1 //===-------- InlineSpiller.cpp - Insert spills and restores inline -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The inline spiller modifies the machine function directly instead of 11 // inserting spills and restores in VirtRegMap. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "Spiller.h" 16 #include "llvm/ADT/SetVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/TinyPtrVector.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/LiveRangeEdit.h" 22 #include "llvm/CodeGen/LiveStackAnalysis.h" 23 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 24 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 25 #include "llvm/CodeGen/MachineDominators.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineInstrBundle.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/VirtRegMap.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 38 using namespace llvm; 39 40 #define DEBUG_TYPE "regalloc" 41 42 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 43 STATISTIC(NumSnippets, "Number of spilled snippets"); 44 STATISTIC(NumSpills, "Number of spills inserted"); 45 STATISTIC(NumSpillsRemoved, "Number of spills removed"); 46 STATISTIC(NumReloads, "Number of reloads inserted"); 47 STATISTIC(NumReloadsRemoved, "Number of reloads removed"); 48 STATISTIC(NumFolded, "Number of folded stack accesses"); 49 STATISTIC(NumFoldedLoads, "Number of folded loads"); 50 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 51 STATISTIC(NumOmitReloadSpill, "Number of omitted spills of reloads"); 52 STATISTIC(NumHoists, "Number of hoisted spills"); 53 54 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden, 55 cl::desc("Disable inline spill hoisting")); 56 57 namespace { 58 class InlineSpiller : public Spiller { 59 MachineFunction &MF; 60 LiveIntervals &LIS; 61 LiveStacks &LSS; 62 AliasAnalysis *AA; 63 MachineDominatorTree &MDT; 64 MachineLoopInfo &Loops; 65 VirtRegMap &VRM; 66 MachineFrameInfo &MFI; 67 MachineRegisterInfo &MRI; 68 const TargetInstrInfo &TII; 69 const TargetRegisterInfo &TRI; 70 const MachineBlockFrequencyInfo &MBFI; 71 72 // Variables that are valid during spill(), but used by multiple methods. 73 LiveRangeEdit *Edit; 74 LiveInterval *StackInt; 75 int StackSlot; 76 unsigned Original; 77 78 // All registers to spill to StackSlot, including the main register. 79 SmallVector<unsigned, 8> RegsToSpill; 80 81 // All COPY instructions to/from snippets. 82 // They are ignored since both operands refer to the same stack slot. 83 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 84 85 // Values that failed to remat at some point. 86 SmallPtrSet<VNInfo*, 8> UsedValues; 87 88 public: 89 // Information about a value that was defined by a copy from a sibling 90 // register. 91 struct SibValueInfo { 92 // True when all reaching defs were reloads: No spill is necessary. 93 bool AllDefsAreReloads; 94 95 // True when value is defined by an original PHI not from splitting. 96 bool DefByOrigPHI; 97 98 // True when the COPY defining this value killed its source. 99 bool KillsSource; 100 101 // The preferred register to spill. 102 unsigned SpillReg; 103 104 // The value of SpillReg that should be spilled. 105 VNInfo *SpillVNI; 106 107 // The block where SpillVNI should be spilled. Currently, this must be the 108 // block containing SpillVNI->def. 109 MachineBasicBlock *SpillMBB; 110 111 // A defining instruction that is not a sibling copy or a reload, or NULL. 112 // This can be used as a template for rematerialization. 113 MachineInstr *DefMI; 114 115 // List of values that depend on this one. These values are actually the 116 // same, but live range splitting has placed them in different registers, 117 // or SSA update needed to insert PHI-defs to preserve SSA form. This is 118 // copies of the current value and phi-kills. Usually only phi-kills cause 119 // more than one dependent value. 120 TinyPtrVector<VNInfo*> Deps; 121 122 SibValueInfo(unsigned Reg, VNInfo *VNI) 123 : AllDefsAreReloads(true), DefByOrigPHI(false), KillsSource(false), 124 SpillReg(Reg), SpillVNI(VNI), SpillMBB(nullptr), DefMI(nullptr) {} 125 126 // Returns true when a def has been found. 127 bool hasDef() const { return DefByOrigPHI || DefMI; } 128 }; 129 130 private: 131 // Values in RegsToSpill defined by sibling copies. 132 typedef DenseMap<VNInfo*, SibValueInfo> SibValueMap; 133 SibValueMap SibValues; 134 135 // Dead defs generated during spilling. 136 SmallVector<MachineInstr*, 8> DeadDefs; 137 138 ~InlineSpiller() {} 139 140 public: 141 InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm) 142 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 143 LSS(pass.getAnalysis<LiveStacks>()), 144 AA(&pass.getAnalysis<AliasAnalysis>()), 145 MDT(pass.getAnalysis<MachineDominatorTree>()), 146 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 147 MFI(*mf.getFrameInfo()), MRI(mf.getRegInfo()), 148 TII(*mf.getSubtarget().getInstrInfo()), 149 TRI(*mf.getSubtarget().getRegisterInfo()), 150 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()) {} 151 152 void spill(LiveRangeEdit &) override; 153 154 private: 155 bool isSnippet(const LiveInterval &SnipLI); 156 void collectRegsToSpill(); 157 158 bool isRegToSpill(unsigned Reg) { 159 return std::find(RegsToSpill.begin(), 160 RegsToSpill.end(), Reg) != RegsToSpill.end(); 161 } 162 163 bool isSibling(unsigned Reg); 164 MachineInstr *traceSiblingValue(unsigned, VNInfo*, VNInfo*); 165 void propagateSiblingValue(SibValueMap::iterator, VNInfo *VNI = nullptr); 166 void analyzeSiblingValues(); 167 168 bool hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI); 169 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 170 171 void markValueUsed(LiveInterval*, VNInfo*); 172 bool reMaterializeFor(LiveInterval&, MachineBasicBlock::iterator MI); 173 void reMaterializeAll(); 174 175 bool coalesceStackAccess(MachineInstr *MI, unsigned Reg); 176 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> >, 177 MachineInstr *LoadMI = nullptr); 178 void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI); 179 void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI); 180 181 void spillAroundUses(unsigned Reg); 182 void spillAll(); 183 }; 184 } 185 186 namespace llvm { 187 Spiller *createInlineSpiller(MachineFunctionPass &pass, 188 MachineFunction &mf, 189 VirtRegMap &vrm) { 190 return new InlineSpiller(pass, mf, vrm); 191 } 192 } 193 194 //===----------------------------------------------------------------------===// 195 // Snippets 196 //===----------------------------------------------------------------------===// 197 198 // When spilling a virtual register, we also spill any snippets it is connected 199 // to. The snippets are small live ranges that only have a single real use, 200 // leftovers from live range splitting. Spilling them enables memory operand 201 // folding or tightens the live range around the single use. 202 // 203 // This minimizes register pressure and maximizes the store-to-load distance for 204 // spill slots which can be important in tight loops. 205 206 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 207 /// otherwise return 0. 208 static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) { 209 if (!MI->isFullCopy()) 210 return 0; 211 if (MI->getOperand(0).getReg() == Reg) 212 return MI->getOperand(1).getReg(); 213 if (MI->getOperand(1).getReg() == Reg) 214 return MI->getOperand(0).getReg(); 215 return 0; 216 } 217 218 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 219 /// It is assumed that SnipLI is a virtual register with the same original as 220 /// Edit->getReg(). 221 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 222 unsigned Reg = Edit->getReg(); 223 224 // A snippet is a tiny live range with only a single instruction using it 225 // besides copies to/from Reg or spills/fills. We accept: 226 // 227 // %snip = COPY %Reg / FILL fi# 228 // %snip = USE %snip 229 // %Reg = COPY %snip / SPILL %snip, fi# 230 // 231 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) 232 return false; 233 234 MachineInstr *UseMI = nullptr; 235 236 // Check that all uses satisfy our criteria. 237 for (MachineRegisterInfo::reg_instr_nodbg_iterator 238 RI = MRI.reg_instr_nodbg_begin(SnipLI.reg), 239 E = MRI.reg_instr_nodbg_end(); RI != E; ) { 240 MachineInstr *MI = &*(RI++); 241 242 // Allow copies to/from Reg. 243 if (isFullCopyOf(MI, Reg)) 244 continue; 245 246 // Allow stack slot loads. 247 int FI; 248 if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 249 continue; 250 251 // Allow stack slot stores. 252 if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 253 continue; 254 255 // Allow a single additional instruction. 256 if (UseMI && MI != UseMI) 257 return false; 258 UseMI = MI; 259 } 260 return true; 261 } 262 263 /// collectRegsToSpill - Collect live range snippets that only have a single 264 /// real use. 265 void InlineSpiller::collectRegsToSpill() { 266 unsigned Reg = Edit->getReg(); 267 268 // Main register always spills. 269 RegsToSpill.assign(1, Reg); 270 SnippetCopies.clear(); 271 272 // Snippets all have the same original, so there can't be any for an original 273 // register. 274 if (Original == Reg) 275 return; 276 277 for (MachineRegisterInfo::reg_instr_iterator 278 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) { 279 MachineInstr *MI = &*(RI++); 280 unsigned SnipReg = isFullCopyOf(MI, Reg); 281 if (!isSibling(SnipReg)) 282 continue; 283 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 284 if (!isSnippet(SnipLI)) 285 continue; 286 SnippetCopies.insert(MI); 287 if (isRegToSpill(SnipReg)) 288 continue; 289 RegsToSpill.push_back(SnipReg); 290 DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 291 ++NumSnippets; 292 } 293 } 294 295 296 //===----------------------------------------------------------------------===// 297 // Sibling Values 298 //===----------------------------------------------------------------------===// 299 300 // After live range splitting, some values to be spilled may be defined by 301 // copies from sibling registers. We trace the sibling copies back to the 302 // original value if it still exists. We need it for rematerialization. 303 // 304 // Even when the value can't be rematerialized, we still want to determine if 305 // the value has already been spilled, or we may want to hoist the spill from a 306 // loop. 307 308 bool InlineSpiller::isSibling(unsigned Reg) { 309 return TargetRegisterInfo::isVirtualRegister(Reg) && 310 VRM.getOriginal(Reg) == Original; 311 } 312 313 #ifndef NDEBUG 314 static raw_ostream &operator<<(raw_ostream &OS, 315 const InlineSpiller::SibValueInfo &SVI) { 316 OS << "spill " << PrintReg(SVI.SpillReg) << ':' 317 << SVI.SpillVNI->id << '@' << SVI.SpillVNI->def; 318 if (SVI.SpillMBB) 319 OS << " in BB#" << SVI.SpillMBB->getNumber(); 320 if (SVI.AllDefsAreReloads) 321 OS << " all-reloads"; 322 if (SVI.DefByOrigPHI) 323 OS << " orig-phi"; 324 if (SVI.KillsSource) 325 OS << " kill"; 326 OS << " deps["; 327 for (unsigned i = 0, e = SVI.Deps.size(); i != e; ++i) 328 OS << ' ' << SVI.Deps[i]->id << '@' << SVI.Deps[i]->def; 329 OS << " ]"; 330 if (SVI.DefMI) 331 OS << " def: " << *SVI.DefMI; 332 else 333 OS << '\n'; 334 return OS; 335 } 336 #endif 337 338 /// propagateSiblingValue - Propagate the value in SVI to dependents if it is 339 /// known. Otherwise remember the dependency for later. 340 /// 341 /// @param SVIIter SibValues entry to propagate. 342 /// @param VNI Dependent value, or NULL to propagate to all saved dependents. 343 void InlineSpiller::propagateSiblingValue(SibValueMap::iterator SVIIter, 344 VNInfo *VNI) { 345 SibValueMap::value_type *SVI = &*SVIIter; 346 347 // When VNI is non-NULL, add it to SVI's deps, and only propagate to that. 348 TinyPtrVector<VNInfo*> FirstDeps; 349 if (VNI) { 350 FirstDeps.push_back(VNI); 351 SVI->second.Deps.push_back(VNI); 352 } 353 354 // Has the value been completely determined yet? If not, defer propagation. 355 if (!SVI->second.hasDef()) 356 return; 357 358 // Work list of values to propagate. 359 SmallSetVector<SibValueMap::value_type *, 8> WorkList; 360 WorkList.insert(SVI); 361 362 do { 363 SVI = WorkList.pop_back_val(); 364 TinyPtrVector<VNInfo*> *Deps = VNI ? &FirstDeps : &SVI->second.Deps; 365 VNI = nullptr; 366 367 SibValueInfo &SV = SVI->second; 368 if (!SV.SpillMBB) 369 SV.SpillMBB = LIS.getMBBFromIndex(SV.SpillVNI->def); 370 371 DEBUG(dbgs() << " prop to " << Deps->size() << ": " 372 << SVI->first->id << '@' << SVI->first->def << ":\t" << SV); 373 374 assert(SV.hasDef() && "Propagating undefined value"); 375 376 // Should this value be propagated as a preferred spill candidate? We don't 377 // propagate values of registers that are about to spill. 378 bool PropSpill = !DisableHoisting && !isRegToSpill(SV.SpillReg); 379 unsigned SpillDepth = ~0u; 380 381 for (TinyPtrVector<VNInfo*>::iterator DepI = Deps->begin(), 382 DepE = Deps->end(); DepI != DepE; ++DepI) { 383 SibValueMap::iterator DepSVI = SibValues.find(*DepI); 384 assert(DepSVI != SibValues.end() && "Dependent value not in SibValues"); 385 SibValueInfo &DepSV = DepSVI->second; 386 if (!DepSV.SpillMBB) 387 DepSV.SpillMBB = LIS.getMBBFromIndex(DepSV.SpillVNI->def); 388 389 bool Changed = false; 390 391 // Propagate defining instruction. 392 if (!DepSV.hasDef()) { 393 Changed = true; 394 DepSV.DefMI = SV.DefMI; 395 DepSV.DefByOrigPHI = SV.DefByOrigPHI; 396 } 397 398 // Propagate AllDefsAreReloads. For PHI values, this computes an AND of 399 // all predecessors. 400 if (!SV.AllDefsAreReloads && DepSV.AllDefsAreReloads) { 401 Changed = true; 402 DepSV.AllDefsAreReloads = false; 403 } 404 405 // Propagate best spill value. 406 if (PropSpill && SV.SpillVNI != DepSV.SpillVNI) { 407 if (SV.SpillMBB == DepSV.SpillMBB) { 408 // DepSV is in the same block. Hoist when dominated. 409 if (DepSV.KillsSource && SV.SpillVNI->def < DepSV.SpillVNI->def) { 410 // This is an alternative def earlier in the same MBB. 411 // Hoist the spill as far as possible in SpillMBB. This can ease 412 // register pressure: 413 // 414 // x = def 415 // y = use x 416 // s = copy x 417 // 418 // Hoisting the spill of s to immediately after the def removes the 419 // interference between x and y: 420 // 421 // x = def 422 // spill x 423 // y = use x<kill> 424 // 425 // This hoist only helps when the DepSV copy kills its source. 426 Changed = true; 427 DepSV.SpillReg = SV.SpillReg; 428 DepSV.SpillVNI = SV.SpillVNI; 429 DepSV.SpillMBB = SV.SpillMBB; 430 } 431 } else { 432 // DepSV is in a different block. 433 if (SpillDepth == ~0u) 434 SpillDepth = Loops.getLoopDepth(SV.SpillMBB); 435 436 // Also hoist spills to blocks with smaller loop depth, but make sure 437 // that the new value dominates. Non-phi dependents are always 438 // dominated, phis need checking. 439 440 const BranchProbability MarginProb(4, 5); // 80% 441 // Hoist a spill to outer loop if there are multiple dependents (it 442 // can be beneficial if more than one dependents are hoisted) or 443 // if DepSV (the hoisting source) is hotter than SV (the hoisting 444 // destination) (we add a 80% margin to bias a little towards 445 // loop depth). 446 bool HoistCondition = 447 (MBFI.getBlockFreq(DepSV.SpillMBB) >= 448 (MBFI.getBlockFreq(SV.SpillMBB) * MarginProb)) || 449 Deps->size() > 1; 450 451 if ((Loops.getLoopDepth(DepSV.SpillMBB) > SpillDepth) && 452 HoistCondition && 453 (!DepSVI->first->isPHIDef() || 454 MDT.dominates(SV.SpillMBB, DepSV.SpillMBB))) { 455 Changed = true; 456 DepSV.SpillReg = SV.SpillReg; 457 DepSV.SpillVNI = SV.SpillVNI; 458 DepSV.SpillMBB = SV.SpillMBB; 459 } 460 } 461 } 462 463 if (!Changed) 464 continue; 465 466 // Something changed in DepSVI. Propagate to dependents. 467 WorkList.insert(&*DepSVI); 468 469 DEBUG(dbgs() << " update " << DepSVI->first->id << '@' 470 << DepSVI->first->def << " to:\t" << DepSV); 471 } 472 } while (!WorkList.empty()); 473 } 474 475 /// traceSiblingValue - Trace a value that is about to be spilled back to the 476 /// real defining instructions by looking through sibling copies. Always stay 477 /// within the range of OrigVNI so the registers are known to carry the same 478 /// value. 479 /// 480 /// Determine if the value is defined by all reloads, so spilling isn't 481 /// necessary - the value is already in the stack slot. 482 /// 483 /// Return a defining instruction that may be a candidate for rematerialization. 484 /// 485 MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI, 486 VNInfo *OrigVNI) { 487 // Check if a cached value already exists. 488 SibValueMap::iterator SVI; 489 bool Inserted; 490 std::tie(SVI, Inserted) = 491 SibValues.insert(std::make_pair(UseVNI, SibValueInfo(UseReg, UseVNI))); 492 if (!Inserted) { 493 DEBUG(dbgs() << "Cached value " << PrintReg(UseReg) << ':' 494 << UseVNI->id << '@' << UseVNI->def << ' ' << SVI->second); 495 return SVI->second.DefMI; 496 } 497 498 DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':' 499 << UseVNI->id << '@' << UseVNI->def << '\n'); 500 501 // List of (Reg, VNI) that have been inserted into SibValues, but need to be 502 // processed. 503 SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList; 504 WorkList.push_back(std::make_pair(UseReg, UseVNI)); 505 506 do { 507 unsigned Reg; 508 VNInfo *VNI; 509 std::tie(Reg, VNI) = WorkList.pop_back_val(); 510 DEBUG(dbgs() << " " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def 511 << ":\t"); 512 513 // First check if this value has already been computed. 514 SVI = SibValues.find(VNI); 515 assert(SVI != SibValues.end() && "Missing SibValues entry"); 516 517 // Trace through PHI-defs created by live range splitting. 518 if (VNI->isPHIDef()) { 519 // Stop at original PHIs. We don't know the value at the predecessors. 520 if (VNI->def == OrigVNI->def) { 521 DEBUG(dbgs() << "orig phi value\n"); 522 SVI->second.DefByOrigPHI = true; 523 SVI->second.AllDefsAreReloads = false; 524 propagateSiblingValue(SVI); 525 continue; 526 } 527 528 // This is a PHI inserted by live range splitting. We could trace the 529 // live-out value from predecessor blocks, but that search can be very 530 // expensive if there are many predecessors and many more PHIs as 531 // generated by tail-dup when it sees an indirectbr. Instead, look at 532 // all the non-PHI defs that have the same value as OrigVNI. They must 533 // jointly dominate VNI->def. This is not optimal since VNI may actually 534 // be jointly dominated by a smaller subset of defs, so there is a change 535 // we will miss a AllDefsAreReloads optimization. 536 537 // Separate all values dominated by OrigVNI into PHIs and non-PHIs. 538 SmallVector<VNInfo*, 8> PHIs, NonPHIs; 539 LiveInterval &LI = LIS.getInterval(Reg); 540 LiveInterval &OrigLI = LIS.getInterval(Original); 541 542 for (LiveInterval::vni_iterator VI = LI.vni_begin(), VE = LI.vni_end(); 543 VI != VE; ++VI) { 544 VNInfo *VNI2 = *VI; 545 if (VNI2->isUnused()) 546 continue; 547 if (!OrigLI.containsOneValue() && 548 OrigLI.getVNInfoAt(VNI2->def) != OrigVNI) 549 continue; 550 if (VNI2->isPHIDef() && VNI2->def != OrigVNI->def) 551 PHIs.push_back(VNI2); 552 else 553 NonPHIs.push_back(VNI2); 554 } 555 DEBUG(dbgs() << "split phi value, checking " << PHIs.size() 556 << " phi-defs, and " << NonPHIs.size() 557 << " non-phi/orig defs\n"); 558 559 // Create entries for all the PHIs. Don't add them to the worklist, we 560 // are processing all of them in one go here. 561 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 562 SibValues.insert(std::make_pair(PHIs[i], SibValueInfo(Reg, PHIs[i]))); 563 564 // Add every PHI as a dependent of all the non-PHIs. 565 for (unsigned i = 0, e = NonPHIs.size(); i != e; ++i) { 566 VNInfo *NonPHI = NonPHIs[i]; 567 // Known value? Try an insertion. 568 std::tie(SVI, Inserted) = 569 SibValues.insert(std::make_pair(NonPHI, SibValueInfo(Reg, NonPHI))); 570 // Add all the PHIs as dependents of NonPHI. 571 for (unsigned pi = 0, pe = PHIs.size(); pi != pe; ++pi) 572 SVI->second.Deps.push_back(PHIs[pi]); 573 // This is the first time we see NonPHI, add it to the worklist. 574 if (Inserted) 575 WorkList.push_back(std::make_pair(Reg, NonPHI)); 576 else 577 // Propagate to all inserted PHIs, not just VNI. 578 propagateSiblingValue(SVI); 579 } 580 581 // Next work list item. 582 continue; 583 } 584 585 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 586 assert(MI && "Missing def"); 587 588 // Trace through sibling copies. 589 if (unsigned SrcReg = isFullCopyOf(MI, Reg)) { 590 if (isSibling(SrcReg)) { 591 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 592 LiveQueryResult SrcQ = SrcLI.Query(VNI->def); 593 assert(SrcQ.valueIn() && "Copy from non-existing value"); 594 // Check if this COPY kills its source. 595 SVI->second.KillsSource = SrcQ.isKill(); 596 VNInfo *SrcVNI = SrcQ.valueIn(); 597 DEBUG(dbgs() << "copy of " << PrintReg(SrcReg) << ':' 598 << SrcVNI->id << '@' << SrcVNI->def 599 << " kill=" << unsigned(SVI->second.KillsSource) << '\n'); 600 // Known sibling source value? Try an insertion. 601 std::tie(SVI, Inserted) = SibValues.insert( 602 std::make_pair(SrcVNI, SibValueInfo(SrcReg, SrcVNI))); 603 // This is the first time we see Src, add it to the worklist. 604 if (Inserted) 605 WorkList.push_back(std::make_pair(SrcReg, SrcVNI)); 606 propagateSiblingValue(SVI, VNI); 607 // Next work list item. 608 continue; 609 } 610 } 611 612 // Track reachable reloads. 613 SVI->second.DefMI = MI; 614 SVI->second.SpillMBB = MI->getParent(); 615 int FI; 616 if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) { 617 DEBUG(dbgs() << "reload\n"); 618 propagateSiblingValue(SVI); 619 // Next work list item. 620 continue; 621 } 622 623 // Potential remat candidate. 624 DEBUG(dbgs() << "def " << *MI); 625 SVI->second.AllDefsAreReloads = false; 626 propagateSiblingValue(SVI); 627 } while (!WorkList.empty()); 628 629 // Look up the value we were looking for. We already did this lookup at the 630 // top of the function, but SibValues may have been invalidated. 631 SVI = SibValues.find(UseVNI); 632 assert(SVI != SibValues.end() && "Didn't compute requested info"); 633 DEBUG(dbgs() << " traced to:\t" << SVI->second); 634 return SVI->second.DefMI; 635 } 636 637 /// analyzeSiblingValues - Trace values defined by sibling copies back to 638 /// something that isn't a sibling copy. 639 /// 640 /// Keep track of values that may be rematerializable. 641 void InlineSpiller::analyzeSiblingValues() { 642 SibValues.clear(); 643 644 // No siblings at all? 645 if (Edit->getReg() == Original) 646 return; 647 648 LiveInterval &OrigLI = LIS.getInterval(Original); 649 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 650 unsigned Reg = RegsToSpill[i]; 651 LiveInterval &LI = LIS.getInterval(Reg); 652 for (LiveInterval::const_vni_iterator VI = LI.vni_begin(), 653 VE = LI.vni_end(); VI != VE; ++VI) { 654 VNInfo *VNI = *VI; 655 if (VNI->isUnused()) 656 continue; 657 MachineInstr *DefMI = nullptr; 658 if (!VNI->isPHIDef()) { 659 DefMI = LIS.getInstructionFromIndex(VNI->def); 660 assert(DefMI && "No defining instruction"); 661 } 662 // Check possible sibling copies. 663 if (VNI->isPHIDef() || DefMI->isCopy()) { 664 VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def); 665 assert(OrigVNI && "Def outside original live range"); 666 if (OrigVNI->def != VNI->def) 667 DefMI = traceSiblingValue(Reg, VNI, OrigVNI); 668 } 669 if (DefMI && Edit->checkRematerializable(VNI, DefMI, AA)) { 670 DEBUG(dbgs() << "Value " << PrintReg(Reg) << ':' << VNI->id << '@' 671 << VNI->def << " may remat from " << *DefMI); 672 } 673 } 674 } 675 } 676 677 /// hoistSpill - Given a sibling copy that defines a value to be spilled, insert 678 /// a spill at a better location. 679 bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI) { 680 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 681 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); 682 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); 683 SibValueMap::iterator I = SibValues.find(VNI); 684 if (I == SibValues.end()) 685 return false; 686 687 const SibValueInfo &SVI = I->second; 688 689 // Let the normal folding code deal with the boring case. 690 if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI) 691 return false; 692 693 // SpillReg may have been deleted by remat and DCE. 694 if (!LIS.hasInterval(SVI.SpillReg)) { 695 DEBUG(dbgs() << "Stale interval: " << PrintReg(SVI.SpillReg) << '\n'); 696 SibValues.erase(I); 697 return false; 698 } 699 700 LiveInterval &SibLI = LIS.getInterval(SVI.SpillReg); 701 if (!SibLI.containsValue(SVI.SpillVNI)) { 702 DEBUG(dbgs() << "Stale value: " << PrintReg(SVI.SpillReg) << '\n'); 703 SibValues.erase(I); 704 return false; 705 } 706 707 // Conservatively extend the stack slot range to the range of the original 708 // value. We may be able to do better with stack slot coloring by being more 709 // careful here. 710 assert(StackInt && "No stack slot assigned yet."); 711 LiveInterval &OrigLI = LIS.getInterval(Original); 712 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 713 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 714 DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 715 << *StackInt << '\n'); 716 717 // Already spilled everywhere. 718 if (SVI.AllDefsAreReloads) { 719 DEBUG(dbgs() << "\tno spill needed: " << SVI); 720 ++NumOmitReloadSpill; 721 return true; 722 } 723 // We are going to spill SVI.SpillVNI immediately after its def, so clear out 724 // any later spills of the same value. 725 eliminateRedundantSpills(SibLI, SVI.SpillVNI); 726 727 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def); 728 MachineBasicBlock::iterator MII; 729 if (SVI.SpillVNI->isPHIDef()) 730 MII = MBB->SkipPHIsAndLabels(MBB->begin()); 731 else { 732 MachineInstr *DefMI = LIS.getInstructionFromIndex(SVI.SpillVNI->def); 733 assert(DefMI && "Defining instruction disappeared"); 734 MII = DefMI; 735 ++MII; 736 } 737 // Insert spill without kill flag immediately after def. 738 TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot, 739 MRI.getRegClass(SVI.SpillReg), &TRI); 740 --MII; // Point to store instruction. 741 LIS.InsertMachineInstrInMaps(MII); 742 DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII); 743 744 ++NumSpills; 745 ++NumHoists; 746 return true; 747 } 748 749 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 750 /// redundant spills of this value in SLI.reg and sibling copies. 751 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 752 assert(VNI && "Missing value"); 753 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 754 WorkList.push_back(std::make_pair(&SLI, VNI)); 755 assert(StackInt && "No stack slot assigned yet."); 756 757 do { 758 LiveInterval *LI; 759 std::tie(LI, VNI) = WorkList.pop_back_val(); 760 unsigned Reg = LI->reg; 761 DEBUG(dbgs() << "Checking redundant spills for " 762 << VNI->id << '@' << VNI->def << " in " << *LI << '\n'); 763 764 // Regs to spill are taken care of. 765 if (isRegToSpill(Reg)) 766 continue; 767 768 // Add all of VNI's live range to StackInt. 769 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 770 DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 771 772 // Find all spills and copies of VNI. 773 for (MachineRegisterInfo::use_instr_nodbg_iterator 774 UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 775 UI != E; ) { 776 MachineInstr *MI = &*(UI++); 777 if (!MI->isCopy() && !MI->mayStore()) 778 continue; 779 SlotIndex Idx = LIS.getInstructionIndex(MI); 780 if (LI->getVNInfoAt(Idx) != VNI) 781 continue; 782 783 // Follow sibling copies down the dominator tree. 784 if (unsigned DstReg = isFullCopyOf(MI, Reg)) { 785 if (isSibling(DstReg)) { 786 LiveInterval &DstLI = LIS.getInterval(DstReg); 787 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); 788 assert(DstVNI && "Missing defined value"); 789 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); 790 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 791 } 792 continue; 793 } 794 795 // Erase spills. 796 int FI; 797 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 798 DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI); 799 // eliminateDeadDefs won't normally remove stores, so switch opcode. 800 MI->setDesc(TII.get(TargetOpcode::KILL)); 801 DeadDefs.push_back(MI); 802 ++NumSpillsRemoved; 803 --NumSpills; 804 } 805 } 806 } while (!WorkList.empty()); 807 } 808 809 810 //===----------------------------------------------------------------------===// 811 // Rematerialization 812 //===----------------------------------------------------------------------===// 813 814 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 815 /// instruction cannot be eliminated. See through snippet copies 816 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 817 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 818 WorkList.push_back(std::make_pair(LI, VNI)); 819 do { 820 std::tie(LI, VNI) = WorkList.pop_back_val(); 821 if (!UsedValues.insert(VNI)) 822 continue; 823 824 if (VNI->isPHIDef()) { 825 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 826 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 827 PE = MBB->pred_end(); PI != PE; ++PI) { 828 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI)); 829 if (PVNI) 830 WorkList.push_back(std::make_pair(LI, PVNI)); 831 } 832 continue; 833 } 834 835 // Follow snippet copies. 836 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 837 if (!SnippetCopies.count(MI)) 838 continue; 839 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 840 assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy"); 841 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); 842 assert(SnipVNI && "Snippet undefined before copy"); 843 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 844 } while (!WorkList.empty()); 845 } 846 847 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 848 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, 849 MachineBasicBlock::iterator MI) { 850 851 // Analyze instruction 852 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 853 MIBundleOperands::VirtRegInfo RI = 854 MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops); 855 856 if (!RI.Reads) 857 return false; 858 859 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); 860 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 861 862 if (!ParentVNI) { 863 DEBUG(dbgs() << "\tadding <undef> flags: "); 864 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 865 MachineOperand &MO = MI->getOperand(i); 866 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) 867 MO.setIsUndef(); 868 } 869 DEBUG(dbgs() << UseIdx << '\t' << *MI); 870 return true; 871 } 872 873 if (SnippetCopies.count(MI)) 874 return false; 875 876 // Use an OrigVNI from traceSiblingValue when ParentVNI is a sibling copy. 877 LiveRangeEdit::Remat RM(ParentVNI); 878 SibValueMap::const_iterator SibI = SibValues.find(ParentVNI); 879 if (SibI != SibValues.end()) 880 RM.OrigMI = SibI->second.DefMI; 881 if (!Edit->canRematerializeAt(RM, UseIdx, false)) { 882 markValueUsed(&VirtReg, ParentVNI); 883 DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI); 884 return false; 885 } 886 887 // If the instruction also writes VirtReg.reg, it had better not require the 888 // same register for uses and defs. 889 if (RI.Tied) { 890 markValueUsed(&VirtReg, ParentVNI); 891 DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI); 892 return false; 893 } 894 895 // Before rematerializing into a register for a single instruction, try to 896 // fold a load into the instruction. That avoids allocating a new register. 897 if (RM.OrigMI->canFoldAsLoad() && 898 foldMemoryOperand(Ops, RM.OrigMI)) { 899 Edit->markRematerialized(RM.ParentVNI); 900 ++NumFoldedLoads; 901 return true; 902 } 903 904 // Alocate a new register for the remat. 905 unsigned NewVReg = Edit->createFrom(Original); 906 907 // Finally we can rematerialize OrigMI before MI. 908 SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewVReg, RM, 909 TRI); 910 (void)DefIdx; 911 DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 912 << *LIS.getInstructionFromIndex(DefIdx)); 913 914 // Replace operands 915 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 916 MachineOperand &MO = MI->getOperand(Ops[i].second); 917 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) { 918 MO.setReg(NewVReg); 919 MO.setIsKill(); 920 } 921 } 922 DEBUG(dbgs() << "\t " << UseIdx << '\t' << *MI << '\n'); 923 924 ++NumRemats; 925 return true; 926 } 927 928 /// reMaterializeAll - Try to rematerialize as many uses as possible, 929 /// and trim the live ranges after. 930 void InlineSpiller::reMaterializeAll() { 931 // analyzeSiblingValues has already tested all relevant defining instructions. 932 if (!Edit->anyRematerializable(AA)) 933 return; 934 935 UsedValues.clear(); 936 937 // Try to remat before all uses of snippets. 938 bool anyRemat = false; 939 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 940 unsigned Reg = RegsToSpill[i]; 941 LiveInterval &LI = LIS.getInterval(Reg); 942 for (MachineRegisterInfo::reg_bundle_iterator 943 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 944 RegI != E; ) { 945 MachineInstr *MI = &*(RegI++); 946 947 // Debug values are not allowed to affect codegen. 948 if (MI->isDebugValue()) 949 continue; 950 951 anyRemat |= reMaterializeFor(LI, MI); 952 } 953 } 954 if (!anyRemat) 955 return; 956 957 // Remove any values that were completely rematted. 958 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 959 unsigned Reg = RegsToSpill[i]; 960 LiveInterval &LI = LIS.getInterval(Reg); 961 for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 962 I != E; ++I) { 963 VNInfo *VNI = *I; 964 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 965 continue; 966 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 967 MI->addRegisterDead(Reg, &TRI); 968 if (!MI->allDefsAreDead()) 969 continue; 970 DEBUG(dbgs() << "All defs dead: " << *MI); 971 DeadDefs.push_back(MI); 972 } 973 } 974 975 // Eliminate dead code after remat. Note that some snippet copies may be 976 // deleted here. 977 if (DeadDefs.empty()) 978 return; 979 DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 980 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill); 981 982 // Get rid of deleted and empty intervals. 983 unsigned ResultPos = 0; 984 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 985 unsigned Reg = RegsToSpill[i]; 986 if (!LIS.hasInterval(Reg)) 987 continue; 988 989 LiveInterval &LI = LIS.getInterval(Reg); 990 if (LI.empty()) { 991 Edit->eraseVirtReg(Reg); 992 continue; 993 } 994 995 RegsToSpill[ResultPos++] = Reg; 996 } 997 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); 998 DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n"); 999 } 1000 1001 1002 //===----------------------------------------------------------------------===// 1003 // Spilling 1004 //===----------------------------------------------------------------------===// 1005 1006 /// If MI is a load or store of StackSlot, it can be removed. 1007 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) { 1008 int FI = 0; 1009 unsigned InstrReg = TII.isLoadFromStackSlot(MI, FI); 1010 bool IsLoad = InstrReg; 1011 if (!IsLoad) 1012 InstrReg = TII.isStoreToStackSlot(MI, FI); 1013 1014 // We have a stack access. Is it the right register and slot? 1015 if (InstrReg != Reg || FI != StackSlot) 1016 return false; 1017 1018 DEBUG(dbgs() << "Coalescing stack access: " << *MI); 1019 LIS.RemoveMachineInstrFromMaps(MI); 1020 MI->eraseFromParent(); 1021 1022 if (IsLoad) { 1023 ++NumReloadsRemoved; 1024 --NumReloads; 1025 } else { 1026 ++NumSpillsRemoved; 1027 --NumSpills; 1028 } 1029 1030 return true; 1031 } 1032 1033 #if !defined(NDEBUG) 1034 // Dump the range of instructions from B to E with their slot indexes. 1035 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, 1036 MachineBasicBlock::iterator E, 1037 LiveIntervals const &LIS, 1038 const char *const header, 1039 unsigned VReg =0) { 1040 char NextLine = '\n'; 1041 char SlotIndent = '\t'; 1042 1043 if (std::next(B) == E) { 1044 NextLine = ' '; 1045 SlotIndent = ' '; 1046 } 1047 1048 dbgs() << '\t' << header << ": " << NextLine; 1049 1050 for (MachineBasicBlock::iterator I = B; I != E; ++I) { 1051 SlotIndex Idx = LIS.getInstructionIndex(I).getRegSlot(); 1052 1053 // If a register was passed in and this instruction has it as a 1054 // destination that is marked as an early clobber, print the 1055 // early-clobber slot index. 1056 if (VReg) { 1057 MachineOperand *MO = I->findRegisterDefOperand(VReg); 1058 if (MO && MO->isEarlyClobber()) 1059 Idx = Idx.getRegSlot(true); 1060 } 1061 1062 dbgs() << SlotIndent << Idx << '\t' << *I; 1063 } 1064 } 1065 #endif 1066 1067 /// foldMemoryOperand - Try folding stack slot references in Ops into their 1068 /// instructions. 1069 /// 1070 /// @param Ops Operand indices from analyzeVirtReg(). 1071 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 1072 /// @return True on success. 1073 bool InlineSpiller:: 1074 foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops, 1075 MachineInstr *LoadMI) { 1076 if (Ops.empty()) 1077 return false; 1078 // Don't attempt folding in bundles. 1079 MachineInstr *MI = Ops.front().first; 1080 if (Ops.back().first != MI || MI->isBundled()) 1081 return false; 1082 1083 bool WasCopy = MI->isCopy(); 1084 unsigned ImpReg = 0; 1085 1086 bool SpillSubRegs = (MI->getOpcode() == TargetOpcode::PATCHPOINT || 1087 MI->getOpcode() == TargetOpcode::STACKMAP); 1088 1089 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 1090 // operands. 1091 SmallVector<unsigned, 8> FoldOps; 1092 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1093 unsigned Idx = Ops[i].second; 1094 MachineOperand &MO = MI->getOperand(Idx); 1095 if (MO.isImplicit()) { 1096 ImpReg = MO.getReg(); 1097 continue; 1098 } 1099 // FIXME: Teach targets to deal with subregs. 1100 if (!SpillSubRegs && MO.getSubReg()) 1101 return false; 1102 // We cannot fold a load instruction into a def. 1103 if (LoadMI && MO.isDef()) 1104 return false; 1105 // Tied use operands should not be passed to foldMemoryOperand. 1106 if (!MI->isRegTiedToDefOperand(Idx)) 1107 FoldOps.push_back(Idx); 1108 } 1109 1110 MachineInstrSpan MIS(MI); 1111 1112 MachineInstr *FoldMI = 1113 LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI) 1114 : TII.foldMemoryOperand(MI, FoldOps, StackSlot); 1115 if (!FoldMI) 1116 return false; 1117 1118 // Remove LIS for any dead defs in the original MI not in FoldMI. 1119 for (MIBundleOperands MO(MI); MO.isValid(); ++MO) { 1120 if (!MO->isReg()) 1121 continue; 1122 unsigned Reg = MO->getReg(); 1123 if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) || 1124 MRI.isReserved(Reg)) { 1125 continue; 1126 } 1127 // Skip non-Defs, including undef uses and internal reads. 1128 if (MO->isUse()) 1129 continue; 1130 MIBundleOperands::PhysRegInfo RI = 1131 MIBundleOperands(FoldMI).analyzePhysReg(Reg, &TRI); 1132 if (RI.Defines) 1133 continue; 1134 // FoldMI does not define this physreg. Remove the LI segment. 1135 assert(MO->isDead() && "Cannot fold physreg def"); 1136 for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units) { 1137 if (LiveRange *LR = LIS.getCachedRegUnit(*Units)) { 1138 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); 1139 if (VNInfo *VNI = LR->getVNInfoAt(Idx)) 1140 LR->removeValNo(VNI); 1141 } 1142 } 1143 } 1144 1145 LIS.ReplaceMachineInstrInMaps(MI, FoldMI); 1146 MI->eraseFromParent(); 1147 1148 // Insert any new instructions other than FoldMI into the LIS maps. 1149 assert(!MIS.empty() && "Unexpected empty span of instructions!"); 1150 for (MachineBasicBlock::iterator MII = MIS.begin(), End = MIS.end(); 1151 MII != End; ++MII) 1152 if (&*MII != FoldMI) 1153 LIS.InsertMachineInstrInMaps(&*MII); 1154 1155 // TII.foldMemoryOperand may have left some implicit operands on the 1156 // instruction. Strip them. 1157 if (ImpReg) 1158 for (unsigned i = FoldMI->getNumOperands(); i; --i) { 1159 MachineOperand &MO = FoldMI->getOperand(i - 1); 1160 if (!MO.isReg() || !MO.isImplicit()) 1161 break; 1162 if (MO.getReg() == ImpReg) 1163 FoldMI->RemoveOperand(i - 1); 1164 } 1165 1166 DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, 1167 "folded")); 1168 1169 if (!WasCopy) 1170 ++NumFolded; 1171 else if (Ops.front().second == 0) 1172 ++NumSpills; 1173 else 1174 ++NumReloads; 1175 return true; 1176 } 1177 1178 void InlineSpiller::insertReload(unsigned NewVReg, 1179 SlotIndex Idx, 1180 MachineBasicBlock::iterator MI) { 1181 MachineBasicBlock &MBB = *MI->getParent(); 1182 1183 MachineInstrSpan MIS(MI); 1184 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, 1185 MRI.getRegClass(NewVReg), &TRI); 1186 1187 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); 1188 1189 DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload", 1190 NewVReg)); 1191 ++NumReloads; 1192 } 1193 1194 /// insertSpill - Insert a spill of NewVReg after MI. 1195 void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill, 1196 MachineBasicBlock::iterator MI) { 1197 MachineBasicBlock &MBB = *MI->getParent(); 1198 1199 MachineInstrSpan MIS(MI); 1200 TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot, 1201 MRI.getRegClass(NewVReg), &TRI); 1202 1203 LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end()); 1204 1205 DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS, 1206 "spill")); 1207 ++NumSpills; 1208 } 1209 1210 /// spillAroundUses - insert spill code around each use of Reg. 1211 void InlineSpiller::spillAroundUses(unsigned Reg) { 1212 DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n'); 1213 LiveInterval &OldLI = LIS.getInterval(Reg); 1214 1215 // Iterate over instructions using Reg. 1216 for (MachineRegisterInfo::reg_bundle_iterator 1217 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 1218 RegI != E; ) { 1219 MachineInstr *MI = &*(RegI++); 1220 1221 // Debug values are not allowed to affect codegen. 1222 if (MI->isDebugValue()) { 1223 // Modify DBG_VALUE now that the value is in a spill slot. 1224 bool IsIndirect = MI->isIndirectDebugValue(); 1225 uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0; 1226 const MDNode *Var = MI->getDebugVariable(); 1227 const MDNode *Expr = MI->getDebugExpression(); 1228 DebugLoc DL = MI->getDebugLoc(); 1229 DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI); 1230 MachineBasicBlock *MBB = MI->getParent(); 1231 BuildMI(*MBB, MBB->erase(MI), DL, TII.get(TargetOpcode::DBG_VALUE)) 1232 .addFrameIndex(StackSlot) 1233 .addImm(Offset) 1234 .addMetadata(Var) 1235 .addMetadata(Expr); 1236 continue; 1237 } 1238 1239 // Ignore copies to/from snippets. We'll delete them. 1240 if (SnippetCopies.count(MI)) 1241 continue; 1242 1243 // Stack slot accesses may coalesce away. 1244 if (coalesceStackAccess(MI, Reg)) 1245 continue; 1246 1247 // Analyze instruction. 1248 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; 1249 MIBundleOperands::VirtRegInfo RI = 1250 MIBundleOperands(MI).analyzeVirtReg(Reg, &Ops); 1251 1252 // Find the slot index where this instruction reads and writes OldLI. 1253 // This is usually the def slot, except for tied early clobbers. 1254 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); 1255 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) 1256 if (SlotIndex::isSameInstr(Idx, VNI->def)) 1257 Idx = VNI->def; 1258 1259 // Check for a sibling copy. 1260 unsigned SibReg = isFullCopyOf(MI, Reg); 1261 if (SibReg && isSibling(SibReg)) { 1262 // This may actually be a copy between snippets. 1263 if (isRegToSpill(SibReg)) { 1264 DEBUG(dbgs() << "Found new snippet copy: " << *MI); 1265 SnippetCopies.insert(MI); 1266 continue; 1267 } 1268 if (RI.Writes) { 1269 // Hoist the spill of a sib-reg copy. 1270 if (hoistSpill(OldLI, MI)) { 1271 // This COPY is now dead, the value is already in the stack slot. 1272 MI->getOperand(0).setIsDead(); 1273 DeadDefs.push_back(MI); 1274 continue; 1275 } 1276 } else { 1277 // This is a reload for a sib-reg copy. Drop spills downstream. 1278 LiveInterval &SibLI = LIS.getInterval(SibReg); 1279 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 1280 // The COPY will fold to a reload below. 1281 } 1282 } 1283 1284 // Attempt to fold memory ops. 1285 if (foldMemoryOperand(Ops)) 1286 continue; 1287 1288 // Create a new virtual register for spill/fill. 1289 // FIXME: Infer regclass from instruction alone. 1290 unsigned NewVReg = Edit->createFrom(Reg); 1291 1292 if (RI.Reads) 1293 insertReload(NewVReg, Idx, MI); 1294 1295 // Rewrite instruction operands. 1296 bool hasLiveDef = false; 1297 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1298 MachineOperand &MO = Ops[i].first->getOperand(Ops[i].second); 1299 MO.setReg(NewVReg); 1300 if (MO.isUse()) { 1301 if (!Ops[i].first->isRegTiedToDefOperand(Ops[i].second)) 1302 MO.setIsKill(); 1303 } else { 1304 if (!MO.isDead()) 1305 hasLiveDef = true; 1306 } 1307 } 1308 DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n'); 1309 1310 // FIXME: Use a second vreg if instruction has no tied ops. 1311 if (RI.Writes) 1312 if (hasLiveDef) 1313 insertSpill(NewVReg, true, MI); 1314 } 1315 } 1316 1317 /// spillAll - Spill all registers remaining after rematerialization. 1318 void InlineSpiller::spillAll() { 1319 // Update LiveStacks now that we are committed to spilling. 1320 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 1321 StackSlot = VRM.assignVirt2StackSlot(Original); 1322 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 1323 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); 1324 } else 1325 StackInt = &LSS.getInterval(StackSlot); 1326 1327 if (Original != Edit->getReg()) 1328 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 1329 1330 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 1331 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) 1332 StackInt->MergeSegmentsInAsValue(LIS.getInterval(RegsToSpill[i]), 1333 StackInt->getValNumInfo(0)); 1334 DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 1335 1336 // Spill around uses of all RegsToSpill. 1337 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) 1338 spillAroundUses(RegsToSpill[i]); 1339 1340 // Hoisted spills may cause dead code. 1341 if (!DeadDefs.empty()) { 1342 DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 1343 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill); 1344 } 1345 1346 // Finally delete the SnippetCopies. 1347 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 1348 for (MachineRegisterInfo::reg_instr_iterator 1349 RI = MRI.reg_instr_begin(RegsToSpill[i]), E = MRI.reg_instr_end(); 1350 RI != E; ) { 1351 MachineInstr *MI = &*(RI++); 1352 assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy"); 1353 // FIXME: Do this with a LiveRangeEdit callback. 1354 LIS.RemoveMachineInstrFromMaps(MI); 1355 MI->eraseFromParent(); 1356 } 1357 } 1358 1359 // Delete all spilled registers. 1360 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) 1361 Edit->eraseVirtReg(RegsToSpill[i]); 1362 } 1363 1364 void InlineSpiller::spill(LiveRangeEdit &edit) { 1365 ++NumSpilledRanges; 1366 Edit = &edit; 1367 assert(!TargetRegisterInfo::isStackSlot(edit.getReg()) 1368 && "Trying to spill a stack slot."); 1369 // Share a stack slot among all descendants of Original. 1370 Original = VRM.getOriginal(edit.getReg()); 1371 StackSlot = VRM.getStackSlot(Original); 1372 StackInt = nullptr; 1373 1374 DEBUG(dbgs() << "Inline spilling " 1375 << MRI.getRegClass(edit.getReg())->getName() 1376 << ':' << edit.getParent() 1377 << "\nFrom original " << PrintReg(Original) << '\n'); 1378 assert(edit.getParent().isSpillable() && 1379 "Attempting to spill already spilled value."); 1380 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1381 1382 collectRegsToSpill(); 1383 analyzeSiblingValues(); 1384 reMaterializeAll(); 1385 1386 // Remat may handle everything. 1387 if (!RegsToSpill.empty()) 1388 spillAll(); 1389 1390 Edit->calculateRegClassAndHint(MF, Loops, MBFI); 1391 } 1392