1 //===-------- InlineSpiller.cpp - Insert spills and restores inline -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The inline spiller modifies the machine function directly instead of 11 // inserting spills and restores in VirtRegMap. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "Spiller.h" 17 #include "LiveRangeEdit.h" 18 #include "VirtRegMap.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/TinyPtrVector.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 23 #include "llvm/CodeGen/LiveStackAnalysis.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineLoopInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/Target/TargetMachine.h" 30 #include "llvm/Target/TargetInstrInfo.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 34 using namespace llvm; 35 36 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 37 STATISTIC(NumSnippets, "Number of snippets included in spills"); 38 STATISTIC(NumSpills, "Number of spills inserted"); 39 STATISTIC(NumReloads, "Number of reloads inserted"); 40 STATISTIC(NumFolded, "Number of folded stack accesses"); 41 STATISTIC(NumFoldedLoads, "Number of folded loads"); 42 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 43 STATISTIC(NumOmitReloadSpill, "Number of omitted spills after reloads"); 44 STATISTIC(NumHoistLocal, "Number of locally hoisted spills"); 45 STATISTIC(NumHoistGlobal, "Number of globally hoisted spills"); 46 STATISTIC(NumRedundantSpills, "Number of redundant spills identified"); 47 48 namespace { 49 class InlineSpiller : public Spiller { 50 MachineFunctionPass &Pass; 51 MachineFunction &MF; 52 LiveIntervals &LIS; 53 LiveStacks &LSS; 54 AliasAnalysis *AA; 55 MachineDominatorTree &MDT; 56 MachineLoopInfo &Loops; 57 VirtRegMap &VRM; 58 MachineFrameInfo &MFI; 59 MachineRegisterInfo &MRI; 60 const TargetInstrInfo &TII; 61 const TargetRegisterInfo &TRI; 62 63 // Variables that are valid during spill(), but used by multiple methods. 64 LiveRangeEdit *Edit; 65 LiveInterval *StackInt; 66 int StackSlot; 67 unsigned Original; 68 69 // All registers to spill to StackSlot, including the main register. 70 SmallVector<unsigned, 8> RegsToSpill; 71 72 // All COPY instructions to/from snippets. 73 // They are ignored since both operands refer to the same stack slot. 74 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 75 76 // Values that failed to remat at some point. 77 SmallPtrSet<VNInfo*, 8> UsedValues; 78 79 public: 80 // Information about a value that was defined by a copy from a sibling 81 // register. 82 struct SibValueInfo { 83 // True when all reaching defs were reloads: No spill is necessary. 84 bool AllDefsAreReloads; 85 86 // True when value is defined by an original PHI not from splitting. 87 bool DefByOrigPHI; 88 89 // The preferred register to spill. 90 unsigned SpillReg; 91 92 // The value of SpillReg that should be spilled. 93 VNInfo *SpillVNI; 94 95 // The block where SpillVNI should be spilled. Currently, this must be the 96 // block containing SpillVNI->def. 97 MachineBasicBlock *SpillMBB; 98 99 // A defining instruction that is not a sibling copy or a reload, or NULL. 100 // This can be used as a template for rematerialization. 101 MachineInstr *DefMI; 102 103 // List of values that depend on this one. These values are actually the 104 // same, but live range splitting has placed them in different registers, 105 // or SSA update needed to insert PHI-defs to preserve SSA form. This is 106 // copies of the current value and phi-kills. Usually only phi-kills cause 107 // more than one dependent value. 108 TinyPtrVector<VNInfo*> Deps; 109 110 SibValueInfo(unsigned Reg, VNInfo *VNI) 111 : AllDefsAreReloads(true), DefByOrigPHI(false), 112 SpillReg(Reg), SpillVNI(VNI), SpillMBB(0), DefMI(0) {} 113 114 // Returns true when a def has been found. 115 bool hasDef() const { return DefByOrigPHI || DefMI; } 116 }; 117 118 private: 119 // Values in RegsToSpill defined by sibling copies. 120 typedef DenseMap<VNInfo*, SibValueInfo> SibValueMap; 121 SibValueMap SibValues; 122 123 // Values live-out from basic blocks. This is the same as 124 // LI.getVNInfoAt(LIS.getMBBEndIdx(MBB).getPrevSlot()) 125 typedef DenseMap<MachineBasicBlock*, VNInfo*> LiveOutMap; 126 LiveOutMap LiveOutValues; 127 128 // Dead defs generated during spilling. 129 SmallVector<MachineInstr*, 8> DeadDefs; 130 131 ~InlineSpiller() {} 132 133 public: 134 InlineSpiller(MachineFunctionPass &pass, 135 MachineFunction &mf, 136 VirtRegMap &vrm) 137 : Pass(pass), 138 MF(mf), 139 LIS(pass.getAnalysis<LiveIntervals>()), 140 LSS(pass.getAnalysis<LiveStacks>()), 141 AA(&pass.getAnalysis<AliasAnalysis>()), 142 MDT(pass.getAnalysis<MachineDominatorTree>()), 143 Loops(pass.getAnalysis<MachineLoopInfo>()), 144 VRM(vrm), 145 MFI(*mf.getFrameInfo()), 146 MRI(mf.getRegInfo()), 147 TII(*mf.getTarget().getInstrInfo()), 148 TRI(*mf.getTarget().getRegisterInfo()) {} 149 150 void spill(LiveRangeEdit &); 151 152 private: 153 bool isSnippet(const LiveInterval &SnipLI); 154 void collectRegsToSpill(); 155 156 bool isRegToSpill(unsigned Reg) { 157 return std::find(RegsToSpill.begin(), 158 RegsToSpill.end(), Reg) != RegsToSpill.end(); 159 } 160 161 bool isSibling(unsigned Reg); 162 MachineInstr *traceSiblingValue(unsigned, VNInfo*, VNInfo*); 163 void propagateSiblingValue(SibValueMap::iterator, VNInfo *VNI = 0); 164 void analyzeSiblingValues(); 165 166 bool hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI); 167 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 168 169 void markValueUsed(LiveInterval*, VNInfo*); 170 bool reMaterializeFor(LiveInterval&, MachineBasicBlock::iterator MI); 171 void reMaterializeAll(); 172 173 bool coalesceStackAccess(MachineInstr *MI, unsigned Reg); 174 bool foldMemoryOperand(MachineBasicBlock::iterator MI, 175 const SmallVectorImpl<unsigned> &Ops, 176 MachineInstr *LoadMI = 0); 177 void insertReload(LiveInterval &NewLI, SlotIndex, 178 MachineBasicBlock::iterator MI); 179 void insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI, 180 SlotIndex, MachineBasicBlock::iterator MI); 181 182 void spillAroundUses(unsigned Reg); 183 void spillAll(); 184 }; 185 } 186 187 namespace llvm { 188 Spiller *createInlineSpiller(MachineFunctionPass &pass, 189 MachineFunction &mf, 190 VirtRegMap &vrm) { 191 return new InlineSpiller(pass, mf, vrm); 192 } 193 } 194 195 //===----------------------------------------------------------------------===// 196 // Snippets 197 //===----------------------------------------------------------------------===// 198 199 // When spilling a virtual register, we also spill any snippets it is connected 200 // to. The snippets are small live ranges that only have a single real use, 201 // leftovers from live range splitting. Spilling them enables memory operand 202 // folding or tightens the live range around the single use. 203 // 204 // This minimizes register pressure and maximizes the store-to-load distance for 205 // spill slots which can be important in tight loops. 206 207 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 208 /// otherwise return 0. 209 static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) { 210 if (!MI->isFullCopy()) 211 return 0; 212 if (MI->getOperand(0).getReg() == Reg) 213 return MI->getOperand(1).getReg(); 214 if (MI->getOperand(1).getReg() == Reg) 215 return MI->getOperand(0).getReg(); 216 return 0; 217 } 218 219 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 220 /// It is assumed that SnipLI is a virtual register with the same original as 221 /// Edit->getReg(). 222 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 223 unsigned Reg = Edit->getReg(); 224 225 // A snippet is a tiny live range with only a single instruction using it 226 // besides copies to/from Reg or spills/fills. We accept: 227 // 228 // %snip = COPY %Reg / FILL fi# 229 // %snip = USE %snip 230 // %Reg = COPY %snip / SPILL %snip, fi# 231 // 232 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) 233 return false; 234 235 MachineInstr *UseMI = 0; 236 237 // Check that all uses satisfy our criteria. 238 for (MachineRegisterInfo::reg_nodbg_iterator 239 RI = MRI.reg_nodbg_begin(SnipLI.reg); 240 MachineInstr *MI = RI.skipInstruction();) { 241 242 // Allow copies to/from Reg. 243 if (isFullCopyOf(MI, Reg)) 244 continue; 245 246 // Allow stack slot loads. 247 int FI; 248 if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 249 continue; 250 251 // Allow stack slot stores. 252 if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 253 continue; 254 255 // Allow a single additional instruction. 256 if (UseMI && MI != UseMI) 257 return false; 258 UseMI = MI; 259 } 260 return true; 261 } 262 263 /// collectRegsToSpill - Collect live range snippets that only have a single 264 /// real use. 265 void InlineSpiller::collectRegsToSpill() { 266 unsigned Reg = Edit->getReg(); 267 268 // Main register always spills. 269 RegsToSpill.assign(1, Reg); 270 SnippetCopies.clear(); 271 272 // Snippets all have the same original, so there can't be any for an original 273 // register. 274 if (Original == Reg) 275 return; 276 277 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg); 278 MachineInstr *MI = RI.skipInstruction();) { 279 unsigned SnipReg = isFullCopyOf(MI, Reg); 280 if (!isSibling(SnipReg)) 281 continue; 282 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 283 if (!isSnippet(SnipLI)) 284 continue; 285 SnippetCopies.insert(MI); 286 if (isRegToSpill(SnipReg)) 287 continue; 288 RegsToSpill.push_back(SnipReg); 289 DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 290 ++NumSnippets; 291 } 292 } 293 294 295 //===----------------------------------------------------------------------===// 296 // Sibling Values 297 //===----------------------------------------------------------------------===// 298 299 // After live range splitting, some values to be spilled may be defined by 300 // copies from sibling registers. We trace the sibling copies back to the 301 // original value if it still exists. We need it for rematerialization. 302 // 303 // Even when the value can't be rematerialized, we still want to determine if 304 // the value has already been spilled, or we may want to hoist the spill from a 305 // loop. 306 307 bool InlineSpiller::isSibling(unsigned Reg) { 308 return TargetRegisterInfo::isVirtualRegister(Reg) && 309 VRM.getOriginal(Reg) == Original; 310 } 311 312 #ifndef NDEBUG 313 static raw_ostream &operator<<(raw_ostream &OS, 314 const InlineSpiller::SibValueInfo &SVI) { 315 OS << "spill " << PrintReg(SVI.SpillReg) << ':' 316 << SVI.SpillVNI->id << '@' << SVI.SpillVNI->def; 317 if (SVI.SpillMBB) 318 OS << " in BB#" << SVI.SpillMBB->getNumber(); 319 if (SVI.AllDefsAreReloads) 320 OS << " all-reloads"; 321 if (SVI.DefByOrigPHI) 322 OS << " orig-phi"; 323 OS << " deps["; 324 for (unsigned i = 0, e = SVI.Deps.size(); i != e; ++i) 325 OS << ' ' << SVI.Deps[i]->id << '@' << SVI.Deps[i]->def; 326 OS << " ]"; 327 if (SVI.DefMI) 328 OS << " def: " << *SVI.DefMI; 329 else 330 OS << '\n'; 331 return OS; 332 } 333 #endif 334 335 /// propagateSiblingValue - Propagate the value in SVI to dependents if it is 336 /// known. Otherwise remember the dependency for later. 337 /// 338 /// @param SVI SibValues entry to propagate. 339 /// @param VNI Dependent value, or NULL to propagate to all saved dependents. 340 void InlineSpiller::propagateSiblingValue(SibValueMap::iterator SVI, 341 VNInfo *VNI) { 342 // When VNI is non-NULL, add it to SVI's deps, and only propagate to that. 343 TinyPtrVector<VNInfo*> FirstDeps; 344 if (VNI) { 345 FirstDeps.push_back(VNI); 346 SVI->second.Deps.push_back(VNI); 347 } 348 349 // Has the value been completely determined yet? If not, defer propagation. 350 if (!SVI->second.hasDef()) 351 return; 352 353 // Work list of values to propagate. It would be nice to use a SetVector 354 // here, but then we would be forced to use a SmallSet. 355 SmallVector<SibValueMap::iterator, 8> WorkList(1, SVI); 356 SmallPtrSet<VNInfo*, 8> WorkSet; 357 358 do { 359 SVI = WorkList.pop_back_val(); 360 WorkSet.erase(SVI->first); 361 TinyPtrVector<VNInfo*> *Deps = VNI ? &FirstDeps : &SVI->second.Deps; 362 VNI = 0; 363 364 SibValueInfo &SV = SVI->second; 365 if (!SV.SpillMBB) 366 SV.SpillMBB = LIS.getMBBFromIndex(SV.SpillVNI->def); 367 368 DEBUG(dbgs() << " prop to " << Deps->size() << ": " 369 << SVI->first->id << '@' << SVI->first->def << ":\t" << SV); 370 371 assert(SV.hasDef() && "Propagating undefined value"); 372 373 // Should this value be propagated as a preferred spill candidate? We don't 374 // propagate values of registers that are about to spill. 375 bool PropSpill = !isRegToSpill(SV.SpillReg); 376 unsigned SpillDepth = ~0u; 377 378 for (TinyPtrVector<VNInfo*>::iterator DepI = Deps->begin(), 379 DepE = Deps->end(); DepI != DepE; ++DepI) { 380 SibValueMap::iterator DepSVI = SibValues.find(*DepI); 381 assert(DepSVI != SibValues.end() && "Dependent value not in SibValues"); 382 SibValueInfo &DepSV = DepSVI->second; 383 if (!DepSV.SpillMBB) 384 DepSV.SpillMBB = LIS.getMBBFromIndex(DepSV.SpillVNI->def); 385 386 bool Changed = false; 387 388 // Propagate defining instruction. 389 if (!DepSV.hasDef()) { 390 Changed = true; 391 DepSV.DefMI = SV.DefMI; 392 DepSV.DefByOrigPHI = SV.DefByOrigPHI; 393 } 394 395 // Propagate AllDefsAreReloads. For PHI values, this computes an AND of 396 // all predecessors. 397 if (!SV.AllDefsAreReloads && DepSV.AllDefsAreReloads) { 398 Changed = true; 399 DepSV.AllDefsAreReloads = false; 400 } 401 402 // Propagate best spill value. 403 if (PropSpill && SV.SpillVNI != DepSV.SpillVNI) { 404 if (SV.SpillMBB == DepSV.SpillMBB) { 405 // DepSV is in the same block. Hoist when dominated. 406 if (SV.SpillVNI->def < DepSV.SpillVNI->def) { 407 // This is an alternative def earlier in the same MBB. 408 // Hoist the spill as far as possible in SpillMBB. This can ease 409 // register pressure: 410 // 411 // x = def 412 // y = use x 413 // s = copy x 414 // 415 // Hoisting the spill of s to immediately after the def removes the 416 // interference between x and y: 417 // 418 // x = def 419 // spill x 420 // y = use x<kill> 421 // 422 Changed = true; 423 DepSV.SpillReg = SV.SpillReg; 424 DepSV.SpillVNI = SV.SpillVNI; 425 DepSV.SpillMBB = SV.SpillMBB; 426 } 427 } else { 428 // DepSV is in a different block. 429 if (SpillDepth == ~0u) 430 SpillDepth = Loops.getLoopDepth(SV.SpillMBB); 431 432 // Also hoist spills to blocks with smaller loop depth, but make sure 433 // that the new value dominates. Non-phi dependents are always 434 // dominated, phis need checking. 435 if ((Loops.getLoopDepth(DepSV.SpillMBB) > SpillDepth) && 436 (!DepSVI->first->isPHIDef() || 437 MDT.dominates(SV.SpillMBB, DepSV.SpillMBB))) { 438 Changed = true; 439 DepSV.SpillReg = SV.SpillReg; 440 DepSV.SpillVNI = SV.SpillVNI; 441 DepSV.SpillMBB = SV.SpillMBB; 442 } 443 } 444 } 445 446 if (!Changed) 447 continue; 448 449 // Something changed in DepSVI. Propagate to dependents. 450 if (WorkSet.insert(DepSVI->first)) 451 WorkList.push_back(DepSVI); 452 453 DEBUG(dbgs() << " update " << DepSVI->first->id << '@' 454 << DepSVI->first->def << " to:\t" << DepSV); 455 } 456 } while (!WorkList.empty()); 457 } 458 459 /// traceSiblingValue - Trace a value that is about to be spilled back to the 460 /// real defining instructions by looking through sibling copies. Always stay 461 /// within the range of OrigVNI so the registers are known to carry the same 462 /// value. 463 /// 464 /// Determine if the value is defined by all reloads, so spilling isn't 465 /// necessary - the value is already in the stack slot. 466 /// 467 /// Return a defining instruction that may be a candidate for rematerialization. 468 /// 469 MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI, 470 VNInfo *OrigVNI) { 471 // Check if a cached value already exists. 472 SibValueMap::iterator SVI; 473 bool Inserted; 474 tie(SVI, Inserted) = 475 SibValues.insert(std::make_pair(UseVNI, SibValueInfo(UseReg, UseVNI))); 476 if (!Inserted) { 477 DEBUG(dbgs() << "Cached value " << PrintReg(UseReg) << ':' 478 << UseVNI->id << '@' << UseVNI->def << ' ' << SVI->second); 479 return SVI->second.DefMI; 480 } 481 482 DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':' 483 << UseVNI->id << '@' << UseVNI->def << '\n'); 484 485 // List of (Reg, VNI) that have been inserted into SibValues, but need to be 486 // processed. 487 SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList; 488 WorkList.push_back(std::make_pair(UseReg, UseVNI)); 489 490 do { 491 unsigned Reg; 492 VNInfo *VNI; 493 tie(Reg, VNI) = WorkList.pop_back_val(); 494 DEBUG(dbgs() << " " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def 495 << ":\t"); 496 497 // First check if this value has already been computed. 498 SVI = SibValues.find(VNI); 499 assert(SVI != SibValues.end() && "Missing SibValues entry"); 500 501 // Trace through PHI-defs created by live range splitting. 502 if (VNI->isPHIDef()) { 503 if (VNI->def == OrigVNI->def) { 504 DEBUG(dbgs() << "orig phi value\n"); 505 SVI->second.DefByOrigPHI = true; 506 SVI->second.AllDefsAreReloads = false; 507 propagateSiblingValue(SVI); 508 continue; 509 } 510 // Get values live-out of predecessors. 511 LiveInterval &LI = LIS.getInterval(Reg); 512 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 513 DEBUG(dbgs() << "split phi value, check " << MBB->pred_size() 514 << " preds\n"); 515 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 516 PE = MBB->pred_end(); PI != PE; ++PI) { 517 // Use a cache of block live-out values. This is faster than using 518 // getVNInfoAt on complex intervals. 519 VNInfo *&PVNI = LiveOutValues[*PI]; 520 if (!PVNI) 521 PVNI = LI.getVNInfoAt(LIS.getMBBEndIdx(*PI).getPrevSlot()); 522 if (!PVNI) 523 continue; 524 // Known predecessor value? Try an insertion. 525 tie(SVI, Inserted) = 526 SibValues.insert(std::make_pair(PVNI, SibValueInfo(Reg, PVNI))); 527 // This is the first time we see PVNI, add it to the worklist. 528 if (Inserted) 529 WorkList.push_back(std::make_pair(Reg, PVNI)); 530 propagateSiblingValue(SVI, VNI); 531 } 532 // Next work list item. 533 continue; 534 } 535 536 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 537 assert(MI && "Missing def"); 538 539 // Trace through sibling copies. 540 if (unsigned SrcReg = isFullCopyOf(MI, Reg)) { 541 if (isSibling(SrcReg)) { 542 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 543 VNInfo *SrcVNI = SrcLI.getVNInfoAt(VNI->def.getUseIndex()); 544 assert(SrcVNI && "Copy from non-existing value"); 545 DEBUG(dbgs() << "copy of " << PrintReg(SrcReg) << ':' 546 << SrcVNI->id << '@' << SrcVNI->def << '\n'); 547 // Known sibling source value? Try an insertion. 548 tie(SVI, Inserted) = SibValues.insert(std::make_pair(SrcVNI, 549 SibValueInfo(SrcReg, SrcVNI))); 550 // This is the first time we see Src, add it to the worklist. 551 if (Inserted) 552 WorkList.push_back(std::make_pair(SrcReg, SrcVNI)); 553 propagateSiblingValue(SVI, VNI); 554 // Next work list item. 555 continue; 556 } 557 } 558 559 // Track reachable reloads. 560 SVI->second.DefMI = MI; 561 SVI->second.SpillMBB = MI->getParent(); 562 int FI; 563 if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) { 564 DEBUG(dbgs() << "reload\n"); 565 propagateSiblingValue(SVI); 566 // Next work list item. 567 continue; 568 } 569 570 // Potential remat candidate. 571 DEBUG(dbgs() << "def " << *MI); 572 SVI->second.AllDefsAreReloads = false; 573 propagateSiblingValue(SVI); 574 } while (!WorkList.empty()); 575 576 // Look up the value we were looking for. We already did this lokup at the 577 // top of the function, but SibValues may have been invalidated. 578 SVI = SibValues.find(UseVNI); 579 assert(SVI != SibValues.end() && "Didn't compute requested info"); 580 DEBUG(dbgs() << " traced to:\t" << SVI->second); 581 return SVI->second.DefMI; 582 } 583 584 /// analyzeSiblingValues - Trace values defined by sibling copies back to 585 /// something that isn't a sibling copy. 586 /// 587 /// Keep track of values that may be rematerializable. 588 void InlineSpiller::analyzeSiblingValues() { 589 SibValues.clear(); 590 LiveOutValues.clear(); 591 592 // No siblings at all? 593 if (Edit->getReg() == Original) 594 return; 595 596 LiveInterval &OrigLI = LIS.getInterval(Original); 597 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 598 unsigned Reg = RegsToSpill[i]; 599 LiveInterval &LI = LIS.getInterval(Reg); 600 for (LiveInterval::const_vni_iterator VI = LI.vni_begin(), 601 VE = LI.vni_end(); VI != VE; ++VI) { 602 VNInfo *VNI = *VI; 603 if (VNI->isUnused()) 604 continue; 605 MachineInstr *DefMI = 0; 606 // Check possible sibling copies. 607 if (VNI->isPHIDef() || VNI->getCopy()) { 608 VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def); 609 assert(OrigVNI && "Def outside original live range"); 610 if (OrigVNI->def != VNI->def) 611 DefMI = traceSiblingValue(Reg, VNI, OrigVNI); 612 } 613 if (!DefMI && !VNI->isPHIDef()) 614 DefMI = LIS.getInstructionFromIndex(VNI->def); 615 if (DefMI && Edit->checkRematerializable(VNI, DefMI, TII, AA)) { 616 DEBUG(dbgs() << "Value " << PrintReg(Reg) << ':' << VNI->id << '@' 617 << VNI->def << " may remat from " << *DefMI); 618 } 619 } 620 } 621 } 622 623 /// hoistSpill - Given a sibling copy that defines a value to be spilled, insert 624 /// a spill at a better location. 625 bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI) { 626 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 627 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getDefIndex()); 628 assert(VNI && VNI->def == Idx.getDefIndex() && "Not defined by copy"); 629 SibValueMap::iterator I = SibValues.find(VNI); 630 if (I == SibValues.end()) 631 return false; 632 633 const SibValueInfo &SVI = I->second; 634 635 // Let the normal folding code deal with the boring case. 636 if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI) 637 return false; 638 639 // SpillReg may have been deleted by remat and DCE. 640 if (!LIS.hasInterval(SVI.SpillReg)) { 641 DEBUG(dbgs() << "Stale interval: " << PrintReg(SVI.SpillReg) << '\n'); 642 SibValues.erase(I); 643 return false; 644 } 645 646 LiveInterval &SibLI = LIS.getInterval(SVI.SpillReg); 647 if (!SibLI.containsValue(SVI.SpillVNI)) { 648 DEBUG(dbgs() << "Stale value: " << PrintReg(SVI.SpillReg) << '\n'); 649 SibValues.erase(I); 650 return false; 651 } 652 653 // Conservatively extend the stack slot range to the range of the original 654 // value. We may be able to do better with stack slot coloring by being more 655 // careful here. 656 assert(StackInt && "No stack slot assigned yet."); 657 LiveInterval &OrigLI = LIS.getInterval(Original); 658 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 659 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 660 DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 661 << *StackInt << '\n'); 662 663 // Already spilled everywhere. 664 if (SVI.AllDefsAreReloads) { 665 DEBUG(dbgs() << "\tno spill needed: " << SVI); 666 ++NumOmitReloadSpill; 667 return true; 668 } 669 // We are going to spill SVI.SpillVNI immediately after its def, so clear out 670 // any later spills of the same value. 671 eliminateRedundantSpills(SibLI, SVI.SpillVNI); 672 673 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def); 674 MachineBasicBlock::iterator MII; 675 if (SVI.SpillVNI->isPHIDef()) 676 MII = MBB->SkipPHIsAndLabels(MBB->begin()); 677 else { 678 MachineInstr *DefMI = LIS.getInstructionFromIndex(SVI.SpillVNI->def); 679 assert(DefMI && "Defining instruction disappeared"); 680 MII = DefMI; 681 ++MII; 682 } 683 // Insert spill without kill flag immediately after def. 684 TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot, 685 MRI.getRegClass(SVI.SpillReg), &TRI); 686 --MII; // Point to store instruction. 687 LIS.InsertMachineInstrInMaps(MII); 688 VRM.addSpillSlotUse(StackSlot, MII); 689 DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII); 690 691 if (MBB == CopyMI->getParent()) 692 ++NumHoistLocal; 693 else 694 ++NumHoistGlobal; 695 return true; 696 } 697 698 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 699 /// redundant spills of this value in SLI.reg and sibling copies. 700 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 701 assert(VNI && "Missing value"); 702 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 703 WorkList.push_back(std::make_pair(&SLI, VNI)); 704 assert(StackInt && "No stack slot assigned yet."); 705 706 do { 707 LiveInterval *LI; 708 tie(LI, VNI) = WorkList.pop_back_val(); 709 unsigned Reg = LI->reg; 710 DEBUG(dbgs() << "Checking redundant spills for " 711 << VNI->id << '@' << VNI->def << " in " << *LI << '\n'); 712 713 // Regs to spill are taken care of. 714 if (isRegToSpill(Reg)) 715 continue; 716 717 // Add all of VNI's live range to StackInt. 718 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 719 DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 720 721 // Find all spills and copies of VNI. 722 for (MachineRegisterInfo::use_nodbg_iterator UI = MRI.use_nodbg_begin(Reg); 723 MachineInstr *MI = UI.skipInstruction();) { 724 if (!MI->isCopy() && !MI->getDesc().mayStore()) 725 continue; 726 SlotIndex Idx = LIS.getInstructionIndex(MI); 727 if (LI->getVNInfoAt(Idx) != VNI) 728 continue; 729 730 // Follow sibling copies down the dominator tree. 731 if (unsigned DstReg = isFullCopyOf(MI, Reg)) { 732 if (isSibling(DstReg)) { 733 LiveInterval &DstLI = LIS.getInterval(DstReg); 734 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getDefIndex()); 735 assert(DstVNI && "Missing defined value"); 736 assert(DstVNI->def == Idx.getDefIndex() && "Wrong copy def slot"); 737 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 738 } 739 continue; 740 } 741 742 // Erase spills. 743 int FI; 744 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 745 DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI); 746 // eliminateDeadDefs won't normally remove stores, so switch opcode. 747 MI->setDesc(TII.get(TargetOpcode::KILL)); 748 DeadDefs.push_back(MI); 749 ++NumRedundantSpills; 750 } 751 } 752 } while (!WorkList.empty()); 753 } 754 755 756 //===----------------------------------------------------------------------===// 757 // Rematerialization 758 //===----------------------------------------------------------------------===// 759 760 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 761 /// instruction cannot be eliminated. See through snippet copies 762 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 763 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 764 WorkList.push_back(std::make_pair(LI, VNI)); 765 do { 766 tie(LI, VNI) = WorkList.pop_back_val(); 767 if (!UsedValues.insert(VNI)) 768 continue; 769 770 if (VNI->isPHIDef()) { 771 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 772 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 773 PE = MBB->pred_end(); PI != PE; ++PI) { 774 VNInfo *PVNI = LI->getVNInfoAt(LIS.getMBBEndIdx(*PI).getPrevSlot()); 775 if (PVNI) 776 WorkList.push_back(std::make_pair(LI, PVNI)); 777 } 778 continue; 779 } 780 781 // Follow snippet copies. 782 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 783 if (!SnippetCopies.count(MI)) 784 continue; 785 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 786 assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy"); 787 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getUseIndex()); 788 assert(SnipVNI && "Snippet undefined before copy"); 789 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 790 } while (!WorkList.empty()); 791 } 792 793 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 794 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, 795 MachineBasicBlock::iterator MI) { 796 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getUseIndex(); 797 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 798 799 if (!ParentVNI) { 800 DEBUG(dbgs() << "\tadding <undef> flags: "); 801 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 802 MachineOperand &MO = MI->getOperand(i); 803 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) 804 MO.setIsUndef(); 805 } 806 DEBUG(dbgs() << UseIdx << '\t' << *MI); 807 return true; 808 } 809 810 if (SnippetCopies.count(MI)) 811 return false; 812 813 // Use an OrigVNI from traceSiblingValue when ParentVNI is a sibling copy. 814 LiveRangeEdit::Remat RM(ParentVNI); 815 SibValueMap::const_iterator SibI = SibValues.find(ParentVNI); 816 if (SibI != SibValues.end()) 817 RM.OrigMI = SibI->second.DefMI; 818 if (!Edit->canRematerializeAt(RM, UseIdx, false, LIS)) { 819 markValueUsed(&VirtReg, ParentVNI); 820 DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI); 821 return false; 822 } 823 824 // If the instruction also writes VirtReg.reg, it had better not require the 825 // same register for uses and defs. 826 bool Reads, Writes; 827 SmallVector<unsigned, 8> Ops; 828 tie(Reads, Writes) = MI->readsWritesVirtualRegister(VirtReg.reg, &Ops); 829 if (Writes) { 830 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 831 MachineOperand &MO = MI->getOperand(Ops[i]); 832 if (MO.isUse() ? MI->isRegTiedToDefOperand(Ops[i]) : MO.getSubReg()) { 833 markValueUsed(&VirtReg, ParentVNI); 834 DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI); 835 return false; 836 } 837 } 838 } 839 840 // Before rematerializing into a register for a single instruction, try to 841 // fold a load into the instruction. That avoids allocating a new register. 842 if (RM.OrigMI->getDesc().canFoldAsLoad() && 843 foldMemoryOperand(MI, Ops, RM.OrigMI)) { 844 Edit->markRematerialized(RM.ParentVNI); 845 ++NumFoldedLoads; 846 return true; 847 } 848 849 // Alocate a new register for the remat. 850 LiveInterval &NewLI = Edit->createFrom(Original, LIS, VRM); 851 NewLI.markNotSpillable(); 852 853 // Finally we can rematerialize OrigMI before MI. 854 SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewLI.reg, RM, 855 LIS, TII, TRI); 856 DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 857 << *LIS.getInstructionFromIndex(DefIdx)); 858 859 // Replace operands 860 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 861 MachineOperand &MO = MI->getOperand(Ops[i]); 862 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) { 863 MO.setReg(NewLI.reg); 864 MO.setIsKill(); 865 } 866 } 867 DEBUG(dbgs() << "\t " << UseIdx << '\t' << *MI); 868 869 VNInfo *DefVNI = NewLI.getNextValue(DefIdx, 0, LIS.getVNInfoAllocator()); 870 NewLI.addRange(LiveRange(DefIdx, UseIdx.getDefIndex(), DefVNI)); 871 DEBUG(dbgs() << "\tinterval: " << NewLI << '\n'); 872 ++NumRemats; 873 return true; 874 } 875 876 /// reMaterializeAll - Try to rematerialize as many uses as possible, 877 /// and trim the live ranges after. 878 void InlineSpiller::reMaterializeAll() { 879 // analyzeSiblingValues has already tested all relevant defining instructions. 880 if (!Edit->anyRematerializable(LIS, TII, AA)) 881 return; 882 883 UsedValues.clear(); 884 885 // Try to remat before all uses of snippets. 886 bool anyRemat = false; 887 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 888 unsigned Reg = RegsToSpill[i]; 889 LiveInterval &LI = LIS.getInterval(Reg); 890 for (MachineRegisterInfo::use_nodbg_iterator 891 RI = MRI.use_nodbg_begin(Reg); 892 MachineInstr *MI = RI.skipInstruction();) 893 anyRemat |= reMaterializeFor(LI, MI); 894 } 895 if (!anyRemat) 896 return; 897 898 // Remove any values that were completely rematted. 899 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 900 unsigned Reg = RegsToSpill[i]; 901 LiveInterval &LI = LIS.getInterval(Reg); 902 for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 903 I != E; ++I) { 904 VNInfo *VNI = *I; 905 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 906 continue; 907 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 908 MI->addRegisterDead(Reg, &TRI); 909 if (!MI->allDefsAreDead()) 910 continue; 911 DEBUG(dbgs() << "All defs dead: " << *MI); 912 DeadDefs.push_back(MI); 913 } 914 } 915 916 // Eliminate dead code after remat. Note that some snippet copies may be 917 // deleted here. 918 if (DeadDefs.empty()) 919 return; 920 DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 921 Edit->eliminateDeadDefs(DeadDefs, LIS, VRM, TII); 922 923 // Get rid of deleted and empty intervals. 924 for (unsigned i = RegsToSpill.size(); i != 0; --i) { 925 unsigned Reg = RegsToSpill[i-1]; 926 if (!LIS.hasInterval(Reg)) { 927 RegsToSpill.erase(RegsToSpill.begin() + (i - 1)); 928 continue; 929 } 930 LiveInterval &LI = LIS.getInterval(Reg); 931 if (!LI.empty()) 932 continue; 933 Edit->eraseVirtReg(Reg, LIS); 934 RegsToSpill.erase(RegsToSpill.begin() + (i - 1)); 935 } 936 DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n"); 937 } 938 939 940 //===----------------------------------------------------------------------===// 941 // Spilling 942 //===----------------------------------------------------------------------===// 943 944 /// If MI is a load or store of StackSlot, it can be removed. 945 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) { 946 int FI = 0; 947 unsigned InstrReg; 948 if (!(InstrReg = TII.isLoadFromStackSlot(MI, FI)) && 949 !(InstrReg = TII.isStoreToStackSlot(MI, FI))) 950 return false; 951 952 // We have a stack access. Is it the right register and slot? 953 if (InstrReg != Reg || FI != StackSlot) 954 return false; 955 956 DEBUG(dbgs() << "Coalescing stack access: " << *MI); 957 LIS.RemoveMachineInstrFromMaps(MI); 958 MI->eraseFromParent(); 959 return true; 960 } 961 962 /// foldMemoryOperand - Try folding stack slot references in Ops into MI. 963 /// @param MI Instruction using or defining the current register. 964 /// @param Ops Operand indices from readsWritesVirtualRegister(). 965 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 966 /// @return True on success, and MI will be erased. 967 bool InlineSpiller::foldMemoryOperand(MachineBasicBlock::iterator MI, 968 const SmallVectorImpl<unsigned> &Ops, 969 MachineInstr *LoadMI) { 970 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 971 // operands. 972 SmallVector<unsigned, 8> FoldOps; 973 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 974 unsigned Idx = Ops[i]; 975 MachineOperand &MO = MI->getOperand(Idx); 976 if (MO.isImplicit()) 977 continue; 978 // FIXME: Teach targets to deal with subregs. 979 if (MO.getSubReg()) 980 return false; 981 // We cannot fold a load instruction into a def. 982 if (LoadMI && MO.isDef()) 983 return false; 984 // Tied use operands should not be passed to foldMemoryOperand. 985 if (!MI->isRegTiedToDefOperand(Idx)) 986 FoldOps.push_back(Idx); 987 } 988 989 MachineInstr *FoldMI = 990 LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI) 991 : TII.foldMemoryOperand(MI, FoldOps, StackSlot); 992 if (!FoldMI) 993 return false; 994 LIS.ReplaceMachineInstrInMaps(MI, FoldMI); 995 if (!LoadMI) 996 VRM.addSpillSlotUse(StackSlot, FoldMI); 997 MI->eraseFromParent(); 998 DEBUG(dbgs() << "\tfolded: " << *FoldMI); 999 ++NumFolded; 1000 return true; 1001 } 1002 1003 /// insertReload - Insert a reload of NewLI.reg before MI. 1004 void InlineSpiller::insertReload(LiveInterval &NewLI, 1005 SlotIndex Idx, 1006 MachineBasicBlock::iterator MI) { 1007 MachineBasicBlock &MBB = *MI->getParent(); 1008 TII.loadRegFromStackSlot(MBB, MI, NewLI.reg, StackSlot, 1009 MRI.getRegClass(NewLI.reg), &TRI); 1010 --MI; // Point to load instruction. 1011 SlotIndex LoadIdx = LIS.InsertMachineInstrInMaps(MI).getDefIndex(); 1012 VRM.addSpillSlotUse(StackSlot, MI); 1013 DEBUG(dbgs() << "\treload: " << LoadIdx << '\t' << *MI); 1014 VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, 0, 1015 LIS.getVNInfoAllocator()); 1016 NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI)); 1017 ++NumReloads; 1018 } 1019 1020 /// insertSpill - Insert a spill of NewLI.reg after MI. 1021 void InlineSpiller::insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI, 1022 SlotIndex Idx, MachineBasicBlock::iterator MI) { 1023 MachineBasicBlock &MBB = *MI->getParent(); 1024 TII.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, StackSlot, 1025 MRI.getRegClass(NewLI.reg), &TRI); 1026 --MI; // Point to store instruction. 1027 SlotIndex StoreIdx = LIS.InsertMachineInstrInMaps(MI).getDefIndex(); 1028 VRM.addSpillSlotUse(StackSlot, MI); 1029 DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI); 1030 VNInfo *StoreVNI = NewLI.getNextValue(Idx, 0, LIS.getVNInfoAllocator()); 1031 NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI)); 1032 ++NumSpills; 1033 } 1034 1035 /// spillAroundUses - insert spill code around each use of Reg. 1036 void InlineSpiller::spillAroundUses(unsigned Reg) { 1037 DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n'); 1038 LiveInterval &OldLI = LIS.getInterval(Reg); 1039 1040 // Iterate over instructions using Reg. 1041 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg); 1042 MachineInstr *MI = RI.skipInstruction();) { 1043 1044 // Debug values are not allowed to affect codegen. 1045 if (MI->isDebugValue()) { 1046 // Modify DBG_VALUE now that the value is in a spill slot. 1047 uint64_t Offset = MI->getOperand(1).getImm(); 1048 const MDNode *MDPtr = MI->getOperand(2).getMetadata(); 1049 DebugLoc DL = MI->getDebugLoc(); 1050 if (MachineInstr *NewDV = TII.emitFrameIndexDebugValue(MF, StackSlot, 1051 Offset, MDPtr, DL)) { 1052 DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI); 1053 MachineBasicBlock *MBB = MI->getParent(); 1054 MBB->insert(MBB->erase(MI), NewDV); 1055 } else { 1056 DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI); 1057 MI->eraseFromParent(); 1058 } 1059 continue; 1060 } 1061 1062 // Ignore copies to/from snippets. We'll delete them. 1063 if (SnippetCopies.count(MI)) 1064 continue; 1065 1066 // Stack slot accesses may coalesce away. 1067 if (coalesceStackAccess(MI, Reg)) 1068 continue; 1069 1070 // Analyze instruction. 1071 bool Reads, Writes; 1072 SmallVector<unsigned, 8> Ops; 1073 tie(Reads, Writes) = MI->readsWritesVirtualRegister(Reg, &Ops); 1074 1075 // Find the slot index where this instruction reads and writes OldLI. 1076 // This is usually the def slot, except for tied early clobbers. 1077 SlotIndex Idx = LIS.getInstructionIndex(MI).getDefIndex(); 1078 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getUseIndex())) 1079 if (SlotIndex::isSameInstr(Idx, VNI->def)) 1080 Idx = VNI->def; 1081 1082 // Check for a sibling copy. 1083 unsigned SibReg = isFullCopyOf(MI, Reg); 1084 if (SibReg && isSibling(SibReg)) { 1085 // This may actually be a copy between snippets. 1086 if (isRegToSpill(SibReg)) { 1087 DEBUG(dbgs() << "Found new snippet copy: " << *MI); 1088 SnippetCopies.insert(MI); 1089 continue; 1090 } 1091 if (Writes) { 1092 // Hoist the spill of a sib-reg copy. 1093 if (hoistSpill(OldLI, MI)) { 1094 // This COPY is now dead, the value is already in the stack slot. 1095 MI->getOperand(0).setIsDead(); 1096 DeadDefs.push_back(MI); 1097 continue; 1098 } 1099 } else { 1100 // This is a reload for a sib-reg copy. Drop spills downstream. 1101 LiveInterval &SibLI = LIS.getInterval(SibReg); 1102 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 1103 // The COPY will fold to a reload below. 1104 } 1105 } 1106 1107 // Attempt to fold memory ops. 1108 if (foldMemoryOperand(MI, Ops)) 1109 continue; 1110 1111 // Allocate interval around instruction. 1112 // FIXME: Infer regclass from instruction alone. 1113 LiveInterval &NewLI = Edit->createFrom(Reg, LIS, VRM); 1114 NewLI.markNotSpillable(); 1115 1116 if (Reads) 1117 insertReload(NewLI, Idx, MI); 1118 1119 // Rewrite instruction operands. 1120 bool hasLiveDef = false; 1121 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1122 MachineOperand &MO = MI->getOperand(Ops[i]); 1123 MO.setReg(NewLI.reg); 1124 if (MO.isUse()) { 1125 if (!MI->isRegTiedToDefOperand(Ops[i])) 1126 MO.setIsKill(); 1127 } else { 1128 if (!MO.isDead()) 1129 hasLiveDef = true; 1130 } 1131 } 1132 DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI); 1133 1134 // FIXME: Use a second vreg if instruction has no tied ops. 1135 if (Writes && hasLiveDef) 1136 insertSpill(NewLI, OldLI, Idx, MI); 1137 1138 DEBUG(dbgs() << "\tinterval: " << NewLI << '\n'); 1139 } 1140 } 1141 1142 /// spillAll - Spill all registers remaining after rematerialization. 1143 void InlineSpiller::spillAll() { 1144 // Update LiveStacks now that we are committed to spilling. 1145 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 1146 StackSlot = VRM.assignVirt2StackSlot(Original); 1147 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 1148 StackInt->getNextValue(SlotIndex(), 0, LSS.getVNInfoAllocator()); 1149 } else 1150 StackInt = &LSS.getInterval(StackSlot); 1151 1152 if (Original != Edit->getReg()) 1153 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 1154 1155 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 1156 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) 1157 StackInt->MergeRangesInAsValue(LIS.getInterval(RegsToSpill[i]), 1158 StackInt->getValNumInfo(0)); 1159 DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 1160 1161 // Spill around uses of all RegsToSpill. 1162 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) 1163 spillAroundUses(RegsToSpill[i]); 1164 1165 // Hoisted spills may cause dead code. 1166 if (!DeadDefs.empty()) { 1167 DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 1168 Edit->eliminateDeadDefs(DeadDefs, LIS, VRM, TII); 1169 } 1170 1171 // Finally delete the SnippetCopies. 1172 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 1173 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(RegsToSpill[i]); 1174 MachineInstr *MI = RI.skipInstruction();) { 1175 assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy"); 1176 // FIXME: Do this with a LiveRangeEdit callback. 1177 VRM.RemoveMachineInstrFromMaps(MI); 1178 LIS.RemoveMachineInstrFromMaps(MI); 1179 MI->eraseFromParent(); 1180 } 1181 } 1182 1183 // Delete all spilled registers. 1184 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) 1185 Edit->eraseVirtReg(RegsToSpill[i], LIS); 1186 } 1187 1188 void InlineSpiller::spill(LiveRangeEdit &edit) { 1189 ++NumSpilledRanges; 1190 Edit = &edit; 1191 assert(!TargetRegisterInfo::isStackSlot(edit.getReg()) 1192 && "Trying to spill a stack slot."); 1193 // Share a stack slot among all descendants of Original. 1194 Original = VRM.getOriginal(edit.getReg()); 1195 StackSlot = VRM.getStackSlot(Original); 1196 StackInt = 0; 1197 1198 DEBUG(dbgs() << "Inline spilling " 1199 << MRI.getRegClass(edit.getReg())->getName() 1200 << ':' << edit.getParent() << "\nFrom original " 1201 << LIS.getInterval(Original) << '\n'); 1202 assert(edit.getParent().isSpillable() && 1203 "Attempting to spill already spilled value."); 1204 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1205 1206 collectRegsToSpill(); 1207 analyzeSiblingValues(); 1208 reMaterializeAll(); 1209 1210 // Remat may handle everything. 1211 if (!RegsToSpill.empty()) 1212 spillAll(); 1213 1214 Edit->calculateRegClassAndHint(MF, LIS, Loops); 1215 } 1216