1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The inline spiller modifies the machine function directly instead of 10 // inserting spills and restores in VirtRegMap. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SplitKit.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/LiveInterval.h" 26 #include "llvm/CodeGen/LiveIntervalCalc.h" 27 #include "llvm/CodeGen/LiveIntervals.h" 28 #include "llvm/CodeGen/LiveRangeEdit.h" 29 #include "llvm/CodeGen/LiveStacks.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineInstrBundle.h" 38 #include "llvm/CodeGen/MachineLoopInfo.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/SlotIndexes.h" 42 #include "llvm/CodeGen/Spiller.h" 43 #include "llvm/CodeGen/StackMaps.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetOpcodes.h" 46 #include "llvm/CodeGen/TargetRegisterInfo.h" 47 #include "llvm/CodeGen/TargetSubtargetInfo.h" 48 #include "llvm/CodeGen/VirtRegMap.h" 49 #include "llvm/Config/llvm-config.h" 50 #include "llvm/Support/BlockFrequency.h" 51 #include "llvm/Support/BranchProbability.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <cassert> 58 #include <iterator> 59 #include <tuple> 60 #include <utility> 61 #include <vector> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "regalloc" 66 67 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 68 STATISTIC(NumSnippets, "Number of spilled snippets"); 69 STATISTIC(NumSpills, "Number of spills inserted"); 70 STATISTIC(NumSpillsRemoved, "Number of spills removed"); 71 STATISTIC(NumReloads, "Number of reloads inserted"); 72 STATISTIC(NumReloadsRemoved, "Number of reloads removed"); 73 STATISTIC(NumFolded, "Number of folded stack accesses"); 74 STATISTIC(NumFoldedLoads, "Number of folded loads"); 75 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 76 77 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden, 78 cl::desc("Disable inline spill hoisting")); 79 static cl::opt<bool> 80 RestrictStatepointRemat("restrict-statepoint-remat", 81 cl::init(false), cl::Hidden, 82 cl::desc("Restrict remat for statepoint operands")); 83 84 namespace { 85 86 class HoistSpillHelper : private LiveRangeEdit::Delegate { 87 MachineFunction &MF; 88 LiveIntervals &LIS; 89 LiveStacks &LSS; 90 AliasAnalysis *AA; 91 MachineDominatorTree &MDT; 92 MachineLoopInfo &Loops; 93 VirtRegMap &VRM; 94 MachineRegisterInfo &MRI; 95 const TargetInstrInfo &TII; 96 const TargetRegisterInfo &TRI; 97 const MachineBlockFrequencyInfo &MBFI; 98 99 InsertPointAnalysis IPA; 100 101 // Map from StackSlot to the LiveInterval of the original register. 102 // Note the LiveInterval of the original register may have been deleted 103 // after it is spilled. We keep a copy here to track the range where 104 // spills can be moved. 105 DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI; 106 107 // Map from pair of (StackSlot and Original VNI) to a set of spills which 108 // have the same stackslot and have equal values defined by Original VNI. 109 // These spills are mergeable and are hoist candiates. 110 using MergeableSpillsMap = 111 MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>; 112 MergeableSpillsMap MergeableSpills; 113 114 /// This is the map from original register to a set containing all its 115 /// siblings. To hoist a spill to another BB, we need to find out a live 116 /// sibling there and use it as the source of the new spill. 117 DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap; 118 119 bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 120 MachineBasicBlock &BB, Register &LiveReg); 121 122 void rmRedundantSpills( 123 SmallPtrSet<MachineInstr *, 16> &Spills, 124 SmallVectorImpl<MachineInstr *> &SpillsToRm, 125 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 126 127 void getVisitOrders( 128 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 129 SmallVectorImpl<MachineDomTreeNode *> &Orders, 130 SmallVectorImpl<MachineInstr *> &SpillsToRm, 131 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 132 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 133 134 void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI, 135 SmallPtrSet<MachineInstr *, 16> &Spills, 136 SmallVectorImpl<MachineInstr *> &SpillsToRm, 137 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns); 138 139 public: 140 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf, 141 VirtRegMap &vrm) 142 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 143 LSS(pass.getAnalysis<LiveStacks>()), 144 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 145 MDT(pass.getAnalysis<MachineDominatorTree>()), 146 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 147 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 148 TRI(*mf.getSubtarget().getRegisterInfo()), 149 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 150 IPA(LIS, mf.getNumBlockIDs()) {} 151 152 void addToMergeableSpills(MachineInstr &Spill, int StackSlot, 153 unsigned Original); 154 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot); 155 void hoistAllSpills(); 156 void LRE_DidCloneVirtReg(Register, Register) override; 157 }; 158 159 class InlineSpiller : public Spiller { 160 MachineFunction &MF; 161 LiveIntervals &LIS; 162 LiveStacks &LSS; 163 AliasAnalysis *AA; 164 MachineDominatorTree &MDT; 165 MachineLoopInfo &Loops; 166 VirtRegMap &VRM; 167 MachineRegisterInfo &MRI; 168 const TargetInstrInfo &TII; 169 const TargetRegisterInfo &TRI; 170 const MachineBlockFrequencyInfo &MBFI; 171 172 // Variables that are valid during spill(), but used by multiple methods. 173 LiveRangeEdit *Edit; 174 LiveInterval *StackInt; 175 int StackSlot; 176 Register Original; 177 178 // All registers to spill to StackSlot, including the main register. 179 SmallVector<Register, 8> RegsToSpill; 180 181 // All COPY instructions to/from snippets. 182 // They are ignored since both operands refer to the same stack slot. 183 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 184 185 // Values that failed to remat at some point. 186 SmallPtrSet<VNInfo*, 8> UsedValues; 187 188 // Dead defs generated during spilling. 189 SmallVector<MachineInstr*, 8> DeadDefs; 190 191 // Object records spills information and does the hoisting. 192 HoistSpillHelper HSpiller; 193 194 // Live range weight calculator. 195 VirtRegAuxInfo &VRAI; 196 197 ~InlineSpiller() override = default; 198 199 public: 200 InlineSpiller(MachineFunctionPass &Pass, MachineFunction &MF, VirtRegMap &VRM, 201 VirtRegAuxInfo &VRAI) 202 : MF(MF), LIS(Pass.getAnalysis<LiveIntervals>()), 203 LSS(Pass.getAnalysis<LiveStacks>()), 204 AA(&Pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 205 MDT(Pass.getAnalysis<MachineDominatorTree>()), 206 Loops(Pass.getAnalysis<MachineLoopInfo>()), VRM(VRM), 207 MRI(MF.getRegInfo()), TII(*MF.getSubtarget().getInstrInfo()), 208 TRI(*MF.getSubtarget().getRegisterInfo()), 209 MBFI(Pass.getAnalysis<MachineBlockFrequencyInfo>()), 210 HSpiller(Pass, MF, VRM), VRAI(VRAI) {} 211 212 void spill(LiveRangeEdit &) override; 213 void postOptimization() override; 214 215 private: 216 bool isSnippet(const LiveInterval &SnipLI); 217 void collectRegsToSpill(); 218 219 bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); } 220 221 bool isSibling(Register Reg); 222 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI); 223 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 224 225 void markValueUsed(LiveInterval*, VNInfo*); 226 bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI); 227 bool reMaterializeFor(LiveInterval &, MachineInstr &MI); 228 void reMaterializeAll(); 229 230 bool coalesceStackAccess(MachineInstr *MI, Register Reg); 231 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>, 232 MachineInstr *LoadMI = nullptr); 233 void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI); 234 void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI); 235 236 void spillAroundUses(Register Reg); 237 void spillAll(); 238 }; 239 240 } // end anonymous namespace 241 242 Spiller::~Spiller() = default; 243 244 void Spiller::anchor() {} 245 246 Spiller *llvm::createInlineSpiller(MachineFunctionPass &Pass, 247 MachineFunction &MF, VirtRegMap &VRM, 248 VirtRegAuxInfo &VRAI) { 249 return new InlineSpiller(Pass, MF, VRM, VRAI); 250 } 251 252 //===----------------------------------------------------------------------===// 253 // Snippets 254 //===----------------------------------------------------------------------===// 255 256 // When spilling a virtual register, we also spill any snippets it is connected 257 // to. The snippets are small live ranges that only have a single real use, 258 // leftovers from live range splitting. Spilling them enables memory operand 259 // folding or tightens the live range around the single use. 260 // 261 // This minimizes register pressure and maximizes the store-to-load distance for 262 // spill slots which can be important in tight loops. 263 264 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 265 /// otherwise return 0. 266 static Register isFullCopyOf(const MachineInstr &MI, Register Reg) { 267 if (!MI.isFullCopy()) 268 return Register(); 269 if (MI.getOperand(0).getReg() == Reg) 270 return MI.getOperand(1).getReg(); 271 if (MI.getOperand(1).getReg() == Reg) 272 return MI.getOperand(0).getReg(); 273 return Register(); 274 } 275 276 static void getVDefInterval(const MachineInstr &MI, LiveIntervals &LIS) { 277 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 278 const MachineOperand &MO = MI.getOperand(I); 279 if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg())) 280 LIS.getInterval(MO.getReg()); 281 } 282 } 283 284 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 285 /// It is assumed that SnipLI is a virtual register with the same original as 286 /// Edit->getReg(). 287 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 288 Register Reg = Edit->getReg(); 289 290 // A snippet is a tiny live range with only a single instruction using it 291 // besides copies to/from Reg or spills/fills. We accept: 292 // 293 // %snip = COPY %Reg / FILL fi# 294 // %snip = USE %snip 295 // %Reg = COPY %snip / SPILL %snip, fi# 296 // 297 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) 298 return false; 299 300 MachineInstr *UseMI = nullptr; 301 302 // Check that all uses satisfy our criteria. 303 for (MachineRegisterInfo::reg_instr_nodbg_iterator 304 RI = MRI.reg_instr_nodbg_begin(SnipLI.reg()), 305 E = MRI.reg_instr_nodbg_end(); 306 RI != E;) { 307 MachineInstr &MI = *RI++; 308 309 // Allow copies to/from Reg. 310 if (isFullCopyOf(MI, Reg)) 311 continue; 312 313 // Allow stack slot loads. 314 int FI; 315 if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 316 continue; 317 318 // Allow stack slot stores. 319 if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 320 continue; 321 322 // Allow a single additional instruction. 323 if (UseMI && &MI != UseMI) 324 return false; 325 UseMI = &MI; 326 } 327 return true; 328 } 329 330 /// collectRegsToSpill - Collect live range snippets that only have a single 331 /// real use. 332 void InlineSpiller::collectRegsToSpill() { 333 Register Reg = Edit->getReg(); 334 335 // Main register always spills. 336 RegsToSpill.assign(1, Reg); 337 SnippetCopies.clear(); 338 339 // Snippets all have the same original, so there can't be any for an original 340 // register. 341 if (Original == Reg) 342 return; 343 344 for (MachineRegisterInfo::reg_instr_iterator 345 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) { 346 MachineInstr &MI = *RI++; 347 Register SnipReg = isFullCopyOf(MI, Reg); 348 if (!isSibling(SnipReg)) 349 continue; 350 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 351 if (!isSnippet(SnipLI)) 352 continue; 353 SnippetCopies.insert(&MI); 354 if (isRegToSpill(SnipReg)) 355 continue; 356 RegsToSpill.push_back(SnipReg); 357 LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 358 ++NumSnippets; 359 } 360 } 361 362 bool InlineSpiller::isSibling(Register Reg) { 363 return Reg.isVirtual() && VRM.getOriginal(Reg) == Original; 364 } 365 366 /// It is beneficial to spill to earlier place in the same BB in case 367 /// as follows: 368 /// There is an alternative def earlier in the same MBB. 369 /// Hoist the spill as far as possible in SpillMBB. This can ease 370 /// register pressure: 371 /// 372 /// x = def 373 /// y = use x 374 /// s = copy x 375 /// 376 /// Hoisting the spill of s to immediately after the def removes the 377 /// interference between x and y: 378 /// 379 /// x = def 380 /// spill x 381 /// y = use killed x 382 /// 383 /// This hoist only helps when the copy kills its source. 384 /// 385 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI, 386 MachineInstr &CopyMI) { 387 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 388 #ifndef NDEBUG 389 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); 390 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); 391 #endif 392 393 Register SrcReg = CopyMI.getOperand(1).getReg(); 394 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 395 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx); 396 LiveQueryResult SrcQ = SrcLI.Query(Idx); 397 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def); 398 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill()) 399 return false; 400 401 // Conservatively extend the stack slot range to the range of the original 402 // value. We may be able to do better with stack slot coloring by being more 403 // careful here. 404 assert(StackInt && "No stack slot assigned yet."); 405 LiveInterval &OrigLI = LIS.getInterval(Original); 406 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 407 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 408 LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 409 << *StackInt << '\n'); 410 411 // We are going to spill SrcVNI immediately after its def, so clear out 412 // any later spills of the same value. 413 eliminateRedundantSpills(SrcLI, SrcVNI); 414 415 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def); 416 MachineBasicBlock::iterator MII; 417 if (SrcVNI->isPHIDef()) 418 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 419 else { 420 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def); 421 assert(DefMI && "Defining instruction disappeared"); 422 MII = DefMI; 423 ++MII; 424 } 425 MachineInstrSpan MIS(MII, MBB); 426 // Insert spill without kill flag immediately after def. 427 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot, 428 MRI.getRegClass(SrcReg), &TRI); 429 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII); 430 for (const MachineInstr &MI : make_range(MIS.begin(), MII)) 431 getVDefInterval(MI, LIS); 432 --MII; // Point to store instruction. 433 LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII); 434 435 // If there is only 1 store instruction is required for spill, add it 436 // to mergeable list. In X86 AMX, 2 intructions are required to store. 437 // We disable the merge for this case. 438 if (MIS.begin() == MII) 439 HSpiller.addToMergeableSpills(*MII, StackSlot, Original); 440 ++NumSpills; 441 return true; 442 } 443 444 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 445 /// redundant spills of this value in SLI.reg and sibling copies. 446 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 447 assert(VNI && "Missing value"); 448 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 449 WorkList.push_back(std::make_pair(&SLI, VNI)); 450 assert(StackInt && "No stack slot assigned yet."); 451 452 do { 453 LiveInterval *LI; 454 std::tie(LI, VNI) = WorkList.pop_back_val(); 455 Register Reg = LI->reg(); 456 LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@' 457 << VNI->def << " in " << *LI << '\n'); 458 459 // Regs to spill are taken care of. 460 if (isRegToSpill(Reg)) 461 continue; 462 463 // Add all of VNI's live range to StackInt. 464 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 465 LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 466 467 // Find all spills and copies of VNI. 468 for (MachineRegisterInfo::use_instr_nodbg_iterator 469 UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 470 UI != E; ) { 471 MachineInstr &MI = *UI++; 472 if (!MI.isCopy() && !MI.mayStore()) 473 continue; 474 SlotIndex Idx = LIS.getInstructionIndex(MI); 475 if (LI->getVNInfoAt(Idx) != VNI) 476 continue; 477 478 // Follow sibling copies down the dominator tree. 479 if (Register DstReg = isFullCopyOf(MI, Reg)) { 480 if (isSibling(DstReg)) { 481 LiveInterval &DstLI = LIS.getInterval(DstReg); 482 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); 483 assert(DstVNI && "Missing defined value"); 484 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); 485 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 486 } 487 continue; 488 } 489 490 // Erase spills. 491 int FI; 492 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 493 LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI); 494 // eliminateDeadDefs won't normally remove stores, so switch opcode. 495 MI.setDesc(TII.get(TargetOpcode::KILL)); 496 DeadDefs.push_back(&MI); 497 ++NumSpillsRemoved; 498 if (HSpiller.rmFromMergeableSpills(MI, StackSlot)) 499 --NumSpills; 500 } 501 } 502 } while (!WorkList.empty()); 503 } 504 505 //===----------------------------------------------------------------------===// 506 // Rematerialization 507 //===----------------------------------------------------------------------===// 508 509 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 510 /// instruction cannot be eliminated. See through snippet copies 511 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 512 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 513 WorkList.push_back(std::make_pair(LI, VNI)); 514 do { 515 std::tie(LI, VNI) = WorkList.pop_back_val(); 516 if (!UsedValues.insert(VNI).second) 517 continue; 518 519 if (VNI->isPHIDef()) { 520 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 521 for (MachineBasicBlock *P : MBB->predecessors()) { 522 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P)); 523 if (PVNI) 524 WorkList.push_back(std::make_pair(LI, PVNI)); 525 } 526 continue; 527 } 528 529 // Follow snippet copies. 530 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 531 if (!SnippetCopies.count(MI)) 532 continue; 533 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 534 assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy"); 535 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); 536 assert(SnipVNI && "Snippet undefined before copy"); 537 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 538 } while (!WorkList.empty()); 539 } 540 541 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg, 542 MachineInstr &MI) { 543 if (!RestrictStatepointRemat) 544 return true; 545 // Here's a quick explanation of the problem we're trying to handle here: 546 // * There are some pseudo instructions with more vreg uses than there are 547 // physical registers on the machine. 548 // * This is normally handled by spilling the vreg, and folding the reload 549 // into the user instruction. (Thus decreasing the number of used vregs 550 // until the remainder can be assigned to physregs.) 551 // * However, since we may try to spill vregs in any order, we can end up 552 // trying to spill each operand to the instruction, and then rematting it 553 // instead. When that happens, the new live intervals (for the remats) are 554 // expected to be trivially assignable (i.e. RS_Done). However, since we 555 // may have more remats than physregs, we're guaranteed to fail to assign 556 // one. 557 // At the moment, we only handle this for STATEPOINTs since they're the only 558 // pseudo op where we've seen this. If we start seeing other instructions 559 // with the same problem, we need to revisit this. 560 if (MI.getOpcode() != TargetOpcode::STATEPOINT) 561 return true; 562 // For STATEPOINTs we allow re-materialization for fixed arguments only hoping 563 // that number of physical registers is enough to cover all fixed arguments. 564 // If it is not true we need to revisit it. 565 for (unsigned Idx = StatepointOpers(&MI).getVarIdx(), 566 EndIdx = MI.getNumOperands(); 567 Idx < EndIdx; ++Idx) { 568 MachineOperand &MO = MI.getOperand(Idx); 569 if (MO.isReg() && MO.getReg() == VReg) 570 return false; 571 } 572 return true; 573 } 574 575 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 576 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) { 577 // Analyze instruction 578 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 579 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg(), &Ops); 580 581 if (!RI.Reads) 582 return false; 583 584 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); 585 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 586 587 if (!ParentVNI) { 588 LLVM_DEBUG(dbgs() << "\tadding <undef> flags: "); 589 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 590 MachineOperand &MO = MI.getOperand(i); 591 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) 592 MO.setIsUndef(); 593 } 594 LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI); 595 return true; 596 } 597 598 if (SnippetCopies.count(&MI)) 599 return false; 600 601 LiveInterval &OrigLI = LIS.getInterval(Original); 602 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 603 LiveRangeEdit::Remat RM(ParentVNI); 604 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 605 606 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) { 607 markValueUsed(&VirtReg, ParentVNI); 608 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 609 return false; 610 } 611 612 // If the instruction also writes VirtReg.reg, it had better not require the 613 // same register for uses and defs. 614 if (RI.Tied) { 615 markValueUsed(&VirtReg, ParentVNI); 616 LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI); 617 return false; 618 } 619 620 // Before rematerializing into a register for a single instruction, try to 621 // fold a load into the instruction. That avoids allocating a new register. 622 if (RM.OrigMI->canFoldAsLoad() && 623 foldMemoryOperand(Ops, RM.OrigMI)) { 624 Edit->markRematerialized(RM.ParentVNI); 625 ++NumFoldedLoads; 626 return true; 627 } 628 629 // If we can't guarantee that we'll be able to actually assign the new vreg, 630 // we can't remat. 631 if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg(), MI)) { 632 markValueUsed(&VirtReg, ParentVNI); 633 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 634 return false; 635 } 636 637 // Allocate a new register for the remat. 638 Register NewVReg = Edit->createFrom(Original); 639 640 // Finally we can rematerialize OrigMI before MI. 641 SlotIndex DefIdx = 642 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI); 643 644 // We take the DebugLoc from MI, since OrigMI may be attributed to a 645 // different source location. 646 auto *NewMI = LIS.getInstructionFromIndex(DefIdx); 647 NewMI->setDebugLoc(MI.getDebugLoc()); 648 649 (void)DefIdx; 650 LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 651 << *LIS.getInstructionFromIndex(DefIdx)); 652 653 // Replace operands 654 for (const auto &OpPair : Ops) { 655 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 656 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) { 657 MO.setReg(NewVReg); 658 MO.setIsKill(); 659 } 660 } 661 LLVM_DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n'); 662 663 ++NumRemats; 664 return true; 665 } 666 667 /// reMaterializeAll - Try to rematerialize as many uses as possible, 668 /// and trim the live ranges after. 669 void InlineSpiller::reMaterializeAll() { 670 if (!Edit->anyRematerializable(AA)) 671 return; 672 673 UsedValues.clear(); 674 675 // Try to remat before all uses of snippets. 676 bool anyRemat = false; 677 for (Register Reg : RegsToSpill) { 678 LiveInterval &LI = LIS.getInterval(Reg); 679 for (MachineRegisterInfo::reg_bundle_iterator 680 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 681 RegI != E; ) { 682 MachineInstr &MI = *RegI++; 683 684 // Debug values are not allowed to affect codegen. 685 if (MI.isDebugValue()) 686 continue; 687 688 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug " 689 "instruction that isn't a DBG_VALUE"); 690 691 anyRemat |= reMaterializeFor(LI, MI); 692 } 693 } 694 if (!anyRemat) 695 return; 696 697 // Remove any values that were completely rematted. 698 for (Register Reg : RegsToSpill) { 699 LiveInterval &LI = LIS.getInterval(Reg); 700 for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 701 I != E; ++I) { 702 VNInfo *VNI = *I; 703 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 704 continue; 705 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 706 MI->addRegisterDead(Reg, &TRI); 707 if (!MI->allDefsAreDead()) 708 continue; 709 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); 710 DeadDefs.push_back(MI); 711 } 712 } 713 714 // Eliminate dead code after remat. Note that some snippet copies may be 715 // deleted here. 716 if (DeadDefs.empty()) 717 return; 718 LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 719 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 720 721 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions 722 // after rematerialization. To remove a VNI for a vreg from its LiveInterval, 723 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all 724 // removed, PHI VNI are still left in the LiveInterval. 725 // So to get rid of unused reg, we need to check whether it has non-dbg 726 // reference instead of whether it has non-empty interval. 727 unsigned ResultPos = 0; 728 for (Register Reg : RegsToSpill) { 729 if (MRI.reg_nodbg_empty(Reg)) { 730 Edit->eraseVirtReg(Reg); 731 continue; 732 } 733 734 assert(LIS.hasInterval(Reg) && 735 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && 736 "Empty and not used live-range?!"); 737 738 RegsToSpill[ResultPos++] = Reg; 739 } 740 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); 741 LLVM_DEBUG(dbgs() << RegsToSpill.size() 742 << " registers to spill after remat.\n"); 743 } 744 745 //===----------------------------------------------------------------------===// 746 // Spilling 747 //===----------------------------------------------------------------------===// 748 749 /// If MI is a load or store of StackSlot, it can be removed. 750 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) { 751 int FI = 0; 752 Register InstrReg = TII.isLoadFromStackSlot(*MI, FI); 753 bool IsLoad = InstrReg; 754 if (!IsLoad) 755 InstrReg = TII.isStoreToStackSlot(*MI, FI); 756 757 // We have a stack access. Is it the right register and slot? 758 if (InstrReg != Reg || FI != StackSlot) 759 return false; 760 761 if (!IsLoad) 762 HSpiller.rmFromMergeableSpills(*MI, StackSlot); 763 764 LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI); 765 LIS.RemoveMachineInstrFromMaps(*MI); 766 MI->eraseFromParent(); 767 768 if (IsLoad) { 769 ++NumReloadsRemoved; 770 --NumReloads; 771 } else { 772 ++NumSpillsRemoved; 773 --NumSpills; 774 } 775 776 return true; 777 } 778 779 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 780 LLVM_DUMP_METHOD 781 // Dump the range of instructions from B to E with their slot indexes. 782 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, 783 MachineBasicBlock::iterator E, 784 LiveIntervals const &LIS, 785 const char *const header, 786 Register VReg = Register()) { 787 char NextLine = '\n'; 788 char SlotIndent = '\t'; 789 790 if (std::next(B) == E) { 791 NextLine = ' '; 792 SlotIndent = ' '; 793 } 794 795 dbgs() << '\t' << header << ": " << NextLine; 796 797 for (MachineBasicBlock::iterator I = B; I != E; ++I) { 798 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot(); 799 800 // If a register was passed in and this instruction has it as a 801 // destination that is marked as an early clobber, print the 802 // early-clobber slot index. 803 if (VReg) { 804 MachineOperand *MO = I->findRegisterDefOperand(VReg); 805 if (MO && MO->isEarlyClobber()) 806 Idx = Idx.getRegSlot(true); 807 } 808 809 dbgs() << SlotIndent << Idx << '\t' << *I; 810 } 811 } 812 #endif 813 814 /// foldMemoryOperand - Try folding stack slot references in Ops into their 815 /// instructions. 816 /// 817 /// @param Ops Operand indices from AnalyzeVirtRegInBundle(). 818 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 819 /// @return True on success. 820 bool InlineSpiller:: 821 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops, 822 MachineInstr *LoadMI) { 823 if (Ops.empty()) 824 return false; 825 // Don't attempt folding in bundles. 826 MachineInstr *MI = Ops.front().first; 827 if (Ops.back().first != MI || MI->isBundled()) 828 return false; 829 830 bool WasCopy = MI->isCopy(); 831 Register ImpReg; 832 833 // TII::foldMemoryOperand will do what we need here for statepoint 834 // (fold load into use and remove corresponding def). We will replace 835 // uses of removed def with loads (spillAroundUses). 836 // For that to work we need to untie def and use to pass it through 837 // foldMemoryOperand and signal foldPatchpoint that it is allowed to 838 // fold them. 839 bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT; 840 841 // Spill subregs if the target allows it. 842 // We always want to spill subregs for stackmap/patchpoint pseudos. 843 bool SpillSubRegs = TII.isSubregFoldable() || 844 MI->getOpcode() == TargetOpcode::STATEPOINT || 845 MI->getOpcode() == TargetOpcode::PATCHPOINT || 846 MI->getOpcode() == TargetOpcode::STACKMAP; 847 848 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 849 // operands. 850 SmallVector<unsigned, 8> FoldOps; 851 for (const auto &OpPair : Ops) { 852 unsigned Idx = OpPair.second; 853 assert(MI == OpPair.first && "Instruction conflict during operand folding"); 854 MachineOperand &MO = MI->getOperand(Idx); 855 if (MO.isImplicit()) { 856 ImpReg = MO.getReg(); 857 continue; 858 } 859 860 if (!SpillSubRegs && MO.getSubReg()) 861 return false; 862 // We cannot fold a load instruction into a def. 863 if (LoadMI && MO.isDef()) 864 return false; 865 // Tied use operands should not be passed to foldMemoryOperand. 866 if (UntieRegs || !MI->isRegTiedToDefOperand(Idx)) 867 FoldOps.push_back(Idx); 868 } 869 870 // If we only have implicit uses, we won't be able to fold that. 871 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try! 872 if (FoldOps.empty()) 873 return false; 874 875 MachineInstrSpan MIS(MI, MI->getParent()); 876 877 SmallVector<std::pair<unsigned, unsigned> > TiedOps; 878 if (UntieRegs) 879 for (unsigned Idx : FoldOps) { 880 MachineOperand &MO = MI->getOperand(Idx); 881 if (!MO.isTied()) 882 continue; 883 unsigned Tied = MI->findTiedOperandIdx(Idx); 884 if (MO.isUse()) 885 TiedOps.emplace_back(Tied, Idx); 886 else { 887 assert(MO.isDef() && "Tied to not use and def?"); 888 TiedOps.emplace_back(Idx, Tied); 889 } 890 MI->untieRegOperand(Idx); 891 } 892 893 MachineInstr *FoldMI = 894 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS) 895 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM); 896 if (!FoldMI) { 897 // Re-tie operands. 898 for (auto Tied : TiedOps) 899 MI->tieOperands(Tied.first, Tied.second); 900 return false; 901 } 902 903 // Remove LIS for any dead defs in the original MI not in FoldMI. 904 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) { 905 if (!MO->isReg()) 906 continue; 907 Register Reg = MO->getReg(); 908 if (!Reg || Register::isVirtualRegister(Reg) || MRI.isReserved(Reg)) { 909 continue; 910 } 911 // Skip non-Defs, including undef uses and internal reads. 912 if (MO->isUse()) 913 continue; 914 PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI); 915 if (RI.FullyDefined) 916 continue; 917 // FoldMI does not define this physreg. Remove the LI segment. 918 assert(MO->isDead() && "Cannot fold physreg def"); 919 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 920 LIS.removePhysRegDefAt(Reg.asMCReg(), Idx); 921 } 922 923 int FI; 924 if (TII.isStoreToStackSlot(*MI, FI) && 925 HSpiller.rmFromMergeableSpills(*MI, FI)) 926 --NumSpills; 927 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI); 928 // Update the call site info. 929 if (MI->isCandidateForCallSiteEntry()) 930 MI->getMF()->moveCallSiteInfo(MI, FoldMI); 931 932 // If we've folded a store into an instruction labelled with debug-info, 933 // record a substitution from the old operand to the memory operand. Handle 934 // the simple common case where operand 0 is the one being folded, plus when 935 // the destination operand is also a tied def. More values could be 936 // substituted / preserved with more analysis. 937 if (MI->peekDebugInstrNum() && Ops[0].second == 0) { 938 // Helper lambda. 939 auto MakeSubstitution = [this,FoldMI,MI,&Ops]() { 940 // Substitute old operand zero to the new instructions memory operand. 941 unsigned OldOperandNum = Ops[0].second; 942 unsigned NewNum = FoldMI->getDebugInstrNum(); 943 unsigned OldNum = MI->getDebugInstrNum(); 944 MF.makeDebugValueSubstitution({OldNum, OldOperandNum}, 945 {NewNum, MachineFunction::DebugOperandMemNumber}); 946 }; 947 948 const MachineOperand &Op0 = MI->getOperand(Ops[0].second); 949 if (Ops.size() == 1 && Op0.isDef()) { 950 MakeSubstitution(); 951 } else if (Ops.size() == 2 && Op0.isDef() && MI->getOperand(1).isTied() && 952 Op0.getReg() == MI->getOperand(1).getReg()) { 953 MakeSubstitution(); 954 } 955 } else if (MI->peekDebugInstrNum()) { 956 // This is a debug-labelled instruction, but the operand being folded isn't 957 // at operand zero. Most likely this means it's a load being folded in. 958 // Substitute any register defs from operand zero up to the one being 959 // folded -- past that point, we don't know what the new operand indexes 960 // will be. 961 MF.substituteDebugValuesForInst(*MI, *FoldMI, Ops[0].second); 962 } 963 964 MI->eraseFromParent(); 965 966 // Insert any new instructions other than FoldMI into the LIS maps. 967 assert(!MIS.empty() && "Unexpected empty span of instructions!"); 968 for (MachineInstr &MI : MIS) 969 if (&MI != FoldMI) 970 LIS.InsertMachineInstrInMaps(MI); 971 972 // TII.foldMemoryOperand may have left some implicit operands on the 973 // instruction. Strip them. 974 if (ImpReg) 975 for (unsigned i = FoldMI->getNumOperands(); i; --i) { 976 MachineOperand &MO = FoldMI->getOperand(i - 1); 977 if (!MO.isReg() || !MO.isImplicit()) 978 break; 979 if (MO.getReg() == ImpReg) 980 FoldMI->RemoveOperand(i - 1); 981 } 982 983 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, 984 "folded")); 985 986 if (!WasCopy) 987 ++NumFolded; 988 else if (Ops.front().second == 0) { 989 ++NumSpills; 990 // If there is only 1 store instruction is required for spill, add it 991 // to mergeable list. In X86 AMX, 2 intructions are required to store. 992 // We disable the merge for this case. 993 if (std::distance(MIS.begin(), MIS.end()) <= 1) 994 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original); 995 } else 996 ++NumReloads; 997 return true; 998 } 999 1000 void InlineSpiller::insertReload(Register NewVReg, 1001 SlotIndex Idx, 1002 MachineBasicBlock::iterator MI) { 1003 MachineBasicBlock &MBB = *MI->getParent(); 1004 1005 MachineInstrSpan MIS(MI, &MBB); 1006 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, 1007 MRI.getRegClass(NewVReg), &TRI); 1008 1009 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); 1010 1011 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload", 1012 NewVReg)); 1013 ++NumReloads; 1014 } 1015 1016 /// Check if \p Def fully defines a VReg with an undefined value. 1017 /// If that's the case, that means the value of VReg is actually 1018 /// not relevant. 1019 static bool isRealSpill(const MachineInstr &Def) { 1020 if (!Def.isImplicitDef()) 1021 return true; 1022 assert(Def.getNumOperands() == 1 && 1023 "Implicit def with more than one definition"); 1024 // We can say that the VReg defined by Def is undef, only if it is 1025 // fully defined by Def. Otherwise, some of the lanes may not be 1026 // undef and the value of the VReg matters. 1027 return Def.getOperand(0).getSubReg(); 1028 } 1029 1030 /// insertSpill - Insert a spill of NewVReg after MI. 1031 void InlineSpiller::insertSpill(Register NewVReg, bool isKill, 1032 MachineBasicBlock::iterator MI) { 1033 // Spill are not terminators, so inserting spills after terminators will 1034 // violate invariants in MachineVerifier. 1035 assert(!MI->isTerminator() && "Inserting a spill after a terminator"); 1036 MachineBasicBlock &MBB = *MI->getParent(); 1037 1038 MachineInstrSpan MIS(MI, &MBB); 1039 MachineBasicBlock::iterator SpillBefore = std::next(MI); 1040 bool IsRealSpill = isRealSpill(*MI); 1041 1042 if (IsRealSpill) 1043 TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot, 1044 MRI.getRegClass(NewVReg), &TRI); 1045 else 1046 // Don't spill undef value. 1047 // Anything works for undef, in particular keeping the memory 1048 // uninitialized is a viable option and it saves code size and 1049 // run time. 1050 BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL)) 1051 .addReg(NewVReg, getKillRegState(isKill)); 1052 1053 MachineBasicBlock::iterator Spill = std::next(MI); 1054 LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end()); 1055 for (const MachineInstr &MI : make_range(Spill, MIS.end())) 1056 getVDefInterval(MI, LIS); 1057 1058 LLVM_DEBUG( 1059 dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill")); 1060 ++NumSpills; 1061 // If there is only 1 store instruction is required for spill, add it 1062 // to mergeable list. In X86 AMX, 2 intructions are required to store. 1063 // We disable the merge for this case. 1064 if (IsRealSpill && std::distance(Spill, MIS.end()) <= 1) 1065 HSpiller.addToMergeableSpills(*Spill, StackSlot, Original); 1066 } 1067 1068 /// spillAroundUses - insert spill code around each use of Reg. 1069 void InlineSpiller::spillAroundUses(Register Reg) { 1070 LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n'); 1071 LiveInterval &OldLI = LIS.getInterval(Reg); 1072 1073 // Iterate over instructions using Reg. 1074 for (MachineRegisterInfo::reg_bundle_iterator 1075 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 1076 RegI != E; ) { 1077 MachineInstr *MI = &*(RegI++); 1078 1079 // Debug values are not allowed to affect codegen. 1080 if (MI->isDebugValue()) { 1081 // Modify DBG_VALUE now that the value is in a spill slot. 1082 MachineBasicBlock *MBB = MI->getParent(); 1083 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI); 1084 buildDbgValueForSpill(*MBB, MI, *MI, StackSlot, Reg); 1085 MBB->erase(MI); 1086 continue; 1087 } 1088 1089 assert(!MI->isDebugInstr() && "Did not expect to find a use in debug " 1090 "instruction that isn't a DBG_VALUE"); 1091 1092 // Ignore copies to/from snippets. We'll delete them. 1093 if (SnippetCopies.count(MI)) 1094 continue; 1095 1096 // Stack slot accesses may coalesce away. 1097 if (coalesceStackAccess(MI, Reg)) 1098 continue; 1099 1100 // Analyze instruction. 1101 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; 1102 VirtRegInfo RI = AnalyzeVirtRegInBundle(*MI, Reg, &Ops); 1103 1104 // Find the slot index where this instruction reads and writes OldLI. 1105 // This is usually the def slot, except for tied early clobbers. 1106 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 1107 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) 1108 if (SlotIndex::isSameInstr(Idx, VNI->def)) 1109 Idx = VNI->def; 1110 1111 // Check for a sibling copy. 1112 Register SibReg = isFullCopyOf(*MI, Reg); 1113 if (SibReg && isSibling(SibReg)) { 1114 // This may actually be a copy between snippets. 1115 if (isRegToSpill(SibReg)) { 1116 LLVM_DEBUG(dbgs() << "Found new snippet copy: " << *MI); 1117 SnippetCopies.insert(MI); 1118 continue; 1119 } 1120 if (RI.Writes) { 1121 if (hoistSpillInsideBB(OldLI, *MI)) { 1122 // This COPY is now dead, the value is already in the stack slot. 1123 MI->getOperand(0).setIsDead(); 1124 DeadDefs.push_back(MI); 1125 continue; 1126 } 1127 } else { 1128 // This is a reload for a sib-reg copy. Drop spills downstream. 1129 LiveInterval &SibLI = LIS.getInterval(SibReg); 1130 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 1131 // The COPY will fold to a reload below. 1132 } 1133 } 1134 1135 // Attempt to fold memory ops. 1136 if (foldMemoryOperand(Ops)) 1137 continue; 1138 1139 // Create a new virtual register for spill/fill. 1140 // FIXME: Infer regclass from instruction alone. 1141 Register NewVReg = Edit->createFrom(Reg); 1142 1143 if (RI.Reads) 1144 insertReload(NewVReg, Idx, MI); 1145 1146 // Rewrite instruction operands. 1147 bool hasLiveDef = false; 1148 for (const auto &OpPair : Ops) { 1149 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 1150 MO.setReg(NewVReg); 1151 if (MO.isUse()) { 1152 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second)) 1153 MO.setIsKill(); 1154 } else { 1155 if (!MO.isDead()) 1156 hasLiveDef = true; 1157 } 1158 } 1159 LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n'); 1160 1161 // FIXME: Use a second vreg if instruction has no tied ops. 1162 if (RI.Writes) 1163 if (hasLiveDef) 1164 insertSpill(NewVReg, true, MI); 1165 } 1166 } 1167 1168 /// spillAll - Spill all registers remaining after rematerialization. 1169 void InlineSpiller::spillAll() { 1170 // Update LiveStacks now that we are committed to spilling. 1171 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 1172 StackSlot = VRM.assignVirt2StackSlot(Original); 1173 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 1174 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); 1175 } else 1176 StackInt = &LSS.getInterval(StackSlot); 1177 1178 if (Original != Edit->getReg()) 1179 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 1180 1181 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 1182 for (Register Reg : RegsToSpill) 1183 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg), 1184 StackInt->getValNumInfo(0)); 1185 LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 1186 1187 // Spill around uses of all RegsToSpill. 1188 for (Register Reg : RegsToSpill) 1189 spillAroundUses(Reg); 1190 1191 // Hoisted spills may cause dead code. 1192 if (!DeadDefs.empty()) { 1193 LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 1194 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 1195 } 1196 1197 // Finally delete the SnippetCopies. 1198 for (Register Reg : RegsToSpill) { 1199 for (MachineRegisterInfo::reg_instr_iterator 1200 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); 1201 RI != E; ) { 1202 MachineInstr &MI = *(RI++); 1203 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy"); 1204 // FIXME: Do this with a LiveRangeEdit callback. 1205 LIS.RemoveMachineInstrFromMaps(MI); 1206 MI.eraseFromParent(); 1207 } 1208 } 1209 1210 // Delete all spilled registers. 1211 for (Register Reg : RegsToSpill) 1212 Edit->eraseVirtReg(Reg); 1213 } 1214 1215 void InlineSpiller::spill(LiveRangeEdit &edit) { 1216 ++NumSpilledRanges; 1217 Edit = &edit; 1218 assert(!Register::isStackSlot(edit.getReg()) && 1219 "Trying to spill a stack slot."); 1220 // Share a stack slot among all descendants of Original. 1221 Original = VRM.getOriginal(edit.getReg()); 1222 StackSlot = VRM.getStackSlot(Original); 1223 StackInt = nullptr; 1224 1225 LLVM_DEBUG(dbgs() << "Inline spilling " 1226 << TRI.getRegClassName(MRI.getRegClass(edit.getReg())) 1227 << ':' << edit.getParent() << "\nFrom original " 1228 << printReg(Original) << '\n'); 1229 assert(edit.getParent().isSpillable() && 1230 "Attempting to spill already spilled value."); 1231 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1232 1233 collectRegsToSpill(); 1234 reMaterializeAll(); 1235 1236 // Remat may handle everything. 1237 if (!RegsToSpill.empty()) 1238 spillAll(); 1239 1240 Edit->calculateRegClassAndHint(MF, VRAI); 1241 } 1242 1243 /// Optimizations after all the reg selections and spills are done. 1244 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); } 1245 1246 /// When a spill is inserted, add the spill to MergeableSpills map. 1247 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot, 1248 unsigned Original) { 1249 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1250 LiveInterval &OrigLI = LIS.getInterval(Original); 1251 // save a copy of LiveInterval in StackSlotToOrigLI because the original 1252 // LiveInterval may be cleared after all its references are spilled. 1253 if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) { 1254 auto LI = std::make_unique<LiveInterval>(OrigLI.reg(), OrigLI.weight()); 1255 LI->assign(OrigLI, Allocator); 1256 StackSlotToOrigLI[StackSlot] = std::move(LI); 1257 } 1258 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1259 VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot()); 1260 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1261 MergeableSpills[MIdx].insert(&Spill); 1262 } 1263 1264 /// When a spill is removed, remove the spill from MergeableSpills map. 1265 /// Return true if the spill is removed successfully. 1266 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill, 1267 int StackSlot) { 1268 auto It = StackSlotToOrigLI.find(StackSlot); 1269 if (It == StackSlotToOrigLI.end()) 1270 return false; 1271 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1272 VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot()); 1273 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1274 return MergeableSpills[MIdx].erase(&Spill); 1275 } 1276 1277 /// Check BB to see if it is a possible target BB to place a hoisted spill, 1278 /// i.e., there should be a living sibling of OrigReg at the insert point. 1279 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 1280 MachineBasicBlock &BB, Register &LiveReg) { 1281 SlotIndex Idx = IPA.getLastInsertPoint(OrigLI, BB); 1282 // The original def could be after the last insert point in the root block, 1283 // we can't hoist to here. 1284 if (Idx < OrigVNI.def) { 1285 // TODO: We could be better here. If LI is not alive in landing pad 1286 // we could hoist spill after LIP. 1287 LLVM_DEBUG(dbgs() << "can't spill in root block - def after LIP\n"); 1288 return false; 1289 } 1290 Register OrigReg = OrigLI.reg(); 1291 SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg]; 1292 assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI"); 1293 1294 for (const Register &SibReg : Siblings) { 1295 LiveInterval &LI = LIS.getInterval(SibReg); 1296 VNInfo *VNI = LI.getVNInfoAt(Idx); 1297 if (VNI) { 1298 LiveReg = SibReg; 1299 return true; 1300 } 1301 } 1302 return false; 1303 } 1304 1305 /// Remove redundant spills in the same BB. Save those redundant spills in 1306 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map. 1307 void HoistSpillHelper::rmRedundantSpills( 1308 SmallPtrSet<MachineInstr *, 16> &Spills, 1309 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1310 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1311 // For each spill saw, check SpillBBToSpill[] and see if its BB already has 1312 // another spill inside. If a BB contains more than one spill, only keep the 1313 // earlier spill with smaller SlotIndex. 1314 for (const auto CurrentSpill : Spills) { 1315 MachineBasicBlock *Block = CurrentSpill->getParent(); 1316 MachineDomTreeNode *Node = MDT.getBase().getNode(Block); 1317 MachineInstr *PrevSpill = SpillBBToSpill[Node]; 1318 if (PrevSpill) { 1319 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill); 1320 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill); 1321 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill; 1322 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill; 1323 SpillsToRm.push_back(SpillToRm); 1324 SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep; 1325 } else { 1326 SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill; 1327 } 1328 } 1329 for (const auto SpillToRm : SpillsToRm) 1330 Spills.erase(SpillToRm); 1331 } 1332 1333 /// Starting from \p Root find a top-down traversal order of the dominator 1334 /// tree to visit all basic blocks containing the elements of \p Spills. 1335 /// Redundant spills will be found and put into \p SpillsToRm at the same 1336 /// time. \p SpillBBToSpill will be populated as part of the process and 1337 /// maps a basic block to the first store occurring in the basic block. 1338 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre 1339 void HoistSpillHelper::getVisitOrders( 1340 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 1341 SmallVectorImpl<MachineDomTreeNode *> &Orders, 1342 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1343 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 1344 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1345 // The set contains all the possible BB nodes to which we may hoist 1346 // original spills. 1347 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet; 1348 // Save the BB nodes on the path from the first BB node containing 1349 // non-redundant spill to the Root node. 1350 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath; 1351 // All the spills to be hoisted must originate from a single def instruction 1352 // to the OrigReg. It means the def instruction should dominate all the spills 1353 // to be hoisted. We choose the BB where the def instruction is located as 1354 // the Root. 1355 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom(); 1356 // For every node on the dominator tree with spill, walk up on the dominator 1357 // tree towards the Root node until it is reached. If there is other node 1358 // containing spill in the middle of the path, the previous spill saw will 1359 // be redundant and the node containing it will be removed. All the nodes on 1360 // the path starting from the first node with non-redundant spill to the Root 1361 // node will be added to the WorkSet, which will contain all the possible 1362 // locations where spills may be hoisted to after the loop below is done. 1363 for (const auto Spill : Spills) { 1364 MachineBasicBlock *Block = Spill->getParent(); 1365 MachineDomTreeNode *Node = MDT[Block]; 1366 MachineInstr *SpillToRm = nullptr; 1367 while (Node != RootIDomNode) { 1368 // If Node dominates Block, and it already contains a spill, the spill in 1369 // Block will be redundant. 1370 if (Node != MDT[Block] && SpillBBToSpill[Node]) { 1371 SpillToRm = SpillBBToSpill[MDT[Block]]; 1372 break; 1373 /// If we see the Node already in WorkSet, the path from the Node to 1374 /// the Root node must already be traversed by another spill. 1375 /// Then no need to repeat. 1376 } else if (WorkSet.count(Node)) { 1377 break; 1378 } else { 1379 NodesOnPath.insert(Node); 1380 } 1381 Node = Node->getIDom(); 1382 } 1383 if (SpillToRm) { 1384 SpillsToRm.push_back(SpillToRm); 1385 } else { 1386 // Add a BB containing the original spills to SpillsToKeep -- i.e., 1387 // set the initial status before hoisting start. The value of BBs 1388 // containing original spills is set to 0, in order to descriminate 1389 // with BBs containing hoisted spills which will be inserted to 1390 // SpillsToKeep later during hoisting. 1391 SpillsToKeep[MDT[Block]] = 0; 1392 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end()); 1393 } 1394 NodesOnPath.clear(); 1395 } 1396 1397 // Sort the nodes in WorkSet in top-down order and save the nodes 1398 // in Orders. Orders will be used for hoisting in runHoistSpills. 1399 unsigned idx = 0; 1400 Orders.push_back(MDT.getBase().getNode(Root)); 1401 do { 1402 MachineDomTreeNode *Node = Orders[idx++]; 1403 for (MachineDomTreeNode *Child : Node->children()) { 1404 if (WorkSet.count(Child)) 1405 Orders.push_back(Child); 1406 } 1407 } while (idx != Orders.size()); 1408 assert(Orders.size() == WorkSet.size() && 1409 "Orders have different size with WorkSet"); 1410 1411 #ifndef NDEBUG 1412 LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n"); 1413 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1414 for (; RIt != Orders.rend(); RIt++) 1415 LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ","); 1416 LLVM_DEBUG(dbgs() << "\n"); 1417 #endif 1418 } 1419 1420 /// Try to hoist spills according to BB hotness. The spills to removed will 1421 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in 1422 /// \p SpillsToIns. 1423 void HoistSpillHelper::runHoistSpills( 1424 LiveInterval &OrigLI, VNInfo &OrigVNI, 1425 SmallPtrSet<MachineInstr *, 16> &Spills, 1426 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1427 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) { 1428 // Visit order of dominator tree nodes. 1429 SmallVector<MachineDomTreeNode *, 32> Orders; 1430 // SpillsToKeep contains all the nodes where spills are to be inserted 1431 // during hoisting. If the spill to be inserted is an original spill 1432 // (not a hoisted one), the value of the map entry is 0. If the spill 1433 // is a hoisted spill, the value of the map entry is the VReg to be used 1434 // as the source of the spill. 1435 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep; 1436 // Map from BB to the first spill inside of it. 1437 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill; 1438 1439 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill); 1440 1441 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def); 1442 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep, 1443 SpillBBToSpill); 1444 1445 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of 1446 // nodes set and the cost of all the spills inside those nodes. 1447 // The nodes set are the locations where spills are to be inserted 1448 // in the subtree of current node. 1449 using NodesCostPair = 1450 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>; 1451 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap; 1452 1453 // Iterate Orders set in reverse order, which will be a bottom-up order 1454 // in the dominator tree. Once we visit a dom tree node, we know its 1455 // children have already been visited and the spill locations in the 1456 // subtrees of all the children have been determined. 1457 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1458 for (; RIt != Orders.rend(); RIt++) { 1459 MachineBasicBlock *Block = (*RIt)->getBlock(); 1460 1461 // If Block contains an original spill, simply continue. 1462 if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) { 1463 SpillsInSubTreeMap[*RIt].first.insert(*RIt); 1464 // SpillsInSubTreeMap[*RIt].second contains the cost of spill. 1465 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block); 1466 continue; 1467 } 1468 1469 // Collect spills in subtree of current node (*RIt) to 1470 // SpillsInSubTreeMap[*RIt].first. 1471 for (MachineDomTreeNode *Child : (*RIt)->children()) { 1472 if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end()) 1473 continue; 1474 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below 1475 // should be placed before getting the begin and end iterators of 1476 // SpillsInSubTreeMap[Child].first, or else the iterators may be 1477 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time 1478 // and the map grows and then the original buckets in the map are moved. 1479 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1480 SpillsInSubTreeMap[*RIt].first; 1481 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1482 SubTreeCost += SpillsInSubTreeMap[Child].second; 1483 auto BI = SpillsInSubTreeMap[Child].first.begin(); 1484 auto EI = SpillsInSubTreeMap[Child].first.end(); 1485 SpillsInSubTree.insert(BI, EI); 1486 SpillsInSubTreeMap.erase(Child); 1487 } 1488 1489 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1490 SpillsInSubTreeMap[*RIt].first; 1491 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1492 // No spills in subtree, simply continue. 1493 if (SpillsInSubTree.empty()) 1494 continue; 1495 1496 // Check whether Block is a possible candidate to insert spill. 1497 Register LiveReg; 1498 if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg)) 1499 continue; 1500 1501 // If there are multiple spills that could be merged, bias a little 1502 // to hoist the spill. 1503 BranchProbability MarginProb = (SpillsInSubTree.size() > 1) 1504 ? BranchProbability(9, 10) 1505 : BranchProbability(1, 1); 1506 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) { 1507 // Hoist: Move spills to current Block. 1508 for (const auto SpillBB : SpillsInSubTree) { 1509 // When SpillBB is a BB contains original spill, insert the spill 1510 // to SpillsToRm. 1511 if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() && 1512 !SpillsToKeep[SpillBB]) { 1513 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB]; 1514 SpillsToRm.push_back(SpillToRm); 1515 } 1516 // SpillBB will not contain spill anymore, remove it from SpillsToKeep. 1517 SpillsToKeep.erase(SpillBB); 1518 } 1519 // Current Block is the BB containing the new hoisted spill. Add it to 1520 // SpillsToKeep. LiveReg is the source of the new spill. 1521 SpillsToKeep[*RIt] = LiveReg; 1522 LLVM_DEBUG({ 1523 dbgs() << "spills in BB: "; 1524 for (const auto Rspill : SpillsInSubTree) 1525 dbgs() << Rspill->getBlock()->getNumber() << " "; 1526 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber() 1527 << "\n"; 1528 }); 1529 SpillsInSubTree.clear(); 1530 SpillsInSubTree.insert(*RIt); 1531 SubTreeCost = MBFI.getBlockFreq(Block); 1532 } 1533 } 1534 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill), 1535 // save them to SpillsToIns. 1536 for (const auto &Ent : SpillsToKeep) { 1537 if (Ent.second) 1538 SpillsToIns[Ent.first->getBlock()] = Ent.second; 1539 } 1540 } 1541 1542 /// For spills with equal values, remove redundant spills and hoist those left 1543 /// to less hot spots. 1544 /// 1545 /// Spills with equal values will be collected into the same set in 1546 /// MergeableSpills when spill is inserted. These equal spills are originated 1547 /// from the same defining instruction and are dominated by the instruction. 1548 /// Before hoisting all the equal spills, redundant spills inside in the same 1549 /// BB are first marked to be deleted. Then starting from the spills left, walk 1550 /// up on the dominator tree towards the Root node where the define instruction 1551 /// is located, mark the dominated spills to be deleted along the way and 1552 /// collect the BB nodes on the path from non-dominated spills to the define 1553 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places 1554 /// where we are considering to hoist the spills. We iterate the WorkSet in 1555 /// bottom-up order, and for each node, we will decide whether to hoist spills 1556 /// inside its subtree to that node. In this way, we can get benefit locally 1557 /// even if hoisting all the equal spills to one cold place is impossible. 1558 void HoistSpillHelper::hoistAllSpills() { 1559 SmallVector<Register, 4> NewVRegs; 1560 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this); 1561 1562 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { 1563 Register Reg = Register::index2VirtReg(i); 1564 Register Original = VRM.getPreSplitReg(Reg); 1565 if (!MRI.def_empty(Reg)) 1566 Virt2SiblingsMap[Original].insert(Reg); 1567 } 1568 1569 // Each entry in MergeableSpills contains a spill set with equal values. 1570 for (auto &Ent : MergeableSpills) { 1571 int Slot = Ent.first.first; 1572 LiveInterval &OrigLI = *StackSlotToOrigLI[Slot]; 1573 VNInfo *OrigVNI = Ent.first.second; 1574 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second; 1575 if (Ent.second.empty()) 1576 continue; 1577 1578 LLVM_DEBUG({ 1579 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n" 1580 << "Equal spills in BB: "; 1581 for (const auto spill : EqValSpills) 1582 dbgs() << spill->getParent()->getNumber() << " "; 1583 dbgs() << "\n"; 1584 }); 1585 1586 // SpillsToRm is the spill set to be removed from EqValSpills. 1587 SmallVector<MachineInstr *, 16> SpillsToRm; 1588 // SpillsToIns is the spill set to be newly inserted after hoisting. 1589 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns; 1590 1591 runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns); 1592 1593 LLVM_DEBUG({ 1594 dbgs() << "Finally inserted spills in BB: "; 1595 for (const auto &Ispill : SpillsToIns) 1596 dbgs() << Ispill.first->getNumber() << " "; 1597 dbgs() << "\nFinally removed spills in BB: "; 1598 for (const auto Rspill : SpillsToRm) 1599 dbgs() << Rspill->getParent()->getNumber() << " "; 1600 dbgs() << "\n"; 1601 }); 1602 1603 // Stack live range update. 1604 LiveInterval &StackIntvl = LSS.getInterval(Slot); 1605 if (!SpillsToIns.empty() || !SpillsToRm.empty()) 1606 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI, 1607 StackIntvl.getValNumInfo(0)); 1608 1609 // Insert hoisted spills. 1610 for (auto const &Insert : SpillsToIns) { 1611 MachineBasicBlock *BB = Insert.first; 1612 Register LiveReg = Insert.second; 1613 MachineBasicBlock::iterator MII = IPA.getLastInsertPointIter(OrigLI, *BB); 1614 MachineInstrSpan MIS(MII, BB); 1615 TII.storeRegToStackSlot(*BB, MII, LiveReg, false, Slot, 1616 MRI.getRegClass(LiveReg), &TRI); 1617 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII); 1618 for (const MachineInstr &MI : make_range(MIS.begin(), MII)) 1619 getVDefInterval(MI, LIS); 1620 ++NumSpills; 1621 } 1622 1623 // Remove redundant spills or change them to dead instructions. 1624 NumSpills -= SpillsToRm.size(); 1625 for (auto const RMEnt : SpillsToRm) { 1626 RMEnt->setDesc(TII.get(TargetOpcode::KILL)); 1627 for (unsigned i = RMEnt->getNumOperands(); i; --i) { 1628 MachineOperand &MO = RMEnt->getOperand(i - 1); 1629 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead()) 1630 RMEnt->RemoveOperand(i - 1); 1631 } 1632 } 1633 Edit.eliminateDeadDefs(SpillsToRm, None, AA); 1634 } 1635 } 1636 1637 /// For VirtReg clone, the \p New register should have the same physreg or 1638 /// stackslot as the \p old register. 1639 void HoistSpillHelper::LRE_DidCloneVirtReg(Register New, Register Old) { 1640 if (VRM.hasPhys(Old)) 1641 VRM.assignVirt2Phys(New, VRM.getPhys(Old)); 1642 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT) 1643 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old)); 1644 else 1645 llvm_unreachable("VReg should be assigned either physreg or stackslot"); 1646 if (VRM.hasShape(Old)) 1647 VRM.assignVirt2Shape(New, VRM.getShape(Old)); 1648 } 1649