by the current 1677 // one. 1678 auto ASeenFragmentsOverlaps = 1679 OverlapFragments.find({MIVar.getVariable(), ASeenFragment}); 1680 assert(ASeenFragmentsOverlaps != OverlapFragments.end() && 1681 "Previously seen var fragment has no vector of overlaps"); 1682 ASeenFragmentsOverlaps->second.push_back(ThisFragment); 1683 } 1684 } 1685 1686 AllSeenFragments.insert(ThisFragment); 1687 } 1688 1689 void InstrRefBasedLDV::process(MachineInstr &MI, ValueIDNum **MLiveOuts, 1690 ValueIDNum **MLiveIns) { 1691 // Try to interpret an MI as a debug or transfer instruction. Only if it's 1692 // none of these should we interpret it's register defs as new value 1693 // definitions. 1694 if (transferDebugValue(MI)) 1695 return; 1696 if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns)) 1697 return; 1698 if (transferDebugPHI(MI)) 1699 return; 1700 if (transferRegisterCopy(MI)) 1701 return; 1702 if (transferSpillOrRestoreInst(MI)) 1703 return; 1704 transferRegisterDef(MI); 1705 } 1706 1707 void InstrRefBasedLDV::produceMLocTransferFunction( 1708 MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer, 1709 unsigned MaxNumBlocks) { 1710 // Because we try to optimize around register mask operands by ignoring regs 1711 // that aren't currently tracked, we set up something ugly for later: RegMask 1712 // operands that are seen earlier than the first use of a register, still need 1713 // to clobber that register in the transfer function. But this information 1714 // isn't actively recorded. Instead, we track each RegMask used in each block, 1715 // and accumulated the clobbered but untracked registers in each block into 1716 // the following bitvector. Later, if new values are tracked, we can add 1717 // appropriate clobbers. 1718 SmallVector<BitVector, 32> BlockMasks; 1719 BlockMasks.resize(MaxNumBlocks); 1720 1721 // Reserve one bit per register for the masks described above. 1722 unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs()); 1723 for (auto &BV : BlockMasks) 1724 BV.resize(TRI->getNumRegs(), true); 1725 1726 // Step through all instructions and inhale the transfer function. 1727 for (auto &MBB : MF) { 1728 // Object fields that are read by trackers to know where we are in the 1729 // function. 1730 CurBB = MBB.getNumber(); 1731 CurInst = 1; 1732 1733 // Set all machine locations to a PHI value. For transfer function 1734 // production only, this signifies the live-in value to the block. 1735 MTracker->reset(); 1736 MTracker->setMPhis(CurBB); 1737 1738 // Step through each instruction in this block. 1739 for (auto &MI : MBB) { 1740 process(MI); 1741 // Also accumulate fragment map. 1742 if (MI.isDebugValue()) 1743 accumulateFragmentMap(MI); 1744 1745 // Create a map from the instruction number (if present) to the 1746 // MachineInstr and its position. 1747 if (uint64_t InstrNo = MI.peekDebugInstrNum()) { 1748 auto InstrAndPos = std::make_pair(&MI, CurInst); 1749 auto InsertResult = 1750 DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos)); 1751 1752 // There should never be duplicate instruction numbers. 1753 assert(InsertResult.second); 1754 (void)InsertResult; 1755 } 1756 1757 ++CurInst; 1758 } 1759 1760 // Produce the transfer function, a map of machine location to new value. If 1761 // any machine location has the live-in phi value from the start of the 1762 // block, it's live-through and doesn't need recording in the transfer 1763 // function. 1764 for (auto Location : MTracker->locations()) { 1765 LocIdx Idx = Location.Idx; 1766 ValueIDNum &P = Location.Value; 1767 if (P.isPHI() && P.getLoc() == Idx.asU64()) 1768 continue; 1769 1770 // Insert-or-update. 1771 auto &TransferMap = MLocTransfer[CurBB]; 1772 auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P)); 1773 if (!Result.second) 1774 Result.first->second = P; 1775 } 1776 1777 // Accumulate any bitmask operands into the clobberred reg mask for this 1778 // block. 1779 for (auto &P : MTracker->Masks) { 1780 BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords); 1781 } 1782 } 1783 1784 // Compute a bitvector of all the registers that are tracked in this block. 1785 BitVector UsedRegs(TRI->getNumRegs()); 1786 for (auto Location : MTracker->locations()) { 1787 unsigned ID = MTracker->LocIdxToLocID[Location.Idx]; 1788 // Ignore stack slots, and aliases of the stack pointer. 1789 if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID)) 1790 continue; 1791 UsedRegs.set(ID); 1792 } 1793 1794 // Check that any regmask-clobber of a register that gets tracked, is not 1795 // live-through in the transfer function. It needs to be clobbered at the 1796 // very least. 1797 for (unsigned int I = 0; I < MaxNumBlocks; ++I) { 1798 BitVector &BV = BlockMasks[I]; 1799 BV.flip(); 1800 BV &= UsedRegs; 1801 // This produces all the bits that we clobber, but also use. Check that 1802 // they're all clobbered or at least set in the designated transfer 1803 // elem. 1804 for (unsigned Bit : BV.set_bits()) { 1805 unsigned ID = MTracker->getLocID(Bit); 1806 LocIdx Idx = MTracker->LocIDToLocIdx[ID]; 1807 auto &TransferMap = MLocTransfer[I]; 1808 1809 // Install a value representing the fact that this location is effectively 1810 // written to in this block. As there's no reserved value, instead use 1811 // a value number that is never generated. Pick the value number for the 1812 // first instruction in the block, def'ing this location, which we know 1813 // this block never used anyway. 1814 ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx); 1815 auto Result = 1816 TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum)); 1817 if (!Result.second) { 1818 ValueIDNum &ValueID = Result.first->second; 1819 if (ValueID.getBlock() == I && ValueID.isPHI()) 1820 // It was left as live-through. Set it to clobbered. 1821 ValueID = NotGeneratedNum; 1822 } 1823 } 1824 } 1825 } 1826 1827 bool InstrRefBasedLDV::mlocJoin( 1828 MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1829 ValueIDNum **OutLocs, ValueIDNum *InLocs) { 1830 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 1831 bool Changed = false; 1832 1833 // Handle value-propagation when control flow merges on entry to a block. For 1834 // any location without a PHI already placed, the location has the same value 1835 // as its predecessors. If a PHI is placed, test to see whether it's now a 1836 // redundant PHI that we can eliminate. 1837 1838 SmallVector<const MachineBasicBlock *, 8> BlockOrders; 1839 for (auto Pred : MBB.predecessors()) 1840 BlockOrders.push_back(Pred); 1841 1842 // Visit predecessors in RPOT order. 1843 auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) { 1844 return BBToOrder.find(A)->second < BBToOrder.find(B)->second; 1845 }; 1846 llvm::sort(BlockOrders, Cmp); 1847 1848 // Skip entry block. 1849 if (BlockOrders.size() == 0) 1850 return false; 1851 1852 // Step through all machine locations, look at each predecessor and test 1853 // whether we can eliminate redundant PHIs. 1854 for (auto Location : MTracker->locations()) { 1855 LocIdx Idx = Location.Idx; 1856 1857 // Pick out the first predecessors live-out value for this location. It's 1858 // guaranteed to not be a backedge, as we order by RPO. 1859 ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()]; 1860 1861 // If we've already eliminated a PHI here, do no further checking, just 1862 // propagate the first live-in value into this block. 1863 if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) { 1864 if (InLocs[Idx.asU64()] != FirstVal) { 1865 InLocs[Idx.asU64()] = FirstVal; 1866 Changed |= true; 1867 } 1868 continue; 1869 } 1870 1871 // We're now examining a PHI to see whether it's un-necessary. Loop around 1872 // the other live-in values and test whether they're all the same. 1873 bool Disagree = false; 1874 for (unsigned int I = 1; I < BlockOrders.size(); ++I) { 1875 const MachineBasicBlock *PredMBB = BlockOrders[I]; 1876 const ValueIDNum &PredLiveOut = 1877 OutLocs[PredMBB->getNumber()][Idx.asU64()]; 1878 1879 // Incoming values agree, continue trying to eliminate this PHI. 1880 if (FirstVal == PredLiveOut) 1881 continue; 1882 1883 // We can also accept a PHI value that feeds back into itself. 1884 if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx)) 1885 continue; 1886 1887 // Live-out of a predecessor disagrees with the first predecessor. 1888 Disagree = true; 1889 } 1890 1891 // No disagreement? No PHI. Otherwise, leave the PHI in live-ins. 1892 if (!Disagree) { 1893 InLocs[Idx.asU64()] = FirstVal; 1894 Changed |= true; 1895 } 1896 } 1897 1898 // TODO: Reimplement NumInserted and NumRemoved. 1899 return Changed; 1900 } 1901 1902 void InstrRefBasedLDV::findStackIndexInterference( 1903 SmallVectorImpl<unsigned> &Slots) { 1904 // We could spend a bit of time finding the exact, minimal, set of stack 1905 // indexes that interfere with each other, much like reg units. Or, we can 1906 // rely on the fact that: 1907 // * The smallest / lowest index will interfere with everything at zero 1908 // offset, which will be the largest set of registers, 1909 // * Most indexes with non-zero offset will end up being interference units 1910 // anyway. 1911 // So just pick those out and return them. 1912 1913 // We can rely on a single-byte stack index existing already, because we 1914 // initialize them in MLocTracker. 1915 auto It = MTracker->StackSlotIdxes.find({8, 0}); 1916 assert(It != MTracker->StackSlotIdxes.end()); 1917 Slots.push_back(It->second); 1918 1919 // Find anything that has a non-zero offset and add that too. 1920 for (auto &Pair : MTracker->StackSlotIdxes) { 1921 // Is offset zero? If so, ignore. 1922 if (!Pair.first.second) 1923 continue; 1924 Slots.push_back(Pair.second); 1925 } 1926 } 1927 1928 void InstrRefBasedLDV::placeMLocPHIs( 1929 MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, 1930 ValueIDNum **MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) { 1931 SmallVector<unsigned, 4> StackUnits; 1932 findStackIndexInterference(StackUnits); 1933 1934 // To avoid repeatedly running the PHI placement algorithm, leverage the 1935 // fact that a def of register MUST also def its register units. Find the 1936 // units for registers, place PHIs for them, and then replicate them for 1937 // aliasing registers. Some inputs that are never def'd (DBG_PHIs of 1938 // arguments) don't lead to register units being tracked, just place PHIs for 1939 // those registers directly. Stack slots have their own form of "unit", 1940 // store them to one side. 1941 SmallSet<Register, 32> RegUnitsToPHIUp; 1942 SmallSet<LocIdx, 32> NormalLocsToPHI; 1943 SmallSet<SpillLocationNo, 32> StackSlots; 1944 for (auto Location : MTracker->locations()) { 1945 LocIdx L = Location.Idx; 1946 if (MTracker->isSpill(L)) { 1947 StackSlots.insert(MTracker->locIDToSpill(MTracker->LocIdxToLocID[L])); 1948 continue; 1949 } 1950 1951 Register R = MTracker->LocIdxToLocID[L]; 1952 SmallSet<Register, 8> FoundRegUnits; 1953 bool AnyIllegal = false; 1954 for (MCRegUnitIterator RUI(R.asMCReg(), TRI); RUI.isValid(); ++RUI) { 1955 for (MCRegUnitRootIterator URoot(*RUI, TRI); URoot.isValid(); ++URoot){ 1956 if (!MTracker->isRegisterTracked(*URoot)) { 1957 // Not all roots were loaded into the tracking map: this register 1958 // isn't actually def'd anywhere, we only read from it. Generate PHIs 1959 // for this reg, but don't iterate units. 1960 AnyIllegal = true; 1961 } else { 1962 FoundRegUnits.insert(*URoot); 1963 } 1964 } 1965 } 1966 1967 if (AnyIllegal) { 1968 NormalLocsToPHI.insert(L); 1969 continue; 1970 } 1971 1972 RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end()); 1973 } 1974 1975 // Lambda to fetch PHIs for a given location, and write into the PHIBlocks 1976 // collection. 1977 SmallVector<MachineBasicBlock *, 32> PHIBlocks; 1978 auto CollectPHIsForLoc = [&](LocIdx L) { 1979 // Collect the set of defs. 1980 SmallPtrSet<MachineBasicBlock *, 32> DefBlocks; 1981 for (unsigned int I = 0; I < OrderToBB.size(); ++I) { 1982 MachineBasicBlock *MBB = OrderToBB[I]; 1983 const auto &TransferFunc = MLocTransfer[MBB->getNumber()]; 1984 if (TransferFunc.find(L) != TransferFunc.end()) 1985 DefBlocks.insert(MBB); 1986 } 1987 1988 // The entry block defs the location too: it's the live-in / argument value. 1989 // Only insert if there are other defs though; everything is trivially live 1990 // through otherwise. 1991 if (!DefBlocks.empty()) 1992 DefBlocks.insert(&*MF.begin()); 1993 1994 // Ask the SSA construction algorithm where we should put PHIs. Clear 1995 // anything that might have been hanging around from earlier. 1996 PHIBlocks.clear(); 1997 BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks); 1998 }; 1999 2000 auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) { 2001 for (const MachineBasicBlock *MBB : PHIBlocks) 2002 MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L); 2003 }; 2004 2005 // For locations with no reg units, just place PHIs. 2006 for (LocIdx L : NormalLocsToPHI) { 2007 CollectPHIsForLoc(L); 2008 // Install those PHI values into the live-in value array. 2009 InstallPHIsAtLoc(L); 2010 } 2011 2012 // For stack slots, calculate PHIs for the equivalent of the units, then 2013 // install for each index. 2014 for (SpillLocationNo Slot : StackSlots) { 2015 for (unsigned Idx : StackUnits) { 2016 unsigned SpillID = MTracker->getSpillIDWithIdx(Slot, Idx); 2017 LocIdx L = MTracker->getSpillMLoc(SpillID); 2018 CollectPHIsForLoc(L); 2019 InstallPHIsAtLoc(L); 2020 2021 // Find anything that aliases this stack index, install PHIs for it too. 2022 unsigned Size, Offset; 2023 std::tie(Size, Offset) = MTracker->StackIdxesToPos[Idx]; 2024 for (auto &Pair : MTracker->StackSlotIdxes) { 2025 unsigned ThisSize, ThisOffset; 2026 std::tie(ThisSize, ThisOffset) = Pair.first; 2027 if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset) 2028 continue; 2029 2030 unsigned ThisID = MTracker->getSpillIDWithIdx(Slot, Pair.second); 2031 LocIdx ThisL = MTracker->getSpillMLoc(ThisID); 2032 InstallPHIsAtLoc(ThisL); 2033 } 2034 } 2035 } 2036 2037 // For reg units, place PHIs, and then place them for any aliasing registers. 2038 for (Register R : RegUnitsToPHIUp) { 2039 LocIdx L = MTracker->lookupOrTrackRegister(R); 2040 CollectPHIsForLoc(L); 2041 2042 // Install those PHI values into the live-in value array. 2043 InstallPHIsAtLoc(L); 2044 2045 // Now find aliases and install PHIs for those. 2046 for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) { 2047 // Super-registers that are "above" the largest register read/written by 2048 // the function will alias, but will not be tracked. 2049 if (!MTracker->isRegisterTracked(*RAI)) 2050 continue; 2051 2052 LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI); 2053 InstallPHIsAtLoc(AliasLoc); 2054 } 2055 } 2056 } 2057 2058 void InstrRefBasedLDV::buildMLocValueMap( 2059 MachineFunction &MF, ValueIDNum **MInLocs, ValueIDNum **MOutLocs, 2060 SmallVectorImpl<MLocTransferMap> &MLocTransfer) { 2061 std::priority_queue<unsigned int, std::vector<unsigned int>, 2062 std::greater<unsigned int>> 2063 Worklist, Pending; 2064 2065 // We track what is on the current and pending worklist to avoid inserting 2066 // the same thing twice. We could avoid this with a custom priority queue, 2067 // but this is probably not worth it. 2068 SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist; 2069 2070 // Initialize worklist with every block to be visited. Also produce list of 2071 // all blocks. 2072 SmallPtrSet<MachineBasicBlock *, 32> AllBlocks; 2073 for (unsigned int I = 0; I < BBToOrder.size(); ++I) { 2074 Worklist.push(I); 2075 OnWorklist.insert(OrderToBB[I]); 2076 AllBlocks.insert(OrderToBB[I]); 2077 } 2078 2079 // Initialize entry block to PHIs. These represent arguments. 2080 for (auto Location : MTracker->locations()) 2081 MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx); 2082 2083 MTracker->reset(); 2084 2085 // Start by placing PHIs, using the usual SSA constructor algorithm. Consider 2086 // any machine-location that isn't live-through a block to be def'd in that 2087 // block. 2088 placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer); 2089 2090 // Propagate values to eliminate redundant PHIs. At the same time, this 2091 // produces the table of Block x Location => Value for the entry to each 2092 // block. 2093 // The kind of PHIs we can eliminate are, for example, where one path in a 2094 // conditional spills and restores a register, and the register still has 2095 // the same value once control flow joins, unbeknowns to the PHI placement 2096 // code. Propagating values allows us to identify such un-necessary PHIs and 2097 // remove them. 2098 SmallPtrSet<const MachineBasicBlock *, 16> Visited; 2099 while (!Worklist.empty() || !Pending.empty()) { 2100 // Vector for storing the evaluated block transfer function. 2101 SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap; 2102 2103 while (!Worklist.empty()) { 2104 MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; 2105 CurBB = MBB->getNumber(); 2106 Worklist.pop(); 2107 2108 // Join the values in all predecessor blocks. 2109 bool InLocsChanged; 2110 InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]); 2111 InLocsChanged |= Visited.insert(MBB).second; 2112 2113 // Don't examine transfer function if we've visited this loc at least 2114 // once, and inlocs haven't changed. 2115 if (!InLocsChanged) 2116 continue; 2117 2118 // Load the current set of live-ins into MLocTracker. 2119 MTracker->loadFromArray(MInLocs[CurBB], CurBB); 2120 2121 // Each element of the transfer function can be a new def, or a read of 2122 // a live-in value. Evaluate each element, and store to "ToRemap". 2123 ToRemap.clear(); 2124 for (auto &P : MLocTransfer[CurBB]) { 2125 if (P.second.getBlock() == CurBB && P.second.isPHI()) { 2126 // This is a movement of whatever was live in. Read it. 2127 ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc()); 2128 ToRemap.push_back(std::make_pair(P.first, NewID)); 2129 } else { 2130 // It's a def. Just set it. 2131 assert(P.second.getBlock() == CurBB); 2132 ToRemap.push_back(std::make_pair(P.first, P.second)); 2133 } 2134 } 2135 2136 // Commit the transfer function changes into mloc tracker, which 2137 // transforms the contents of the MLocTracker into the live-outs. 2138 for (auto &P : ToRemap) 2139 MTracker->setMLoc(P.first, P.second); 2140 2141 // Now copy out-locs from mloc tracker into out-loc vector, checking 2142 // whether changes have occurred. These changes can have come from both 2143 // the transfer function, and mlocJoin. 2144 bool OLChanged = false; 2145 for (auto Location : MTracker->locations()) { 2146 OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value; 2147 MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value; 2148 } 2149 2150 MTracker->reset(); 2151 2152 // No need to examine successors again if out-locs didn't change. 2153 if (!OLChanged) 2154 continue; 2155 2156 // All successors should be visited: put any back-edges on the pending 2157 // list for the next pass-through, and any other successors to be 2158 // visited this pass, if they're not going to be already. 2159 for (auto s : MBB->successors()) { 2160 // Does branching to this successor represent a back-edge? 2161 if (BBToOrder[s] > BBToOrder[MBB]) { 2162 // No: visit it during this dataflow iteration. 2163 if (OnWorklist.insert(s).second) 2164 Worklist.push(BBToOrder[s]); 2165 } else { 2166 // Yes: visit it on the next iteration. 2167 if (OnPending.insert(s).second) 2168 Pending.push(BBToOrder[s]); 2169 } 2170 } 2171 } 2172 2173 Worklist.swap(Pending); 2174 std::swap(OnPending, OnWorklist); 2175 OnPending.clear(); 2176 // At this point, pending must be empty, since it was just the empty 2177 // worklist 2178 assert(Pending.empty() && "Pending should be empty"); 2179 } 2180 2181 // Once all the live-ins don't change on mlocJoin(), we've eliminated all 2182 // redundant PHIs. 2183 } 2184 2185 // Boilerplate for feeding MachineBasicBlocks into IDF calculator. Provide 2186 // template specialisations for graph traits and a successor enumerator. 2187 namespace llvm { 2188 template <> struct GraphTraits<MachineBasicBlock> { 2189 using NodeRef = MachineBasicBlock *; 2190 using ChildIteratorType = MachineBasicBlock::succ_iterator; 2191 2192 static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; } 2193 static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } 2194 static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } 2195 }; 2196 2197 template <> struct GraphTraits<const MachineBasicBlock> { 2198 using NodeRef = const MachineBasicBlock *; 2199 using ChildIteratorType = MachineBasicBlock::const_succ_iterator; 2200 2201 static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; } 2202 static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } 2203 static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } 2204 }; 2205 2206 using MachineDomTreeBase = DomTreeBase<MachineBasicBlock>::NodeType; 2207 using MachineDomTreeChildGetter = 2208 typename IDFCalculatorDetail::ChildrenGetterTy<MachineDomTreeBase, false>; 2209 2210 namespace IDFCalculatorDetail { 2211 template <> 2212 typename MachineDomTreeChildGetter::ChildrenTy 2213 MachineDomTreeChildGetter::get(const NodeRef &N) { 2214 return {N->succ_begin(), N->succ_end()}; 2215 } 2216 } // namespace IDFCalculatorDetail 2217 } // namespace llvm 2218 2219 void InstrRefBasedLDV::BlockPHIPlacement( 2220 const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks, 2221 const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks, 2222 SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) { 2223 // Apply IDF calculator to the designated set of location defs, storing 2224 // required PHIs into PHIBlocks. Uses the dominator tree stored in the 2225 // InstrRefBasedLDV object. 2226 IDFCalculatorDetail::ChildrenGetterTy<MachineDomTreeBase, false> foo; 2227 IDFCalculatorBase<MachineDomTreeBase, false> IDF(DomTree->getBase(), foo); 2228 2229 IDF.setLiveInBlocks(AllBlocks); 2230 IDF.setDefiningBlocks(DefBlocks); 2231 IDF.calculate(PHIBlocks); 2232 } 2233 2234 Optional<ValueIDNum> InstrRefBasedLDV::pickVPHILoc( 2235 const MachineBasicBlock &MBB, const DebugVariable &Var, 2236 const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs, 2237 const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) { 2238 // Collect a set of locations from predecessor where its live-out value can 2239 // be found. 2240 SmallVector<SmallVector<LocIdx, 4>, 8> Locs; 2241 SmallVector<const DbgValueProperties *, 4> Properties; 2242 unsigned NumLocs = MTracker->getNumLocs(); 2243 2244 // No predecessors means no PHIs. 2245 if (BlockOrders.empty()) 2246 return None; 2247 2248 for (auto p : BlockOrders) { 2249 unsigned ThisBBNum = p->getNumber(); 2250 auto OutValIt = LiveOuts.find(p); 2251 if (OutValIt == LiveOuts.end()) 2252 // If we have a predecessor not in scope, we'll never find a PHI position. 2253 return None; 2254 const DbgValue &OutVal = *OutValIt->second; 2255 2256 if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal) 2257 // Consts and no-values cannot have locations we can join on. 2258 return None; 2259 2260 Properties.push_back(&OutVal.Properties); 2261 2262 // Create new empty vector of locations. 2263 Locs.resize(Locs.size() + 1); 2264 2265 // If the live-in value is a def, find the locations where that value is 2266 // present. Do the same for VPHIs where we know the VPHI value. 2267 if (OutVal.Kind == DbgValue::Def || 2268 (OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() && 2269 OutVal.ID != ValueIDNum::EmptyValue)) { 2270 ValueIDNum ValToLookFor = OutVal.ID; 2271 // Search the live-outs of the predecessor for the specified value. 2272 for (unsigned int I = 0; I < NumLocs; ++I) { 2273 if (MOutLocs[ThisBBNum][I] == ValToLookFor) 2274 Locs.back().push_back(LocIdx(I)); 2275 } 2276 } else { 2277 assert(OutVal.Kind == DbgValue::VPHI); 2278 // For VPHIs where we don't know the location, we definitely can't find 2279 // a join loc. 2280 if (OutVal.BlockNo != MBB.getNumber()) 2281 return None; 2282 2283 // Otherwise: this is a VPHI on a backedge feeding back into itself, i.e. 2284 // a value that's live-through the whole loop. (It has to be a backedge, 2285 // because a block can't dominate itself). We can accept as a PHI location 2286 // any location where the other predecessors agree, _and_ the machine 2287 // locations feed back into themselves. Therefore, add all self-looping 2288 // machine-value PHI locations. 2289 for (unsigned int I = 0; I < NumLocs; ++I) { 2290 ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I)); 2291 if (MOutLocs[ThisBBNum][I] == MPHI) 2292 Locs.back().push_back(LocIdx(I)); 2293 } 2294 } 2295 } 2296 2297 // We should have found locations for all predecessors, or returned. 2298 assert(Locs.size() == BlockOrders.size()); 2299 2300 // Check that all properties are the same. We can't pick a location if they're 2301 // not. 2302 const DbgValueProperties *Properties0 = Properties[0]; 2303 for (auto *Prop : Properties) 2304 if (*Prop != *Properties0) 2305 return None; 2306 2307 // Starting with the first set of locations, take the intersection with 2308 // subsequent sets. 2309 SmallVector<LocIdx, 4> CandidateLocs = Locs[0]; 2310 for (unsigned int I = 1; I < Locs.size(); ++I) { 2311 auto &LocVec = Locs[I]; 2312 SmallVector<LocIdx, 4> NewCandidates; 2313 std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(), 2314 LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin())); 2315 CandidateLocs = NewCandidates; 2316 } 2317 if (CandidateLocs.empty()) 2318 return None; 2319 2320 // We now have a set of LocIdxes that contain the right output value in 2321 // each of the predecessors. Pick the lowest; if there's a register loc, 2322 // that'll be it. 2323 LocIdx L = *CandidateLocs.begin(); 2324 2325 // Return a PHI-value-number for the found location. 2326 ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L}; 2327 return PHIVal; 2328 } 2329 2330 bool InstrRefBasedLDV::vlocJoin( 2331 MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, 2332 SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks, 2333 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, 2334 DbgValue &LiveIn) { 2335 // To emulate VarLocBasedImpl, process this block if it's not in scope but 2336 // _does_ assign a variable value. No live-ins for this scope are transferred 2337 // in though, so we can return immediately. 2338 if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB)) 2339 return false; 2340 2341 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 2342 bool Changed = false; 2343 2344 // Order predecessors by RPOT order, for exploring them in that order. 2345 SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors()); 2346 2347 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 2348 return BBToOrder[A] < BBToOrder[B]; 2349 }; 2350 2351 llvm::sort(BlockOrders, Cmp); 2352 2353 unsigned CurBlockRPONum = BBToOrder[&MBB]; 2354 2355 // Collect all the incoming DbgValues for this variable, from predecessor 2356 // live-out values. 2357 SmallVector<InValueT, 8> Values; 2358 bool Bail = false; 2359 int BackEdgesStart = 0; 2360 for (auto p : BlockOrders) { 2361 // If the predecessor isn't in scope / to be explored, we'll never be 2362 // able to join any locations. 2363 if (!BlocksToExplore.contains(p)) { 2364 Bail = true; 2365 break; 2366 } 2367 2368 // All Live-outs will have been initialized. 2369 DbgValue &OutLoc = *VLOCOutLocs.find(p)->second; 2370 2371 // Keep track of where back-edges begin in the Values vector. Relies on 2372 // BlockOrders being sorted by RPO. 2373 unsigned ThisBBRPONum = BBToOrder[p]; 2374 if (ThisBBRPONum < CurBlockRPONum) 2375 ++BackEdgesStart; 2376 2377 Values.push_back(std::make_pair(p, &OutLoc)); 2378 } 2379 2380 // If there were no values, or one of the predecessors couldn't have a 2381 // value, then give up immediately. It's not safe to produce a live-in 2382 // value. Leave as whatever it was before. 2383 if (Bail || Values.size() == 0) 2384 return false; 2385 2386 // All (non-entry) blocks have at least one non-backedge predecessor. 2387 // Pick the variable value from the first of these, to compare against 2388 // all others. 2389 const DbgValue &FirstVal = *Values[0].second; 2390 2391 // If the old live-in value is not a PHI then either a) no PHI is needed 2392 // here, or b) we eliminated the PHI that was here. If so, we can just 2393 // propagate in the first parent's incoming value. 2394 if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) { 2395 Changed = LiveIn != FirstVal; 2396 if (Changed) 2397 LiveIn = FirstVal; 2398 return Changed; 2399 } 2400 2401 // Scan for variable values that can never be resolved: if they have 2402 // different DIExpressions, different indirectness, or are mixed constants / 2403 // non-constants. 2404 for (auto &V : Values) { 2405 if (V.second->Properties != FirstVal.Properties) 2406 return false; 2407 if (V.second->Kind == DbgValue::NoVal) 2408 return false; 2409 if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const) 2410 return false; 2411 } 2412 2413 // Try to eliminate this PHI. Do the incoming values all agree? 2414 bool Disagree = false; 2415 for (auto &V : Values) { 2416 if (*V.second == FirstVal) 2417 continue; // No disagreement. 2418 2419 // Eliminate if a backedge feeds a VPHI back into itself. 2420 if (V.second->Kind == DbgValue::VPHI && 2421 V.second->BlockNo == MBB.getNumber() && 2422 // Is this a backedge? 2423 std::distance(Values.begin(), &V) >= BackEdgesStart) 2424 continue; 2425 2426 Disagree = true; 2427 } 2428 2429 // No disagreement -> live-through value. 2430 if (!Disagree) { 2431 Changed = LiveIn != FirstVal; 2432 if (Changed) 2433 LiveIn = FirstVal; 2434 return Changed; 2435 } else { 2436 // Otherwise use a VPHI. 2437 DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI); 2438 Changed = LiveIn != VPHI; 2439 if (Changed) 2440 LiveIn = VPHI; 2441 return Changed; 2442 } 2443 } 2444 2445 void InstrRefBasedLDV::buildVLocValueMap(const DILocation *DILoc, 2446 const SmallSet<DebugVariable, 4> &VarsWeCareAbout, 2447 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output, 2448 ValueIDNum **MOutLocs, ValueIDNum **MInLocs, 2449 SmallVectorImpl<VLocTracker> &AllTheVLocs) { 2450 // This method is much like buildMLocValueMap: but focuses on a single 2451 // LexicalScope at a time. Pick out a set of blocks and variables that are 2452 // to have their value assignments solved, then run our dataflow algorithm 2453 // until a fixedpoint is reached. 2454 std::priority_queue<unsigned int, std::vector<unsigned int>, 2455 std::greater<unsigned int>> 2456 Worklist, Pending; 2457 SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending; 2458 2459 // The set of blocks we'll be examining. 2460 SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore; 2461 2462 // The order in which to examine them (RPO). 2463 SmallVector<MachineBasicBlock *, 8> BlockOrders; 2464 2465 // RPO ordering function. 2466 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 2467 return BBToOrder[A] < BBToOrder[B]; 2468 }; 2469 2470 LS.getMachineBasicBlocks(DILoc, BlocksToExplore); 2471 2472 // A separate container to distinguish "blocks we're exploring" versus 2473 // "blocks that are potentially in scope. See comment at start of vlocJoin. 2474 SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore; 2475 2476 // Old LiveDebugValues tracks variable locations that come out of blocks 2477 // not in scope, where DBG_VALUEs occur. This is something we could 2478 // legitimately ignore, but lets allow it for now. 2479 if (EmulateOldLDV) 2480 BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end()); 2481 2482 // We also need to propagate variable values through any artificial blocks 2483 // that immediately follow blocks in scope. 2484 DenseSet<const MachineBasicBlock *> ToAdd; 2485 2486 // Helper lambda: For a given block in scope, perform a depth first search 2487 // of all the artificial successors, adding them to the ToAdd collection. 2488 auto AccumulateArtificialBlocks = 2489 [this, &ToAdd, &BlocksToExplore, 2490 &InScopeBlocks](const MachineBasicBlock *MBB) { 2491 // Depth-first-search state: each node is a block and which successor 2492 // we're currently exploring. 2493 SmallVector<std::pair<const MachineBasicBlock *, 2494 MachineBasicBlock::const_succ_iterator>, 2495 8> 2496 DFS; 2497 2498 // Find any artificial successors not already tracked. 2499 for (auto *succ : MBB->successors()) { 2500 if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ)) 2501 continue; 2502 if (!ArtificialBlocks.count(succ)) 2503 continue; 2504 ToAdd.insert(succ); 2505 DFS.push_back(std::make_pair(succ, succ->succ_begin())); 2506 } 2507 2508 // Search all those blocks, depth first. 2509 while (!DFS.empty()) { 2510 const MachineBasicBlock *CurBB = DFS.back().first; 2511 MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second; 2512 // Walk back if we've explored this blocks successors to the end. 2513 if (CurSucc == CurBB->succ_end()) { 2514 DFS.pop_back(); 2515 continue; 2516 } 2517 2518 // If the current successor is artificial and unexplored, descend into 2519 // it. 2520 if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) { 2521 ToAdd.insert(*CurSucc); 2522 DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin())); 2523 continue; 2524 } 2525 2526 ++CurSucc; 2527 } 2528 }; 2529 2530 // Search in-scope blocks and those containing a DBG_VALUE from this scope 2531 // for artificial successors. 2532 for (auto *MBB : BlocksToExplore) 2533 AccumulateArtificialBlocks(MBB); 2534 for (auto *MBB : InScopeBlocks) 2535 AccumulateArtificialBlocks(MBB); 2536 2537 BlocksToExplore.insert(ToAdd.begin(), ToAdd.end()); 2538 InScopeBlocks.insert(ToAdd.begin(), ToAdd.end()); 2539 2540 // Single block scope: not interesting! No propagation at all. Note that 2541 // this could probably go above ArtificialBlocks without damage, but 2542 // that then produces output differences from original-live-debug-values, 2543 // which propagates from a single block into many artificial ones. 2544 if (BlocksToExplore.size() == 1) 2545 return; 2546 2547 // Convert a const set to a non-const set. LexicalScopes 2548 // getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones. 2549 // (Neither of them mutate anything). 2550 SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore; 2551 for (const auto *MBB : BlocksToExplore) 2552 MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB)); 2553 2554 // Picks out relevants blocks RPO order and sort them. 2555 for (auto *MBB : BlocksToExplore) 2556 BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB)); 2557 2558 llvm::sort(BlockOrders, Cmp); 2559 unsigned NumBlocks = BlockOrders.size(); 2560 2561 // Allocate some vectors for storing the live ins and live outs. Large. 2562 SmallVector<DbgValue, 32> LiveIns, LiveOuts; 2563 LiveIns.reserve(NumBlocks); 2564 LiveOuts.reserve(NumBlocks); 2565 2566 // Initialize all values to start as NoVals. This signifies "it's live 2567 // through, but we don't know what it is". 2568 DbgValueProperties EmptyProperties(EmptyExpr, false); 2569 for (unsigned int I = 0; I < NumBlocks; ++I) { 2570 DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal); 2571 LiveIns.push_back(EmptyDbgValue); 2572 LiveOuts.push_back(EmptyDbgValue); 2573 } 2574 2575 // Produce by-MBB indexes of live-in/live-outs, to ease lookup within 2576 // vlocJoin. 2577 LiveIdxT LiveOutIdx, LiveInIdx; 2578 LiveOutIdx.reserve(NumBlocks); 2579 LiveInIdx.reserve(NumBlocks); 2580 for (unsigned I = 0; I < NumBlocks; ++I) { 2581 LiveOutIdx[BlockOrders[I]] = &LiveOuts[I]; 2582 LiveInIdx[BlockOrders[I]] = &LiveIns[I]; 2583 } 2584 2585 // Loop over each variable and place PHIs for it, then propagate values 2586 // between blocks. This keeps the locality of working on one lexical scope at 2587 // at time, but avoids re-processing variable values because some other 2588 // variable has been assigned. 2589 for (auto &Var : VarsWeCareAbout) { 2590 // Re-initialize live-ins and live-outs, to clear the remains of previous 2591 // variables live-ins / live-outs. 2592 for (unsigned int I = 0; I < NumBlocks; ++I) { 2593 DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal); 2594 LiveIns[I] = EmptyDbgValue; 2595 LiveOuts[I] = EmptyDbgValue; 2596 } 2597 2598 // Place PHIs for variable values, using the LLVM IDF calculator. 2599 // Collect the set of blocks where variables are def'd. 2600 SmallPtrSet<MachineBasicBlock *, 32> DefBlocks; 2601 for (const MachineBasicBlock *ExpMBB : BlocksToExplore) { 2602 auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars; 2603 if (TransferFunc.find(Var) != TransferFunc.end()) 2604 DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB)); 2605 } 2606 2607 SmallVector<MachineBasicBlock *, 32> PHIBlocks; 2608 2609 // Request the set of PHIs we should insert for this variable. 2610 BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks); 2611 2612 // Insert PHIs into the per-block live-in tables for this variable. 2613 for (MachineBasicBlock *PHIMBB : PHIBlocks) { 2614 unsigned BlockNo = PHIMBB->getNumber(); 2615 DbgValue *LiveIn = LiveInIdx[PHIMBB]; 2616 *LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI); 2617 } 2618 2619 for (auto *MBB : BlockOrders) { 2620 Worklist.push(BBToOrder[MBB]); 2621 OnWorklist.insert(MBB); 2622 } 2623 2624 // Iterate over all the blocks we selected, propagating the variables value. 2625 // This loop does two things: 2626 // * Eliminates un-necessary VPHIs in vlocJoin, 2627 // * Evaluates the blocks transfer function (i.e. variable assignments) and 2628 // stores the result to the blocks live-outs. 2629 // Always evaluate the transfer function on the first iteration, and when 2630 // the live-ins change thereafter. 2631 bool FirstTrip = true; 2632 while (!Worklist.empty() || !Pending.empty()) { 2633 while (!Worklist.empty()) { 2634 auto *MBB = OrderToBB[Worklist.top()]; 2635 CurBB = MBB->getNumber(); 2636 Worklist.pop(); 2637 2638 auto LiveInsIt = LiveInIdx.find(MBB); 2639 assert(LiveInsIt != LiveInIdx.end()); 2640 DbgValue *LiveIn = LiveInsIt->second; 2641 2642 // Join values from predecessors. Updates LiveInIdx, and writes output 2643 // into JoinedInLocs. 2644 bool InLocsChanged = 2645 vlocJoin(*MBB, LiveOutIdx, InScopeBlocks, BlocksToExplore, *LiveIn); 2646 2647 SmallVector<const MachineBasicBlock *, 8> Preds; 2648 for (const auto *Pred : MBB->predecessors()) 2649 Preds.push_back(Pred); 2650 2651 // If this block's live-in value is a VPHI, try to pick a machine-value 2652 // for it. This makes the machine-value available and propagated 2653 // through all blocks by the time value propagation finishes. We can't 2654 // do this any earlier as it needs to read the block live-outs. 2655 if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) { 2656 // There's a small possibility that on a preceeding path, a VPHI is 2657 // eliminated and transitions from VPHI-with-location to 2658 // live-through-value. As a result, the selected location of any VPHI 2659 // might change, so we need to re-compute it on each iteration. 2660 Optional<ValueIDNum> ValueNum = 2661 pickVPHILoc(*MBB, Var, LiveOutIdx, MOutLocs, Preds); 2662 2663 if (ValueNum) { 2664 InLocsChanged |= LiveIn->ID != *ValueNum; 2665 LiveIn->ID = *ValueNum; 2666 } 2667 } 2668 2669 if (!InLocsChanged && !FirstTrip) 2670 continue; 2671 2672 DbgValue *LiveOut = LiveOutIdx[MBB]; 2673 bool OLChanged = false; 2674 2675 // Do transfer function. 2676 auto &VTracker = AllTheVLocs[MBB->getNumber()]; 2677 auto TransferIt = VTracker.Vars.find(Var); 2678 if (TransferIt != VTracker.Vars.end()) { 2679 // Erase on empty transfer (DBG_VALUE $noreg). 2680 if (TransferIt->second.Kind == DbgValue::Undef) { 2681 DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal); 2682 if (*LiveOut != NewVal) { 2683 *LiveOut = NewVal; 2684 OLChanged = true; 2685 } 2686 } else { 2687 // Insert new variable value; or overwrite. 2688 if (*LiveOut != TransferIt->second) { 2689 *LiveOut = TransferIt->second; 2690 OLChanged = true; 2691 } 2692 } 2693 } else { 2694 // Just copy live-ins to live-outs, for anything not transferred. 2695 if (*LiveOut != *LiveIn) { 2696 *LiveOut = *LiveIn; 2697 OLChanged = true; 2698 } 2699 } 2700 2701 // If no live-out value changed, there's no need to explore further. 2702 if (!OLChanged) 2703 continue; 2704 2705 // We should visit all successors. Ensure we'll visit any non-backedge 2706 // successors during this dataflow iteration; book backedge successors 2707 // to be visited next time around. 2708 for (auto s : MBB->successors()) { 2709 // Ignore out of scope / not-to-be-explored successors. 2710 if (LiveInIdx.find(s) == LiveInIdx.end()) 2711 continue; 2712 2713 if (BBToOrder[s] > BBToOrder[MBB]) { 2714 if (OnWorklist.insert(s).second) 2715 Worklist.push(BBToOrder[s]); 2716 } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) { 2717 Pending.push(BBToOrder[s]); 2718 } 2719 } 2720 } 2721 Worklist.swap(Pending); 2722 std::swap(OnWorklist, OnPending); 2723 OnPending.clear(); 2724 assert(Pending.empty()); 2725 FirstTrip = false; 2726 } 2727 2728 // Save live-ins to output vector. Ignore any that are still marked as being 2729 // VPHIs with no location -- those are variables that we know the value of, 2730 // but are not actually available in the register file. 2731 for (auto *MBB : BlockOrders) { 2732 DbgValue *BlockLiveIn = LiveInIdx[MBB]; 2733 if (BlockLiveIn->Kind == DbgValue::NoVal) 2734 continue; 2735 if (BlockLiveIn->Kind == DbgValue::VPHI && 2736 BlockLiveIn->ID == ValueIDNum::EmptyValue) 2737 continue; 2738 if (BlockLiveIn->Kind == DbgValue::VPHI) 2739 BlockLiveIn->Kind = DbgValue::Def; 2740 Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn)); 2741 } 2742 } // Per-variable loop. 2743 2744 BlockOrders.clear(); 2745 BlocksToExplore.clear(); 2746 } 2747 2748 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2749 void InstrRefBasedLDV::dump_mloc_transfer( 2750 const MLocTransferMap &mloc_transfer) const { 2751 for (auto &P : mloc_transfer) { 2752 std::string foo = MTracker->LocIdxToName(P.first); 2753 std::string bar = MTracker->IDAsString(P.second); 2754 dbgs() << "Loc " << foo << " --> " << bar << "\n"; 2755 } 2756 } 2757 #endif 2758 2759 void InstrRefBasedLDV::emitLocations( 2760 MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MOutLocs, 2761 ValueIDNum **MInLocs, DenseMap<DebugVariable, unsigned> &AllVarsNumbering, 2762 const TargetPassConfig &TPC) { 2763 TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC); 2764 unsigned NumLocs = MTracker->getNumLocs(); 2765 2766 // For each block, load in the machine value locations and variable value 2767 // live-ins, then step through each instruction in the block. New DBG_VALUEs 2768 // to be inserted will be created along the way. 2769 for (MachineBasicBlock &MBB : MF) { 2770 unsigned bbnum = MBB.getNumber(); 2771 MTracker->reset(); 2772 MTracker->loadFromArray(MInLocs[bbnum], bbnum); 2773 TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()], 2774 NumLocs); 2775 2776 CurBB = bbnum; 2777 CurInst = 1; 2778 for (auto &MI : MBB) { 2779 process(MI, MOutLocs, MInLocs); 2780 TTracker->checkInstForNewValues(CurInst, MI.getIterator()); 2781 ++CurInst; 2782 } 2783 } 2784 2785 // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer 2786 // in DWARF in different orders. Use the order that they appear when walking 2787 // through each block / each instruction, stored in AllVarsNumbering. 2788 auto OrderDbgValues = [&](const MachineInstr *A, 2789 const MachineInstr *B) -> bool { 2790 DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(), 2791 A->getDebugLoc()->getInlinedAt()); 2792 DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(), 2793 B->getDebugLoc()->getInlinedAt()); 2794 return AllVarsNumbering.find(VarA)->second < 2795 AllVarsNumbering.find(VarB)->second; 2796 }; 2797 2798 // Go through all the transfers recorded in the TransferTracker -- this is 2799 // both the live-ins to a block, and any movements of values that happen 2800 // in the middle. 2801 for (auto &P : TTracker->Transfers) { 2802 // Sort them according to appearance order. 2803 llvm::sort(P.Insts, OrderDbgValues); 2804 // Insert either before or after the designated point... 2805 if (P.MBB) { 2806 MachineBasicBlock &MBB = *P.MBB; 2807 for (auto *MI : P.Insts) { 2808 MBB.insert(P.Pos, MI); 2809 } 2810 } else { 2811 // Terminators, like tail calls, can clobber things. Don't try and place 2812 // transfers after them. 2813 if (P.Pos->isTerminator()) 2814 continue; 2815 2816 MachineBasicBlock &MBB = *P.Pos->getParent(); 2817 for (auto *MI : P.Insts) { 2818 MBB.insertAfterBundle(P.Pos, MI); 2819 } 2820 } 2821 } 2822 } 2823 2824 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) { 2825 // Build some useful data structures. 2826 2827 LLVMContext &Context = MF.getFunction().getContext(); 2828 EmptyExpr = DIExpression::get(Context, {}); 2829 2830 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { 2831 if (const DebugLoc &DL = MI.getDebugLoc()) 2832 return DL.getLine() != 0; 2833 return false; 2834 }; 2835 // Collect a set of all the artificial blocks. 2836 for (auto &MBB : MF) 2837 if (none_of(MBB.instrs(), hasNonArtificialLocation)) 2838 ArtificialBlocks.insert(&MBB); 2839 2840 // Compute mappings of block <=> RPO order. 2841 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 2842 unsigned int RPONumber = 0; 2843 for (MachineBasicBlock *MBB : RPOT) { 2844 OrderToBB[RPONumber] = MBB; 2845 BBToOrder[MBB] = RPONumber; 2846 BBNumToRPO[MBB->getNumber()] = RPONumber; 2847 ++RPONumber; 2848 } 2849 2850 // Order value substitutions by their "source" operand pair, for quick lookup. 2851 llvm::sort(MF.DebugValueSubstitutions); 2852 2853 #ifdef EXPENSIVE_CHECKS 2854 // As an expensive check, test whether there are any duplicate substitution 2855 // sources in the collection. 2856 if (MF.DebugValueSubstitutions.size() > 2) { 2857 for (auto It = MF.DebugValueSubstitutions.begin(); 2858 It != std::prev(MF.DebugValueSubstitutions.end()); ++It) { 2859 assert(It->Src != std::next(It)->Src && "Duplicate variable location " 2860 "substitution seen"); 2861 } 2862 } 2863 #endif 2864 } 2865 2866 /// Calculate the liveness information for the given machine function and 2867 /// extend ranges across basic blocks. 2868 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF, 2869 MachineDominatorTree *DomTree, 2870 TargetPassConfig *TPC, 2871 unsigned InputBBLimit, 2872 unsigned InputDbgValLimit) { 2873 // No subprogram means this function contains no debuginfo. 2874 if (!MF.getFunction().getSubprogram()) 2875 return false; 2876 2877 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); 2878 this->TPC = TPC; 2879 2880 this->DomTree = DomTree; 2881 TRI = MF.getSubtarget().getRegisterInfo(); 2882 MRI = &MF.getRegInfo(); 2883 TII = MF.getSubtarget().getInstrInfo(); 2884 TFI = MF.getSubtarget().getFrameLowering(); 2885 TFI->getCalleeSaves(MF, CalleeSavedRegs); 2886 MFI = &MF.getFrameInfo(); 2887 LS.initialize(MF); 2888 2889 MTracker = 2890 new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering()); 2891 VTracker = nullptr; 2892 TTracker = nullptr; 2893 2894 SmallVector<MLocTransferMap, 32> MLocTransfer; 2895 SmallVector<VLocTracker, 8> vlocs; 2896 LiveInsT SavedLiveIns; 2897 2898 int MaxNumBlocks = -1; 2899 for (auto &MBB : MF) 2900 MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks); 2901 assert(MaxNumBlocks >= 0); 2902 ++MaxNumBlocks; 2903 2904 MLocTransfer.resize(MaxNumBlocks); 2905 vlocs.resize(MaxNumBlocks); 2906 SavedLiveIns.resize(MaxNumBlocks); 2907 2908 initialSetup(MF); 2909 2910 produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks); 2911 2912 // Allocate and initialize two array-of-arrays for the live-in and live-out 2913 // machine values. The outer dimension is the block number; while the inner 2914 // dimension is a LocIdx from MLocTracker. 2915 ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks]; 2916 ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks]; 2917 unsigned NumLocs = MTracker->getNumLocs(); 2918 for (int i = 0; i < MaxNumBlocks; ++i) { 2919 // These all auto-initialize to ValueIDNum::EmptyValue 2920 MOutLocs[i] = new ValueIDNum[NumLocs]; 2921 MInLocs[i] = new ValueIDNum[NumLocs]; 2922 } 2923 2924 // Solve the machine value dataflow problem using the MLocTransfer function, 2925 // storing the computed live-ins / live-outs into the array-of-arrays. We use 2926 // both live-ins and live-outs for decision making in the variable value 2927 // dataflow problem. 2928 buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer); 2929 2930 // Patch up debug phi numbers, turning unknown block-live-in values into 2931 // either live-through machine values, or PHIs. 2932 for (auto &DBG_PHI : DebugPHINumToValue) { 2933 // Identify unresolved block-live-ins. 2934 ValueIDNum &Num = DBG_PHI.ValueRead; 2935 if (!Num.isPHI()) 2936 continue; 2937 2938 unsigned BlockNo = Num.getBlock(); 2939 LocIdx LocNo = Num.getLoc(); 2940 Num = MInLocs[BlockNo][LocNo.asU64()]; 2941 } 2942 // Later, we'll be looking up ranges of instruction numbers. 2943 llvm::sort(DebugPHINumToValue); 2944 2945 // Walk back through each block / instruction, collecting DBG_VALUE 2946 // instructions and recording what machine value their operands refer to. 2947 for (auto &OrderPair : OrderToBB) { 2948 MachineBasicBlock &MBB = *OrderPair.second; 2949 CurBB = MBB.getNumber(); 2950 VTracker = &vlocs[CurBB]; 2951 VTracker->MBB = &MBB; 2952 MTracker->loadFromArray(MInLocs[CurBB], CurBB); 2953 CurInst = 1; 2954 for (auto &MI : MBB) { 2955 process(MI, MOutLocs, MInLocs); 2956 ++CurInst; 2957 } 2958 MTracker->reset(); 2959 } 2960 2961 // Number all variables in the order that they appear, to be used as a stable 2962 // insertion order later. 2963 DenseMap<DebugVariable, unsigned> AllVarsNumbering; 2964 2965 // Map from one LexicalScope to all the variables in that scope. 2966 DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars; 2967 2968 // Map from One lexical scope to all blocks in that scope. 2969 DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>> 2970 ScopeToBlocks; 2971 2972 // Store a DILocation that describes a scope. 2973 DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation; 2974 2975 // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise 2976 // the order is unimportant, it just has to be stable. 2977 unsigned VarAssignCount = 0; 2978 for (unsigned int I = 0; I < OrderToBB.size(); ++I) { 2979 auto *MBB = OrderToBB[I]; 2980 auto *VTracker = &vlocs[MBB->getNumber()]; 2981 // Collect each variable with a DBG_VALUE in this block. 2982 for (auto &idx : VTracker->Vars) { 2983 const auto &Var = idx.first; 2984 const DILocation *ScopeLoc = VTracker->Scopes[Var]; 2985 assert(ScopeLoc != nullptr); 2986 auto *Scope = LS.findLexicalScope(ScopeLoc); 2987 2988 // No insts in scope -> shouldn't have been recorded. 2989 assert(Scope != nullptr); 2990 2991 AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size())); 2992 ScopeToVars[Scope].insert(Var); 2993 ScopeToBlocks[Scope].insert(VTracker->MBB); 2994 ScopeToDILocation[Scope] = ScopeLoc; 2995 ++VarAssignCount; 2996 } 2997 } 2998 2999 bool Changed = false; 3000 3001 // If we have an extremely large number of variable assignments and blocks, 3002 // bail out at this point. We've burnt some time doing analysis already, 3003 // however we should cut our losses. 3004 if ((unsigned)MaxNumBlocks > InputBBLimit && 3005 VarAssignCount > InputDbgValLimit) { 3006 LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName() 3007 << " has " << MaxNumBlocks << " basic blocks and " 3008 << VarAssignCount 3009 << " variable assignments, exceeding limits.\n"); 3010 } else { 3011 // Compute the extended ranges, iterating over scopes. There might be 3012 // something to be said for ordering them by size/locality, but that's for 3013 // the future. For each scope, solve the variable value problem, producing 3014 // a map of variables to values in SavedLiveIns. 3015 for (auto &P : ScopeToVars) { 3016 buildVLocValueMap(ScopeToDILocation[P.first], P.second, 3017 ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs, 3018 vlocs); 3019 } 3020 3021 // Using the computed value locations and variable values for each block, 3022 // create the DBG_VALUE instructions representing the extended variable 3023 // locations. 3024 emitLocations(MF, SavedLiveIns, MOutLocs, MInLocs, AllVarsNumbering, *TPC); 3025 3026 // Did we actually make any changes? If we created any DBG_VALUEs, then yes. 3027 Changed = TTracker->Transfers.size() != 0; 3028 } 3029 3030 // Common clean-up of memory. 3031 for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) { 3032 delete[] MOutLocs[Idx]; 3033 delete[] MInLocs[Idx]; 3034 } 3035 delete[] MOutLocs; 3036 delete[] MInLocs; 3037 3038 delete MTracker; 3039 delete TTracker; 3040 MTracker = nullptr; 3041 VTracker = nullptr; 3042 TTracker = nullptr; 3043 3044 ArtificialBlocks.clear(); 3045 OrderToBB.clear(); 3046 BBToOrder.clear(); 3047 BBNumToRPO.clear(); 3048 DebugInstrNumToInstr.clear(); 3049 DebugPHINumToValue.clear(); 3050 3051 return Changed; 3052 } 3053 3054 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() { 3055 return new InstrRefBasedLDV(); 3056 } 3057 3058 namespace { 3059 class LDVSSABlock; 3060 class LDVSSAUpdater; 3061 3062 // Pick a type to identify incoming block values as we construct SSA. We 3063 // can't use anything more robust than an integer unfortunately, as SSAUpdater 3064 // expects to zero-initialize the type. 3065 typedef uint64_t BlockValueNum; 3066 3067 /// Represents an SSA PHI node for the SSA updater class. Contains the block 3068 /// this PHI is in, the value number it would have, and the expected incoming 3069 /// values from parent blocks. 3070 class LDVSSAPhi { 3071 public: 3072 SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues; 3073 LDVSSABlock *ParentBlock; 3074 BlockValueNum PHIValNum; 3075 LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock) 3076 : ParentBlock(ParentBlock), PHIValNum(PHIValNum) {} 3077 3078 LDVSSABlock *getParent() { return ParentBlock; } 3079 }; 3080 3081 /// Thin wrapper around a block predecessor iterator. Only difference from a 3082 /// normal block iterator is that it dereferences to an LDVSSABlock. 3083 class LDVSSABlockIterator { 3084 public: 3085 MachineBasicBlock::pred_iterator PredIt; 3086 LDVSSAUpdater &Updater; 3087 3088 LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt, 3089 LDVSSAUpdater &Updater) 3090 : PredIt(PredIt), Updater(Updater) {} 3091 3092 bool operator!=(const LDVSSABlockIterator &OtherIt) const { 3093 return OtherIt.PredIt != PredIt; 3094 } 3095 3096 LDVSSABlockIterator &operator++() { 3097 ++PredIt; 3098 return *this; 3099 } 3100 3101 LDVSSABlock *operator*(); 3102 }; 3103 3104 /// Thin wrapper around a block for SSA Updater interface. Necessary because 3105 /// we need to track the PHI value(s) that we may have observed as necessary 3106 /// in this block. 3107 class LDVSSABlock { 3108 public: 3109 MachineBasicBlock &BB; 3110 LDVSSAUpdater &Updater; 3111 using PHIListT = SmallVector<LDVSSAPhi, 1>; 3112 /// List of PHIs in this block. There should only ever be one. 3113 PHIListT PHIList; 3114 3115 LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater) 3116 : BB(BB), Updater(Updater) {} 3117 3118 LDVSSABlockIterator succ_begin() { 3119 return LDVSSABlockIterator(BB.succ_begin(), Updater); 3120 } 3121 3122 LDVSSABlockIterator succ_end() { 3123 return LDVSSABlockIterator(BB.succ_end(), Updater); 3124 } 3125 3126 /// SSAUpdater has requested a PHI: create that within this block record. 3127 LDVSSAPhi *newPHI(BlockValueNum Value) { 3128 PHIList.emplace_back(Value, this); 3129 return &PHIList.back(); 3130 } 3131 3132 /// SSAUpdater wishes to know what PHIs already exist in this block. 3133 PHIListT &phis() { return PHIList; } 3134 }; 3135 3136 /// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values 3137 /// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to 3138 // SSAUpdaterTraits<LDVSSAUpdater>. 3139 class LDVSSAUpdater { 3140 public: 3141 /// Map of value numbers to PHI records. 3142 DenseMap<BlockValueNum, LDVSSAPhi *> PHIs; 3143 /// Map of which blocks generate Undef values -- blocks that are not 3144 /// dominated by any Def. 3145 DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap; 3146 /// Map of machine blocks to our own records of them. 3147 DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap; 3148 /// Machine location where any PHI must occur. 3149 LocIdx Loc; 3150 /// Table of live-in machine value numbers for blocks / locations. 3151 ValueIDNum **MLiveIns; 3152 3153 LDVSSAUpdater(LocIdx L, ValueIDNum **MLiveIns) : Loc(L), MLiveIns(MLiveIns) {} 3154 3155 void reset() { 3156 for (auto &Block : BlockMap) 3157 delete Block.second; 3158 3159 PHIs.clear(); 3160 UndefMap.clear(); 3161 BlockMap.clear(); 3162 } 3163 3164 ~LDVSSAUpdater() { reset(); } 3165 3166 /// For a given MBB, create a wrapper block for it. Stores it in the 3167 /// LDVSSAUpdater block map. 3168 LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) { 3169 auto it = BlockMap.find(BB); 3170 if (it == BlockMap.end()) { 3171 BlockMap[BB] = new LDVSSABlock(*BB, *this); 3172 it = BlockMap.find(BB); 3173 } 3174 return it->second; 3175 } 3176 3177 /// Find the live-in value number for the given block. Looks up the value at 3178 /// the PHI location on entry. 3179 BlockValueNum getValue(LDVSSABlock *LDVBB) { 3180 return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64(); 3181 } 3182 }; 3183 3184 LDVSSABlock *LDVSSABlockIterator::operator*() { 3185 return Updater.getSSALDVBlock(*PredIt); 3186 } 3187 3188 #ifndef NDEBUG 3189 3190 raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) { 3191 out << "SSALDVPHI " << PHI.PHIValNum; 3192 return out; 3193 } 3194 3195 #endif 3196 3197 } // namespace 3198 3199 namespace llvm { 3200 3201 /// Template specialization to give SSAUpdater access to CFG and value 3202 /// information. SSAUpdater calls methods in these traits, passing in the 3203 /// LDVSSAUpdater object, to learn about blocks and the values they define. 3204 /// It also provides methods to create PHI nodes and track them. 3205 template <> class SSAUpdaterTraits<LDVSSAUpdater> { 3206 public: 3207 using BlkT = LDVSSABlock; 3208 using ValT = BlockValueNum; 3209 using PhiT = LDVSSAPhi; 3210 using BlkSucc_iterator = LDVSSABlockIterator; 3211 3212 // Methods to access block successors -- dereferencing to our wrapper class. 3213 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); } 3214 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); } 3215 3216 /// Iterator for PHI operands. 3217 class PHI_iterator { 3218 private: 3219 LDVSSAPhi *PHI; 3220 unsigned Idx; 3221 3222 public: 3223 explicit PHI_iterator(LDVSSAPhi *P) // begin iterator 3224 : PHI(P), Idx(0) {} 3225 PHI_iterator(LDVSSAPhi *P, bool) // end iterator 3226 : PHI(P), Idx(PHI->IncomingValues.size()) {} 3227 3228 PHI_iterator &operator++() { 3229 Idx++; 3230 return *this; 3231 } 3232 bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; } 3233 bool operator!=(const PHI_iterator &X) const { return !operator==(X); } 3234 3235 BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; } 3236 3237 LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; } 3238 }; 3239 3240 static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } 3241 3242 static inline PHI_iterator PHI_end(PhiT *PHI) { 3243 return PHI_iterator(PHI, true); 3244 } 3245 3246 /// FindPredecessorBlocks - Put the predecessors of BB into the Preds 3247 /// vector. 3248 static void FindPredecessorBlocks(LDVSSABlock *BB, 3249 SmallVectorImpl<LDVSSABlock *> *Preds) { 3250 for (MachineBasicBlock *Pred : BB->BB.predecessors()) 3251 Preds->push_back(BB->Updater.getSSALDVBlock(Pred)); 3252 } 3253 3254 /// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new 3255 /// register. For LiveDebugValues, represents a block identified as not having 3256 /// any DBG_PHI predecessors. 3257 static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) { 3258 // Create a value number for this block -- it needs to be unique and in the 3259 // "undef" collection, so that we know it's not real. Use a number 3260 // representing a PHI into this block. 3261 BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64(); 3262 Updater->UndefMap[&BB->BB] = Num; 3263 return Num; 3264 } 3265 3266 /// CreateEmptyPHI - Create a (representation of a) PHI in the given block. 3267 /// SSAUpdater will populate it with information about incoming values. The 3268 /// value number of this PHI is whatever the machine value number problem 3269 /// solution determined it to be. This includes non-phi values if SSAUpdater 3270 /// tries to create a PHI where the incoming values are identical. 3271 static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds, 3272 LDVSSAUpdater *Updater) { 3273 BlockValueNum PHIValNum = Updater->getValue(BB); 3274 LDVSSAPhi *PHI = BB->newPHI(PHIValNum); 3275 Updater->PHIs[PHIValNum] = PHI; 3276 return PHIValNum; 3277 } 3278 3279 /// AddPHIOperand - Add the specified value as an operand of the PHI for 3280 /// the specified predecessor block. 3281 static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) { 3282 PHI->IncomingValues.push_back(std::make_pair(Pred, Val)); 3283 } 3284 3285 /// ValueIsPHI - Check if the instruction that defines the specified value 3286 /// is a PHI instruction. 3287 static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) { 3288 auto PHIIt = Updater->PHIs.find(Val); 3289 if (PHIIt == Updater->PHIs.end()) 3290 return nullptr; 3291 return PHIIt->second; 3292 } 3293 3294 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source 3295 /// operands, i.e., it was just added. 3296 static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) { 3297 LDVSSAPhi *PHI = ValueIsPHI(Val, Updater); 3298 if (PHI && PHI->IncomingValues.size() == 0) 3299 return PHI; 3300 return nullptr; 3301 } 3302 3303 /// GetPHIValue - For the specified PHI instruction, return the value 3304 /// that it defines. 3305 static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; } 3306 }; 3307 3308 } // end namespace llvm 3309 3310 Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(MachineFunction &MF, 3311 ValueIDNum **MLiveOuts, 3312 ValueIDNum **MLiveIns, 3313 MachineInstr &Here, 3314 uint64_t InstrNum) { 3315 // Pick out records of DBG_PHI instructions that have been observed. If there 3316 // are none, then we cannot compute a value number. 3317 auto RangePair = std::equal_range(DebugPHINumToValue.begin(), 3318 DebugPHINumToValue.end(), InstrNum); 3319 auto LowerIt = RangePair.first; 3320 auto UpperIt = RangePair.second; 3321 3322 // No DBG_PHI means there can be no location. 3323 if (LowerIt == UpperIt) 3324 return None; 3325 3326 // If there's only one DBG_PHI, then that is our value number. 3327 if (std::distance(LowerIt, UpperIt) == 1) 3328 return LowerIt->ValueRead; 3329 3330 auto DBGPHIRange = make_range(LowerIt, UpperIt); 3331 3332 // Pick out the location (physreg, slot) where any PHIs must occur. It's 3333 // technically possible for us to merge values in different registers in each 3334 // block, but highly unlikely that LLVM will generate such code after register 3335 // allocation. 3336 LocIdx Loc = LowerIt->ReadLoc; 3337 3338 // We have several DBG_PHIs, and a use position (the Here inst). All each 3339 // DBG_PHI does is identify a value at a program position. We can treat each 3340 // DBG_PHI like it's a Def of a value, and the use position is a Use of a 3341 // value, just like SSA. We use the bulk-standard LLVM SSA updater class to 3342 // determine which Def is used at the Use, and any PHIs that happen along 3343 // the way. 3344 // Adapted LLVM SSA Updater: 3345 LDVSSAUpdater Updater(Loc, MLiveIns); 3346 // Map of which Def or PHI is the current value in each block. 3347 DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues; 3348 // Set of PHIs that we have created along the way. 3349 SmallVector<LDVSSAPhi *, 8> CreatedPHIs; 3350 3351 // Each existing DBG_PHI is a Def'd value under this model. Record these Defs 3352 // for the SSAUpdater. 3353 for (const auto &DBG_PHI : DBGPHIRange) { 3354 LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB); 3355 const ValueIDNum &Num = DBG_PHI.ValueRead; 3356 AvailableValues.insert(std::make_pair(Block, Num.asU64())); 3357 } 3358 3359 LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent()); 3360 const auto &AvailIt = AvailableValues.find(HereBlock); 3361 if (AvailIt != AvailableValues.end()) { 3362 // Actually, we already know what the value is -- the Use is in the same 3363 // block as the Def. 3364 return ValueIDNum::fromU64(AvailIt->second); 3365 } 3366 3367 // Otherwise, we must use the SSA Updater. It will identify the value number 3368 // that we are to use, and the PHIs that must happen along the way. 3369 SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs); 3370 BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent())); 3371 ValueIDNum Result = ValueIDNum::fromU64(ResultInt); 3372 3373 // We have the number for a PHI, or possibly live-through value, to be used 3374 // at this Use. There are a number of things we have to check about it though: 3375 // * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this 3376 // Use was not completely dominated by DBG_PHIs and we should abort. 3377 // * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that 3378 // we've left SSA form. Validate that the inputs to each PHI are the 3379 // expected values. 3380 // * Is a PHI we've created actually a merging of values, or are all the 3381 // predecessor values the same, leading to a non-PHI machine value number? 3382 // (SSAUpdater doesn't know that either). Remap validated PHIs into the 3383 // the ValidatedValues collection below to sort this out. 3384 DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues; 3385 3386 // Define all the input DBG_PHI values in ValidatedValues. 3387 for (const auto &DBG_PHI : DBGPHIRange) { 3388 LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB); 3389 const ValueIDNum &Num = DBG_PHI.ValueRead; 3390 ValidatedValues.insert(std::make_pair(Block, Num)); 3391 } 3392 3393 // Sort PHIs to validate into RPO-order. 3394 SmallVector<LDVSSAPhi *, 8> SortedPHIs; 3395 for (auto &PHI : CreatedPHIs) 3396 SortedPHIs.push_back(PHI); 3397 3398 std::sort( 3399 SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) { 3400 return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB]; 3401 }); 3402 3403 for (auto &PHI : SortedPHIs) { 3404 ValueIDNum ThisBlockValueNum = 3405 MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()]; 3406 3407 // Are all these things actually defined? 3408 for (auto &PHIIt : PHI->IncomingValues) { 3409 // Any undef input means DBG_PHIs didn't dominate the use point. 3410 if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end()) 3411 return None; 3412 3413 ValueIDNum ValueToCheck; 3414 ValueIDNum *BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()]; 3415 3416 auto VVal = ValidatedValues.find(PHIIt.first); 3417 if (VVal == ValidatedValues.end()) { 3418 // We cross a loop, and this is a backedge. LLVMs tail duplication 3419 // happens so late that DBG_PHI instructions should not be able to 3420 // migrate into loops -- meaning we can only be live-through this 3421 // loop. 3422 ValueToCheck = ThisBlockValueNum; 3423 } else { 3424 // Does the block have as a live-out, in the location we're examining, 3425 // the value that we expect? If not, it's been moved or clobbered. 3426 ValueToCheck = VVal->second; 3427 } 3428 3429 if (BlockLiveOuts[Loc.asU64()] != ValueToCheck) 3430 return None; 3431 } 3432 3433 // Record this value as validated. 3434 ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum}); 3435 } 3436 3437 // All the PHIs are valid: we can return what the SSAUpdater said our value 3438 // number was. 3439 return Result; 3440 } 3441