1 //===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file InstrRefBasedImpl.cpp 9 /// 10 /// This is a separate implementation of LiveDebugValues, see 11 /// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information. 12 /// 13 /// This pass propagates variable locations between basic blocks, resolving 14 /// control flow conflicts between them. The problem is much like SSA 15 /// construction, where each DBG_VALUE instruction assigns the *value* that 16 /// a variable has, and every instruction where the variable is in scope uses 17 /// that variable. The resulting map of instruction-to-value is then translated 18 /// into a register (or spill) location for each variable over each instruction. 19 /// 20 /// This pass determines which DBG_VALUE dominates which instructions, or if 21 /// none do, where values must be merged (like PHI nodes). The added 22 /// complication is that because codegen has already finished, a PHI node may 23 /// be needed for a variable location to be correct, but no register or spill 24 /// slot merges the necessary values. In these circumstances, the variable 25 /// location is dropped. 26 /// 27 /// What makes this analysis non-trivial is loops: we cannot tell in advance 28 /// whether a variable location is live throughout a loop, or whether its 29 /// location is clobbered (or redefined by another DBG_VALUE), without 30 /// exploring all the way through. 31 /// 32 /// To make this simpler we perform two kinds of analysis. First, we identify 33 /// every value defined by every instruction (ignoring those that only move 34 /// another value), then compute a map of which values are available for each 35 /// instruction. This is stronger than a reaching-def analysis, as we create 36 /// PHI values where other values merge. 37 /// 38 /// Secondly, for each variable, we effectively re-construct SSA using each 39 /// DBG_VALUE as a def. The DBG_VALUEs read a value-number computed by the 40 /// first analysis from the location they refer to. We can then compute the 41 /// dominance frontiers of where a variable has a value, and create PHI nodes 42 /// where they merge. 43 /// This isn't precisely SSA-construction though, because the function shape 44 /// is pre-defined. If a variable location requires a PHI node, but no 45 /// PHI for the relevant values is present in the function (as computed by the 46 /// first analysis), the location must be dropped. 47 /// 48 /// Once both are complete, we can pass back over all instructions knowing: 49 /// * What _value_ each variable should contain, either defined by an 50 /// instruction or where control flow merges 51 /// * What the location of that value is (if any). 52 /// Allowing us to create appropriate live-in DBG_VALUEs, and DBG_VALUEs when 53 /// a value moves location. After this pass runs, all variable locations within 54 /// a block should be specified by DBG_VALUEs within that block, allowing 55 /// DbgEntityHistoryCalculator to focus on individual blocks. 56 /// 57 /// This pass is able to go fast because the size of the first 58 /// reaching-definition analysis is proportional to the working-set size of 59 /// the function, which the compiler tries to keep small. (It's also 60 /// proportional to the number of blocks). Additionally, we repeatedly perform 61 /// the second reaching-definition analysis with only the variables and blocks 62 /// in a single lexical scope, exploiting their locality. 63 /// 64 /// Determining where PHIs happen is trickier with this approach, and it comes 65 /// to a head in the major problem for LiveDebugValues: is a value live-through 66 /// a loop, or not? Your garden-variety dataflow analysis aims to build a set of 67 /// facts about a function, however this analysis needs to generate new value 68 /// numbers at joins. 69 /// 70 /// To do this, consider a lattice of all definition values, from instructions 71 /// and from PHIs. Each PHI is characterised by the RPO number of the block it 72 /// occurs in. Each value pair A, B can be ordered by RPO(A) < RPO(B): 73 /// with non-PHI values at the top, and any PHI value in the last block (by RPO 74 /// order) at the bottom. 75 /// 76 /// (Awkwardly: lower-down-the _lattice_ means a greater RPO _number_. Below, 77 /// "rank" always refers to the former). 78 /// 79 /// At any join, for each register, we consider: 80 /// * All incoming values, and 81 /// * The PREVIOUS live-in value at this join. 82 /// If all incoming values agree: that's the live-in value. If they do not, the 83 /// incoming values are ranked according to the partial order, and the NEXT 84 /// LOWEST rank after the PREVIOUS live-in value is picked (multiple values of 85 /// the same rank are ignored as conflicting). If there are no candidate values, 86 /// or if the rank of the live-in would be lower than the rank of the current 87 /// blocks PHIs, create a new PHI value. 88 /// 89 /// Intuitively: if it's not immediately obvious what value a join should result 90 /// in, we iteratively descend from instruction-definitions down through PHI 91 /// values, getting closer to the current block each time. If the current block 92 /// is a loop head, this ordering is effectively searching outer levels of 93 /// loops, to find a value that's live-through the current loop. 94 /// 95 /// If there is no value that's live-through this loop, a PHI is created for 96 /// this location instead. We can't use a lower-ranked PHI because by definition 97 /// it doesn't dominate the current block. We can't create a PHI value any 98 /// earlier, because we risk creating a PHI value at a location where values do 99 /// not in fact merge, thus misrepresenting the truth, and not making the true 100 /// live-through value for variable locations. 101 /// 102 /// This algorithm applies to both calculating the availability of values in 103 /// the first analysis, and the location of variables in the second. However 104 /// for the second we add an extra dimension of pain: creating a variable 105 /// location PHI is only valid if, for each incoming edge, 106 /// * There is a value for the variable on the incoming edge, and 107 /// * All the edges have that value in the same register. 108 /// Or put another way: we can only create a variable-location PHI if there is 109 /// a matching machine-location PHI, each input to which is the variables value 110 /// in the predecessor block. 111 /// 112 /// To accommodate this difference, each point on the lattice is split in 113 /// two: a "proposed" PHI and "definite" PHI. Any PHI that can immediately 114 /// have a location determined are "definite" PHIs, and no further work is 115 /// needed. Otherwise, a location that all non-backedge predecessors agree 116 /// on is picked and propagated as a "proposed" PHI value. If that PHI value 117 /// is truly live-through, it'll appear on the loop backedges on the next 118 /// dataflow iteration, after which the block live-in moves to be a "definite" 119 /// PHI. If it's not truly live-through, the variable value will be downgraded 120 /// further as we explore the lattice, or remains "proposed" and is considered 121 /// invalid once dataflow completes. 122 /// 123 /// ### Terminology 124 /// 125 /// A machine location is a register or spill slot, a value is something that's 126 /// defined by an instruction or PHI node, while a variable value is the value 127 /// assigned to a variable. A variable location is a machine location, that must 128 /// contain the appropriate variable value. A value that is a PHI node is 129 /// occasionally called an mphi. 130 /// 131 /// The first dataflow problem is the "machine value location" problem, 132 /// because we're determining which machine locations contain which values. 133 /// The "locations" are constant: what's unknown is what value they contain. 134 /// 135 /// The second dataflow problem (the one for variables) is the "variable value 136 /// problem", because it's determining what values a variable has, rather than 137 /// what location those values are placed in. Unfortunately, it's not that 138 /// simple, because producing a PHI value always involves picking a location. 139 /// This is an imperfection that we just have to accept, at least for now. 140 /// 141 /// TODO: 142 /// Overlapping fragments 143 /// Entry values 144 /// Add back DEBUG statements for debugging this 145 /// Collect statistics 146 /// 147 //===----------------------------------------------------------------------===// 148 149 #include "llvm/ADT/DenseMap.h" 150 #include "llvm/ADT/PostOrderIterator.h" 151 #include "llvm/ADT/SmallPtrSet.h" 152 #include "llvm/ADT/SmallSet.h" 153 #include "llvm/ADT/SmallVector.h" 154 #include "llvm/ADT/Statistic.h" 155 #include "llvm/ADT/UniqueVector.h" 156 #include "llvm/CodeGen/LexicalScopes.h" 157 #include "llvm/CodeGen/MachineBasicBlock.h" 158 #include "llvm/CodeGen/MachineFrameInfo.h" 159 #include "llvm/CodeGen/MachineFunction.h" 160 #include "llvm/CodeGen/MachineFunctionPass.h" 161 #include "llvm/CodeGen/MachineInstr.h" 162 #include "llvm/CodeGen/MachineInstrBuilder.h" 163 #include "llvm/CodeGen/MachineMemOperand.h" 164 #include "llvm/CodeGen/MachineOperand.h" 165 #include "llvm/CodeGen/PseudoSourceValue.h" 166 #include "llvm/CodeGen/RegisterScavenging.h" 167 #include "llvm/CodeGen/TargetFrameLowering.h" 168 #include "llvm/CodeGen/TargetInstrInfo.h" 169 #include "llvm/CodeGen/TargetLowering.h" 170 #include "llvm/CodeGen/TargetPassConfig.h" 171 #include "llvm/CodeGen/TargetRegisterInfo.h" 172 #include "llvm/CodeGen/TargetSubtargetInfo.h" 173 #include "llvm/Config/llvm-config.h" 174 #include "llvm/IR/DIBuilder.h" 175 #include "llvm/IR/DebugInfoMetadata.h" 176 #include "llvm/IR/DebugLoc.h" 177 #include "llvm/IR/Function.h" 178 #include "llvm/IR/Module.h" 179 #include "llvm/InitializePasses.h" 180 #include "llvm/MC/MCRegisterInfo.h" 181 #include "llvm/Pass.h" 182 #include "llvm/Support/Casting.h" 183 #include "llvm/Support/Compiler.h" 184 #include "llvm/Support/Debug.h" 185 #include "llvm/Support/raw_ostream.h" 186 #include <algorithm> 187 #include <cassert> 188 #include <cstdint> 189 #include <functional> 190 #include <queue> 191 #include <tuple> 192 #include <utility> 193 #include <vector> 194 #include <limits.h> 195 #include <limits> 196 197 #include "LiveDebugValues.h" 198 199 using namespace llvm; 200 201 #define DEBUG_TYPE "livedebugvalues" 202 203 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted"); 204 STATISTIC(NumRemoved, "Number of DBG_VALUE instructions removed"); 205 206 // Act more like the VarLoc implementation, by propagating some locations too 207 // far and ignoring some transfers. 208 static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden, 209 cl::desc("Act like old LiveDebugValues did"), 210 cl::init(false)); 211 212 // Rely on isStoreToStackSlotPostFE and similar to observe all stack spills. 213 static cl::opt<bool> 214 ObserveAllStackops("observe-all-stack-ops", cl::Hidden, 215 cl::desc("Allow non-kill spill and restores"), 216 cl::init(false)); 217 218 namespace { 219 220 // The location at which a spilled value resides. It consists of a register and 221 // an offset. 222 struct SpillLoc { 223 unsigned SpillBase; 224 int SpillOffset; 225 bool operator==(const SpillLoc &Other) const { 226 return std::tie(SpillBase, SpillOffset) == 227 std::tie(Other.SpillBase, Other.SpillOffset); 228 } 229 bool operator<(const SpillLoc &Other) const { 230 return std::tie(SpillBase, SpillOffset) < 231 std::tie(Other.SpillBase, Other.SpillOffset); 232 } 233 }; 234 235 class LocIdx { 236 unsigned Location; 237 238 // Default constructor is private, initializing to an illegal location number. 239 // Use only for "not an entry" elements in IndexedMaps. 240 LocIdx() : Location(UINT_MAX) { } 241 242 public: 243 #define NUM_LOC_BITS 24 244 LocIdx(unsigned L) : Location(L) { 245 assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits"); 246 } 247 248 static LocIdx MakeIllegalLoc() { 249 return LocIdx(); 250 } 251 252 bool isIllegal() const { 253 return Location == UINT_MAX; 254 } 255 256 uint64_t asU64() const { 257 return Location; 258 } 259 260 bool operator==(unsigned L) const { 261 return Location == L; 262 } 263 264 bool operator==(const LocIdx &L) const { 265 return Location == L.Location; 266 } 267 268 bool operator!=(unsigned L) const { 269 return !(*this == L); 270 } 271 272 bool operator!=(const LocIdx &L) const { 273 return !(*this == L); 274 } 275 276 bool operator<(const LocIdx &Other) const { 277 return Location < Other.Location; 278 } 279 }; 280 281 class LocIdxToIndexFunctor { 282 public: 283 using argument_type = LocIdx; 284 unsigned operator()(const LocIdx &L) const { 285 return L.asU64(); 286 } 287 }; 288 289 /// Unique identifier for a value defined by an instruction, as a value type. 290 /// Casts back and forth to a uint64_t. Probably replacable with something less 291 /// bit-constrained. Each value identifies the instruction and machine location 292 /// where the value is defined, although there may be no corresponding machine 293 /// operand for it (ex: regmasks clobbering values). The instructions are 294 /// one-based, and definitions that are PHIs have instruction number zero. 295 /// 296 /// The obvious limits of a 1M block function or 1M instruction blocks are 297 /// problematic; but by that point we should probably have bailed out of 298 /// trying to analyse the function. 299 class ValueIDNum { 300 uint64_t BlockNo : 20; /// The block where the def happens. 301 uint64_t InstNo : 20; /// The Instruction where the def happens. 302 /// One based, is distance from start of block. 303 uint64_t LocNo : NUM_LOC_BITS; /// The machine location where the def happens. 304 305 public: 306 // XXX -- temporarily enabled while the live-in / live-out tables are moved 307 // to something more type-y 308 ValueIDNum() : BlockNo(0xFFFFF), 309 InstNo(0xFFFFF), 310 LocNo(0xFFFFFF) { } 311 312 ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc) 313 : BlockNo(Block), InstNo(Inst), LocNo(Loc) { } 314 315 ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc) 316 : BlockNo(Block), InstNo(Inst), LocNo(Loc.asU64()) { } 317 318 uint64_t getBlock() const { return BlockNo; } 319 uint64_t getInst() const { return InstNo; } 320 uint64_t getLoc() const { return LocNo; } 321 bool isPHI() const { return InstNo == 0; } 322 323 uint64_t asU64() const { 324 uint64_t TmpBlock = BlockNo; 325 uint64_t TmpInst = InstNo; 326 return TmpBlock << 44ull | TmpInst << NUM_LOC_BITS | LocNo; 327 } 328 329 static ValueIDNum fromU64(uint64_t v) { 330 uint64_t L = (v & 0x3FFF); 331 return {v >> 44ull, ((v >> NUM_LOC_BITS) & 0xFFFFF), L}; 332 } 333 334 bool operator<(const ValueIDNum &Other) const { 335 return asU64() < Other.asU64(); 336 } 337 338 bool operator==(const ValueIDNum &Other) const { 339 return std::tie(BlockNo, InstNo, LocNo) == 340 std::tie(Other.BlockNo, Other.InstNo, Other.LocNo); 341 } 342 343 bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); } 344 345 std::string asString(const std::string &mlocname) const { 346 return Twine("bb ") 347 .concat(Twine(BlockNo).concat(Twine(" inst ").concat( 348 Twine(InstNo).concat(Twine(" loc ").concat(Twine(mlocname)))))) 349 .str(); 350 } 351 352 static ValueIDNum EmptyValue; 353 }; 354 355 } // end anonymous namespace 356 357 namespace { 358 359 /// Meta qualifiers for a value. Pair of whatever expression is used to qualify 360 /// the the value, and Boolean of whether or not it's indirect. 361 class DbgValueProperties { 362 public: 363 DbgValueProperties(const DIExpression *DIExpr, bool Indirect) 364 : DIExpr(DIExpr), Indirect(Indirect) {} 365 366 /// Extract properties from an existing DBG_VALUE instruction. 367 DbgValueProperties(const MachineInstr &MI) { 368 assert(MI.isDebugValue()); 369 DIExpr = MI.getDebugExpression(); 370 Indirect = MI.getOperand(1).isImm(); 371 } 372 373 bool operator==(const DbgValueProperties &Other) const { 374 return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect); 375 } 376 377 bool operator!=(const DbgValueProperties &Other) const { 378 return !(*this == Other); 379 } 380 381 const DIExpression *DIExpr; 382 bool Indirect; 383 }; 384 385 /// Tracker for what values are in machine locations. Listens to the Things 386 /// being Done by various instructions, and maintains a table of what machine 387 /// locations have what values (as defined by a ValueIDNum). 388 /// 389 /// There are potentially a much larger number of machine locations on the 390 /// target machine than the actual working-set size of the function. On x86 for 391 /// example, we're extremely unlikely to want to track values through control 392 /// or debug registers. To avoid doing so, MLocTracker has several layers of 393 /// indirection going on, with two kinds of ``location'': 394 /// * A LocID uniquely identifies a register or spill location, with a 395 /// predictable value. 396 /// * A LocIdx is a key (in the database sense) for a LocID and a ValueIDNum. 397 /// Whenever a location is def'd or used by a MachineInstr, we automagically 398 /// create a new LocIdx for a location, but not otherwise. This ensures we only 399 /// account for locations that are actually used or defined. The cost is another 400 /// vector lookup (of LocID -> LocIdx) over any other implementation. This is 401 /// fairly cheap, and the compiler tries to reduce the working-set at any one 402 /// time in the function anyway. 403 /// 404 /// Register mask operands completely blow this out of the water; I've just 405 /// piled hacks on top of hacks to get around that. 406 class MLocTracker { 407 public: 408 MachineFunction &MF; 409 const TargetInstrInfo &TII; 410 const TargetRegisterInfo &TRI; 411 const TargetLowering &TLI; 412 413 /// IndexedMap type, mapping from LocIdx to ValueIDNum. 414 using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>; 415 416 /// Map of LocIdxes to the ValueIDNums that they store. This is tightly 417 /// packed, entries only exist for locations that are being tracked. 418 LocToValueType LocIdxToIDNum; 419 420 /// "Map" of machine location IDs (i.e., raw register or spill number) to the 421 /// LocIdx key / number for that location. There are always at least as many 422 /// as the number of registers on the target -- if the value in the register 423 /// is not being tracked, then the LocIdx value will be zero. New entries are 424 /// appended if a new spill slot begins being tracked. 425 /// This, and the corresponding reverse map persist for the analysis of the 426 /// whole function, and is necessarying for decoding various vectors of 427 /// values. 428 std::vector<LocIdx> LocIDToLocIdx; 429 430 /// Inverse map of LocIDToLocIdx. 431 IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID; 432 433 /// Unique-ification of spill slots. Used to number them -- their LocID 434 /// number is the index in SpillLocs minus one plus NumRegs. 435 UniqueVector<SpillLoc> SpillLocs; 436 437 // If we discover a new machine location, assign it an mphi with this 438 // block number. 439 unsigned CurBB; 440 441 /// Cached local copy of the number of registers the target has. 442 unsigned NumRegs; 443 444 /// Collection of register mask operands that have been observed. Second part 445 /// of pair indicates the instruction that they happened in. Used to 446 /// reconstruct where defs happened if we start tracking a location later 447 /// on. 448 SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks; 449 450 /// Iterator for locations and the values they contain. Dereferencing 451 /// produces a struct/pair containing the LocIdx key for this location, 452 /// and a reference to the value currently stored. Simplifies the process 453 /// of seeking a particular location. 454 class MLocIterator { 455 LocToValueType &ValueMap; 456 LocIdx Idx; 457 458 public: 459 class value_type { 460 public: 461 value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) { } 462 const LocIdx Idx; /// Read-only index of this location. 463 ValueIDNum &Value; /// Reference to the stored value at this location. 464 }; 465 466 MLocIterator(LocToValueType &ValueMap, LocIdx Idx) 467 : ValueMap(ValueMap), Idx(Idx) { } 468 469 bool operator==(const MLocIterator &Other) const { 470 assert(&ValueMap == &Other.ValueMap); 471 return Idx == Other.Idx; 472 } 473 474 bool operator!=(const MLocIterator &Other) const { 475 return !(*this == Other); 476 } 477 478 void operator++() { 479 Idx = LocIdx(Idx.asU64() + 1); 480 } 481 482 value_type operator*() { 483 return value_type(Idx, ValueMap[LocIdx(Idx)]); 484 } 485 }; 486 487 MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII, 488 const TargetRegisterInfo &TRI, const TargetLowering &TLI) 489 : MF(MF), TII(TII), TRI(TRI), TLI(TLI), 490 LocIdxToIDNum(ValueIDNum::EmptyValue), 491 LocIdxToLocID(0) { 492 NumRegs = TRI.getNumRegs(); 493 reset(); 494 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); 495 assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure 496 497 // Always track SP. This avoids the implicit clobbering caused by regmasks 498 // from affectings its values. (LiveDebugValues disbelieves calls and 499 // regmasks that claim to clobber SP). 500 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 501 if (SP) { 502 unsigned ID = getLocID(SP, false); 503 (void)lookupOrTrackRegister(ID); 504 } 505 } 506 507 /// Produce location ID number for indexing LocIDToLocIdx. Takes the register 508 /// or spill number, and flag for whether it's a spill or not. 509 unsigned getLocID(Register RegOrSpill, bool isSpill) { 510 return (isSpill) ? RegOrSpill.id() + NumRegs - 1 : RegOrSpill.id(); 511 } 512 513 /// Accessor for reading the value at Idx. 514 ValueIDNum getNumAtPos(LocIdx Idx) const { 515 assert(Idx.asU64() < LocIdxToIDNum.size()); 516 return LocIdxToIDNum[Idx]; 517 } 518 519 unsigned getNumLocs(void) const { return LocIdxToIDNum.size(); } 520 521 /// Reset all locations to contain a PHI value at the designated block. Used 522 /// sometimes for actual PHI values, othertimes to indicate the block entry 523 /// value (before any more information is known). 524 void setMPhis(unsigned NewCurBB) { 525 CurBB = NewCurBB; 526 for (auto Location : locations()) 527 Location.Value = {CurBB, 0, Location.Idx}; 528 } 529 530 /// Load values for each location from array of ValueIDNums. Take current 531 /// bbnum just in case we read a value from a hitherto untouched register. 532 void loadFromArray(ValueIDNum *Locs, unsigned NewCurBB) { 533 CurBB = NewCurBB; 534 // Iterate over all tracked locations, and load each locations live-in 535 // value into our local index. 536 for (auto Location : locations()) 537 Location.Value = Locs[Location.Idx.asU64()]; 538 } 539 540 /// Wipe any un-necessary location records after traversing a block. 541 void reset(void) { 542 // We could reset all the location values too; however either loadFromArray 543 // or setMPhis should be called before this object is re-used. Just 544 // clear Masks, they're definitely not needed. 545 Masks.clear(); 546 } 547 548 /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of 549 /// the information in this pass uninterpretable. 550 void clear(void) { 551 reset(); 552 LocIDToLocIdx.clear(); 553 LocIdxToLocID.clear(); 554 LocIdxToIDNum.clear(); 555 //SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from 0 556 SpillLocs = decltype(SpillLocs)(); 557 558 LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); 559 } 560 561 /// Set a locaiton to a certain value. 562 void setMLoc(LocIdx L, ValueIDNum Num) { 563 assert(L.asU64() < LocIdxToIDNum.size()); 564 LocIdxToIDNum[L] = Num; 565 } 566 567 /// Create a LocIdx for an untracked register ID. Initialize it to either an 568 /// mphi value representing a live-in, or a recent register mask clobber. 569 LocIdx trackRegister(unsigned ID) { 570 assert(ID != 0); 571 LocIdx NewIdx = LocIdx(LocIdxToIDNum.size()); 572 LocIdxToIDNum.grow(NewIdx); 573 LocIdxToLocID.grow(NewIdx); 574 575 // Default: it's an mphi. 576 ValueIDNum ValNum = {CurBB, 0, NewIdx}; 577 // Was this reg ever touched by a regmask? 578 for (const auto &MaskPair : reverse(Masks)) { 579 if (MaskPair.first->clobbersPhysReg(ID)) { 580 // There was an earlier def we skipped. 581 ValNum = {CurBB, MaskPair.second, NewIdx}; 582 break; 583 } 584 } 585 586 LocIdxToIDNum[NewIdx] = ValNum; 587 LocIdxToLocID[NewIdx] = ID; 588 return NewIdx; 589 } 590 591 LocIdx lookupOrTrackRegister(unsigned ID) { 592 LocIdx &Index = LocIDToLocIdx[ID]; 593 if (Index.isIllegal()) 594 Index = trackRegister(ID); 595 return Index; 596 } 597 598 /// Record a definition of the specified register at the given block / inst. 599 /// This doesn't take a ValueIDNum, because the definition and its location 600 /// are synonymous. 601 void defReg(Register R, unsigned BB, unsigned Inst) { 602 unsigned ID = getLocID(R, false); 603 LocIdx Idx = lookupOrTrackRegister(ID); 604 ValueIDNum ValueID = {BB, Inst, Idx}; 605 LocIdxToIDNum[Idx] = ValueID; 606 } 607 608 /// Set a register to a value number. To be used if the value number is 609 /// known in advance. 610 void setReg(Register R, ValueIDNum ValueID) { 611 unsigned ID = getLocID(R, false); 612 LocIdx Idx = lookupOrTrackRegister(ID); 613 LocIdxToIDNum[Idx] = ValueID; 614 } 615 616 ValueIDNum readReg(Register R) { 617 unsigned ID = getLocID(R, false); 618 LocIdx Idx = lookupOrTrackRegister(ID); 619 return LocIdxToIDNum[Idx]; 620 } 621 622 /// Reset a register value to zero / empty. Needed to replicate the 623 /// VarLoc implementation where a copy to/from a register effectively 624 /// clears the contents of the source register. (Values can only have one 625 /// machine location in VarLocBasedImpl). 626 void wipeRegister(Register R) { 627 unsigned ID = getLocID(R, false); 628 LocIdx Idx = LocIDToLocIdx[ID]; 629 LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue; 630 } 631 632 /// Determine the LocIdx of an existing register. 633 LocIdx getRegMLoc(Register R) { 634 unsigned ID = getLocID(R, false); 635 return LocIDToLocIdx[ID]; 636 } 637 638 /// Record a RegMask operand being executed. Defs any register we currently 639 /// track, stores a pointer to the mask in case we have to account for it 640 /// later. 641 void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID) { 642 // Ensure SP exists, so that we don't override it later. 643 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 644 645 // Def any register we track have that isn't preserved. The regmask 646 // terminates the liveness of a register, meaning its value can't be 647 // relied upon -- we represent this by giving it a new value. 648 for (auto Location : locations()) { 649 unsigned ID = LocIdxToLocID[Location.Idx]; 650 // Don't clobber SP, even if the mask says it's clobbered. 651 if (ID < NumRegs && ID != SP && MO->clobbersPhysReg(ID)) 652 defReg(ID, CurBB, InstID); 653 } 654 Masks.push_back(std::make_pair(MO, InstID)); 655 } 656 657 /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked. 658 LocIdx getOrTrackSpillLoc(SpillLoc L) { 659 unsigned SpillID = SpillLocs.idFor(L); 660 if (SpillID == 0) { 661 SpillID = SpillLocs.insert(L); 662 unsigned L = getLocID(SpillID, true); 663 LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx 664 LocIdxToIDNum.grow(Idx); 665 LocIdxToLocID.grow(Idx); 666 LocIDToLocIdx.push_back(Idx); 667 LocIdxToLocID[Idx] = L; 668 return Idx; 669 } else { 670 unsigned L = getLocID(SpillID, true); 671 LocIdx Idx = LocIDToLocIdx[L]; 672 return Idx; 673 } 674 } 675 676 /// Set the value stored in a spill slot. 677 void setSpill(SpillLoc L, ValueIDNum ValueID) { 678 LocIdx Idx = getOrTrackSpillLoc(L); 679 LocIdxToIDNum[Idx] = ValueID; 680 } 681 682 /// Read whatever value is in a spill slot, or None if it isn't tracked. 683 Optional<ValueIDNum> readSpill(SpillLoc L) { 684 unsigned SpillID = SpillLocs.idFor(L); 685 if (SpillID == 0) 686 return None; 687 688 unsigned LocID = getLocID(SpillID, true); 689 LocIdx Idx = LocIDToLocIdx[LocID]; 690 return LocIdxToIDNum[Idx]; 691 } 692 693 /// Determine the LocIdx of a spill slot. Return None if it previously 694 /// hasn't had a value assigned. 695 Optional<LocIdx> getSpillMLoc(SpillLoc L) { 696 unsigned SpillID = SpillLocs.idFor(L); 697 if (SpillID == 0) 698 return None; 699 unsigned LocNo = getLocID(SpillID, true); 700 return LocIDToLocIdx[LocNo]; 701 } 702 703 /// Return true if Idx is a spill machine location. 704 bool isSpill(LocIdx Idx) const { 705 return LocIdxToLocID[Idx] >= NumRegs; 706 } 707 708 MLocIterator begin() { 709 return MLocIterator(LocIdxToIDNum, 0); 710 } 711 712 MLocIterator end() { 713 return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size()); 714 } 715 716 /// Return a range over all locations currently tracked. 717 iterator_range<MLocIterator> locations() { 718 return llvm::make_range(begin(), end()); 719 } 720 721 std::string LocIdxToName(LocIdx Idx) const { 722 unsigned ID = LocIdxToLocID[Idx]; 723 if (ID >= NumRegs) 724 return Twine("slot ").concat(Twine(ID - NumRegs)).str(); 725 else 726 return TRI.getRegAsmName(ID).str(); 727 } 728 729 std::string IDAsString(const ValueIDNum &Num) const { 730 std::string DefName = LocIdxToName(Num.getLoc()); 731 return Num.asString(DefName); 732 } 733 734 LLVM_DUMP_METHOD 735 void dump() { 736 for (auto Location : locations()) { 737 std::string MLocName = LocIdxToName(Location.Value.getLoc()); 738 std::string DefName = Location.Value.asString(MLocName); 739 dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n"; 740 } 741 } 742 743 LLVM_DUMP_METHOD 744 void dump_mloc_map() { 745 for (auto Location : locations()) { 746 std::string foo = LocIdxToName(Location.Idx); 747 dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n"; 748 } 749 } 750 751 /// Create a DBG_VALUE based on machine location \p MLoc. Qualify it with the 752 /// information in \pProperties, for variable Var. Don't insert it anywhere, 753 /// just return the builder for it. 754 MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var, 755 const DbgValueProperties &Properties) { 756 DebugLoc DL = 757 DebugLoc::get(0, 0, Var.getVariable()->getScope(), Var.getInlinedAt()); 758 auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE)); 759 760 const DIExpression *Expr = Properties.DIExpr; 761 if (!MLoc) { 762 // No location -> DBG_VALUE $noreg 763 MIB.addReg(0, RegState::Debug); 764 MIB.addReg(0, RegState::Debug); 765 } else if (LocIdxToLocID[*MLoc] >= NumRegs) { 766 unsigned LocID = LocIdxToLocID[*MLoc]; 767 const SpillLoc &Spill = SpillLocs[LocID - NumRegs + 1]; 768 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, 769 Spill.SpillOffset); 770 unsigned Base = Spill.SpillBase; 771 MIB.addReg(Base, RegState::Debug); 772 MIB.addImm(0); 773 } else { 774 unsigned LocID = LocIdxToLocID[*MLoc]; 775 MIB.addReg(LocID, RegState::Debug); 776 if (Properties.Indirect) 777 MIB.addImm(0); 778 else 779 MIB.addReg(0, RegState::Debug); 780 } 781 782 MIB.addMetadata(Var.getVariable()); 783 MIB.addMetadata(Expr); 784 return MIB; 785 } 786 }; 787 788 /// Class recording the (high level) _value_ of a variable. Identifies either 789 /// the value of the variable as a ValueIDNum, or a constant MachineOperand. 790 /// This class also stores meta-information about how the value is qualified. 791 /// Used to reason about variable values when performing the second 792 /// (DebugVariable specific) dataflow analysis. 793 class DbgValue { 794 public: 795 union { 796 /// If Kind is Def, the value number that this value is based on. 797 ValueIDNum ID; 798 /// If Kind is Const, the MachineOperand defining this value. 799 MachineOperand MO; 800 /// For a NoVal DbgValue, which block it was generated in. 801 unsigned BlockNo; 802 }; 803 /// Qualifiers for the ValueIDNum above. 804 DbgValueProperties Properties; 805 806 typedef enum { 807 Undef, // Represents a DBG_VALUE $noreg in the transfer function only. 808 Def, // This value is defined by an inst, or is a PHI value. 809 Const, // A constant value contained in the MachineOperand field. 810 Proposed, // This is a tentative PHI value, which may be confirmed or 811 // invalidated later. 812 NoVal // Empty DbgValue, generated during dataflow. BlockNo stores 813 // which block this was generated in. 814 } KindT; 815 /// Discriminator for whether this is a constant or an in-program value. 816 KindT Kind; 817 818 DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind) 819 : ID(Val), Properties(Prop), Kind(Kind) { 820 assert(Kind == Def || Kind == Proposed); 821 } 822 823 DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind) 824 : BlockNo(BlockNo), Properties(Prop), Kind(Kind) { 825 assert(Kind == NoVal); 826 } 827 828 DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind) 829 : MO(MO), Properties(Prop), Kind(Kind) { 830 assert(Kind == Const); 831 } 832 833 DbgValue(const DbgValueProperties &Prop, KindT Kind) 834 : Properties(Prop), Kind(Kind) { 835 assert(Kind == Undef && 836 "Empty DbgValue constructor must pass in Undef kind"); 837 } 838 839 void dump(const MLocTracker *MTrack) const { 840 if (Kind == Const) { 841 MO.dump(); 842 } else if (Kind == NoVal) { 843 dbgs() << "NoVal(" << BlockNo << ")"; 844 } else if (Kind == Proposed) { 845 dbgs() << "VPHI(" << MTrack->IDAsString(ID) << ")"; 846 } else { 847 assert(Kind == Def); 848 dbgs() << MTrack->IDAsString(ID); 849 } 850 if (Properties.Indirect) 851 dbgs() << " indir"; 852 if (Properties.DIExpr) 853 dbgs() << " " << *Properties.DIExpr; 854 } 855 856 bool operator==(const DbgValue &Other) const { 857 if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties)) 858 return false; 859 else if (Kind == Proposed && ID != Other.ID) 860 return false; 861 else if (Kind == Def && ID != Other.ID) 862 return false; 863 else if (Kind == NoVal && BlockNo != Other.BlockNo) 864 return false; 865 else if (Kind == Const) 866 return MO.isIdenticalTo(Other.MO); 867 868 return true; 869 } 870 871 bool operator!=(const DbgValue &Other) const { return !(*this == Other); } 872 }; 873 874 /// Types for recording sets of variable fragments that overlap. For a given 875 /// local variable, we record all other fragments of that variable that could 876 /// overlap it, to reduce search time. 877 using FragmentOfVar = 878 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; 879 using OverlapMap = 880 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; 881 882 /// Collection of DBG_VALUEs observed when traversing a block. Records each 883 /// variable and the value the DBG_VALUE refers to. Requires the machine value 884 /// location dataflow algorithm to have run already, so that values can be 885 /// identified. 886 class VLocTracker { 887 public: 888 /// Map DebugVariable to the latest Value it's defined to have. 889 /// Needs to be a MapVector because we determine order-in-the-input-MIR from 890 /// the order in this container. 891 /// We only retain the last DbgValue in each block for each variable, to 892 /// determine the blocks live-out variable value. The Vars container forms the 893 /// transfer function for this block, as part of the dataflow analysis. The 894 /// movement of values between locations inside of a block is handled at a 895 /// much later stage, in the TransferTracker class. 896 MapVector<DebugVariable, DbgValue> Vars; 897 DenseMap<DebugVariable, const DILocation *> Scopes; 898 MachineBasicBlock *MBB; 899 900 public: 901 VLocTracker() {} 902 903 void defVar(const MachineInstr &MI, const DbgValueProperties &Properties, 904 Optional<ValueIDNum> ID) { 905 assert(MI.isDebugValue() || MI.isDebugRef()); 906 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 907 MI.getDebugLoc()->getInlinedAt()); 908 DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def) 909 : DbgValue(Properties, DbgValue::Undef); 910 911 // Attempt insertion; overwrite if it's already mapped. 912 auto Result = Vars.insert(std::make_pair(Var, Rec)); 913 if (!Result.second) 914 Result.first->second = Rec; 915 Scopes[Var] = MI.getDebugLoc().get(); 916 } 917 918 void defVar(const MachineInstr &MI, const MachineOperand &MO) { 919 // Only DBG_VALUEs can define constant-valued variables. 920 assert(MI.isDebugValue()); 921 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 922 MI.getDebugLoc()->getInlinedAt()); 923 DbgValueProperties Properties(MI); 924 DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const); 925 926 // Attempt insertion; overwrite if it's already mapped. 927 auto Result = Vars.insert(std::make_pair(Var, Rec)); 928 if (!Result.second) 929 Result.first->second = Rec; 930 Scopes[Var] = MI.getDebugLoc().get(); 931 } 932 }; 933 934 /// Tracker for converting machine value locations and variable values into 935 /// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs 936 /// specifying block live-in locations and transfers within blocks. 937 /// 938 /// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker 939 /// and must be initialized with the set of variable values that are live-in to 940 /// the block. The caller then repeatedly calls process(). TransferTracker picks 941 /// out variable locations for the live-in variable values (if there _is_ a 942 /// location) and creates the corresponding DBG_VALUEs. Then, as the block is 943 /// stepped through, transfers of values between machine locations are 944 /// identified and if profitable, a DBG_VALUE created. 945 /// 946 /// This is where debug use-before-defs would be resolved: a variable with an 947 /// unavailable value could materialize in the middle of a block, when the 948 /// value becomes available. Or, we could detect clobbers and re-specify the 949 /// variable in a backup location. (XXX these are unimplemented). 950 class TransferTracker { 951 public: 952 const TargetInstrInfo *TII; 953 /// This machine location tracker is assumed to always contain the up-to-date 954 /// value mapping for all machine locations. TransferTracker only reads 955 /// information from it. (XXX make it const?) 956 MLocTracker *MTracker; 957 MachineFunction &MF; 958 959 /// Record of all changes in variable locations at a block position. Awkwardly 960 /// we allow inserting either before or after the point: MBB != nullptr 961 /// indicates it's before, otherwise after. 962 struct Transfer { 963 MachineBasicBlock::iterator Pos; /// Position to insert DBG_VALUes 964 MachineBasicBlock *MBB; /// non-null if we should insert after. 965 SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert. 966 }; 967 968 typedef struct { 969 LocIdx Loc; 970 DbgValueProperties Properties; 971 } LocAndProperties; 972 973 /// Collection of transfers (DBG_VALUEs) to be inserted. 974 SmallVector<Transfer, 32> Transfers; 975 976 /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences 977 /// between TransferTrackers view of variable locations and MLocTrackers. For 978 /// example, MLocTracker observes all clobbers, but TransferTracker lazily 979 /// does not. 980 std::vector<ValueIDNum> VarLocs; 981 982 /// Map from LocIdxes to which DebugVariables are based that location. 983 /// Mantained while stepping through the block. Not accurate if 984 /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx]. 985 std::map<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs; 986 987 /// Map from DebugVariable to it's current location and qualifying meta 988 /// information. To be used in conjunction with ActiveMLocs to construct 989 /// enough information for the DBG_VALUEs for a particular LocIdx. 990 DenseMap<DebugVariable, LocAndProperties> ActiveVLocs; 991 992 /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection. 993 SmallVector<MachineInstr *, 4> PendingDbgValues; 994 995 /// Record of a use-before-def: created when a value that's live-in to the 996 /// current block isn't available in any machine location, but it will be 997 /// defined in this block. 998 struct UseBeforeDef { 999 /// Value of this variable, def'd in block. 1000 ValueIDNum ID; 1001 /// Identity of this variable. 1002 DebugVariable Var; 1003 /// Additional variable properties. 1004 DbgValueProperties Properties; 1005 }; 1006 1007 /// Map from instruction index (within the block) to the set of UseBeforeDefs 1008 /// that become defined at that instruction. 1009 DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs; 1010 1011 /// The set of variables that are in UseBeforeDefs and can become a location 1012 /// once the relevant value is defined. An element being erased from this 1013 /// collection prevents the use-before-def materializing. 1014 DenseSet<DebugVariable> UseBeforeDefVariables; 1015 1016 const TargetRegisterInfo &TRI; 1017 const BitVector &CalleeSavedRegs; 1018 1019 TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker, 1020 MachineFunction &MF, const TargetRegisterInfo &TRI, 1021 const BitVector &CalleeSavedRegs) 1022 : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI), 1023 CalleeSavedRegs(CalleeSavedRegs) {} 1024 1025 /// Load object with live-in variable values. \p mlocs contains the live-in 1026 /// values in each machine location, while \p vlocs the live-in variable 1027 /// values. This method picks variable locations for the live-in variables, 1028 /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other 1029 /// object fields to track variable locations as we step through the block. 1030 /// FIXME: could just examine mloctracker instead of passing in \p mlocs? 1031 void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs, 1032 SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs, 1033 unsigned NumLocs) { 1034 ActiveMLocs.clear(); 1035 ActiveVLocs.clear(); 1036 VarLocs.clear(); 1037 VarLocs.reserve(NumLocs); 1038 UseBeforeDefs.clear(); 1039 UseBeforeDefVariables.clear(); 1040 1041 auto isCalleeSaved = [&](LocIdx L) { 1042 unsigned Reg = MTracker->LocIdxToLocID[L]; 1043 if (Reg >= MTracker->NumRegs) 1044 return false; 1045 for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI) 1046 if (CalleeSavedRegs.test(*RAI)) 1047 return true; 1048 return false; 1049 }; 1050 1051 // Map of the preferred location for each value. 1052 std::map<ValueIDNum, LocIdx> ValueToLoc; 1053 1054 // Produce a map of value numbers to the current machine locs they live 1055 // in. When emulating VarLocBasedImpl, there should only be one 1056 // location; when not, we get to pick. 1057 for (auto Location : MTracker->locations()) { 1058 LocIdx Idx = Location.Idx; 1059 ValueIDNum &VNum = MLocs[Idx.asU64()]; 1060 VarLocs.push_back(VNum); 1061 auto it = ValueToLoc.find(VNum); 1062 // In order of preference, pick: 1063 // * Callee saved registers, 1064 // * Other registers, 1065 // * Spill slots. 1066 if (it == ValueToLoc.end() || MTracker->isSpill(it->second) || 1067 (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) { 1068 // Insert, or overwrite if insertion failed. 1069 auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx)); 1070 if (!PrefLocRes.second) 1071 PrefLocRes.first->second = Idx; 1072 } 1073 } 1074 1075 // Now map variables to their picked LocIdxes. 1076 for (auto Var : VLocs) { 1077 if (Var.second.Kind == DbgValue::Const) { 1078 PendingDbgValues.push_back( 1079 emitMOLoc(Var.second.MO, Var.first, Var.second.Properties)); 1080 continue; 1081 } 1082 1083 // If the value has no location, we can't make a variable location. 1084 const ValueIDNum &Num = Var.second.ID; 1085 auto ValuesPreferredLoc = ValueToLoc.find(Num); 1086 if (ValuesPreferredLoc == ValueToLoc.end()) { 1087 // If it's a def that occurs in this block, register it as a 1088 // use-before-def to be resolved as we step through the block. 1089 if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI()) 1090 addUseBeforeDef(Var.first, Var.second.Properties, Num); 1091 continue; 1092 } 1093 1094 LocIdx M = ValuesPreferredLoc->second; 1095 auto NewValue = LocAndProperties{M, Var.second.Properties}; 1096 auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue)); 1097 if (!Result.second) 1098 Result.first->second = NewValue; 1099 ActiveMLocs[M].insert(Var.first); 1100 PendingDbgValues.push_back( 1101 MTracker->emitLoc(M, Var.first, Var.second.Properties)); 1102 } 1103 flushDbgValues(MBB.begin(), &MBB); 1104 } 1105 1106 /// Record that \p Var has value \p ID, a value that becomes available 1107 /// later in the function. 1108 void addUseBeforeDef(const DebugVariable &Var, 1109 const DbgValueProperties &Properties, ValueIDNum ID) { 1110 UseBeforeDef UBD = {ID, Var, Properties}; 1111 UseBeforeDefs[ID.getInst()].push_back(UBD); 1112 UseBeforeDefVariables.insert(Var); 1113 } 1114 1115 /// After the instruction at index \p Inst and position \p pos has been 1116 /// processed, check whether it defines a variable value in a use-before-def. 1117 /// If so, and the variable value hasn't changed since the start of the 1118 /// block, create a DBG_VALUE. 1119 void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) { 1120 auto MIt = UseBeforeDefs.find(Inst); 1121 if (MIt == UseBeforeDefs.end()) 1122 return; 1123 1124 for (auto &Use : MIt->second) { 1125 LocIdx L = Use.ID.getLoc(); 1126 1127 // If something goes very wrong, we might end up labelling a COPY 1128 // instruction or similar with an instruction number, where it doesn't 1129 // actually define a new value, instead it moves a value. In case this 1130 // happens, discard. 1131 if (MTracker->LocIdxToIDNum[L] != Use.ID) 1132 continue; 1133 1134 // If a different debug instruction defined the variable value / location 1135 // since the start of the block, don't materialize this use-before-def. 1136 if (!UseBeforeDefVariables.count(Use.Var)) 1137 continue; 1138 1139 PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties)); 1140 } 1141 flushDbgValues(pos, nullptr); 1142 } 1143 1144 /// Helper to move created DBG_VALUEs into Transfers collection. 1145 void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) { 1146 if (PendingDbgValues.size() > 0) { 1147 Transfers.push_back({Pos, MBB, PendingDbgValues}); 1148 PendingDbgValues.clear(); 1149 } 1150 } 1151 1152 /// Change a variable value after encountering a DBG_VALUE inside a block. 1153 void redefVar(const MachineInstr &MI) { 1154 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 1155 MI.getDebugLoc()->getInlinedAt()); 1156 DbgValueProperties Properties(MI); 1157 1158 const MachineOperand &MO = MI.getOperand(0); 1159 1160 // Ignore non-register locations, we don't transfer those. 1161 if (!MO.isReg() || MO.getReg() == 0) { 1162 auto It = ActiveVLocs.find(Var); 1163 if (It != ActiveVLocs.end()) { 1164 ActiveMLocs[It->second.Loc].erase(Var); 1165 ActiveVLocs.erase(It); 1166 } 1167 // Any use-before-defs no longer apply. 1168 UseBeforeDefVariables.erase(Var); 1169 return; 1170 } 1171 1172 Register Reg = MO.getReg(); 1173 LocIdx NewLoc = MTracker->getRegMLoc(Reg); 1174 redefVar(MI, Properties, NewLoc); 1175 } 1176 1177 /// Handle a change in variable location within a block. Terminate the 1178 /// variables current location, and record the value it now refers to, so 1179 /// that we can detect location transfers later on. 1180 void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties, 1181 Optional<LocIdx> OptNewLoc) { 1182 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 1183 MI.getDebugLoc()->getInlinedAt()); 1184 // Any use-before-defs no longer apply. 1185 UseBeforeDefVariables.erase(Var); 1186 1187 // Erase any previous location, 1188 auto It = ActiveVLocs.find(Var); 1189 if (It != ActiveVLocs.end()) 1190 ActiveMLocs[It->second.Loc].erase(Var); 1191 1192 // If there _is_ no new location, all we had to do was erase. 1193 if (!OptNewLoc) 1194 return; 1195 LocIdx NewLoc = *OptNewLoc; 1196 1197 // Check whether our local copy of values-by-location in #VarLocs is out of 1198 // date. Wipe old tracking data for the location if it's been clobbered in 1199 // the meantime. 1200 if (MTracker->getNumAtPos(NewLoc) != VarLocs[NewLoc.asU64()]) { 1201 for (auto &P : ActiveMLocs[NewLoc]) { 1202 ActiveVLocs.erase(P); 1203 } 1204 ActiveMLocs[NewLoc.asU64()].clear(); 1205 VarLocs[NewLoc.asU64()] = MTracker->getNumAtPos(NewLoc); 1206 } 1207 1208 ActiveMLocs[NewLoc].insert(Var); 1209 if (It == ActiveVLocs.end()) { 1210 ActiveVLocs.insert( 1211 std::make_pair(Var, LocAndProperties{NewLoc, Properties})); 1212 } else { 1213 It->second.Loc = NewLoc; 1214 It->second.Properties = Properties; 1215 } 1216 } 1217 1218 /// Explicitly terminate variable locations based on \p mloc. Creates undef 1219 /// DBG_VALUEs for any variables that were located there, and clears 1220 /// #ActiveMLoc / #ActiveVLoc tracking information for that location. 1221 void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos) { 1222 assert(MTracker->isSpill(MLoc)); 1223 auto ActiveMLocIt = ActiveMLocs.find(MLoc); 1224 if (ActiveMLocIt == ActiveMLocs.end()) 1225 return; 1226 1227 VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue; 1228 1229 for (auto &Var : ActiveMLocIt->second) { 1230 auto ActiveVLocIt = ActiveVLocs.find(Var); 1231 // Create an undef. We can't feed in a nullptr DIExpression alas, 1232 // so use the variables last expression. Pass None as the location. 1233 const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr; 1234 DbgValueProperties Properties(Expr, false); 1235 PendingDbgValues.push_back(MTracker->emitLoc(None, Var, Properties)); 1236 ActiveVLocs.erase(ActiveVLocIt); 1237 } 1238 flushDbgValues(Pos, nullptr); 1239 1240 ActiveMLocIt->second.clear(); 1241 } 1242 1243 /// Transfer variables based on \p Src to be based on \p Dst. This handles 1244 /// both register copies as well as spills and restores. Creates DBG_VALUEs 1245 /// describing the movement. 1246 void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) { 1247 // Does Src still contain the value num we expect? If not, it's been 1248 // clobbered in the meantime, and our variable locations are stale. 1249 if (VarLocs[Src.asU64()] != MTracker->getNumAtPos(Src)) 1250 return; 1251 1252 // assert(ActiveMLocs[Dst].size() == 0); 1253 //^^^ Legitimate scenario on account of un-clobbered slot being assigned to? 1254 ActiveMLocs[Dst] = ActiveMLocs[Src]; 1255 VarLocs[Dst.asU64()] = VarLocs[Src.asU64()]; 1256 1257 // For each variable based on Src; create a location at Dst. 1258 for (auto &Var : ActiveMLocs[Src]) { 1259 auto ActiveVLocIt = ActiveVLocs.find(Var); 1260 assert(ActiveVLocIt != ActiveVLocs.end()); 1261 ActiveVLocIt->second.Loc = Dst; 1262 1263 assert(Dst != 0); 1264 MachineInstr *MI = 1265 MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties); 1266 PendingDbgValues.push_back(MI); 1267 } 1268 ActiveMLocs[Src].clear(); 1269 flushDbgValues(Pos, nullptr); 1270 1271 // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data 1272 // about the old location. 1273 if (EmulateOldLDV) 1274 VarLocs[Src.asU64()] = ValueIDNum::EmptyValue; 1275 } 1276 1277 MachineInstrBuilder emitMOLoc(const MachineOperand &MO, 1278 const DebugVariable &Var, 1279 const DbgValueProperties &Properties) { 1280 DebugLoc DL = 1281 DebugLoc::get(0, 0, Var.getVariable()->getScope(), Var.getInlinedAt()); 1282 auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)); 1283 MIB.add(MO); 1284 if (Properties.Indirect) 1285 MIB.addImm(0); 1286 else 1287 MIB.addReg(0); 1288 MIB.addMetadata(Var.getVariable()); 1289 MIB.addMetadata(Properties.DIExpr); 1290 return MIB; 1291 } 1292 }; 1293 1294 class InstrRefBasedLDV : public LDVImpl { 1295 private: 1296 using FragmentInfo = DIExpression::FragmentInfo; 1297 using OptFragmentInfo = Optional<DIExpression::FragmentInfo>; 1298 1299 // Helper while building OverlapMap, a map of all fragments seen for a given 1300 // DILocalVariable. 1301 using VarToFragments = 1302 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; 1303 1304 /// Machine location/value transfer function, a mapping of which locations 1305 /// are assigned which new values. 1306 using MLocTransferMap = std::map<LocIdx, ValueIDNum>; 1307 1308 /// Live in/out structure for the variable values: a per-block map of 1309 /// variables to their values. XXX, better name? 1310 using LiveIdxT = 1311 DenseMap<const MachineBasicBlock *, DenseMap<DebugVariable, DbgValue> *>; 1312 1313 using VarAndLoc = std::pair<DebugVariable, DbgValue>; 1314 1315 /// Type for a live-in value: the predecessor block, and its value. 1316 using InValueT = std::pair<MachineBasicBlock *, DbgValue *>; 1317 1318 /// Vector (per block) of a collection (inner smallvector) of live-ins. 1319 /// Used as the result type for the variable value dataflow problem. 1320 using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>; 1321 1322 const TargetRegisterInfo *TRI; 1323 const TargetInstrInfo *TII; 1324 const TargetFrameLowering *TFI; 1325 BitVector CalleeSavedRegs; 1326 LexicalScopes LS; 1327 TargetPassConfig *TPC; 1328 1329 /// Object to track machine locations as we step through a block. Could 1330 /// probably be a field rather than a pointer, as it's always used. 1331 MLocTracker *MTracker; 1332 1333 /// Number of the current block LiveDebugValues is stepping through. 1334 unsigned CurBB; 1335 1336 /// Number of the current instruction LiveDebugValues is evaluating. 1337 unsigned CurInst; 1338 1339 /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl 1340 /// steps through a block. Reads the values at each location from the 1341 /// MLocTracker object. 1342 VLocTracker *VTracker; 1343 1344 /// Tracker for transfers, listens to DBG_VALUEs and transfers of values 1345 /// between locations during stepping, creates new DBG_VALUEs when values move 1346 /// location. 1347 TransferTracker *TTracker; 1348 1349 /// Blocks which are artificial, i.e. blocks which exclusively contain 1350 /// instructions without DebugLocs, or with line 0 locations. 1351 SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks; 1352 1353 // Mapping of blocks to and from their RPOT order. 1354 DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; 1355 DenseMap<MachineBasicBlock *, unsigned int> BBToOrder; 1356 DenseMap<unsigned, unsigned> BBNumToRPO; 1357 1358 /// Pair of MachineInstr, and its 1-based offset into the containing block. 1359 using InstAndNum = std::pair<const MachineInstr *, unsigned>; 1360 /// Map from debug instruction number to the MachineInstr labelled with that 1361 /// number, and its location within the function. Used to transform 1362 /// instruction numbers in DBG_INSTR_REFs into machine value numbers. 1363 std::map<uint64_t, InstAndNum> DebugInstrNumToInstr; 1364 1365 // Map of overlapping variable fragments. 1366 OverlapMap OverlapFragments; 1367 VarToFragments SeenFragments; 1368 1369 /// Tests whether this instruction is a spill to a stack slot. 1370 bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF); 1371 1372 /// Decide if @MI is a spill instruction and return true if it is. We use 2 1373 /// criteria to make this decision: 1374 /// - Is this instruction a store to a spill slot? 1375 /// - Is there a register operand that is both used and killed? 1376 /// TODO: Store optimization can fold spills into other stores (including 1377 /// other spills). We do not handle this yet (more than one memory operand). 1378 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, 1379 unsigned &Reg); 1380 1381 /// If a given instruction is identified as a spill, return the spill slot 1382 /// and set \p Reg to the spilled register. 1383 Optional<SpillLoc> isRestoreInstruction(const MachineInstr &MI, 1384 MachineFunction *MF, unsigned &Reg); 1385 1386 /// Given a spill instruction, extract the register and offset used to 1387 /// address the spill slot in a target independent way. 1388 SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); 1389 1390 /// Observe a single instruction while stepping through a block. 1391 void process(MachineInstr &MI); 1392 1393 /// Examines whether \p MI is a DBG_VALUE and notifies trackers. 1394 /// \returns true if MI was recognized and processed. 1395 bool transferDebugValue(const MachineInstr &MI); 1396 1397 /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers. 1398 /// \returns true if MI was recognized and processed. 1399 bool transferDebugInstrRef(MachineInstr &MI); 1400 1401 /// Examines whether \p MI is copy instruction, and notifies trackers. 1402 /// \returns true if MI was recognized and processed. 1403 bool transferRegisterCopy(MachineInstr &MI); 1404 1405 /// Examines whether \p MI is stack spill or restore instruction, and 1406 /// notifies trackers. \returns true if MI was recognized and processed. 1407 bool transferSpillOrRestoreInst(MachineInstr &MI); 1408 1409 /// Examines \p MI for any registers that it defines, and notifies trackers. 1410 void transferRegisterDef(MachineInstr &MI); 1411 1412 /// Copy one location to the other, accounting for movement of subregisters 1413 /// too. 1414 void performCopy(Register Src, Register Dst); 1415 1416 void accumulateFragmentMap(MachineInstr &MI); 1417 1418 /// Step through the function, recording register definitions and movements 1419 /// in an MLocTracker. Convert the observations into a per-block transfer 1420 /// function in \p MLocTransfer, suitable for using with the machine value 1421 /// location dataflow problem. 1422 void 1423 produceMLocTransferFunction(MachineFunction &MF, 1424 SmallVectorImpl<MLocTransferMap> &MLocTransfer, 1425 unsigned MaxNumBlocks); 1426 1427 /// Solve the machine value location dataflow problem. Takes as input the 1428 /// transfer functions in \p MLocTransfer. Writes the output live-in and 1429 /// live-out arrays to the (initialized to zero) multidimensional arrays in 1430 /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block 1431 /// number, the inner by LocIdx. 1432 void mlocDataflow(ValueIDNum **MInLocs, ValueIDNum **MOutLocs, 1433 SmallVectorImpl<MLocTransferMap> &MLocTransfer); 1434 1435 /// Perform a control flow join (lattice value meet) of the values in machine 1436 /// locations at \p MBB. Follows the algorithm described in the file-comment, 1437 /// reading live-outs of predecessors from \p OutLocs, the current live ins 1438 /// from \p InLocs, and assigning the newly computed live ins back into 1439 /// \p InLocs. \returns two bools -- the first indicates whether a change 1440 /// was made, the second whether a lattice downgrade occurred. If the latter 1441 /// is true, revisiting this block is necessary. 1442 std::tuple<bool, bool> 1443 mlocJoin(MachineBasicBlock &MBB, 1444 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 1445 ValueIDNum **OutLocs, ValueIDNum *InLocs); 1446 1447 /// Solve the variable value dataflow problem, for a single lexical scope. 1448 /// Uses the algorithm from the file comment to resolve control flow joins, 1449 /// although there are extra hacks, see vlocJoin. Reads the 1450 /// locations of values from the \p MInLocs and \p MOutLocs arrays (see 1451 /// mlocDataflow) and reads the variable values transfer function from 1452 /// \p AllTheVlocs. Live-in and Live-out variable values are stored locally, 1453 /// with the live-ins permanently stored to \p Output once the fixedpoint is 1454 /// reached. 1455 /// \p VarsWeCareAbout contains a collection of the variables in \p Scope 1456 /// that we should be tracking. 1457 /// \p AssignBlocks contains the set of blocks that aren't in \p Scope, but 1458 /// which do contain DBG_VALUEs, which VarLocBasedImpl tracks locations 1459 /// through. 1460 void vlocDataflow(const LexicalScope *Scope, const DILocation *DILoc, 1461 const SmallSet<DebugVariable, 4> &VarsWeCareAbout, 1462 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, 1463 LiveInsT &Output, ValueIDNum **MOutLocs, 1464 ValueIDNum **MInLocs, 1465 SmallVectorImpl<VLocTracker> &AllTheVLocs); 1466 1467 /// Compute the live-ins to a block, considering control flow merges according 1468 /// to the method in the file comment. Live out and live in variable values 1469 /// are stored in \p VLOCOutLocs and \p VLOCInLocs. The live-ins for \p MBB 1470 /// are computed and stored into \p VLOCInLocs. \returns true if the live-ins 1471 /// are modified. 1472 /// \p InLocsT Output argument, storage for calculated live-ins. 1473 /// \returns two bools -- the first indicates whether a change 1474 /// was made, the second whether a lattice downgrade occurred. If the latter 1475 /// is true, revisiting this block is necessary. 1476 std::tuple<bool, bool> 1477 vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs, 1478 SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, 1479 unsigned BBNum, const SmallSet<DebugVariable, 4> &AllVars, 1480 ValueIDNum **MOutLocs, ValueIDNum **MInLocs, 1481 SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks, 1482 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, 1483 DenseMap<DebugVariable, DbgValue> &InLocsT); 1484 1485 /// Continue exploration of the variable-value lattice, as explained in the 1486 /// file-level comment. \p OldLiveInLocation contains the current 1487 /// exploration position, from which we need to descend further. \p Values 1488 /// contains the set of live-in values, \p CurBlockRPONum the RPO number of 1489 /// the current block, and \p CandidateLocations a set of locations that 1490 /// should be considered as PHI locations, if we reach the bottom of the 1491 /// lattice. \returns true if we should downgrade; the value is the agreeing 1492 /// value number in a non-backedge predecessor. 1493 bool vlocDowngradeLattice(const MachineBasicBlock &MBB, 1494 const DbgValue &OldLiveInLocation, 1495 const SmallVectorImpl<InValueT> &Values, 1496 unsigned CurBlockRPONum); 1497 1498 /// For the given block and live-outs feeding into it, try to find a 1499 /// machine location where they all join. If a solution for all predecessors 1500 /// can't be found, a location where all non-backedge-predecessors join 1501 /// will be returned instead. While this method finds a join location, this 1502 /// says nothing as to whether it should be used. 1503 /// \returns Pair of value ID if found, and true when the correct value 1504 /// is available on all predecessor edges, or false if it's only available 1505 /// for non-backedge predecessors. 1506 std::tuple<Optional<ValueIDNum>, bool> 1507 pickVPHILoc(MachineBasicBlock &MBB, const DebugVariable &Var, 1508 const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs, 1509 ValueIDNum **MInLocs, 1510 const SmallVectorImpl<MachineBasicBlock *> &BlockOrders); 1511 1512 /// Given the solutions to the two dataflow problems, machine value locations 1513 /// in \p MInLocs and live-in variable values in \p SavedLiveIns, runs the 1514 /// TransferTracker class over the function to produce live-in and transfer 1515 /// DBG_VALUEs, then inserts them. Groups of DBG_VALUEs are inserted in the 1516 /// order given by AllVarsNumbering -- this could be any stable order, but 1517 /// right now "order of appearence in function, when explored in RPO", so 1518 /// that we can compare explictly against VarLocBasedImpl. 1519 void emitLocations(MachineFunction &MF, LiveInsT SavedLiveIns, 1520 ValueIDNum **MInLocs, 1521 DenseMap<DebugVariable, unsigned> &AllVarsNumbering); 1522 1523 /// Boilerplate computation of some initial sets, artifical blocks and 1524 /// RPOT block ordering. 1525 void initialSetup(MachineFunction &MF); 1526 1527 bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override; 1528 1529 public: 1530 /// Default construct and initialize the pass. 1531 InstrRefBasedLDV(); 1532 1533 LLVM_DUMP_METHOD 1534 void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const; 1535 1536 bool isCalleeSaved(LocIdx L) { 1537 unsigned Reg = MTracker->LocIdxToLocID[L]; 1538 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1539 if (CalleeSavedRegs.test(*RAI)) 1540 return true; 1541 return false; 1542 } 1543 }; 1544 1545 } // end anonymous namespace 1546 1547 //===----------------------------------------------------------------------===// 1548 // Implementation 1549 //===----------------------------------------------------------------------===// 1550 1551 ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX}; 1552 1553 /// Default construct and initialize the pass. 1554 InstrRefBasedLDV::InstrRefBasedLDV() {} 1555 1556 //===----------------------------------------------------------------------===// 1557 // Debug Range Extension Implementation 1558 //===----------------------------------------------------------------------===// 1559 1560 #ifndef NDEBUG 1561 // Something to restore in the future. 1562 // void InstrRefBasedLDV::printVarLocInMBB(..) 1563 #endif 1564 1565 SpillLoc 1566 InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { 1567 assert(MI.hasOneMemOperand() && 1568 "Spill instruction does not have exactly one memory operand?"); 1569 auto MMOI = MI.memoperands_begin(); 1570 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); 1571 assert(PVal->kind() == PseudoSourceValue::FixedStack && 1572 "Inconsistent memory operand in spill instruction"); 1573 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); 1574 const MachineBasicBlock *MBB = MI.getParent(); 1575 Register Reg; 1576 int Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); 1577 return {Reg, Offset}; 1578 } 1579 1580 /// End all previous ranges related to @MI and start a new range from @MI 1581 /// if it is a DBG_VALUE instr. 1582 bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) { 1583 if (!MI.isDebugValue()) 1584 return false; 1585 1586 const DILocalVariable *Var = MI.getDebugVariable(); 1587 const DIExpression *Expr = MI.getDebugExpression(); 1588 const DILocation *DebugLoc = MI.getDebugLoc(); 1589 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 1590 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 1591 "Expected inlined-at fields to agree"); 1592 1593 DebugVariable V(Var, Expr, InlinedAt); 1594 DbgValueProperties Properties(MI); 1595 1596 // If there are no instructions in this lexical scope, do no location tracking 1597 // at all, this variable shouldn't get a legitimate location range. 1598 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); 1599 if (Scope == nullptr) 1600 return true; // handled it; by doing nothing 1601 1602 const MachineOperand &MO = MI.getOperand(0); 1603 1604 // MLocTracker needs to know that this register is read, even if it's only 1605 // read by a debug inst. 1606 if (MO.isReg() && MO.getReg() != 0) 1607 (void)MTracker->readReg(MO.getReg()); 1608 1609 // If we're preparing for the second analysis (variables), the machine value 1610 // locations are already solved, and we report this DBG_VALUE and the value 1611 // it refers to to VLocTracker. 1612 if (VTracker) { 1613 if (MO.isReg()) { 1614 // Feed defVar the new variable location, or if this is a 1615 // DBG_VALUE $noreg, feed defVar None. 1616 if (MO.getReg()) 1617 VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg())); 1618 else 1619 VTracker->defVar(MI, Properties, None); 1620 } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() || 1621 MI.getOperand(0).isCImm()) { 1622 VTracker->defVar(MI, MI.getOperand(0)); 1623 } 1624 } 1625 1626 // If performing final tracking of transfers, report this variable definition 1627 // to the TransferTracker too. 1628 if (TTracker) 1629 TTracker->redefVar(MI); 1630 return true; 1631 } 1632 1633 bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI) { 1634 if (!MI.isDebugRef()) 1635 return false; 1636 1637 // Only handle this instruction when we are building the variable value 1638 // transfer function. 1639 if (!VTracker) 1640 return false; 1641 1642 unsigned InstNo = MI.getOperand(0).getImm(); 1643 unsigned OpNo = MI.getOperand(1).getImm(); 1644 1645 const DILocalVariable *Var = MI.getDebugVariable(); 1646 const DIExpression *Expr = MI.getDebugExpression(); 1647 const DILocation *DebugLoc = MI.getDebugLoc(); 1648 const DILocation *InlinedAt = DebugLoc->getInlinedAt(); 1649 assert(Var->isValidLocationForIntrinsic(DebugLoc) && 1650 "Expected inlined-at fields to agree"); 1651 1652 DebugVariable V(Var, Expr, InlinedAt); 1653 1654 auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); 1655 if (Scope == nullptr) 1656 return true; // Handled by doing nothing. This variable is never in scope. 1657 1658 const MachineFunction &MF = *MI.getParent()->getParent(); 1659 1660 // Various optimizations may have happened to the value during codegen, 1661 // recorded in the value substitution table. Apply any substitutions to 1662 // the instruction / operand number in this DBG_INSTR_REF. 1663 auto Sub = MF.DebugValueSubstitutions.find(std::make_pair(InstNo, OpNo)); 1664 while (Sub != MF.DebugValueSubstitutions.end()) { 1665 InstNo = Sub->second.first; 1666 OpNo = Sub->second.second; 1667 Sub = MF.DebugValueSubstitutions.find(std::make_pair(InstNo, OpNo)); 1668 } 1669 1670 // Default machine value number is <None> -- if no instruction defines 1671 // the corresponding value, it must have been optimized out. 1672 Optional<ValueIDNum> NewID = None; 1673 1674 // Try to lookup the instruction number, and find the machine value number 1675 // that it defines. 1676 auto InstrIt = DebugInstrNumToInstr.find(InstNo); 1677 if (InstrIt != DebugInstrNumToInstr.end()) { 1678 const MachineInstr &TargetInstr = *InstrIt->second.first; 1679 uint64_t BlockNo = TargetInstr.getParent()->getNumber(); 1680 1681 // Pick out the designated operand. 1682 assert(OpNo < TargetInstr.getNumOperands()); 1683 const MachineOperand &MO = TargetInstr.getOperand(OpNo); 1684 1685 // Today, this can only be a register. 1686 assert(MO.isReg() && MO.isDef()); 1687 1688 unsigned LocID = MTracker->getLocID(MO.getReg(), false); 1689 LocIdx L = MTracker->LocIDToLocIdx[LocID]; 1690 NewID = ValueIDNum(BlockNo, InstrIt->second.second, L); 1691 } 1692 1693 // We, we have a value number or None. Tell the variable value tracker about 1694 // it. The rest of this LiveDebugValues implementation acts exactly the same 1695 // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that 1696 // aren't immediately available). 1697 DbgValueProperties Properties(Expr, false); 1698 VTracker->defVar(MI, Properties, NewID); 1699 1700 // If we're on the final pass through the function, decompose this INSTR_REF 1701 // into a plain DBG_VALUE. 1702 if (!TTracker) 1703 return true; 1704 1705 // Pick a location for the machine value number, if such a location exists. 1706 // (This information could be stored in TransferTracker to make it faster). 1707 Optional<LocIdx> FoundLoc = None; 1708 for (auto Location : MTracker->locations()) { 1709 LocIdx CurL = Location.Idx; 1710 ValueIDNum ID = MTracker->LocIdxToIDNum[CurL]; 1711 if (NewID && ID == NewID) { 1712 // If this is the first location with that value, pick it. Otherwise, 1713 // consider whether it's a "longer term" location. 1714 if (!FoundLoc) { 1715 FoundLoc = CurL; 1716 continue; 1717 } 1718 1719 if (MTracker->isSpill(CurL)) 1720 FoundLoc = CurL; // Spills are a longer term location. 1721 else if (!MTracker->isSpill(*FoundLoc) && 1722 !MTracker->isSpill(CurL) && 1723 !isCalleeSaved(*FoundLoc) && 1724 isCalleeSaved(CurL)) 1725 FoundLoc = CurL; // Callee saved regs are longer term than normal. 1726 } 1727 } 1728 1729 // Tell transfer tracker that the variable value has changed. 1730 TTracker->redefVar(MI, Properties, FoundLoc); 1731 1732 // If there was a value with no location; but the value is defined in a 1733 // later instruction in this block, this is a block-local use-before-def. 1734 if (!FoundLoc && NewID && NewID->getBlock() == CurBB && 1735 NewID->getInst() > CurInst) 1736 TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID); 1737 1738 // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant. 1739 // This DBG_VALUE is potentially a $noreg / undefined location, if 1740 // FoundLoc is None. 1741 // (XXX -- could morph the DBG_INSTR_REF in the future). 1742 MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties); 1743 TTracker->PendingDbgValues.push_back(DbgMI); 1744 TTracker->flushDbgValues(MI.getIterator(), nullptr); 1745 1746 return true; 1747 } 1748 1749 void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) { 1750 // Meta Instructions do not affect the debug liveness of any register they 1751 // define. 1752 if (MI.isImplicitDef()) { 1753 // Except when there's an implicit def, and the location it's defining has 1754 // no value number. The whole point of an implicit def is to announce that 1755 // the register is live, without be specific about it's value. So define 1756 // a value if there isn't one already. 1757 ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg()); 1758 // Has a legitimate value -> ignore the implicit def. 1759 if (Num.getLoc() != 0) 1760 return; 1761 // Otherwise, def it here. 1762 } else if (MI.isMetaInstruction()) 1763 return; 1764 1765 MachineFunction *MF = MI.getMF(); 1766 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1767 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 1768 1769 // Find the regs killed by MI, and find regmasks of preserved regs. 1770 // Max out the number of statically allocated elements in `DeadRegs`, as this 1771 // prevents fallback to std::set::count() operations. 1772 SmallSet<uint32_t, 32> DeadRegs; 1773 SmallVector<const uint32_t *, 4> RegMasks; 1774 SmallVector<const MachineOperand *, 4> RegMaskPtrs; 1775 for (const MachineOperand &MO : MI.operands()) { 1776 // Determine whether the operand is a register def. 1777 if (MO.isReg() && MO.isDef() && MO.getReg() && 1778 Register::isPhysicalRegister(MO.getReg()) && 1779 !(MI.isCall() && MO.getReg() == SP)) { 1780 // Remove ranges of all aliased registers. 1781 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) 1782 // FIXME: Can we break out of this loop early if no insertion occurs? 1783 DeadRegs.insert(*RAI); 1784 } else if (MO.isRegMask()) { 1785 RegMasks.push_back(MO.getRegMask()); 1786 RegMaskPtrs.push_back(&MO); 1787 } 1788 } 1789 1790 // Tell MLocTracker about all definitions, of regmasks and otherwise. 1791 for (uint32_t DeadReg : DeadRegs) 1792 MTracker->defReg(DeadReg, CurBB, CurInst); 1793 1794 for (auto *MO : RegMaskPtrs) 1795 MTracker->writeRegMask(MO, CurBB, CurInst); 1796 } 1797 1798 void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) { 1799 ValueIDNum SrcValue = MTracker->readReg(SrcRegNum); 1800 1801 MTracker->setReg(DstRegNum, SrcValue); 1802 1803 // In all circumstances, re-def the super registers. It's definitely a new 1804 // value now. This doesn't uniquely identify the composition of subregs, for 1805 // example, two identical values in subregisters composed in different 1806 // places would not get equal value numbers. 1807 for (MCSuperRegIterator SRI(DstRegNum, TRI); SRI.isValid(); ++SRI) 1808 MTracker->defReg(*SRI, CurBB, CurInst); 1809 1810 // If we're emulating VarLocBasedImpl, just define all the subregisters. 1811 // DBG_VALUEs of them will expect to be tracked from the DBG_VALUE, not 1812 // through prior copies. 1813 if (EmulateOldLDV) { 1814 for (MCSubRegIndexIterator DRI(DstRegNum, TRI); DRI.isValid(); ++DRI) 1815 MTracker->defReg(DRI.getSubReg(), CurBB, CurInst); 1816 return; 1817 } 1818 1819 // Otherwise, actually copy subregisters from one location to another. 1820 // XXX: in addition, any subregisters of DstRegNum that don't line up with 1821 // the source register should be def'd. 1822 for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) { 1823 unsigned SrcSubReg = SRI.getSubReg(); 1824 unsigned SubRegIdx = SRI.getSubRegIndex(); 1825 unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx); 1826 if (!DstSubReg) 1827 continue; 1828 1829 // Do copy. There are two matching subregisters, the source value should 1830 // have been def'd when the super-reg was, the latter might not be tracked 1831 // yet. 1832 // This will force SrcSubReg to be tracked, if it isn't yet. 1833 (void)MTracker->readReg(SrcSubReg); 1834 LocIdx SrcL = MTracker->getRegMLoc(SrcSubReg); 1835 assert(SrcL.asU64()); 1836 (void)MTracker->readReg(DstSubReg); 1837 LocIdx DstL = MTracker->getRegMLoc(DstSubReg); 1838 assert(DstL.asU64()); 1839 (void)DstL; 1840 ValueIDNum CpyValue = {SrcValue.getBlock(), SrcValue.getInst(), SrcL}; 1841 1842 MTracker->setReg(DstSubReg, CpyValue); 1843 } 1844 } 1845 1846 bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI, 1847 MachineFunction *MF) { 1848 // TODO: Handle multiple stores folded into one. 1849 if (!MI.hasOneMemOperand()) 1850 return false; 1851 1852 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) 1853 return false; // This is not a spill instruction, since no valid size was 1854 // returned from either function. 1855 1856 return true; 1857 } 1858 1859 bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI, 1860 MachineFunction *MF, unsigned &Reg) { 1861 if (!isSpillInstruction(MI, MF)) 1862 return false; 1863 1864 // XXX FIXME: On x86, isStoreToStackSlotPostFE returns '1' instead of an 1865 // actual register number. 1866 if (ObserveAllStackops) { 1867 int FI; 1868 Reg = TII->isStoreToStackSlotPostFE(MI, FI); 1869 return Reg != 0; 1870 } 1871 1872 auto isKilledReg = [&](const MachineOperand MO, unsigned &Reg) { 1873 if (!MO.isReg() || !MO.isUse()) { 1874 Reg = 0; 1875 return false; 1876 } 1877 Reg = MO.getReg(); 1878 return MO.isKill(); 1879 }; 1880 1881 for (const MachineOperand &MO : MI.operands()) { 1882 // In a spill instruction generated by the InlineSpiller the spilled 1883 // register has its kill flag set. 1884 if (isKilledReg(MO, Reg)) 1885 return true; 1886 if (Reg != 0) { 1887 // Check whether next instruction kills the spilled register. 1888 // FIXME: Current solution does not cover search for killed register in 1889 // bundles and instructions further down the chain. 1890 auto NextI = std::next(MI.getIterator()); 1891 // Skip next instruction that points to basic block end iterator. 1892 if (MI.getParent()->end() == NextI) 1893 continue; 1894 unsigned RegNext; 1895 for (const MachineOperand &MONext : NextI->operands()) { 1896 // Return true if we came across the register from the 1897 // previous spill instruction that is killed in NextI. 1898 if (isKilledReg(MONext, RegNext) && RegNext == Reg) 1899 return true; 1900 } 1901 } 1902 } 1903 // Return false if we didn't find spilled register. 1904 return false; 1905 } 1906 1907 Optional<SpillLoc> 1908 InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI, 1909 MachineFunction *MF, unsigned &Reg) { 1910 if (!MI.hasOneMemOperand()) 1911 return None; 1912 1913 // FIXME: Handle folded restore instructions with more than one memory 1914 // operand. 1915 if (MI.getRestoreSize(TII)) { 1916 Reg = MI.getOperand(0).getReg(); 1917 return extractSpillBaseRegAndOffset(MI); 1918 } 1919 return None; 1920 } 1921 1922 bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) { 1923 // XXX -- it's too difficult to implement VarLocBasedImpl's stack location 1924 // limitations under the new model. Therefore, when comparing them, compare 1925 // versions that don't attempt spills or restores at all. 1926 if (EmulateOldLDV) 1927 return false; 1928 1929 MachineFunction *MF = MI.getMF(); 1930 unsigned Reg; 1931 Optional<SpillLoc> Loc; 1932 1933 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); 1934 1935 // First, if there are any DBG_VALUEs pointing at a spill slot that is 1936 // written to, terminate that variable location. The value in memory 1937 // will have changed. DbgEntityHistoryCalculator doesn't try to detect this. 1938 if (isSpillInstruction(MI, MF)) { 1939 Loc = extractSpillBaseRegAndOffset(MI); 1940 1941 if (TTracker) { 1942 Optional<LocIdx> MLoc = MTracker->getSpillMLoc(*Loc); 1943 if (MLoc) 1944 TTracker->clobberMloc(*MLoc, MI.getIterator()); 1945 } 1946 } 1947 1948 // Try to recognise spill and restore instructions that may transfer a value. 1949 if (isLocationSpill(MI, MF, Reg)) { 1950 Loc = extractSpillBaseRegAndOffset(MI); 1951 auto ValueID = MTracker->readReg(Reg); 1952 1953 // If the location is empty, produce a phi, signify it's the live-in value. 1954 if (ValueID.getLoc() == 0) 1955 ValueID = {CurBB, 0, MTracker->getRegMLoc(Reg)}; 1956 1957 MTracker->setSpill(*Loc, ValueID); 1958 auto OptSpillLocIdx = MTracker->getSpillMLoc(*Loc); 1959 assert(OptSpillLocIdx && "Spill slot set but has no LocIdx?"); 1960 LocIdx SpillLocIdx = *OptSpillLocIdx; 1961 1962 // Tell TransferTracker about this spill, produce DBG_VALUEs for it. 1963 if (TTracker) 1964 TTracker->transferMlocs(MTracker->getRegMLoc(Reg), SpillLocIdx, 1965 MI.getIterator()); 1966 1967 // VarLocBasedImpl would, at this point, stop tracking the source 1968 // register of the store. 1969 if (EmulateOldLDV) { 1970 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1971 MTracker->defReg(*RAI, CurBB, CurInst); 1972 } 1973 } else { 1974 if (!(Loc = isRestoreInstruction(MI, MF, Reg))) 1975 return false; 1976 1977 // Is there a value to be restored? 1978 auto OptValueID = MTracker->readSpill(*Loc); 1979 if (OptValueID) { 1980 ValueIDNum ValueID = *OptValueID; 1981 LocIdx SpillLocIdx = *MTracker->getSpillMLoc(*Loc); 1982 // XXX -- can we recover sub-registers of this value? Until we can, first 1983 // overwrite all defs of the register being restored to. 1984 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1985 MTracker->defReg(*RAI, CurBB, CurInst); 1986 1987 // Now override the reg we're restoring to. 1988 MTracker->setReg(Reg, ValueID); 1989 1990 // Report this restore to the transfer tracker too. 1991 if (TTracker) 1992 TTracker->transferMlocs(SpillLocIdx, MTracker->getRegMLoc(Reg), 1993 MI.getIterator()); 1994 } else { 1995 // There isn't anything in the location; not clear if this is a code path 1996 // that still runs. Def this register anyway just in case. 1997 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 1998 MTracker->defReg(*RAI, CurBB, CurInst); 1999 2000 // Force the spill slot to be tracked. 2001 LocIdx L = MTracker->getOrTrackSpillLoc(*Loc); 2002 2003 // Set the restored value to be a machine phi number, signifying that it's 2004 // whatever the spills live-in value is in this block. Definitely has 2005 // a LocIdx due to the setSpill above. 2006 ValueIDNum ValueID = {CurBB, 0, L}; 2007 MTracker->setReg(Reg, ValueID); 2008 MTracker->setSpill(*Loc, ValueID); 2009 } 2010 } 2011 return true; 2012 } 2013 2014 bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) { 2015 auto DestSrc = TII->isCopyInstr(MI); 2016 if (!DestSrc) 2017 return false; 2018 2019 const MachineOperand *DestRegOp = DestSrc->Destination; 2020 const MachineOperand *SrcRegOp = DestSrc->Source; 2021 2022 auto isCalleeSavedReg = [&](unsigned Reg) { 2023 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) 2024 if (CalleeSavedRegs.test(*RAI)) 2025 return true; 2026 return false; 2027 }; 2028 2029 Register SrcReg = SrcRegOp->getReg(); 2030 Register DestReg = DestRegOp->getReg(); 2031 2032 // Ignore identity copies. Yep, these make it as far as LiveDebugValues. 2033 if (SrcReg == DestReg) 2034 return true; 2035 2036 // For emulating VarLocBasedImpl: 2037 // We want to recognize instructions where destination register is callee 2038 // saved register. If register that could be clobbered by the call is 2039 // included, there would be a great chance that it is going to be clobbered 2040 // soon. It is more likely that previous register, which is callee saved, is 2041 // going to stay unclobbered longer, even if it is killed. 2042 // 2043 // For InstrRefBasedImpl, we can track multiple locations per value, so 2044 // ignore this condition. 2045 if (EmulateOldLDV && !isCalleeSavedReg(DestReg)) 2046 return false; 2047 2048 // InstrRefBasedImpl only followed killing copies. 2049 if (EmulateOldLDV && !SrcRegOp->isKill()) 2050 return false; 2051 2052 // Copy MTracker info, including subregs if available. 2053 InstrRefBasedLDV::performCopy(SrcReg, DestReg); 2054 2055 // Only produce a transfer of DBG_VALUE within a block where old LDV 2056 // would have. We might make use of the additional value tracking in some 2057 // other way, later. 2058 if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill()) 2059 TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg), 2060 MTracker->getRegMLoc(DestReg), MI.getIterator()); 2061 2062 // VarLocBasedImpl would quit tracking the old location after copying. 2063 if (EmulateOldLDV && SrcReg != DestReg) 2064 MTracker->defReg(SrcReg, CurBB, CurInst); 2065 2066 return true; 2067 } 2068 2069 /// Accumulate a mapping between each DILocalVariable fragment and other 2070 /// fragments of that DILocalVariable which overlap. This reduces work during 2071 /// the data-flow stage from "Find any overlapping fragments" to "Check if the 2072 /// known-to-overlap fragments are present". 2073 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for 2074 /// fragment usage. 2075 void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) { 2076 DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), 2077 MI.getDebugLoc()->getInlinedAt()); 2078 FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); 2079 2080 // If this is the first sighting of this variable, then we are guaranteed 2081 // there are currently no overlapping fragments either. Initialize the set 2082 // of seen fragments, record no overlaps for the current one, and return. 2083 auto SeenIt = SeenFragments.find(MIVar.getVariable()); 2084 if (SeenIt == SeenFragments.end()) { 2085 SmallSet<FragmentInfo, 4> OneFragment; 2086 OneFragment.insert(ThisFragment); 2087 SeenFragments.insert({MIVar.getVariable(), OneFragment}); 2088 2089 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 2090 return; 2091 } 2092 2093 // If this particular Variable/Fragment pair already exists in the overlap 2094 // map, it has already been accounted for. 2095 auto IsInOLapMap = 2096 OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); 2097 if (!IsInOLapMap.second) 2098 return; 2099 2100 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; 2101 auto &AllSeenFragments = SeenIt->second; 2102 2103 // Otherwise, examine all other seen fragments for this variable, with "this" 2104 // fragment being a previously unseen fragment. Record any pair of 2105 // overlapping fragments. 2106 for (auto &ASeenFragment : AllSeenFragments) { 2107 // Does this previously seen fragment overlap? 2108 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { 2109 // Yes: Mark the current fragment as being overlapped. 2110 ThisFragmentsOverlaps.push_back(ASeenFragment); 2111 // Mark the previously seen fragment as being overlapped by the current 2112 // one. 2113 auto ASeenFragmentsOverlaps = 2114 OverlapFragments.find({MIVar.getVariable(), ASeenFragment}); 2115 assert(ASeenFragmentsOverlaps != OverlapFragments.end() && 2116 "Previously seen var fragment has no vector of overlaps"); 2117 ASeenFragmentsOverlaps->second.push_back(ThisFragment); 2118 } 2119 } 2120 2121 AllSeenFragments.insert(ThisFragment); 2122 } 2123 2124 void InstrRefBasedLDV::process(MachineInstr &MI) { 2125 // Try to interpret an MI as a debug or transfer instruction. Only if it's 2126 // none of these should we interpret it's register defs as new value 2127 // definitions. 2128 if (transferDebugValue(MI)) 2129 return; 2130 if (transferDebugInstrRef(MI)) 2131 return; 2132 if (transferRegisterCopy(MI)) 2133 return; 2134 if (transferSpillOrRestoreInst(MI)) 2135 return; 2136 transferRegisterDef(MI); 2137 } 2138 2139 void InstrRefBasedLDV::produceMLocTransferFunction( 2140 MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer, 2141 unsigned MaxNumBlocks) { 2142 // Because we try to optimize around register mask operands by ignoring regs 2143 // that aren't currently tracked, we set up something ugly for later: RegMask 2144 // operands that are seen earlier than the first use of a register, still need 2145 // to clobber that register in the transfer function. But this information 2146 // isn't actively recorded. Instead, we track each RegMask used in each block, 2147 // and accumulated the clobbered but untracked registers in each block into 2148 // the following bitvector. Later, if new values are tracked, we can add 2149 // appropriate clobbers. 2150 SmallVector<BitVector, 32> BlockMasks; 2151 BlockMasks.resize(MaxNumBlocks); 2152 2153 // Reserve one bit per register for the masks described above. 2154 unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs()); 2155 for (auto &BV : BlockMasks) 2156 BV.resize(TRI->getNumRegs(), true); 2157 2158 // Step through all instructions and inhale the transfer function. 2159 for (auto &MBB : MF) { 2160 // Object fields that are read by trackers to know where we are in the 2161 // function. 2162 CurBB = MBB.getNumber(); 2163 CurInst = 1; 2164 2165 // Set all machine locations to a PHI value. For transfer function 2166 // production only, this signifies the live-in value to the block. 2167 MTracker->reset(); 2168 MTracker->setMPhis(CurBB); 2169 2170 // Step through each instruction in this block. 2171 for (auto &MI : MBB) { 2172 process(MI); 2173 // Also accumulate fragment map. 2174 if (MI.isDebugValue()) 2175 accumulateFragmentMap(MI); 2176 2177 // Create a map from the instruction number (if present) to the 2178 // MachineInstr and its position. 2179 if (uint64_t InstrNo = MI.peekDebugInstrNum()) { 2180 auto InstrAndPos = std::make_pair(&MI, CurInst); 2181 auto InsertResult = 2182 DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos)); 2183 2184 // There should never be duplicate instruction numbers. 2185 assert(InsertResult.second); 2186 (void)InsertResult; 2187 } 2188 2189 ++CurInst; 2190 } 2191 2192 // Produce the transfer function, a map of machine location to new value. If 2193 // any machine location has the live-in phi value from the start of the 2194 // block, it's live-through and doesn't need recording in the transfer 2195 // function. 2196 for (auto Location : MTracker->locations()) { 2197 LocIdx Idx = Location.Idx; 2198 ValueIDNum &P = Location.Value; 2199 if (P.isPHI() && P.getLoc() == Idx.asU64()) 2200 continue; 2201 2202 // Insert-or-update. 2203 auto &TransferMap = MLocTransfer[CurBB]; 2204 auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P)); 2205 if (!Result.second) 2206 Result.first->second = P; 2207 } 2208 2209 // Accumulate any bitmask operands into the clobberred reg mask for this 2210 // block. 2211 for (auto &P : MTracker->Masks) { 2212 BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords); 2213 } 2214 } 2215 2216 // Compute a bitvector of all the registers that are tracked in this block. 2217 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); 2218 Register SP = TLI->getStackPointerRegisterToSaveRestore(); 2219 BitVector UsedRegs(TRI->getNumRegs()); 2220 for (auto Location : MTracker->locations()) { 2221 unsigned ID = MTracker->LocIdxToLocID[Location.Idx]; 2222 if (ID >= TRI->getNumRegs() || ID == SP) 2223 continue; 2224 UsedRegs.set(ID); 2225 } 2226 2227 // Check that any regmask-clobber of a register that gets tracked, is not 2228 // live-through in the transfer function. It needs to be clobbered at the 2229 // very least. 2230 for (unsigned int I = 0; I < MaxNumBlocks; ++I) { 2231 BitVector &BV = BlockMasks[I]; 2232 BV.flip(); 2233 BV &= UsedRegs; 2234 // This produces all the bits that we clobber, but also use. Check that 2235 // they're all clobbered or at least set in the designated transfer 2236 // elem. 2237 for (unsigned Bit : BV.set_bits()) { 2238 unsigned ID = MTracker->getLocID(Bit, false); 2239 LocIdx Idx = MTracker->LocIDToLocIdx[ID]; 2240 auto &TransferMap = MLocTransfer[I]; 2241 2242 // Install a value representing the fact that this location is effectively 2243 // written to in this block. As there's no reserved value, instead use 2244 // a value number that is never generated. Pick the value number for the 2245 // first instruction in the block, def'ing this location, which we know 2246 // this block never used anyway. 2247 ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx); 2248 auto Result = 2249 TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum)); 2250 if (!Result.second) { 2251 ValueIDNum &ValueID = Result.first->second; 2252 if (ValueID.getBlock() == I && ValueID.isPHI()) 2253 // It was left as live-through. Set it to clobbered. 2254 ValueID = NotGeneratedNum; 2255 } 2256 } 2257 } 2258 } 2259 2260 std::tuple<bool, bool> 2261 InstrRefBasedLDV::mlocJoin(MachineBasicBlock &MBB, 2262 SmallPtrSet<const MachineBasicBlock *, 16> &Visited, 2263 ValueIDNum **OutLocs, ValueIDNum *InLocs) { 2264 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 2265 bool Changed = false; 2266 bool DowngradeOccurred = false; 2267 2268 // Collect predecessors that have been visited. Anything that hasn't been 2269 // visited yet is a backedge on the first iteration, and the meet of it's 2270 // lattice value for all locations will be unaffected. 2271 SmallVector<const MachineBasicBlock *, 8> BlockOrders; 2272 for (auto Pred : MBB.predecessors()) { 2273 if (Visited.count(Pred)) { 2274 BlockOrders.push_back(Pred); 2275 } 2276 } 2277 2278 // Visit predecessors in RPOT order. 2279 auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) { 2280 return BBToOrder.find(A)->second < BBToOrder.find(B)->second; 2281 }; 2282 llvm::sort(BlockOrders.begin(), BlockOrders.end(), Cmp); 2283 2284 // Skip entry block. 2285 if (BlockOrders.size() == 0) 2286 return std::tuple<bool, bool>(false, false); 2287 2288 // Step through all machine locations, then look at each predecessor and 2289 // detect disagreements. 2290 unsigned ThisBlockRPO = BBToOrder.find(&MBB)->second; 2291 for (auto Location : MTracker->locations()) { 2292 LocIdx Idx = Location.Idx; 2293 // Pick out the first predecessors live-out value for this location. It's 2294 // guaranteed to be not a backedge, as we order by RPO. 2295 ValueIDNum BaseVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()]; 2296 2297 // Some flags for whether there's a disagreement, and whether it's a 2298 // disagreement with a backedge or not. 2299 bool Disagree = false; 2300 bool NonBackEdgeDisagree = false; 2301 2302 // Loop around everything that wasn't 'base'. 2303 for (unsigned int I = 1; I < BlockOrders.size(); ++I) { 2304 auto *MBB = BlockOrders[I]; 2305 if (BaseVal != OutLocs[MBB->getNumber()][Idx.asU64()]) { 2306 // Live-out of a predecessor disagrees with the first predecessor. 2307 Disagree = true; 2308 2309 // Test whether it's a disagreemnt in the backedges or not. 2310 if (BBToOrder.find(MBB)->second < ThisBlockRPO) // might be self b/e 2311 NonBackEdgeDisagree = true; 2312 } 2313 } 2314 2315 bool OverRide = false; 2316 if (Disagree && !NonBackEdgeDisagree) { 2317 // Only the backedges disagree. Consider demoting the livein 2318 // lattice value, as per the file level comment. The value we consider 2319 // demoting to is the value that the non-backedge predecessors agree on. 2320 // The order of values is that non-PHIs are \top, a PHI at this block 2321 // \bot, and phis between the two are ordered by their RPO number. 2322 // If there's no agreement, or we've already demoted to this PHI value 2323 // before, replace with a PHI value at this block. 2324 2325 // Calculate order numbers: zero means normal def, nonzero means RPO 2326 // number. 2327 unsigned BaseBlockRPONum = BBNumToRPO[BaseVal.getBlock()] + 1; 2328 if (!BaseVal.isPHI()) 2329 BaseBlockRPONum = 0; 2330 2331 ValueIDNum &InLocID = InLocs[Idx.asU64()]; 2332 unsigned InLocRPONum = BBNumToRPO[InLocID.getBlock()] + 1; 2333 if (!InLocID.isPHI()) 2334 InLocRPONum = 0; 2335 2336 // Should we ignore the disagreeing backedges, and override with the 2337 // value the other predecessors agree on (in "base")? 2338 unsigned ThisBlockRPONum = BBNumToRPO[MBB.getNumber()] + 1; 2339 if (BaseBlockRPONum > InLocRPONum && BaseBlockRPONum < ThisBlockRPONum) { 2340 // Override. 2341 OverRide = true; 2342 DowngradeOccurred = true; 2343 } 2344 } 2345 // else: if we disagree in the non-backedges, then this is definitely 2346 // a control flow merge where different values merge. Make it a PHI. 2347 2348 // Generate a phi... 2349 ValueIDNum PHI = {(uint64_t)MBB.getNumber(), 0, Idx}; 2350 ValueIDNum NewVal = (Disagree && !OverRide) ? PHI : BaseVal; 2351 if (InLocs[Idx.asU64()] != NewVal) { 2352 Changed |= true; 2353 InLocs[Idx.asU64()] = NewVal; 2354 } 2355 } 2356 2357 // TODO: Reimplement NumInserted and NumRemoved. 2358 return std::tuple<bool, bool>(Changed, DowngradeOccurred); 2359 } 2360 2361 void InstrRefBasedLDV::mlocDataflow( 2362 ValueIDNum **MInLocs, ValueIDNum **MOutLocs, 2363 SmallVectorImpl<MLocTransferMap> &MLocTransfer) { 2364 std::priority_queue<unsigned int, std::vector<unsigned int>, 2365 std::greater<unsigned int>> 2366 Worklist, Pending; 2367 2368 // We track what is on the current and pending worklist to avoid inserting 2369 // the same thing twice. We could avoid this with a custom priority queue, 2370 // but this is probably not worth it. 2371 SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist; 2372 2373 // Initialize worklist with every block to be visited. 2374 for (unsigned int I = 0; I < BBToOrder.size(); ++I) { 2375 Worklist.push(I); 2376 OnWorklist.insert(OrderToBB[I]); 2377 } 2378 2379 MTracker->reset(); 2380 2381 // Set inlocs for entry block -- each as a PHI at the entry block. Represents 2382 // the incoming value to the function. 2383 MTracker->setMPhis(0); 2384 for (auto Location : MTracker->locations()) 2385 MInLocs[0][Location.Idx.asU64()] = Location.Value; 2386 2387 SmallPtrSet<const MachineBasicBlock *, 16> Visited; 2388 while (!Worklist.empty() || !Pending.empty()) { 2389 // Vector for storing the evaluated block transfer function. 2390 SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap; 2391 2392 while (!Worklist.empty()) { 2393 MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; 2394 CurBB = MBB->getNumber(); 2395 Worklist.pop(); 2396 2397 // Join the values in all predecessor blocks. 2398 bool InLocsChanged, DowngradeOccurred; 2399 std::tie(InLocsChanged, DowngradeOccurred) = 2400 mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]); 2401 InLocsChanged |= Visited.insert(MBB).second; 2402 2403 // If a downgrade occurred, book us in for re-examination on the next 2404 // iteration. 2405 if (DowngradeOccurred && OnPending.insert(MBB).second) 2406 Pending.push(BBToOrder[MBB]); 2407 2408 // Don't examine transfer function if we've visited this loc at least 2409 // once, and inlocs haven't changed. 2410 if (!InLocsChanged) 2411 continue; 2412 2413 // Load the current set of live-ins into MLocTracker. 2414 MTracker->loadFromArray(MInLocs[CurBB], CurBB); 2415 2416 // Each element of the transfer function can be a new def, or a read of 2417 // a live-in value. Evaluate each element, and store to "ToRemap". 2418 ToRemap.clear(); 2419 for (auto &P : MLocTransfer[CurBB]) { 2420 if (P.second.getBlock() == CurBB && P.second.isPHI()) { 2421 // This is a movement of whatever was live in. Read it. 2422 ValueIDNum NewID = MTracker->getNumAtPos(P.second.getLoc()); 2423 ToRemap.push_back(std::make_pair(P.first, NewID)); 2424 } else { 2425 // It's a def. Just set it. 2426 assert(P.second.getBlock() == CurBB); 2427 ToRemap.push_back(std::make_pair(P.first, P.second)); 2428 } 2429 } 2430 2431 // Commit the transfer function changes into mloc tracker, which 2432 // transforms the contents of the MLocTracker into the live-outs. 2433 for (auto &P : ToRemap) 2434 MTracker->setMLoc(P.first, P.second); 2435 2436 // Now copy out-locs from mloc tracker into out-loc vector, checking 2437 // whether changes have occurred. These changes can have come from both 2438 // the transfer function, and mlocJoin. 2439 bool OLChanged = false; 2440 for (auto Location : MTracker->locations()) { 2441 OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value; 2442 MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value; 2443 } 2444 2445 MTracker->reset(); 2446 2447 // No need to examine successors again if out-locs didn't change. 2448 if (!OLChanged) 2449 continue; 2450 2451 // All successors should be visited: put any back-edges on the pending 2452 // list for the next dataflow iteration, and any other successors to be 2453 // visited this iteration, if they're not going to be already. 2454 for (auto s : MBB->successors()) { 2455 // Does branching to this successor represent a back-edge? 2456 if (BBToOrder[s] > BBToOrder[MBB]) { 2457 // No: visit it during this dataflow iteration. 2458 if (OnWorklist.insert(s).second) 2459 Worklist.push(BBToOrder[s]); 2460 } else { 2461 // Yes: visit it on the next iteration. 2462 if (OnPending.insert(s).second) 2463 Pending.push(BBToOrder[s]); 2464 } 2465 } 2466 } 2467 2468 Worklist.swap(Pending); 2469 std::swap(OnPending, OnWorklist); 2470 OnPending.clear(); 2471 // At this point, pending must be empty, since it was just the empty 2472 // worklist 2473 assert(Pending.empty() && "Pending should be empty"); 2474 } 2475 2476 // Once all the live-ins don't change on mlocJoin(), we've reached a 2477 // fixedpoint. 2478 } 2479 2480 bool InstrRefBasedLDV::vlocDowngradeLattice( 2481 const MachineBasicBlock &MBB, const DbgValue &OldLiveInLocation, 2482 const SmallVectorImpl<InValueT> &Values, unsigned CurBlockRPONum) { 2483 // Ranking value preference: see file level comment, the highest rank is 2484 // a plain def, followed by PHI values in reverse post-order. Numerically, 2485 // we assign all defs the rank '0', all PHIs their blocks RPO number plus 2486 // one, and consider the lowest value the highest ranked. 2487 int OldLiveInRank = BBNumToRPO[OldLiveInLocation.ID.getBlock()] + 1; 2488 if (!OldLiveInLocation.ID.isPHI()) 2489 OldLiveInRank = 0; 2490 2491 // Allow any unresolvable conflict to be over-ridden. 2492 if (OldLiveInLocation.Kind == DbgValue::NoVal) { 2493 // Although if it was an unresolvable conflict from _this_ block, then 2494 // all other seeking of downgrades and PHIs must have failed before hand. 2495 if (OldLiveInLocation.BlockNo == (unsigned)MBB.getNumber()) 2496 return false; 2497 OldLiveInRank = INT_MIN; 2498 } 2499 2500 auto &InValue = *Values[0].second; 2501 2502 if (InValue.Kind == DbgValue::Const || InValue.Kind == DbgValue::NoVal) 2503 return false; 2504 2505 unsigned ThisRPO = BBNumToRPO[InValue.ID.getBlock()]; 2506 int ThisRank = ThisRPO + 1; 2507 if (!InValue.ID.isPHI()) 2508 ThisRank = 0; 2509 2510 // Too far down the lattice? 2511 if (ThisRPO >= CurBlockRPONum) 2512 return false; 2513 2514 // Higher in the lattice than what we've already explored? 2515 if (ThisRank <= OldLiveInRank) 2516 return false; 2517 2518 return true; 2519 } 2520 2521 std::tuple<Optional<ValueIDNum>, bool> InstrRefBasedLDV::pickVPHILoc( 2522 MachineBasicBlock &MBB, const DebugVariable &Var, const LiveIdxT &LiveOuts, 2523 ValueIDNum **MOutLocs, ValueIDNum **MInLocs, 2524 const SmallVectorImpl<MachineBasicBlock *> &BlockOrders) { 2525 // Collect a set of locations from predecessor where its live-out value can 2526 // be found. 2527 SmallVector<SmallVector<LocIdx, 4>, 8> Locs; 2528 unsigned NumLocs = MTracker->getNumLocs(); 2529 unsigned BackEdgesStart = 0; 2530 2531 for (auto p : BlockOrders) { 2532 // Pick out where backedges start in the list of predecessors. Relies on 2533 // BlockOrders being sorted by RPO. 2534 if (BBToOrder[p] < BBToOrder[&MBB]) 2535 ++BackEdgesStart; 2536 2537 // For each predecessor, create a new set of locations. 2538 Locs.resize(Locs.size() + 1); 2539 unsigned ThisBBNum = p->getNumber(); 2540 auto LiveOutMap = LiveOuts.find(p); 2541 if (LiveOutMap == LiveOuts.end()) 2542 // This predecessor isn't in scope, it must have no live-in/live-out 2543 // locations. 2544 continue; 2545 2546 auto It = LiveOutMap->second->find(Var); 2547 if (It == LiveOutMap->second->end()) 2548 // There's no value recorded for this variable in this predecessor, 2549 // leave an empty set of locations. 2550 continue; 2551 2552 const DbgValue &OutVal = It->second; 2553 2554 if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal) 2555 // Consts and no-values cannot have locations we can join on. 2556 continue; 2557 2558 assert(OutVal.Kind == DbgValue::Proposed || OutVal.Kind == DbgValue::Def); 2559 ValueIDNum ValToLookFor = OutVal.ID; 2560 2561 // Search the live-outs of the predecessor for the specified value. 2562 for (unsigned int I = 0; I < NumLocs; ++I) { 2563 if (MOutLocs[ThisBBNum][I] == ValToLookFor) 2564 Locs.back().push_back(LocIdx(I)); 2565 } 2566 } 2567 2568 // If there were no locations at all, return an empty result. 2569 if (Locs.empty()) 2570 return std::tuple<Optional<ValueIDNum>, bool>(None, false); 2571 2572 // Lambda for seeking a common location within a range of location-sets. 2573 using LocsIt = SmallVector<SmallVector<LocIdx, 4>, 8>::iterator; 2574 auto SeekLocation = 2575 [&Locs](llvm::iterator_range<LocsIt> SearchRange) -> Optional<LocIdx> { 2576 // Starting with the first set of locations, take the intersection with 2577 // subsequent sets. 2578 SmallVector<LocIdx, 4> base = Locs[0]; 2579 for (auto &S : SearchRange) { 2580 SmallVector<LocIdx, 4> new_base; 2581 std::set_intersection(base.begin(), base.end(), S.begin(), S.end(), 2582 std::inserter(new_base, new_base.begin())); 2583 base = new_base; 2584 } 2585 if (base.empty()) 2586 return None; 2587 2588 // We now have a set of LocIdxes that contain the right output value in 2589 // each of the predecessors. Pick the lowest; if there's a register loc, 2590 // that'll be it. 2591 return *base.begin(); 2592 }; 2593 2594 // Search for a common location for all predecessors. If we can't, then fall 2595 // back to only finding a common location between non-backedge predecessors. 2596 bool ValidForAllLocs = true; 2597 auto TheLoc = SeekLocation(Locs); 2598 if (!TheLoc) { 2599 ValidForAllLocs = false; 2600 TheLoc = 2601 SeekLocation(make_range(Locs.begin(), Locs.begin() + BackEdgesStart)); 2602 } 2603 2604 if (!TheLoc) 2605 return std::tuple<Optional<ValueIDNum>, bool>(None, false); 2606 2607 // Return a PHI-value-number for the found location. 2608 LocIdx L = *TheLoc; 2609 ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L}; 2610 return std::tuple<Optional<ValueIDNum>, bool>(PHIVal, ValidForAllLocs); 2611 } 2612 2613 std::tuple<bool, bool> InstrRefBasedLDV::vlocJoin( 2614 MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs, 2615 SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, unsigned BBNum, 2616 const SmallSet<DebugVariable, 4> &AllVars, ValueIDNum **MOutLocs, 2617 ValueIDNum **MInLocs, 2618 SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks, 2619 SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, 2620 DenseMap<DebugVariable, DbgValue> &InLocsT) { 2621 bool DowngradeOccurred = false; 2622 2623 // To emulate VarLocBasedImpl, process this block if it's not in scope but 2624 // _does_ assign a variable value. No live-ins for this scope are transferred 2625 // in though, so we can return immediately. 2626 if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB)) { 2627 if (VLOCVisited) 2628 return std::tuple<bool, bool>(true, false); 2629 return std::tuple<bool, bool>(false, false); 2630 } 2631 2632 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); 2633 bool Changed = false; 2634 2635 // Find any live-ins computed in a prior iteration. 2636 auto ILSIt = VLOCInLocs.find(&MBB); 2637 assert(ILSIt != VLOCInLocs.end()); 2638 auto &ILS = *ILSIt->second; 2639 2640 // Order predecessors by RPOT order, for exploring them in that order. 2641 SmallVector<MachineBasicBlock *, 8> BlockOrders; 2642 for (auto p : MBB.predecessors()) 2643 BlockOrders.push_back(p); 2644 2645 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 2646 return BBToOrder[A] < BBToOrder[B]; 2647 }; 2648 2649 llvm::sort(BlockOrders.begin(), BlockOrders.end(), Cmp); 2650 2651 unsigned CurBlockRPONum = BBToOrder[&MBB]; 2652 2653 // Force a re-visit to loop heads in the first dataflow iteration. 2654 // FIXME: if we could "propose" Const values this wouldn't be needed, 2655 // because they'd need to be confirmed before being emitted. 2656 if (!BlockOrders.empty() && 2657 BBToOrder[BlockOrders[BlockOrders.size() - 1]] >= CurBlockRPONum && 2658 VLOCVisited) 2659 DowngradeOccurred = true; 2660 2661 auto ConfirmValue = [&InLocsT](const DebugVariable &DV, DbgValue VR) { 2662 auto Result = InLocsT.insert(std::make_pair(DV, VR)); 2663 (void)Result; 2664 assert(Result.second); 2665 }; 2666 2667 auto ConfirmNoVal = [&ConfirmValue, &MBB](const DebugVariable &Var, const DbgValueProperties &Properties) { 2668 DbgValue NoLocPHIVal(MBB.getNumber(), Properties, DbgValue::NoVal); 2669 2670 ConfirmValue(Var, NoLocPHIVal); 2671 }; 2672 2673 // Attempt to join the values for each variable. 2674 for (auto &Var : AllVars) { 2675 // Collect all the DbgValues for this variable. 2676 SmallVector<InValueT, 8> Values; 2677 bool Bail = false; 2678 unsigned BackEdgesStart = 0; 2679 for (auto p : BlockOrders) { 2680 // If the predecessor isn't in scope / to be explored, we'll never be 2681 // able to join any locations. 2682 if (BlocksToExplore.find(p) == BlocksToExplore.end()) { 2683 Bail = true; 2684 break; 2685 } 2686 2687 // Don't attempt to handle unvisited predecessors: they're implicitly 2688 // "unknown"s in the lattice. 2689 if (VLOCVisited && !VLOCVisited->count(p)) 2690 continue; 2691 2692 // If the predecessors OutLocs is absent, there's not much we can do. 2693 auto OL = VLOCOutLocs.find(p); 2694 if (OL == VLOCOutLocs.end()) { 2695 Bail = true; 2696 break; 2697 } 2698 2699 // No live-out value for this predecessor also means we can't produce 2700 // a joined value. 2701 auto VIt = OL->second->find(Var); 2702 if (VIt == OL->second->end()) { 2703 Bail = true; 2704 break; 2705 } 2706 2707 // Keep track of where back-edges begin in the Values vector. Relies on 2708 // BlockOrders being sorted by RPO. 2709 unsigned ThisBBRPONum = BBToOrder[p]; 2710 if (ThisBBRPONum < CurBlockRPONum) 2711 ++BackEdgesStart; 2712 2713 Values.push_back(std::make_pair(p, &VIt->second)); 2714 } 2715 2716 // If there were no values, or one of the predecessors couldn't have a 2717 // value, then give up immediately. It's not safe to produce a live-in 2718 // value. 2719 if (Bail || Values.size() == 0) 2720 continue; 2721 2722 // Enumeration identifying the current state of the predecessors values. 2723 enum { 2724 Unset = 0, 2725 Agreed, // All preds agree on the variable value. 2726 PropDisagree, // All preds agree, but the value kind is Proposed in some. 2727 BEDisagree, // Only back-edges disagree on variable value. 2728 PHINeeded, // Non-back-edge predecessors have conflicing values. 2729 NoSolution // Conflicting Value metadata makes solution impossible. 2730 } OurState = Unset; 2731 2732 // All (non-entry) blocks have at least one non-backedge predecessor. 2733 // Pick the variable value from the first of these, to compare against 2734 // all others. 2735 const DbgValue &FirstVal = *Values[0].second; 2736 const ValueIDNum &FirstID = FirstVal.ID; 2737 2738 // Scan for variable values that can't be resolved: if they have different 2739 // DIExpressions, different indirectness, or are mixed constants / 2740 // non-constants. 2741 for (auto &V : Values) { 2742 if (V.second->Properties != FirstVal.Properties) 2743 OurState = NoSolution; 2744 if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const) 2745 OurState = NoSolution; 2746 } 2747 2748 // Flags diagnosing _how_ the values disagree. 2749 bool NonBackEdgeDisagree = false; 2750 bool DisagreeOnPHINess = false; 2751 bool IDDisagree = false; 2752 bool Disagree = false; 2753 if (OurState == Unset) { 2754 for (auto &V : Values) { 2755 if (*V.second == FirstVal) 2756 continue; // No disagreement. 2757 2758 Disagree = true; 2759 2760 // Flag whether the value number actually diagrees. 2761 if (V.second->ID != FirstID) 2762 IDDisagree = true; 2763 2764 // Distinguish whether disagreement happens in backedges or not. 2765 // Relies on Values (and BlockOrders) being sorted by RPO. 2766 unsigned ThisBBRPONum = BBToOrder[V.first]; 2767 if (ThisBBRPONum < CurBlockRPONum) 2768 NonBackEdgeDisagree = true; 2769 2770 // Is there a difference in whether the value is definite or only 2771 // proposed? 2772 if (V.second->Kind != FirstVal.Kind && 2773 (V.second->Kind == DbgValue::Proposed || 2774 V.second->Kind == DbgValue::Def) && 2775 (FirstVal.Kind == DbgValue::Proposed || 2776 FirstVal.Kind == DbgValue::Def)) 2777 DisagreeOnPHINess = true; 2778 } 2779 2780 // Collect those flags together and determine an overall state for 2781 // what extend the predecessors agree on a live-in value. 2782 if (!Disagree) 2783 OurState = Agreed; 2784 else if (!IDDisagree && DisagreeOnPHINess) 2785 OurState = PropDisagree; 2786 else if (!NonBackEdgeDisagree) 2787 OurState = BEDisagree; 2788 else 2789 OurState = PHINeeded; 2790 } 2791 2792 // An extra indicator: if we only disagree on whether the value is a 2793 // Def, or proposed, then also flag whether that disagreement happens 2794 // in backedges only. 2795 bool PropOnlyInBEs = Disagree && !IDDisagree && DisagreeOnPHINess && 2796 !NonBackEdgeDisagree && FirstVal.Kind == DbgValue::Def; 2797 2798 const auto &Properties = FirstVal.Properties; 2799 2800 auto OldLiveInIt = ILS.find(Var); 2801 const DbgValue *OldLiveInLocation = 2802 (OldLiveInIt != ILS.end()) ? &OldLiveInIt->second : nullptr; 2803 2804 bool OverRide = false; 2805 if (OurState == BEDisagree && OldLiveInLocation) { 2806 // Only backedges disagree: we can consider downgrading. If there was a 2807 // previous live-in value, use it to work out whether the current 2808 // incoming value represents a lattice downgrade or not. 2809 OverRide = 2810 vlocDowngradeLattice(MBB, *OldLiveInLocation, Values, CurBlockRPONum); 2811 } 2812 2813 // Use the current state of predecessor agreement and other flags to work 2814 // out what to do next. Possibilities include: 2815 // * Accept a value all predecessors agree on, or accept one that 2816 // represents a step down the exploration lattice, 2817 // * Use a PHI value number, if one can be found, 2818 // * Propose a PHI value number, and see if it gets confirmed later, 2819 // * Emit a 'NoVal' value, indicating we couldn't resolve anything. 2820 if (OurState == Agreed) { 2821 // Easiest solution: all predecessors agree on the variable value. 2822 ConfirmValue(Var, FirstVal); 2823 } else if (OurState == BEDisagree && OverRide) { 2824 // Only backedges disagree, and the other predecessors have produced 2825 // a new live-in value further down the exploration lattice. 2826 DowngradeOccurred = true; 2827 ConfirmValue(Var, FirstVal); 2828 } else if (OurState == PropDisagree) { 2829 // Predecessors agree on value, but some say it's only a proposed value. 2830 // Propagate it as proposed: unless it was proposed in this block, in 2831 // which case we're able to confirm the value. 2832 if (FirstID.getBlock() == (uint64_t)MBB.getNumber() && FirstID.isPHI()) { 2833 ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def)); 2834 } else if (PropOnlyInBEs) { 2835 // If only backedges disagree, a higher (in RPO) block confirmed this 2836 // location, and we need to propagate it into this loop. 2837 ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def)); 2838 } else { 2839 // Otherwise; a Def meeting a Proposed is still a Proposed. 2840 ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Proposed)); 2841 } 2842 } else if ((OurState == PHINeeded || OurState == BEDisagree)) { 2843 // Predecessors disagree and can't be downgraded: this can only be 2844 // solved with a PHI. Use pickVPHILoc to go look for one. 2845 Optional<ValueIDNum> VPHI; 2846 bool AllEdgesVPHI = false; 2847 std::tie(VPHI, AllEdgesVPHI) = 2848 pickVPHILoc(MBB, Var, VLOCOutLocs, MOutLocs, MInLocs, BlockOrders); 2849 2850 if (VPHI && AllEdgesVPHI) { 2851 // There's a PHI value that's valid for all predecessors -- we can use 2852 // it. If any of the non-backedge predecessors have proposed values 2853 // though, this PHI is also only proposed, until the predecessors are 2854 // confirmed. 2855 DbgValue::KindT K = DbgValue::Def; 2856 for (unsigned int I = 0; I < BackEdgesStart; ++I) 2857 if (Values[I].second->Kind == DbgValue::Proposed) 2858 K = DbgValue::Proposed; 2859 2860 ConfirmValue(Var, DbgValue(*VPHI, Properties, K)); 2861 } else if (VPHI) { 2862 // There's a PHI value, but it's only legal for backedges. Leave this 2863 // as a proposed PHI value: it might come back on the backedges, 2864 // and allow us to confirm it in the future. 2865 DbgValue NoBEValue = DbgValue(*VPHI, Properties, DbgValue::Proposed); 2866 ConfirmValue(Var, NoBEValue); 2867 } else { 2868 ConfirmNoVal(Var, Properties); 2869 } 2870 } else { 2871 // Otherwise: we don't know. Emit a "phi but no real loc" phi. 2872 ConfirmNoVal(Var, Properties); 2873 } 2874 } 2875 2876 // Store newly calculated in-locs into VLOCInLocs, if they've changed. 2877 Changed = ILS != InLocsT; 2878 if (Changed) 2879 ILS = InLocsT; 2880 2881 return std::tuple<bool, bool>(Changed, DowngradeOccurred); 2882 } 2883 2884 void InstrRefBasedLDV::vlocDataflow( 2885 const LexicalScope *Scope, const DILocation *DILoc, 2886 const SmallSet<DebugVariable, 4> &VarsWeCareAbout, 2887 SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output, 2888 ValueIDNum **MOutLocs, ValueIDNum **MInLocs, 2889 SmallVectorImpl<VLocTracker> &AllTheVLocs) { 2890 // This method is much like mlocDataflow: but focuses on a single 2891 // LexicalScope at a time. Pick out a set of blocks and variables that are 2892 // to have their value assignments solved, then run our dataflow algorithm 2893 // until a fixedpoint is reached. 2894 std::priority_queue<unsigned int, std::vector<unsigned int>, 2895 std::greater<unsigned int>> 2896 Worklist, Pending; 2897 SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending; 2898 2899 // The set of blocks we'll be examining. 2900 SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore; 2901 2902 // The order in which to examine them (RPO). 2903 SmallVector<MachineBasicBlock *, 8> BlockOrders; 2904 2905 // RPO ordering function. 2906 auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { 2907 return BBToOrder[A] < BBToOrder[B]; 2908 }; 2909 2910 LS.getMachineBasicBlocks(DILoc, BlocksToExplore); 2911 2912 // A separate container to distinguish "blocks we're exploring" versus 2913 // "blocks that are potentially in scope. See comment at start of vlocJoin. 2914 SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore; 2915 2916 // Old LiveDebugValues tracks variable locations that come out of blocks 2917 // not in scope, where DBG_VALUEs occur. This is something we could 2918 // legitimately ignore, but lets allow it for now. 2919 if (EmulateOldLDV) 2920 BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end()); 2921 2922 // We also need to propagate variable values through any artificial blocks 2923 // that immediately follow blocks in scope. 2924 DenseSet<const MachineBasicBlock *> ToAdd; 2925 2926 // Helper lambda: For a given block in scope, perform a depth first search 2927 // of all the artificial successors, adding them to the ToAdd collection. 2928 auto AccumulateArtificialBlocks = 2929 [this, &ToAdd, &BlocksToExplore, 2930 &InScopeBlocks](const MachineBasicBlock *MBB) { 2931 // Depth-first-search state: each node is a block and which successor 2932 // we're currently exploring. 2933 SmallVector<std::pair<const MachineBasicBlock *, 2934 MachineBasicBlock::const_succ_iterator>, 2935 8> 2936 DFS; 2937 2938 // Find any artificial successors not already tracked. 2939 for (auto *succ : MBB->successors()) { 2940 if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ)) 2941 continue; 2942 if (!ArtificialBlocks.count(succ)) 2943 continue; 2944 DFS.push_back(std::make_pair(succ, succ->succ_begin())); 2945 ToAdd.insert(succ); 2946 } 2947 2948 // Search all those blocks, depth first. 2949 while (!DFS.empty()) { 2950 const MachineBasicBlock *CurBB = DFS.back().first; 2951 MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second; 2952 // Walk back if we've explored this blocks successors to the end. 2953 if (CurSucc == CurBB->succ_end()) { 2954 DFS.pop_back(); 2955 continue; 2956 } 2957 2958 // If the current successor is artificial and unexplored, descend into 2959 // it. 2960 if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) { 2961 DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin())); 2962 ToAdd.insert(*CurSucc); 2963 continue; 2964 } 2965 2966 ++CurSucc; 2967 } 2968 }; 2969 2970 // Search in-scope blocks and those containing a DBG_VALUE from this scope 2971 // for artificial successors. 2972 for (auto *MBB : BlocksToExplore) 2973 AccumulateArtificialBlocks(MBB); 2974 for (auto *MBB : InScopeBlocks) 2975 AccumulateArtificialBlocks(MBB); 2976 2977 BlocksToExplore.insert(ToAdd.begin(), ToAdd.end()); 2978 InScopeBlocks.insert(ToAdd.begin(), ToAdd.end()); 2979 2980 // Single block scope: not interesting! No propagation at all. Note that 2981 // this could probably go above ArtificialBlocks without damage, but 2982 // that then produces output differences from original-live-debug-values, 2983 // which propagates from a single block into many artificial ones. 2984 if (BlocksToExplore.size() == 1) 2985 return; 2986 2987 // Picks out relevants blocks RPO order and sort them. 2988 for (auto *MBB : BlocksToExplore) 2989 BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB)); 2990 2991 llvm::sort(BlockOrders.begin(), BlockOrders.end(), Cmp); 2992 unsigned NumBlocks = BlockOrders.size(); 2993 2994 // Allocate some vectors for storing the live ins and live outs. Large. 2995 SmallVector<DenseMap<DebugVariable, DbgValue>, 32> LiveIns, LiveOuts; 2996 LiveIns.resize(NumBlocks); 2997 LiveOuts.resize(NumBlocks); 2998 2999 // Produce by-MBB indexes of live-in/live-outs, to ease lookup within 3000 // vlocJoin. 3001 LiveIdxT LiveOutIdx, LiveInIdx; 3002 LiveOutIdx.reserve(NumBlocks); 3003 LiveInIdx.reserve(NumBlocks); 3004 for (unsigned I = 0; I < NumBlocks; ++I) { 3005 LiveOutIdx[BlockOrders[I]] = &LiveOuts[I]; 3006 LiveInIdx[BlockOrders[I]] = &LiveIns[I]; 3007 } 3008 3009 for (auto *MBB : BlockOrders) { 3010 Worklist.push(BBToOrder[MBB]); 3011 OnWorklist.insert(MBB); 3012 } 3013 3014 // Iterate over all the blocks we selected, propagating variable values. 3015 bool FirstTrip = true; 3016 SmallPtrSet<const MachineBasicBlock *, 16> VLOCVisited; 3017 while (!Worklist.empty() || !Pending.empty()) { 3018 while (!Worklist.empty()) { 3019 auto *MBB = OrderToBB[Worklist.top()]; 3020 CurBB = MBB->getNumber(); 3021 Worklist.pop(); 3022 3023 DenseMap<DebugVariable, DbgValue> JoinedInLocs; 3024 3025 // Join values from predecessors. Updates LiveInIdx, and writes output 3026 // into JoinedInLocs. 3027 bool InLocsChanged, DowngradeOccurred; 3028 std::tie(InLocsChanged, DowngradeOccurred) = vlocJoin( 3029 *MBB, LiveOutIdx, LiveInIdx, (FirstTrip) ? &VLOCVisited : nullptr, 3030 CurBB, VarsWeCareAbout, MOutLocs, MInLocs, InScopeBlocks, 3031 BlocksToExplore, JoinedInLocs); 3032 3033 bool FirstVisit = VLOCVisited.insert(MBB).second; 3034 3035 // Always explore transfer function if inlocs changed, or if we've not 3036 // visited this block before. 3037 InLocsChanged |= FirstVisit; 3038 3039 // If a downgrade occurred, book us in for re-examination on the next 3040 // iteration. 3041 if (DowngradeOccurred && OnPending.insert(MBB).second) 3042 Pending.push(BBToOrder[MBB]); 3043 3044 if (!InLocsChanged) 3045 continue; 3046 3047 // Do transfer function. 3048 auto &VTracker = AllTheVLocs[MBB->getNumber()]; 3049 for (auto &Transfer : VTracker.Vars) { 3050 // Is this var we're mangling in this scope? 3051 if (VarsWeCareAbout.count(Transfer.first)) { 3052 // Erase on empty transfer (DBG_VALUE $noreg). 3053 if (Transfer.second.Kind == DbgValue::Undef) { 3054 JoinedInLocs.erase(Transfer.first); 3055 } else { 3056 // Insert new variable value; or overwrite. 3057 auto NewValuePair = std::make_pair(Transfer.first, Transfer.second); 3058 auto Result = JoinedInLocs.insert(NewValuePair); 3059 if (!Result.second) 3060 Result.first->second = Transfer.second; 3061 } 3062 } 3063 } 3064 3065 // Did the live-out locations change? 3066 bool OLChanged = JoinedInLocs != *LiveOutIdx[MBB]; 3067 3068 // If they haven't changed, there's no need to explore further. 3069 if (!OLChanged) 3070 continue; 3071 3072 // Commit to the live-out record. 3073 *LiveOutIdx[MBB] = JoinedInLocs; 3074 3075 // We should visit all successors. Ensure we'll visit any non-backedge 3076 // successors during this dataflow iteration; book backedge successors 3077 // to be visited next time around. 3078 for (auto s : MBB->successors()) { 3079 // Ignore out of scope / not-to-be-explored successors. 3080 if (LiveInIdx.find(s) == LiveInIdx.end()) 3081 continue; 3082 3083 if (BBToOrder[s] > BBToOrder[MBB]) { 3084 if (OnWorklist.insert(s).second) 3085 Worklist.push(BBToOrder[s]); 3086 } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) { 3087 Pending.push(BBToOrder[s]); 3088 } 3089 } 3090 } 3091 Worklist.swap(Pending); 3092 std::swap(OnWorklist, OnPending); 3093 OnPending.clear(); 3094 assert(Pending.empty()); 3095 FirstTrip = false; 3096 } 3097 3098 // Dataflow done. Now what? Save live-ins. Ignore any that are still marked 3099 // as being variable-PHIs, because those did not have their machine-PHI 3100 // value confirmed. Such variable values are places that could have been 3101 // PHIs, but are not. 3102 for (auto *MBB : BlockOrders) { 3103 auto &VarMap = *LiveInIdx[MBB]; 3104 for (auto &P : VarMap) { 3105 if (P.second.Kind == DbgValue::Proposed || 3106 P.second.Kind == DbgValue::NoVal) 3107 continue; 3108 Output[MBB->getNumber()].push_back(P); 3109 } 3110 } 3111 3112 BlockOrders.clear(); 3113 BlocksToExplore.clear(); 3114 } 3115 3116 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3117 void InstrRefBasedLDV::dump_mloc_transfer( 3118 const MLocTransferMap &mloc_transfer) const { 3119 for (auto &P : mloc_transfer) { 3120 std::string foo = MTracker->LocIdxToName(P.first); 3121 std::string bar = MTracker->IDAsString(P.second); 3122 dbgs() << "Loc " << foo << " --> " << bar << "\n"; 3123 } 3124 } 3125 #endif 3126 3127 void InstrRefBasedLDV::emitLocations( 3128 MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MInLocs, 3129 DenseMap<DebugVariable, unsigned> &AllVarsNumbering) { 3130 TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs); 3131 unsigned NumLocs = MTracker->getNumLocs(); 3132 3133 // For each block, load in the machine value locations and variable value 3134 // live-ins, then step through each instruction in the block. New DBG_VALUEs 3135 // to be inserted will be created along the way. 3136 for (MachineBasicBlock &MBB : MF) { 3137 unsigned bbnum = MBB.getNumber(); 3138 MTracker->reset(); 3139 MTracker->loadFromArray(MInLocs[bbnum], bbnum); 3140 TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()], 3141 NumLocs); 3142 3143 CurBB = bbnum; 3144 CurInst = 1; 3145 for (auto &MI : MBB) { 3146 process(MI); 3147 TTracker->checkInstForNewValues(CurInst, MI.getIterator()); 3148 ++CurInst; 3149 } 3150 } 3151 3152 // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer 3153 // in DWARF in different orders. Use the order that they appear when walking 3154 // through each block / each instruction, stored in AllVarsNumbering. 3155 auto OrderDbgValues = [&](const MachineInstr *A, 3156 const MachineInstr *B) -> bool { 3157 DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(), 3158 A->getDebugLoc()->getInlinedAt()); 3159 DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(), 3160 B->getDebugLoc()->getInlinedAt()); 3161 return AllVarsNumbering.find(VarA)->second < 3162 AllVarsNumbering.find(VarB)->second; 3163 }; 3164 3165 // Go through all the transfers recorded in the TransferTracker -- this is 3166 // both the live-ins to a block, and any movements of values that happen 3167 // in the middle. 3168 for (auto &P : TTracker->Transfers) { 3169 // Sort them according to appearance order. 3170 llvm::sort(P.Insts.begin(), P.Insts.end(), OrderDbgValues); 3171 // Insert either before or after the designated point... 3172 if (P.MBB) { 3173 MachineBasicBlock &MBB = *P.MBB; 3174 for (auto *MI : P.Insts) { 3175 MBB.insert(P.Pos, MI); 3176 } 3177 } else { 3178 MachineBasicBlock &MBB = *P.Pos->getParent(); 3179 for (auto *MI : P.Insts) { 3180 MBB.insertAfter(P.Pos, MI); 3181 } 3182 } 3183 } 3184 } 3185 3186 void InstrRefBasedLDV::initialSetup(MachineFunction &MF) { 3187 // Build some useful data structures. 3188 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { 3189 if (const DebugLoc &DL = MI.getDebugLoc()) 3190 return DL.getLine() != 0; 3191 return false; 3192 }; 3193 // Collect a set of all the artificial blocks. 3194 for (auto &MBB : MF) 3195 if (none_of(MBB.instrs(), hasNonArtificialLocation)) 3196 ArtificialBlocks.insert(&MBB); 3197 3198 // Compute mappings of block <=> RPO order. 3199 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); 3200 unsigned int RPONumber = 0; 3201 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { 3202 OrderToBB[RPONumber] = *RI; 3203 BBToOrder[*RI] = RPONumber; 3204 BBNumToRPO[(*RI)->getNumber()] = RPONumber; 3205 ++RPONumber; 3206 } 3207 } 3208 3209 /// Calculate the liveness information for the given machine function and 3210 /// extend ranges across basic blocks. 3211 bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF, 3212 TargetPassConfig *TPC) { 3213 // No subprogram means this function contains no debuginfo. 3214 if (!MF.getFunction().getSubprogram()) 3215 return false; 3216 3217 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); 3218 this->TPC = TPC; 3219 3220 TRI = MF.getSubtarget().getRegisterInfo(); 3221 TII = MF.getSubtarget().getInstrInfo(); 3222 TFI = MF.getSubtarget().getFrameLowering(); 3223 TFI->getCalleeSaves(MF, CalleeSavedRegs); 3224 LS.initialize(MF); 3225 3226 MTracker = 3227 new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering()); 3228 VTracker = nullptr; 3229 TTracker = nullptr; 3230 3231 SmallVector<MLocTransferMap, 32> MLocTransfer; 3232 SmallVector<VLocTracker, 8> vlocs; 3233 LiveInsT SavedLiveIns; 3234 3235 int MaxNumBlocks = -1; 3236 for (auto &MBB : MF) 3237 MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks); 3238 assert(MaxNumBlocks >= 0); 3239 ++MaxNumBlocks; 3240 3241 MLocTransfer.resize(MaxNumBlocks); 3242 vlocs.resize(MaxNumBlocks); 3243 SavedLiveIns.resize(MaxNumBlocks); 3244 3245 initialSetup(MF); 3246 3247 produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks); 3248 3249 // Allocate and initialize two array-of-arrays for the live-in and live-out 3250 // machine values. The outer dimension is the block number; while the inner 3251 // dimension is a LocIdx from MLocTracker. 3252 ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks]; 3253 ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks]; 3254 unsigned NumLocs = MTracker->getNumLocs(); 3255 for (int i = 0; i < MaxNumBlocks; ++i) { 3256 MOutLocs[i] = new ValueIDNum[NumLocs]; 3257 MInLocs[i] = new ValueIDNum[NumLocs]; 3258 } 3259 3260 // Solve the machine value dataflow problem using the MLocTransfer function, 3261 // storing the computed live-ins / live-outs into the array-of-arrays. We use 3262 // both live-ins and live-outs for decision making in the variable value 3263 // dataflow problem. 3264 mlocDataflow(MInLocs, MOutLocs, MLocTransfer); 3265 3266 // Walk back through each block / instruction, collecting DBG_VALUE 3267 // instructions and recording what machine value their operands refer to. 3268 for (auto &OrderPair : OrderToBB) { 3269 MachineBasicBlock &MBB = *OrderPair.second; 3270 CurBB = MBB.getNumber(); 3271 VTracker = &vlocs[CurBB]; 3272 VTracker->MBB = &MBB; 3273 MTracker->loadFromArray(MInLocs[CurBB], CurBB); 3274 CurInst = 1; 3275 for (auto &MI : MBB) { 3276 process(MI); 3277 ++CurInst; 3278 } 3279 MTracker->reset(); 3280 } 3281 3282 // Number all variables in the order that they appear, to be used as a stable 3283 // insertion order later. 3284 DenseMap<DebugVariable, unsigned> AllVarsNumbering; 3285 3286 // Map from one LexicalScope to all the variables in that scope. 3287 DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars; 3288 3289 // Map from One lexical scope to all blocks in that scope. 3290 DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>> 3291 ScopeToBlocks; 3292 3293 // Store a DILocation that describes a scope. 3294 DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation; 3295 3296 // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise 3297 // the order is unimportant, it just has to be stable. 3298 for (unsigned int I = 0; I < OrderToBB.size(); ++I) { 3299 auto *MBB = OrderToBB[I]; 3300 auto *VTracker = &vlocs[MBB->getNumber()]; 3301 // Collect each variable with a DBG_VALUE in this block. 3302 for (auto &idx : VTracker->Vars) { 3303 const auto &Var = idx.first; 3304 const DILocation *ScopeLoc = VTracker->Scopes[Var]; 3305 assert(ScopeLoc != nullptr); 3306 auto *Scope = LS.findLexicalScope(ScopeLoc); 3307 3308 // No insts in scope -> shouldn't have been recorded. 3309 assert(Scope != nullptr); 3310 3311 AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size())); 3312 ScopeToVars[Scope].insert(Var); 3313 ScopeToBlocks[Scope].insert(VTracker->MBB); 3314 ScopeToDILocation[Scope] = ScopeLoc; 3315 } 3316 } 3317 3318 // OK. Iterate over scopes: there might be something to be said for 3319 // ordering them by size/locality, but that's for the future. For each scope, 3320 // solve the variable value problem, producing a map of variables to values 3321 // in SavedLiveIns. 3322 for (auto &P : ScopeToVars) { 3323 vlocDataflow(P.first, ScopeToDILocation[P.first], P.second, 3324 ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs, 3325 vlocs); 3326 } 3327 3328 // Using the computed value locations and variable values for each block, 3329 // create the DBG_VALUE instructions representing the extended variable 3330 // locations. 3331 emitLocations(MF, SavedLiveIns, MInLocs, AllVarsNumbering); 3332 3333 for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) { 3334 delete[] MOutLocs[Idx]; 3335 delete[] MInLocs[Idx]; 3336 } 3337 delete[] MOutLocs; 3338 delete[] MInLocs; 3339 3340 // Did we actually make any changes? If we created any DBG_VALUEs, then yes. 3341 bool Changed = TTracker->Transfers.size() != 0; 3342 3343 delete MTracker; 3344 delete TTracker; 3345 MTracker = nullptr; 3346 VTracker = nullptr; 3347 TTracker = nullptr; 3348 3349 ArtificialBlocks.clear(); 3350 OrderToBB.clear(); 3351 BBToOrder.clear(); 3352 BBNumToRPO.clear(); 3353 DebugInstrNumToInstr.clear(); 3354 3355 return Changed; 3356 } 3357 3358 LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() { 3359 return new InstrRefBasedLDV(); 3360 } 3361