1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The inline spiller modifies the machine function directly instead of 10 // inserting spills and restores in VirtRegMap. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SplitKit.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/LiveInterval.h" 26 #include "llvm/CodeGen/LiveIntervalCalc.h" 27 #include "llvm/CodeGen/LiveIntervals.h" 28 #include "llvm/CodeGen/LiveRangeEdit.h" 29 #include "llvm/CodeGen/LiveStacks.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineInstrBundle.h" 38 #include "llvm/CodeGen/MachineLoopInfo.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/SlotIndexes.h" 42 #include "llvm/CodeGen/Spiller.h" 43 #include "llvm/CodeGen/StackMaps.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetOpcodes.h" 46 #include "llvm/CodeGen/TargetRegisterInfo.h" 47 #include "llvm/CodeGen/TargetSubtargetInfo.h" 48 #include "llvm/CodeGen/VirtRegMap.h" 49 #include "llvm/Config/llvm-config.h" 50 #include "llvm/Support/BlockFrequency.h" 51 #include "llvm/Support/BranchProbability.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <cassert> 58 #include <iterator> 59 #include <tuple> 60 #include <utility> 61 #include <vector> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "regalloc" 66 67 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 68 STATISTIC(NumSnippets, "Number of spilled snippets"); 69 STATISTIC(NumSpills, "Number of spills inserted"); 70 STATISTIC(NumSpillsRemoved, "Number of spills removed"); 71 STATISTIC(NumReloads, "Number of reloads inserted"); 72 STATISTIC(NumReloadsRemoved, "Number of reloads removed"); 73 STATISTIC(NumFolded, "Number of folded stack accesses"); 74 STATISTIC(NumFoldedLoads, "Number of folded loads"); 75 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 76 77 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden, 78 cl::desc("Disable inline spill hoisting")); 79 static cl::opt<bool> 80 RestrictStatepointRemat("restrict-statepoint-remat", 81 cl::init(false), cl::Hidden, 82 cl::desc("Restrict remat for statepoint operands")); 83 84 namespace { 85 86 class HoistSpillHelper : private LiveRangeEdit::Delegate { 87 MachineFunction &MF; 88 LiveIntervals &LIS; 89 LiveStacks &LSS; 90 AliasAnalysis *AA; 91 MachineDominatorTree &MDT; 92 MachineLoopInfo &Loops; 93 VirtRegMap &VRM; 94 MachineRegisterInfo &MRI; 95 const TargetInstrInfo &TII; 96 const TargetRegisterInfo &TRI; 97 const MachineBlockFrequencyInfo &MBFI; 98 99 InsertPointAnalysis IPA; 100 101 // Map from StackSlot to the LiveInterval of the original register. 102 // Note the LiveInterval of the original register may have been deleted 103 // after it is spilled. We keep a copy here to track the range where 104 // spills can be moved. 105 DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI; 106 107 // Map from pair of (StackSlot and Original VNI) to a set of spills which 108 // have the same stackslot and have equal values defined by Original VNI. 109 // These spills are mergeable and are hoist candiates. 110 using MergeableSpillsMap = 111 MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>; 112 MergeableSpillsMap MergeableSpills; 113 114 /// This is the map from original register to a set containing all its 115 /// siblings. To hoist a spill to another BB, we need to find out a live 116 /// sibling there and use it as the source of the new spill. 117 DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap; 118 119 bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 120 MachineBasicBlock &BB, Register &LiveReg); 121 122 void rmRedundantSpills( 123 SmallPtrSet<MachineInstr *, 16> &Spills, 124 SmallVectorImpl<MachineInstr *> &SpillsToRm, 125 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 126 127 void getVisitOrders( 128 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 129 SmallVectorImpl<MachineDomTreeNode *> &Orders, 130 SmallVectorImpl<MachineInstr *> &SpillsToRm, 131 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 132 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 133 134 void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI, 135 SmallPtrSet<MachineInstr *, 16> &Spills, 136 SmallVectorImpl<MachineInstr *> &SpillsToRm, 137 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns); 138 139 public: 140 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf, 141 VirtRegMap &vrm) 142 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 143 LSS(pass.getAnalysis<LiveStacks>()), 144 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 145 MDT(pass.getAnalysis<MachineDominatorTree>()), 146 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 147 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 148 TRI(*mf.getSubtarget().getRegisterInfo()), 149 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 150 IPA(LIS, mf.getNumBlockIDs()) {} 151 152 void addToMergeableSpills(MachineInstr &Spill, int StackSlot, 153 unsigned Original); 154 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot); 155 void hoistAllSpills(); 156 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 157 }; 158 159 class InlineSpiller : public Spiller { 160 MachineFunction &MF; 161 LiveIntervals &LIS; 162 LiveStacks &LSS; 163 AliasAnalysis *AA; 164 MachineDominatorTree &MDT; 165 MachineLoopInfo &Loops; 166 VirtRegMap &VRM; 167 MachineRegisterInfo &MRI; 168 const TargetInstrInfo &TII; 169 const TargetRegisterInfo &TRI; 170 const MachineBlockFrequencyInfo &MBFI; 171 172 // Variables that are valid during spill(), but used by multiple methods. 173 LiveRangeEdit *Edit; 174 LiveInterval *StackInt; 175 int StackSlot; 176 unsigned Original; 177 178 // All registers to spill to StackSlot, including the main register. 179 SmallVector<Register, 8> RegsToSpill; 180 181 // All COPY instructions to/from snippets. 182 // They are ignored since both operands refer to the same stack slot. 183 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 184 185 // Values that failed to remat at some point. 186 SmallPtrSet<VNInfo*, 8> UsedValues; 187 188 // Dead defs generated during spilling. 189 SmallVector<MachineInstr*, 8> DeadDefs; 190 191 // Object records spills information and does the hoisting. 192 HoistSpillHelper HSpiller; 193 194 ~InlineSpiller() override = default; 195 196 public: 197 InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm) 198 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 199 LSS(pass.getAnalysis<LiveStacks>()), 200 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 201 MDT(pass.getAnalysis<MachineDominatorTree>()), 202 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 203 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 204 TRI(*mf.getSubtarget().getRegisterInfo()), 205 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 206 HSpiller(pass, mf, vrm) {} 207 208 void spill(LiveRangeEdit &) override; 209 void postOptimization() override; 210 211 private: 212 bool isSnippet(const LiveInterval &SnipLI); 213 void collectRegsToSpill(); 214 215 bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); } 216 217 bool isSibling(Register Reg); 218 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI); 219 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 220 221 void markValueUsed(LiveInterval*, VNInfo*); 222 bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI); 223 bool reMaterializeFor(LiveInterval &, MachineInstr &MI); 224 void reMaterializeAll(); 225 226 bool coalesceStackAccess(MachineInstr *MI, Register Reg); 227 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>, 228 MachineInstr *LoadMI = nullptr); 229 void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI); 230 void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI); 231 232 void spillAroundUses(Register Reg); 233 void spillAll(); 234 }; 235 236 } // end anonymous namespace 237 238 Spiller::~Spiller() = default; 239 240 void Spiller::anchor() {} 241 242 Spiller *llvm::createInlineSpiller(MachineFunctionPass &pass, 243 MachineFunction &mf, 244 VirtRegMap &vrm) { 245 return new InlineSpiller(pass, mf, vrm); 246 } 247 248 //===----------------------------------------------------------------------===// 249 // Snippets 250 //===----------------------------------------------------------------------===// 251 252 // When spilling a virtual register, we also spill any snippets it is connected 253 // to. The snippets are small live ranges that only have a single real use, 254 // leftovers from live range splitting. Spilling them enables memory operand 255 // folding or tightens the live range around the single use. 256 // 257 // This minimizes register pressure and maximizes the store-to-load distance for 258 // spill slots which can be important in tight loops. 259 260 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 261 /// otherwise return 0. 262 static Register isFullCopyOf(const MachineInstr &MI, Register Reg) { 263 if (!MI.isFullCopy()) 264 return Register(); 265 if (MI.getOperand(0).getReg() == Reg) 266 return MI.getOperand(1).getReg(); 267 if (MI.getOperand(1).getReg() == Reg) 268 return MI.getOperand(0).getReg(); 269 return Register(); 270 } 271 272 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 273 /// It is assumed that SnipLI is a virtual register with the same original as 274 /// Edit->getReg(). 275 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 276 Register Reg = Edit->getReg(); 277 278 // A snippet is a tiny live range with only a single instruction using it 279 // besides copies to/from Reg or spills/fills. We accept: 280 // 281 // %snip = COPY %Reg / FILL fi# 282 // %snip = USE %snip 283 // %Reg = COPY %snip / SPILL %snip, fi# 284 // 285 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) 286 return false; 287 288 MachineInstr *UseMI = nullptr; 289 290 // Check that all uses satisfy our criteria. 291 for (MachineRegisterInfo::reg_instr_nodbg_iterator 292 RI = MRI.reg_instr_nodbg_begin(SnipLI.reg()), 293 E = MRI.reg_instr_nodbg_end(); 294 RI != E;) { 295 MachineInstr &MI = *RI++; 296 297 // Allow copies to/from Reg. 298 if (isFullCopyOf(MI, Reg)) 299 continue; 300 301 // Allow stack slot loads. 302 int FI; 303 if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 304 continue; 305 306 // Allow stack slot stores. 307 if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 308 continue; 309 310 // Allow a single additional instruction. 311 if (UseMI && &MI != UseMI) 312 return false; 313 UseMI = &MI; 314 } 315 return true; 316 } 317 318 /// collectRegsToSpill - Collect live range snippets that only have a single 319 /// real use. 320 void InlineSpiller::collectRegsToSpill() { 321 Register Reg = Edit->getReg(); 322 323 // Main register always spills. 324 RegsToSpill.assign(1, Reg); 325 SnippetCopies.clear(); 326 327 // Snippets all have the same original, so there can't be any for an original 328 // register. 329 if (Original == Reg) 330 return; 331 332 for (MachineRegisterInfo::reg_instr_iterator 333 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) { 334 MachineInstr &MI = *RI++; 335 Register SnipReg = isFullCopyOf(MI, Reg); 336 if (!isSibling(SnipReg)) 337 continue; 338 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 339 if (!isSnippet(SnipLI)) 340 continue; 341 SnippetCopies.insert(&MI); 342 if (isRegToSpill(SnipReg)) 343 continue; 344 RegsToSpill.push_back(SnipReg); 345 LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 346 ++NumSnippets; 347 } 348 } 349 350 bool InlineSpiller::isSibling(Register Reg) { 351 return Reg.isVirtual() && VRM.getOriginal(Reg) == Original; 352 } 353 354 /// It is beneficial to spill to earlier place in the same BB in case 355 /// as follows: 356 /// There is an alternative def earlier in the same MBB. 357 /// Hoist the spill as far as possible in SpillMBB. This can ease 358 /// register pressure: 359 /// 360 /// x = def 361 /// y = use x 362 /// s = copy x 363 /// 364 /// Hoisting the spill of s to immediately after the def removes the 365 /// interference between x and y: 366 /// 367 /// x = def 368 /// spill x 369 /// y = use killed x 370 /// 371 /// This hoist only helps when the copy kills its source. 372 /// 373 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI, 374 MachineInstr &CopyMI) { 375 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 376 #ifndef NDEBUG 377 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); 378 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); 379 #endif 380 381 Register SrcReg = CopyMI.getOperand(1).getReg(); 382 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 383 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx); 384 LiveQueryResult SrcQ = SrcLI.Query(Idx); 385 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def); 386 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill()) 387 return false; 388 389 // Conservatively extend the stack slot range to the range of the original 390 // value. We may be able to do better with stack slot coloring by being more 391 // careful here. 392 assert(StackInt && "No stack slot assigned yet."); 393 LiveInterval &OrigLI = LIS.getInterval(Original); 394 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 395 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 396 LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 397 << *StackInt << '\n'); 398 399 // We are going to spill SrcVNI immediately after its def, so clear out 400 // any later spills of the same value. 401 eliminateRedundantSpills(SrcLI, SrcVNI); 402 403 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def); 404 MachineBasicBlock::iterator MII; 405 if (SrcVNI->isPHIDef()) 406 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 407 else { 408 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def); 409 assert(DefMI && "Defining instruction disappeared"); 410 MII = DefMI; 411 ++MII; 412 } 413 // Insert spill without kill flag immediately after def. 414 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot, 415 MRI.getRegClass(SrcReg), &TRI); 416 --MII; // Point to store instruction. 417 LIS.InsertMachineInstrInMaps(*MII); 418 LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII); 419 420 HSpiller.addToMergeableSpills(*MII, StackSlot, Original); 421 ++NumSpills; 422 return true; 423 } 424 425 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 426 /// redundant spills of this value in SLI.reg and sibling copies. 427 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 428 assert(VNI && "Missing value"); 429 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 430 WorkList.push_back(std::make_pair(&SLI, VNI)); 431 assert(StackInt && "No stack slot assigned yet."); 432 433 do { 434 LiveInterval *LI; 435 std::tie(LI, VNI) = WorkList.pop_back_val(); 436 Register Reg = LI->reg(); 437 LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@' 438 << VNI->def << " in " << *LI << '\n'); 439 440 // Regs to spill are taken care of. 441 if (isRegToSpill(Reg)) 442 continue; 443 444 // Add all of VNI's live range to StackInt. 445 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 446 LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 447 448 // Find all spills and copies of VNI. 449 for (MachineRegisterInfo::use_instr_nodbg_iterator 450 UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 451 UI != E; ) { 452 MachineInstr &MI = *UI++; 453 if (!MI.isCopy() && !MI.mayStore()) 454 continue; 455 SlotIndex Idx = LIS.getInstructionIndex(MI); 456 if (LI->getVNInfoAt(Idx) != VNI) 457 continue; 458 459 // Follow sibling copies down the dominator tree. 460 if (Register DstReg = isFullCopyOf(MI, Reg)) { 461 if (isSibling(DstReg)) { 462 LiveInterval &DstLI = LIS.getInterval(DstReg); 463 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); 464 assert(DstVNI && "Missing defined value"); 465 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); 466 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 467 } 468 continue; 469 } 470 471 // Erase spills. 472 int FI; 473 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 474 LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI); 475 // eliminateDeadDefs won't normally remove stores, so switch opcode. 476 MI.setDesc(TII.get(TargetOpcode::KILL)); 477 DeadDefs.push_back(&MI); 478 ++NumSpillsRemoved; 479 if (HSpiller.rmFromMergeableSpills(MI, StackSlot)) 480 --NumSpills; 481 } 482 } 483 } while (!WorkList.empty()); 484 } 485 486 //===----------------------------------------------------------------------===// 487 // Rematerialization 488 //===----------------------------------------------------------------------===// 489 490 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 491 /// instruction cannot be eliminated. See through snippet copies 492 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 493 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 494 WorkList.push_back(std::make_pair(LI, VNI)); 495 do { 496 std::tie(LI, VNI) = WorkList.pop_back_val(); 497 if (!UsedValues.insert(VNI).second) 498 continue; 499 500 if (VNI->isPHIDef()) { 501 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 502 for (MachineBasicBlock *P : MBB->predecessors()) { 503 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P)); 504 if (PVNI) 505 WorkList.push_back(std::make_pair(LI, PVNI)); 506 } 507 continue; 508 } 509 510 // Follow snippet copies. 511 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 512 if (!SnippetCopies.count(MI)) 513 continue; 514 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 515 assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy"); 516 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); 517 assert(SnipVNI && "Snippet undefined before copy"); 518 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 519 } while (!WorkList.empty()); 520 } 521 522 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg, 523 MachineInstr &MI) { 524 if (!RestrictStatepointRemat) 525 return true; 526 // Here's a quick explanation of the problem we're trying to handle here: 527 // * There are some pseudo instructions with more vreg uses than there are 528 // physical registers on the machine. 529 // * This is normally handled by spilling the vreg, and folding the reload 530 // into the user instruction. (Thus decreasing the number of used vregs 531 // until the remainder can be assigned to physregs.) 532 // * However, since we may try to spill vregs in any order, we can end up 533 // trying to spill each operand to the instruction, and then rematting it 534 // instead. When that happens, the new live intervals (for the remats) are 535 // expected to be trivially assignable (i.e. RS_Done). However, since we 536 // may have more remats than physregs, we're guaranteed to fail to assign 537 // one. 538 // At the moment, we only handle this for STATEPOINTs since they're the only 539 // pseudo op where we've seen this. If we start seeing other instructions 540 // with the same problem, we need to revisit this. 541 if (MI.getOpcode() != TargetOpcode::STATEPOINT) 542 return true; 543 // For STATEPOINTs we allow re-materialization for fixed arguments only hoping 544 // that number of physical registers is enough to cover all fixed arguments. 545 // If it is not true we need to revisit it. 546 for (unsigned Idx = StatepointOpers(&MI).getVarIdx(), 547 EndIdx = MI.getNumOperands(); 548 Idx < EndIdx; ++Idx) { 549 MachineOperand &MO = MI.getOperand(Idx); 550 if (MO.isReg() && MO.getReg() == VReg) 551 return false; 552 } 553 return true; 554 } 555 556 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 557 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) { 558 // Analyze instruction 559 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 560 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg(), &Ops); 561 562 if (!RI.Reads) 563 return false; 564 565 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); 566 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 567 568 if (!ParentVNI) { 569 LLVM_DEBUG(dbgs() << "\tadding <undef> flags: "); 570 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 571 MachineOperand &MO = MI.getOperand(i); 572 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) 573 MO.setIsUndef(); 574 } 575 LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI); 576 return true; 577 } 578 579 if (SnippetCopies.count(&MI)) 580 return false; 581 582 LiveInterval &OrigLI = LIS.getInterval(Original); 583 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 584 LiveRangeEdit::Remat RM(ParentVNI); 585 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 586 587 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) { 588 markValueUsed(&VirtReg, ParentVNI); 589 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 590 return false; 591 } 592 593 // If the instruction also writes VirtReg.reg, it had better not require the 594 // same register for uses and defs. 595 if (RI.Tied) { 596 markValueUsed(&VirtReg, ParentVNI); 597 LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI); 598 return false; 599 } 600 601 // Before rematerializing into a register for a single instruction, try to 602 // fold a load into the instruction. That avoids allocating a new register. 603 if (RM.OrigMI->canFoldAsLoad() && 604 foldMemoryOperand(Ops, RM.OrigMI)) { 605 Edit->markRematerialized(RM.ParentVNI); 606 ++NumFoldedLoads; 607 return true; 608 } 609 610 // If we can't guarantee that we'll be able to actually assign the new vreg, 611 // we can't remat. 612 if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg(), MI)) { 613 markValueUsed(&VirtReg, ParentVNI); 614 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 615 return false; 616 } 617 618 // Allocate a new register for the remat. 619 Register NewVReg = Edit->createFrom(Original); 620 621 // Finally we can rematerialize OrigMI before MI. 622 SlotIndex DefIdx = 623 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI); 624 625 // We take the DebugLoc from MI, since OrigMI may be attributed to a 626 // different source location. 627 auto *NewMI = LIS.getInstructionFromIndex(DefIdx); 628 NewMI->setDebugLoc(MI.getDebugLoc()); 629 630 (void)DefIdx; 631 LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 632 << *LIS.getInstructionFromIndex(DefIdx)); 633 634 // Replace operands 635 for (const auto &OpPair : Ops) { 636 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 637 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) { 638 MO.setReg(NewVReg); 639 MO.setIsKill(); 640 } 641 } 642 LLVM_DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n'); 643 644 ++NumRemats; 645 return true; 646 } 647 648 /// reMaterializeAll - Try to rematerialize as many uses as possible, 649 /// and trim the live ranges after. 650 void InlineSpiller::reMaterializeAll() { 651 if (!Edit->anyRematerializable(AA)) 652 return; 653 654 UsedValues.clear(); 655 656 // Try to remat before all uses of snippets. 657 bool anyRemat = false; 658 for (Register Reg : RegsToSpill) { 659 LiveInterval &LI = LIS.getInterval(Reg); 660 for (MachineRegisterInfo::reg_bundle_iterator 661 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 662 RegI != E; ) { 663 MachineInstr &MI = *RegI++; 664 665 // Debug values are not allowed to affect codegen. 666 if (MI.isDebugValue()) 667 continue; 668 669 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug " 670 "instruction that isn't a DBG_VALUE"); 671 672 anyRemat |= reMaterializeFor(LI, MI); 673 } 674 } 675 if (!anyRemat) 676 return; 677 678 // Remove any values that were completely rematted. 679 for (Register Reg : RegsToSpill) { 680 LiveInterval &LI = LIS.getInterval(Reg); 681 for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 682 I != E; ++I) { 683 VNInfo *VNI = *I; 684 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 685 continue; 686 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 687 MI->addRegisterDead(Reg, &TRI); 688 if (!MI->allDefsAreDead()) 689 continue; 690 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); 691 DeadDefs.push_back(MI); 692 } 693 } 694 695 // Eliminate dead code after remat. Note that some snippet copies may be 696 // deleted here. 697 if (DeadDefs.empty()) 698 return; 699 LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 700 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 701 702 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions 703 // after rematerialization. To remove a VNI for a vreg from its LiveInterval, 704 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all 705 // removed, PHI VNI are still left in the LiveInterval. 706 // So to get rid of unused reg, we need to check whether it has non-dbg 707 // reference instead of whether it has non-empty interval. 708 unsigned ResultPos = 0; 709 for (Register Reg : RegsToSpill) { 710 if (MRI.reg_nodbg_empty(Reg)) { 711 Edit->eraseVirtReg(Reg); 712 continue; 713 } 714 715 assert(LIS.hasInterval(Reg) && 716 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && 717 "Empty and not used live-range?!"); 718 719 RegsToSpill[ResultPos++] = Reg; 720 } 721 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); 722 LLVM_DEBUG(dbgs() << RegsToSpill.size() 723 << " registers to spill after remat.\n"); 724 } 725 726 //===----------------------------------------------------------------------===// 727 // Spilling 728 //===----------------------------------------------------------------------===// 729 730 /// If MI is a load or store of StackSlot, it can be removed. 731 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) { 732 int FI = 0; 733 Register InstrReg = TII.isLoadFromStackSlot(*MI, FI); 734 bool IsLoad = InstrReg; 735 if (!IsLoad) 736 InstrReg = TII.isStoreToStackSlot(*MI, FI); 737 738 // We have a stack access. Is it the right register and slot? 739 if (InstrReg != Reg || FI != StackSlot) 740 return false; 741 742 if (!IsLoad) 743 HSpiller.rmFromMergeableSpills(*MI, StackSlot); 744 745 LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI); 746 LIS.RemoveMachineInstrFromMaps(*MI); 747 MI->eraseFromParent(); 748 749 if (IsLoad) { 750 ++NumReloadsRemoved; 751 --NumReloads; 752 } else { 753 ++NumSpillsRemoved; 754 --NumSpills; 755 } 756 757 return true; 758 } 759 760 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 761 LLVM_DUMP_METHOD 762 // Dump the range of instructions from B to E with their slot indexes. 763 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, 764 MachineBasicBlock::iterator E, 765 LiveIntervals const &LIS, 766 const char *const header, 767 Register VReg = Register()) { 768 char NextLine = '\n'; 769 char SlotIndent = '\t'; 770 771 if (std::next(B) == E) { 772 NextLine = ' '; 773 SlotIndent = ' '; 774 } 775 776 dbgs() << '\t' << header << ": " << NextLine; 777 778 for (MachineBasicBlock::iterator I = B; I != E; ++I) { 779 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot(); 780 781 // If a register was passed in and this instruction has it as a 782 // destination that is marked as an early clobber, print the 783 // early-clobber slot index. 784 if (VReg) { 785 MachineOperand *MO = I->findRegisterDefOperand(VReg); 786 if (MO && MO->isEarlyClobber()) 787 Idx = Idx.getRegSlot(true); 788 } 789 790 dbgs() << SlotIndent << Idx << '\t' << *I; 791 } 792 } 793 #endif 794 795 /// foldMemoryOperand - Try folding stack slot references in Ops into their 796 /// instructions. 797 /// 798 /// @param Ops Operand indices from AnalyzeVirtRegInBundle(). 799 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 800 /// @return True on success. 801 bool InlineSpiller:: 802 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops, 803 MachineInstr *LoadMI) { 804 if (Ops.empty()) 805 return false; 806 // Don't attempt folding in bundles. 807 MachineInstr *MI = Ops.front().first; 808 if (Ops.back().first != MI || MI->isBundled()) 809 return false; 810 811 bool WasCopy = MI->isCopy(); 812 Register ImpReg; 813 814 // TII::foldMemoryOperand will do what we need here for statepoint 815 // (fold load into use and remove corresponding def). We will replace 816 // uses of removed def with loads (spillAroundUses). 817 // For that to work we need to untie def and use to pass it through 818 // foldMemoryOperand and signal foldPatchpoint that it is allowed to 819 // fold them. 820 bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT; 821 822 // Spill subregs if the target allows it. 823 // We always want to spill subregs for stackmap/patchpoint pseudos. 824 bool SpillSubRegs = TII.isSubregFoldable() || 825 MI->getOpcode() == TargetOpcode::STATEPOINT || 826 MI->getOpcode() == TargetOpcode::PATCHPOINT || 827 MI->getOpcode() == TargetOpcode::STACKMAP; 828 829 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 830 // operands. 831 SmallVector<unsigned, 8> FoldOps; 832 for (const auto &OpPair : Ops) { 833 unsigned Idx = OpPair.second; 834 assert(MI == OpPair.first && "Instruction conflict during operand folding"); 835 MachineOperand &MO = MI->getOperand(Idx); 836 if (MO.isImplicit()) { 837 ImpReg = MO.getReg(); 838 continue; 839 } 840 841 if (UntieRegs && MO.isTied()) 842 MI->untieRegOperand(Idx); 843 844 if (!SpillSubRegs && MO.getSubReg()) 845 return false; 846 // We cannot fold a load instruction into a def. 847 if (LoadMI && MO.isDef()) 848 return false; 849 // Tied use operands should not be passed to foldMemoryOperand. 850 if (!MI->isRegTiedToDefOperand(Idx)) 851 FoldOps.push_back(Idx); 852 } 853 854 // If we only have implicit uses, we won't be able to fold that. 855 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try! 856 if (FoldOps.empty()) 857 return false; 858 859 MachineInstrSpan MIS(MI, MI->getParent()); 860 861 MachineInstr *FoldMI = 862 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS) 863 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM); 864 if (!FoldMI) 865 return false; 866 867 // Remove LIS for any dead defs in the original MI not in FoldMI. 868 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) { 869 if (!MO->isReg()) 870 continue; 871 Register Reg = MO->getReg(); 872 if (!Reg || Register::isVirtualRegister(Reg) || MRI.isReserved(Reg)) { 873 continue; 874 } 875 // Skip non-Defs, including undef uses and internal reads. 876 if (MO->isUse()) 877 continue; 878 PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI); 879 if (RI.FullyDefined) 880 continue; 881 // FoldMI does not define this physreg. Remove the LI segment. 882 assert(MO->isDead() && "Cannot fold physreg def"); 883 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 884 LIS.removePhysRegDefAt(Reg, Idx); 885 } 886 887 int FI; 888 if (TII.isStoreToStackSlot(*MI, FI) && 889 HSpiller.rmFromMergeableSpills(*MI, FI)) 890 --NumSpills; 891 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI); 892 // Update the call site info. 893 if (MI->isCandidateForCallSiteEntry()) 894 MI->getMF()->moveCallSiteInfo(MI, FoldMI); 895 MI->eraseFromParent(); 896 897 // Insert any new instructions other than FoldMI into the LIS maps. 898 assert(!MIS.empty() && "Unexpected empty span of instructions!"); 899 for (MachineInstr &MI : MIS) 900 if (&MI != FoldMI) 901 LIS.InsertMachineInstrInMaps(MI); 902 903 // TII.foldMemoryOperand may have left some implicit operands on the 904 // instruction. Strip them. 905 if (ImpReg) 906 for (unsigned i = FoldMI->getNumOperands(); i; --i) { 907 MachineOperand &MO = FoldMI->getOperand(i - 1); 908 if (!MO.isReg() || !MO.isImplicit()) 909 break; 910 if (MO.getReg() == ImpReg) 911 FoldMI->RemoveOperand(i - 1); 912 } 913 914 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, 915 "folded")); 916 917 if (!WasCopy) 918 ++NumFolded; 919 else if (Ops.front().second == 0) { 920 ++NumSpills; 921 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original); 922 } else 923 ++NumReloads; 924 return true; 925 } 926 927 void InlineSpiller::insertReload(Register NewVReg, 928 SlotIndex Idx, 929 MachineBasicBlock::iterator MI) { 930 MachineBasicBlock &MBB = *MI->getParent(); 931 932 MachineInstrSpan MIS(MI, &MBB); 933 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, 934 MRI.getRegClass(NewVReg), &TRI); 935 936 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); 937 938 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload", 939 NewVReg)); 940 ++NumReloads; 941 } 942 943 /// Check if \p Def fully defines a VReg with an undefined value. 944 /// If that's the case, that means the value of VReg is actually 945 /// not relevant. 946 static bool isRealSpill(const MachineInstr &Def) { 947 if (!Def.isImplicitDef()) 948 return true; 949 assert(Def.getNumOperands() == 1 && 950 "Implicit def with more than one definition"); 951 // We can say that the VReg defined by Def is undef, only if it is 952 // fully defined by Def. Otherwise, some of the lanes may not be 953 // undef and the value of the VReg matters. 954 return Def.getOperand(0).getSubReg(); 955 } 956 957 /// insertSpill - Insert a spill of NewVReg after MI. 958 void InlineSpiller::insertSpill(Register NewVReg, bool isKill, 959 MachineBasicBlock::iterator MI) { 960 // Spill are not terminators, so inserting spills after terminators will 961 // violate invariants in MachineVerifier. 962 assert(!MI->isTerminator() && "Inserting a spill after a terminator"); 963 MachineBasicBlock &MBB = *MI->getParent(); 964 965 MachineInstrSpan MIS(MI, &MBB); 966 MachineBasicBlock::iterator SpillBefore = std::next(MI); 967 bool IsRealSpill = isRealSpill(*MI); 968 if (IsRealSpill) 969 TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot, 970 MRI.getRegClass(NewVReg), &TRI); 971 else 972 // Don't spill undef value. 973 // Anything works for undef, in particular keeping the memory 974 // uninitialized is a viable option and it saves code size and 975 // run time. 976 BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL)) 977 .addReg(NewVReg, getKillRegState(isKill)); 978 979 MachineBasicBlock::iterator Spill = std::next(MI); 980 LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end()); 981 982 LLVM_DEBUG( 983 dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill")); 984 ++NumSpills; 985 if (IsRealSpill) 986 HSpiller.addToMergeableSpills(*Spill, StackSlot, Original); 987 } 988 989 /// spillAroundUses - insert spill code around each use of Reg. 990 void InlineSpiller::spillAroundUses(Register Reg) { 991 LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n'); 992 LiveInterval &OldLI = LIS.getInterval(Reg); 993 994 // Iterate over instructions using Reg. 995 for (MachineRegisterInfo::reg_bundle_iterator 996 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 997 RegI != E; ) { 998 MachineInstr *MI = &*(RegI++); 999 1000 // Debug values are not allowed to affect codegen. 1001 if (MI->isDebugValue()) { 1002 // Modify DBG_VALUE now that the value is in a spill slot. 1003 MachineBasicBlock *MBB = MI->getParent(); 1004 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI); 1005 buildDbgValueForSpill(*MBB, MI, *MI, StackSlot); 1006 MBB->erase(MI); 1007 continue; 1008 } 1009 1010 assert(!MI->isDebugInstr() && "Did not expect to find a use in debug " 1011 "instruction that isn't a DBG_VALUE"); 1012 1013 // Ignore copies to/from snippets. We'll delete them. 1014 if (SnippetCopies.count(MI)) 1015 continue; 1016 1017 // Stack slot accesses may coalesce away. 1018 if (coalesceStackAccess(MI, Reg)) 1019 continue; 1020 1021 // Analyze instruction. 1022 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; 1023 VirtRegInfo RI = AnalyzeVirtRegInBundle(*MI, Reg, &Ops); 1024 1025 // Find the slot index where this instruction reads and writes OldLI. 1026 // This is usually the def slot, except for tied early clobbers. 1027 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 1028 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) 1029 if (SlotIndex::isSameInstr(Idx, VNI->def)) 1030 Idx = VNI->def; 1031 1032 // Check for a sibling copy. 1033 Register SibReg = isFullCopyOf(*MI, Reg); 1034 if (SibReg && isSibling(SibReg)) { 1035 // This may actually be a copy between snippets. 1036 if (isRegToSpill(SibReg)) { 1037 LLVM_DEBUG(dbgs() << "Found new snippet copy: " << *MI); 1038 SnippetCopies.insert(MI); 1039 continue; 1040 } 1041 if (RI.Writes) { 1042 if (hoistSpillInsideBB(OldLI, *MI)) { 1043 // This COPY is now dead, the value is already in the stack slot. 1044 MI->getOperand(0).setIsDead(); 1045 DeadDefs.push_back(MI); 1046 continue; 1047 } 1048 } else { 1049 // This is a reload for a sib-reg copy. Drop spills downstream. 1050 LiveInterval &SibLI = LIS.getInterval(SibReg); 1051 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 1052 // The COPY will fold to a reload below. 1053 } 1054 } 1055 1056 // Attempt to fold memory ops. 1057 if (foldMemoryOperand(Ops)) 1058 continue; 1059 1060 // Create a new virtual register for spill/fill. 1061 // FIXME: Infer regclass from instruction alone. 1062 Register NewVReg = Edit->createFrom(Reg); 1063 1064 if (RI.Reads) 1065 insertReload(NewVReg, Idx, MI); 1066 1067 // Rewrite instruction operands. 1068 bool hasLiveDef = false; 1069 for (const auto &OpPair : Ops) { 1070 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 1071 MO.setReg(NewVReg); 1072 if (MO.isUse()) { 1073 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second)) 1074 MO.setIsKill(); 1075 } else { 1076 if (!MO.isDead()) 1077 hasLiveDef = true; 1078 } 1079 } 1080 LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n'); 1081 1082 // FIXME: Use a second vreg if instruction has no tied ops. 1083 if (RI.Writes) 1084 if (hasLiveDef) 1085 insertSpill(NewVReg, true, MI); 1086 } 1087 } 1088 1089 /// spillAll - Spill all registers remaining after rematerialization. 1090 void InlineSpiller::spillAll() { 1091 // Update LiveStacks now that we are committed to spilling. 1092 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 1093 StackSlot = VRM.assignVirt2StackSlot(Original); 1094 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 1095 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); 1096 } else 1097 StackInt = &LSS.getInterval(StackSlot); 1098 1099 if (Original != Edit->getReg()) 1100 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 1101 1102 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 1103 for (Register Reg : RegsToSpill) 1104 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg), 1105 StackInt->getValNumInfo(0)); 1106 LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 1107 1108 // Spill around uses of all RegsToSpill. 1109 for (Register Reg : RegsToSpill) 1110 spillAroundUses(Reg); 1111 1112 // Hoisted spills may cause dead code. 1113 if (!DeadDefs.empty()) { 1114 LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 1115 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 1116 } 1117 1118 // Finally delete the SnippetCopies. 1119 for (Register Reg : RegsToSpill) { 1120 for (MachineRegisterInfo::reg_instr_iterator 1121 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); 1122 RI != E; ) { 1123 MachineInstr &MI = *(RI++); 1124 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy"); 1125 // FIXME: Do this with a LiveRangeEdit callback. 1126 LIS.RemoveMachineInstrFromMaps(MI); 1127 MI.eraseFromParent(); 1128 } 1129 } 1130 1131 // Delete all spilled registers. 1132 for (Register Reg : RegsToSpill) 1133 Edit->eraseVirtReg(Reg); 1134 } 1135 1136 void InlineSpiller::spill(LiveRangeEdit &edit) { 1137 ++NumSpilledRanges; 1138 Edit = &edit; 1139 assert(!Register::isStackSlot(edit.getReg()) && 1140 "Trying to spill a stack slot."); 1141 // Share a stack slot among all descendants of Original. 1142 Original = VRM.getOriginal(edit.getReg()); 1143 StackSlot = VRM.getStackSlot(Original); 1144 StackInt = nullptr; 1145 1146 LLVM_DEBUG(dbgs() << "Inline spilling " 1147 << TRI.getRegClassName(MRI.getRegClass(edit.getReg())) 1148 << ':' << edit.getParent() << "\nFrom original " 1149 << printReg(Original) << '\n'); 1150 assert(edit.getParent().isSpillable() && 1151 "Attempting to spill already spilled value."); 1152 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1153 1154 collectRegsToSpill(); 1155 reMaterializeAll(); 1156 1157 // Remat may handle everything. 1158 if (!RegsToSpill.empty()) 1159 spillAll(); 1160 1161 Edit->calculateRegClassAndHint(MF, Loops, MBFI); 1162 } 1163 1164 /// Optimizations after all the reg selections and spills are done. 1165 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); } 1166 1167 /// When a spill is inserted, add the spill to MergeableSpills map. 1168 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot, 1169 unsigned Original) { 1170 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1171 LiveInterval &OrigLI = LIS.getInterval(Original); 1172 // save a copy of LiveInterval in StackSlotToOrigLI because the original 1173 // LiveInterval may be cleared after all its references are spilled. 1174 if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) { 1175 auto LI = std::make_unique<LiveInterval>(OrigLI.reg(), OrigLI.weight()); 1176 LI->assign(OrigLI, Allocator); 1177 StackSlotToOrigLI[StackSlot] = std::move(LI); 1178 } 1179 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1180 VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot()); 1181 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1182 MergeableSpills[MIdx].insert(&Spill); 1183 } 1184 1185 /// When a spill is removed, remove the spill from MergeableSpills map. 1186 /// Return true if the spill is removed successfully. 1187 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill, 1188 int StackSlot) { 1189 auto It = StackSlotToOrigLI.find(StackSlot); 1190 if (It == StackSlotToOrigLI.end()) 1191 return false; 1192 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1193 VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot()); 1194 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1195 return MergeableSpills[MIdx].erase(&Spill); 1196 } 1197 1198 /// Check BB to see if it is a possible target BB to place a hoisted spill, 1199 /// i.e., there should be a living sibling of OrigReg at the insert point. 1200 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 1201 MachineBasicBlock &BB, Register &LiveReg) { 1202 SlotIndex Idx; 1203 Register OrigReg = OrigLI.reg(); 1204 MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, BB); 1205 if (MI != BB.end()) 1206 Idx = LIS.getInstructionIndex(*MI); 1207 else 1208 Idx = LIS.getMBBEndIdx(&BB).getPrevSlot(); 1209 SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg]; 1210 assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI"); 1211 1212 for (const Register &SibReg : Siblings) { 1213 LiveInterval &LI = LIS.getInterval(SibReg); 1214 VNInfo *VNI = LI.getVNInfoAt(Idx); 1215 if (VNI) { 1216 LiveReg = SibReg; 1217 return true; 1218 } 1219 } 1220 return false; 1221 } 1222 1223 /// Remove redundant spills in the same BB. Save those redundant spills in 1224 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map. 1225 void HoistSpillHelper::rmRedundantSpills( 1226 SmallPtrSet<MachineInstr *, 16> &Spills, 1227 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1228 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1229 // For each spill saw, check SpillBBToSpill[] and see if its BB already has 1230 // another spill inside. If a BB contains more than one spill, only keep the 1231 // earlier spill with smaller SlotIndex. 1232 for (const auto CurrentSpill : Spills) { 1233 MachineBasicBlock *Block = CurrentSpill->getParent(); 1234 MachineDomTreeNode *Node = MDT.getBase().getNode(Block); 1235 MachineInstr *PrevSpill = SpillBBToSpill[Node]; 1236 if (PrevSpill) { 1237 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill); 1238 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill); 1239 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill; 1240 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill; 1241 SpillsToRm.push_back(SpillToRm); 1242 SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep; 1243 } else { 1244 SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill; 1245 } 1246 } 1247 for (const auto SpillToRm : SpillsToRm) 1248 Spills.erase(SpillToRm); 1249 } 1250 1251 /// Starting from \p Root find a top-down traversal order of the dominator 1252 /// tree to visit all basic blocks containing the elements of \p Spills. 1253 /// Redundant spills will be found and put into \p SpillsToRm at the same 1254 /// time. \p SpillBBToSpill will be populated as part of the process and 1255 /// maps a basic block to the first store occurring in the basic block. 1256 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre 1257 void HoistSpillHelper::getVisitOrders( 1258 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 1259 SmallVectorImpl<MachineDomTreeNode *> &Orders, 1260 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1261 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 1262 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1263 // The set contains all the possible BB nodes to which we may hoist 1264 // original spills. 1265 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet; 1266 // Save the BB nodes on the path from the first BB node containing 1267 // non-redundant spill to the Root node. 1268 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath; 1269 // All the spills to be hoisted must originate from a single def instruction 1270 // to the OrigReg. It means the def instruction should dominate all the spills 1271 // to be hoisted. We choose the BB where the def instruction is located as 1272 // the Root. 1273 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom(); 1274 // For every node on the dominator tree with spill, walk up on the dominator 1275 // tree towards the Root node until it is reached. If there is other node 1276 // containing spill in the middle of the path, the previous spill saw will 1277 // be redundant and the node containing it will be removed. All the nodes on 1278 // the path starting from the first node with non-redundant spill to the Root 1279 // node will be added to the WorkSet, which will contain all the possible 1280 // locations where spills may be hoisted to after the loop below is done. 1281 for (const auto Spill : Spills) { 1282 MachineBasicBlock *Block = Spill->getParent(); 1283 MachineDomTreeNode *Node = MDT[Block]; 1284 MachineInstr *SpillToRm = nullptr; 1285 while (Node != RootIDomNode) { 1286 // If Node dominates Block, and it already contains a spill, the spill in 1287 // Block will be redundant. 1288 if (Node != MDT[Block] && SpillBBToSpill[Node]) { 1289 SpillToRm = SpillBBToSpill[MDT[Block]]; 1290 break; 1291 /// If we see the Node already in WorkSet, the path from the Node to 1292 /// the Root node must already be traversed by another spill. 1293 /// Then no need to repeat. 1294 } else if (WorkSet.count(Node)) { 1295 break; 1296 } else { 1297 NodesOnPath.insert(Node); 1298 } 1299 Node = Node->getIDom(); 1300 } 1301 if (SpillToRm) { 1302 SpillsToRm.push_back(SpillToRm); 1303 } else { 1304 // Add a BB containing the original spills to SpillsToKeep -- i.e., 1305 // set the initial status before hoisting start. The value of BBs 1306 // containing original spills is set to 0, in order to descriminate 1307 // with BBs containing hoisted spills which will be inserted to 1308 // SpillsToKeep later during hoisting. 1309 SpillsToKeep[MDT[Block]] = 0; 1310 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end()); 1311 } 1312 NodesOnPath.clear(); 1313 } 1314 1315 // Sort the nodes in WorkSet in top-down order and save the nodes 1316 // in Orders. Orders will be used for hoisting in runHoistSpills. 1317 unsigned idx = 0; 1318 Orders.push_back(MDT.getBase().getNode(Root)); 1319 do { 1320 MachineDomTreeNode *Node = Orders[idx++]; 1321 for (MachineDomTreeNode *Child : Node->children()) { 1322 if (WorkSet.count(Child)) 1323 Orders.push_back(Child); 1324 } 1325 } while (idx != Orders.size()); 1326 assert(Orders.size() == WorkSet.size() && 1327 "Orders have different size with WorkSet"); 1328 1329 #ifndef NDEBUG 1330 LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n"); 1331 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1332 for (; RIt != Orders.rend(); RIt++) 1333 LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ","); 1334 LLVM_DEBUG(dbgs() << "\n"); 1335 #endif 1336 } 1337 1338 /// Try to hoist spills according to BB hotness. The spills to removed will 1339 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in 1340 /// \p SpillsToIns. 1341 void HoistSpillHelper::runHoistSpills( 1342 LiveInterval &OrigLI, VNInfo &OrigVNI, 1343 SmallPtrSet<MachineInstr *, 16> &Spills, 1344 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1345 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) { 1346 // Visit order of dominator tree nodes. 1347 SmallVector<MachineDomTreeNode *, 32> Orders; 1348 // SpillsToKeep contains all the nodes where spills are to be inserted 1349 // during hoisting. If the spill to be inserted is an original spill 1350 // (not a hoisted one), the value of the map entry is 0. If the spill 1351 // is a hoisted spill, the value of the map entry is the VReg to be used 1352 // as the source of the spill. 1353 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep; 1354 // Map from BB to the first spill inside of it. 1355 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill; 1356 1357 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill); 1358 1359 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def); 1360 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep, 1361 SpillBBToSpill); 1362 1363 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of 1364 // nodes set and the cost of all the spills inside those nodes. 1365 // The nodes set are the locations where spills are to be inserted 1366 // in the subtree of current node. 1367 using NodesCostPair = 1368 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>; 1369 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap; 1370 1371 // Iterate Orders set in reverse order, which will be a bottom-up order 1372 // in the dominator tree. Once we visit a dom tree node, we know its 1373 // children have already been visited and the spill locations in the 1374 // subtrees of all the children have been determined. 1375 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1376 for (; RIt != Orders.rend(); RIt++) { 1377 MachineBasicBlock *Block = (*RIt)->getBlock(); 1378 1379 // If Block contains an original spill, simply continue. 1380 if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) { 1381 SpillsInSubTreeMap[*RIt].first.insert(*RIt); 1382 // SpillsInSubTreeMap[*RIt].second contains the cost of spill. 1383 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block); 1384 continue; 1385 } 1386 1387 // Collect spills in subtree of current node (*RIt) to 1388 // SpillsInSubTreeMap[*RIt].first. 1389 for (MachineDomTreeNode *Child : (*RIt)->children()) { 1390 if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end()) 1391 continue; 1392 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below 1393 // should be placed before getting the begin and end iterators of 1394 // SpillsInSubTreeMap[Child].first, or else the iterators may be 1395 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time 1396 // and the map grows and then the original buckets in the map are moved. 1397 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1398 SpillsInSubTreeMap[*RIt].first; 1399 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1400 SubTreeCost += SpillsInSubTreeMap[Child].second; 1401 auto BI = SpillsInSubTreeMap[Child].first.begin(); 1402 auto EI = SpillsInSubTreeMap[Child].first.end(); 1403 SpillsInSubTree.insert(BI, EI); 1404 SpillsInSubTreeMap.erase(Child); 1405 } 1406 1407 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1408 SpillsInSubTreeMap[*RIt].first; 1409 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1410 // No spills in subtree, simply continue. 1411 if (SpillsInSubTree.empty()) 1412 continue; 1413 1414 // Check whether Block is a possible candidate to insert spill. 1415 Register LiveReg; 1416 if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg)) 1417 continue; 1418 1419 // If there are multiple spills that could be merged, bias a little 1420 // to hoist the spill. 1421 BranchProbability MarginProb = (SpillsInSubTree.size() > 1) 1422 ? BranchProbability(9, 10) 1423 : BranchProbability(1, 1); 1424 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) { 1425 // Hoist: Move spills to current Block. 1426 for (const auto SpillBB : SpillsInSubTree) { 1427 // When SpillBB is a BB contains original spill, insert the spill 1428 // to SpillsToRm. 1429 if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() && 1430 !SpillsToKeep[SpillBB]) { 1431 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB]; 1432 SpillsToRm.push_back(SpillToRm); 1433 } 1434 // SpillBB will not contain spill anymore, remove it from SpillsToKeep. 1435 SpillsToKeep.erase(SpillBB); 1436 } 1437 // Current Block is the BB containing the new hoisted spill. Add it to 1438 // SpillsToKeep. LiveReg is the source of the new spill. 1439 SpillsToKeep[*RIt] = LiveReg; 1440 LLVM_DEBUG({ 1441 dbgs() << "spills in BB: "; 1442 for (const auto Rspill : SpillsInSubTree) 1443 dbgs() << Rspill->getBlock()->getNumber() << " "; 1444 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber() 1445 << "\n"; 1446 }); 1447 SpillsInSubTree.clear(); 1448 SpillsInSubTree.insert(*RIt); 1449 SubTreeCost = MBFI.getBlockFreq(Block); 1450 } 1451 } 1452 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill), 1453 // save them to SpillsToIns. 1454 for (const auto &Ent : SpillsToKeep) { 1455 if (Ent.second) 1456 SpillsToIns[Ent.first->getBlock()] = Ent.second; 1457 } 1458 } 1459 1460 /// For spills with equal values, remove redundant spills and hoist those left 1461 /// to less hot spots. 1462 /// 1463 /// Spills with equal values will be collected into the same set in 1464 /// MergeableSpills when spill is inserted. These equal spills are originated 1465 /// from the same defining instruction and are dominated by the instruction. 1466 /// Before hoisting all the equal spills, redundant spills inside in the same 1467 /// BB are first marked to be deleted. Then starting from the spills left, walk 1468 /// up on the dominator tree towards the Root node where the define instruction 1469 /// is located, mark the dominated spills to be deleted along the way and 1470 /// collect the BB nodes on the path from non-dominated spills to the define 1471 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places 1472 /// where we are considering to hoist the spills. We iterate the WorkSet in 1473 /// bottom-up order, and for each node, we will decide whether to hoist spills 1474 /// inside its subtree to that node. In this way, we can get benefit locally 1475 /// even if hoisting all the equal spills to one cold place is impossible. 1476 void HoistSpillHelper::hoistAllSpills() { 1477 SmallVector<Register, 4> NewVRegs; 1478 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this); 1479 1480 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { 1481 Register Reg = Register::index2VirtReg(i); 1482 Register Original = VRM.getPreSplitReg(Reg); 1483 if (!MRI.def_empty(Reg)) 1484 Virt2SiblingsMap[Original].insert(Reg); 1485 } 1486 1487 // Each entry in MergeableSpills contains a spill set with equal values. 1488 for (auto &Ent : MergeableSpills) { 1489 int Slot = Ent.first.first; 1490 LiveInterval &OrigLI = *StackSlotToOrigLI[Slot]; 1491 VNInfo *OrigVNI = Ent.first.second; 1492 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second; 1493 if (Ent.second.empty()) 1494 continue; 1495 1496 LLVM_DEBUG({ 1497 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n" 1498 << "Equal spills in BB: "; 1499 for (const auto spill : EqValSpills) 1500 dbgs() << spill->getParent()->getNumber() << " "; 1501 dbgs() << "\n"; 1502 }); 1503 1504 // SpillsToRm is the spill set to be removed from EqValSpills. 1505 SmallVector<MachineInstr *, 16> SpillsToRm; 1506 // SpillsToIns is the spill set to be newly inserted after hoisting. 1507 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns; 1508 1509 runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns); 1510 1511 LLVM_DEBUG({ 1512 dbgs() << "Finally inserted spills in BB: "; 1513 for (const auto &Ispill : SpillsToIns) 1514 dbgs() << Ispill.first->getNumber() << " "; 1515 dbgs() << "\nFinally removed spills in BB: "; 1516 for (const auto Rspill : SpillsToRm) 1517 dbgs() << Rspill->getParent()->getNumber() << " "; 1518 dbgs() << "\n"; 1519 }); 1520 1521 // Stack live range update. 1522 LiveInterval &StackIntvl = LSS.getInterval(Slot); 1523 if (!SpillsToIns.empty() || !SpillsToRm.empty()) 1524 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI, 1525 StackIntvl.getValNumInfo(0)); 1526 1527 // Insert hoisted spills. 1528 for (auto const &Insert : SpillsToIns) { 1529 MachineBasicBlock *BB = Insert.first; 1530 Register LiveReg = Insert.second; 1531 MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, *BB); 1532 TII.storeRegToStackSlot(*BB, MI, LiveReg, false, Slot, 1533 MRI.getRegClass(LiveReg), &TRI); 1534 LIS.InsertMachineInstrRangeInMaps(std::prev(MI), MI); 1535 ++NumSpills; 1536 } 1537 1538 // Remove redundant spills or change them to dead instructions. 1539 NumSpills -= SpillsToRm.size(); 1540 for (auto const RMEnt : SpillsToRm) { 1541 RMEnt->setDesc(TII.get(TargetOpcode::KILL)); 1542 for (unsigned i = RMEnt->getNumOperands(); i; --i) { 1543 MachineOperand &MO = RMEnt->getOperand(i - 1); 1544 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead()) 1545 RMEnt->RemoveOperand(i - 1); 1546 } 1547 } 1548 Edit.eliminateDeadDefs(SpillsToRm, None, AA); 1549 } 1550 } 1551 1552 /// For VirtReg clone, the \p New register should have the same physreg or 1553 /// stackslot as the \p old register. 1554 void HoistSpillHelper::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 1555 if (VRM.hasPhys(Old)) 1556 VRM.assignVirt2Phys(New, VRM.getPhys(Old)); 1557 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT) 1558 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old)); 1559 else 1560 llvm_unreachable("VReg should be assigned either physreg or stackslot"); 1561 } 1562