1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The inline spiller modifies the machine function directly instead of 10 // inserting spills and restores in VirtRegMap. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "Spiller.h" 15 #include "SplitKit.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/CodeGen/LiveInterval.h" 27 #include "llvm/CodeGen/LiveIntervals.h" 28 #include "llvm/CodeGen/LiveRangeCalc.h" 29 #include "llvm/CodeGen/LiveRangeEdit.h" 30 #include "llvm/CodeGen/LiveStacks.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineInstrBuilder.h" 38 #include "llvm/CodeGen/MachineInstrBundle.h" 39 #include "llvm/CodeGen/MachineLoopInfo.h" 40 #include "llvm/CodeGen/MachineOperand.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/SlotIndexes.h" 43 #include "llvm/CodeGen/TargetInstrInfo.h" 44 #include "llvm/CodeGen/TargetOpcodes.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/VirtRegMap.h" 48 #include "llvm/Config/llvm-config.h" 49 #include "llvm/Support/BlockFrequency.h" 50 #include "llvm/Support/BranchProbability.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Compiler.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include <cassert> 57 #include <iterator> 58 #include <tuple> 59 #include <utility> 60 #include <vector> 61 62 using namespace llvm; 63 64 #define DEBUG_TYPE "regalloc" 65 66 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 67 STATISTIC(NumSnippets, "Number of spilled snippets"); 68 STATISTIC(NumSpills, "Number of spills inserted"); 69 STATISTIC(NumSpillsRemoved, "Number of spills removed"); 70 STATISTIC(NumReloads, "Number of reloads inserted"); 71 STATISTIC(NumReloadsRemoved, "Number of reloads removed"); 72 STATISTIC(NumFolded, "Number of folded stack accesses"); 73 STATISTIC(NumFoldedLoads, "Number of folded loads"); 74 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 75 76 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden, 77 cl::desc("Disable inline spill hoisting")); 78 static cl::opt<bool> 79 RestrictStatepointRemat("restrict-statepoint-remat", 80 cl::init(false), cl::Hidden, 81 cl::desc("Restrict remat for statepoint operands")); 82 83 namespace { 84 85 class HoistSpillHelper : private LiveRangeEdit::Delegate { 86 MachineFunction &MF; 87 LiveIntervals &LIS; 88 LiveStacks &LSS; 89 AliasAnalysis *AA; 90 MachineDominatorTree &MDT; 91 MachineLoopInfo &Loops; 92 VirtRegMap &VRM; 93 MachineRegisterInfo &MRI; 94 const TargetInstrInfo &TII; 95 const TargetRegisterInfo &TRI; 96 const MachineBlockFrequencyInfo &MBFI; 97 98 InsertPointAnalysis IPA; 99 100 // Map from StackSlot to the LiveInterval of the original register. 101 // Note the LiveInterval of the original register may have been deleted 102 // after it is spilled. We keep a copy here to track the range where 103 // spills can be moved. 104 DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI; 105 106 // Map from pair of (StackSlot and Original VNI) to a set of spills which 107 // have the same stackslot and have equal values defined by Original VNI. 108 // These spills are mergeable and are hoist candiates. 109 using MergeableSpillsMap = 110 MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>; 111 MergeableSpillsMap MergeableSpills; 112 113 /// This is the map from original register to a set containing all its 114 /// siblings. To hoist a spill to another BB, we need to find out a live 115 /// sibling there and use it as the source of the new spill. 116 DenseMap<unsigned, SmallSetVector<unsigned, 16>> Virt2SiblingsMap; 117 118 bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 119 MachineBasicBlock &BB, unsigned &LiveReg); 120 121 void rmRedundantSpills( 122 SmallPtrSet<MachineInstr *, 16> &Spills, 123 SmallVectorImpl<MachineInstr *> &SpillsToRm, 124 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 125 126 void getVisitOrders( 127 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 128 SmallVectorImpl<MachineDomTreeNode *> &Orders, 129 SmallVectorImpl<MachineInstr *> &SpillsToRm, 130 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 131 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 132 133 void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI, 134 SmallPtrSet<MachineInstr *, 16> &Spills, 135 SmallVectorImpl<MachineInstr *> &SpillsToRm, 136 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns); 137 138 public: 139 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf, 140 VirtRegMap &vrm) 141 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 142 LSS(pass.getAnalysis<LiveStacks>()), 143 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 144 MDT(pass.getAnalysis<MachineDominatorTree>()), 145 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 146 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 147 TRI(*mf.getSubtarget().getRegisterInfo()), 148 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 149 IPA(LIS, mf.getNumBlockIDs()) {} 150 151 void addToMergeableSpills(MachineInstr &Spill, int StackSlot, 152 unsigned Original); 153 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot); 154 void hoistAllSpills(); 155 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 156 }; 157 158 class InlineSpiller : public Spiller { 159 MachineFunction &MF; 160 LiveIntervals &LIS; 161 LiveStacks &LSS; 162 AliasAnalysis *AA; 163 MachineDominatorTree &MDT; 164 MachineLoopInfo &Loops; 165 VirtRegMap &VRM; 166 MachineRegisterInfo &MRI; 167 const TargetInstrInfo &TII; 168 const TargetRegisterInfo &TRI; 169 const MachineBlockFrequencyInfo &MBFI; 170 171 // Variables that are valid during spill(), but used by multiple methods. 172 LiveRangeEdit *Edit; 173 LiveInterval *StackInt; 174 int StackSlot; 175 unsigned Original; 176 177 // All registers to spill to StackSlot, including the main register. 178 SmallVector<unsigned, 8> RegsToSpill; 179 180 // All COPY instructions to/from snippets. 181 // They are ignored since both operands refer to the same stack slot. 182 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 183 184 // Values that failed to remat at some point. 185 SmallPtrSet<VNInfo*, 8> UsedValues; 186 187 // Dead defs generated during spilling. 188 SmallVector<MachineInstr*, 8> DeadDefs; 189 190 // Object records spills information and does the hoisting. 191 HoistSpillHelper HSpiller; 192 193 ~InlineSpiller() override = default; 194 195 public: 196 InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm) 197 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 198 LSS(pass.getAnalysis<LiveStacks>()), 199 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 200 MDT(pass.getAnalysis<MachineDominatorTree>()), 201 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 202 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 203 TRI(*mf.getSubtarget().getRegisterInfo()), 204 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 205 HSpiller(pass, mf, vrm) {} 206 207 void spill(LiveRangeEdit &) override; 208 void postOptimization() override; 209 210 private: 211 bool isSnippet(const LiveInterval &SnipLI); 212 void collectRegsToSpill(); 213 214 bool isRegToSpill(unsigned Reg) { return is_contained(RegsToSpill, Reg); } 215 216 bool isSibling(unsigned Reg); 217 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI); 218 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 219 220 void markValueUsed(LiveInterval*, VNInfo*); 221 bool canGuaranteeAssignmentAfterRemat(unsigned VReg, MachineInstr &MI); 222 bool reMaterializeFor(LiveInterval &, MachineInstr &MI); 223 void reMaterializeAll(); 224 225 bool coalesceStackAccess(MachineInstr *MI, unsigned Reg); 226 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>, 227 MachineInstr *LoadMI = nullptr); 228 void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI); 229 void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI); 230 231 void spillAroundUses(unsigned Reg); 232 void spillAll(); 233 }; 234 235 } // end anonymous namespace 236 237 Spiller::~Spiller() = default; 238 239 void Spiller::anchor() {} 240 241 Spiller *llvm::createInlineSpiller(MachineFunctionPass &pass, 242 MachineFunction &mf, 243 VirtRegMap &vrm) { 244 return new InlineSpiller(pass, mf, vrm); 245 } 246 247 //===----------------------------------------------------------------------===// 248 // Snippets 249 //===----------------------------------------------------------------------===// 250 251 // When spilling a virtual register, we also spill any snippets it is connected 252 // to. The snippets are small live ranges that only have a single real use, 253 // leftovers from live range splitting. Spilling them enables memory operand 254 // folding or tightens the live range around the single use. 255 // 256 // This minimizes register pressure and maximizes the store-to-load distance for 257 // spill slots which can be important in tight loops. 258 259 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 260 /// otherwise return 0. 261 static unsigned isFullCopyOf(const MachineInstr &MI, unsigned Reg) { 262 if (!MI.isFullCopy()) 263 return 0; 264 if (MI.getOperand(0).getReg() == Reg) 265 return MI.getOperand(1).getReg(); 266 if (MI.getOperand(1).getReg() == Reg) 267 return MI.getOperand(0).getReg(); 268 return 0; 269 } 270 271 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 272 /// It is assumed that SnipLI is a virtual register with the same original as 273 /// Edit->getReg(). 274 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 275 unsigned Reg = Edit->getReg(); 276 277 // A snippet is a tiny live range with only a single instruction using it 278 // besides copies to/from Reg or spills/fills. We accept: 279 // 280 // %snip = COPY %Reg / FILL fi# 281 // %snip = USE %snip 282 // %Reg = COPY %snip / SPILL %snip, fi# 283 // 284 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) 285 return false; 286 287 MachineInstr *UseMI = nullptr; 288 289 // Check that all uses satisfy our criteria. 290 for (MachineRegisterInfo::reg_instr_nodbg_iterator 291 RI = MRI.reg_instr_nodbg_begin(SnipLI.reg), 292 E = MRI.reg_instr_nodbg_end(); RI != E; ) { 293 MachineInstr &MI = *RI++; 294 295 // Allow copies to/from Reg. 296 if (isFullCopyOf(MI, Reg)) 297 continue; 298 299 // Allow stack slot loads. 300 int FI; 301 if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 302 continue; 303 304 // Allow stack slot stores. 305 if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 306 continue; 307 308 // Allow a single additional instruction. 309 if (UseMI && &MI != UseMI) 310 return false; 311 UseMI = &MI; 312 } 313 return true; 314 } 315 316 /// collectRegsToSpill - Collect live range snippets that only have a single 317 /// real use. 318 void InlineSpiller::collectRegsToSpill() { 319 unsigned Reg = Edit->getReg(); 320 321 // Main register always spills. 322 RegsToSpill.assign(1, Reg); 323 SnippetCopies.clear(); 324 325 // Snippets all have the same original, so there can't be any for an original 326 // register. 327 if (Original == Reg) 328 return; 329 330 for (MachineRegisterInfo::reg_instr_iterator 331 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) { 332 MachineInstr &MI = *RI++; 333 unsigned SnipReg = isFullCopyOf(MI, Reg); 334 if (!isSibling(SnipReg)) 335 continue; 336 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 337 if (!isSnippet(SnipLI)) 338 continue; 339 SnippetCopies.insert(&MI); 340 if (isRegToSpill(SnipReg)) 341 continue; 342 RegsToSpill.push_back(SnipReg); 343 LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 344 ++NumSnippets; 345 } 346 } 347 348 bool InlineSpiller::isSibling(unsigned Reg) { 349 return Register::isVirtualRegister(Reg) && VRM.getOriginal(Reg) == Original; 350 } 351 352 /// It is beneficial to spill to earlier place in the same BB in case 353 /// as follows: 354 /// There is an alternative def earlier in the same MBB. 355 /// Hoist the spill as far as possible in SpillMBB. This can ease 356 /// register pressure: 357 /// 358 /// x = def 359 /// y = use x 360 /// s = copy x 361 /// 362 /// Hoisting the spill of s to immediately after the def removes the 363 /// interference between x and y: 364 /// 365 /// x = def 366 /// spill x 367 /// y = use killed x 368 /// 369 /// This hoist only helps when the copy kills its source. 370 /// 371 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI, 372 MachineInstr &CopyMI) { 373 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 374 #ifndef NDEBUG 375 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); 376 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); 377 #endif 378 379 Register SrcReg = CopyMI.getOperand(1).getReg(); 380 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 381 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx); 382 LiveQueryResult SrcQ = SrcLI.Query(Idx); 383 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def); 384 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill()) 385 return false; 386 387 // Conservatively extend the stack slot range to the range of the original 388 // value. We may be able to do better with stack slot coloring by being more 389 // careful here. 390 assert(StackInt && "No stack slot assigned yet."); 391 LiveInterval &OrigLI = LIS.getInterval(Original); 392 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 393 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 394 LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 395 << *StackInt << '\n'); 396 397 // We are going to spill SrcVNI immediately after its def, so clear out 398 // any later spills of the same value. 399 eliminateRedundantSpills(SrcLI, SrcVNI); 400 401 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def); 402 MachineBasicBlock::iterator MII; 403 if (SrcVNI->isPHIDef()) 404 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 405 else { 406 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def); 407 assert(DefMI && "Defining instruction disappeared"); 408 MII = DefMI; 409 ++MII; 410 } 411 // Insert spill without kill flag immediately after def. 412 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot, 413 MRI.getRegClass(SrcReg), &TRI); 414 --MII; // Point to store instruction. 415 LIS.InsertMachineInstrInMaps(*MII); 416 LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII); 417 418 HSpiller.addToMergeableSpills(*MII, StackSlot, Original); 419 ++NumSpills; 420 return true; 421 } 422 423 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 424 /// redundant spills of this value in SLI.reg and sibling copies. 425 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 426 assert(VNI && "Missing value"); 427 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 428 WorkList.push_back(std::make_pair(&SLI, VNI)); 429 assert(StackInt && "No stack slot assigned yet."); 430 431 do { 432 LiveInterval *LI; 433 std::tie(LI, VNI) = WorkList.pop_back_val(); 434 unsigned Reg = LI->reg; 435 LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@' 436 << VNI->def << " in " << *LI << '\n'); 437 438 // Regs to spill are taken care of. 439 if (isRegToSpill(Reg)) 440 continue; 441 442 // Add all of VNI's live range to StackInt. 443 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 444 LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 445 446 // Find all spills and copies of VNI. 447 for (MachineRegisterInfo::use_instr_nodbg_iterator 448 UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 449 UI != E; ) { 450 MachineInstr &MI = *UI++; 451 if (!MI.isCopy() && !MI.mayStore()) 452 continue; 453 SlotIndex Idx = LIS.getInstructionIndex(MI); 454 if (LI->getVNInfoAt(Idx) != VNI) 455 continue; 456 457 // Follow sibling copies down the dominator tree. 458 if (unsigned DstReg = isFullCopyOf(MI, Reg)) { 459 if (isSibling(DstReg)) { 460 LiveInterval &DstLI = LIS.getInterval(DstReg); 461 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); 462 assert(DstVNI && "Missing defined value"); 463 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); 464 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 465 } 466 continue; 467 } 468 469 // Erase spills. 470 int FI; 471 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 472 LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI); 473 // eliminateDeadDefs won't normally remove stores, so switch opcode. 474 MI.setDesc(TII.get(TargetOpcode::KILL)); 475 DeadDefs.push_back(&MI); 476 ++NumSpillsRemoved; 477 if (HSpiller.rmFromMergeableSpills(MI, StackSlot)) 478 --NumSpills; 479 } 480 } 481 } while (!WorkList.empty()); 482 } 483 484 //===----------------------------------------------------------------------===// 485 // Rematerialization 486 //===----------------------------------------------------------------------===// 487 488 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 489 /// instruction cannot be eliminated. See through snippet copies 490 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 491 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 492 WorkList.push_back(std::make_pair(LI, VNI)); 493 do { 494 std::tie(LI, VNI) = WorkList.pop_back_val(); 495 if (!UsedValues.insert(VNI).second) 496 continue; 497 498 if (VNI->isPHIDef()) { 499 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 500 for (MachineBasicBlock *P : MBB->predecessors()) { 501 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P)); 502 if (PVNI) 503 WorkList.push_back(std::make_pair(LI, PVNI)); 504 } 505 continue; 506 } 507 508 // Follow snippet copies. 509 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 510 if (!SnippetCopies.count(MI)) 511 continue; 512 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 513 assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy"); 514 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); 515 assert(SnipVNI && "Snippet undefined before copy"); 516 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 517 } while (!WorkList.empty()); 518 } 519 520 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(unsigned VReg, 521 MachineInstr &MI) { 522 if (!RestrictStatepointRemat) 523 return true; 524 // Here's a quick explanation of the problem we're trying to handle here: 525 // * There are some pseudo instructions with more vreg uses than there are 526 // physical registers on the machine. 527 // * This is normally handled by spilling the vreg, and folding the reload 528 // into the user instruction. (Thus decreasing the number of used vregs 529 // until the remainder can be assigned to physregs.) 530 // * However, since we may try to spill vregs in any order, we can end up 531 // trying to spill each operand to the instruction, and then rematting it 532 // instead. When that happens, the new live intervals (for the remats) are 533 // expected to be trivially assignable (i.e. RS_Done). However, since we 534 // may have more remats than physregs, we're guaranteed to fail to assign 535 // one. 536 // At the moment, we only handle this for STATEPOINTs since they're the only 537 // pseudo op where we've seen this. If we start seeing other instructions 538 // with the same problem, we need to revisit this. 539 return (MI.getOpcode() != TargetOpcode::STATEPOINT); 540 } 541 542 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 543 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) { 544 // Analyze instruction 545 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 546 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg, &Ops); 547 548 if (!RI.Reads) 549 return false; 550 551 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); 552 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 553 554 if (!ParentVNI) { 555 LLVM_DEBUG(dbgs() << "\tadding <undef> flags: "); 556 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 557 MachineOperand &MO = MI.getOperand(i); 558 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) 559 MO.setIsUndef(); 560 } 561 LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI); 562 return true; 563 } 564 565 if (SnippetCopies.count(&MI)) 566 return false; 567 568 LiveInterval &OrigLI = LIS.getInterval(Original); 569 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 570 LiveRangeEdit::Remat RM(ParentVNI); 571 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 572 573 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) { 574 markValueUsed(&VirtReg, ParentVNI); 575 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 576 return false; 577 } 578 579 // If the instruction also writes VirtReg.reg, it had better not require the 580 // same register for uses and defs. 581 if (RI.Tied) { 582 markValueUsed(&VirtReg, ParentVNI); 583 LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI); 584 return false; 585 } 586 587 // Before rematerializing into a register for a single instruction, try to 588 // fold a load into the instruction. That avoids allocating a new register. 589 if (RM.OrigMI->canFoldAsLoad() && 590 foldMemoryOperand(Ops, RM.OrigMI)) { 591 Edit->markRematerialized(RM.ParentVNI); 592 ++NumFoldedLoads; 593 return true; 594 } 595 596 // If we can't guarantee that we'll be able to actually assign the new vreg, 597 // we can't remat. 598 if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg, MI)) { 599 markValueUsed(&VirtReg, ParentVNI); 600 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 601 return false; 602 } 603 604 // Allocate a new register for the remat. 605 unsigned NewVReg = Edit->createFrom(Original); 606 607 // Finally we can rematerialize OrigMI before MI. 608 SlotIndex DefIdx = 609 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI); 610 611 // We take the DebugLoc from MI, since OrigMI may be attributed to a 612 // different source location. 613 auto *NewMI = LIS.getInstructionFromIndex(DefIdx); 614 NewMI->setDebugLoc(MI.getDebugLoc()); 615 616 (void)DefIdx; 617 LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 618 << *LIS.getInstructionFromIndex(DefIdx)); 619 620 // Replace operands 621 for (const auto &OpPair : Ops) { 622 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 623 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) { 624 MO.setReg(NewVReg); 625 MO.setIsKill(); 626 } 627 } 628 LLVM_DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n'); 629 630 ++NumRemats; 631 return true; 632 } 633 634 /// reMaterializeAll - Try to rematerialize as many uses as possible, 635 /// and trim the live ranges after. 636 void InlineSpiller::reMaterializeAll() { 637 if (!Edit->anyRematerializable(AA)) 638 return; 639 640 UsedValues.clear(); 641 642 // Try to remat before all uses of snippets. 643 bool anyRemat = false; 644 for (unsigned Reg : RegsToSpill) { 645 LiveInterval &LI = LIS.getInterval(Reg); 646 for (MachineRegisterInfo::reg_bundle_iterator 647 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 648 RegI != E; ) { 649 MachineInstr &MI = *RegI++; 650 651 // Debug values are not allowed to affect codegen. 652 if (MI.isDebugValue()) 653 continue; 654 655 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug " 656 "instruction that isn't a DBG_VALUE"); 657 658 anyRemat |= reMaterializeFor(LI, MI); 659 } 660 } 661 if (!anyRemat) 662 return; 663 664 // Remove any values that were completely rematted. 665 for (unsigned Reg : RegsToSpill) { 666 LiveInterval &LI = LIS.getInterval(Reg); 667 for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 668 I != E; ++I) { 669 VNInfo *VNI = *I; 670 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 671 continue; 672 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 673 MI->addRegisterDead(Reg, &TRI); 674 if (!MI->allDefsAreDead()) 675 continue; 676 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); 677 DeadDefs.push_back(MI); 678 } 679 } 680 681 // Eliminate dead code after remat. Note that some snippet copies may be 682 // deleted here. 683 if (DeadDefs.empty()) 684 return; 685 LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 686 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 687 688 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions 689 // after rematerialization. To remove a VNI for a vreg from its LiveInterval, 690 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all 691 // removed, PHI VNI are still left in the LiveInterval. 692 // So to get rid of unused reg, we need to check whether it has non-dbg 693 // reference instead of whether it has non-empty interval. 694 unsigned ResultPos = 0; 695 for (unsigned Reg : RegsToSpill) { 696 if (MRI.reg_nodbg_empty(Reg)) { 697 Edit->eraseVirtReg(Reg); 698 continue; 699 } 700 701 assert(LIS.hasInterval(Reg) && 702 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && 703 "Empty and not used live-range?!"); 704 705 RegsToSpill[ResultPos++] = Reg; 706 } 707 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); 708 LLVM_DEBUG(dbgs() << RegsToSpill.size() 709 << " registers to spill after remat.\n"); 710 } 711 712 //===----------------------------------------------------------------------===// 713 // Spilling 714 //===----------------------------------------------------------------------===// 715 716 /// If MI is a load or store of StackSlot, it can be removed. 717 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) { 718 int FI = 0; 719 unsigned InstrReg = TII.isLoadFromStackSlot(*MI, FI); 720 bool IsLoad = InstrReg; 721 if (!IsLoad) 722 InstrReg = TII.isStoreToStackSlot(*MI, FI); 723 724 // We have a stack access. Is it the right register and slot? 725 if (InstrReg != Reg || FI != StackSlot) 726 return false; 727 728 if (!IsLoad) 729 HSpiller.rmFromMergeableSpills(*MI, StackSlot); 730 731 LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI); 732 LIS.RemoveMachineInstrFromMaps(*MI); 733 MI->eraseFromParent(); 734 735 if (IsLoad) { 736 ++NumReloadsRemoved; 737 --NumReloads; 738 } else { 739 ++NumSpillsRemoved; 740 --NumSpills; 741 } 742 743 return true; 744 } 745 746 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 747 LLVM_DUMP_METHOD 748 // Dump the range of instructions from B to E with their slot indexes. 749 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, 750 MachineBasicBlock::iterator E, 751 LiveIntervals const &LIS, 752 const char *const header, 753 unsigned VReg =0) { 754 char NextLine = '\n'; 755 char SlotIndent = '\t'; 756 757 if (std::next(B) == E) { 758 NextLine = ' '; 759 SlotIndent = ' '; 760 } 761 762 dbgs() << '\t' << header << ": " << NextLine; 763 764 for (MachineBasicBlock::iterator I = B; I != E; ++I) { 765 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot(); 766 767 // If a register was passed in and this instruction has it as a 768 // destination that is marked as an early clobber, print the 769 // early-clobber slot index. 770 if (VReg) { 771 MachineOperand *MO = I->findRegisterDefOperand(VReg); 772 if (MO && MO->isEarlyClobber()) 773 Idx = Idx.getRegSlot(true); 774 } 775 776 dbgs() << SlotIndent << Idx << '\t' << *I; 777 } 778 } 779 #endif 780 781 /// foldMemoryOperand - Try folding stack slot references in Ops into their 782 /// instructions. 783 /// 784 /// @param Ops Operand indices from AnalyzeVirtRegInBundle(). 785 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 786 /// @return True on success. 787 bool InlineSpiller:: 788 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops, 789 MachineInstr *LoadMI) { 790 if (Ops.empty()) 791 return false; 792 // Don't attempt folding in bundles. 793 MachineInstr *MI = Ops.front().first; 794 if (Ops.back().first != MI || MI->isBundled()) 795 return false; 796 797 bool WasCopy = MI->isCopy(); 798 unsigned ImpReg = 0; 799 800 // Spill subregs if the target allows it. 801 // We always want to spill subregs for stackmap/patchpoint pseudos. 802 bool SpillSubRegs = TII.isSubregFoldable() || 803 MI->getOpcode() == TargetOpcode::STATEPOINT || 804 MI->getOpcode() == TargetOpcode::PATCHPOINT || 805 MI->getOpcode() == TargetOpcode::STACKMAP; 806 807 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 808 // operands. 809 SmallVector<unsigned, 8> FoldOps; 810 for (const auto &OpPair : Ops) { 811 unsigned Idx = OpPair.second; 812 assert(MI == OpPair.first && "Instruction conflict during operand folding"); 813 MachineOperand &MO = MI->getOperand(Idx); 814 if (MO.isImplicit()) { 815 ImpReg = MO.getReg(); 816 continue; 817 } 818 819 if (!SpillSubRegs && MO.getSubReg()) 820 return false; 821 // We cannot fold a load instruction into a def. 822 if (LoadMI && MO.isDef()) 823 return false; 824 // Tied use operands should not be passed to foldMemoryOperand. 825 if (!MI->isRegTiedToDefOperand(Idx)) 826 FoldOps.push_back(Idx); 827 } 828 829 // If we only have implicit uses, we won't be able to fold that. 830 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try! 831 if (FoldOps.empty()) 832 return false; 833 834 MachineInstrSpan MIS(MI, MI->getParent()); 835 836 MachineInstr *FoldMI = 837 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS) 838 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM); 839 if (!FoldMI) 840 return false; 841 842 // Remove LIS for any dead defs in the original MI not in FoldMI. 843 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) { 844 if (!MO->isReg()) 845 continue; 846 Register Reg = MO->getReg(); 847 if (!Reg || Register::isVirtualRegister(Reg) || MRI.isReserved(Reg)) { 848 continue; 849 } 850 // Skip non-Defs, including undef uses and internal reads. 851 if (MO->isUse()) 852 continue; 853 PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI); 854 if (RI.FullyDefined) 855 continue; 856 // FoldMI does not define this physreg. Remove the LI segment. 857 assert(MO->isDead() && "Cannot fold physreg def"); 858 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 859 LIS.removePhysRegDefAt(Reg, Idx); 860 } 861 862 int FI; 863 if (TII.isStoreToStackSlot(*MI, FI) && 864 HSpiller.rmFromMergeableSpills(*MI, FI)) 865 --NumSpills; 866 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI); 867 // Update the call site info. 868 if (MI->isCandidateForCallSiteEntry()) 869 MI->getMF()->moveCallSiteInfo(MI, FoldMI); 870 MI->eraseFromParent(); 871 872 // Insert any new instructions other than FoldMI into the LIS maps. 873 assert(!MIS.empty() && "Unexpected empty span of instructions!"); 874 for (MachineInstr &MI : MIS) 875 if (&MI != FoldMI) 876 LIS.InsertMachineInstrInMaps(MI); 877 878 // TII.foldMemoryOperand may have left some implicit operands on the 879 // instruction. Strip them. 880 if (ImpReg) 881 for (unsigned i = FoldMI->getNumOperands(); i; --i) { 882 MachineOperand &MO = FoldMI->getOperand(i - 1); 883 if (!MO.isReg() || !MO.isImplicit()) 884 break; 885 if (MO.getReg() == ImpReg) 886 FoldMI->RemoveOperand(i - 1); 887 } 888 889 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, 890 "folded")); 891 892 if (!WasCopy) 893 ++NumFolded; 894 else if (Ops.front().second == 0) { 895 ++NumSpills; 896 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original); 897 } else 898 ++NumReloads; 899 return true; 900 } 901 902 void InlineSpiller::insertReload(unsigned NewVReg, 903 SlotIndex Idx, 904 MachineBasicBlock::iterator MI) { 905 MachineBasicBlock &MBB = *MI->getParent(); 906 907 MachineInstrSpan MIS(MI, &MBB); 908 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, 909 MRI.getRegClass(NewVReg), &TRI); 910 911 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); 912 913 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload", 914 NewVReg)); 915 ++NumReloads; 916 } 917 918 /// Check if \p Def fully defines a VReg with an undefined value. 919 /// If that's the case, that means the value of VReg is actually 920 /// not relevant. 921 static bool isFullUndefDef(const MachineInstr &Def) { 922 if (!Def.isImplicitDef()) 923 return false; 924 assert(Def.getNumOperands() == 1 && 925 "Implicit def with more than one definition"); 926 // We can say that the VReg defined by Def is undef, only if it is 927 // fully defined by Def. Otherwise, some of the lanes may not be 928 // undef and the value of the VReg matters. 929 return !Def.getOperand(0).getSubReg(); 930 } 931 932 /// insertSpill - Insert a spill of NewVReg after MI. 933 void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill, 934 MachineBasicBlock::iterator MI) { 935 MachineBasicBlock &MBB = *MI->getParent(); 936 937 MachineInstrSpan MIS(MI, &MBB); 938 bool IsRealSpill = true; 939 if (isFullUndefDef(*MI)) { 940 // Don't spill undef value. 941 // Anything works for undef, in particular keeping the memory 942 // uninitialized is a viable option and it saves code size and 943 // run time. 944 BuildMI(MBB, std::next(MI), MI->getDebugLoc(), TII.get(TargetOpcode::KILL)) 945 .addReg(NewVReg, getKillRegState(isKill)); 946 IsRealSpill = false; 947 } else 948 TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot, 949 MRI.getRegClass(NewVReg), &TRI); 950 951 LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end()); 952 953 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS, 954 "spill")); 955 ++NumSpills; 956 if (IsRealSpill) 957 HSpiller.addToMergeableSpills(*std::next(MI), StackSlot, Original); 958 } 959 960 /// spillAroundUses - insert spill code around each use of Reg. 961 void InlineSpiller::spillAroundUses(unsigned Reg) { 962 LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n'); 963 LiveInterval &OldLI = LIS.getInterval(Reg); 964 965 // Iterate over instructions using Reg. 966 for (MachineRegisterInfo::reg_bundle_iterator 967 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 968 RegI != E; ) { 969 MachineInstr *MI = &*(RegI++); 970 971 // Debug values are not allowed to affect codegen. 972 if (MI->isDebugValue()) { 973 // Modify DBG_VALUE now that the value is in a spill slot. 974 MachineBasicBlock *MBB = MI->getParent(); 975 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI); 976 buildDbgValueForSpill(*MBB, MI, *MI, StackSlot); 977 MBB->erase(MI); 978 continue; 979 } 980 981 assert(!MI->isDebugInstr() && "Did not expect to find a use in debug " 982 "instruction that isn't a DBG_VALUE"); 983 984 // Ignore copies to/from snippets. We'll delete them. 985 if (SnippetCopies.count(MI)) 986 continue; 987 988 // Stack slot accesses may coalesce away. 989 if (coalesceStackAccess(MI, Reg)) 990 continue; 991 992 // Analyze instruction. 993 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; 994 VirtRegInfo RI = AnalyzeVirtRegInBundle(*MI, Reg, &Ops); 995 996 // Find the slot index where this instruction reads and writes OldLI. 997 // This is usually the def slot, except for tied early clobbers. 998 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 999 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) 1000 if (SlotIndex::isSameInstr(Idx, VNI->def)) 1001 Idx = VNI->def; 1002 1003 // Check for a sibling copy. 1004 unsigned SibReg = isFullCopyOf(*MI, Reg); 1005 if (SibReg && isSibling(SibReg)) { 1006 // This may actually be a copy between snippets. 1007 if (isRegToSpill(SibReg)) { 1008 LLVM_DEBUG(dbgs() << "Found new snippet copy: " << *MI); 1009 SnippetCopies.insert(MI); 1010 continue; 1011 } 1012 if (RI.Writes) { 1013 if (hoistSpillInsideBB(OldLI, *MI)) { 1014 // This COPY is now dead, the value is already in the stack slot. 1015 MI->getOperand(0).setIsDead(); 1016 DeadDefs.push_back(MI); 1017 continue; 1018 } 1019 } else { 1020 // This is a reload for a sib-reg copy. Drop spills downstream. 1021 LiveInterval &SibLI = LIS.getInterval(SibReg); 1022 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 1023 // The COPY will fold to a reload below. 1024 } 1025 } 1026 1027 // Attempt to fold memory ops. 1028 if (foldMemoryOperand(Ops)) 1029 continue; 1030 1031 // Create a new virtual register for spill/fill. 1032 // FIXME: Infer regclass from instruction alone. 1033 unsigned NewVReg = Edit->createFrom(Reg); 1034 1035 if (RI.Reads) 1036 insertReload(NewVReg, Idx, MI); 1037 1038 // Rewrite instruction operands. 1039 bool hasLiveDef = false; 1040 for (const auto &OpPair : Ops) { 1041 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 1042 MO.setReg(NewVReg); 1043 if (MO.isUse()) { 1044 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second)) 1045 MO.setIsKill(); 1046 } else { 1047 if (!MO.isDead()) 1048 hasLiveDef = true; 1049 } 1050 } 1051 LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n'); 1052 1053 // FIXME: Use a second vreg if instruction has no tied ops. 1054 if (RI.Writes) 1055 if (hasLiveDef) 1056 insertSpill(NewVReg, true, MI); 1057 } 1058 } 1059 1060 /// spillAll - Spill all registers remaining after rematerialization. 1061 void InlineSpiller::spillAll() { 1062 // Update LiveStacks now that we are committed to spilling. 1063 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 1064 StackSlot = VRM.assignVirt2StackSlot(Original); 1065 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 1066 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); 1067 } else 1068 StackInt = &LSS.getInterval(StackSlot); 1069 1070 if (Original != Edit->getReg()) 1071 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 1072 1073 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 1074 for (unsigned Reg : RegsToSpill) 1075 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg), 1076 StackInt->getValNumInfo(0)); 1077 LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 1078 1079 // Spill around uses of all RegsToSpill. 1080 for (unsigned Reg : RegsToSpill) 1081 spillAroundUses(Reg); 1082 1083 // Hoisted spills may cause dead code. 1084 if (!DeadDefs.empty()) { 1085 LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 1086 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 1087 } 1088 1089 // Finally delete the SnippetCopies. 1090 for (unsigned Reg : RegsToSpill) { 1091 for (MachineRegisterInfo::reg_instr_iterator 1092 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); 1093 RI != E; ) { 1094 MachineInstr &MI = *(RI++); 1095 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy"); 1096 // FIXME: Do this with a LiveRangeEdit callback. 1097 LIS.RemoveMachineInstrFromMaps(MI); 1098 MI.eraseFromParent(); 1099 } 1100 } 1101 1102 // Delete all spilled registers. 1103 for (unsigned Reg : RegsToSpill) 1104 Edit->eraseVirtReg(Reg); 1105 } 1106 1107 void InlineSpiller::spill(LiveRangeEdit &edit) { 1108 ++NumSpilledRanges; 1109 Edit = &edit; 1110 assert(!Register::isStackSlot(edit.getReg()) && 1111 "Trying to spill a stack slot."); 1112 // Share a stack slot among all descendants of Original. 1113 Original = VRM.getOriginal(edit.getReg()); 1114 StackSlot = VRM.getStackSlot(Original); 1115 StackInt = nullptr; 1116 1117 LLVM_DEBUG(dbgs() << "Inline spilling " 1118 << TRI.getRegClassName(MRI.getRegClass(edit.getReg())) 1119 << ':' << edit.getParent() << "\nFrom original " 1120 << printReg(Original) << '\n'); 1121 assert(edit.getParent().isSpillable() && 1122 "Attempting to spill already spilled value."); 1123 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1124 1125 collectRegsToSpill(); 1126 reMaterializeAll(); 1127 1128 // Remat may handle everything. 1129 if (!RegsToSpill.empty()) 1130 spillAll(); 1131 1132 Edit->calculateRegClassAndHint(MF, Loops, MBFI); 1133 } 1134 1135 /// Optimizations after all the reg selections and spills are done. 1136 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); } 1137 1138 /// When a spill is inserted, add the spill to MergeableSpills map. 1139 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot, 1140 unsigned Original) { 1141 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1142 LiveInterval &OrigLI = LIS.getInterval(Original); 1143 // save a copy of LiveInterval in StackSlotToOrigLI because the original 1144 // LiveInterval may be cleared after all its references are spilled. 1145 if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) { 1146 auto LI = std::make_unique<LiveInterval>(OrigLI.reg, OrigLI.weight); 1147 LI->assign(OrigLI, Allocator); 1148 StackSlotToOrigLI[StackSlot] = std::move(LI); 1149 } 1150 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1151 VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot()); 1152 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1153 MergeableSpills[MIdx].insert(&Spill); 1154 } 1155 1156 /// When a spill is removed, remove the spill from MergeableSpills map. 1157 /// Return true if the spill is removed successfully. 1158 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill, 1159 int StackSlot) { 1160 auto It = StackSlotToOrigLI.find(StackSlot); 1161 if (It == StackSlotToOrigLI.end()) 1162 return false; 1163 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1164 VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot()); 1165 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1166 return MergeableSpills[MIdx].erase(&Spill); 1167 } 1168 1169 /// Check BB to see if it is a possible target BB to place a hoisted spill, 1170 /// i.e., there should be a living sibling of OrigReg at the insert point. 1171 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 1172 MachineBasicBlock &BB, unsigned &LiveReg) { 1173 SlotIndex Idx; 1174 unsigned OrigReg = OrigLI.reg; 1175 MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, BB); 1176 if (MI != BB.end()) 1177 Idx = LIS.getInstructionIndex(*MI); 1178 else 1179 Idx = LIS.getMBBEndIdx(&BB).getPrevSlot(); 1180 SmallSetVector<unsigned, 16> &Siblings = Virt2SiblingsMap[OrigReg]; 1181 assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI"); 1182 1183 for (auto const SibReg : Siblings) { 1184 LiveInterval &LI = LIS.getInterval(SibReg); 1185 VNInfo *VNI = LI.getVNInfoAt(Idx); 1186 if (VNI) { 1187 LiveReg = SibReg; 1188 return true; 1189 } 1190 } 1191 return false; 1192 } 1193 1194 /// Remove redundant spills in the same BB. Save those redundant spills in 1195 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map. 1196 void HoistSpillHelper::rmRedundantSpills( 1197 SmallPtrSet<MachineInstr *, 16> &Spills, 1198 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1199 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1200 // For each spill saw, check SpillBBToSpill[] and see if its BB already has 1201 // another spill inside. If a BB contains more than one spill, only keep the 1202 // earlier spill with smaller SlotIndex. 1203 for (const auto CurrentSpill : Spills) { 1204 MachineBasicBlock *Block = CurrentSpill->getParent(); 1205 MachineDomTreeNode *Node = MDT.getBase().getNode(Block); 1206 MachineInstr *PrevSpill = SpillBBToSpill[Node]; 1207 if (PrevSpill) { 1208 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill); 1209 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill); 1210 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill; 1211 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill; 1212 SpillsToRm.push_back(SpillToRm); 1213 SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep; 1214 } else { 1215 SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill; 1216 } 1217 } 1218 for (const auto SpillToRm : SpillsToRm) 1219 Spills.erase(SpillToRm); 1220 } 1221 1222 /// Starting from \p Root find a top-down traversal order of the dominator 1223 /// tree to visit all basic blocks containing the elements of \p Spills. 1224 /// Redundant spills will be found and put into \p SpillsToRm at the same 1225 /// time. \p SpillBBToSpill will be populated as part of the process and 1226 /// maps a basic block to the first store occurring in the basic block. 1227 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre 1228 void HoistSpillHelper::getVisitOrders( 1229 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 1230 SmallVectorImpl<MachineDomTreeNode *> &Orders, 1231 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1232 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 1233 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1234 // The set contains all the possible BB nodes to which we may hoist 1235 // original spills. 1236 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet; 1237 // Save the BB nodes on the path from the first BB node containing 1238 // non-redundant spill to the Root node. 1239 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath; 1240 // All the spills to be hoisted must originate from a single def instruction 1241 // to the OrigReg. It means the def instruction should dominate all the spills 1242 // to be hoisted. We choose the BB where the def instruction is located as 1243 // the Root. 1244 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom(); 1245 // For every node on the dominator tree with spill, walk up on the dominator 1246 // tree towards the Root node until it is reached. If there is other node 1247 // containing spill in the middle of the path, the previous spill saw will 1248 // be redundant and the node containing it will be removed. All the nodes on 1249 // the path starting from the first node with non-redundant spill to the Root 1250 // node will be added to the WorkSet, which will contain all the possible 1251 // locations where spills may be hoisted to after the loop below is done. 1252 for (const auto Spill : Spills) { 1253 MachineBasicBlock *Block = Spill->getParent(); 1254 MachineDomTreeNode *Node = MDT[Block]; 1255 MachineInstr *SpillToRm = nullptr; 1256 while (Node != RootIDomNode) { 1257 // If Node dominates Block, and it already contains a spill, the spill in 1258 // Block will be redundant. 1259 if (Node != MDT[Block] && SpillBBToSpill[Node]) { 1260 SpillToRm = SpillBBToSpill[MDT[Block]]; 1261 break; 1262 /// If we see the Node already in WorkSet, the path from the Node to 1263 /// the Root node must already be traversed by another spill. 1264 /// Then no need to repeat. 1265 } else if (WorkSet.count(Node)) { 1266 break; 1267 } else { 1268 NodesOnPath.insert(Node); 1269 } 1270 Node = Node->getIDom(); 1271 } 1272 if (SpillToRm) { 1273 SpillsToRm.push_back(SpillToRm); 1274 } else { 1275 // Add a BB containing the original spills to SpillsToKeep -- i.e., 1276 // set the initial status before hoisting start. The value of BBs 1277 // containing original spills is set to 0, in order to descriminate 1278 // with BBs containing hoisted spills which will be inserted to 1279 // SpillsToKeep later during hoisting. 1280 SpillsToKeep[MDT[Block]] = 0; 1281 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end()); 1282 } 1283 NodesOnPath.clear(); 1284 } 1285 1286 // Sort the nodes in WorkSet in top-down order and save the nodes 1287 // in Orders. Orders will be used for hoisting in runHoistSpills. 1288 unsigned idx = 0; 1289 Orders.push_back(MDT.getBase().getNode(Root)); 1290 do { 1291 MachineDomTreeNode *Node = Orders[idx++]; 1292 const std::vector<MachineDomTreeNode *> &Children = Node->getChildren(); 1293 unsigned NumChildren = Children.size(); 1294 for (unsigned i = 0; i != NumChildren; ++i) { 1295 MachineDomTreeNode *Child = Children[i]; 1296 if (WorkSet.count(Child)) 1297 Orders.push_back(Child); 1298 } 1299 } while (idx != Orders.size()); 1300 assert(Orders.size() == WorkSet.size() && 1301 "Orders have different size with WorkSet"); 1302 1303 #ifndef NDEBUG 1304 LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n"); 1305 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1306 for (; RIt != Orders.rend(); RIt++) 1307 LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ","); 1308 LLVM_DEBUG(dbgs() << "\n"); 1309 #endif 1310 } 1311 1312 /// Try to hoist spills according to BB hotness. The spills to removed will 1313 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in 1314 /// \p SpillsToIns. 1315 void HoistSpillHelper::runHoistSpills( 1316 LiveInterval &OrigLI, VNInfo &OrigVNI, 1317 SmallPtrSet<MachineInstr *, 16> &Spills, 1318 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1319 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) { 1320 // Visit order of dominator tree nodes. 1321 SmallVector<MachineDomTreeNode *, 32> Orders; 1322 // SpillsToKeep contains all the nodes where spills are to be inserted 1323 // during hoisting. If the spill to be inserted is an original spill 1324 // (not a hoisted one), the value of the map entry is 0. If the spill 1325 // is a hoisted spill, the value of the map entry is the VReg to be used 1326 // as the source of the spill. 1327 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep; 1328 // Map from BB to the first spill inside of it. 1329 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill; 1330 1331 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill); 1332 1333 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def); 1334 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep, 1335 SpillBBToSpill); 1336 1337 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of 1338 // nodes set and the cost of all the spills inside those nodes. 1339 // The nodes set are the locations where spills are to be inserted 1340 // in the subtree of current node. 1341 using NodesCostPair = 1342 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>; 1343 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap; 1344 1345 // Iterate Orders set in reverse order, which will be a bottom-up order 1346 // in the dominator tree. Once we visit a dom tree node, we know its 1347 // children have already been visited and the spill locations in the 1348 // subtrees of all the children have been determined. 1349 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1350 for (; RIt != Orders.rend(); RIt++) { 1351 MachineBasicBlock *Block = (*RIt)->getBlock(); 1352 1353 // If Block contains an original spill, simply continue. 1354 if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) { 1355 SpillsInSubTreeMap[*RIt].first.insert(*RIt); 1356 // SpillsInSubTreeMap[*RIt].second contains the cost of spill. 1357 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block); 1358 continue; 1359 } 1360 1361 // Collect spills in subtree of current node (*RIt) to 1362 // SpillsInSubTreeMap[*RIt].first. 1363 const std::vector<MachineDomTreeNode *> &Children = (*RIt)->getChildren(); 1364 unsigned NumChildren = Children.size(); 1365 for (unsigned i = 0; i != NumChildren; ++i) { 1366 MachineDomTreeNode *Child = Children[i]; 1367 if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end()) 1368 continue; 1369 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below 1370 // should be placed before getting the begin and end iterators of 1371 // SpillsInSubTreeMap[Child].first, or else the iterators may be 1372 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time 1373 // and the map grows and then the original buckets in the map are moved. 1374 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1375 SpillsInSubTreeMap[*RIt].first; 1376 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1377 SubTreeCost += SpillsInSubTreeMap[Child].second; 1378 auto BI = SpillsInSubTreeMap[Child].first.begin(); 1379 auto EI = SpillsInSubTreeMap[Child].first.end(); 1380 SpillsInSubTree.insert(BI, EI); 1381 SpillsInSubTreeMap.erase(Child); 1382 } 1383 1384 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1385 SpillsInSubTreeMap[*RIt].first; 1386 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1387 // No spills in subtree, simply continue. 1388 if (SpillsInSubTree.empty()) 1389 continue; 1390 1391 // Check whether Block is a possible candidate to insert spill. 1392 unsigned LiveReg = 0; 1393 if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg)) 1394 continue; 1395 1396 // If there are multiple spills that could be merged, bias a little 1397 // to hoist the spill. 1398 BranchProbability MarginProb = (SpillsInSubTree.size() > 1) 1399 ? BranchProbability(9, 10) 1400 : BranchProbability(1, 1); 1401 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) { 1402 // Hoist: Move spills to current Block. 1403 for (const auto SpillBB : SpillsInSubTree) { 1404 // When SpillBB is a BB contains original spill, insert the spill 1405 // to SpillsToRm. 1406 if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() && 1407 !SpillsToKeep[SpillBB]) { 1408 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB]; 1409 SpillsToRm.push_back(SpillToRm); 1410 } 1411 // SpillBB will not contain spill anymore, remove it from SpillsToKeep. 1412 SpillsToKeep.erase(SpillBB); 1413 } 1414 // Current Block is the BB containing the new hoisted spill. Add it to 1415 // SpillsToKeep. LiveReg is the source of the new spill. 1416 SpillsToKeep[*RIt] = LiveReg; 1417 LLVM_DEBUG({ 1418 dbgs() << "spills in BB: "; 1419 for (const auto Rspill : SpillsInSubTree) 1420 dbgs() << Rspill->getBlock()->getNumber() << " "; 1421 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber() 1422 << "\n"; 1423 }); 1424 SpillsInSubTree.clear(); 1425 SpillsInSubTree.insert(*RIt); 1426 SubTreeCost = MBFI.getBlockFreq(Block); 1427 } 1428 } 1429 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill), 1430 // save them to SpillsToIns. 1431 for (const auto &Ent : SpillsToKeep) { 1432 if (Ent.second) 1433 SpillsToIns[Ent.first->getBlock()] = Ent.second; 1434 } 1435 } 1436 1437 /// For spills with equal values, remove redundant spills and hoist those left 1438 /// to less hot spots. 1439 /// 1440 /// Spills with equal values will be collected into the same set in 1441 /// MergeableSpills when spill is inserted. These equal spills are originated 1442 /// from the same defining instruction and are dominated by the instruction. 1443 /// Before hoisting all the equal spills, redundant spills inside in the same 1444 /// BB are first marked to be deleted. Then starting from the spills left, walk 1445 /// up on the dominator tree towards the Root node where the define instruction 1446 /// is located, mark the dominated spills to be deleted along the way and 1447 /// collect the BB nodes on the path from non-dominated spills to the define 1448 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places 1449 /// where we are considering to hoist the spills. We iterate the WorkSet in 1450 /// bottom-up order, and for each node, we will decide whether to hoist spills 1451 /// inside its subtree to that node. In this way, we can get benefit locally 1452 /// even if hoisting all the equal spills to one cold place is impossible. 1453 void HoistSpillHelper::hoistAllSpills() { 1454 SmallVector<unsigned, 4> NewVRegs; 1455 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this); 1456 1457 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { 1458 unsigned Reg = Register::index2VirtReg(i); 1459 unsigned Original = VRM.getPreSplitReg(Reg); 1460 if (!MRI.def_empty(Reg)) 1461 Virt2SiblingsMap[Original].insert(Reg); 1462 } 1463 1464 // Each entry in MergeableSpills contains a spill set with equal values. 1465 for (auto &Ent : MergeableSpills) { 1466 int Slot = Ent.first.first; 1467 LiveInterval &OrigLI = *StackSlotToOrigLI[Slot]; 1468 VNInfo *OrigVNI = Ent.first.second; 1469 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second; 1470 if (Ent.second.empty()) 1471 continue; 1472 1473 LLVM_DEBUG({ 1474 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n" 1475 << "Equal spills in BB: "; 1476 for (const auto spill : EqValSpills) 1477 dbgs() << spill->getParent()->getNumber() << " "; 1478 dbgs() << "\n"; 1479 }); 1480 1481 // SpillsToRm is the spill set to be removed from EqValSpills. 1482 SmallVector<MachineInstr *, 16> SpillsToRm; 1483 // SpillsToIns is the spill set to be newly inserted after hoisting. 1484 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns; 1485 1486 runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns); 1487 1488 LLVM_DEBUG({ 1489 dbgs() << "Finally inserted spills in BB: "; 1490 for (const auto &Ispill : SpillsToIns) 1491 dbgs() << Ispill.first->getNumber() << " "; 1492 dbgs() << "\nFinally removed spills in BB: "; 1493 for (const auto Rspill : SpillsToRm) 1494 dbgs() << Rspill->getParent()->getNumber() << " "; 1495 dbgs() << "\n"; 1496 }); 1497 1498 // Stack live range update. 1499 LiveInterval &StackIntvl = LSS.getInterval(Slot); 1500 if (!SpillsToIns.empty() || !SpillsToRm.empty()) 1501 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI, 1502 StackIntvl.getValNumInfo(0)); 1503 1504 // Insert hoisted spills. 1505 for (auto const &Insert : SpillsToIns) { 1506 MachineBasicBlock *BB = Insert.first; 1507 unsigned LiveReg = Insert.second; 1508 MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, *BB); 1509 TII.storeRegToStackSlot(*BB, MI, LiveReg, false, Slot, 1510 MRI.getRegClass(LiveReg), &TRI); 1511 LIS.InsertMachineInstrRangeInMaps(std::prev(MI), MI); 1512 ++NumSpills; 1513 } 1514 1515 // Remove redundant spills or change them to dead instructions. 1516 NumSpills -= SpillsToRm.size(); 1517 for (auto const RMEnt : SpillsToRm) { 1518 RMEnt->setDesc(TII.get(TargetOpcode::KILL)); 1519 for (unsigned i = RMEnt->getNumOperands(); i; --i) { 1520 MachineOperand &MO = RMEnt->getOperand(i - 1); 1521 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead()) 1522 RMEnt->RemoveOperand(i - 1); 1523 } 1524 } 1525 Edit.eliminateDeadDefs(SpillsToRm, None, AA); 1526 } 1527 } 1528 1529 /// For VirtReg clone, the \p New register should have the same physreg or 1530 /// stackslot as the \p old register. 1531 void HoistSpillHelper::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 1532 if (VRM.hasPhys(Old)) 1533 VRM.assignVirt2Phys(New, VRM.getPhys(Old)); 1534 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT) 1535 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old)); 1536 else 1537 llvm_unreachable("VReg should be assigned either physreg or stackslot"); 1538 } 1539