1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The inline spiller modifies the machine function directly instead of 11 // inserting spills and restores in VirtRegMap. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "LiveRangeCalc.h" 16 #include "Spiller.h" 17 #include "SplitKit.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/CodeGen/LiveInterval.h" 29 #include "llvm/CodeGen/LiveIntervals.h" 30 #include "llvm/CodeGen/LiveRangeEdit.h" 31 #include "llvm/CodeGen/LiveStacks.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 34 #include "llvm/CodeGen/MachineDominators.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineFunctionPass.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineInstrBundle.h" 40 #include "llvm/CodeGen/MachineLoopInfo.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/CodeGen/SlotIndexes.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetOpcodes.h" 46 #include "llvm/CodeGen/TargetRegisterInfo.h" 47 #include "llvm/CodeGen/TargetSubtargetInfo.h" 48 #include "llvm/CodeGen/VirtRegMap.h" 49 #include "llvm/Support/BlockFrequency.h" 50 #include "llvm/Support/BranchProbability.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Compiler.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include <cassert> 57 #include <iterator> 58 #include <tuple> 59 #include <utility> 60 #include <vector> 61 62 using namespace llvm; 63 64 #define DEBUG_TYPE "regalloc" 65 66 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 67 STATISTIC(NumSnippets, "Number of spilled snippets"); 68 STATISTIC(NumSpills, "Number of spills inserted"); 69 STATISTIC(NumSpillsRemoved, "Number of spills removed"); 70 STATISTIC(NumReloads, "Number of reloads inserted"); 71 STATISTIC(NumReloadsRemoved, "Number of reloads removed"); 72 STATISTIC(NumFolded, "Number of folded stack accesses"); 73 STATISTIC(NumFoldedLoads, "Number of folded loads"); 74 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 75 76 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden, 77 cl::desc("Disable inline spill hoisting")); 78 79 namespace { 80 81 class HoistSpillHelper : private LiveRangeEdit::Delegate { 82 MachineFunction &MF; 83 LiveIntervals &LIS; 84 LiveStacks &LSS; 85 AliasAnalysis *AA; 86 MachineDominatorTree &MDT; 87 MachineLoopInfo &Loops; 88 VirtRegMap &VRM; 89 MachineRegisterInfo &MRI; 90 const TargetInstrInfo &TII; 91 const TargetRegisterInfo &TRI; 92 const MachineBlockFrequencyInfo &MBFI; 93 94 InsertPointAnalysis IPA; 95 96 // Map from StackSlot to the LiveInterval of the original register. 97 // Note the LiveInterval of the original register may have been deleted 98 // after it is spilled. We keep a copy here to track the range where 99 // spills can be moved. 100 DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI; 101 102 // Map from pair of (StackSlot and Original VNI) to a set of spills which 103 // have the same stackslot and have equal values defined by Original VNI. 104 // These spills are mergeable and are hoist candiates. 105 using MergeableSpillsMap = 106 MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>; 107 MergeableSpillsMap MergeableSpills; 108 109 /// This is the map from original register to a set containing all its 110 /// siblings. To hoist a spill to another BB, we need to find out a live 111 /// sibling there and use it as the source of the new spill. 112 DenseMap<unsigned, SmallSetVector<unsigned, 16>> Virt2SiblingsMap; 113 114 bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 115 MachineBasicBlock &BB, unsigned &LiveReg); 116 117 void rmRedundantSpills( 118 SmallPtrSet<MachineInstr *, 16> &Spills, 119 SmallVectorImpl<MachineInstr *> &SpillsToRm, 120 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 121 122 void getVisitOrders( 123 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 124 SmallVectorImpl<MachineDomTreeNode *> &Orders, 125 SmallVectorImpl<MachineInstr *> &SpillsToRm, 126 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 127 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 128 129 void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI, 130 SmallPtrSet<MachineInstr *, 16> &Spills, 131 SmallVectorImpl<MachineInstr *> &SpillsToRm, 132 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns); 133 134 public: 135 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf, 136 VirtRegMap &vrm) 137 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 138 LSS(pass.getAnalysis<LiveStacks>()), 139 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 140 MDT(pass.getAnalysis<MachineDominatorTree>()), 141 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 142 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 143 TRI(*mf.getSubtarget().getRegisterInfo()), 144 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 145 IPA(LIS, mf.getNumBlockIDs()) {} 146 147 void addToMergeableSpills(MachineInstr &Spill, int StackSlot, 148 unsigned Original); 149 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot); 150 void hoistAllSpills(); 151 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 152 }; 153 154 class InlineSpiller : public Spiller { 155 MachineFunction &MF; 156 LiveIntervals &LIS; 157 LiveStacks &LSS; 158 AliasAnalysis *AA; 159 MachineDominatorTree &MDT; 160 MachineLoopInfo &Loops; 161 VirtRegMap &VRM; 162 MachineRegisterInfo &MRI; 163 const TargetInstrInfo &TII; 164 const TargetRegisterInfo &TRI; 165 const MachineBlockFrequencyInfo &MBFI; 166 167 // Variables that are valid during spill(), but used by multiple methods. 168 LiveRangeEdit *Edit; 169 LiveInterval *StackInt; 170 int StackSlot; 171 unsigned Original; 172 173 // All registers to spill to StackSlot, including the main register. 174 SmallVector<unsigned, 8> RegsToSpill; 175 176 // All COPY instructions to/from snippets. 177 // They are ignored since both operands refer to the same stack slot. 178 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 179 180 // Values that failed to remat at some point. 181 SmallPtrSet<VNInfo*, 8> UsedValues; 182 183 // Dead defs generated during spilling. 184 SmallVector<MachineInstr*, 8> DeadDefs; 185 186 // Object records spills information and does the hoisting. 187 HoistSpillHelper HSpiller; 188 189 ~InlineSpiller() override = default; 190 191 public: 192 InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm) 193 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 194 LSS(pass.getAnalysis<LiveStacks>()), 195 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 196 MDT(pass.getAnalysis<MachineDominatorTree>()), 197 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 198 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 199 TRI(*mf.getSubtarget().getRegisterInfo()), 200 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 201 HSpiller(pass, mf, vrm) {} 202 203 void spill(LiveRangeEdit &) override; 204 void postOptimization() override; 205 206 private: 207 bool isSnippet(const LiveInterval &SnipLI); 208 void collectRegsToSpill(); 209 210 bool isRegToSpill(unsigned Reg) { return is_contained(RegsToSpill, Reg); } 211 212 bool isSibling(unsigned Reg); 213 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI); 214 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 215 216 void markValueUsed(LiveInterval*, VNInfo*); 217 bool reMaterializeFor(LiveInterval &, MachineInstr &MI); 218 void reMaterializeAll(); 219 220 bool coalesceStackAccess(MachineInstr *MI, unsigned Reg); 221 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>, 222 MachineInstr *LoadMI = nullptr); 223 void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI); 224 void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI); 225 226 void spillAroundUses(unsigned Reg); 227 void spillAll(); 228 }; 229 230 } // end anonymous namespace 231 232 Spiller::~Spiller() = default; 233 234 void Spiller::anchor() {} 235 236 Spiller *llvm::createInlineSpiller(MachineFunctionPass &pass, 237 MachineFunction &mf, 238 VirtRegMap &vrm) { 239 return new InlineSpiller(pass, mf, vrm); 240 } 241 242 //===----------------------------------------------------------------------===// 243 // Snippets 244 //===----------------------------------------------------------------------===// 245 246 // When spilling a virtual register, we also spill any snippets it is connected 247 // to. The snippets are small live ranges that only have a single real use, 248 // leftovers from live range splitting. Spilling them enables memory operand 249 // folding or tightens the live range around the single use. 250 // 251 // This minimizes register pressure and maximizes the store-to-load distance for 252 // spill slots which can be important in tight loops. 253 254 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 255 /// otherwise return 0. 256 static unsigned isFullCopyOf(const MachineInstr &MI, unsigned Reg) { 257 if (!MI.isFullCopy()) 258 return 0; 259 if (MI.getOperand(0).getReg() == Reg) 260 return MI.getOperand(1).getReg(); 261 if (MI.getOperand(1).getReg() == Reg) 262 return MI.getOperand(0).getReg(); 263 return 0; 264 } 265 266 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 267 /// It is assumed that SnipLI is a virtual register with the same original as 268 /// Edit->getReg(). 269 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 270 unsigned Reg = Edit->getReg(); 271 272 // A snippet is a tiny live range with only a single instruction using it 273 // besides copies to/from Reg or spills/fills. We accept: 274 // 275 // %snip = COPY %Reg / FILL fi# 276 // %snip = USE %snip 277 // %Reg = COPY %snip / SPILL %snip, fi# 278 // 279 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) 280 return false; 281 282 MachineInstr *UseMI = nullptr; 283 284 // Check that all uses satisfy our criteria. 285 for (MachineRegisterInfo::reg_instr_nodbg_iterator 286 RI = MRI.reg_instr_nodbg_begin(SnipLI.reg), 287 E = MRI.reg_instr_nodbg_end(); RI != E; ) { 288 MachineInstr &MI = *RI++; 289 290 // Allow copies to/from Reg. 291 if (isFullCopyOf(MI, Reg)) 292 continue; 293 294 // Allow stack slot loads. 295 int FI; 296 if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 297 continue; 298 299 // Allow stack slot stores. 300 if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 301 continue; 302 303 // Allow a single additional instruction. 304 if (UseMI && &MI != UseMI) 305 return false; 306 UseMI = &MI; 307 } 308 return true; 309 } 310 311 /// collectRegsToSpill - Collect live range snippets that only have a single 312 /// real use. 313 void InlineSpiller::collectRegsToSpill() { 314 unsigned Reg = Edit->getReg(); 315 316 // Main register always spills. 317 RegsToSpill.assign(1, Reg); 318 SnippetCopies.clear(); 319 320 // Snippets all have the same original, so there can't be any for an original 321 // register. 322 if (Original == Reg) 323 return; 324 325 for (MachineRegisterInfo::reg_instr_iterator 326 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) { 327 MachineInstr &MI = *RI++; 328 unsigned SnipReg = isFullCopyOf(MI, Reg); 329 if (!isSibling(SnipReg)) 330 continue; 331 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 332 if (!isSnippet(SnipLI)) 333 continue; 334 SnippetCopies.insert(&MI); 335 if (isRegToSpill(SnipReg)) 336 continue; 337 RegsToSpill.push_back(SnipReg); 338 DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 339 ++NumSnippets; 340 } 341 } 342 343 bool InlineSpiller::isSibling(unsigned Reg) { 344 return TargetRegisterInfo::isVirtualRegister(Reg) && 345 VRM.getOriginal(Reg) == Original; 346 } 347 348 /// It is beneficial to spill to earlier place in the same BB in case 349 /// as follows: 350 /// There is an alternative def earlier in the same MBB. 351 /// Hoist the spill as far as possible in SpillMBB. This can ease 352 /// register pressure: 353 /// 354 /// x = def 355 /// y = use x 356 /// s = copy x 357 /// 358 /// Hoisting the spill of s to immediately after the def removes the 359 /// interference between x and y: 360 /// 361 /// x = def 362 /// spill x 363 /// y = use killed x 364 /// 365 /// This hoist only helps when the copy kills its source. 366 /// 367 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI, 368 MachineInstr &CopyMI) { 369 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 370 #ifndef NDEBUG 371 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); 372 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); 373 #endif 374 375 unsigned SrcReg = CopyMI.getOperand(1).getReg(); 376 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 377 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx); 378 LiveQueryResult SrcQ = SrcLI.Query(Idx); 379 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def); 380 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill()) 381 return false; 382 383 // Conservatively extend the stack slot range to the range of the original 384 // value. We may be able to do better with stack slot coloring by being more 385 // careful here. 386 assert(StackInt && "No stack slot assigned yet."); 387 LiveInterval &OrigLI = LIS.getInterval(Original); 388 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 389 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 390 DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 391 << *StackInt << '\n'); 392 393 // We are going to spill SrcVNI immediately after its def, so clear out 394 // any later spills of the same value. 395 eliminateRedundantSpills(SrcLI, SrcVNI); 396 397 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def); 398 MachineBasicBlock::iterator MII; 399 if (SrcVNI->isPHIDef()) 400 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 401 else { 402 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def); 403 assert(DefMI && "Defining instruction disappeared"); 404 MII = DefMI; 405 ++MII; 406 } 407 // Insert spill without kill flag immediately after def. 408 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot, 409 MRI.getRegClass(SrcReg), &TRI); 410 --MII; // Point to store instruction. 411 LIS.InsertMachineInstrInMaps(*MII); 412 DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII); 413 414 HSpiller.addToMergeableSpills(*MII, StackSlot, Original); 415 ++NumSpills; 416 return true; 417 } 418 419 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 420 /// redundant spills of this value in SLI.reg and sibling copies. 421 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 422 assert(VNI && "Missing value"); 423 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 424 WorkList.push_back(std::make_pair(&SLI, VNI)); 425 assert(StackInt && "No stack slot assigned yet."); 426 427 do { 428 LiveInterval *LI; 429 std::tie(LI, VNI) = WorkList.pop_back_val(); 430 unsigned Reg = LI->reg; 431 DEBUG(dbgs() << "Checking redundant spills for " 432 << VNI->id << '@' << VNI->def << " in " << *LI << '\n'); 433 434 // Regs to spill are taken care of. 435 if (isRegToSpill(Reg)) 436 continue; 437 438 // Add all of VNI's live range to StackInt. 439 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 440 DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 441 442 // Find all spills and copies of VNI. 443 for (MachineRegisterInfo::use_instr_nodbg_iterator 444 UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 445 UI != E; ) { 446 MachineInstr &MI = *UI++; 447 if (!MI.isCopy() && !MI.mayStore()) 448 continue; 449 SlotIndex Idx = LIS.getInstructionIndex(MI); 450 if (LI->getVNInfoAt(Idx) != VNI) 451 continue; 452 453 // Follow sibling copies down the dominator tree. 454 if (unsigned DstReg = isFullCopyOf(MI, Reg)) { 455 if (isSibling(DstReg)) { 456 LiveInterval &DstLI = LIS.getInterval(DstReg); 457 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); 458 assert(DstVNI && "Missing defined value"); 459 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); 460 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 461 } 462 continue; 463 } 464 465 // Erase spills. 466 int FI; 467 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 468 DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI); 469 // eliminateDeadDefs won't normally remove stores, so switch opcode. 470 MI.setDesc(TII.get(TargetOpcode::KILL)); 471 DeadDefs.push_back(&MI); 472 ++NumSpillsRemoved; 473 if (HSpiller.rmFromMergeableSpills(MI, StackSlot)) 474 --NumSpills; 475 } 476 } 477 } while (!WorkList.empty()); 478 } 479 480 //===----------------------------------------------------------------------===// 481 // Rematerialization 482 //===----------------------------------------------------------------------===// 483 484 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 485 /// instruction cannot be eliminated. See through snippet copies 486 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 487 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 488 WorkList.push_back(std::make_pair(LI, VNI)); 489 do { 490 std::tie(LI, VNI) = WorkList.pop_back_val(); 491 if (!UsedValues.insert(VNI).second) 492 continue; 493 494 if (VNI->isPHIDef()) { 495 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 496 for (MachineBasicBlock *P : MBB->predecessors()) { 497 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P)); 498 if (PVNI) 499 WorkList.push_back(std::make_pair(LI, PVNI)); 500 } 501 continue; 502 } 503 504 // Follow snippet copies. 505 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 506 if (!SnippetCopies.count(MI)) 507 continue; 508 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 509 assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy"); 510 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); 511 assert(SnipVNI && "Snippet undefined before copy"); 512 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 513 } while (!WorkList.empty()); 514 } 515 516 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 517 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) { 518 // Analyze instruction 519 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 520 MIBundleOperands::VirtRegInfo RI = 521 MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops); 522 523 if (!RI.Reads) 524 return false; 525 526 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); 527 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 528 529 if (!ParentVNI) { 530 DEBUG(dbgs() << "\tadding <undef> flags: "); 531 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 532 MachineOperand &MO = MI.getOperand(i); 533 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) 534 MO.setIsUndef(); 535 } 536 DEBUG(dbgs() << UseIdx << '\t' << MI); 537 return true; 538 } 539 540 if (SnippetCopies.count(&MI)) 541 return false; 542 543 LiveInterval &OrigLI = LIS.getInterval(Original); 544 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 545 LiveRangeEdit::Remat RM(ParentVNI); 546 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 547 548 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) { 549 markValueUsed(&VirtReg, ParentVNI); 550 DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 551 return false; 552 } 553 554 // If the instruction also writes VirtReg.reg, it had better not require the 555 // same register for uses and defs. 556 if (RI.Tied) { 557 markValueUsed(&VirtReg, ParentVNI); 558 DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI); 559 return false; 560 } 561 562 // Before rematerializing into a register for a single instruction, try to 563 // fold a load into the instruction. That avoids allocating a new register. 564 if (RM.OrigMI->canFoldAsLoad() && 565 foldMemoryOperand(Ops, RM.OrigMI)) { 566 Edit->markRematerialized(RM.ParentVNI); 567 ++NumFoldedLoads; 568 return true; 569 } 570 571 // Allocate a new register for the remat. 572 unsigned NewVReg = Edit->createFrom(Original); 573 574 // Finally we can rematerialize OrigMI before MI. 575 SlotIndex DefIdx = 576 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI); 577 578 // We take the DebugLoc from MI, since OrigMI may be attributed to a 579 // different source location. 580 auto *NewMI = LIS.getInstructionFromIndex(DefIdx); 581 NewMI->setDebugLoc(MI.getDebugLoc()); 582 583 (void)DefIdx; 584 DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 585 << *LIS.getInstructionFromIndex(DefIdx)); 586 587 // Replace operands 588 for (const auto &OpPair : Ops) { 589 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 590 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) { 591 MO.setReg(NewVReg); 592 MO.setIsKill(); 593 } 594 } 595 DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n'); 596 597 ++NumRemats; 598 return true; 599 } 600 601 /// reMaterializeAll - Try to rematerialize as many uses as possible, 602 /// and trim the live ranges after. 603 void InlineSpiller::reMaterializeAll() { 604 if (!Edit->anyRematerializable(AA)) 605 return; 606 607 UsedValues.clear(); 608 609 // Try to remat before all uses of snippets. 610 bool anyRemat = false; 611 for (unsigned Reg : RegsToSpill) { 612 LiveInterval &LI = LIS.getInterval(Reg); 613 for (MachineRegisterInfo::reg_bundle_iterator 614 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 615 RegI != E; ) { 616 MachineInstr &MI = *RegI++; 617 618 // Debug values are not allowed to affect codegen. 619 if (MI.isDebugValue()) 620 continue; 621 622 anyRemat |= reMaterializeFor(LI, MI); 623 } 624 } 625 if (!anyRemat) 626 return; 627 628 // Remove any values that were completely rematted. 629 for (unsigned Reg : RegsToSpill) { 630 LiveInterval &LI = LIS.getInterval(Reg); 631 for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 632 I != E; ++I) { 633 VNInfo *VNI = *I; 634 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 635 continue; 636 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 637 MI->addRegisterDead(Reg, &TRI); 638 if (!MI->allDefsAreDead()) 639 continue; 640 DEBUG(dbgs() << "All defs dead: " << *MI); 641 DeadDefs.push_back(MI); 642 } 643 } 644 645 // Eliminate dead code after remat. Note that some snippet copies may be 646 // deleted here. 647 if (DeadDefs.empty()) 648 return; 649 DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 650 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 651 652 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions 653 // after rematerialization. To remove a VNI for a vreg from its LiveInterval, 654 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all 655 // removed, PHI VNI are still left in the LiveInterval. 656 // So to get rid of unused reg, we need to check whether it has non-dbg 657 // reference instead of whether it has non-empty interval. 658 unsigned ResultPos = 0; 659 for (unsigned Reg : RegsToSpill) { 660 if (MRI.reg_nodbg_empty(Reg)) { 661 Edit->eraseVirtReg(Reg); 662 continue; 663 } 664 665 assert(LIS.hasInterval(Reg) && 666 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && 667 "Empty and not used live-range?!"); 668 669 RegsToSpill[ResultPos++] = Reg; 670 } 671 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); 672 DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n"); 673 } 674 675 //===----------------------------------------------------------------------===// 676 // Spilling 677 //===----------------------------------------------------------------------===// 678 679 /// If MI is a load or store of StackSlot, it can be removed. 680 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) { 681 int FI = 0; 682 unsigned InstrReg = TII.isLoadFromStackSlot(*MI, FI); 683 bool IsLoad = InstrReg; 684 if (!IsLoad) 685 InstrReg = TII.isStoreToStackSlot(*MI, FI); 686 687 // We have a stack access. Is it the right register and slot? 688 if (InstrReg != Reg || FI != StackSlot) 689 return false; 690 691 if (!IsLoad) 692 HSpiller.rmFromMergeableSpills(*MI, StackSlot); 693 694 DEBUG(dbgs() << "Coalescing stack access: " << *MI); 695 LIS.RemoveMachineInstrFromMaps(*MI); 696 MI->eraseFromParent(); 697 698 if (IsLoad) { 699 ++NumReloadsRemoved; 700 --NumReloads; 701 } else { 702 ++NumSpillsRemoved; 703 --NumSpills; 704 } 705 706 return true; 707 } 708 709 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 710 LLVM_DUMP_METHOD 711 // Dump the range of instructions from B to E with their slot indexes. 712 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, 713 MachineBasicBlock::iterator E, 714 LiveIntervals const &LIS, 715 const char *const header, 716 unsigned VReg =0) { 717 char NextLine = '\n'; 718 char SlotIndent = '\t'; 719 720 if (std::next(B) == E) { 721 NextLine = ' '; 722 SlotIndent = ' '; 723 } 724 725 dbgs() << '\t' << header << ": " << NextLine; 726 727 for (MachineBasicBlock::iterator I = B; I != E; ++I) { 728 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot(); 729 730 // If a register was passed in and this instruction has it as a 731 // destination that is marked as an early clobber, print the 732 // early-clobber slot index. 733 if (VReg) { 734 MachineOperand *MO = I->findRegisterDefOperand(VReg); 735 if (MO && MO->isEarlyClobber()) 736 Idx = Idx.getRegSlot(true); 737 } 738 739 dbgs() << SlotIndent << Idx << '\t' << *I; 740 } 741 } 742 #endif 743 744 /// foldMemoryOperand - Try folding stack slot references in Ops into their 745 /// instructions. 746 /// 747 /// @param Ops Operand indices from analyzeVirtReg(). 748 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 749 /// @return True on success. 750 bool InlineSpiller:: 751 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops, 752 MachineInstr *LoadMI) { 753 if (Ops.empty()) 754 return false; 755 // Don't attempt folding in bundles. 756 MachineInstr *MI = Ops.front().first; 757 if (Ops.back().first != MI || MI->isBundled()) 758 return false; 759 760 bool WasCopy = MI->isCopy(); 761 unsigned ImpReg = 0; 762 763 // Spill subregs if the target allows it. 764 // We always want to spill subregs for stackmap/patchpoint pseudos. 765 bool SpillSubRegs = TII.isSubregFoldable() || 766 MI->getOpcode() == TargetOpcode::STATEPOINT || 767 MI->getOpcode() == TargetOpcode::PATCHPOINT || 768 MI->getOpcode() == TargetOpcode::STACKMAP; 769 770 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 771 // operands. 772 SmallVector<unsigned, 8> FoldOps; 773 for (const auto &OpPair : Ops) { 774 unsigned Idx = OpPair.second; 775 assert(MI == OpPair.first && "Instruction conflict during operand folding"); 776 MachineOperand &MO = MI->getOperand(Idx); 777 if (MO.isImplicit()) { 778 ImpReg = MO.getReg(); 779 continue; 780 } 781 782 if (!SpillSubRegs && MO.getSubReg()) 783 return false; 784 // We cannot fold a load instruction into a def. 785 if (LoadMI && MO.isDef()) 786 return false; 787 // Tied use operands should not be passed to foldMemoryOperand. 788 if (!MI->isRegTiedToDefOperand(Idx)) 789 FoldOps.push_back(Idx); 790 } 791 792 // If we only have implicit uses, we won't be able to fold that. 793 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try! 794 if (FoldOps.empty()) 795 return false; 796 797 MachineInstrSpan MIS(MI); 798 799 MachineInstr *FoldMI = 800 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS) 801 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS); 802 if (!FoldMI) 803 return false; 804 805 // Remove LIS for any dead defs in the original MI not in FoldMI. 806 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) { 807 if (!MO->isReg()) 808 continue; 809 unsigned Reg = MO->getReg(); 810 if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) || 811 MRI.isReserved(Reg)) { 812 continue; 813 } 814 // Skip non-Defs, including undef uses and internal reads. 815 if (MO->isUse()) 816 continue; 817 MIBundleOperands::PhysRegInfo RI = 818 MIBundleOperands(*FoldMI).analyzePhysReg(Reg, &TRI); 819 if (RI.FullyDefined) 820 continue; 821 // FoldMI does not define this physreg. Remove the LI segment. 822 assert(MO->isDead() && "Cannot fold physreg def"); 823 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 824 LIS.removePhysRegDefAt(Reg, Idx); 825 } 826 827 int FI; 828 if (TII.isStoreToStackSlot(*MI, FI) && 829 HSpiller.rmFromMergeableSpills(*MI, FI)) 830 --NumSpills; 831 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI); 832 MI->eraseFromParent(); 833 834 // Insert any new instructions other than FoldMI into the LIS maps. 835 assert(!MIS.empty() && "Unexpected empty span of instructions!"); 836 for (MachineInstr &MI : MIS) 837 if (&MI != FoldMI) 838 LIS.InsertMachineInstrInMaps(MI); 839 840 // TII.foldMemoryOperand may have left some implicit operands on the 841 // instruction. Strip them. 842 if (ImpReg) 843 for (unsigned i = FoldMI->getNumOperands(); i; --i) { 844 MachineOperand &MO = FoldMI->getOperand(i - 1); 845 if (!MO.isReg() || !MO.isImplicit()) 846 break; 847 if (MO.getReg() == ImpReg) 848 FoldMI->RemoveOperand(i - 1); 849 } 850 851 DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, 852 "folded")); 853 854 if (!WasCopy) 855 ++NumFolded; 856 else if (Ops.front().second == 0) { 857 ++NumSpills; 858 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original); 859 } else 860 ++NumReloads; 861 return true; 862 } 863 864 void InlineSpiller::insertReload(unsigned NewVReg, 865 SlotIndex Idx, 866 MachineBasicBlock::iterator MI) { 867 MachineBasicBlock &MBB = *MI->getParent(); 868 869 MachineInstrSpan MIS(MI); 870 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, 871 MRI.getRegClass(NewVReg), &TRI); 872 873 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); 874 875 DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload", 876 NewVReg)); 877 ++NumReloads; 878 } 879 880 /// Check if \p Def fully defines a VReg with an undefined value. 881 /// If that's the case, that means the value of VReg is actually 882 /// not relevant. 883 static bool isFullUndefDef(const MachineInstr &Def) { 884 if (!Def.isImplicitDef()) 885 return false; 886 assert(Def.getNumOperands() == 1 && 887 "Implicit def with more than one definition"); 888 // We can say that the VReg defined by Def is undef, only if it is 889 // fully defined by Def. Otherwise, some of the lanes may not be 890 // undef and the value of the VReg matters. 891 return !Def.getOperand(0).getSubReg(); 892 } 893 894 /// insertSpill - Insert a spill of NewVReg after MI. 895 void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill, 896 MachineBasicBlock::iterator MI) { 897 MachineBasicBlock &MBB = *MI->getParent(); 898 899 MachineInstrSpan MIS(MI); 900 bool IsRealSpill = true; 901 if (isFullUndefDef(*MI)) { 902 // Don't spill undef value. 903 // Anything works for undef, in particular keeping the memory 904 // uninitialized is a viable option and it saves code size and 905 // run time. 906 BuildMI(MBB, std::next(MI), MI->getDebugLoc(), TII.get(TargetOpcode::KILL)) 907 .addReg(NewVReg, getKillRegState(isKill)); 908 IsRealSpill = false; 909 } else 910 TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot, 911 MRI.getRegClass(NewVReg), &TRI); 912 913 LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end()); 914 915 DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS, 916 "spill")); 917 ++NumSpills; 918 if (IsRealSpill) 919 HSpiller.addToMergeableSpills(*std::next(MI), StackSlot, Original); 920 } 921 922 /// spillAroundUses - insert spill code around each use of Reg. 923 void InlineSpiller::spillAroundUses(unsigned Reg) { 924 DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n'); 925 LiveInterval &OldLI = LIS.getInterval(Reg); 926 927 // Iterate over instructions using Reg. 928 for (MachineRegisterInfo::reg_bundle_iterator 929 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 930 RegI != E; ) { 931 MachineInstr *MI = &*(RegI++); 932 933 // Debug values are not allowed to affect codegen. 934 if (MI->isDebugValue()) { 935 // Modify DBG_VALUE now that the value is in a spill slot. 936 MachineBasicBlock *MBB = MI->getParent(); 937 DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI); 938 buildDbgValueForSpill(*MBB, MI, *MI, StackSlot); 939 MBB->erase(MI); 940 continue; 941 } 942 943 // Ignore copies to/from snippets. We'll delete them. 944 if (SnippetCopies.count(MI)) 945 continue; 946 947 // Stack slot accesses may coalesce away. 948 if (coalesceStackAccess(MI, Reg)) 949 continue; 950 951 // Analyze instruction. 952 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; 953 MIBundleOperands::VirtRegInfo RI = 954 MIBundleOperands(*MI).analyzeVirtReg(Reg, &Ops); 955 956 // Find the slot index where this instruction reads and writes OldLI. 957 // This is usually the def slot, except for tied early clobbers. 958 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 959 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) 960 if (SlotIndex::isSameInstr(Idx, VNI->def)) 961 Idx = VNI->def; 962 963 // Check for a sibling copy. 964 unsigned SibReg = isFullCopyOf(*MI, Reg); 965 if (SibReg && isSibling(SibReg)) { 966 // This may actually be a copy between snippets. 967 if (isRegToSpill(SibReg)) { 968 DEBUG(dbgs() << "Found new snippet copy: " << *MI); 969 SnippetCopies.insert(MI); 970 continue; 971 } 972 if (RI.Writes) { 973 if (hoistSpillInsideBB(OldLI, *MI)) { 974 // This COPY is now dead, the value is already in the stack slot. 975 MI->getOperand(0).setIsDead(); 976 DeadDefs.push_back(MI); 977 continue; 978 } 979 } else { 980 // This is a reload for a sib-reg copy. Drop spills downstream. 981 LiveInterval &SibLI = LIS.getInterval(SibReg); 982 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 983 // The COPY will fold to a reload below. 984 } 985 } 986 987 // Attempt to fold memory ops. 988 if (foldMemoryOperand(Ops)) 989 continue; 990 991 // Create a new virtual register for spill/fill. 992 // FIXME: Infer regclass from instruction alone. 993 unsigned NewVReg = Edit->createFrom(Reg); 994 995 if (RI.Reads) 996 insertReload(NewVReg, Idx, MI); 997 998 // Rewrite instruction operands. 999 bool hasLiveDef = false; 1000 for (const auto &OpPair : Ops) { 1001 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 1002 MO.setReg(NewVReg); 1003 if (MO.isUse()) { 1004 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second)) 1005 MO.setIsKill(); 1006 } else { 1007 if (!MO.isDead()) 1008 hasLiveDef = true; 1009 } 1010 } 1011 DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n'); 1012 1013 // FIXME: Use a second vreg if instruction has no tied ops. 1014 if (RI.Writes) 1015 if (hasLiveDef) 1016 insertSpill(NewVReg, true, MI); 1017 } 1018 } 1019 1020 /// spillAll - Spill all registers remaining after rematerialization. 1021 void InlineSpiller::spillAll() { 1022 // Update LiveStacks now that we are committed to spilling. 1023 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 1024 StackSlot = VRM.assignVirt2StackSlot(Original); 1025 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 1026 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); 1027 } else 1028 StackInt = &LSS.getInterval(StackSlot); 1029 1030 if (Original != Edit->getReg()) 1031 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 1032 1033 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 1034 for (unsigned Reg : RegsToSpill) 1035 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg), 1036 StackInt->getValNumInfo(0)); 1037 DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 1038 1039 // Spill around uses of all RegsToSpill. 1040 for (unsigned Reg : RegsToSpill) 1041 spillAroundUses(Reg); 1042 1043 // Hoisted spills may cause dead code. 1044 if (!DeadDefs.empty()) { 1045 DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 1046 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 1047 } 1048 1049 // Finally delete the SnippetCopies. 1050 for (unsigned Reg : RegsToSpill) { 1051 for (MachineRegisterInfo::reg_instr_iterator 1052 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); 1053 RI != E; ) { 1054 MachineInstr &MI = *(RI++); 1055 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy"); 1056 // FIXME: Do this with a LiveRangeEdit callback. 1057 LIS.RemoveMachineInstrFromMaps(MI); 1058 MI.eraseFromParent(); 1059 } 1060 } 1061 1062 // Delete all spilled registers. 1063 for (unsigned Reg : RegsToSpill) 1064 Edit->eraseVirtReg(Reg); 1065 } 1066 1067 void InlineSpiller::spill(LiveRangeEdit &edit) { 1068 ++NumSpilledRanges; 1069 Edit = &edit; 1070 assert(!TargetRegisterInfo::isStackSlot(edit.getReg()) 1071 && "Trying to spill a stack slot."); 1072 // Share a stack slot among all descendants of Original. 1073 Original = VRM.getOriginal(edit.getReg()); 1074 StackSlot = VRM.getStackSlot(Original); 1075 StackInt = nullptr; 1076 1077 DEBUG(dbgs() << "Inline spilling " 1078 << TRI.getRegClassName(MRI.getRegClass(edit.getReg())) 1079 << ':' << edit.getParent() 1080 << "\nFrom original " << printReg(Original) << '\n'); 1081 assert(edit.getParent().isSpillable() && 1082 "Attempting to spill already spilled value."); 1083 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1084 1085 collectRegsToSpill(); 1086 reMaterializeAll(); 1087 1088 // Remat may handle everything. 1089 if (!RegsToSpill.empty()) 1090 spillAll(); 1091 1092 Edit->calculateRegClassAndHint(MF, Loops, MBFI); 1093 } 1094 1095 /// Optimizations after all the reg selections and spills are done. 1096 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); } 1097 1098 /// When a spill is inserted, add the spill to MergeableSpills map. 1099 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot, 1100 unsigned Original) { 1101 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1102 LiveInterval &OrigLI = LIS.getInterval(Original); 1103 // save a copy of LiveInterval in StackSlotToOrigLI because the original 1104 // LiveInterval may be cleared after all its references are spilled. 1105 if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) { 1106 auto LI = llvm::make_unique<LiveInterval>(OrigLI.reg, OrigLI.weight); 1107 LI->assign(OrigLI, Allocator); 1108 StackSlotToOrigLI[StackSlot] = std::move(LI); 1109 } 1110 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1111 VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot()); 1112 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1113 MergeableSpills[MIdx].insert(&Spill); 1114 } 1115 1116 /// When a spill is removed, remove the spill from MergeableSpills map. 1117 /// Return true if the spill is removed successfully. 1118 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill, 1119 int StackSlot) { 1120 auto It = StackSlotToOrigLI.find(StackSlot); 1121 if (It == StackSlotToOrigLI.end()) 1122 return false; 1123 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1124 VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot()); 1125 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1126 return MergeableSpills[MIdx].erase(&Spill); 1127 } 1128 1129 /// Check BB to see if it is a possible target BB to place a hoisted spill, 1130 /// i.e., there should be a living sibling of OrigReg at the insert point. 1131 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 1132 MachineBasicBlock &BB, unsigned &LiveReg) { 1133 SlotIndex Idx; 1134 unsigned OrigReg = OrigLI.reg; 1135 MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, BB); 1136 if (MI != BB.end()) 1137 Idx = LIS.getInstructionIndex(*MI); 1138 else 1139 Idx = LIS.getMBBEndIdx(&BB).getPrevSlot(); 1140 SmallSetVector<unsigned, 16> &Siblings = Virt2SiblingsMap[OrigReg]; 1141 assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI"); 1142 1143 for (auto const SibReg : Siblings) { 1144 LiveInterval &LI = LIS.getInterval(SibReg); 1145 VNInfo *VNI = LI.getVNInfoAt(Idx); 1146 if (VNI) { 1147 LiveReg = SibReg; 1148 return true; 1149 } 1150 } 1151 return false; 1152 } 1153 1154 /// Remove redundant spills in the same BB. Save those redundant spills in 1155 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map. 1156 void HoistSpillHelper::rmRedundantSpills( 1157 SmallPtrSet<MachineInstr *, 16> &Spills, 1158 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1159 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1160 // For each spill saw, check SpillBBToSpill[] and see if its BB already has 1161 // another spill inside. If a BB contains more than one spill, only keep the 1162 // earlier spill with smaller SlotIndex. 1163 for (const auto CurrentSpill : Spills) { 1164 MachineBasicBlock *Block = CurrentSpill->getParent(); 1165 MachineDomTreeNode *Node = MDT.getBase().getNode(Block); 1166 MachineInstr *PrevSpill = SpillBBToSpill[Node]; 1167 if (PrevSpill) { 1168 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill); 1169 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill); 1170 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill; 1171 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill; 1172 SpillsToRm.push_back(SpillToRm); 1173 SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep; 1174 } else { 1175 SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill; 1176 } 1177 } 1178 for (const auto SpillToRm : SpillsToRm) 1179 Spills.erase(SpillToRm); 1180 } 1181 1182 /// Starting from \p Root find a top-down traversal order of the dominator 1183 /// tree to visit all basic blocks containing the elements of \p Spills. 1184 /// Redundant spills will be found and put into \p SpillsToRm at the same 1185 /// time. \p SpillBBToSpill will be populated as part of the process and 1186 /// maps a basic block to the first store occurring in the basic block. 1187 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre 1188 void HoistSpillHelper::getVisitOrders( 1189 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 1190 SmallVectorImpl<MachineDomTreeNode *> &Orders, 1191 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1192 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 1193 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1194 // The set contains all the possible BB nodes to which we may hoist 1195 // original spills. 1196 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet; 1197 // Save the BB nodes on the path from the first BB node containing 1198 // non-redundant spill to the Root node. 1199 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath; 1200 // All the spills to be hoisted must originate from a single def instruction 1201 // to the OrigReg. It means the def instruction should dominate all the spills 1202 // to be hoisted. We choose the BB where the def instruction is located as 1203 // the Root. 1204 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom(); 1205 // For every node on the dominator tree with spill, walk up on the dominator 1206 // tree towards the Root node until it is reached. If there is other node 1207 // containing spill in the middle of the path, the previous spill saw will 1208 // be redundant and the node containing it will be removed. All the nodes on 1209 // the path starting from the first node with non-redundant spill to the Root 1210 // node will be added to the WorkSet, which will contain all the possible 1211 // locations where spills may be hoisted to after the loop below is done. 1212 for (const auto Spill : Spills) { 1213 MachineBasicBlock *Block = Spill->getParent(); 1214 MachineDomTreeNode *Node = MDT[Block]; 1215 MachineInstr *SpillToRm = nullptr; 1216 while (Node != RootIDomNode) { 1217 // If Node dominates Block, and it already contains a spill, the spill in 1218 // Block will be redundant. 1219 if (Node != MDT[Block] && SpillBBToSpill[Node]) { 1220 SpillToRm = SpillBBToSpill[MDT[Block]]; 1221 break; 1222 /// If we see the Node already in WorkSet, the path from the Node to 1223 /// the Root node must already be traversed by another spill. 1224 /// Then no need to repeat. 1225 } else if (WorkSet.count(Node)) { 1226 break; 1227 } else { 1228 NodesOnPath.insert(Node); 1229 } 1230 Node = Node->getIDom(); 1231 } 1232 if (SpillToRm) { 1233 SpillsToRm.push_back(SpillToRm); 1234 } else { 1235 // Add a BB containing the original spills to SpillsToKeep -- i.e., 1236 // set the initial status before hoisting start. The value of BBs 1237 // containing original spills is set to 0, in order to descriminate 1238 // with BBs containing hoisted spills which will be inserted to 1239 // SpillsToKeep later during hoisting. 1240 SpillsToKeep[MDT[Block]] = 0; 1241 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end()); 1242 } 1243 NodesOnPath.clear(); 1244 } 1245 1246 // Sort the nodes in WorkSet in top-down order and save the nodes 1247 // in Orders. Orders will be used for hoisting in runHoistSpills. 1248 unsigned idx = 0; 1249 Orders.push_back(MDT.getBase().getNode(Root)); 1250 do { 1251 MachineDomTreeNode *Node = Orders[idx++]; 1252 const std::vector<MachineDomTreeNode *> &Children = Node->getChildren(); 1253 unsigned NumChildren = Children.size(); 1254 for (unsigned i = 0; i != NumChildren; ++i) { 1255 MachineDomTreeNode *Child = Children[i]; 1256 if (WorkSet.count(Child)) 1257 Orders.push_back(Child); 1258 } 1259 } while (idx != Orders.size()); 1260 assert(Orders.size() == WorkSet.size() && 1261 "Orders have different size with WorkSet"); 1262 1263 #ifndef NDEBUG 1264 DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n"); 1265 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1266 for (; RIt != Orders.rend(); RIt++) 1267 DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ","); 1268 DEBUG(dbgs() << "\n"); 1269 #endif 1270 } 1271 1272 /// Try to hoist spills according to BB hotness. The spills to removed will 1273 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in 1274 /// \p SpillsToIns. 1275 void HoistSpillHelper::runHoistSpills( 1276 LiveInterval &OrigLI, VNInfo &OrigVNI, 1277 SmallPtrSet<MachineInstr *, 16> &Spills, 1278 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1279 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) { 1280 // Visit order of dominator tree nodes. 1281 SmallVector<MachineDomTreeNode *, 32> Orders; 1282 // SpillsToKeep contains all the nodes where spills are to be inserted 1283 // during hoisting. If the spill to be inserted is an original spill 1284 // (not a hoisted one), the value of the map entry is 0. If the spill 1285 // is a hoisted spill, the value of the map entry is the VReg to be used 1286 // as the source of the spill. 1287 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep; 1288 // Map from BB to the first spill inside of it. 1289 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill; 1290 1291 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill); 1292 1293 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def); 1294 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep, 1295 SpillBBToSpill); 1296 1297 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of 1298 // nodes set and the cost of all the spills inside those nodes. 1299 // The nodes set are the locations where spills are to be inserted 1300 // in the subtree of current node. 1301 using NodesCostPair = 1302 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>; 1303 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap; 1304 1305 // Iterate Orders set in reverse order, which will be a bottom-up order 1306 // in the dominator tree. Once we visit a dom tree node, we know its 1307 // children have already been visited and the spill locations in the 1308 // subtrees of all the children have been determined. 1309 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1310 for (; RIt != Orders.rend(); RIt++) { 1311 MachineBasicBlock *Block = (*RIt)->getBlock(); 1312 1313 // If Block contains an original spill, simply continue. 1314 if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) { 1315 SpillsInSubTreeMap[*RIt].first.insert(*RIt); 1316 // SpillsInSubTreeMap[*RIt].second contains the cost of spill. 1317 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block); 1318 continue; 1319 } 1320 1321 // Collect spills in subtree of current node (*RIt) to 1322 // SpillsInSubTreeMap[*RIt].first. 1323 const std::vector<MachineDomTreeNode *> &Children = (*RIt)->getChildren(); 1324 unsigned NumChildren = Children.size(); 1325 for (unsigned i = 0; i != NumChildren; ++i) { 1326 MachineDomTreeNode *Child = Children[i]; 1327 if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end()) 1328 continue; 1329 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below 1330 // should be placed before getting the begin and end iterators of 1331 // SpillsInSubTreeMap[Child].first, or else the iterators may be 1332 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time 1333 // and the map grows and then the original buckets in the map are moved. 1334 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1335 SpillsInSubTreeMap[*RIt].first; 1336 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1337 SubTreeCost += SpillsInSubTreeMap[Child].second; 1338 auto BI = SpillsInSubTreeMap[Child].first.begin(); 1339 auto EI = SpillsInSubTreeMap[Child].first.end(); 1340 SpillsInSubTree.insert(BI, EI); 1341 SpillsInSubTreeMap.erase(Child); 1342 } 1343 1344 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1345 SpillsInSubTreeMap[*RIt].first; 1346 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1347 // No spills in subtree, simply continue. 1348 if (SpillsInSubTree.empty()) 1349 continue; 1350 1351 // Check whether Block is a possible candidate to insert spill. 1352 unsigned LiveReg = 0; 1353 if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg)) 1354 continue; 1355 1356 // If there are multiple spills that could be merged, bias a little 1357 // to hoist the spill. 1358 BranchProbability MarginProb = (SpillsInSubTree.size() > 1) 1359 ? BranchProbability(9, 10) 1360 : BranchProbability(1, 1); 1361 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) { 1362 // Hoist: Move spills to current Block. 1363 for (const auto SpillBB : SpillsInSubTree) { 1364 // When SpillBB is a BB contains original spill, insert the spill 1365 // to SpillsToRm. 1366 if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() && 1367 !SpillsToKeep[SpillBB]) { 1368 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB]; 1369 SpillsToRm.push_back(SpillToRm); 1370 } 1371 // SpillBB will not contain spill anymore, remove it from SpillsToKeep. 1372 SpillsToKeep.erase(SpillBB); 1373 } 1374 // Current Block is the BB containing the new hoisted spill. Add it to 1375 // SpillsToKeep. LiveReg is the source of the new spill. 1376 SpillsToKeep[*RIt] = LiveReg; 1377 DEBUG({ 1378 dbgs() << "spills in BB: "; 1379 for (const auto Rspill : SpillsInSubTree) 1380 dbgs() << Rspill->getBlock()->getNumber() << " "; 1381 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber() 1382 << "\n"; 1383 }); 1384 SpillsInSubTree.clear(); 1385 SpillsInSubTree.insert(*RIt); 1386 SubTreeCost = MBFI.getBlockFreq(Block); 1387 } 1388 } 1389 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill), 1390 // save them to SpillsToIns. 1391 for (const auto Ent : SpillsToKeep) { 1392 if (Ent.second) 1393 SpillsToIns[Ent.first->getBlock()] = Ent.second; 1394 } 1395 } 1396 1397 /// For spills with equal values, remove redundant spills and hoist those left 1398 /// to less hot spots. 1399 /// 1400 /// Spills with equal values will be collected into the same set in 1401 /// MergeableSpills when spill is inserted. These equal spills are originated 1402 /// from the same defining instruction and are dominated by the instruction. 1403 /// Before hoisting all the equal spills, redundant spills inside in the same 1404 /// BB are first marked to be deleted. Then starting from the spills left, walk 1405 /// up on the dominator tree towards the Root node where the define instruction 1406 /// is located, mark the dominated spills to be deleted along the way and 1407 /// collect the BB nodes on the path from non-dominated spills to the define 1408 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places 1409 /// where we are considering to hoist the spills. We iterate the WorkSet in 1410 /// bottom-up order, and for each node, we will decide whether to hoist spills 1411 /// inside its subtree to that node. In this way, we can get benefit locally 1412 /// even if hoisting all the equal spills to one cold place is impossible. 1413 void HoistSpillHelper::hoistAllSpills() { 1414 SmallVector<unsigned, 4> NewVRegs; 1415 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this); 1416 1417 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { 1418 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1419 unsigned Original = VRM.getPreSplitReg(Reg); 1420 if (!MRI.def_empty(Reg)) 1421 Virt2SiblingsMap[Original].insert(Reg); 1422 } 1423 1424 // Each entry in MergeableSpills contains a spill set with equal values. 1425 for (auto &Ent : MergeableSpills) { 1426 int Slot = Ent.first.first; 1427 LiveInterval &OrigLI = *StackSlotToOrigLI[Slot]; 1428 VNInfo *OrigVNI = Ent.first.second; 1429 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second; 1430 if (Ent.second.empty()) 1431 continue; 1432 1433 DEBUG({ 1434 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n" 1435 << "Equal spills in BB: "; 1436 for (const auto spill : EqValSpills) 1437 dbgs() << spill->getParent()->getNumber() << " "; 1438 dbgs() << "\n"; 1439 }); 1440 1441 // SpillsToRm is the spill set to be removed from EqValSpills. 1442 SmallVector<MachineInstr *, 16> SpillsToRm; 1443 // SpillsToIns is the spill set to be newly inserted after hoisting. 1444 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns; 1445 1446 runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns); 1447 1448 DEBUG({ 1449 dbgs() << "Finally inserted spills in BB: "; 1450 for (const auto Ispill : SpillsToIns) 1451 dbgs() << Ispill.first->getNumber() << " "; 1452 dbgs() << "\nFinally removed spills in BB: "; 1453 for (const auto Rspill : SpillsToRm) 1454 dbgs() << Rspill->getParent()->getNumber() << " "; 1455 dbgs() << "\n"; 1456 }); 1457 1458 // Stack live range update. 1459 LiveInterval &StackIntvl = LSS.getInterval(Slot); 1460 if (!SpillsToIns.empty() || !SpillsToRm.empty()) 1461 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI, 1462 StackIntvl.getValNumInfo(0)); 1463 1464 // Insert hoisted spills. 1465 for (auto const Insert : SpillsToIns) { 1466 MachineBasicBlock *BB = Insert.first; 1467 unsigned LiveReg = Insert.second; 1468 MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, *BB); 1469 TII.storeRegToStackSlot(*BB, MI, LiveReg, false, Slot, 1470 MRI.getRegClass(LiveReg), &TRI); 1471 LIS.InsertMachineInstrRangeInMaps(std::prev(MI), MI); 1472 ++NumSpills; 1473 } 1474 1475 // Remove redundant spills or change them to dead instructions. 1476 NumSpills -= SpillsToRm.size(); 1477 for (auto const RMEnt : SpillsToRm) { 1478 RMEnt->setDesc(TII.get(TargetOpcode::KILL)); 1479 for (unsigned i = RMEnt->getNumOperands(); i; --i) { 1480 MachineOperand &MO = RMEnt->getOperand(i - 1); 1481 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead()) 1482 RMEnt->RemoveOperand(i - 1); 1483 } 1484 } 1485 Edit.eliminateDeadDefs(SpillsToRm, None, AA); 1486 } 1487 } 1488 1489 /// For VirtReg clone, the \p New register should have the same physreg or 1490 /// stackslot as the \p old register. 1491 void HoistSpillHelper::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 1492 if (VRM.hasPhys(Old)) 1493 VRM.assignVirt2Phys(New, VRM.getPhys(Old)); 1494 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT) 1495 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old)); 1496 else 1497 llvm_unreachable("VReg should be assigned either physreg or stackslot"); 1498 } 1499