1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The inline spiller modifies the machine function directly instead of
10 // inserting spills and restores in VirtRegMap.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SplitKit.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/LiveInterval.h"
26 #include "llvm/CodeGen/LiveIntervals.h"
27 #include "llvm/CodeGen/LiveRangeEdit.h"
28 #include "llvm/CodeGen/LiveStacks.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31 #include "llvm/CodeGen/MachineDominators.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineFunctionPass.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineInstrBundle.h"
37 #include "llvm/CodeGen/MachineLoopInfo.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/CodeGen/SlotIndexes.h"
41 #include "llvm/CodeGen/Spiller.h"
42 #include "llvm/CodeGen/StackMaps.h"
43 #include "llvm/CodeGen/TargetInstrInfo.h"
44 #include "llvm/CodeGen/TargetOpcodes.h"
45 #include "llvm/CodeGen/TargetRegisterInfo.h"
46 #include "llvm/CodeGen/TargetSubtargetInfo.h"
47 #include "llvm/CodeGen/VirtRegMap.h"
48 #include "llvm/Config/llvm-config.h"
49 #include "llvm/Support/BlockFrequency.h"
50 #include "llvm/Support/BranchProbability.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Compiler.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include <cassert>
57 #include <iterator>
58 #include <tuple>
59 #include <utility>
60 #include <vector>
61
62 using namespace llvm;
63
64 #define DEBUG_TYPE "regalloc"
65
66 STATISTIC(NumSpilledRanges, "Number of spilled live ranges");
67 STATISTIC(NumSnippets, "Number of spilled snippets");
68 STATISTIC(NumSpills, "Number of spills inserted");
69 STATISTIC(NumSpillsRemoved, "Number of spills removed");
70 STATISTIC(NumReloads, "Number of reloads inserted");
71 STATISTIC(NumReloadsRemoved, "Number of reloads removed");
72 STATISTIC(NumFolded, "Number of folded stack accesses");
73 STATISTIC(NumFoldedLoads, "Number of folded loads");
74 STATISTIC(NumRemats, "Number of rematerialized defs for spilling");
75
76 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
77 cl::desc("Disable inline spill hoisting"));
78 static cl::opt<bool>
79 RestrictStatepointRemat("restrict-statepoint-remat",
80 cl::init(false), cl::Hidden,
81 cl::desc("Restrict remat for statepoint operands"));
82
83 namespace {
84
85 class HoistSpillHelper : private LiveRangeEdit::Delegate {
86 MachineFunction &MF;
87 LiveIntervals &LIS;
88 LiveStacks &LSS;
89 MachineDominatorTree &MDT;
90 MachineLoopInfo &Loops;
91 VirtRegMap &VRM;
92 MachineRegisterInfo &MRI;
93 const TargetInstrInfo &TII;
94 const TargetRegisterInfo &TRI;
95 const MachineBlockFrequencyInfo &MBFI;
96
97 InsertPointAnalysis IPA;
98
99 // Map from StackSlot to the LiveInterval of the original register.
100 // Note the LiveInterval of the original register may have been deleted
101 // after it is spilled. We keep a copy here to track the range where
102 // spills can be moved.
103 DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI;
104
105 // Map from pair of (StackSlot and Original VNI) to a set of spills which
106 // have the same stackslot and have equal values defined by Original VNI.
107 // These spills are mergeable and are hoist candiates.
108 using MergeableSpillsMap =
109 MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>;
110 MergeableSpillsMap MergeableSpills;
111
112 /// This is the map from original register to a set containing all its
113 /// siblings. To hoist a spill to another BB, we need to find out a live
114 /// sibling there and use it as the source of the new spill.
115 DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap;
116
117 bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
118 MachineBasicBlock &BB, Register &LiveReg);
119
120 void rmRedundantSpills(
121 SmallPtrSet<MachineInstr *, 16> &Spills,
122 SmallVectorImpl<MachineInstr *> &SpillsToRm,
123 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
124
125 void getVisitOrders(
126 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
127 SmallVectorImpl<MachineDomTreeNode *> &Orders,
128 SmallVectorImpl<MachineInstr *> &SpillsToRm,
129 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
130 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
131
132 void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI,
133 SmallPtrSet<MachineInstr *, 16> &Spills,
134 SmallVectorImpl<MachineInstr *> &SpillsToRm,
135 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns);
136
137 public:
HoistSpillHelper(MachineFunctionPass & pass,MachineFunction & mf,VirtRegMap & vrm)138 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf,
139 VirtRegMap &vrm)
140 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
141 LSS(pass.getAnalysis<LiveStacks>()),
142 MDT(pass.getAnalysis<MachineDominatorTree>()),
143 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
144 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
145 TRI(*mf.getSubtarget().getRegisterInfo()),
146 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
147 IPA(LIS, mf.getNumBlockIDs()) {}
148
149 void addToMergeableSpills(MachineInstr &Spill, int StackSlot,
150 unsigned Original);
151 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot);
152 void hoistAllSpills();
153 void LRE_DidCloneVirtReg(Register, Register) override;
154 };
155
156 class InlineSpiller : public Spiller {
157 MachineFunction &MF;
158 LiveIntervals &LIS;
159 LiveStacks &LSS;
160 MachineDominatorTree &MDT;
161 MachineLoopInfo &Loops;
162 VirtRegMap &VRM;
163 MachineRegisterInfo &MRI;
164 const TargetInstrInfo &TII;
165 const TargetRegisterInfo &TRI;
166 const MachineBlockFrequencyInfo &MBFI;
167
168 // Variables that are valid during spill(), but used by multiple methods.
169 LiveRangeEdit *Edit;
170 LiveInterval *StackInt;
171 int StackSlot;
172 Register Original;
173
174 // All registers to spill to StackSlot, including the main register.
175 SmallVector<Register, 8> RegsToSpill;
176
177 // All COPY instructions to/from snippets.
178 // They are ignored since both operands refer to the same stack slot.
179 SmallPtrSet<MachineInstr*, 8> SnippetCopies;
180
181 // Values that failed to remat at some point.
182 SmallPtrSet<VNInfo*, 8> UsedValues;
183
184 // Dead defs generated during spilling.
185 SmallVector<MachineInstr*, 8> DeadDefs;
186
187 // Object records spills information and does the hoisting.
188 HoistSpillHelper HSpiller;
189
190 // Live range weight calculator.
191 VirtRegAuxInfo &VRAI;
192
193 ~InlineSpiller() override = default;
194
195 public:
InlineSpiller(MachineFunctionPass & Pass,MachineFunction & MF,VirtRegMap & VRM,VirtRegAuxInfo & VRAI)196 InlineSpiller(MachineFunctionPass &Pass, MachineFunction &MF, VirtRegMap &VRM,
197 VirtRegAuxInfo &VRAI)
198 : MF(MF), LIS(Pass.getAnalysis<LiveIntervals>()),
199 LSS(Pass.getAnalysis<LiveStacks>()),
200 MDT(Pass.getAnalysis<MachineDominatorTree>()),
201 Loops(Pass.getAnalysis<MachineLoopInfo>()), VRM(VRM),
202 MRI(MF.getRegInfo()), TII(*MF.getSubtarget().getInstrInfo()),
203 TRI(*MF.getSubtarget().getRegisterInfo()),
204 MBFI(Pass.getAnalysis<MachineBlockFrequencyInfo>()),
205 HSpiller(Pass, MF, VRM), VRAI(VRAI) {}
206
207 void spill(LiveRangeEdit &) override;
208 void postOptimization() override;
209
210 private:
211 bool isSnippet(const LiveInterval &SnipLI);
212 void collectRegsToSpill();
213
isRegToSpill(Register Reg)214 bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); }
215
216 bool isSibling(Register Reg);
217 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
218 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
219
220 void markValueUsed(LiveInterval*, VNInfo*);
221 bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI);
222 bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
223 void reMaterializeAll();
224
225 bool coalesceStackAccess(MachineInstr *MI, Register Reg);
226 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>,
227 MachineInstr *LoadMI = nullptr);
228 void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI);
229 void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI);
230
231 void spillAroundUses(Register Reg);
232 void spillAll();
233 };
234
235 } // end anonymous namespace
236
237 Spiller::~Spiller() = default;
238
anchor()239 void Spiller::anchor() {}
240
createInlineSpiller(MachineFunctionPass & Pass,MachineFunction & MF,VirtRegMap & VRM,VirtRegAuxInfo & VRAI)241 Spiller *llvm::createInlineSpiller(MachineFunctionPass &Pass,
242 MachineFunction &MF, VirtRegMap &VRM,
243 VirtRegAuxInfo &VRAI) {
244 return new InlineSpiller(Pass, MF, VRM, VRAI);
245 }
246
247 //===----------------------------------------------------------------------===//
248 // Snippets
249 //===----------------------------------------------------------------------===//
250
251 // When spilling a virtual register, we also spill any snippets it is connected
252 // to. The snippets are small live ranges that only have a single real use,
253 // leftovers from live range splitting. Spilling them enables memory operand
254 // folding or tightens the live range around the single use.
255 //
256 // This minimizes register pressure and maximizes the store-to-load distance for
257 // spill slots which can be important in tight loops.
258
259 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
260 /// otherwise return 0.
isFullCopyOf(const MachineInstr & MI,Register Reg)261 static Register isFullCopyOf(const MachineInstr &MI, Register Reg) {
262 if (!MI.isFullCopy())
263 return Register();
264 if (MI.getOperand(0).getReg() == Reg)
265 return MI.getOperand(1).getReg();
266 if (MI.getOperand(1).getReg() == Reg)
267 return MI.getOperand(0).getReg();
268 return Register();
269 }
270
getVDefInterval(const MachineInstr & MI,LiveIntervals & LIS)271 static void getVDefInterval(const MachineInstr &MI, LiveIntervals &LIS) {
272 for (const MachineOperand &MO : MI.operands())
273 if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
274 LIS.getInterval(MO.getReg());
275 }
276
277 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
278 /// It is assumed that SnipLI is a virtual register with the same original as
279 /// Edit->getReg().
isSnippet(const LiveInterval & SnipLI)280 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
281 Register Reg = Edit->getReg();
282
283 // A snippet is a tiny live range with only a single instruction using it
284 // besides copies to/from Reg or spills/fills. We accept:
285 //
286 // %snip = COPY %Reg / FILL fi#
287 // %snip = USE %snip
288 // %Reg = COPY %snip / SPILL %snip, fi#
289 //
290 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
291 return false;
292
293 MachineInstr *UseMI = nullptr;
294
295 // Check that all uses satisfy our criteria.
296 for (MachineRegisterInfo::reg_instr_nodbg_iterator
297 RI = MRI.reg_instr_nodbg_begin(SnipLI.reg()),
298 E = MRI.reg_instr_nodbg_end();
299 RI != E;) {
300 MachineInstr &MI = *RI++;
301
302 // Allow copies to/from Reg.
303 if (isFullCopyOf(MI, Reg))
304 continue;
305
306 // Allow stack slot loads.
307 int FI;
308 if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
309 continue;
310
311 // Allow stack slot stores.
312 if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
313 continue;
314
315 // Allow a single additional instruction.
316 if (UseMI && &MI != UseMI)
317 return false;
318 UseMI = &MI;
319 }
320 return true;
321 }
322
323 /// collectRegsToSpill - Collect live range snippets that only have a single
324 /// real use.
collectRegsToSpill()325 void InlineSpiller::collectRegsToSpill() {
326 Register Reg = Edit->getReg();
327
328 // Main register always spills.
329 RegsToSpill.assign(1, Reg);
330 SnippetCopies.clear();
331
332 // Snippets all have the same original, so there can't be any for an original
333 // register.
334 if (Original == Reg)
335 return;
336
337 for (MachineInstr &MI :
338 llvm::make_early_inc_range(MRI.reg_instructions(Reg))) {
339 Register SnipReg = isFullCopyOf(MI, Reg);
340 if (!isSibling(SnipReg))
341 continue;
342 LiveInterval &SnipLI = LIS.getInterval(SnipReg);
343 if (!isSnippet(SnipLI))
344 continue;
345 SnippetCopies.insert(&MI);
346 if (isRegToSpill(SnipReg))
347 continue;
348 RegsToSpill.push_back(SnipReg);
349 LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
350 ++NumSnippets;
351 }
352 }
353
isSibling(Register Reg)354 bool InlineSpiller::isSibling(Register Reg) {
355 return Reg.isVirtual() && VRM.getOriginal(Reg) == Original;
356 }
357
358 /// It is beneficial to spill to earlier place in the same BB in case
359 /// as follows:
360 /// There is an alternative def earlier in the same MBB.
361 /// Hoist the spill as far as possible in SpillMBB. This can ease
362 /// register pressure:
363 ///
364 /// x = def
365 /// y = use x
366 /// s = copy x
367 ///
368 /// Hoisting the spill of s to immediately after the def removes the
369 /// interference between x and y:
370 ///
371 /// x = def
372 /// spill x
373 /// y = use killed x
374 ///
375 /// This hoist only helps when the copy kills its source.
376 ///
hoistSpillInsideBB(LiveInterval & SpillLI,MachineInstr & CopyMI)377 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
378 MachineInstr &CopyMI) {
379 SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
380 #ifndef NDEBUG
381 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
382 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
383 #endif
384
385 Register SrcReg = CopyMI.getOperand(1).getReg();
386 LiveInterval &SrcLI = LIS.getInterval(SrcReg);
387 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx);
388 LiveQueryResult SrcQ = SrcLI.Query(Idx);
389 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def);
390 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill())
391 return false;
392
393 // Conservatively extend the stack slot range to the range of the original
394 // value. We may be able to do better with stack slot coloring by being more
395 // careful here.
396 assert(StackInt && "No stack slot assigned yet.");
397 LiveInterval &OrigLI = LIS.getInterval(Original);
398 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
399 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
400 LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
401 << *StackInt << '\n');
402
403 // We are going to spill SrcVNI immediately after its def, so clear out
404 // any later spills of the same value.
405 eliminateRedundantSpills(SrcLI, SrcVNI);
406
407 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
408 MachineBasicBlock::iterator MII;
409 if (SrcVNI->isPHIDef())
410 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
411 else {
412 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
413 assert(DefMI && "Defining instruction disappeared");
414 MII = DefMI;
415 ++MII;
416 }
417 MachineInstrSpan MIS(MII, MBB);
418 // Insert spill without kill flag immediately after def.
419 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot,
420 MRI.getRegClass(SrcReg), &TRI);
421 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII);
422 for (const MachineInstr &MI : make_range(MIS.begin(), MII))
423 getVDefInterval(MI, LIS);
424 --MII; // Point to store instruction.
425 LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII);
426
427 // If there is only 1 store instruction is required for spill, add it
428 // to mergeable list. In X86 AMX, 2 intructions are required to store.
429 // We disable the merge for this case.
430 if (MIS.begin() == MII)
431 HSpiller.addToMergeableSpills(*MII, StackSlot, Original);
432 ++NumSpills;
433 return true;
434 }
435
436 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
437 /// redundant spills of this value in SLI.reg and sibling copies.
eliminateRedundantSpills(LiveInterval & SLI,VNInfo * VNI)438 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
439 assert(VNI && "Missing value");
440 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
441 WorkList.push_back(std::make_pair(&SLI, VNI));
442 assert(StackInt && "No stack slot assigned yet.");
443
444 do {
445 LiveInterval *LI;
446 std::tie(LI, VNI) = WorkList.pop_back_val();
447 Register Reg = LI->reg();
448 LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@'
449 << VNI->def << " in " << *LI << '\n');
450
451 // Regs to spill are taken care of.
452 if (isRegToSpill(Reg))
453 continue;
454
455 // Add all of VNI's live range to StackInt.
456 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
457 LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
458
459 // Find all spills and copies of VNI.
460 for (MachineInstr &MI :
461 llvm::make_early_inc_range(MRI.use_nodbg_instructions(Reg))) {
462 if (!MI.isCopy() && !MI.mayStore())
463 continue;
464 SlotIndex Idx = LIS.getInstructionIndex(MI);
465 if (LI->getVNInfoAt(Idx) != VNI)
466 continue;
467
468 // Follow sibling copies down the dominator tree.
469 if (Register DstReg = isFullCopyOf(MI, Reg)) {
470 if (isSibling(DstReg)) {
471 LiveInterval &DstLI = LIS.getInterval(DstReg);
472 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
473 assert(DstVNI && "Missing defined value");
474 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
475 WorkList.push_back(std::make_pair(&DstLI, DstVNI));
476 }
477 continue;
478 }
479
480 // Erase spills.
481 int FI;
482 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
483 LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI);
484 // eliminateDeadDefs won't normally remove stores, so switch opcode.
485 MI.setDesc(TII.get(TargetOpcode::KILL));
486 DeadDefs.push_back(&MI);
487 ++NumSpillsRemoved;
488 if (HSpiller.rmFromMergeableSpills(MI, StackSlot))
489 --NumSpills;
490 }
491 }
492 } while (!WorkList.empty());
493 }
494
495 //===----------------------------------------------------------------------===//
496 // Rematerialization
497 //===----------------------------------------------------------------------===//
498
499 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
500 /// instruction cannot be eliminated. See through snippet copies
markValueUsed(LiveInterval * LI,VNInfo * VNI)501 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
502 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
503 WorkList.push_back(std::make_pair(LI, VNI));
504 do {
505 std::tie(LI, VNI) = WorkList.pop_back_val();
506 if (!UsedValues.insert(VNI).second)
507 continue;
508
509 if (VNI->isPHIDef()) {
510 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
511 for (MachineBasicBlock *P : MBB->predecessors()) {
512 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
513 if (PVNI)
514 WorkList.push_back(std::make_pair(LI, PVNI));
515 }
516 continue;
517 }
518
519 // Follow snippet copies.
520 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
521 if (!SnippetCopies.count(MI))
522 continue;
523 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
524 assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy");
525 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
526 assert(SnipVNI && "Snippet undefined before copy");
527 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
528 } while (!WorkList.empty());
529 }
530
canGuaranteeAssignmentAfterRemat(Register VReg,MachineInstr & MI)531 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg,
532 MachineInstr &MI) {
533 if (!RestrictStatepointRemat)
534 return true;
535 // Here's a quick explanation of the problem we're trying to handle here:
536 // * There are some pseudo instructions with more vreg uses than there are
537 // physical registers on the machine.
538 // * This is normally handled by spilling the vreg, and folding the reload
539 // into the user instruction. (Thus decreasing the number of used vregs
540 // until the remainder can be assigned to physregs.)
541 // * However, since we may try to spill vregs in any order, we can end up
542 // trying to spill each operand to the instruction, and then rematting it
543 // instead. When that happens, the new live intervals (for the remats) are
544 // expected to be trivially assignable (i.e. RS_Done). However, since we
545 // may have more remats than physregs, we're guaranteed to fail to assign
546 // one.
547 // At the moment, we only handle this for STATEPOINTs since they're the only
548 // pseudo op where we've seen this. If we start seeing other instructions
549 // with the same problem, we need to revisit this.
550 if (MI.getOpcode() != TargetOpcode::STATEPOINT)
551 return true;
552 // For STATEPOINTs we allow re-materialization for fixed arguments only hoping
553 // that number of physical registers is enough to cover all fixed arguments.
554 // If it is not true we need to revisit it.
555 for (unsigned Idx = StatepointOpers(&MI).getVarIdx(),
556 EndIdx = MI.getNumOperands();
557 Idx < EndIdx; ++Idx) {
558 MachineOperand &MO = MI.getOperand(Idx);
559 if (MO.isReg() && MO.getReg() == VReg)
560 return false;
561 }
562 return true;
563 }
564
565 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
reMaterializeFor(LiveInterval & VirtReg,MachineInstr & MI)566 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
567 // Analyze instruction
568 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
569 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg(), &Ops);
570
571 if (!RI.Reads)
572 return false;
573
574 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
575 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
576
577 if (!ParentVNI) {
578 LLVM_DEBUG(dbgs() << "\tadding <undef> flags: ");
579 for (MachineOperand &MO : MI.operands())
580 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg())
581 MO.setIsUndef();
582 LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI);
583 return true;
584 }
585
586 if (SnippetCopies.count(&MI))
587 return false;
588
589 LiveInterval &OrigLI = LIS.getInterval(Original);
590 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
591 LiveRangeEdit::Remat RM(ParentVNI);
592 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
593
594 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) {
595 markValueUsed(&VirtReg, ParentVNI);
596 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
597 return false;
598 }
599
600 // If the instruction also writes VirtReg.reg, it had better not require the
601 // same register for uses and defs.
602 if (RI.Tied) {
603 markValueUsed(&VirtReg, ParentVNI);
604 LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI);
605 return false;
606 }
607
608 // Before rematerializing into a register for a single instruction, try to
609 // fold a load into the instruction. That avoids allocating a new register.
610 if (RM.OrigMI->canFoldAsLoad() &&
611 foldMemoryOperand(Ops, RM.OrigMI)) {
612 Edit->markRematerialized(RM.ParentVNI);
613 ++NumFoldedLoads;
614 return true;
615 }
616
617 // If we can't guarantee that we'll be able to actually assign the new vreg,
618 // we can't remat.
619 if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg(), MI)) {
620 markValueUsed(&VirtReg, ParentVNI);
621 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
622 return false;
623 }
624
625 // Allocate a new register for the remat.
626 Register NewVReg = Edit->createFrom(Original);
627
628 // Finally we can rematerialize OrigMI before MI.
629 SlotIndex DefIdx =
630 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);
631
632 // We take the DebugLoc from MI, since OrigMI may be attributed to a
633 // different source location.
634 auto *NewMI = LIS.getInstructionFromIndex(DefIdx);
635 NewMI->setDebugLoc(MI.getDebugLoc());
636
637 (void)DefIdx;
638 LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx << '\t'
639 << *LIS.getInstructionFromIndex(DefIdx));
640
641 // Replace operands
642 for (const auto &OpPair : Ops) {
643 MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
644 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) {
645 MO.setReg(NewVReg);
646 MO.setIsKill();
647 }
648 }
649 LLVM_DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n');
650
651 ++NumRemats;
652 return true;
653 }
654
655 /// reMaterializeAll - Try to rematerialize as many uses as possible,
656 /// and trim the live ranges after.
reMaterializeAll()657 void InlineSpiller::reMaterializeAll() {
658 if (!Edit->anyRematerializable())
659 return;
660
661 UsedValues.clear();
662
663 // Try to remat before all uses of snippets.
664 bool anyRemat = false;
665 for (Register Reg : RegsToSpill) {
666 LiveInterval &LI = LIS.getInterval(Reg);
667 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) {
668 // Debug values are not allowed to affect codegen.
669 if (MI.isDebugValue())
670 continue;
671
672 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
673 "instruction that isn't a DBG_VALUE");
674
675 anyRemat |= reMaterializeFor(LI, MI);
676 }
677 }
678 if (!anyRemat)
679 return;
680
681 // Remove any values that were completely rematted.
682 for (Register Reg : RegsToSpill) {
683 LiveInterval &LI = LIS.getInterval(Reg);
684 for (VNInfo *VNI : LI.vnis()) {
685 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
686 continue;
687 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
688 MI->addRegisterDead(Reg, &TRI);
689 if (!MI->allDefsAreDead())
690 continue;
691 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
692 DeadDefs.push_back(MI);
693 }
694 }
695
696 // Eliminate dead code after remat. Note that some snippet copies may be
697 // deleted here.
698 if (DeadDefs.empty())
699 return;
700 LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
701 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
702
703 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
704 // after rematerialization. To remove a VNI for a vreg from its LiveInterval,
705 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
706 // removed, PHI VNI are still left in the LiveInterval.
707 // So to get rid of unused reg, we need to check whether it has non-dbg
708 // reference instead of whether it has non-empty interval.
709 unsigned ResultPos = 0;
710 for (Register Reg : RegsToSpill) {
711 if (MRI.reg_nodbg_empty(Reg)) {
712 Edit->eraseVirtReg(Reg);
713 continue;
714 }
715
716 assert(LIS.hasInterval(Reg) &&
717 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
718 "Empty and not used live-range?!");
719
720 RegsToSpill[ResultPos++] = Reg;
721 }
722 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
723 LLVM_DEBUG(dbgs() << RegsToSpill.size()
724 << " registers to spill after remat.\n");
725 }
726
727 //===----------------------------------------------------------------------===//
728 // Spilling
729 //===----------------------------------------------------------------------===//
730
731 /// If MI is a load or store of StackSlot, it can be removed.
coalesceStackAccess(MachineInstr * MI,Register Reg)732 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) {
733 int FI = 0;
734 Register InstrReg = TII.isLoadFromStackSlot(*MI, FI);
735 bool IsLoad = InstrReg;
736 if (!IsLoad)
737 InstrReg = TII.isStoreToStackSlot(*MI, FI);
738
739 // We have a stack access. Is it the right register and slot?
740 if (InstrReg != Reg || FI != StackSlot)
741 return false;
742
743 if (!IsLoad)
744 HSpiller.rmFromMergeableSpills(*MI, StackSlot);
745
746 LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI);
747 LIS.RemoveMachineInstrFromMaps(*MI);
748 MI->eraseFromParent();
749
750 if (IsLoad) {
751 ++NumReloadsRemoved;
752 --NumReloads;
753 } else {
754 ++NumSpillsRemoved;
755 --NumSpills;
756 }
757
758 return true;
759 }
760
761 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
762 LLVM_DUMP_METHOD
763 // Dump the range of instructions from B to E with their slot indexes.
dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,MachineBasicBlock::iterator E,LiveIntervals const & LIS,const char * const header,Register VReg=Register ())764 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
765 MachineBasicBlock::iterator E,
766 LiveIntervals const &LIS,
767 const char *const header,
768 Register VReg = Register()) {
769 char NextLine = '\n';
770 char SlotIndent = '\t';
771
772 if (std::next(B) == E) {
773 NextLine = ' ';
774 SlotIndent = ' ';
775 }
776
777 dbgs() << '\t' << header << ": " << NextLine;
778
779 for (MachineBasicBlock::iterator I = B; I != E; ++I) {
780 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();
781
782 // If a register was passed in and this instruction has it as a
783 // destination that is marked as an early clobber, print the
784 // early-clobber slot index.
785 if (VReg) {
786 MachineOperand *MO = I->findRegisterDefOperand(VReg);
787 if (MO && MO->isEarlyClobber())
788 Idx = Idx.getRegSlot(true);
789 }
790
791 dbgs() << SlotIndent << Idx << '\t' << *I;
792 }
793 }
794 #endif
795
796 /// foldMemoryOperand - Try folding stack slot references in Ops into their
797 /// instructions.
798 ///
799 /// @param Ops Operand indices from AnalyzeVirtRegInBundle().
800 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
801 /// @return True on success.
802 bool InlineSpiller::
foldMemoryOperand(ArrayRef<std::pair<MachineInstr *,unsigned>> Ops,MachineInstr * LoadMI)803 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops,
804 MachineInstr *LoadMI) {
805 if (Ops.empty())
806 return false;
807 // Don't attempt folding in bundles.
808 MachineInstr *MI = Ops.front().first;
809 if (Ops.back().first != MI || MI->isBundled())
810 return false;
811
812 bool WasCopy = MI->isCopy();
813 Register ImpReg;
814
815 // TII::foldMemoryOperand will do what we need here for statepoint
816 // (fold load into use and remove corresponding def). We will replace
817 // uses of removed def with loads (spillAroundUses).
818 // For that to work we need to untie def and use to pass it through
819 // foldMemoryOperand and signal foldPatchpoint that it is allowed to
820 // fold them.
821 bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT;
822
823 // Spill subregs if the target allows it.
824 // We always want to spill subregs for stackmap/patchpoint pseudos.
825 bool SpillSubRegs = TII.isSubregFoldable() ||
826 MI->getOpcode() == TargetOpcode::STATEPOINT ||
827 MI->getOpcode() == TargetOpcode::PATCHPOINT ||
828 MI->getOpcode() == TargetOpcode::STACKMAP;
829
830 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
831 // operands.
832 SmallVector<unsigned, 8> FoldOps;
833 for (const auto &OpPair : Ops) {
834 unsigned Idx = OpPair.second;
835 assert(MI == OpPair.first && "Instruction conflict during operand folding");
836 MachineOperand &MO = MI->getOperand(Idx);
837
838 // No point restoring an undef read, and we'll produce an invalid live
839 // interval.
840 // TODO: Is this really the correct way to handle undef tied uses?
841 if (MO.isUse() && !MO.readsReg() && !MO.isTied())
842 continue;
843
844 if (MO.isImplicit()) {
845 ImpReg = MO.getReg();
846 continue;
847 }
848
849 if (!SpillSubRegs && MO.getSubReg())
850 return false;
851 // We cannot fold a load instruction into a def.
852 if (LoadMI && MO.isDef())
853 return false;
854 // Tied use operands should not be passed to foldMemoryOperand.
855 if (UntieRegs || !MI->isRegTiedToDefOperand(Idx))
856 FoldOps.push_back(Idx);
857 }
858
859 // If we only have implicit uses, we won't be able to fold that.
860 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try!
861 if (FoldOps.empty())
862 return false;
863
864 MachineInstrSpan MIS(MI, MI->getParent());
865
866 SmallVector<std::pair<unsigned, unsigned> > TiedOps;
867 if (UntieRegs)
868 for (unsigned Idx : FoldOps) {
869 MachineOperand &MO = MI->getOperand(Idx);
870 if (!MO.isTied())
871 continue;
872 unsigned Tied = MI->findTiedOperandIdx(Idx);
873 if (MO.isUse())
874 TiedOps.emplace_back(Tied, Idx);
875 else {
876 assert(MO.isDef() && "Tied to not use and def?");
877 TiedOps.emplace_back(Idx, Tied);
878 }
879 MI->untieRegOperand(Idx);
880 }
881
882 MachineInstr *FoldMI =
883 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS)
884 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM);
885 if (!FoldMI) {
886 // Re-tie operands.
887 for (auto Tied : TiedOps)
888 MI->tieOperands(Tied.first, Tied.second);
889 return false;
890 }
891
892 // Remove LIS for any dead defs in the original MI not in FoldMI.
893 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
894 if (!MO->isReg())
895 continue;
896 Register Reg = MO->getReg();
897 if (!Reg || Register::isVirtualRegister(Reg) || MRI.isReserved(Reg)) {
898 continue;
899 }
900 // Skip non-Defs, including undef uses and internal reads.
901 if (MO->isUse())
902 continue;
903 PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI);
904 if (RI.FullyDefined)
905 continue;
906 // FoldMI does not define this physreg. Remove the LI segment.
907 assert(MO->isDead() && "Cannot fold physreg def");
908 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
909 LIS.removePhysRegDefAt(Reg.asMCReg(), Idx);
910 }
911
912 int FI;
913 if (TII.isStoreToStackSlot(*MI, FI) &&
914 HSpiller.rmFromMergeableSpills(*MI, FI))
915 --NumSpills;
916 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
917 // Update the call site info.
918 if (MI->isCandidateForCallSiteEntry())
919 MI->getMF()->moveCallSiteInfo(MI, FoldMI);
920
921 // If we've folded a store into an instruction labelled with debug-info,
922 // record a substitution from the old operand to the memory operand. Handle
923 // the simple common case where operand 0 is the one being folded, plus when
924 // the destination operand is also a tied def. More values could be
925 // substituted / preserved with more analysis.
926 if (MI->peekDebugInstrNum() && Ops[0].second == 0) {
927 // Helper lambda.
928 auto MakeSubstitution = [this,FoldMI,MI,&Ops]() {
929 // Substitute old operand zero to the new instructions memory operand.
930 unsigned OldOperandNum = Ops[0].second;
931 unsigned NewNum = FoldMI->getDebugInstrNum();
932 unsigned OldNum = MI->getDebugInstrNum();
933 MF.makeDebugValueSubstitution({OldNum, OldOperandNum},
934 {NewNum, MachineFunction::DebugOperandMemNumber});
935 };
936
937 const MachineOperand &Op0 = MI->getOperand(Ops[0].second);
938 if (Ops.size() == 1 && Op0.isDef()) {
939 MakeSubstitution();
940 } else if (Ops.size() == 2 && Op0.isDef() && MI->getOperand(1).isTied() &&
941 Op0.getReg() == MI->getOperand(1).getReg()) {
942 MakeSubstitution();
943 }
944 } else if (MI->peekDebugInstrNum()) {
945 // This is a debug-labelled instruction, but the operand being folded isn't
946 // at operand zero. Most likely this means it's a load being folded in.
947 // Substitute any register defs from operand zero up to the one being
948 // folded -- past that point, we don't know what the new operand indexes
949 // will be.
950 MF.substituteDebugValuesForInst(*MI, *FoldMI, Ops[0].second);
951 }
952
953 MI->eraseFromParent();
954
955 // Insert any new instructions other than FoldMI into the LIS maps.
956 assert(!MIS.empty() && "Unexpected empty span of instructions!");
957 for (MachineInstr &MI : MIS)
958 if (&MI != FoldMI)
959 LIS.InsertMachineInstrInMaps(MI);
960
961 // TII.foldMemoryOperand may have left some implicit operands on the
962 // instruction. Strip them.
963 if (ImpReg)
964 for (unsigned i = FoldMI->getNumOperands(); i; --i) {
965 MachineOperand &MO = FoldMI->getOperand(i - 1);
966 if (!MO.isReg() || !MO.isImplicit())
967 break;
968 if (MO.getReg() == ImpReg)
969 FoldMI->removeOperand(i - 1);
970 }
971
972 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
973 "folded"));
974
975 if (!WasCopy)
976 ++NumFolded;
977 else if (Ops.front().second == 0) {
978 ++NumSpills;
979 // If there is only 1 store instruction is required for spill, add it
980 // to mergeable list. In X86 AMX, 2 intructions are required to store.
981 // We disable the merge for this case.
982 if (std::distance(MIS.begin(), MIS.end()) <= 1)
983 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original);
984 } else
985 ++NumReloads;
986 return true;
987 }
988
insertReload(Register NewVReg,SlotIndex Idx,MachineBasicBlock::iterator MI)989 void InlineSpiller::insertReload(Register NewVReg,
990 SlotIndex Idx,
991 MachineBasicBlock::iterator MI) {
992 MachineBasicBlock &MBB = *MI->getParent();
993
994 MachineInstrSpan MIS(MI, &MBB);
995 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
996 MRI.getRegClass(NewVReg), &TRI);
997
998 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
999
1000 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
1001 NewVReg));
1002 ++NumReloads;
1003 }
1004
1005 /// Check if \p Def fully defines a VReg with an undefined value.
1006 /// If that's the case, that means the value of VReg is actually
1007 /// not relevant.
isRealSpill(const MachineInstr & Def)1008 static bool isRealSpill(const MachineInstr &Def) {
1009 if (!Def.isImplicitDef())
1010 return true;
1011 assert(Def.getNumOperands() == 1 &&
1012 "Implicit def with more than one definition");
1013 // We can say that the VReg defined by Def is undef, only if it is
1014 // fully defined by Def. Otherwise, some of the lanes may not be
1015 // undef and the value of the VReg matters.
1016 return Def.getOperand(0).getSubReg();
1017 }
1018
1019 /// insertSpill - Insert a spill of NewVReg after MI.
insertSpill(Register NewVReg,bool isKill,MachineBasicBlock::iterator MI)1020 void InlineSpiller::insertSpill(Register NewVReg, bool isKill,
1021 MachineBasicBlock::iterator MI) {
1022 // Spill are not terminators, so inserting spills after terminators will
1023 // violate invariants in MachineVerifier.
1024 assert(!MI->isTerminator() && "Inserting a spill after a terminator");
1025 MachineBasicBlock &MBB = *MI->getParent();
1026
1027 MachineInstrSpan MIS(MI, &MBB);
1028 MachineBasicBlock::iterator SpillBefore = std::next(MI);
1029 bool IsRealSpill = isRealSpill(*MI);
1030
1031 if (IsRealSpill)
1032 TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot,
1033 MRI.getRegClass(NewVReg), &TRI);
1034 else
1035 // Don't spill undef value.
1036 // Anything works for undef, in particular keeping the memory
1037 // uninitialized is a viable option and it saves code size and
1038 // run time.
1039 BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL))
1040 .addReg(NewVReg, getKillRegState(isKill));
1041
1042 MachineBasicBlock::iterator Spill = std::next(MI);
1043 LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end());
1044 for (const MachineInstr &MI : make_range(Spill, MIS.end()))
1045 getVDefInterval(MI, LIS);
1046
1047 LLVM_DEBUG(
1048 dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill"));
1049 ++NumSpills;
1050 // If there is only 1 store instruction is required for spill, add it
1051 // to mergeable list. In X86 AMX, 2 intructions are required to store.
1052 // We disable the merge for this case.
1053 if (IsRealSpill && std::distance(Spill, MIS.end()) <= 1)
1054 HSpiller.addToMergeableSpills(*Spill, StackSlot, Original);
1055 }
1056
1057 /// spillAroundUses - insert spill code around each use of Reg.
spillAroundUses(Register Reg)1058 void InlineSpiller::spillAroundUses(Register Reg) {
1059 LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n');
1060 LiveInterval &OldLI = LIS.getInterval(Reg);
1061
1062 // Iterate over instructions using Reg.
1063 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) {
1064 // Debug values are not allowed to affect codegen.
1065 if (MI.isDebugValue()) {
1066 // Modify DBG_VALUE now that the value is in a spill slot.
1067 MachineBasicBlock *MBB = MI.getParent();
1068 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << MI);
1069 buildDbgValueForSpill(*MBB, &MI, MI, StackSlot, Reg);
1070 MBB->erase(MI);
1071 continue;
1072 }
1073
1074 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
1075 "instruction that isn't a DBG_VALUE");
1076
1077 // Ignore copies to/from snippets. We'll delete them.
1078 if (SnippetCopies.count(&MI))
1079 continue;
1080
1081 // Stack slot accesses may coalesce away.
1082 if (coalesceStackAccess(&MI, Reg))
1083 continue;
1084
1085 // Analyze instruction.
1086 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
1087 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, Reg, &Ops);
1088
1089 // Find the slot index where this instruction reads and writes OldLI.
1090 // This is usually the def slot, except for tied early clobbers.
1091 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
1092 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
1093 if (SlotIndex::isSameInstr(Idx, VNI->def))
1094 Idx = VNI->def;
1095
1096 // Check for a sibling copy.
1097 Register SibReg = isFullCopyOf(MI, Reg);
1098 if (SibReg && isSibling(SibReg)) {
1099 // This may actually be a copy between snippets.
1100 if (isRegToSpill(SibReg)) {
1101 LLVM_DEBUG(dbgs() << "Found new snippet copy: " << MI);
1102 SnippetCopies.insert(&MI);
1103 continue;
1104 }
1105 if (RI.Writes) {
1106 if (hoistSpillInsideBB(OldLI, MI)) {
1107 // This COPY is now dead, the value is already in the stack slot.
1108 MI.getOperand(0).setIsDead();
1109 DeadDefs.push_back(&MI);
1110 continue;
1111 }
1112 } else {
1113 // This is a reload for a sib-reg copy. Drop spills downstream.
1114 LiveInterval &SibLI = LIS.getInterval(SibReg);
1115 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
1116 // The COPY will fold to a reload below.
1117 }
1118 }
1119
1120 // Attempt to fold memory ops.
1121 if (foldMemoryOperand(Ops))
1122 continue;
1123
1124 // Create a new virtual register for spill/fill.
1125 // FIXME: Infer regclass from instruction alone.
1126 Register NewVReg = Edit->createFrom(Reg);
1127
1128 if (RI.Reads)
1129 insertReload(NewVReg, Idx, &MI);
1130
1131 // Rewrite instruction operands.
1132 bool hasLiveDef = false;
1133 for (const auto &OpPair : Ops) {
1134 MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
1135 MO.setReg(NewVReg);
1136 if (MO.isUse()) {
1137 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
1138 MO.setIsKill();
1139 } else {
1140 if (!MO.isDead())
1141 hasLiveDef = true;
1142 }
1143 }
1144 LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << MI << '\n');
1145
1146 // FIXME: Use a second vreg if instruction has no tied ops.
1147 if (RI.Writes)
1148 if (hasLiveDef)
1149 insertSpill(NewVReg, true, &MI);
1150 }
1151 }
1152
1153 /// spillAll - Spill all registers remaining after rematerialization.
spillAll()1154 void InlineSpiller::spillAll() {
1155 // Update LiveStacks now that we are committed to spilling.
1156 if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1157 StackSlot = VRM.assignVirt2StackSlot(Original);
1158 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1159 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1160 } else
1161 StackInt = &LSS.getInterval(StackSlot);
1162
1163 if (Original != Edit->getReg())
1164 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1165
1166 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1167 for (Register Reg : RegsToSpill)
1168 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
1169 StackInt->getValNumInfo(0));
1170 LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1171
1172 // Spill around uses of all RegsToSpill.
1173 for (Register Reg : RegsToSpill)
1174 spillAroundUses(Reg);
1175
1176 // Hoisted spills may cause dead code.
1177 if (!DeadDefs.empty()) {
1178 LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1179 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
1180 }
1181
1182 // Finally delete the SnippetCopies.
1183 for (Register Reg : RegsToSpill) {
1184 for (MachineInstr &MI :
1185 llvm::make_early_inc_range(MRI.reg_instructions(Reg))) {
1186 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy");
1187 // FIXME: Do this with a LiveRangeEdit callback.
1188 LIS.RemoveMachineInstrFromMaps(MI);
1189 MI.eraseFromParent();
1190 }
1191 }
1192
1193 // Delete all spilled registers.
1194 for (Register Reg : RegsToSpill)
1195 Edit->eraseVirtReg(Reg);
1196 }
1197
spill(LiveRangeEdit & edit)1198 void InlineSpiller::spill(LiveRangeEdit &edit) {
1199 ++NumSpilledRanges;
1200 Edit = &edit;
1201 assert(!Register::isStackSlot(edit.getReg()) &&
1202 "Trying to spill a stack slot.");
1203 // Share a stack slot among all descendants of Original.
1204 Original = VRM.getOriginal(edit.getReg());
1205 StackSlot = VRM.getStackSlot(Original);
1206 StackInt = nullptr;
1207
1208 LLVM_DEBUG(dbgs() << "Inline spilling "
1209 << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
1210 << ':' << edit.getParent() << "\nFrom original "
1211 << printReg(Original) << '\n');
1212 assert(edit.getParent().isSpillable() &&
1213 "Attempting to spill already spilled value.");
1214 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1215
1216 collectRegsToSpill();
1217 reMaterializeAll();
1218
1219 // Remat may handle everything.
1220 if (!RegsToSpill.empty())
1221 spillAll();
1222
1223 Edit->calculateRegClassAndHint(MF, VRAI);
1224 }
1225
1226 /// Optimizations after all the reg selections and spills are done.
postOptimization()1227 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); }
1228
1229 /// When a spill is inserted, add the spill to MergeableSpills map.
addToMergeableSpills(MachineInstr & Spill,int StackSlot,unsigned Original)1230 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot,
1231 unsigned Original) {
1232 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1233 LiveInterval &OrigLI = LIS.getInterval(Original);
1234 // save a copy of LiveInterval in StackSlotToOrigLI because the original
1235 // LiveInterval may be cleared after all its references are spilled.
1236 if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) {
1237 auto LI = std::make_unique<LiveInterval>(OrigLI.reg(), OrigLI.weight());
1238 LI->assign(OrigLI, Allocator);
1239 StackSlotToOrigLI[StackSlot] = std::move(LI);
1240 }
1241 SlotIndex Idx = LIS.getInstructionIndex(Spill);
1242 VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot());
1243 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1244 MergeableSpills[MIdx].insert(&Spill);
1245 }
1246
1247 /// When a spill is removed, remove the spill from MergeableSpills map.
1248 /// Return true if the spill is removed successfully.
rmFromMergeableSpills(MachineInstr & Spill,int StackSlot)1249 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill,
1250 int StackSlot) {
1251 auto It = StackSlotToOrigLI.find(StackSlot);
1252 if (It == StackSlotToOrigLI.end())
1253 return false;
1254 SlotIndex Idx = LIS.getInstructionIndex(Spill);
1255 VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot());
1256 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1257 return MergeableSpills[MIdx].erase(&Spill);
1258 }
1259
1260 /// Check BB to see if it is a possible target BB to place a hoisted spill,
1261 /// i.e., there should be a living sibling of OrigReg at the insert point.
isSpillCandBB(LiveInterval & OrigLI,VNInfo & OrigVNI,MachineBasicBlock & BB,Register & LiveReg)1262 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
1263 MachineBasicBlock &BB, Register &LiveReg) {
1264 SlotIndex Idx = IPA.getLastInsertPoint(OrigLI, BB);
1265 // The original def could be after the last insert point in the root block,
1266 // we can't hoist to here.
1267 if (Idx < OrigVNI.def) {
1268 // TODO: We could be better here. If LI is not alive in landing pad
1269 // we could hoist spill after LIP.
1270 LLVM_DEBUG(dbgs() << "can't spill in root block - def after LIP\n");
1271 return false;
1272 }
1273 Register OrigReg = OrigLI.reg();
1274 SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg];
1275 assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI");
1276
1277 for (const Register &SibReg : Siblings) {
1278 LiveInterval &LI = LIS.getInterval(SibReg);
1279 VNInfo *VNI = LI.getVNInfoAt(Idx);
1280 if (VNI) {
1281 LiveReg = SibReg;
1282 return true;
1283 }
1284 }
1285 return false;
1286 }
1287
1288 /// Remove redundant spills in the same BB. Save those redundant spills in
1289 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
rmRedundantSpills(SmallPtrSet<MachineInstr *,16> & Spills,SmallVectorImpl<MachineInstr * > & SpillsToRm,DenseMap<MachineDomTreeNode *,MachineInstr * > & SpillBBToSpill)1290 void HoistSpillHelper::rmRedundantSpills(
1291 SmallPtrSet<MachineInstr *, 16> &Spills,
1292 SmallVectorImpl<MachineInstr *> &SpillsToRm,
1293 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1294 // For each spill saw, check SpillBBToSpill[] and see if its BB already has
1295 // another spill inside. If a BB contains more than one spill, only keep the
1296 // earlier spill with smaller SlotIndex.
1297 for (auto *const CurrentSpill : Spills) {
1298 MachineBasicBlock *Block = CurrentSpill->getParent();
1299 MachineDomTreeNode *Node = MDT.getBase().getNode(Block);
1300 MachineInstr *PrevSpill = SpillBBToSpill[Node];
1301 if (PrevSpill) {
1302 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
1303 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill);
1304 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
1305 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
1306 SpillsToRm.push_back(SpillToRm);
1307 SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep;
1308 } else {
1309 SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill;
1310 }
1311 }
1312 for (auto *const SpillToRm : SpillsToRm)
1313 Spills.erase(SpillToRm);
1314 }
1315
1316 /// Starting from \p Root find a top-down traversal order of the dominator
1317 /// tree to visit all basic blocks containing the elements of \p Spills.
1318 /// Redundant spills will be found and put into \p SpillsToRm at the same
1319 /// time. \p SpillBBToSpill will be populated as part of the process and
1320 /// maps a basic block to the first store occurring in the basic block.
1321 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre
getVisitOrders(MachineBasicBlock * Root,SmallPtrSet<MachineInstr *,16> & Spills,SmallVectorImpl<MachineDomTreeNode * > & Orders,SmallVectorImpl<MachineInstr * > & SpillsToRm,DenseMap<MachineDomTreeNode *,unsigned> & SpillsToKeep,DenseMap<MachineDomTreeNode *,MachineInstr * > & SpillBBToSpill)1322 void HoistSpillHelper::getVisitOrders(
1323 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
1324 SmallVectorImpl<MachineDomTreeNode *> &Orders,
1325 SmallVectorImpl<MachineInstr *> &SpillsToRm,
1326 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
1327 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1328 // The set contains all the possible BB nodes to which we may hoist
1329 // original spills.
1330 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet;
1331 // Save the BB nodes on the path from the first BB node containing
1332 // non-redundant spill to the Root node.
1333 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath;
1334 // All the spills to be hoisted must originate from a single def instruction
1335 // to the OrigReg. It means the def instruction should dominate all the spills
1336 // to be hoisted. We choose the BB where the def instruction is located as
1337 // the Root.
1338 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom();
1339 // For every node on the dominator tree with spill, walk up on the dominator
1340 // tree towards the Root node until it is reached. If there is other node
1341 // containing spill in the middle of the path, the previous spill saw will
1342 // be redundant and the node containing it will be removed. All the nodes on
1343 // the path starting from the first node with non-redundant spill to the Root
1344 // node will be added to the WorkSet, which will contain all the possible
1345 // locations where spills may be hoisted to after the loop below is done.
1346 for (auto *const Spill : Spills) {
1347 MachineBasicBlock *Block = Spill->getParent();
1348 MachineDomTreeNode *Node = MDT[Block];
1349 MachineInstr *SpillToRm = nullptr;
1350 while (Node != RootIDomNode) {
1351 // If Node dominates Block, and it already contains a spill, the spill in
1352 // Block will be redundant.
1353 if (Node != MDT[Block] && SpillBBToSpill[Node]) {
1354 SpillToRm = SpillBBToSpill[MDT[Block]];
1355 break;
1356 /// If we see the Node already in WorkSet, the path from the Node to
1357 /// the Root node must already be traversed by another spill.
1358 /// Then no need to repeat.
1359 } else if (WorkSet.count(Node)) {
1360 break;
1361 } else {
1362 NodesOnPath.insert(Node);
1363 }
1364 Node = Node->getIDom();
1365 }
1366 if (SpillToRm) {
1367 SpillsToRm.push_back(SpillToRm);
1368 } else {
1369 // Add a BB containing the original spills to SpillsToKeep -- i.e.,
1370 // set the initial status before hoisting start. The value of BBs
1371 // containing original spills is set to 0, in order to descriminate
1372 // with BBs containing hoisted spills which will be inserted to
1373 // SpillsToKeep later during hoisting.
1374 SpillsToKeep[MDT[Block]] = 0;
1375 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end());
1376 }
1377 NodesOnPath.clear();
1378 }
1379
1380 // Sort the nodes in WorkSet in top-down order and save the nodes
1381 // in Orders. Orders will be used for hoisting in runHoistSpills.
1382 unsigned idx = 0;
1383 Orders.push_back(MDT.getBase().getNode(Root));
1384 do {
1385 MachineDomTreeNode *Node = Orders[idx++];
1386 for (MachineDomTreeNode *Child : Node->children()) {
1387 if (WorkSet.count(Child))
1388 Orders.push_back(Child);
1389 }
1390 } while (idx != Orders.size());
1391 assert(Orders.size() == WorkSet.size() &&
1392 "Orders have different size with WorkSet");
1393
1394 #ifndef NDEBUG
1395 LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n");
1396 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1397 for (; RIt != Orders.rend(); RIt++)
1398 LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",");
1399 LLVM_DEBUG(dbgs() << "\n");
1400 #endif
1401 }
1402
1403 /// Try to hoist spills according to BB hotness. The spills to removed will
1404 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in
1405 /// \p SpillsToIns.
runHoistSpills(LiveInterval & OrigLI,VNInfo & OrigVNI,SmallPtrSet<MachineInstr *,16> & Spills,SmallVectorImpl<MachineInstr * > & SpillsToRm,DenseMap<MachineBasicBlock *,unsigned> & SpillsToIns)1406 void HoistSpillHelper::runHoistSpills(
1407 LiveInterval &OrigLI, VNInfo &OrigVNI,
1408 SmallPtrSet<MachineInstr *, 16> &Spills,
1409 SmallVectorImpl<MachineInstr *> &SpillsToRm,
1410 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) {
1411 // Visit order of dominator tree nodes.
1412 SmallVector<MachineDomTreeNode *, 32> Orders;
1413 // SpillsToKeep contains all the nodes where spills are to be inserted
1414 // during hoisting. If the spill to be inserted is an original spill
1415 // (not a hoisted one), the value of the map entry is 0. If the spill
1416 // is a hoisted spill, the value of the map entry is the VReg to be used
1417 // as the source of the spill.
1418 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep;
1419 // Map from BB to the first spill inside of it.
1420 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill;
1421
1422 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill);
1423
1424 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def);
1425 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep,
1426 SpillBBToSpill);
1427
1428 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
1429 // nodes set and the cost of all the spills inside those nodes.
1430 // The nodes set are the locations where spills are to be inserted
1431 // in the subtree of current node.
1432 using NodesCostPair =
1433 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>;
1434 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap;
1435
1436 // Iterate Orders set in reverse order, which will be a bottom-up order
1437 // in the dominator tree. Once we visit a dom tree node, we know its
1438 // children have already been visited and the spill locations in the
1439 // subtrees of all the children have been determined.
1440 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1441 for (; RIt != Orders.rend(); RIt++) {
1442 MachineBasicBlock *Block = (*RIt)->getBlock();
1443
1444 // If Block contains an original spill, simply continue.
1445 if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) {
1446 SpillsInSubTreeMap[*RIt].first.insert(*RIt);
1447 // SpillsInSubTreeMap[*RIt].second contains the cost of spill.
1448 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block);
1449 continue;
1450 }
1451
1452 // Collect spills in subtree of current node (*RIt) to
1453 // SpillsInSubTreeMap[*RIt].first.
1454 for (MachineDomTreeNode *Child : (*RIt)->children()) {
1455 if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end())
1456 continue;
1457 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below
1458 // should be placed before getting the begin and end iterators of
1459 // SpillsInSubTreeMap[Child].first, or else the iterators may be
1460 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
1461 // and the map grows and then the original buckets in the map are moved.
1462 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1463 SpillsInSubTreeMap[*RIt].first;
1464 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1465 SubTreeCost += SpillsInSubTreeMap[Child].second;
1466 auto BI = SpillsInSubTreeMap[Child].first.begin();
1467 auto EI = SpillsInSubTreeMap[Child].first.end();
1468 SpillsInSubTree.insert(BI, EI);
1469 SpillsInSubTreeMap.erase(Child);
1470 }
1471
1472 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1473 SpillsInSubTreeMap[*RIt].first;
1474 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1475 // No spills in subtree, simply continue.
1476 if (SpillsInSubTree.empty())
1477 continue;
1478
1479 // Check whether Block is a possible candidate to insert spill.
1480 Register LiveReg;
1481 if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg))
1482 continue;
1483
1484 // If there are multiple spills that could be merged, bias a little
1485 // to hoist the spill.
1486 BranchProbability MarginProb = (SpillsInSubTree.size() > 1)
1487 ? BranchProbability(9, 10)
1488 : BranchProbability(1, 1);
1489 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) {
1490 // Hoist: Move spills to current Block.
1491 for (auto *const SpillBB : SpillsInSubTree) {
1492 // When SpillBB is a BB contains original spill, insert the spill
1493 // to SpillsToRm.
1494 if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() &&
1495 !SpillsToKeep[SpillBB]) {
1496 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB];
1497 SpillsToRm.push_back(SpillToRm);
1498 }
1499 // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
1500 SpillsToKeep.erase(SpillBB);
1501 }
1502 // Current Block is the BB containing the new hoisted spill. Add it to
1503 // SpillsToKeep. LiveReg is the source of the new spill.
1504 SpillsToKeep[*RIt] = LiveReg;
1505 LLVM_DEBUG({
1506 dbgs() << "spills in BB: ";
1507 for (const auto Rspill : SpillsInSubTree)
1508 dbgs() << Rspill->getBlock()->getNumber() << " ";
1509 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()
1510 << "\n";
1511 });
1512 SpillsInSubTree.clear();
1513 SpillsInSubTree.insert(*RIt);
1514 SubTreeCost = MBFI.getBlockFreq(Block);
1515 }
1516 }
1517 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
1518 // save them to SpillsToIns.
1519 for (const auto &Ent : SpillsToKeep) {
1520 if (Ent.second)
1521 SpillsToIns[Ent.first->getBlock()] = Ent.second;
1522 }
1523 }
1524
1525 /// For spills with equal values, remove redundant spills and hoist those left
1526 /// to less hot spots.
1527 ///
1528 /// Spills with equal values will be collected into the same set in
1529 /// MergeableSpills when spill is inserted. These equal spills are originated
1530 /// from the same defining instruction and are dominated by the instruction.
1531 /// Before hoisting all the equal spills, redundant spills inside in the same
1532 /// BB are first marked to be deleted. Then starting from the spills left, walk
1533 /// up on the dominator tree towards the Root node where the define instruction
1534 /// is located, mark the dominated spills to be deleted along the way and
1535 /// collect the BB nodes on the path from non-dominated spills to the define
1536 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places
1537 /// where we are considering to hoist the spills. We iterate the WorkSet in
1538 /// bottom-up order, and for each node, we will decide whether to hoist spills
1539 /// inside its subtree to that node. In this way, we can get benefit locally
1540 /// even if hoisting all the equal spills to one cold place is impossible.
hoistAllSpills()1541 void HoistSpillHelper::hoistAllSpills() {
1542 SmallVector<Register, 4> NewVRegs;
1543 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this);
1544
1545 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
1546 Register Reg = Register::index2VirtReg(i);
1547 Register Original = VRM.getPreSplitReg(Reg);
1548 if (!MRI.def_empty(Reg))
1549 Virt2SiblingsMap[Original].insert(Reg);
1550 }
1551
1552 // Each entry in MergeableSpills contains a spill set with equal values.
1553 for (auto &Ent : MergeableSpills) {
1554 int Slot = Ent.first.first;
1555 LiveInterval &OrigLI = *StackSlotToOrigLI[Slot];
1556 VNInfo *OrigVNI = Ent.first.second;
1557 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second;
1558 if (Ent.second.empty())
1559 continue;
1560
1561 LLVM_DEBUG({
1562 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"
1563 << "Equal spills in BB: ";
1564 for (const auto spill : EqValSpills)
1565 dbgs() << spill->getParent()->getNumber() << " ";
1566 dbgs() << "\n";
1567 });
1568
1569 // SpillsToRm is the spill set to be removed from EqValSpills.
1570 SmallVector<MachineInstr *, 16> SpillsToRm;
1571 // SpillsToIns is the spill set to be newly inserted after hoisting.
1572 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns;
1573
1574 runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns);
1575
1576 LLVM_DEBUG({
1577 dbgs() << "Finally inserted spills in BB: ";
1578 for (const auto &Ispill : SpillsToIns)
1579 dbgs() << Ispill.first->getNumber() << " ";
1580 dbgs() << "\nFinally removed spills in BB: ";
1581 for (const auto Rspill : SpillsToRm)
1582 dbgs() << Rspill->getParent()->getNumber() << " ";
1583 dbgs() << "\n";
1584 });
1585
1586 // Stack live range update.
1587 LiveInterval &StackIntvl = LSS.getInterval(Slot);
1588 if (!SpillsToIns.empty() || !SpillsToRm.empty())
1589 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI,
1590 StackIntvl.getValNumInfo(0));
1591
1592 // Insert hoisted spills.
1593 for (auto const &Insert : SpillsToIns) {
1594 MachineBasicBlock *BB = Insert.first;
1595 Register LiveReg = Insert.second;
1596 MachineBasicBlock::iterator MII = IPA.getLastInsertPointIter(OrigLI, *BB);
1597 MachineInstrSpan MIS(MII, BB);
1598 TII.storeRegToStackSlot(*BB, MII, LiveReg, false, Slot,
1599 MRI.getRegClass(LiveReg), &TRI);
1600 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII);
1601 for (const MachineInstr &MI : make_range(MIS.begin(), MII))
1602 getVDefInterval(MI, LIS);
1603 ++NumSpills;
1604 }
1605
1606 // Remove redundant spills or change them to dead instructions.
1607 NumSpills -= SpillsToRm.size();
1608 for (auto *const RMEnt : SpillsToRm) {
1609 RMEnt->setDesc(TII.get(TargetOpcode::KILL));
1610 for (unsigned i = RMEnt->getNumOperands(); i; --i) {
1611 MachineOperand &MO = RMEnt->getOperand(i - 1);
1612 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead())
1613 RMEnt->removeOperand(i - 1);
1614 }
1615 }
1616 Edit.eliminateDeadDefs(SpillsToRm, None);
1617 }
1618 }
1619
1620 /// For VirtReg clone, the \p New register should have the same physreg or
1621 /// stackslot as the \p old register.
LRE_DidCloneVirtReg(Register New,Register Old)1622 void HoistSpillHelper::LRE_DidCloneVirtReg(Register New, Register Old) {
1623 if (VRM.hasPhys(Old))
1624 VRM.assignVirt2Phys(New, VRM.getPhys(Old));
1625 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT)
1626 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old));
1627 else
1628 llvm_unreachable("VReg should be assigned either physreg or stackslot");
1629 if (VRM.hasShape(Old))
1630 VRM.assignVirt2Shape(New, VRM.getShape(Old));
1631 }
1632