1 //===-------- InlineSpiller.cpp - Insert spills and restores inline -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The inline spiller modifies the machine function directly instead of 11 // inserting spills and restores in VirtRegMap. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "Spiller.h" 17 #include "LiveRangeEdit.h" 18 #include "VirtRegMap.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/TinyPtrVector.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 23 #include "llvm/CodeGen/LiveStackAnalysis.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineLoopInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/Target/TargetMachine.h" 30 #include "llvm/Target/TargetInstrInfo.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 34 using namespace llvm; 35 36 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 37 STATISTIC(NumSnippets, "Number of spilled snippets"); 38 STATISTIC(NumSpills, "Number of spills inserted"); 39 STATISTIC(NumSpillsRemoved, "Number of spills removed"); 40 STATISTIC(NumReloads, "Number of reloads inserted"); 41 STATISTIC(NumReloadsRemoved, "Number of reloads removed"); 42 STATISTIC(NumFolded, "Number of folded stack accesses"); 43 STATISTIC(NumFoldedLoads, "Number of folded loads"); 44 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 45 STATISTIC(NumOmitReloadSpill, "Number of omitted spills of reloads"); 46 STATISTIC(NumHoists, "Number of hoisted spills"); 47 48 namespace { 49 class InlineSpiller : public Spiller { 50 MachineFunctionPass &Pass; 51 MachineFunction &MF; 52 LiveIntervals &LIS; 53 LiveStacks &LSS; 54 AliasAnalysis *AA; 55 MachineDominatorTree &MDT; 56 MachineLoopInfo &Loops; 57 VirtRegMap &VRM; 58 MachineFrameInfo &MFI; 59 MachineRegisterInfo &MRI; 60 const TargetInstrInfo &TII; 61 const TargetRegisterInfo &TRI; 62 63 // Variables that are valid during spill(), but used by multiple methods. 64 LiveRangeEdit *Edit; 65 LiveInterval *StackInt; 66 int StackSlot; 67 unsigned Original; 68 69 // All registers to spill to StackSlot, including the main register. 70 SmallVector<unsigned, 8> RegsToSpill; 71 72 // All COPY instructions to/from snippets. 73 // They are ignored since both operands refer to the same stack slot. 74 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 75 76 // Values that failed to remat at some point. 77 SmallPtrSet<VNInfo*, 8> UsedValues; 78 79 public: 80 // Information about a value that was defined by a copy from a sibling 81 // register. 82 struct SibValueInfo { 83 // True when all reaching defs were reloads: No spill is necessary. 84 bool AllDefsAreReloads; 85 86 // True when value is defined by an original PHI not from splitting. 87 bool DefByOrigPHI; 88 89 // The preferred register to spill. 90 unsigned SpillReg; 91 92 // The value of SpillReg that should be spilled. 93 VNInfo *SpillVNI; 94 95 // The block where SpillVNI should be spilled. Currently, this must be the 96 // block containing SpillVNI->def. 97 MachineBasicBlock *SpillMBB; 98 99 // A defining instruction that is not a sibling copy or a reload, or NULL. 100 // This can be used as a template for rematerialization. 101 MachineInstr *DefMI; 102 103 // List of values that depend on this one. These values are actually the 104 // same, but live range splitting has placed them in different registers, 105 // or SSA update needed to insert PHI-defs to preserve SSA form. This is 106 // copies of the current value and phi-kills. Usually only phi-kills cause 107 // more than one dependent value. 108 TinyPtrVector<VNInfo*> Deps; 109 110 SibValueInfo(unsigned Reg, VNInfo *VNI) 111 : AllDefsAreReloads(true), DefByOrigPHI(false), 112 SpillReg(Reg), SpillVNI(VNI), SpillMBB(0), DefMI(0) {} 113 114 // Returns true when a def has been found. 115 bool hasDef() const { return DefByOrigPHI || DefMI; } 116 }; 117 118 private: 119 // Values in RegsToSpill defined by sibling copies. 120 typedef DenseMap<VNInfo*, SibValueInfo> SibValueMap; 121 SibValueMap SibValues; 122 123 // Dead defs generated during spilling. 124 SmallVector<MachineInstr*, 8> DeadDefs; 125 126 ~InlineSpiller() {} 127 128 public: 129 InlineSpiller(MachineFunctionPass &pass, 130 MachineFunction &mf, 131 VirtRegMap &vrm) 132 : Pass(pass), 133 MF(mf), 134 LIS(pass.getAnalysis<LiveIntervals>()), 135 LSS(pass.getAnalysis<LiveStacks>()), 136 AA(&pass.getAnalysis<AliasAnalysis>()), 137 MDT(pass.getAnalysis<MachineDominatorTree>()), 138 Loops(pass.getAnalysis<MachineLoopInfo>()), 139 VRM(vrm), 140 MFI(*mf.getFrameInfo()), 141 MRI(mf.getRegInfo()), 142 TII(*mf.getTarget().getInstrInfo()), 143 TRI(*mf.getTarget().getRegisterInfo()) {} 144 145 void spill(LiveRangeEdit &); 146 147 private: 148 bool isSnippet(const LiveInterval &SnipLI); 149 void collectRegsToSpill(); 150 151 bool isRegToSpill(unsigned Reg) { 152 return std::find(RegsToSpill.begin(), 153 RegsToSpill.end(), Reg) != RegsToSpill.end(); 154 } 155 156 bool isSibling(unsigned Reg); 157 MachineInstr *traceSiblingValue(unsigned, VNInfo*, VNInfo*); 158 void propagateSiblingValue(SibValueMap::iterator, VNInfo *VNI = 0); 159 void analyzeSiblingValues(); 160 161 bool hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI); 162 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 163 164 void markValueUsed(LiveInterval*, VNInfo*); 165 bool reMaterializeFor(LiveInterval&, MachineBasicBlock::iterator MI); 166 void reMaterializeAll(); 167 168 bool coalesceStackAccess(MachineInstr *MI, unsigned Reg); 169 bool foldMemoryOperand(MachineBasicBlock::iterator MI, 170 const SmallVectorImpl<unsigned> &Ops, 171 MachineInstr *LoadMI = 0); 172 void insertReload(LiveInterval &NewLI, SlotIndex, 173 MachineBasicBlock::iterator MI); 174 void insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI, 175 SlotIndex, MachineBasicBlock::iterator MI); 176 177 void spillAroundUses(unsigned Reg); 178 void spillAll(); 179 }; 180 } 181 182 namespace llvm { 183 Spiller *createInlineSpiller(MachineFunctionPass &pass, 184 MachineFunction &mf, 185 VirtRegMap &vrm) { 186 return new InlineSpiller(pass, mf, vrm); 187 } 188 } 189 190 //===----------------------------------------------------------------------===// 191 // Snippets 192 //===----------------------------------------------------------------------===// 193 194 // When spilling a virtual register, we also spill any snippets it is connected 195 // to. The snippets are small live ranges that only have a single real use, 196 // leftovers from live range splitting. Spilling them enables memory operand 197 // folding or tightens the live range around the single use. 198 // 199 // This minimizes register pressure and maximizes the store-to-load distance for 200 // spill slots which can be important in tight loops. 201 202 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 203 /// otherwise return 0. 204 static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) { 205 if (!MI->isFullCopy()) 206 return 0; 207 if (MI->getOperand(0).getReg() == Reg) 208 return MI->getOperand(1).getReg(); 209 if (MI->getOperand(1).getReg() == Reg) 210 return MI->getOperand(0).getReg(); 211 return 0; 212 } 213 214 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 215 /// It is assumed that SnipLI is a virtual register with the same original as 216 /// Edit->getReg(). 217 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 218 unsigned Reg = Edit->getReg(); 219 220 // A snippet is a tiny live range with only a single instruction using it 221 // besides copies to/from Reg or spills/fills. We accept: 222 // 223 // %snip = COPY %Reg / FILL fi# 224 // %snip = USE %snip 225 // %Reg = COPY %snip / SPILL %snip, fi# 226 // 227 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) 228 return false; 229 230 MachineInstr *UseMI = 0; 231 232 // Check that all uses satisfy our criteria. 233 for (MachineRegisterInfo::reg_nodbg_iterator 234 RI = MRI.reg_nodbg_begin(SnipLI.reg); 235 MachineInstr *MI = RI.skipInstruction();) { 236 237 // Allow copies to/from Reg. 238 if (isFullCopyOf(MI, Reg)) 239 continue; 240 241 // Allow stack slot loads. 242 int FI; 243 if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 244 continue; 245 246 // Allow stack slot stores. 247 if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 248 continue; 249 250 // Allow a single additional instruction. 251 if (UseMI && MI != UseMI) 252 return false; 253 UseMI = MI; 254 } 255 return true; 256 } 257 258 /// collectRegsToSpill - Collect live range snippets that only have a single 259 /// real use. 260 void InlineSpiller::collectRegsToSpill() { 261 unsigned Reg = Edit->getReg(); 262 263 // Main register always spills. 264 RegsToSpill.assign(1, Reg); 265 SnippetCopies.clear(); 266 267 // Snippets all have the same original, so there can't be any for an original 268 // register. 269 if (Original == Reg) 270 return; 271 272 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg); 273 MachineInstr *MI = RI.skipInstruction();) { 274 unsigned SnipReg = isFullCopyOf(MI, Reg); 275 if (!isSibling(SnipReg)) 276 continue; 277 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 278 if (!isSnippet(SnipLI)) 279 continue; 280 SnippetCopies.insert(MI); 281 if (isRegToSpill(SnipReg)) 282 continue; 283 RegsToSpill.push_back(SnipReg); 284 DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 285 ++NumSnippets; 286 } 287 } 288 289 290 //===----------------------------------------------------------------------===// 291 // Sibling Values 292 //===----------------------------------------------------------------------===// 293 294 // After live range splitting, some values to be spilled may be defined by 295 // copies from sibling registers. We trace the sibling copies back to the 296 // original value if it still exists. We need it for rematerialization. 297 // 298 // Even when the value can't be rematerialized, we still want to determine if 299 // the value has already been spilled, or we may want to hoist the spill from a 300 // loop. 301 302 bool InlineSpiller::isSibling(unsigned Reg) { 303 return TargetRegisterInfo::isVirtualRegister(Reg) && 304 VRM.getOriginal(Reg) == Original; 305 } 306 307 #ifndef NDEBUG 308 static raw_ostream &operator<<(raw_ostream &OS, 309 const InlineSpiller::SibValueInfo &SVI) { 310 OS << "spill " << PrintReg(SVI.SpillReg) << ':' 311 << SVI.SpillVNI->id << '@' << SVI.SpillVNI->def; 312 if (SVI.SpillMBB) 313 OS << " in BB#" << SVI.SpillMBB->getNumber(); 314 if (SVI.AllDefsAreReloads) 315 OS << " all-reloads"; 316 if (SVI.DefByOrigPHI) 317 OS << " orig-phi"; 318 OS << " deps["; 319 for (unsigned i = 0, e = SVI.Deps.size(); i != e; ++i) 320 OS << ' ' << SVI.Deps[i]->id << '@' << SVI.Deps[i]->def; 321 OS << " ]"; 322 if (SVI.DefMI) 323 OS << " def: " << *SVI.DefMI; 324 else 325 OS << '\n'; 326 return OS; 327 } 328 #endif 329 330 /// propagateSiblingValue - Propagate the value in SVI to dependents if it is 331 /// known. Otherwise remember the dependency for later. 332 /// 333 /// @param SVI SibValues entry to propagate. 334 /// @param VNI Dependent value, or NULL to propagate to all saved dependents. 335 void InlineSpiller::propagateSiblingValue(SibValueMap::iterator SVI, 336 VNInfo *VNI) { 337 // When VNI is non-NULL, add it to SVI's deps, and only propagate to that. 338 TinyPtrVector<VNInfo*> FirstDeps; 339 if (VNI) { 340 FirstDeps.push_back(VNI); 341 SVI->second.Deps.push_back(VNI); 342 } 343 344 // Has the value been completely determined yet? If not, defer propagation. 345 if (!SVI->second.hasDef()) 346 return; 347 348 // Work list of values to propagate. It would be nice to use a SetVector 349 // here, but then we would be forced to use a SmallSet. 350 SmallVector<SibValueMap::iterator, 8> WorkList(1, SVI); 351 SmallPtrSet<VNInfo*, 8> WorkSet; 352 353 do { 354 SVI = WorkList.pop_back_val(); 355 WorkSet.erase(SVI->first); 356 TinyPtrVector<VNInfo*> *Deps = VNI ? &FirstDeps : &SVI->second.Deps; 357 VNI = 0; 358 359 SibValueInfo &SV = SVI->second; 360 if (!SV.SpillMBB) 361 SV.SpillMBB = LIS.getMBBFromIndex(SV.SpillVNI->def); 362 363 DEBUG(dbgs() << " prop to " << Deps->size() << ": " 364 << SVI->first->id << '@' << SVI->first->def << ":\t" << SV); 365 366 assert(SV.hasDef() && "Propagating undefined value"); 367 368 // Should this value be propagated as a preferred spill candidate? We don't 369 // propagate values of registers that are about to spill. 370 bool PropSpill = !isRegToSpill(SV.SpillReg); 371 unsigned SpillDepth = ~0u; 372 373 for (TinyPtrVector<VNInfo*>::iterator DepI = Deps->begin(), 374 DepE = Deps->end(); DepI != DepE; ++DepI) { 375 SibValueMap::iterator DepSVI = SibValues.find(*DepI); 376 assert(DepSVI != SibValues.end() && "Dependent value not in SibValues"); 377 SibValueInfo &DepSV = DepSVI->second; 378 if (!DepSV.SpillMBB) 379 DepSV.SpillMBB = LIS.getMBBFromIndex(DepSV.SpillVNI->def); 380 381 bool Changed = false; 382 383 // Propagate defining instruction. 384 if (!DepSV.hasDef()) { 385 Changed = true; 386 DepSV.DefMI = SV.DefMI; 387 DepSV.DefByOrigPHI = SV.DefByOrigPHI; 388 } 389 390 // Propagate AllDefsAreReloads. For PHI values, this computes an AND of 391 // all predecessors. 392 if (!SV.AllDefsAreReloads && DepSV.AllDefsAreReloads) { 393 Changed = true; 394 DepSV.AllDefsAreReloads = false; 395 } 396 397 // Propagate best spill value. 398 if (PropSpill && SV.SpillVNI != DepSV.SpillVNI) { 399 if (SV.SpillMBB == DepSV.SpillMBB) { 400 // DepSV is in the same block. Hoist when dominated. 401 if (SV.SpillVNI->def < DepSV.SpillVNI->def) { 402 // This is an alternative def earlier in the same MBB. 403 // Hoist the spill as far as possible in SpillMBB. This can ease 404 // register pressure: 405 // 406 // x = def 407 // y = use x 408 // s = copy x 409 // 410 // Hoisting the spill of s to immediately after the def removes the 411 // interference between x and y: 412 // 413 // x = def 414 // spill x 415 // y = use x<kill> 416 // 417 Changed = true; 418 DepSV.SpillReg = SV.SpillReg; 419 DepSV.SpillVNI = SV.SpillVNI; 420 DepSV.SpillMBB = SV.SpillMBB; 421 } 422 } else { 423 // DepSV is in a different block. 424 if (SpillDepth == ~0u) 425 SpillDepth = Loops.getLoopDepth(SV.SpillMBB); 426 427 // Also hoist spills to blocks with smaller loop depth, but make sure 428 // that the new value dominates. Non-phi dependents are always 429 // dominated, phis need checking. 430 if ((Loops.getLoopDepth(DepSV.SpillMBB) > SpillDepth) && 431 (!DepSVI->first->isPHIDef() || 432 MDT.dominates(SV.SpillMBB, DepSV.SpillMBB))) { 433 Changed = true; 434 DepSV.SpillReg = SV.SpillReg; 435 DepSV.SpillVNI = SV.SpillVNI; 436 DepSV.SpillMBB = SV.SpillMBB; 437 } 438 } 439 } 440 441 if (!Changed) 442 continue; 443 444 // Something changed in DepSVI. Propagate to dependents. 445 if (WorkSet.insert(DepSVI->first)) 446 WorkList.push_back(DepSVI); 447 448 DEBUG(dbgs() << " update " << DepSVI->first->id << '@' 449 << DepSVI->first->def << " to:\t" << DepSV); 450 } 451 } while (!WorkList.empty()); 452 } 453 454 /// traceSiblingValue - Trace a value that is about to be spilled back to the 455 /// real defining instructions by looking through sibling copies. Always stay 456 /// within the range of OrigVNI so the registers are known to carry the same 457 /// value. 458 /// 459 /// Determine if the value is defined by all reloads, so spilling isn't 460 /// necessary - the value is already in the stack slot. 461 /// 462 /// Return a defining instruction that may be a candidate for rematerialization. 463 /// 464 MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI, 465 VNInfo *OrigVNI) { 466 // Check if a cached value already exists. 467 SibValueMap::iterator SVI; 468 bool Inserted; 469 tie(SVI, Inserted) = 470 SibValues.insert(std::make_pair(UseVNI, SibValueInfo(UseReg, UseVNI))); 471 if (!Inserted) { 472 DEBUG(dbgs() << "Cached value " << PrintReg(UseReg) << ':' 473 << UseVNI->id << '@' << UseVNI->def << ' ' << SVI->second); 474 return SVI->second.DefMI; 475 } 476 477 DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':' 478 << UseVNI->id << '@' << UseVNI->def << '\n'); 479 480 // List of (Reg, VNI) that have been inserted into SibValues, but need to be 481 // processed. 482 SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList; 483 WorkList.push_back(std::make_pair(UseReg, UseVNI)); 484 485 do { 486 unsigned Reg; 487 VNInfo *VNI; 488 tie(Reg, VNI) = WorkList.pop_back_val(); 489 DEBUG(dbgs() << " " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def 490 << ":\t"); 491 492 // First check if this value has already been computed. 493 SVI = SibValues.find(VNI); 494 assert(SVI != SibValues.end() && "Missing SibValues entry"); 495 496 // Trace through PHI-defs created by live range splitting. 497 if (VNI->isPHIDef()) { 498 // Stop at original PHIs. We don't know the value at the predecessors. 499 if (VNI->def == OrigVNI->def) { 500 DEBUG(dbgs() << "orig phi value\n"); 501 SVI->second.DefByOrigPHI = true; 502 SVI->second.AllDefsAreReloads = false; 503 propagateSiblingValue(SVI); 504 continue; 505 } 506 507 // This is a PHI inserted by live range splitting. We could trace the 508 // live-out value from predecessor blocks, but that search can be very 509 // expensive if there are many predecessors and many more PHIs as 510 // generated by tail-dup when it sees an indirectbr. Instead, look at 511 // all the non-PHI defs that have the same value as OrigVNI. They must 512 // jointly dominate VNI->def. This is not optimal since VNI may actually 513 // be jointly dominated by a smaller subset of defs, so there is a change 514 // we will miss a AllDefsAreReloads optimization. 515 516 // Separate all values dominated by OrigVNI into PHIs and non-PHIs. 517 SmallVector<VNInfo*, 8> PHIs, NonPHIs; 518 LiveInterval &LI = LIS.getInterval(Reg); 519 LiveInterval &OrigLI = LIS.getInterval(Original); 520 521 for (LiveInterval::vni_iterator VI = LI.vni_begin(), VE = LI.vni_end(); 522 VI != VE; ++VI) { 523 VNInfo *VNI2 = *VI; 524 if (VNI2->isUnused()) 525 continue; 526 if (!OrigLI.containsOneValue() && 527 OrigLI.getVNInfoAt(VNI2->def) != OrigVNI) 528 continue; 529 if (VNI2->isPHIDef() && VNI2->def != OrigVNI->def) 530 PHIs.push_back(VNI2); 531 else 532 NonPHIs.push_back(VNI2); 533 } 534 DEBUG(dbgs() << "split phi value, checking " << PHIs.size() 535 << " phi-defs, and " << NonPHIs.size() 536 << " non-phi/orig defs\n"); 537 538 // Create entries for all the PHIs. Don't add them to the worklist, we 539 // are processing all of them in one go here. 540 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 541 SibValues.insert(std::make_pair(PHIs[i], SibValueInfo(Reg, PHIs[i]))); 542 543 // Add every PHI as a dependent of all the non-PHIs. 544 for (unsigned i = 0, e = NonPHIs.size(); i != e; ++i) { 545 VNInfo *NonPHI = NonPHIs[i]; 546 // Known value? Try an insertion. 547 tie(SVI, Inserted) = 548 SibValues.insert(std::make_pair(NonPHI, SibValueInfo(Reg, NonPHI))); 549 // Add all the PHIs as dependents of NonPHI. 550 for (unsigned pi = 0, pe = PHIs.size(); pi != pe; ++pi) 551 SVI->second.Deps.push_back(PHIs[pi]); 552 // This is the first time we see NonPHI, add it to the worklist. 553 if (Inserted) 554 WorkList.push_back(std::make_pair(Reg, NonPHI)); 555 else 556 // Propagate to all inserted PHIs, not just VNI. 557 propagateSiblingValue(SVI); 558 } 559 560 // Next work list item. 561 continue; 562 } 563 564 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 565 assert(MI && "Missing def"); 566 567 // Trace through sibling copies. 568 if (unsigned SrcReg = isFullCopyOf(MI, Reg)) { 569 if (isSibling(SrcReg)) { 570 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 571 VNInfo *SrcVNI = SrcLI.getVNInfoAt(VNI->def.getUseIndex()); 572 assert(SrcVNI && "Copy from non-existing value"); 573 DEBUG(dbgs() << "copy of " << PrintReg(SrcReg) << ':' 574 << SrcVNI->id << '@' << SrcVNI->def << '\n'); 575 // Known sibling source value? Try an insertion. 576 tie(SVI, Inserted) = SibValues.insert(std::make_pair(SrcVNI, 577 SibValueInfo(SrcReg, SrcVNI))); 578 // This is the first time we see Src, add it to the worklist. 579 if (Inserted) 580 WorkList.push_back(std::make_pair(SrcReg, SrcVNI)); 581 propagateSiblingValue(SVI, VNI); 582 // Next work list item. 583 continue; 584 } 585 } 586 587 // Track reachable reloads. 588 SVI->second.DefMI = MI; 589 SVI->second.SpillMBB = MI->getParent(); 590 int FI; 591 if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) { 592 DEBUG(dbgs() << "reload\n"); 593 propagateSiblingValue(SVI); 594 // Next work list item. 595 continue; 596 } 597 598 // Potential remat candidate. 599 DEBUG(dbgs() << "def " << *MI); 600 SVI->second.AllDefsAreReloads = false; 601 propagateSiblingValue(SVI); 602 } while (!WorkList.empty()); 603 604 // Look up the value we were looking for. We already did this lokup at the 605 // top of the function, but SibValues may have been invalidated. 606 SVI = SibValues.find(UseVNI); 607 assert(SVI != SibValues.end() && "Didn't compute requested info"); 608 DEBUG(dbgs() << " traced to:\t" << SVI->second); 609 return SVI->second.DefMI; 610 } 611 612 /// analyzeSiblingValues - Trace values defined by sibling copies back to 613 /// something that isn't a sibling copy. 614 /// 615 /// Keep track of values that may be rematerializable. 616 void InlineSpiller::analyzeSiblingValues() { 617 SibValues.clear(); 618 619 // No siblings at all? 620 if (Edit->getReg() == Original) 621 return; 622 623 LiveInterval &OrigLI = LIS.getInterval(Original); 624 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 625 unsigned Reg = RegsToSpill[i]; 626 LiveInterval &LI = LIS.getInterval(Reg); 627 for (LiveInterval::const_vni_iterator VI = LI.vni_begin(), 628 VE = LI.vni_end(); VI != VE; ++VI) { 629 VNInfo *VNI = *VI; 630 if (VNI->isUnused()) 631 continue; 632 MachineInstr *DefMI = 0; 633 // Check possible sibling copies. 634 if (VNI->isPHIDef() || VNI->getCopy()) { 635 VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def); 636 assert(OrigVNI && "Def outside original live range"); 637 if (OrigVNI->def != VNI->def) 638 DefMI = traceSiblingValue(Reg, VNI, OrigVNI); 639 } 640 if (!DefMI && !VNI->isPHIDef()) 641 DefMI = LIS.getInstructionFromIndex(VNI->def); 642 if (DefMI && Edit->checkRematerializable(VNI, DefMI, TII, AA)) { 643 DEBUG(dbgs() << "Value " << PrintReg(Reg) << ':' << VNI->id << '@' 644 << VNI->def << " may remat from " << *DefMI); 645 } 646 } 647 } 648 } 649 650 /// hoistSpill - Given a sibling copy that defines a value to be spilled, insert 651 /// a spill at a better location. 652 bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI) { 653 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 654 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getDefIndex()); 655 assert(VNI && VNI->def == Idx.getDefIndex() && "Not defined by copy"); 656 SibValueMap::iterator I = SibValues.find(VNI); 657 if (I == SibValues.end()) 658 return false; 659 660 const SibValueInfo &SVI = I->second; 661 662 // Let the normal folding code deal with the boring case. 663 if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI) 664 return false; 665 666 // SpillReg may have been deleted by remat and DCE. 667 if (!LIS.hasInterval(SVI.SpillReg)) { 668 DEBUG(dbgs() << "Stale interval: " << PrintReg(SVI.SpillReg) << '\n'); 669 SibValues.erase(I); 670 return false; 671 } 672 673 LiveInterval &SibLI = LIS.getInterval(SVI.SpillReg); 674 if (!SibLI.containsValue(SVI.SpillVNI)) { 675 DEBUG(dbgs() << "Stale value: " << PrintReg(SVI.SpillReg) << '\n'); 676 SibValues.erase(I); 677 return false; 678 } 679 680 // Conservatively extend the stack slot range to the range of the original 681 // value. We may be able to do better with stack slot coloring by being more 682 // careful here. 683 assert(StackInt && "No stack slot assigned yet."); 684 LiveInterval &OrigLI = LIS.getInterval(Original); 685 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 686 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 687 DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 688 << *StackInt << '\n'); 689 690 // Already spilled everywhere. 691 if (SVI.AllDefsAreReloads) { 692 DEBUG(dbgs() << "\tno spill needed: " << SVI); 693 ++NumOmitReloadSpill; 694 return true; 695 } 696 // We are going to spill SVI.SpillVNI immediately after its def, so clear out 697 // any later spills of the same value. 698 eliminateRedundantSpills(SibLI, SVI.SpillVNI); 699 700 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def); 701 MachineBasicBlock::iterator MII; 702 if (SVI.SpillVNI->isPHIDef()) 703 MII = MBB->SkipPHIsAndLabels(MBB->begin()); 704 else { 705 MachineInstr *DefMI = LIS.getInstructionFromIndex(SVI.SpillVNI->def); 706 assert(DefMI && "Defining instruction disappeared"); 707 MII = DefMI; 708 ++MII; 709 } 710 // Insert spill without kill flag immediately after def. 711 TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot, 712 MRI.getRegClass(SVI.SpillReg), &TRI); 713 --MII; // Point to store instruction. 714 LIS.InsertMachineInstrInMaps(MII); 715 VRM.addSpillSlotUse(StackSlot, MII); 716 DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII); 717 718 ++NumSpills; 719 ++NumHoists; 720 return true; 721 } 722 723 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 724 /// redundant spills of this value in SLI.reg and sibling copies. 725 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 726 assert(VNI && "Missing value"); 727 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 728 WorkList.push_back(std::make_pair(&SLI, VNI)); 729 assert(StackInt && "No stack slot assigned yet."); 730 731 do { 732 LiveInterval *LI; 733 tie(LI, VNI) = WorkList.pop_back_val(); 734 unsigned Reg = LI->reg; 735 DEBUG(dbgs() << "Checking redundant spills for " 736 << VNI->id << '@' << VNI->def << " in " << *LI << '\n'); 737 738 // Regs to spill are taken care of. 739 if (isRegToSpill(Reg)) 740 continue; 741 742 // Add all of VNI's live range to StackInt. 743 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 744 DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 745 746 // Find all spills and copies of VNI. 747 for (MachineRegisterInfo::use_nodbg_iterator UI = MRI.use_nodbg_begin(Reg); 748 MachineInstr *MI = UI.skipInstruction();) { 749 if (!MI->isCopy() && !MI->getDesc().mayStore()) 750 continue; 751 SlotIndex Idx = LIS.getInstructionIndex(MI); 752 if (LI->getVNInfoAt(Idx) != VNI) 753 continue; 754 755 // Follow sibling copies down the dominator tree. 756 if (unsigned DstReg = isFullCopyOf(MI, Reg)) { 757 if (isSibling(DstReg)) { 758 LiveInterval &DstLI = LIS.getInterval(DstReg); 759 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getDefIndex()); 760 assert(DstVNI && "Missing defined value"); 761 assert(DstVNI->def == Idx.getDefIndex() && "Wrong copy def slot"); 762 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 763 } 764 continue; 765 } 766 767 // Erase spills. 768 int FI; 769 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 770 DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI); 771 // eliminateDeadDefs won't normally remove stores, so switch opcode. 772 MI->setDesc(TII.get(TargetOpcode::KILL)); 773 DeadDefs.push_back(MI); 774 ++NumSpillsRemoved; 775 --NumSpills; 776 } 777 } 778 } while (!WorkList.empty()); 779 } 780 781 782 //===----------------------------------------------------------------------===// 783 // Rematerialization 784 //===----------------------------------------------------------------------===// 785 786 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 787 /// instruction cannot be eliminated. See through snippet copies 788 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 789 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 790 WorkList.push_back(std::make_pair(LI, VNI)); 791 do { 792 tie(LI, VNI) = WorkList.pop_back_val(); 793 if (!UsedValues.insert(VNI)) 794 continue; 795 796 if (VNI->isPHIDef()) { 797 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 798 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 799 PE = MBB->pred_end(); PI != PE; ++PI) { 800 VNInfo *PVNI = LI->getVNInfoAt(LIS.getMBBEndIdx(*PI).getPrevSlot()); 801 if (PVNI) 802 WorkList.push_back(std::make_pair(LI, PVNI)); 803 } 804 continue; 805 } 806 807 // Follow snippet copies. 808 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 809 if (!SnippetCopies.count(MI)) 810 continue; 811 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 812 assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy"); 813 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getUseIndex()); 814 assert(SnipVNI && "Snippet undefined before copy"); 815 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 816 } while (!WorkList.empty()); 817 } 818 819 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 820 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, 821 MachineBasicBlock::iterator MI) { 822 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getUseIndex(); 823 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 824 825 if (!ParentVNI) { 826 DEBUG(dbgs() << "\tadding <undef> flags: "); 827 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 828 MachineOperand &MO = MI->getOperand(i); 829 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) 830 MO.setIsUndef(); 831 } 832 DEBUG(dbgs() << UseIdx << '\t' << *MI); 833 return true; 834 } 835 836 if (SnippetCopies.count(MI)) 837 return false; 838 839 // Use an OrigVNI from traceSiblingValue when ParentVNI is a sibling copy. 840 LiveRangeEdit::Remat RM(ParentVNI); 841 SibValueMap::const_iterator SibI = SibValues.find(ParentVNI); 842 if (SibI != SibValues.end()) 843 RM.OrigMI = SibI->second.DefMI; 844 if (!Edit->canRematerializeAt(RM, UseIdx, false, LIS)) { 845 markValueUsed(&VirtReg, ParentVNI); 846 DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI); 847 return false; 848 } 849 850 // If the instruction also writes VirtReg.reg, it had better not require the 851 // same register for uses and defs. 852 bool Reads, Writes; 853 SmallVector<unsigned, 8> Ops; 854 tie(Reads, Writes) = MI->readsWritesVirtualRegister(VirtReg.reg, &Ops); 855 if (Writes) { 856 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 857 MachineOperand &MO = MI->getOperand(Ops[i]); 858 if (MO.isUse() ? MI->isRegTiedToDefOperand(Ops[i]) : MO.getSubReg()) { 859 markValueUsed(&VirtReg, ParentVNI); 860 DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI); 861 return false; 862 } 863 } 864 } 865 866 // Before rematerializing into a register for a single instruction, try to 867 // fold a load into the instruction. That avoids allocating a new register. 868 if (RM.OrigMI->getDesc().canFoldAsLoad() && 869 foldMemoryOperand(MI, Ops, RM.OrigMI)) { 870 Edit->markRematerialized(RM.ParentVNI); 871 ++NumFoldedLoads; 872 return true; 873 } 874 875 // Alocate a new register for the remat. 876 LiveInterval &NewLI = Edit->createFrom(Original, LIS, VRM); 877 NewLI.markNotSpillable(); 878 879 // Finally we can rematerialize OrigMI before MI. 880 SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewLI.reg, RM, 881 LIS, TII, TRI); 882 DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 883 << *LIS.getInstructionFromIndex(DefIdx)); 884 885 // Replace operands 886 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 887 MachineOperand &MO = MI->getOperand(Ops[i]); 888 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) { 889 MO.setReg(NewLI.reg); 890 MO.setIsKill(); 891 } 892 } 893 DEBUG(dbgs() << "\t " << UseIdx << '\t' << *MI); 894 895 VNInfo *DefVNI = NewLI.getNextValue(DefIdx, 0, LIS.getVNInfoAllocator()); 896 NewLI.addRange(LiveRange(DefIdx, UseIdx.getDefIndex(), DefVNI)); 897 DEBUG(dbgs() << "\tinterval: " << NewLI << '\n'); 898 ++NumRemats; 899 return true; 900 } 901 902 /// reMaterializeAll - Try to rematerialize as many uses as possible, 903 /// and trim the live ranges after. 904 void InlineSpiller::reMaterializeAll() { 905 // analyzeSiblingValues has already tested all relevant defining instructions. 906 if (!Edit->anyRematerializable(LIS, TII, AA)) 907 return; 908 909 UsedValues.clear(); 910 911 // Try to remat before all uses of snippets. 912 bool anyRemat = false; 913 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 914 unsigned Reg = RegsToSpill[i]; 915 LiveInterval &LI = LIS.getInterval(Reg); 916 for (MachineRegisterInfo::use_nodbg_iterator 917 RI = MRI.use_nodbg_begin(Reg); 918 MachineInstr *MI = RI.skipInstruction();) 919 anyRemat |= reMaterializeFor(LI, MI); 920 } 921 if (!anyRemat) 922 return; 923 924 // Remove any values that were completely rematted. 925 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 926 unsigned Reg = RegsToSpill[i]; 927 LiveInterval &LI = LIS.getInterval(Reg); 928 for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 929 I != E; ++I) { 930 VNInfo *VNI = *I; 931 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 932 continue; 933 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 934 MI->addRegisterDead(Reg, &TRI); 935 if (!MI->allDefsAreDead()) 936 continue; 937 DEBUG(dbgs() << "All defs dead: " << *MI); 938 DeadDefs.push_back(MI); 939 } 940 } 941 942 // Eliminate dead code after remat. Note that some snippet copies may be 943 // deleted here. 944 if (DeadDefs.empty()) 945 return; 946 DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 947 Edit->eliminateDeadDefs(DeadDefs, LIS, VRM, TII); 948 949 // Get rid of deleted and empty intervals. 950 for (unsigned i = RegsToSpill.size(); i != 0; --i) { 951 unsigned Reg = RegsToSpill[i-1]; 952 if (!LIS.hasInterval(Reg)) { 953 RegsToSpill.erase(RegsToSpill.begin() + (i - 1)); 954 continue; 955 } 956 LiveInterval &LI = LIS.getInterval(Reg); 957 if (!LI.empty()) 958 continue; 959 Edit->eraseVirtReg(Reg, LIS); 960 RegsToSpill.erase(RegsToSpill.begin() + (i - 1)); 961 } 962 DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n"); 963 } 964 965 966 //===----------------------------------------------------------------------===// 967 // Spilling 968 //===----------------------------------------------------------------------===// 969 970 /// If MI is a load or store of StackSlot, it can be removed. 971 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) { 972 int FI = 0; 973 unsigned InstrReg = TII.isLoadFromStackSlot(MI, FI); 974 bool IsLoad = InstrReg; 975 if (!IsLoad) 976 InstrReg = TII.isStoreToStackSlot(MI, FI); 977 978 // We have a stack access. Is it the right register and slot? 979 if (InstrReg != Reg || FI != StackSlot) 980 return false; 981 982 DEBUG(dbgs() << "Coalescing stack access: " << *MI); 983 LIS.RemoveMachineInstrFromMaps(MI); 984 MI->eraseFromParent(); 985 986 if (IsLoad) { 987 ++NumReloadsRemoved; 988 --NumReloads; 989 } else { 990 ++NumSpillsRemoved; 991 --NumSpills; 992 } 993 994 return true; 995 } 996 997 /// foldMemoryOperand - Try folding stack slot references in Ops into MI. 998 /// @param MI Instruction using or defining the current register. 999 /// @param Ops Operand indices from readsWritesVirtualRegister(). 1000 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 1001 /// @return True on success, and MI will be erased. 1002 bool InlineSpiller::foldMemoryOperand(MachineBasicBlock::iterator MI, 1003 const SmallVectorImpl<unsigned> &Ops, 1004 MachineInstr *LoadMI) { 1005 bool WasCopy = MI->isCopy(); 1006 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 1007 // operands. 1008 SmallVector<unsigned, 8> FoldOps; 1009 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1010 unsigned Idx = Ops[i]; 1011 MachineOperand &MO = MI->getOperand(Idx); 1012 if (MO.isImplicit()) 1013 continue; 1014 // FIXME: Teach targets to deal with subregs. 1015 if (MO.getSubReg()) 1016 return false; 1017 // We cannot fold a load instruction into a def. 1018 if (LoadMI && MO.isDef()) 1019 return false; 1020 // Tied use operands should not be passed to foldMemoryOperand. 1021 if (!MI->isRegTiedToDefOperand(Idx)) 1022 FoldOps.push_back(Idx); 1023 } 1024 1025 MachineInstr *FoldMI = 1026 LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI) 1027 : TII.foldMemoryOperand(MI, FoldOps, StackSlot); 1028 if (!FoldMI) 1029 return false; 1030 LIS.ReplaceMachineInstrInMaps(MI, FoldMI); 1031 if (!LoadMI) 1032 VRM.addSpillSlotUse(StackSlot, FoldMI); 1033 MI->eraseFromParent(); 1034 DEBUG(dbgs() << "\tfolded: " << *FoldMI); 1035 if (!WasCopy) 1036 ++NumFolded; 1037 else if (Ops.front() == 0) 1038 ++NumSpills; 1039 else 1040 ++NumReloads; 1041 return true; 1042 } 1043 1044 /// insertReload - Insert a reload of NewLI.reg before MI. 1045 void InlineSpiller::insertReload(LiveInterval &NewLI, 1046 SlotIndex Idx, 1047 MachineBasicBlock::iterator MI) { 1048 MachineBasicBlock &MBB = *MI->getParent(); 1049 TII.loadRegFromStackSlot(MBB, MI, NewLI.reg, StackSlot, 1050 MRI.getRegClass(NewLI.reg), &TRI); 1051 --MI; // Point to load instruction. 1052 SlotIndex LoadIdx = LIS.InsertMachineInstrInMaps(MI).getDefIndex(); 1053 VRM.addSpillSlotUse(StackSlot, MI); 1054 DEBUG(dbgs() << "\treload: " << LoadIdx << '\t' << *MI); 1055 VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, 0, 1056 LIS.getVNInfoAllocator()); 1057 NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI)); 1058 ++NumReloads; 1059 } 1060 1061 /// insertSpill - Insert a spill of NewLI.reg after MI. 1062 void InlineSpiller::insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI, 1063 SlotIndex Idx, MachineBasicBlock::iterator MI) { 1064 MachineBasicBlock &MBB = *MI->getParent(); 1065 TII.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, StackSlot, 1066 MRI.getRegClass(NewLI.reg), &TRI); 1067 --MI; // Point to store instruction. 1068 SlotIndex StoreIdx = LIS.InsertMachineInstrInMaps(MI).getDefIndex(); 1069 VRM.addSpillSlotUse(StackSlot, MI); 1070 DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI); 1071 VNInfo *StoreVNI = NewLI.getNextValue(Idx, 0, LIS.getVNInfoAllocator()); 1072 NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI)); 1073 ++NumSpills; 1074 } 1075 1076 /// spillAroundUses - insert spill code around each use of Reg. 1077 void InlineSpiller::spillAroundUses(unsigned Reg) { 1078 DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n'); 1079 LiveInterval &OldLI = LIS.getInterval(Reg); 1080 1081 // Iterate over instructions using Reg. 1082 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg); 1083 MachineInstr *MI = RI.skipInstruction();) { 1084 1085 // Debug values are not allowed to affect codegen. 1086 if (MI->isDebugValue()) { 1087 // Modify DBG_VALUE now that the value is in a spill slot. 1088 uint64_t Offset = MI->getOperand(1).getImm(); 1089 const MDNode *MDPtr = MI->getOperand(2).getMetadata(); 1090 DebugLoc DL = MI->getDebugLoc(); 1091 if (MachineInstr *NewDV = TII.emitFrameIndexDebugValue(MF, StackSlot, 1092 Offset, MDPtr, DL)) { 1093 DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI); 1094 MachineBasicBlock *MBB = MI->getParent(); 1095 MBB->insert(MBB->erase(MI), NewDV); 1096 } else { 1097 DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI); 1098 MI->eraseFromParent(); 1099 } 1100 continue; 1101 } 1102 1103 // Ignore copies to/from snippets. We'll delete them. 1104 if (SnippetCopies.count(MI)) 1105 continue; 1106 1107 // Stack slot accesses may coalesce away. 1108 if (coalesceStackAccess(MI, Reg)) 1109 continue; 1110 1111 // Analyze instruction. 1112 bool Reads, Writes; 1113 SmallVector<unsigned, 8> Ops; 1114 tie(Reads, Writes) = MI->readsWritesVirtualRegister(Reg, &Ops); 1115 1116 // Find the slot index where this instruction reads and writes OldLI. 1117 // This is usually the def slot, except for tied early clobbers. 1118 SlotIndex Idx = LIS.getInstructionIndex(MI).getDefIndex(); 1119 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getUseIndex())) 1120 if (SlotIndex::isSameInstr(Idx, VNI->def)) 1121 Idx = VNI->def; 1122 1123 // Check for a sibling copy. 1124 unsigned SibReg = isFullCopyOf(MI, Reg); 1125 if (SibReg && isSibling(SibReg)) { 1126 // This may actually be a copy between snippets. 1127 if (isRegToSpill(SibReg)) { 1128 DEBUG(dbgs() << "Found new snippet copy: " << *MI); 1129 SnippetCopies.insert(MI); 1130 continue; 1131 } 1132 if (Writes) { 1133 // Hoist the spill of a sib-reg copy. 1134 if (hoistSpill(OldLI, MI)) { 1135 // This COPY is now dead, the value is already in the stack slot. 1136 MI->getOperand(0).setIsDead(); 1137 DeadDefs.push_back(MI); 1138 continue; 1139 } 1140 } else { 1141 // This is a reload for a sib-reg copy. Drop spills downstream. 1142 LiveInterval &SibLI = LIS.getInterval(SibReg); 1143 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 1144 // The COPY will fold to a reload below. 1145 } 1146 } 1147 1148 // Attempt to fold memory ops. 1149 if (foldMemoryOperand(MI, Ops)) 1150 continue; 1151 1152 // Allocate interval around instruction. 1153 // FIXME: Infer regclass from instruction alone. 1154 LiveInterval &NewLI = Edit->createFrom(Reg, LIS, VRM); 1155 NewLI.markNotSpillable(); 1156 1157 if (Reads) 1158 insertReload(NewLI, Idx, MI); 1159 1160 // Rewrite instruction operands. 1161 bool hasLiveDef = false; 1162 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1163 MachineOperand &MO = MI->getOperand(Ops[i]); 1164 MO.setReg(NewLI.reg); 1165 if (MO.isUse()) { 1166 if (!MI->isRegTiedToDefOperand(Ops[i])) 1167 MO.setIsKill(); 1168 } else { 1169 if (!MO.isDead()) 1170 hasLiveDef = true; 1171 } 1172 } 1173 DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI); 1174 1175 // FIXME: Use a second vreg if instruction has no tied ops. 1176 if (Writes && hasLiveDef) 1177 insertSpill(NewLI, OldLI, Idx, MI); 1178 1179 DEBUG(dbgs() << "\tinterval: " << NewLI << '\n'); 1180 } 1181 } 1182 1183 /// spillAll - Spill all registers remaining after rematerialization. 1184 void InlineSpiller::spillAll() { 1185 // Update LiveStacks now that we are committed to spilling. 1186 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 1187 StackSlot = VRM.assignVirt2StackSlot(Original); 1188 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 1189 StackInt->getNextValue(SlotIndex(), 0, LSS.getVNInfoAllocator()); 1190 } else 1191 StackInt = &LSS.getInterval(StackSlot); 1192 1193 if (Original != Edit->getReg()) 1194 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 1195 1196 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 1197 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) 1198 StackInt->MergeRangesInAsValue(LIS.getInterval(RegsToSpill[i]), 1199 StackInt->getValNumInfo(0)); 1200 DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 1201 1202 // Spill around uses of all RegsToSpill. 1203 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) 1204 spillAroundUses(RegsToSpill[i]); 1205 1206 // Hoisted spills may cause dead code. 1207 if (!DeadDefs.empty()) { 1208 DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 1209 Edit->eliminateDeadDefs(DeadDefs, LIS, VRM, TII); 1210 } 1211 1212 // Finally delete the SnippetCopies. 1213 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 1214 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(RegsToSpill[i]); 1215 MachineInstr *MI = RI.skipInstruction();) { 1216 assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy"); 1217 // FIXME: Do this with a LiveRangeEdit callback. 1218 VRM.RemoveMachineInstrFromMaps(MI); 1219 LIS.RemoveMachineInstrFromMaps(MI); 1220 MI->eraseFromParent(); 1221 } 1222 } 1223 1224 // Delete all spilled registers. 1225 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) 1226 Edit->eraseVirtReg(RegsToSpill[i], LIS); 1227 } 1228 1229 void InlineSpiller::spill(LiveRangeEdit &edit) { 1230 ++NumSpilledRanges; 1231 Edit = &edit; 1232 assert(!TargetRegisterInfo::isStackSlot(edit.getReg()) 1233 && "Trying to spill a stack slot."); 1234 // Share a stack slot among all descendants of Original. 1235 Original = VRM.getOriginal(edit.getReg()); 1236 StackSlot = VRM.getStackSlot(Original); 1237 StackInt = 0; 1238 1239 DEBUG(dbgs() << "Inline spilling " 1240 << MRI.getRegClass(edit.getReg())->getName() 1241 << ':' << edit.getParent() << "\nFrom original " 1242 << LIS.getInterval(Original) << '\n'); 1243 assert(edit.getParent().isSpillable() && 1244 "Attempting to spill already spilled value."); 1245 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1246 1247 collectRegsToSpill(); 1248 analyzeSiblingValues(); 1249 reMaterializeAll(); 1250 1251 // Remat may handle everything. 1252 if (!RegsToSpill.empty()) 1253 spillAll(); 1254 1255 Edit->calculateRegClassAndHint(MF, LIS, Loops); 1256 } 1257