1 //===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The inline spiller modifies the machine function directly instead of
11 // inserting spills and restores in VirtRegMap.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "Spiller.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/TinyPtrVector.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
21 #include "llvm/CodeGen/LiveRangeEdit.h"
22 #include "llvm/CodeGen/LiveStackAnalysis.h"
23 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
24 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineInstrBundle.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/VirtRegMap.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "regalloc"
41 
42 STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
43 STATISTIC(NumSnippets,        "Number of spilled snippets");
44 STATISTIC(NumSpills,          "Number of spills inserted");
45 STATISTIC(NumSpillsRemoved,   "Number of spills removed");
46 STATISTIC(NumReloads,         "Number of reloads inserted");
47 STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
48 STATISTIC(NumFolded,          "Number of folded stack accesses");
49 STATISTIC(NumFoldedLoads,     "Number of folded loads");
50 STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
51 STATISTIC(NumOmitReloadSpill, "Number of omitted spills of reloads");
52 STATISTIC(NumHoists,          "Number of hoisted spills");
53 
54 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
55                                      cl::desc("Disable inline spill hoisting"));
56 
57 namespace {
58 class InlineSpiller : public Spiller {
59   MachineFunction &MF;
60   LiveIntervals &LIS;
61   LiveStacks &LSS;
62   AliasAnalysis *AA;
63   MachineDominatorTree &MDT;
64   MachineLoopInfo &Loops;
65   VirtRegMap &VRM;
66   MachineFrameInfo &MFI;
67   MachineRegisterInfo &MRI;
68   const TargetInstrInfo &TII;
69   const TargetRegisterInfo &TRI;
70   const MachineBlockFrequencyInfo &MBFI;
71 
72   // Variables that are valid during spill(), but used by multiple methods.
73   LiveRangeEdit *Edit;
74   LiveInterval *StackInt;
75   int StackSlot;
76   unsigned Original;
77 
78   // All registers to spill to StackSlot, including the main register.
79   SmallVector<unsigned, 8> RegsToSpill;
80 
81   // All COPY instructions to/from snippets.
82   // They are ignored since both operands refer to the same stack slot.
83   SmallPtrSet<MachineInstr*, 8> SnippetCopies;
84 
85   // Values that failed to remat at some point.
86   SmallPtrSet<VNInfo*, 8> UsedValues;
87 
88 public:
89   // Information about a value that was defined by a copy from a sibling
90   // register.
91   struct SibValueInfo {
92     // True when all reaching defs were reloads: No spill is necessary.
93     bool AllDefsAreReloads;
94 
95     // True when value is defined by an original PHI not from splitting.
96     bool DefByOrigPHI;
97 
98     // True when the COPY defining this value killed its source.
99     bool KillsSource;
100 
101     // The preferred register to spill.
102     unsigned SpillReg;
103 
104     // The value of SpillReg that should be spilled.
105     VNInfo *SpillVNI;
106 
107     // The block where SpillVNI should be spilled. Currently, this must be the
108     // block containing SpillVNI->def.
109     MachineBasicBlock *SpillMBB;
110 
111     // A defining instruction that is not a sibling copy or a reload, or NULL.
112     // This can be used as a template for rematerialization.
113     MachineInstr *DefMI;
114 
115     // List of values that depend on this one.  These values are actually the
116     // same, but live range splitting has placed them in different registers,
117     // or SSA update needed to insert PHI-defs to preserve SSA form.  This is
118     // copies of the current value and phi-kills.  Usually only phi-kills cause
119     // more than one dependent value.
120     TinyPtrVector<VNInfo*> Deps;
121 
122     SibValueInfo(unsigned Reg, VNInfo *VNI)
123       : AllDefsAreReloads(true), DefByOrigPHI(false), KillsSource(false),
124         SpillReg(Reg), SpillVNI(VNI), SpillMBB(nullptr), DefMI(nullptr) {}
125 
126     // Returns true when a def has been found.
127     bool hasDef() const { return DefByOrigPHI || DefMI; }
128   };
129 
130 private:
131   // Values in RegsToSpill defined by sibling copies.
132   typedef DenseMap<VNInfo*, SibValueInfo> SibValueMap;
133   SibValueMap SibValues;
134 
135   // Dead defs generated during spilling.
136   SmallVector<MachineInstr*, 8> DeadDefs;
137 
138   ~InlineSpiller() override {}
139 
140 public:
141   InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm)
142       : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
143         LSS(pass.getAnalysis<LiveStacks>()),
144         AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
145         MDT(pass.getAnalysis<MachineDominatorTree>()),
146         Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
147         MFI(*mf.getFrameInfo()), MRI(mf.getRegInfo()),
148         TII(*mf.getSubtarget().getInstrInfo()),
149         TRI(*mf.getSubtarget().getRegisterInfo()),
150         MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()) {}
151 
152   void spill(LiveRangeEdit &) override;
153 
154 private:
155   bool isSnippet(const LiveInterval &SnipLI);
156   void collectRegsToSpill();
157 
158   bool isRegToSpill(unsigned Reg) {
159     return std::find(RegsToSpill.begin(),
160                      RegsToSpill.end(), Reg) != RegsToSpill.end();
161   }
162 
163   bool isSibling(unsigned Reg);
164   MachineInstr *traceSiblingValue(unsigned, VNInfo*, VNInfo*);
165   void propagateSiblingValue(SibValueMap::iterator, VNInfo *VNI = nullptr);
166   void analyzeSiblingValues();
167 
168   bool hoistSpill(LiveInterval &SpillLI, MachineInstr &CopyMI);
169   void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
170 
171   void markValueUsed(LiveInterval*, VNInfo*);
172   bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
173   void reMaterializeAll();
174 
175   bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
176   bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> >,
177                          MachineInstr *LoadMI = nullptr);
178   void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI);
179   void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI);
180 
181   void spillAroundUses(unsigned Reg);
182   void spillAll();
183 };
184 }
185 
186 namespace llvm {
187 
188 Spiller::~Spiller() { }
189 void Spiller::anchor() { }
190 
191 Spiller *createInlineSpiller(MachineFunctionPass &pass,
192                              MachineFunction &mf,
193                              VirtRegMap &vrm) {
194   return new InlineSpiller(pass, mf, vrm);
195 }
196 
197 }
198 
199 //===----------------------------------------------------------------------===//
200 //                                Snippets
201 //===----------------------------------------------------------------------===//
202 
203 // When spilling a virtual register, we also spill any snippets it is connected
204 // to. The snippets are small live ranges that only have a single real use,
205 // leftovers from live range splitting. Spilling them enables memory operand
206 // folding or tightens the live range around the single use.
207 //
208 // This minimizes register pressure and maximizes the store-to-load distance for
209 // spill slots which can be important in tight loops.
210 
211 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
212 /// otherwise return 0.
213 static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) {
214   if (!MI->isFullCopy())
215     return 0;
216   if (MI->getOperand(0).getReg() == Reg)
217       return MI->getOperand(1).getReg();
218   if (MI->getOperand(1).getReg() == Reg)
219       return MI->getOperand(0).getReg();
220   return 0;
221 }
222 
223 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
224 /// It is assumed that SnipLI is a virtual register with the same original as
225 /// Edit->getReg().
226 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
227   unsigned Reg = Edit->getReg();
228 
229   // A snippet is a tiny live range with only a single instruction using it
230   // besides copies to/from Reg or spills/fills. We accept:
231   //
232   //   %snip = COPY %Reg / FILL fi#
233   //   %snip = USE %snip
234   //   %Reg = COPY %snip / SPILL %snip, fi#
235   //
236   if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
237     return false;
238 
239   MachineInstr *UseMI = nullptr;
240 
241   // Check that all uses satisfy our criteria.
242   for (MachineRegisterInfo::reg_instr_nodbg_iterator
243        RI = MRI.reg_instr_nodbg_begin(SnipLI.reg),
244        E = MRI.reg_instr_nodbg_end(); RI != E; ) {
245     MachineInstr *MI = &*(RI++);
246 
247     // Allow copies to/from Reg.
248     if (isFullCopyOf(MI, Reg))
249       continue;
250 
251     // Allow stack slot loads.
252     int FI;
253     if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
254       continue;
255 
256     // Allow stack slot stores.
257     if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
258       continue;
259 
260     // Allow a single additional instruction.
261     if (UseMI && MI != UseMI)
262       return false;
263     UseMI = MI;
264   }
265   return true;
266 }
267 
268 /// collectRegsToSpill - Collect live range snippets that only have a single
269 /// real use.
270 void InlineSpiller::collectRegsToSpill() {
271   unsigned Reg = Edit->getReg();
272 
273   // Main register always spills.
274   RegsToSpill.assign(1, Reg);
275   SnippetCopies.clear();
276 
277   // Snippets all have the same original, so there can't be any for an original
278   // register.
279   if (Original == Reg)
280     return;
281 
282   for (MachineRegisterInfo::reg_instr_iterator
283        RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) {
284     MachineInstr *MI = &*(RI++);
285     unsigned SnipReg = isFullCopyOf(MI, Reg);
286     if (!isSibling(SnipReg))
287       continue;
288     LiveInterval &SnipLI = LIS.getInterval(SnipReg);
289     if (!isSnippet(SnipLI))
290       continue;
291     SnippetCopies.insert(MI);
292     if (isRegToSpill(SnipReg))
293       continue;
294     RegsToSpill.push_back(SnipReg);
295     DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
296     ++NumSnippets;
297   }
298 }
299 
300 
301 //===----------------------------------------------------------------------===//
302 //                            Sibling Values
303 //===----------------------------------------------------------------------===//
304 
305 // After live range splitting, some values to be spilled may be defined by
306 // copies from sibling registers. We trace the sibling copies back to the
307 // original value if it still exists. We need it for rematerialization.
308 //
309 // Even when the value can't be rematerialized, we still want to determine if
310 // the value has already been spilled, or we may want to hoist the spill from a
311 // loop.
312 
313 bool InlineSpiller::isSibling(unsigned Reg) {
314   return TargetRegisterInfo::isVirtualRegister(Reg) &&
315            VRM.getOriginal(Reg) == Original;
316 }
317 
318 #ifndef NDEBUG
319 static raw_ostream &operator<<(raw_ostream &OS,
320                                const InlineSpiller::SibValueInfo &SVI) {
321   OS << "spill " << PrintReg(SVI.SpillReg) << ':'
322      << SVI.SpillVNI->id << '@' << SVI.SpillVNI->def;
323   if (SVI.SpillMBB)
324     OS << " in BB#" << SVI.SpillMBB->getNumber();
325   if (SVI.AllDefsAreReloads)
326     OS << " all-reloads";
327   if (SVI.DefByOrigPHI)
328     OS << " orig-phi";
329   if (SVI.KillsSource)
330     OS << " kill";
331   OS << " deps[";
332   for (VNInfo *Dep : SVI.Deps)
333     OS << ' ' << Dep->id << '@' << Dep->def;
334   OS << " ]";
335   if (SVI.DefMI)
336     OS << " def: " << *SVI.DefMI;
337   else
338     OS << '\n';
339   return OS;
340 }
341 #endif
342 
343 /// propagateSiblingValue - Propagate the value in SVI to dependents if it is
344 /// known.  Otherwise remember the dependency for later.
345 ///
346 /// @param SVIIter SibValues entry to propagate.
347 /// @param VNI Dependent value, or NULL to propagate to all saved dependents.
348 void InlineSpiller::propagateSiblingValue(SibValueMap::iterator SVIIter,
349                                           VNInfo *VNI) {
350   SibValueMap::value_type *SVI = &*SVIIter;
351 
352   // When VNI is non-NULL, add it to SVI's deps, and only propagate to that.
353   TinyPtrVector<VNInfo*> FirstDeps;
354   if (VNI) {
355     FirstDeps.push_back(VNI);
356     SVI->second.Deps.push_back(VNI);
357   }
358 
359   // Has the value been completely determined yet?  If not, defer propagation.
360   if (!SVI->second.hasDef())
361     return;
362 
363   // Work list of values to propagate.
364   SmallSetVector<SibValueMap::value_type *, 8> WorkList;
365   WorkList.insert(SVI);
366 
367   do {
368     SVI = WorkList.pop_back_val();
369     TinyPtrVector<VNInfo*> *Deps = VNI ? &FirstDeps : &SVI->second.Deps;
370     VNI = nullptr;
371 
372     SibValueInfo &SV = SVI->second;
373     if (!SV.SpillMBB)
374       SV.SpillMBB = LIS.getMBBFromIndex(SV.SpillVNI->def);
375 
376     DEBUG(dbgs() << "  prop to " << Deps->size() << ": "
377                  << SVI->first->id << '@' << SVI->first->def << ":\t" << SV);
378 
379     assert(SV.hasDef() && "Propagating undefined value");
380 
381     // Should this value be propagated as a preferred spill candidate?  We don't
382     // propagate values of registers that are about to spill.
383     bool PropSpill = !DisableHoisting && !isRegToSpill(SV.SpillReg);
384     unsigned SpillDepth = ~0u;
385 
386     for (VNInfo *Dep : *Deps) {
387       SibValueMap::iterator DepSVI = SibValues.find(Dep);
388       assert(DepSVI != SibValues.end() && "Dependent value not in SibValues");
389       SibValueInfo &DepSV = DepSVI->second;
390       if (!DepSV.SpillMBB)
391         DepSV.SpillMBB = LIS.getMBBFromIndex(DepSV.SpillVNI->def);
392 
393       bool Changed = false;
394 
395       // Propagate defining instruction.
396       if (!DepSV.hasDef()) {
397         Changed = true;
398         DepSV.DefMI = SV.DefMI;
399         DepSV.DefByOrigPHI = SV.DefByOrigPHI;
400       }
401 
402       // Propagate AllDefsAreReloads.  For PHI values, this computes an AND of
403       // all predecessors.
404       if (!SV.AllDefsAreReloads && DepSV.AllDefsAreReloads) {
405         Changed = true;
406         DepSV.AllDefsAreReloads = false;
407       }
408 
409       // Propagate best spill value.
410       if (PropSpill && SV.SpillVNI != DepSV.SpillVNI) {
411         if (SV.SpillMBB == DepSV.SpillMBB) {
412           // DepSV is in the same block.  Hoist when dominated.
413           if (DepSV.KillsSource && SV.SpillVNI->def < DepSV.SpillVNI->def) {
414             // This is an alternative def earlier in the same MBB.
415             // Hoist the spill as far as possible in SpillMBB. This can ease
416             // register pressure:
417             //
418             //   x = def
419             //   y = use x
420             //   s = copy x
421             //
422             // Hoisting the spill of s to immediately after the def removes the
423             // interference between x and y:
424             //
425             //   x = def
426             //   spill x
427             //   y = use x<kill>
428             //
429             // This hoist only helps when the DepSV copy kills its source.
430             Changed = true;
431             DepSV.SpillReg = SV.SpillReg;
432             DepSV.SpillVNI = SV.SpillVNI;
433             DepSV.SpillMBB = SV.SpillMBB;
434           }
435         } else {
436           // DepSV is in a different block.
437           if (SpillDepth == ~0u)
438             SpillDepth = Loops.getLoopDepth(SV.SpillMBB);
439 
440           // Also hoist spills to blocks with smaller loop depth, but make sure
441           // that the new value dominates.  Non-phi dependents are always
442           // dominated, phis need checking.
443 
444           const BranchProbability MarginProb(4, 5); // 80%
445           // Hoist a spill to outer loop if there are multiple dependents (it
446           // can be beneficial if more than one dependents are hoisted) or
447           // if DepSV (the hoisting source) is hotter than SV (the hoisting
448           // destination) (we add a 80% margin to bias a little towards
449           // loop depth).
450           bool HoistCondition =
451             (MBFI.getBlockFreq(DepSV.SpillMBB) >=
452              (MBFI.getBlockFreq(SV.SpillMBB) * MarginProb)) ||
453             Deps->size() > 1;
454 
455           if ((Loops.getLoopDepth(DepSV.SpillMBB) > SpillDepth) &&
456               HoistCondition &&
457               (!DepSVI->first->isPHIDef() ||
458                MDT.dominates(SV.SpillMBB, DepSV.SpillMBB))) {
459             Changed = true;
460             DepSV.SpillReg = SV.SpillReg;
461             DepSV.SpillVNI = SV.SpillVNI;
462             DepSV.SpillMBB = SV.SpillMBB;
463           }
464         }
465       }
466 
467       if (!Changed)
468         continue;
469 
470       // Something changed in DepSVI. Propagate to dependents.
471       WorkList.insert(&*DepSVI);
472 
473       DEBUG(dbgs() << "  update " << DepSVI->first->id << '@'
474             << DepSVI->first->def << " to:\t" << DepSV);
475     }
476   } while (!WorkList.empty());
477 }
478 
479 /// traceSiblingValue - Trace a value that is about to be spilled back to the
480 /// real defining instructions by looking through sibling copies. Always stay
481 /// within the range of OrigVNI so the registers are known to carry the same
482 /// value.
483 ///
484 /// Determine if the value is defined by all reloads, so spilling isn't
485 /// necessary - the value is already in the stack slot.
486 ///
487 /// Return a defining instruction that may be a candidate for rematerialization.
488 ///
489 MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI,
490                                                VNInfo *OrigVNI) {
491   // Check if a cached value already exists.
492   SibValueMap::iterator SVI;
493   bool Inserted;
494   std::tie(SVI, Inserted) =
495     SibValues.insert(std::make_pair(UseVNI, SibValueInfo(UseReg, UseVNI)));
496   if (!Inserted) {
497     DEBUG(dbgs() << "Cached value " << PrintReg(UseReg) << ':'
498                  << UseVNI->id << '@' << UseVNI->def << ' ' << SVI->second);
499     return SVI->second.DefMI;
500   }
501 
502   DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':'
503                << UseVNI->id << '@' << UseVNI->def << '\n');
504 
505   // List of (Reg, VNI) that have been inserted into SibValues, but need to be
506   // processed.
507   SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList;
508   WorkList.push_back(std::make_pair(UseReg, UseVNI));
509 
510   LiveInterval &OrigLI = LIS.getInterval(Original);
511   do {
512     unsigned Reg;
513     VNInfo *VNI;
514     std::tie(Reg, VNI) = WorkList.pop_back_val();
515     DEBUG(dbgs() << "  " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def
516                  << ":\t");
517 
518     // First check if this value has already been computed.
519     SVI = SibValues.find(VNI);
520     assert(SVI != SibValues.end() && "Missing SibValues entry");
521 
522     // Trace through PHI-defs created by live range splitting.
523     if (VNI->isPHIDef()) {
524       // Stop at original PHIs.  We don't know the value at the
525       // predecessors. Look up the VNInfo for the current definition
526       // in OrigLI, to properly determine whether or not this phi was
527       // added by splitting.
528       if (VNI->def == OrigLI.getVNInfoAt(VNI->def)->def) {
529         DEBUG(dbgs() << "orig phi value\n");
530         SVI->second.DefByOrigPHI = true;
531         SVI->second.AllDefsAreReloads = false;
532         propagateSiblingValue(SVI);
533         continue;
534       }
535 
536       // This is a PHI inserted by live range splitting.  We could trace the
537       // live-out value from predecessor blocks, but that search can be very
538       // expensive if there are many predecessors and many more PHIs as
539       // generated by tail-dup when it sees an indirectbr.  Instead, look at
540       // all the non-PHI defs that have the same value as OrigVNI.  They must
541       // jointly dominate VNI->def.  This is not optimal since VNI may actually
542       // be jointly dominated by a smaller subset of defs, so there is a change
543       // we will miss a AllDefsAreReloads optimization.
544 
545       // Separate all values dominated by OrigVNI into PHIs and non-PHIs.
546       SmallVector<VNInfo*, 8> PHIs, NonPHIs;
547       LiveInterval &LI = LIS.getInterval(Reg);
548 
549       for (LiveInterval::vni_iterator VI = LI.vni_begin(), VE = LI.vni_end();
550            VI != VE; ++VI) {
551         VNInfo *VNI2 = *VI;
552         if (VNI2->isUnused())
553           continue;
554         if (!OrigLI.containsOneValue() &&
555             OrigLI.getVNInfoAt(VNI2->def) != OrigVNI)
556           continue;
557         if (VNI2->isPHIDef() && VNI2->def != OrigVNI->def)
558           PHIs.push_back(VNI2);
559         else
560           NonPHIs.push_back(VNI2);
561       }
562       DEBUG(dbgs() << "split phi value, checking " << PHIs.size()
563                    << " phi-defs, and " << NonPHIs.size()
564                    << " non-phi/orig defs\n");
565 
566       // Create entries for all the PHIs.  Don't add them to the worklist, we
567       // are processing all of them in one go here.
568       for (VNInfo *PHI : PHIs)
569         SibValues.insert(std::make_pair(PHI, SibValueInfo(Reg, PHI)));
570 
571       // Add every PHI as a dependent of all the non-PHIs.
572       for (VNInfo *NonPHI : NonPHIs) {
573         // Known value? Try an insertion.
574         std::tie(SVI, Inserted) =
575           SibValues.insert(std::make_pair(NonPHI, SibValueInfo(Reg, NonPHI)));
576         // Add all the PHIs as dependents of NonPHI.
577         SVI->second.Deps.insert(SVI->second.Deps.end(), PHIs.begin(),
578                                 PHIs.end());
579         // This is the first time we see NonPHI, add it to the worklist.
580         if (Inserted)
581           WorkList.push_back(std::make_pair(Reg, NonPHI));
582         else
583           // Propagate to all inserted PHIs, not just VNI.
584           propagateSiblingValue(SVI);
585       }
586 
587       // Next work list item.
588       continue;
589     }
590 
591     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
592     assert(MI && "Missing def");
593 
594     // Trace through sibling copies.
595     if (unsigned SrcReg = isFullCopyOf(MI, Reg)) {
596       if (isSibling(SrcReg)) {
597         LiveInterval &SrcLI = LIS.getInterval(SrcReg);
598         LiveQueryResult SrcQ = SrcLI.Query(VNI->def);
599         assert(SrcQ.valueIn() && "Copy from non-existing value");
600         // Check if this COPY kills its source.
601         SVI->second.KillsSource = SrcQ.isKill();
602         VNInfo *SrcVNI = SrcQ.valueIn();
603         DEBUG(dbgs() << "copy of " << PrintReg(SrcReg) << ':'
604                      << SrcVNI->id << '@' << SrcVNI->def
605                      << " kill=" << unsigned(SVI->second.KillsSource) << '\n');
606         // Known sibling source value? Try an insertion.
607         std::tie(SVI, Inserted) = SibValues.insert(
608             std::make_pair(SrcVNI, SibValueInfo(SrcReg, SrcVNI)));
609         // This is the first time we see Src, add it to the worklist.
610         if (Inserted)
611           WorkList.push_back(std::make_pair(SrcReg, SrcVNI));
612         propagateSiblingValue(SVI, VNI);
613         // Next work list item.
614         continue;
615       }
616     }
617 
618     // Track reachable reloads.
619     SVI->second.DefMI = MI;
620     SVI->second.SpillMBB = MI->getParent();
621     int FI;
622     if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) {
623       DEBUG(dbgs() << "reload\n");
624       propagateSiblingValue(SVI);
625       // Next work list item.
626       continue;
627     }
628 
629     // Potential remat candidate.
630     DEBUG(dbgs() << "def " << *MI);
631     SVI->second.AllDefsAreReloads = false;
632     propagateSiblingValue(SVI);
633   } while (!WorkList.empty());
634 
635   // Look up the value we were looking for.  We already did this lookup at the
636   // top of the function, but SibValues may have been invalidated.
637   SVI = SibValues.find(UseVNI);
638   assert(SVI != SibValues.end() && "Didn't compute requested info");
639   DEBUG(dbgs() << "  traced to:\t" << SVI->second);
640   return SVI->second.DefMI;
641 }
642 
643 /// analyzeSiblingValues - Trace values defined by sibling copies back to
644 /// something that isn't a sibling copy.
645 ///
646 /// Keep track of values that may be rematerializable.
647 void InlineSpiller::analyzeSiblingValues() {
648   SibValues.clear();
649 
650   // No siblings at all?
651   if (Edit->getReg() == Original)
652     return;
653 
654   LiveInterval &OrigLI = LIS.getInterval(Original);
655   for (unsigned Reg : RegsToSpill) {
656     LiveInterval &LI = LIS.getInterval(Reg);
657     for (LiveInterval::const_vni_iterator VI = LI.vni_begin(),
658          VE = LI.vni_end(); VI != VE; ++VI) {
659       VNInfo *VNI = *VI;
660       if (VNI->isUnused())
661         continue;
662       MachineInstr *DefMI = nullptr;
663       if (!VNI->isPHIDef()) {
664        DefMI = LIS.getInstructionFromIndex(VNI->def);
665        assert(DefMI && "No defining instruction");
666       }
667       // Check possible sibling copies.
668       if (VNI->isPHIDef() || DefMI->isCopy()) {
669         VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
670         assert(OrigVNI && "Def outside original live range");
671         if (OrigVNI->def != VNI->def)
672           DefMI = traceSiblingValue(Reg, VNI, OrigVNI);
673       }
674       if (DefMI && Edit->checkRematerializable(VNI, DefMI, AA)) {
675         DEBUG(dbgs() << "Value " << PrintReg(Reg) << ':' << VNI->id << '@'
676                      << VNI->def << " may remat from " << *DefMI);
677       }
678     }
679   }
680 }
681 
682 /// hoistSpill - Given a sibling copy that defines a value to be spilled, insert
683 /// a spill at a better location.
684 bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr &CopyMI) {
685   SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
686   VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
687   assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
688   SibValueMap::iterator I = SibValues.find(VNI);
689   if (I == SibValues.end())
690     return false;
691 
692   const SibValueInfo &SVI = I->second;
693 
694   // Let the normal folding code deal with the boring case.
695   if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI)
696     return false;
697 
698   // SpillReg may have been deleted by remat and DCE.
699   if (!LIS.hasInterval(SVI.SpillReg)) {
700     DEBUG(dbgs() << "Stale interval: " << PrintReg(SVI.SpillReg) << '\n');
701     SibValues.erase(I);
702     return false;
703   }
704 
705   LiveInterval &SibLI = LIS.getInterval(SVI.SpillReg);
706   if (!SibLI.containsValue(SVI.SpillVNI)) {
707     DEBUG(dbgs() << "Stale value: " << PrintReg(SVI.SpillReg) << '\n');
708     SibValues.erase(I);
709     return false;
710   }
711 
712   // Conservatively extend the stack slot range to the range of the original
713   // value. We may be able to do better with stack slot coloring by being more
714   // careful here.
715   assert(StackInt && "No stack slot assigned yet.");
716   LiveInterval &OrigLI = LIS.getInterval(Original);
717   VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
718   StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
719   DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
720                << *StackInt << '\n');
721 
722   // Already spilled everywhere.
723   if (SVI.AllDefsAreReloads) {
724     DEBUG(dbgs() << "\tno spill needed: " << SVI);
725     ++NumOmitReloadSpill;
726     return true;
727   }
728   // We are going to spill SVI.SpillVNI immediately after its def, so clear out
729   // any later spills of the same value.
730   eliminateRedundantSpills(SibLI, SVI.SpillVNI);
731 
732   MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def);
733   MachineBasicBlock::iterator MII;
734   if (SVI.SpillVNI->isPHIDef())
735     MII = MBB->SkipPHIsAndLabels(MBB->begin());
736   else {
737     MachineInstr *DefMI = LIS.getInstructionFromIndex(SVI.SpillVNI->def);
738     assert(DefMI && "Defining instruction disappeared");
739     MII = DefMI;
740     ++MII;
741   }
742   // Insert spill without kill flag immediately after def.
743   TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot,
744                           MRI.getRegClass(SVI.SpillReg), &TRI);
745   --MII; // Point to store instruction.
746   LIS.InsertMachineInstrInMaps(*MII);
747   DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII);
748 
749   ++NumSpills;
750   ++NumHoists;
751   return true;
752 }
753 
754 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
755 /// redundant spills of this value in SLI.reg and sibling copies.
756 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
757   assert(VNI && "Missing value");
758   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
759   WorkList.push_back(std::make_pair(&SLI, VNI));
760   assert(StackInt && "No stack slot assigned yet.");
761 
762   do {
763     LiveInterval *LI;
764     std::tie(LI, VNI) = WorkList.pop_back_val();
765     unsigned Reg = LI->reg;
766     DEBUG(dbgs() << "Checking redundant spills for "
767                  << VNI->id << '@' << VNI->def << " in " << *LI << '\n');
768 
769     // Regs to spill are taken care of.
770     if (isRegToSpill(Reg))
771       continue;
772 
773     // Add all of VNI's live range to StackInt.
774     StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
775     DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
776 
777     // Find all spills and copies of VNI.
778     for (MachineRegisterInfo::use_instr_nodbg_iterator
779          UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
780          UI != E; ) {
781       MachineInstr *MI = &*(UI++);
782       if (!MI->isCopy() && !MI->mayStore())
783         continue;
784       SlotIndex Idx = LIS.getInstructionIndex(*MI);
785       if (LI->getVNInfoAt(Idx) != VNI)
786         continue;
787 
788       // Follow sibling copies down the dominator tree.
789       if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
790         if (isSibling(DstReg)) {
791            LiveInterval &DstLI = LIS.getInterval(DstReg);
792            VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
793            assert(DstVNI && "Missing defined value");
794            assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
795            WorkList.push_back(std::make_pair(&DstLI, DstVNI));
796         }
797         continue;
798       }
799 
800       // Erase spills.
801       int FI;
802       if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
803         DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI);
804         // eliminateDeadDefs won't normally remove stores, so switch opcode.
805         MI->setDesc(TII.get(TargetOpcode::KILL));
806         DeadDefs.push_back(MI);
807         ++NumSpillsRemoved;
808         --NumSpills;
809       }
810     }
811   } while (!WorkList.empty());
812 }
813 
814 
815 //===----------------------------------------------------------------------===//
816 //                            Rematerialization
817 //===----------------------------------------------------------------------===//
818 
819 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
820 /// instruction cannot be eliminated. See through snippet copies
821 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
822   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
823   WorkList.push_back(std::make_pair(LI, VNI));
824   do {
825     std::tie(LI, VNI) = WorkList.pop_back_val();
826     if (!UsedValues.insert(VNI).second)
827       continue;
828 
829     if (VNI->isPHIDef()) {
830       MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
831       for (MachineBasicBlock *P : MBB->predecessors()) {
832         VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
833         if (PVNI)
834           WorkList.push_back(std::make_pair(LI, PVNI));
835       }
836       continue;
837     }
838 
839     // Follow snippet copies.
840     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
841     if (!SnippetCopies.count(MI))
842       continue;
843     LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
844     assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
845     VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
846     assert(SnipVNI && "Snippet undefined before copy");
847     WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
848   } while (!WorkList.empty());
849 }
850 
851 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
852 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
853 
854   // Analyze instruction
855   SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
856   MIBundleOperands::VirtRegInfo RI =
857       MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops);
858 
859   if (!RI.Reads)
860     return false;
861 
862   SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
863   VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
864 
865   if (!ParentVNI) {
866     DEBUG(dbgs() << "\tadding <undef> flags: ");
867     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
868       MachineOperand &MO = MI.getOperand(i);
869       if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
870         MO.setIsUndef();
871     }
872     DEBUG(dbgs() << UseIdx << '\t' << MI);
873     return true;
874   }
875 
876   if (SnippetCopies.count(&MI))
877     return false;
878 
879   // Use an OrigVNI from traceSiblingValue when ParentVNI is a sibling copy.
880   LiveRangeEdit::Remat RM(ParentVNI);
881   SibValueMap::const_iterator SibI = SibValues.find(ParentVNI);
882   if (SibI != SibValues.end())
883     RM.OrigMI = SibI->second.DefMI;
884   if (!Edit->canRematerializeAt(RM, UseIdx, false)) {
885     markValueUsed(&VirtReg, ParentVNI);
886     DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
887     return false;
888   }
889 
890   // If the instruction also writes VirtReg.reg, it had better not require the
891   // same register for uses and defs.
892   if (RI.Tied) {
893     markValueUsed(&VirtReg, ParentVNI);
894     DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI);
895     return false;
896   }
897 
898   // Before rematerializing into a register for a single instruction, try to
899   // fold a load into the instruction. That avoids allocating a new register.
900   if (RM.OrigMI->canFoldAsLoad() &&
901       foldMemoryOperand(Ops, RM.OrigMI)) {
902     Edit->markRematerialized(RM.ParentVNI);
903     ++NumFoldedLoads;
904     return true;
905   }
906 
907   // Alocate a new register for the remat.
908   unsigned NewVReg = Edit->createFrom(Original);
909 
910   // Finally we can rematerialize OrigMI before MI.
911   SlotIndex DefIdx =
912       Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);
913   (void)DefIdx;
914   DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
915                << *LIS.getInstructionFromIndex(DefIdx));
916 
917   // Replace operands
918   for (const auto &OpPair : Ops) {
919     MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
920     if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
921       MO.setReg(NewVReg);
922       MO.setIsKill();
923     }
924   }
925   DEBUG(dbgs() << "\t        " << UseIdx << '\t' << MI << '\n');
926 
927   ++NumRemats;
928   return true;
929 }
930 
931 /// reMaterializeAll - Try to rematerialize as many uses as possible,
932 /// and trim the live ranges after.
933 void InlineSpiller::reMaterializeAll() {
934   // analyzeSiblingValues has already tested all relevant defining instructions.
935   if (!Edit->anyRematerializable(AA))
936     return;
937 
938   UsedValues.clear();
939 
940   // Try to remat before all uses of snippets.
941   bool anyRemat = false;
942   for (unsigned Reg : RegsToSpill) {
943     LiveInterval &LI = LIS.getInterval(Reg);
944     for (MachineRegisterInfo::reg_bundle_iterator
945            RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
946          RegI != E; ) {
947       MachineInstr &MI = *RegI++;
948 
949       // Debug values are not allowed to affect codegen.
950       if (MI.isDebugValue())
951         continue;
952 
953       anyRemat |= reMaterializeFor(LI, MI);
954     }
955   }
956   if (!anyRemat)
957     return;
958 
959   // Remove any values that were completely rematted.
960   for (unsigned Reg : RegsToSpill) {
961     LiveInterval &LI = LIS.getInterval(Reg);
962     for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
963          I != E; ++I) {
964       VNInfo *VNI = *I;
965       if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
966         continue;
967       MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
968       MI->addRegisterDead(Reg, &TRI);
969       if (!MI->allDefsAreDead())
970         continue;
971       DEBUG(dbgs() << "All defs dead: " << *MI);
972       DeadDefs.push_back(MI);
973     }
974   }
975 
976   // Eliminate dead code after remat. Note that some snippet copies may be
977   // deleted here.
978   if (DeadDefs.empty())
979     return;
980   DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
981   Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
982 
983   // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
984   // after rematerialization.  To remove a VNI for a vreg from its LiveInterval,
985   // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
986   // removed, PHI VNI are still left in the LiveInterval.
987   // So to get rid of unused reg, we need to check whether it has non-dbg
988   // reference instead of whether it has non-empty interval.
989   unsigned ResultPos = 0;
990   for (unsigned Reg : RegsToSpill) {
991     if (MRI.reg_nodbg_empty(Reg)) {
992       Edit->eraseVirtReg(Reg);
993       continue;
994     }
995     assert((LIS.hasInterval(Reg) && !LIS.getInterval(Reg).empty()) &&
996            "Reg with empty interval has reference");
997     RegsToSpill[ResultPos++] = Reg;
998   }
999   RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
1000   DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n");
1001 }
1002 
1003 
1004 //===----------------------------------------------------------------------===//
1005 //                                 Spilling
1006 //===----------------------------------------------------------------------===//
1007 
1008 /// If MI is a load or store of StackSlot, it can be removed.
1009 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
1010   int FI = 0;
1011   unsigned InstrReg = TII.isLoadFromStackSlot(MI, FI);
1012   bool IsLoad = InstrReg;
1013   if (!IsLoad)
1014     InstrReg = TII.isStoreToStackSlot(MI, FI);
1015 
1016   // We have a stack access. Is it the right register and slot?
1017   if (InstrReg != Reg || FI != StackSlot)
1018     return false;
1019 
1020   DEBUG(dbgs() << "Coalescing stack access: " << *MI);
1021   LIS.RemoveMachineInstrFromMaps(*MI);
1022   MI->eraseFromParent();
1023 
1024   if (IsLoad) {
1025     ++NumReloadsRemoved;
1026     --NumReloads;
1027   } else {
1028     ++NumSpillsRemoved;
1029     --NumSpills;
1030   }
1031 
1032   return true;
1033 }
1034 
1035 #if !defined(NDEBUG)
1036 // Dump the range of instructions from B to E with their slot indexes.
1037 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
1038                                                MachineBasicBlock::iterator E,
1039                                                LiveIntervals const &LIS,
1040                                                const char *const header,
1041                                                unsigned VReg =0) {
1042   char NextLine = '\n';
1043   char SlotIndent = '\t';
1044 
1045   if (std::next(B) == E) {
1046     NextLine = ' ';
1047     SlotIndent = ' ';
1048   }
1049 
1050   dbgs() << '\t' << header << ": " << NextLine;
1051 
1052   for (MachineBasicBlock::iterator I = B; I != E; ++I) {
1053     SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();
1054 
1055     // If a register was passed in and this instruction has it as a
1056     // destination that is marked as an early clobber, print the
1057     // early-clobber slot index.
1058     if (VReg) {
1059       MachineOperand *MO = I->findRegisterDefOperand(VReg);
1060       if (MO && MO->isEarlyClobber())
1061         Idx = Idx.getRegSlot(true);
1062     }
1063 
1064     dbgs() << SlotIndent << Idx << '\t' << *I;
1065   }
1066 }
1067 #endif
1068 
1069 /// foldMemoryOperand - Try folding stack slot references in Ops into their
1070 /// instructions.
1071 ///
1072 /// @param Ops    Operand indices from analyzeVirtReg().
1073 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
1074 /// @return       True on success.
1075 bool InlineSpiller::
1076 foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops,
1077                   MachineInstr *LoadMI) {
1078   if (Ops.empty())
1079     return false;
1080   // Don't attempt folding in bundles.
1081   MachineInstr *MI = Ops.front().first;
1082   if (Ops.back().first != MI || MI->isBundled())
1083     return false;
1084 
1085   bool WasCopy = MI->isCopy();
1086   unsigned ImpReg = 0;
1087 
1088   bool SpillSubRegs = (MI->getOpcode() == TargetOpcode::STATEPOINT ||
1089                        MI->getOpcode() == TargetOpcode::PATCHPOINT ||
1090                        MI->getOpcode() == TargetOpcode::STACKMAP);
1091 
1092   // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
1093   // operands.
1094   SmallVector<unsigned, 8> FoldOps;
1095   for (const auto &OpPair : Ops) {
1096     unsigned Idx = OpPair.second;
1097     assert(MI == OpPair.first && "Instruction conflict during operand folding");
1098     MachineOperand &MO = MI->getOperand(Idx);
1099     if (MO.isImplicit()) {
1100       ImpReg = MO.getReg();
1101       continue;
1102     }
1103     // FIXME: Teach targets to deal with subregs.
1104     if (!SpillSubRegs && MO.getSubReg())
1105       return false;
1106     // We cannot fold a load instruction into a def.
1107     if (LoadMI && MO.isDef())
1108       return false;
1109     // Tied use operands should not be passed to foldMemoryOperand.
1110     if (!MI->isRegTiedToDefOperand(Idx))
1111       FoldOps.push_back(Idx);
1112   }
1113 
1114   MachineInstrSpan MIS(MI);
1115 
1116   MachineInstr *FoldMI =
1117                 LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI)
1118                        : TII.foldMemoryOperand(MI, FoldOps, StackSlot);
1119   if (!FoldMI)
1120     return false;
1121 
1122   // Remove LIS for any dead defs in the original MI not in FoldMI.
1123   for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
1124     if (!MO->isReg())
1125       continue;
1126     unsigned Reg = MO->getReg();
1127     if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) ||
1128         MRI.isReserved(Reg)) {
1129       continue;
1130     }
1131     // Skip non-Defs, including undef uses and internal reads.
1132     if (MO->isUse())
1133       continue;
1134     MIBundleOperands::PhysRegInfo RI =
1135         MIBundleOperands(*FoldMI).analyzePhysReg(Reg, &TRI);
1136     if (RI.FullyDefined)
1137       continue;
1138     // FoldMI does not define this physreg. Remove the LI segment.
1139     assert(MO->isDead() && "Cannot fold physreg def");
1140     SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
1141     LIS.removePhysRegDefAt(Reg, Idx);
1142   }
1143 
1144   LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
1145   MI->eraseFromParent();
1146 
1147   // Insert any new instructions other than FoldMI into the LIS maps.
1148   assert(!MIS.empty() && "Unexpected empty span of instructions!");
1149   for (MachineInstr &MI : MIS)
1150     if (&MI != FoldMI)
1151       LIS.InsertMachineInstrInMaps(MI);
1152 
1153   // TII.foldMemoryOperand may have left some implicit operands on the
1154   // instruction.  Strip them.
1155   if (ImpReg)
1156     for (unsigned i = FoldMI->getNumOperands(); i; --i) {
1157       MachineOperand &MO = FoldMI->getOperand(i - 1);
1158       if (!MO.isReg() || !MO.isImplicit())
1159         break;
1160       if (MO.getReg() == ImpReg)
1161         FoldMI->RemoveOperand(i - 1);
1162     }
1163 
1164   DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
1165                                            "folded"));
1166 
1167   if (!WasCopy)
1168     ++NumFolded;
1169   else if (Ops.front().second == 0)
1170     ++NumSpills;
1171   else
1172     ++NumReloads;
1173   return true;
1174 }
1175 
1176 void InlineSpiller::insertReload(unsigned NewVReg,
1177                                  SlotIndex Idx,
1178                                  MachineBasicBlock::iterator MI) {
1179   MachineBasicBlock &MBB = *MI->getParent();
1180 
1181   MachineInstrSpan MIS(MI);
1182   TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
1183                            MRI.getRegClass(NewVReg), &TRI);
1184 
1185   LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
1186 
1187   DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
1188                                            NewVReg));
1189   ++NumReloads;
1190 }
1191 
1192 /// insertSpill - Insert a spill of NewVReg after MI.
1193 void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill,
1194                                  MachineBasicBlock::iterator MI) {
1195   MachineBasicBlock &MBB = *MI->getParent();
1196 
1197   MachineInstrSpan MIS(MI);
1198   TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot,
1199                           MRI.getRegClass(NewVReg), &TRI);
1200 
1201   LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end());
1202 
1203   DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS,
1204                                            "spill"));
1205   ++NumSpills;
1206 }
1207 
1208 /// spillAroundUses - insert spill code around each use of Reg.
1209 void InlineSpiller::spillAroundUses(unsigned Reg) {
1210   DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n');
1211   LiveInterval &OldLI = LIS.getInterval(Reg);
1212 
1213   // Iterate over instructions using Reg.
1214   for (MachineRegisterInfo::reg_bundle_iterator
1215        RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
1216        RegI != E; ) {
1217     MachineInstr *MI = &*(RegI++);
1218 
1219     // Debug values are not allowed to affect codegen.
1220     if (MI->isDebugValue()) {
1221       // Modify DBG_VALUE now that the value is in a spill slot.
1222       bool IsIndirect = MI->isIndirectDebugValue();
1223       uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
1224       const MDNode *Var = MI->getDebugVariable();
1225       const MDNode *Expr = MI->getDebugExpression();
1226       DebugLoc DL = MI->getDebugLoc();
1227       DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
1228       MachineBasicBlock *MBB = MI->getParent();
1229       assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
1230              "Expected inlined-at fields to agree");
1231       BuildMI(*MBB, MBB->erase(MI), DL, TII.get(TargetOpcode::DBG_VALUE))
1232           .addFrameIndex(StackSlot)
1233           .addImm(Offset)
1234           .addMetadata(Var)
1235           .addMetadata(Expr);
1236       continue;
1237     }
1238 
1239     // Ignore copies to/from snippets. We'll delete them.
1240     if (SnippetCopies.count(MI))
1241       continue;
1242 
1243     // Stack slot accesses may coalesce away.
1244     if (coalesceStackAccess(MI, Reg))
1245       continue;
1246 
1247     // Analyze instruction.
1248     SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
1249     MIBundleOperands::VirtRegInfo RI =
1250         MIBundleOperands(*MI).analyzeVirtReg(Reg, &Ops);
1251 
1252     // Find the slot index where this instruction reads and writes OldLI.
1253     // This is usually the def slot, except for tied early clobbers.
1254     SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
1255     if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
1256       if (SlotIndex::isSameInstr(Idx, VNI->def))
1257         Idx = VNI->def;
1258 
1259     // Check for a sibling copy.
1260     unsigned SibReg = isFullCopyOf(MI, Reg);
1261     if (SibReg && isSibling(SibReg)) {
1262       // This may actually be a copy between snippets.
1263       if (isRegToSpill(SibReg)) {
1264         DEBUG(dbgs() << "Found new snippet copy: " << *MI);
1265         SnippetCopies.insert(MI);
1266         continue;
1267       }
1268       if (RI.Writes) {
1269         // Hoist the spill of a sib-reg copy.
1270         if (hoistSpill(OldLI, *MI)) {
1271           // This COPY is now dead, the value is already in the stack slot.
1272           MI->getOperand(0).setIsDead();
1273           DeadDefs.push_back(MI);
1274           continue;
1275         }
1276       } else {
1277         // This is a reload for a sib-reg copy. Drop spills downstream.
1278         LiveInterval &SibLI = LIS.getInterval(SibReg);
1279         eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
1280         // The COPY will fold to a reload below.
1281       }
1282     }
1283 
1284     // Attempt to fold memory ops.
1285     if (foldMemoryOperand(Ops))
1286       continue;
1287 
1288     // Create a new virtual register for spill/fill.
1289     // FIXME: Infer regclass from instruction alone.
1290     unsigned NewVReg = Edit->createFrom(Reg);
1291 
1292     if (RI.Reads)
1293       insertReload(NewVReg, Idx, MI);
1294 
1295     // Rewrite instruction operands.
1296     bool hasLiveDef = false;
1297     for (const auto &OpPair : Ops) {
1298       MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
1299       MO.setReg(NewVReg);
1300       if (MO.isUse()) {
1301         if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
1302           MO.setIsKill();
1303       } else {
1304         if (!MO.isDead())
1305           hasLiveDef = true;
1306       }
1307     }
1308     DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n');
1309 
1310     // FIXME: Use a second vreg if instruction has no tied ops.
1311     if (RI.Writes)
1312       if (hasLiveDef)
1313         insertSpill(NewVReg, true, MI);
1314   }
1315 }
1316 
1317 /// spillAll - Spill all registers remaining after rematerialization.
1318 void InlineSpiller::spillAll() {
1319   // Update LiveStacks now that we are committed to spilling.
1320   if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1321     StackSlot = VRM.assignVirt2StackSlot(Original);
1322     StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1323     StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1324   } else
1325     StackInt = &LSS.getInterval(StackSlot);
1326 
1327   if (Original != Edit->getReg())
1328     VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1329 
1330   assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1331   for (unsigned Reg : RegsToSpill)
1332     StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
1333                                      StackInt->getValNumInfo(0));
1334   DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1335 
1336   // Spill around uses of all RegsToSpill.
1337   for (unsigned Reg : RegsToSpill)
1338     spillAroundUses(Reg);
1339 
1340   // Hoisted spills may cause dead code.
1341   if (!DeadDefs.empty()) {
1342     DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1343     Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
1344   }
1345 
1346   // Finally delete the SnippetCopies.
1347   for (unsigned Reg : RegsToSpill) {
1348     for (MachineRegisterInfo::reg_instr_iterator
1349          RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end();
1350          RI != E; ) {
1351       MachineInstr &MI = *(RI++);
1352       assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy");
1353       // FIXME: Do this with a LiveRangeEdit callback.
1354       LIS.RemoveMachineInstrFromMaps(MI);
1355       MI.eraseFromParent();
1356     }
1357   }
1358 
1359   // Delete all spilled registers.
1360   for (unsigned Reg : RegsToSpill)
1361     Edit->eraseVirtReg(Reg);
1362 }
1363 
1364 void InlineSpiller::spill(LiveRangeEdit &edit) {
1365   ++NumSpilledRanges;
1366   Edit = &edit;
1367   assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
1368          && "Trying to spill a stack slot.");
1369   // Share a stack slot among all descendants of Original.
1370   Original = VRM.getOriginal(edit.getReg());
1371   StackSlot = VRM.getStackSlot(Original);
1372   StackInt = nullptr;
1373 
1374   DEBUG(dbgs() << "Inline spilling "
1375                << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
1376                << ':' << edit.getParent()
1377                << "\nFrom original " << PrintReg(Original) << '\n');
1378   assert(edit.getParent().isSpillable() &&
1379          "Attempting to spill already spilled value.");
1380   assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1381 
1382   collectRegsToSpill();
1383   analyzeSiblingValues();
1384   reMaterializeAll();
1385 
1386   // Remat may handle everything.
1387   if (!RegsToSpill.empty())
1388     spillAll();
1389 
1390   Edit->calculateRegClassAndHint(MF, Loops, MBFI);
1391 }
1392