1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The inline spiller modifies the machine function directly instead of
10 // inserting spills and restores in VirtRegMap.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SplitKit.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/LiveInterval.h"
26 #include "llvm/CodeGen/LiveIntervals.h"
27 #include "llvm/CodeGen/LiveRangeEdit.h"
28 #include "llvm/CodeGen/LiveStacks.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31 #include "llvm/CodeGen/MachineDominators.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineFunctionPass.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineInstrBundle.h"
37 #include "llvm/CodeGen/MachineLoopInfo.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/CodeGen/SlotIndexes.h"
41 #include "llvm/CodeGen/Spiller.h"
42 #include "llvm/CodeGen/StackMaps.h"
43 #include "llvm/CodeGen/TargetInstrInfo.h"
44 #include "llvm/CodeGen/TargetOpcodes.h"
45 #include "llvm/CodeGen/TargetRegisterInfo.h"
46 #include "llvm/CodeGen/TargetSubtargetInfo.h"
47 #include "llvm/CodeGen/VirtRegMap.h"
48 #include "llvm/Config/llvm-config.h"
49 #include "llvm/Support/BlockFrequency.h"
50 #include "llvm/Support/BranchProbability.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Compiler.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include <cassert>
57 #include <iterator>
58 #include <tuple>
59 #include <utility>
60 #include <vector>
61 
62 using namespace llvm;
63 
64 #define DEBUG_TYPE "regalloc"
65 
66 STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
67 STATISTIC(NumSnippets,        "Number of spilled snippets");
68 STATISTIC(NumSpills,          "Number of spills inserted");
69 STATISTIC(NumSpillsRemoved,   "Number of spills removed");
70 STATISTIC(NumReloads,         "Number of reloads inserted");
71 STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
72 STATISTIC(NumFolded,          "Number of folded stack accesses");
73 STATISTIC(NumFoldedLoads,     "Number of folded loads");
74 STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
75 
76 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
77                                      cl::desc("Disable inline spill hoisting"));
78 static cl::opt<bool>
79 RestrictStatepointRemat("restrict-statepoint-remat",
80                        cl::init(false), cl::Hidden,
81                        cl::desc("Restrict remat for statepoint operands"));
82 
83 namespace {
84 
85 class HoistSpillHelper : private LiveRangeEdit::Delegate {
86   MachineFunction &MF;
87   LiveIntervals &LIS;
88   LiveStacks &LSS;
89   AliasAnalysis *AA;
90   MachineDominatorTree &MDT;
91   MachineLoopInfo &Loops;
92   VirtRegMap &VRM;
93   MachineRegisterInfo &MRI;
94   const TargetInstrInfo &TII;
95   const TargetRegisterInfo &TRI;
96   const MachineBlockFrequencyInfo &MBFI;
97 
98   InsertPointAnalysis IPA;
99 
100   // Map from StackSlot to the LiveInterval of the original register.
101   // Note the LiveInterval of the original register may have been deleted
102   // after it is spilled. We keep a copy here to track the range where
103   // spills can be moved.
104   DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI;
105 
106   // Map from pair of (StackSlot and Original VNI) to a set of spills which
107   // have the same stackslot and have equal values defined by Original VNI.
108   // These spills are mergeable and are hoist candiates.
109   using MergeableSpillsMap =
110       MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>;
111   MergeableSpillsMap MergeableSpills;
112 
113   /// This is the map from original register to a set containing all its
114   /// siblings. To hoist a spill to another BB, we need to find out a live
115   /// sibling there and use it as the source of the new spill.
116   DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap;
117 
118   bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
119                      MachineBasicBlock &BB, Register &LiveReg);
120 
121   void rmRedundantSpills(
122       SmallPtrSet<MachineInstr *, 16> &Spills,
123       SmallVectorImpl<MachineInstr *> &SpillsToRm,
124       DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
125 
126   void getVisitOrders(
127       MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
128       SmallVectorImpl<MachineDomTreeNode *> &Orders,
129       SmallVectorImpl<MachineInstr *> &SpillsToRm,
130       DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
131       DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
132 
133   void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI,
134                       SmallPtrSet<MachineInstr *, 16> &Spills,
135                       SmallVectorImpl<MachineInstr *> &SpillsToRm,
136                       DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns);
137 
138 public:
139   HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf,
140                    VirtRegMap &vrm)
141       : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
142         LSS(pass.getAnalysis<LiveStacks>()),
143         AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
144         MDT(pass.getAnalysis<MachineDominatorTree>()),
145         Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
146         MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
147         TRI(*mf.getSubtarget().getRegisterInfo()),
148         MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
149         IPA(LIS, mf.getNumBlockIDs()) {}
150 
151   void addToMergeableSpills(MachineInstr &Spill, int StackSlot,
152                             unsigned Original);
153   bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot);
154   void hoistAllSpills();
155   void LRE_DidCloneVirtReg(Register, Register) override;
156 };
157 
158 class InlineSpiller : public Spiller {
159   MachineFunction &MF;
160   LiveIntervals &LIS;
161   LiveStacks &LSS;
162   AliasAnalysis *AA;
163   MachineDominatorTree &MDT;
164   MachineLoopInfo &Loops;
165   VirtRegMap &VRM;
166   MachineRegisterInfo &MRI;
167   const TargetInstrInfo &TII;
168   const TargetRegisterInfo &TRI;
169   const MachineBlockFrequencyInfo &MBFI;
170 
171   // Variables that are valid during spill(), but used by multiple methods.
172   LiveRangeEdit *Edit;
173   LiveInterval *StackInt;
174   int StackSlot;
175   Register Original;
176 
177   // All registers to spill to StackSlot, including the main register.
178   SmallVector<Register, 8> RegsToSpill;
179 
180   // All COPY instructions to/from snippets.
181   // They are ignored since both operands refer to the same stack slot.
182   SmallPtrSet<MachineInstr*, 8> SnippetCopies;
183 
184   // Values that failed to remat at some point.
185   SmallPtrSet<VNInfo*, 8> UsedValues;
186 
187   // Dead defs generated during spilling.
188   SmallVector<MachineInstr*, 8> DeadDefs;
189 
190   // Object records spills information and does the hoisting.
191   HoistSpillHelper HSpiller;
192 
193   // Live range weight calculator.
194   VirtRegAuxInfo &VRAI;
195 
196   ~InlineSpiller() override = default;
197 
198 public:
199   InlineSpiller(MachineFunctionPass &Pass, MachineFunction &MF, VirtRegMap &VRM,
200                 VirtRegAuxInfo &VRAI)
201       : MF(MF), LIS(Pass.getAnalysis<LiveIntervals>()),
202         LSS(Pass.getAnalysis<LiveStacks>()),
203         AA(&Pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
204         MDT(Pass.getAnalysis<MachineDominatorTree>()),
205         Loops(Pass.getAnalysis<MachineLoopInfo>()), VRM(VRM),
206         MRI(MF.getRegInfo()), TII(*MF.getSubtarget().getInstrInfo()),
207         TRI(*MF.getSubtarget().getRegisterInfo()),
208         MBFI(Pass.getAnalysis<MachineBlockFrequencyInfo>()),
209         HSpiller(Pass, MF, VRM), VRAI(VRAI) {}
210 
211   void spill(LiveRangeEdit &) override;
212   void postOptimization() override;
213 
214 private:
215   bool isSnippet(const LiveInterval &SnipLI);
216   void collectRegsToSpill();
217 
218   bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); }
219 
220   bool isSibling(Register Reg);
221   bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
222   void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
223 
224   void markValueUsed(LiveInterval*, VNInfo*);
225   bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI);
226   bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
227   void reMaterializeAll();
228 
229   bool coalesceStackAccess(MachineInstr *MI, Register Reg);
230   bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>,
231                          MachineInstr *LoadMI = nullptr);
232   void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI);
233   void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI);
234 
235   void spillAroundUses(Register Reg);
236   void spillAll();
237 };
238 
239 } // end anonymous namespace
240 
241 Spiller::~Spiller() = default;
242 
243 void Spiller::anchor() {}
244 
245 Spiller *llvm::createInlineSpiller(MachineFunctionPass &Pass,
246                                    MachineFunction &MF, VirtRegMap &VRM,
247                                    VirtRegAuxInfo &VRAI) {
248   return new InlineSpiller(Pass, MF, VRM, VRAI);
249 }
250 
251 //===----------------------------------------------------------------------===//
252 //                                Snippets
253 //===----------------------------------------------------------------------===//
254 
255 // When spilling a virtual register, we also spill any snippets it is connected
256 // to. The snippets are small live ranges that only have a single real use,
257 // leftovers from live range splitting. Spilling them enables memory operand
258 // folding or tightens the live range around the single use.
259 //
260 // This minimizes register pressure and maximizes the store-to-load distance for
261 // spill slots which can be important in tight loops.
262 
263 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
264 /// otherwise return 0.
265 static Register isFullCopyOf(const MachineInstr &MI, Register Reg) {
266   if (!MI.isFullCopy())
267     return Register();
268   if (MI.getOperand(0).getReg() == Reg)
269     return MI.getOperand(1).getReg();
270   if (MI.getOperand(1).getReg() == Reg)
271     return MI.getOperand(0).getReg();
272   return Register();
273 }
274 
275 static void getVDefInterval(const MachineInstr &MI, LiveIntervals &LIS) {
276   for (const MachineOperand &MO : MI.operands())
277     if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
278       LIS.getInterval(MO.getReg());
279 }
280 
281 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
282 /// It is assumed that SnipLI is a virtual register with the same original as
283 /// Edit->getReg().
284 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
285   Register Reg = Edit->getReg();
286 
287   // A snippet is a tiny live range with only a single instruction using it
288   // besides copies to/from Reg or spills/fills. We accept:
289   //
290   //   %snip = COPY %Reg / FILL fi#
291   //   %snip = USE %snip
292   //   %Reg = COPY %snip / SPILL %snip, fi#
293   //
294   if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
295     return false;
296 
297   MachineInstr *UseMI = nullptr;
298 
299   // Check that all uses satisfy our criteria.
300   for (MachineRegisterInfo::reg_instr_nodbg_iterator
301            RI = MRI.reg_instr_nodbg_begin(SnipLI.reg()),
302            E = MRI.reg_instr_nodbg_end();
303        RI != E;) {
304     MachineInstr &MI = *RI++;
305 
306     // Allow copies to/from Reg.
307     if (isFullCopyOf(MI, Reg))
308       continue;
309 
310     // Allow stack slot loads.
311     int FI;
312     if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
313       continue;
314 
315     // Allow stack slot stores.
316     if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
317       continue;
318 
319     // Allow a single additional instruction.
320     if (UseMI && &MI != UseMI)
321       return false;
322     UseMI = &MI;
323   }
324   return true;
325 }
326 
327 /// collectRegsToSpill - Collect live range snippets that only have a single
328 /// real use.
329 void InlineSpiller::collectRegsToSpill() {
330   Register Reg = Edit->getReg();
331 
332   // Main register always spills.
333   RegsToSpill.assign(1, Reg);
334   SnippetCopies.clear();
335 
336   // Snippets all have the same original, so there can't be any for an original
337   // register.
338   if (Original == Reg)
339     return;
340 
341   for (MachineInstr &MI :
342        llvm::make_early_inc_range(MRI.reg_instructions(Reg))) {
343     Register SnipReg = isFullCopyOf(MI, Reg);
344     if (!isSibling(SnipReg))
345       continue;
346     LiveInterval &SnipLI = LIS.getInterval(SnipReg);
347     if (!isSnippet(SnipLI))
348       continue;
349     SnippetCopies.insert(&MI);
350     if (isRegToSpill(SnipReg))
351       continue;
352     RegsToSpill.push_back(SnipReg);
353     LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
354     ++NumSnippets;
355   }
356 }
357 
358 bool InlineSpiller::isSibling(Register Reg) {
359   return Reg.isVirtual() && VRM.getOriginal(Reg) == Original;
360 }
361 
362 /// It is beneficial to spill to earlier place in the same BB in case
363 /// as follows:
364 /// There is an alternative def earlier in the same MBB.
365 /// Hoist the spill as far as possible in SpillMBB. This can ease
366 /// register pressure:
367 ///
368 ///   x = def
369 ///   y = use x
370 ///   s = copy x
371 ///
372 /// Hoisting the spill of s to immediately after the def removes the
373 /// interference between x and y:
374 ///
375 ///   x = def
376 ///   spill x
377 ///   y = use killed x
378 ///
379 /// This hoist only helps when the copy kills its source.
380 ///
381 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
382                                        MachineInstr &CopyMI) {
383   SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
384 #ifndef NDEBUG
385   VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
386   assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
387 #endif
388 
389   Register SrcReg = CopyMI.getOperand(1).getReg();
390   LiveInterval &SrcLI = LIS.getInterval(SrcReg);
391   VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx);
392   LiveQueryResult SrcQ = SrcLI.Query(Idx);
393   MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def);
394   if (DefMBB != CopyMI.getParent() || !SrcQ.isKill())
395     return false;
396 
397   // Conservatively extend the stack slot range to the range of the original
398   // value. We may be able to do better with stack slot coloring by being more
399   // careful here.
400   assert(StackInt && "No stack slot assigned yet.");
401   LiveInterval &OrigLI = LIS.getInterval(Original);
402   VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
403   StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
404   LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
405                     << *StackInt << '\n');
406 
407   // We are going to spill SrcVNI immediately after its def, so clear out
408   // any later spills of the same value.
409   eliminateRedundantSpills(SrcLI, SrcVNI);
410 
411   MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
412   MachineBasicBlock::iterator MII;
413   if (SrcVNI->isPHIDef())
414     MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
415   else {
416     MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
417     assert(DefMI && "Defining instruction disappeared");
418     MII = DefMI;
419     ++MII;
420   }
421   MachineInstrSpan MIS(MII, MBB);
422   // Insert spill without kill flag immediately after def.
423   TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot,
424                           MRI.getRegClass(SrcReg), &TRI);
425   LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII);
426   for (const MachineInstr &MI : make_range(MIS.begin(), MII))
427     getVDefInterval(MI, LIS);
428   --MII; // Point to store instruction.
429   LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII);
430 
431   // If there is only 1 store instruction is required for spill, add it
432   // to mergeable list. In X86 AMX, 2 intructions are required to store.
433   // We disable the merge for this case.
434   if (MIS.begin() == MII)
435     HSpiller.addToMergeableSpills(*MII, StackSlot, Original);
436   ++NumSpills;
437   return true;
438 }
439 
440 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
441 /// redundant spills of this value in SLI.reg and sibling copies.
442 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
443   assert(VNI && "Missing value");
444   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
445   WorkList.push_back(std::make_pair(&SLI, VNI));
446   assert(StackInt && "No stack slot assigned yet.");
447 
448   do {
449     LiveInterval *LI;
450     std::tie(LI, VNI) = WorkList.pop_back_val();
451     Register Reg = LI->reg();
452     LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@'
453                       << VNI->def << " in " << *LI << '\n');
454 
455     // Regs to spill are taken care of.
456     if (isRegToSpill(Reg))
457       continue;
458 
459     // Add all of VNI's live range to StackInt.
460     StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
461     LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
462 
463     // Find all spills and copies of VNI.
464     for (MachineInstr &MI :
465          llvm::make_early_inc_range(MRI.use_nodbg_instructions(Reg))) {
466       if (!MI.isCopy() && !MI.mayStore())
467         continue;
468       SlotIndex Idx = LIS.getInstructionIndex(MI);
469       if (LI->getVNInfoAt(Idx) != VNI)
470         continue;
471 
472       // Follow sibling copies down the dominator tree.
473       if (Register DstReg = isFullCopyOf(MI, Reg)) {
474         if (isSibling(DstReg)) {
475            LiveInterval &DstLI = LIS.getInterval(DstReg);
476            VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
477            assert(DstVNI && "Missing defined value");
478            assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
479            WorkList.push_back(std::make_pair(&DstLI, DstVNI));
480         }
481         continue;
482       }
483 
484       // Erase spills.
485       int FI;
486       if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
487         LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI);
488         // eliminateDeadDefs won't normally remove stores, so switch opcode.
489         MI.setDesc(TII.get(TargetOpcode::KILL));
490         DeadDefs.push_back(&MI);
491         ++NumSpillsRemoved;
492         if (HSpiller.rmFromMergeableSpills(MI, StackSlot))
493           --NumSpills;
494       }
495     }
496   } while (!WorkList.empty());
497 }
498 
499 //===----------------------------------------------------------------------===//
500 //                            Rematerialization
501 //===----------------------------------------------------------------------===//
502 
503 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
504 /// instruction cannot be eliminated. See through snippet copies
505 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
506   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
507   WorkList.push_back(std::make_pair(LI, VNI));
508   do {
509     std::tie(LI, VNI) = WorkList.pop_back_val();
510     if (!UsedValues.insert(VNI).second)
511       continue;
512 
513     if (VNI->isPHIDef()) {
514       MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
515       for (MachineBasicBlock *P : MBB->predecessors()) {
516         VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
517         if (PVNI)
518           WorkList.push_back(std::make_pair(LI, PVNI));
519       }
520       continue;
521     }
522 
523     // Follow snippet copies.
524     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
525     if (!SnippetCopies.count(MI))
526       continue;
527     LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
528     assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy");
529     VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
530     assert(SnipVNI && "Snippet undefined before copy");
531     WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
532   } while (!WorkList.empty());
533 }
534 
535 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg,
536                                                      MachineInstr &MI) {
537   if (!RestrictStatepointRemat)
538     return true;
539   // Here's a quick explanation of the problem we're trying to handle here:
540   // * There are some pseudo instructions with more vreg uses than there are
541   //   physical registers on the machine.
542   // * This is normally handled by spilling the vreg, and folding the reload
543   //   into the user instruction.  (Thus decreasing the number of used vregs
544   //   until the remainder can be assigned to physregs.)
545   // * However, since we may try to spill vregs in any order, we can end up
546   //   trying to spill each operand to the instruction, and then rematting it
547   //   instead.  When that happens, the new live intervals (for the remats) are
548   //   expected to be trivially assignable (i.e. RS_Done).  However, since we
549   //   may have more remats than physregs, we're guaranteed to fail to assign
550   //   one.
551   // At the moment, we only handle this for STATEPOINTs since they're the only
552   // pseudo op where we've seen this.  If we start seeing other instructions
553   // with the same problem, we need to revisit this.
554   if (MI.getOpcode() != TargetOpcode::STATEPOINT)
555     return true;
556   // For STATEPOINTs we allow re-materialization for fixed arguments only hoping
557   // that number of physical registers is enough to cover all fixed arguments.
558   // If it is not true we need to revisit it.
559   for (unsigned Idx = StatepointOpers(&MI).getVarIdx(),
560                 EndIdx = MI.getNumOperands();
561        Idx < EndIdx; ++Idx) {
562     MachineOperand &MO = MI.getOperand(Idx);
563     if (MO.isReg() && MO.getReg() == VReg)
564       return false;
565   }
566   return true;
567 }
568 
569 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
570 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
571   // Analyze instruction
572   SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
573   VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg(), &Ops);
574 
575   if (!RI.Reads)
576     return false;
577 
578   SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
579   VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
580 
581   if (!ParentVNI) {
582     LLVM_DEBUG(dbgs() << "\tadding <undef> flags: ");
583     for (MachineOperand &MO : MI.operands())
584       if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg())
585         MO.setIsUndef();
586     LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI);
587     return true;
588   }
589 
590   if (SnippetCopies.count(&MI))
591     return false;
592 
593   LiveInterval &OrigLI = LIS.getInterval(Original);
594   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
595   LiveRangeEdit::Remat RM(ParentVNI);
596   RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
597 
598   if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) {
599     markValueUsed(&VirtReg, ParentVNI);
600     LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
601     return false;
602   }
603 
604   // If the instruction also writes VirtReg.reg, it had better not require the
605   // same register for uses and defs.
606   if (RI.Tied) {
607     markValueUsed(&VirtReg, ParentVNI);
608     LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI);
609     return false;
610   }
611 
612   // Before rematerializing into a register for a single instruction, try to
613   // fold a load into the instruction. That avoids allocating a new register.
614   if (RM.OrigMI->canFoldAsLoad() &&
615       foldMemoryOperand(Ops, RM.OrigMI)) {
616     Edit->markRematerialized(RM.ParentVNI);
617     ++NumFoldedLoads;
618     return true;
619   }
620 
621   // If we can't guarantee that we'll be able to actually assign the new vreg,
622   // we can't remat.
623   if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg(), MI)) {
624     markValueUsed(&VirtReg, ParentVNI);
625     LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
626     return false;
627   }
628 
629   // Allocate a new register for the remat.
630   Register NewVReg = Edit->createFrom(Original);
631 
632   // Finally we can rematerialize OrigMI before MI.
633   SlotIndex DefIdx =
634       Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);
635 
636   // We take the DebugLoc from MI, since OrigMI may be attributed to a
637   // different source location.
638   auto *NewMI = LIS.getInstructionFromIndex(DefIdx);
639   NewMI->setDebugLoc(MI.getDebugLoc());
640 
641   (void)DefIdx;
642   LLVM_DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
643                     << *LIS.getInstructionFromIndex(DefIdx));
644 
645   // Replace operands
646   for (const auto &OpPair : Ops) {
647     MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
648     if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) {
649       MO.setReg(NewVReg);
650       MO.setIsKill();
651     }
652   }
653   LLVM_DEBUG(dbgs() << "\t        " << UseIdx << '\t' << MI << '\n');
654 
655   ++NumRemats;
656   return true;
657 }
658 
659 /// reMaterializeAll - Try to rematerialize as many uses as possible,
660 /// and trim the live ranges after.
661 void InlineSpiller::reMaterializeAll() {
662   if (!Edit->anyRematerializable(AA))
663     return;
664 
665   UsedValues.clear();
666 
667   // Try to remat before all uses of snippets.
668   bool anyRemat = false;
669   for (Register Reg : RegsToSpill) {
670     LiveInterval &LI = LIS.getInterval(Reg);
671     for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) {
672       // Debug values are not allowed to affect codegen.
673       if (MI.isDebugValue())
674         continue;
675 
676       assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
677              "instruction that isn't a DBG_VALUE");
678 
679       anyRemat |= reMaterializeFor(LI, MI);
680     }
681   }
682   if (!anyRemat)
683     return;
684 
685   // Remove any values that were completely rematted.
686   for (Register Reg : RegsToSpill) {
687     LiveInterval &LI = LIS.getInterval(Reg);
688     for (VNInfo *VNI : LI.vnis()) {
689       if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
690         continue;
691       MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
692       MI->addRegisterDead(Reg, &TRI);
693       if (!MI->allDefsAreDead())
694         continue;
695       LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
696       DeadDefs.push_back(MI);
697     }
698   }
699 
700   // Eliminate dead code after remat. Note that some snippet copies may be
701   // deleted here.
702   if (DeadDefs.empty())
703     return;
704   LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
705   Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
706 
707   // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
708   // after rematerialization.  To remove a VNI for a vreg from its LiveInterval,
709   // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
710   // removed, PHI VNI are still left in the LiveInterval.
711   // So to get rid of unused reg, we need to check whether it has non-dbg
712   // reference instead of whether it has non-empty interval.
713   unsigned ResultPos = 0;
714   for (Register Reg : RegsToSpill) {
715     if (MRI.reg_nodbg_empty(Reg)) {
716       Edit->eraseVirtReg(Reg);
717       continue;
718     }
719 
720     assert(LIS.hasInterval(Reg) &&
721            (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
722            "Empty and not used live-range?!");
723 
724     RegsToSpill[ResultPos++] = Reg;
725   }
726   RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
727   LLVM_DEBUG(dbgs() << RegsToSpill.size()
728                     << " registers to spill after remat.\n");
729 }
730 
731 //===----------------------------------------------------------------------===//
732 //                                 Spilling
733 //===----------------------------------------------------------------------===//
734 
735 /// If MI is a load or store of StackSlot, it can be removed.
736 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) {
737   int FI = 0;
738   Register InstrReg = TII.isLoadFromStackSlot(*MI, FI);
739   bool IsLoad = InstrReg;
740   if (!IsLoad)
741     InstrReg = TII.isStoreToStackSlot(*MI, FI);
742 
743   // We have a stack access. Is it the right register and slot?
744   if (InstrReg != Reg || FI != StackSlot)
745     return false;
746 
747   if (!IsLoad)
748     HSpiller.rmFromMergeableSpills(*MI, StackSlot);
749 
750   LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI);
751   LIS.RemoveMachineInstrFromMaps(*MI);
752   MI->eraseFromParent();
753 
754   if (IsLoad) {
755     ++NumReloadsRemoved;
756     --NumReloads;
757   } else {
758     ++NumSpillsRemoved;
759     --NumSpills;
760   }
761 
762   return true;
763 }
764 
765 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
766 LLVM_DUMP_METHOD
767 // Dump the range of instructions from B to E with their slot indexes.
768 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
769                                                MachineBasicBlock::iterator E,
770                                                LiveIntervals const &LIS,
771                                                const char *const header,
772                                                Register VReg = Register()) {
773   char NextLine = '\n';
774   char SlotIndent = '\t';
775 
776   if (std::next(B) == E) {
777     NextLine = ' ';
778     SlotIndent = ' ';
779   }
780 
781   dbgs() << '\t' << header << ": " << NextLine;
782 
783   for (MachineBasicBlock::iterator I = B; I != E; ++I) {
784     SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();
785 
786     // If a register was passed in and this instruction has it as a
787     // destination that is marked as an early clobber, print the
788     // early-clobber slot index.
789     if (VReg) {
790       MachineOperand *MO = I->findRegisterDefOperand(VReg);
791       if (MO && MO->isEarlyClobber())
792         Idx = Idx.getRegSlot(true);
793     }
794 
795     dbgs() << SlotIndent << Idx << '\t' << *I;
796   }
797 }
798 #endif
799 
800 /// foldMemoryOperand - Try folding stack slot references in Ops into their
801 /// instructions.
802 ///
803 /// @param Ops    Operand indices from AnalyzeVirtRegInBundle().
804 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
805 /// @return       True on success.
806 bool InlineSpiller::
807 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops,
808                   MachineInstr *LoadMI) {
809   if (Ops.empty())
810     return false;
811   // Don't attempt folding in bundles.
812   MachineInstr *MI = Ops.front().first;
813   if (Ops.back().first != MI || MI->isBundled())
814     return false;
815 
816   bool WasCopy = MI->isCopy();
817   Register ImpReg;
818 
819   // TII::foldMemoryOperand will do what we need here for statepoint
820   // (fold load into use and remove corresponding def). We will replace
821   // uses of removed def with loads (spillAroundUses).
822   // For that to work we need to untie def and use to pass it through
823   // foldMemoryOperand and signal foldPatchpoint that it is allowed to
824   // fold them.
825   bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT;
826 
827   // Spill subregs if the target allows it.
828   // We always want to spill subregs for stackmap/patchpoint pseudos.
829   bool SpillSubRegs = TII.isSubregFoldable() ||
830                       MI->getOpcode() == TargetOpcode::STATEPOINT ||
831                       MI->getOpcode() == TargetOpcode::PATCHPOINT ||
832                       MI->getOpcode() == TargetOpcode::STACKMAP;
833 
834   // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
835   // operands.
836   SmallVector<unsigned, 8> FoldOps;
837   for (const auto &OpPair : Ops) {
838     unsigned Idx = OpPair.second;
839     assert(MI == OpPair.first && "Instruction conflict during operand folding");
840     MachineOperand &MO = MI->getOperand(Idx);
841     if (MO.isImplicit()) {
842       ImpReg = MO.getReg();
843       continue;
844     }
845 
846     if (!SpillSubRegs && MO.getSubReg())
847       return false;
848     // We cannot fold a load instruction into a def.
849     if (LoadMI && MO.isDef())
850       return false;
851     // Tied use operands should not be passed to foldMemoryOperand.
852     if (UntieRegs || !MI->isRegTiedToDefOperand(Idx))
853       FoldOps.push_back(Idx);
854   }
855 
856   // If we only have implicit uses, we won't be able to fold that.
857   // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try!
858   if (FoldOps.empty())
859     return false;
860 
861   MachineInstrSpan MIS(MI, MI->getParent());
862 
863   SmallVector<std::pair<unsigned, unsigned> > TiedOps;
864   if (UntieRegs)
865     for (unsigned Idx : FoldOps) {
866       MachineOperand &MO = MI->getOperand(Idx);
867       if (!MO.isTied())
868         continue;
869       unsigned Tied = MI->findTiedOperandIdx(Idx);
870       if (MO.isUse())
871         TiedOps.emplace_back(Tied, Idx);
872       else {
873         assert(MO.isDef() && "Tied to not use and def?");
874         TiedOps.emplace_back(Idx, Tied);
875       }
876       MI->untieRegOperand(Idx);
877     }
878 
879   MachineInstr *FoldMI =
880       LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS)
881              : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM);
882   if (!FoldMI) {
883     // Re-tie operands.
884     for (auto Tied : TiedOps)
885       MI->tieOperands(Tied.first, Tied.second);
886     return false;
887   }
888 
889   // Remove LIS for any dead defs in the original MI not in FoldMI.
890   for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
891     if (!MO->isReg())
892       continue;
893     Register Reg = MO->getReg();
894     if (!Reg || Register::isVirtualRegister(Reg) || MRI.isReserved(Reg)) {
895       continue;
896     }
897     // Skip non-Defs, including undef uses and internal reads.
898     if (MO->isUse())
899       continue;
900     PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI);
901     if (RI.FullyDefined)
902       continue;
903     // FoldMI does not define this physreg. Remove the LI segment.
904     assert(MO->isDead() && "Cannot fold physreg def");
905     SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
906     LIS.removePhysRegDefAt(Reg.asMCReg(), Idx);
907   }
908 
909   int FI;
910   if (TII.isStoreToStackSlot(*MI, FI) &&
911       HSpiller.rmFromMergeableSpills(*MI, FI))
912     --NumSpills;
913   LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
914   // Update the call site info.
915   if (MI->isCandidateForCallSiteEntry())
916     MI->getMF()->moveCallSiteInfo(MI, FoldMI);
917 
918   // If we've folded a store into an instruction labelled with debug-info,
919   // record a substitution from the old operand to the memory operand. Handle
920   // the simple common case where operand 0 is the one being folded, plus when
921   // the destination operand is also a tied def. More values could be
922   // substituted / preserved with more analysis.
923   if (MI->peekDebugInstrNum() && Ops[0].second == 0) {
924     // Helper lambda.
925     auto MakeSubstitution = [this,FoldMI,MI,&Ops]() {
926       // Substitute old operand zero to the new instructions memory operand.
927       unsigned OldOperandNum = Ops[0].second;
928       unsigned NewNum = FoldMI->getDebugInstrNum();
929       unsigned OldNum = MI->getDebugInstrNum();
930       MF.makeDebugValueSubstitution({OldNum, OldOperandNum},
931                          {NewNum, MachineFunction::DebugOperandMemNumber});
932     };
933 
934     const MachineOperand &Op0 = MI->getOperand(Ops[0].second);
935     if (Ops.size() == 1 && Op0.isDef()) {
936       MakeSubstitution();
937     } else if (Ops.size() == 2 && Op0.isDef() && MI->getOperand(1).isTied() &&
938                Op0.getReg() == MI->getOperand(1).getReg()) {
939       MakeSubstitution();
940     }
941   } else if (MI->peekDebugInstrNum()) {
942     // This is a debug-labelled instruction, but the operand being folded isn't
943     // at operand zero. Most likely this means it's a load being folded in.
944     // Substitute any register defs from operand zero up to the one being
945     // folded -- past that point, we don't know what the new operand indexes
946     // will be.
947     MF.substituteDebugValuesForInst(*MI, *FoldMI, Ops[0].second);
948   }
949 
950   MI->eraseFromParent();
951 
952   // Insert any new instructions other than FoldMI into the LIS maps.
953   assert(!MIS.empty() && "Unexpected empty span of instructions!");
954   for (MachineInstr &MI : MIS)
955     if (&MI != FoldMI)
956       LIS.InsertMachineInstrInMaps(MI);
957 
958   // TII.foldMemoryOperand may have left some implicit operands on the
959   // instruction.  Strip them.
960   if (ImpReg)
961     for (unsigned i = FoldMI->getNumOperands(); i; --i) {
962       MachineOperand &MO = FoldMI->getOperand(i - 1);
963       if (!MO.isReg() || !MO.isImplicit())
964         break;
965       if (MO.getReg() == ImpReg)
966         FoldMI->removeOperand(i - 1);
967     }
968 
969   LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
970                                                 "folded"));
971 
972   if (!WasCopy)
973     ++NumFolded;
974   else if (Ops.front().second == 0) {
975     ++NumSpills;
976     // If there is only 1 store instruction is required for spill, add it
977     // to mergeable list. In X86 AMX, 2 intructions are required to store.
978     // We disable the merge for this case.
979     if (std::distance(MIS.begin(), MIS.end()) <= 1)
980       HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original);
981   } else
982     ++NumReloads;
983   return true;
984 }
985 
986 void InlineSpiller::insertReload(Register NewVReg,
987                                  SlotIndex Idx,
988                                  MachineBasicBlock::iterator MI) {
989   MachineBasicBlock &MBB = *MI->getParent();
990 
991   MachineInstrSpan MIS(MI, &MBB);
992   TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
993                            MRI.getRegClass(NewVReg), &TRI);
994 
995   LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
996 
997   LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
998                                                 NewVReg));
999   ++NumReloads;
1000 }
1001 
1002 /// Check if \p Def fully defines a VReg with an undefined value.
1003 /// If that's the case, that means the value of VReg is actually
1004 /// not relevant.
1005 static bool isRealSpill(const MachineInstr &Def) {
1006   if (!Def.isImplicitDef())
1007     return true;
1008   assert(Def.getNumOperands() == 1 &&
1009          "Implicit def with more than one definition");
1010   // We can say that the VReg defined by Def is undef, only if it is
1011   // fully defined by Def. Otherwise, some of the lanes may not be
1012   // undef and the value of the VReg matters.
1013   return Def.getOperand(0).getSubReg();
1014 }
1015 
1016 /// insertSpill - Insert a spill of NewVReg after MI.
1017 void InlineSpiller::insertSpill(Register NewVReg, bool isKill,
1018                                  MachineBasicBlock::iterator MI) {
1019   // Spill are not terminators, so inserting spills after terminators will
1020   // violate invariants in MachineVerifier.
1021   assert(!MI->isTerminator() && "Inserting a spill after a terminator");
1022   MachineBasicBlock &MBB = *MI->getParent();
1023 
1024   MachineInstrSpan MIS(MI, &MBB);
1025   MachineBasicBlock::iterator SpillBefore = std::next(MI);
1026   bool IsRealSpill = isRealSpill(*MI);
1027 
1028   if (IsRealSpill)
1029     TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot,
1030                             MRI.getRegClass(NewVReg), &TRI);
1031   else
1032     // Don't spill undef value.
1033     // Anything works for undef, in particular keeping the memory
1034     // uninitialized is a viable option and it saves code size and
1035     // run time.
1036     BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL))
1037         .addReg(NewVReg, getKillRegState(isKill));
1038 
1039   MachineBasicBlock::iterator Spill = std::next(MI);
1040   LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end());
1041   for (const MachineInstr &MI : make_range(Spill, MIS.end()))
1042     getVDefInterval(MI, LIS);
1043 
1044   LLVM_DEBUG(
1045       dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill"));
1046   ++NumSpills;
1047   // If there is only 1 store instruction is required for spill, add it
1048   // to mergeable list. In X86 AMX, 2 intructions are required to store.
1049   // We disable the merge for this case.
1050   if (IsRealSpill && std::distance(Spill, MIS.end()) <= 1)
1051     HSpiller.addToMergeableSpills(*Spill, StackSlot, Original);
1052 }
1053 
1054 /// spillAroundUses - insert spill code around each use of Reg.
1055 void InlineSpiller::spillAroundUses(Register Reg) {
1056   LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n');
1057   LiveInterval &OldLI = LIS.getInterval(Reg);
1058 
1059   // Iterate over instructions using Reg.
1060   for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) {
1061     // Debug values are not allowed to affect codegen.
1062     if (MI.isDebugValue()) {
1063       // Modify DBG_VALUE now that the value is in a spill slot.
1064       MachineBasicBlock *MBB = MI.getParent();
1065       LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << MI);
1066       buildDbgValueForSpill(*MBB, &MI, MI, StackSlot, Reg);
1067       MBB->erase(MI);
1068       continue;
1069     }
1070 
1071     assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
1072            "instruction that isn't a DBG_VALUE");
1073 
1074     // Ignore copies to/from snippets. We'll delete them.
1075     if (SnippetCopies.count(&MI))
1076       continue;
1077 
1078     // Stack slot accesses may coalesce away.
1079     if (coalesceStackAccess(&MI, Reg))
1080       continue;
1081 
1082     // Analyze instruction.
1083     SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
1084     VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, Reg, &Ops);
1085 
1086     // Find the slot index where this instruction reads and writes OldLI.
1087     // This is usually the def slot, except for tied early clobbers.
1088     SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
1089     if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
1090       if (SlotIndex::isSameInstr(Idx, VNI->def))
1091         Idx = VNI->def;
1092 
1093     // Check for a sibling copy.
1094     Register SibReg = isFullCopyOf(MI, Reg);
1095     if (SibReg && isSibling(SibReg)) {
1096       // This may actually be a copy between snippets.
1097       if (isRegToSpill(SibReg)) {
1098         LLVM_DEBUG(dbgs() << "Found new snippet copy: " << MI);
1099         SnippetCopies.insert(&MI);
1100         continue;
1101       }
1102       if (RI.Writes) {
1103         if (hoistSpillInsideBB(OldLI, MI)) {
1104           // This COPY is now dead, the value is already in the stack slot.
1105           MI.getOperand(0).setIsDead();
1106           DeadDefs.push_back(&MI);
1107           continue;
1108         }
1109       } else {
1110         // This is a reload for a sib-reg copy. Drop spills downstream.
1111         LiveInterval &SibLI = LIS.getInterval(SibReg);
1112         eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
1113         // The COPY will fold to a reload below.
1114       }
1115     }
1116 
1117     // Attempt to fold memory ops.
1118     if (foldMemoryOperand(Ops))
1119       continue;
1120 
1121     // Create a new virtual register for spill/fill.
1122     // FIXME: Infer regclass from instruction alone.
1123     Register NewVReg = Edit->createFrom(Reg);
1124 
1125     if (RI.Reads)
1126       insertReload(NewVReg, Idx, &MI);
1127 
1128     // Rewrite instruction operands.
1129     bool hasLiveDef = false;
1130     for (const auto &OpPair : Ops) {
1131       MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
1132       MO.setReg(NewVReg);
1133       if (MO.isUse()) {
1134         if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
1135           MO.setIsKill();
1136       } else {
1137         if (!MO.isDead())
1138           hasLiveDef = true;
1139       }
1140     }
1141     LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << MI << '\n');
1142 
1143     // FIXME: Use a second vreg if instruction has no tied ops.
1144     if (RI.Writes)
1145       if (hasLiveDef)
1146         insertSpill(NewVReg, true, &MI);
1147   }
1148 }
1149 
1150 /// spillAll - Spill all registers remaining after rematerialization.
1151 void InlineSpiller::spillAll() {
1152   // Update LiveStacks now that we are committed to spilling.
1153   if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1154     StackSlot = VRM.assignVirt2StackSlot(Original);
1155     StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1156     StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1157   } else
1158     StackInt = &LSS.getInterval(StackSlot);
1159 
1160   if (Original != Edit->getReg())
1161     VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1162 
1163   assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1164   for (Register Reg : RegsToSpill)
1165     StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
1166                                      StackInt->getValNumInfo(0));
1167   LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1168 
1169   // Spill around uses of all RegsToSpill.
1170   for (Register Reg : RegsToSpill)
1171     spillAroundUses(Reg);
1172 
1173   // Hoisted spills may cause dead code.
1174   if (!DeadDefs.empty()) {
1175     LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1176     Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
1177   }
1178 
1179   // Finally delete the SnippetCopies.
1180   for (Register Reg : RegsToSpill) {
1181     for (MachineInstr &MI :
1182          llvm::make_early_inc_range(MRI.reg_instructions(Reg))) {
1183       assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy");
1184       // FIXME: Do this with a LiveRangeEdit callback.
1185       LIS.RemoveMachineInstrFromMaps(MI);
1186       MI.eraseFromParent();
1187     }
1188   }
1189 
1190   // Delete all spilled registers.
1191   for (Register Reg : RegsToSpill)
1192     Edit->eraseVirtReg(Reg);
1193 }
1194 
1195 void InlineSpiller::spill(LiveRangeEdit &edit) {
1196   ++NumSpilledRanges;
1197   Edit = &edit;
1198   assert(!Register::isStackSlot(edit.getReg()) &&
1199          "Trying to spill a stack slot.");
1200   // Share a stack slot among all descendants of Original.
1201   Original = VRM.getOriginal(edit.getReg());
1202   StackSlot = VRM.getStackSlot(Original);
1203   StackInt = nullptr;
1204 
1205   LLVM_DEBUG(dbgs() << "Inline spilling "
1206                     << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
1207                     << ':' << edit.getParent() << "\nFrom original "
1208                     << printReg(Original) << '\n');
1209   assert(edit.getParent().isSpillable() &&
1210          "Attempting to spill already spilled value.");
1211   assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1212 
1213   collectRegsToSpill();
1214   reMaterializeAll();
1215 
1216   // Remat may handle everything.
1217   if (!RegsToSpill.empty())
1218     spillAll();
1219 
1220   Edit->calculateRegClassAndHint(MF, VRAI);
1221 }
1222 
1223 /// Optimizations after all the reg selections and spills are done.
1224 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); }
1225 
1226 /// When a spill is inserted, add the spill to MergeableSpills map.
1227 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot,
1228                                             unsigned Original) {
1229   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1230   LiveInterval &OrigLI = LIS.getInterval(Original);
1231   // save a copy of LiveInterval in StackSlotToOrigLI because the original
1232   // LiveInterval may be cleared after all its references are spilled.
1233   if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) {
1234     auto LI = std::make_unique<LiveInterval>(OrigLI.reg(), OrigLI.weight());
1235     LI->assign(OrigLI, Allocator);
1236     StackSlotToOrigLI[StackSlot] = std::move(LI);
1237   }
1238   SlotIndex Idx = LIS.getInstructionIndex(Spill);
1239   VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot());
1240   std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1241   MergeableSpills[MIdx].insert(&Spill);
1242 }
1243 
1244 /// When a spill is removed, remove the spill from MergeableSpills map.
1245 /// Return true if the spill is removed successfully.
1246 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill,
1247                                              int StackSlot) {
1248   auto It = StackSlotToOrigLI.find(StackSlot);
1249   if (It == StackSlotToOrigLI.end())
1250     return false;
1251   SlotIndex Idx = LIS.getInstructionIndex(Spill);
1252   VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot());
1253   std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1254   return MergeableSpills[MIdx].erase(&Spill);
1255 }
1256 
1257 /// Check BB to see if it is a possible target BB to place a hoisted spill,
1258 /// i.e., there should be a living sibling of OrigReg at the insert point.
1259 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
1260                                      MachineBasicBlock &BB, Register &LiveReg) {
1261   SlotIndex Idx = IPA.getLastInsertPoint(OrigLI, BB);
1262   // The original def could be after the last insert point in the root block,
1263   // we can't hoist to here.
1264   if (Idx < OrigVNI.def) {
1265     // TODO: We could be better here. If LI is not alive in landing pad
1266     // we could hoist spill after LIP.
1267     LLVM_DEBUG(dbgs() << "can't spill in root block - def after LIP\n");
1268     return false;
1269   }
1270   Register OrigReg = OrigLI.reg();
1271   SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg];
1272   assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI");
1273 
1274   for (const Register &SibReg : Siblings) {
1275     LiveInterval &LI = LIS.getInterval(SibReg);
1276     VNInfo *VNI = LI.getVNInfoAt(Idx);
1277     if (VNI) {
1278       LiveReg = SibReg;
1279       return true;
1280     }
1281   }
1282   return false;
1283 }
1284 
1285 /// Remove redundant spills in the same BB. Save those redundant spills in
1286 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
1287 void HoistSpillHelper::rmRedundantSpills(
1288     SmallPtrSet<MachineInstr *, 16> &Spills,
1289     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1290     DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1291   // For each spill saw, check SpillBBToSpill[] and see if its BB already has
1292   // another spill inside. If a BB contains more than one spill, only keep the
1293   // earlier spill with smaller SlotIndex.
1294   for (const auto CurrentSpill : Spills) {
1295     MachineBasicBlock *Block = CurrentSpill->getParent();
1296     MachineDomTreeNode *Node = MDT.getBase().getNode(Block);
1297     MachineInstr *PrevSpill = SpillBBToSpill[Node];
1298     if (PrevSpill) {
1299       SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
1300       SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill);
1301       MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
1302       MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
1303       SpillsToRm.push_back(SpillToRm);
1304       SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep;
1305     } else {
1306       SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill;
1307     }
1308   }
1309   for (const auto SpillToRm : SpillsToRm)
1310     Spills.erase(SpillToRm);
1311 }
1312 
1313 /// Starting from \p Root find a top-down traversal order of the dominator
1314 /// tree to visit all basic blocks containing the elements of \p Spills.
1315 /// Redundant spills will be found and put into \p SpillsToRm at the same
1316 /// time. \p SpillBBToSpill will be populated as part of the process and
1317 /// maps a basic block to the first store occurring in the basic block.
1318 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre
1319 void HoistSpillHelper::getVisitOrders(
1320     MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
1321     SmallVectorImpl<MachineDomTreeNode *> &Orders,
1322     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1323     DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
1324     DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1325   // The set contains all the possible BB nodes to which we may hoist
1326   // original spills.
1327   SmallPtrSet<MachineDomTreeNode *, 8> WorkSet;
1328   // Save the BB nodes on the path from the first BB node containing
1329   // non-redundant spill to the Root node.
1330   SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath;
1331   // All the spills to be hoisted must originate from a single def instruction
1332   // to the OrigReg. It means the def instruction should dominate all the spills
1333   // to be hoisted. We choose the BB where the def instruction is located as
1334   // the Root.
1335   MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom();
1336   // For every node on the dominator tree with spill, walk up on the dominator
1337   // tree towards the Root node until it is reached. If there is other node
1338   // containing spill in the middle of the path, the previous spill saw will
1339   // be redundant and the node containing it will be removed. All the nodes on
1340   // the path starting from the first node with non-redundant spill to the Root
1341   // node will be added to the WorkSet, which will contain all the possible
1342   // locations where spills may be hoisted to after the loop below is done.
1343   for (const auto Spill : Spills) {
1344     MachineBasicBlock *Block = Spill->getParent();
1345     MachineDomTreeNode *Node = MDT[Block];
1346     MachineInstr *SpillToRm = nullptr;
1347     while (Node != RootIDomNode) {
1348       // If Node dominates Block, and it already contains a spill, the spill in
1349       // Block will be redundant.
1350       if (Node != MDT[Block] && SpillBBToSpill[Node]) {
1351         SpillToRm = SpillBBToSpill[MDT[Block]];
1352         break;
1353         /// If we see the Node already in WorkSet, the path from the Node to
1354         /// the Root node must already be traversed by another spill.
1355         /// Then no need to repeat.
1356       } else if (WorkSet.count(Node)) {
1357         break;
1358       } else {
1359         NodesOnPath.insert(Node);
1360       }
1361       Node = Node->getIDom();
1362     }
1363     if (SpillToRm) {
1364       SpillsToRm.push_back(SpillToRm);
1365     } else {
1366       // Add a BB containing the original spills to SpillsToKeep -- i.e.,
1367       // set the initial status before hoisting start. The value of BBs
1368       // containing original spills is set to 0, in order to descriminate
1369       // with BBs containing hoisted spills which will be inserted to
1370       // SpillsToKeep later during hoisting.
1371       SpillsToKeep[MDT[Block]] = 0;
1372       WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end());
1373     }
1374     NodesOnPath.clear();
1375   }
1376 
1377   // Sort the nodes in WorkSet in top-down order and save the nodes
1378   // in Orders. Orders will be used for hoisting in runHoistSpills.
1379   unsigned idx = 0;
1380   Orders.push_back(MDT.getBase().getNode(Root));
1381   do {
1382     MachineDomTreeNode *Node = Orders[idx++];
1383     for (MachineDomTreeNode *Child : Node->children()) {
1384       if (WorkSet.count(Child))
1385         Orders.push_back(Child);
1386     }
1387   } while (idx != Orders.size());
1388   assert(Orders.size() == WorkSet.size() &&
1389          "Orders have different size with WorkSet");
1390 
1391 #ifndef NDEBUG
1392   LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n");
1393   SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1394   for (; RIt != Orders.rend(); RIt++)
1395     LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",");
1396   LLVM_DEBUG(dbgs() << "\n");
1397 #endif
1398 }
1399 
1400 /// Try to hoist spills according to BB hotness. The spills to removed will
1401 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in
1402 /// \p SpillsToIns.
1403 void HoistSpillHelper::runHoistSpills(
1404     LiveInterval &OrigLI, VNInfo &OrigVNI,
1405     SmallPtrSet<MachineInstr *, 16> &Spills,
1406     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1407     DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) {
1408   // Visit order of dominator tree nodes.
1409   SmallVector<MachineDomTreeNode *, 32> Orders;
1410   // SpillsToKeep contains all the nodes where spills are to be inserted
1411   // during hoisting. If the spill to be inserted is an original spill
1412   // (not a hoisted one), the value of the map entry is 0. If the spill
1413   // is a hoisted spill, the value of the map entry is the VReg to be used
1414   // as the source of the spill.
1415   DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep;
1416   // Map from BB to the first spill inside of it.
1417   DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill;
1418 
1419   rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill);
1420 
1421   MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def);
1422   getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep,
1423                  SpillBBToSpill);
1424 
1425   // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
1426   // nodes set and the cost of all the spills inside those nodes.
1427   // The nodes set are the locations where spills are to be inserted
1428   // in the subtree of current node.
1429   using NodesCostPair =
1430       std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>;
1431   DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap;
1432 
1433   // Iterate Orders set in reverse order, which will be a bottom-up order
1434   // in the dominator tree. Once we visit a dom tree node, we know its
1435   // children have already been visited and the spill locations in the
1436   // subtrees of all the children have been determined.
1437   SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1438   for (; RIt != Orders.rend(); RIt++) {
1439     MachineBasicBlock *Block = (*RIt)->getBlock();
1440 
1441     // If Block contains an original spill, simply continue.
1442     if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) {
1443       SpillsInSubTreeMap[*RIt].first.insert(*RIt);
1444       // SpillsInSubTreeMap[*RIt].second contains the cost of spill.
1445       SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block);
1446       continue;
1447     }
1448 
1449     // Collect spills in subtree of current node (*RIt) to
1450     // SpillsInSubTreeMap[*RIt].first.
1451     for (MachineDomTreeNode *Child : (*RIt)->children()) {
1452       if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end())
1453         continue;
1454       // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below
1455       // should be placed before getting the begin and end iterators of
1456       // SpillsInSubTreeMap[Child].first, or else the iterators may be
1457       // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
1458       // and the map grows and then the original buckets in the map are moved.
1459       SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1460           SpillsInSubTreeMap[*RIt].first;
1461       BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1462       SubTreeCost += SpillsInSubTreeMap[Child].second;
1463       auto BI = SpillsInSubTreeMap[Child].first.begin();
1464       auto EI = SpillsInSubTreeMap[Child].first.end();
1465       SpillsInSubTree.insert(BI, EI);
1466       SpillsInSubTreeMap.erase(Child);
1467     }
1468 
1469     SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1470           SpillsInSubTreeMap[*RIt].first;
1471     BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1472     // No spills in subtree, simply continue.
1473     if (SpillsInSubTree.empty())
1474       continue;
1475 
1476     // Check whether Block is a possible candidate to insert spill.
1477     Register LiveReg;
1478     if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg))
1479       continue;
1480 
1481     // If there are multiple spills that could be merged, bias a little
1482     // to hoist the spill.
1483     BranchProbability MarginProb = (SpillsInSubTree.size() > 1)
1484                                        ? BranchProbability(9, 10)
1485                                        : BranchProbability(1, 1);
1486     if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) {
1487       // Hoist: Move spills to current Block.
1488       for (const auto SpillBB : SpillsInSubTree) {
1489         // When SpillBB is a BB contains original spill, insert the spill
1490         // to SpillsToRm.
1491         if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() &&
1492             !SpillsToKeep[SpillBB]) {
1493           MachineInstr *SpillToRm = SpillBBToSpill[SpillBB];
1494           SpillsToRm.push_back(SpillToRm);
1495         }
1496         // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
1497         SpillsToKeep.erase(SpillBB);
1498       }
1499       // Current Block is the BB containing the new hoisted spill. Add it to
1500       // SpillsToKeep. LiveReg is the source of the new spill.
1501       SpillsToKeep[*RIt] = LiveReg;
1502       LLVM_DEBUG({
1503         dbgs() << "spills in BB: ";
1504         for (const auto Rspill : SpillsInSubTree)
1505           dbgs() << Rspill->getBlock()->getNumber() << " ";
1506         dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()
1507                << "\n";
1508       });
1509       SpillsInSubTree.clear();
1510       SpillsInSubTree.insert(*RIt);
1511       SubTreeCost = MBFI.getBlockFreq(Block);
1512     }
1513   }
1514   // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
1515   // save them to SpillsToIns.
1516   for (const auto &Ent : SpillsToKeep) {
1517     if (Ent.second)
1518       SpillsToIns[Ent.first->getBlock()] = Ent.second;
1519   }
1520 }
1521 
1522 /// For spills with equal values, remove redundant spills and hoist those left
1523 /// to less hot spots.
1524 ///
1525 /// Spills with equal values will be collected into the same set in
1526 /// MergeableSpills when spill is inserted. These equal spills are originated
1527 /// from the same defining instruction and are dominated by the instruction.
1528 /// Before hoisting all the equal spills, redundant spills inside in the same
1529 /// BB are first marked to be deleted. Then starting from the spills left, walk
1530 /// up on the dominator tree towards the Root node where the define instruction
1531 /// is located, mark the dominated spills to be deleted along the way and
1532 /// collect the BB nodes on the path from non-dominated spills to the define
1533 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places
1534 /// where we are considering to hoist the spills. We iterate the WorkSet in
1535 /// bottom-up order, and for each node, we will decide whether to hoist spills
1536 /// inside its subtree to that node. In this way, we can get benefit locally
1537 /// even if hoisting all the equal spills to one cold place is impossible.
1538 void HoistSpillHelper::hoistAllSpills() {
1539   SmallVector<Register, 4> NewVRegs;
1540   LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this);
1541 
1542   for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
1543     Register Reg = Register::index2VirtReg(i);
1544     Register Original = VRM.getPreSplitReg(Reg);
1545     if (!MRI.def_empty(Reg))
1546       Virt2SiblingsMap[Original].insert(Reg);
1547   }
1548 
1549   // Each entry in MergeableSpills contains a spill set with equal values.
1550   for (auto &Ent : MergeableSpills) {
1551     int Slot = Ent.first.first;
1552     LiveInterval &OrigLI = *StackSlotToOrigLI[Slot];
1553     VNInfo *OrigVNI = Ent.first.second;
1554     SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second;
1555     if (Ent.second.empty())
1556       continue;
1557 
1558     LLVM_DEBUG({
1559       dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"
1560              << "Equal spills in BB: ";
1561       for (const auto spill : EqValSpills)
1562         dbgs() << spill->getParent()->getNumber() << " ";
1563       dbgs() << "\n";
1564     });
1565 
1566     // SpillsToRm is the spill set to be removed from EqValSpills.
1567     SmallVector<MachineInstr *, 16> SpillsToRm;
1568     // SpillsToIns is the spill set to be newly inserted after hoisting.
1569     DenseMap<MachineBasicBlock *, unsigned> SpillsToIns;
1570 
1571     runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns);
1572 
1573     LLVM_DEBUG({
1574       dbgs() << "Finally inserted spills in BB: ";
1575       for (const auto &Ispill : SpillsToIns)
1576         dbgs() << Ispill.first->getNumber() << " ";
1577       dbgs() << "\nFinally removed spills in BB: ";
1578       for (const auto Rspill : SpillsToRm)
1579         dbgs() << Rspill->getParent()->getNumber() << " ";
1580       dbgs() << "\n";
1581     });
1582 
1583     // Stack live range update.
1584     LiveInterval &StackIntvl = LSS.getInterval(Slot);
1585     if (!SpillsToIns.empty() || !SpillsToRm.empty())
1586       StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI,
1587                                      StackIntvl.getValNumInfo(0));
1588 
1589     // Insert hoisted spills.
1590     for (auto const &Insert : SpillsToIns) {
1591       MachineBasicBlock *BB = Insert.first;
1592       Register LiveReg = Insert.second;
1593       MachineBasicBlock::iterator MII = IPA.getLastInsertPointIter(OrigLI, *BB);
1594       MachineInstrSpan MIS(MII, BB);
1595       TII.storeRegToStackSlot(*BB, MII, LiveReg, false, Slot,
1596                               MRI.getRegClass(LiveReg), &TRI);
1597       LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII);
1598       for (const MachineInstr &MI : make_range(MIS.begin(), MII))
1599         getVDefInterval(MI, LIS);
1600       ++NumSpills;
1601     }
1602 
1603     // Remove redundant spills or change them to dead instructions.
1604     NumSpills -= SpillsToRm.size();
1605     for (auto const RMEnt : SpillsToRm) {
1606       RMEnt->setDesc(TII.get(TargetOpcode::KILL));
1607       for (unsigned i = RMEnt->getNumOperands(); i; --i) {
1608         MachineOperand &MO = RMEnt->getOperand(i - 1);
1609         if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead())
1610           RMEnt->removeOperand(i - 1);
1611       }
1612     }
1613     Edit.eliminateDeadDefs(SpillsToRm, None, AA);
1614   }
1615 }
1616 
1617 /// For VirtReg clone, the \p New register should have the same physreg or
1618 /// stackslot as the \p old register.
1619 void HoistSpillHelper::LRE_DidCloneVirtReg(Register New, Register Old) {
1620   if (VRM.hasPhys(Old))
1621     VRM.assignVirt2Phys(New, VRM.getPhys(Old));
1622   else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT)
1623     VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old));
1624   else
1625     llvm_unreachable("VReg should be assigned either physreg or stackslot");
1626   if (VRM.hasShape(Old))
1627     VRM.assignVirt2Shape(New, VRM.getShape(Old));
1628 }
1629