1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The inline spiller modifies the machine function directly instead of
10 // inserting spills and restores in VirtRegMap.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SplitKit.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/LiveInterval.h"
26 #include "llvm/CodeGen/LiveIntervalCalc.h"
27 #include "llvm/CodeGen/LiveIntervals.h"
28 #include "llvm/CodeGen/LiveRangeEdit.h"
29 #include "llvm/CodeGen/LiveStacks.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32 #include "llvm/CodeGen/MachineDominators.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineInstrBundle.h"
38 #include "llvm/CodeGen/MachineLoopInfo.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/Spiller.h"
43 #include "llvm/CodeGen/StackMaps.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetOpcodes.h"
46 #include "llvm/CodeGen/TargetRegisterInfo.h"
47 #include "llvm/CodeGen/TargetSubtargetInfo.h"
48 #include "llvm/CodeGen/VirtRegMap.h"
49 #include "llvm/Config/llvm-config.h"
50 #include "llvm/Support/BlockFrequency.h"
51 #include "llvm/Support/BranchProbability.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <cassert>
58 #include <iterator>
59 #include <tuple>
60 #include <utility>
61 #include <vector>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "regalloc"
66 
67 STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
68 STATISTIC(NumSnippets,        "Number of spilled snippets");
69 STATISTIC(NumSpills,          "Number of spills inserted");
70 STATISTIC(NumSpillsRemoved,   "Number of spills removed");
71 STATISTIC(NumReloads,         "Number of reloads inserted");
72 STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
73 STATISTIC(NumFolded,          "Number of folded stack accesses");
74 STATISTIC(NumFoldedLoads,     "Number of folded loads");
75 STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
76 
77 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
78                                      cl::desc("Disable inline spill hoisting"));
79 static cl::opt<bool>
80 RestrictStatepointRemat("restrict-statepoint-remat",
81                        cl::init(false), cl::Hidden,
82                        cl::desc("Restrict remat for statepoint operands"));
83 
84 namespace {
85 
86 class HoistSpillHelper : private LiveRangeEdit::Delegate {
87   MachineFunction &MF;
88   LiveIntervals &LIS;
89   LiveStacks &LSS;
90   AliasAnalysis *AA;
91   MachineDominatorTree &MDT;
92   MachineLoopInfo &Loops;
93   VirtRegMap &VRM;
94   MachineRegisterInfo &MRI;
95   const TargetInstrInfo &TII;
96   const TargetRegisterInfo &TRI;
97   const MachineBlockFrequencyInfo &MBFI;
98 
99   InsertPointAnalysis IPA;
100 
101   // Map from StackSlot to the LiveInterval of the original register.
102   // Note the LiveInterval of the original register may have been deleted
103   // after it is spilled. We keep a copy here to track the range where
104   // spills can be moved.
105   DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI;
106 
107   // Map from pair of (StackSlot and Original VNI) to a set of spills which
108   // have the same stackslot and have equal values defined by Original VNI.
109   // These spills are mergeable and are hoist candiates.
110   using MergeableSpillsMap =
111       MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>;
112   MergeableSpillsMap MergeableSpills;
113 
114   /// This is the map from original register to a set containing all its
115   /// siblings. To hoist a spill to another BB, we need to find out a live
116   /// sibling there and use it as the source of the new spill.
117   DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap;
118 
119   bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
120                      MachineBasicBlock &BB, Register &LiveReg);
121 
122   void rmRedundantSpills(
123       SmallPtrSet<MachineInstr *, 16> &Spills,
124       SmallVectorImpl<MachineInstr *> &SpillsToRm,
125       DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
126 
127   void getVisitOrders(
128       MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
129       SmallVectorImpl<MachineDomTreeNode *> &Orders,
130       SmallVectorImpl<MachineInstr *> &SpillsToRm,
131       DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
132       DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
133 
134   void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI,
135                       SmallPtrSet<MachineInstr *, 16> &Spills,
136                       SmallVectorImpl<MachineInstr *> &SpillsToRm,
137                       DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns);
138 
139 public:
140   HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf,
141                    VirtRegMap &vrm)
142       : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
143         LSS(pass.getAnalysis<LiveStacks>()),
144         AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
145         MDT(pass.getAnalysis<MachineDominatorTree>()),
146         Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
147         MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
148         TRI(*mf.getSubtarget().getRegisterInfo()),
149         MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
150         IPA(LIS, mf.getNumBlockIDs()) {}
151 
152   void addToMergeableSpills(MachineInstr &Spill, int StackSlot,
153                             unsigned Original);
154   bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot);
155   void hoistAllSpills();
156   void LRE_DidCloneVirtReg(Register, Register) override;
157 };
158 
159 class InlineSpiller : public Spiller {
160   MachineFunction &MF;
161   LiveIntervals &LIS;
162   LiveStacks &LSS;
163   AliasAnalysis *AA;
164   MachineDominatorTree &MDT;
165   MachineLoopInfo &Loops;
166   VirtRegMap &VRM;
167   MachineRegisterInfo &MRI;
168   const TargetInstrInfo &TII;
169   const TargetRegisterInfo &TRI;
170   const MachineBlockFrequencyInfo &MBFI;
171 
172   // Variables that are valid during spill(), but used by multiple methods.
173   LiveRangeEdit *Edit;
174   LiveInterval *StackInt;
175   int StackSlot;
176   Register Original;
177 
178   // All registers to spill to StackSlot, including the main register.
179   SmallVector<Register, 8> RegsToSpill;
180 
181   // All COPY instructions to/from snippets.
182   // They are ignored since both operands refer to the same stack slot.
183   SmallPtrSet<MachineInstr*, 8> SnippetCopies;
184 
185   // Values that failed to remat at some point.
186   SmallPtrSet<VNInfo*, 8> UsedValues;
187 
188   // Dead defs generated during spilling.
189   SmallVector<MachineInstr*, 8> DeadDefs;
190 
191   // Object records spills information and does the hoisting.
192   HoistSpillHelper HSpiller;
193 
194   // Live range weight calculator.
195   VirtRegAuxInfo &VRAI;
196 
197   ~InlineSpiller() override = default;
198 
199 public:
200   InlineSpiller(MachineFunctionPass &Pass, MachineFunction &MF, VirtRegMap &VRM,
201                 VirtRegAuxInfo &VRAI)
202       : MF(MF), LIS(Pass.getAnalysis<LiveIntervals>()),
203         LSS(Pass.getAnalysis<LiveStacks>()),
204         AA(&Pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
205         MDT(Pass.getAnalysis<MachineDominatorTree>()),
206         Loops(Pass.getAnalysis<MachineLoopInfo>()), VRM(VRM),
207         MRI(MF.getRegInfo()), TII(*MF.getSubtarget().getInstrInfo()),
208         TRI(*MF.getSubtarget().getRegisterInfo()),
209         MBFI(Pass.getAnalysis<MachineBlockFrequencyInfo>()),
210         HSpiller(Pass, MF, VRM), VRAI(VRAI) {}
211 
212   void spill(LiveRangeEdit &) override;
213   void postOptimization() override;
214 
215 private:
216   bool isSnippet(const LiveInterval &SnipLI);
217   void collectRegsToSpill();
218 
219   bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); }
220 
221   bool isSibling(Register Reg);
222   bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
223   void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
224 
225   void markValueUsed(LiveInterval*, VNInfo*);
226   bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI);
227   bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
228   void reMaterializeAll();
229 
230   bool coalesceStackAccess(MachineInstr *MI, Register Reg);
231   bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>,
232                          MachineInstr *LoadMI = nullptr);
233   void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI);
234   void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI);
235 
236   void spillAroundUses(Register Reg);
237   void spillAll();
238 };
239 
240 } // end anonymous namespace
241 
242 Spiller::~Spiller() = default;
243 
244 void Spiller::anchor() {}
245 
246 Spiller *llvm::createInlineSpiller(MachineFunctionPass &Pass,
247                                    MachineFunction &MF, VirtRegMap &VRM,
248                                    VirtRegAuxInfo &VRAI) {
249   return new InlineSpiller(Pass, MF, VRM, VRAI);
250 }
251 
252 //===----------------------------------------------------------------------===//
253 //                                Snippets
254 //===----------------------------------------------------------------------===//
255 
256 // When spilling a virtual register, we also spill any snippets it is connected
257 // to. The snippets are small live ranges that only have a single real use,
258 // leftovers from live range splitting. Spilling them enables memory operand
259 // folding or tightens the live range around the single use.
260 //
261 // This minimizes register pressure and maximizes the store-to-load distance for
262 // spill slots which can be important in tight loops.
263 
264 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
265 /// otherwise return 0.
266 static Register isFullCopyOf(const MachineInstr &MI, Register Reg) {
267   if (!MI.isFullCopy())
268     return Register();
269   if (MI.getOperand(0).getReg() == Reg)
270     return MI.getOperand(1).getReg();
271   if (MI.getOperand(1).getReg() == Reg)
272     return MI.getOperand(0).getReg();
273   return Register();
274 }
275 
276 static void getVDefInterval(const MachineInstr &MI, LiveIntervals &LIS) {
277   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
278     const MachineOperand &MO = MI.getOperand(I);
279     if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
280       LIS.getInterval(MO.getReg());
281   }
282 }
283 
284 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
285 /// It is assumed that SnipLI is a virtual register with the same original as
286 /// Edit->getReg().
287 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
288   Register Reg = Edit->getReg();
289 
290   // A snippet is a tiny live range with only a single instruction using it
291   // besides copies to/from Reg or spills/fills. We accept:
292   //
293   //   %snip = COPY %Reg / FILL fi#
294   //   %snip = USE %snip
295   //   %Reg = COPY %snip / SPILL %snip, fi#
296   //
297   if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
298     return false;
299 
300   MachineInstr *UseMI = nullptr;
301 
302   // Check that all uses satisfy our criteria.
303   for (MachineRegisterInfo::reg_instr_nodbg_iterator
304            RI = MRI.reg_instr_nodbg_begin(SnipLI.reg()),
305            E = MRI.reg_instr_nodbg_end();
306        RI != E;) {
307     MachineInstr &MI = *RI++;
308 
309     // Allow copies to/from Reg.
310     if (isFullCopyOf(MI, Reg))
311       continue;
312 
313     // Allow stack slot loads.
314     int FI;
315     if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
316       continue;
317 
318     // Allow stack slot stores.
319     if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
320       continue;
321 
322     // Allow a single additional instruction.
323     if (UseMI && &MI != UseMI)
324       return false;
325     UseMI = &MI;
326   }
327   return true;
328 }
329 
330 /// collectRegsToSpill - Collect live range snippets that only have a single
331 /// real use.
332 void InlineSpiller::collectRegsToSpill() {
333   Register Reg = Edit->getReg();
334 
335   // Main register always spills.
336   RegsToSpill.assign(1, Reg);
337   SnippetCopies.clear();
338 
339   // Snippets all have the same original, so there can't be any for an original
340   // register.
341   if (Original == Reg)
342     return;
343 
344   for (MachineInstr &MI :
345        llvm::make_early_inc_range(MRI.reg_instructions(Reg))) {
346     Register SnipReg = isFullCopyOf(MI, Reg);
347     if (!isSibling(SnipReg))
348       continue;
349     LiveInterval &SnipLI = LIS.getInterval(SnipReg);
350     if (!isSnippet(SnipLI))
351       continue;
352     SnippetCopies.insert(&MI);
353     if (isRegToSpill(SnipReg))
354       continue;
355     RegsToSpill.push_back(SnipReg);
356     LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
357     ++NumSnippets;
358   }
359 }
360 
361 bool InlineSpiller::isSibling(Register Reg) {
362   return Reg.isVirtual() && VRM.getOriginal(Reg) == Original;
363 }
364 
365 /// It is beneficial to spill to earlier place in the same BB in case
366 /// as follows:
367 /// There is an alternative def earlier in the same MBB.
368 /// Hoist the spill as far as possible in SpillMBB. This can ease
369 /// register pressure:
370 ///
371 ///   x = def
372 ///   y = use x
373 ///   s = copy x
374 ///
375 /// Hoisting the spill of s to immediately after the def removes the
376 /// interference between x and y:
377 ///
378 ///   x = def
379 ///   spill x
380 ///   y = use killed x
381 ///
382 /// This hoist only helps when the copy kills its source.
383 ///
384 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
385                                        MachineInstr &CopyMI) {
386   SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
387 #ifndef NDEBUG
388   VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
389   assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
390 #endif
391 
392   Register SrcReg = CopyMI.getOperand(1).getReg();
393   LiveInterval &SrcLI = LIS.getInterval(SrcReg);
394   VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx);
395   LiveQueryResult SrcQ = SrcLI.Query(Idx);
396   MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def);
397   if (DefMBB != CopyMI.getParent() || !SrcQ.isKill())
398     return false;
399 
400   // Conservatively extend the stack slot range to the range of the original
401   // value. We may be able to do better with stack slot coloring by being more
402   // careful here.
403   assert(StackInt && "No stack slot assigned yet.");
404   LiveInterval &OrigLI = LIS.getInterval(Original);
405   VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
406   StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
407   LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
408                     << *StackInt << '\n');
409 
410   // We are going to spill SrcVNI immediately after its def, so clear out
411   // any later spills of the same value.
412   eliminateRedundantSpills(SrcLI, SrcVNI);
413 
414   MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
415   MachineBasicBlock::iterator MII;
416   if (SrcVNI->isPHIDef())
417     MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
418   else {
419     MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
420     assert(DefMI && "Defining instruction disappeared");
421     MII = DefMI;
422     ++MII;
423   }
424   MachineInstrSpan MIS(MII, MBB);
425   // Insert spill without kill flag immediately after def.
426   TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot,
427                           MRI.getRegClass(SrcReg), &TRI);
428   LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII);
429   for (const MachineInstr &MI : make_range(MIS.begin(), MII))
430     getVDefInterval(MI, LIS);
431   --MII; // Point to store instruction.
432   LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII);
433 
434   // If there is only 1 store instruction is required for spill, add it
435   // to mergeable list. In X86 AMX, 2 intructions are required to store.
436   // We disable the merge for this case.
437   if (MIS.begin() == MII)
438     HSpiller.addToMergeableSpills(*MII, StackSlot, Original);
439   ++NumSpills;
440   return true;
441 }
442 
443 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
444 /// redundant spills of this value in SLI.reg and sibling copies.
445 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
446   assert(VNI && "Missing value");
447   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
448   WorkList.push_back(std::make_pair(&SLI, VNI));
449   assert(StackInt && "No stack slot assigned yet.");
450 
451   do {
452     LiveInterval *LI;
453     std::tie(LI, VNI) = WorkList.pop_back_val();
454     Register Reg = LI->reg();
455     LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@'
456                       << VNI->def << " in " << *LI << '\n');
457 
458     // Regs to spill are taken care of.
459     if (isRegToSpill(Reg))
460       continue;
461 
462     // Add all of VNI's live range to StackInt.
463     StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
464     LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
465 
466     // Find all spills and copies of VNI.
467     for (MachineRegisterInfo::use_instr_nodbg_iterator
468          UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
469          UI != E; ) {
470       MachineInstr &MI = *UI++;
471       if (!MI.isCopy() && !MI.mayStore())
472         continue;
473       SlotIndex Idx = LIS.getInstructionIndex(MI);
474       if (LI->getVNInfoAt(Idx) != VNI)
475         continue;
476 
477       // Follow sibling copies down the dominator tree.
478       if (Register DstReg = isFullCopyOf(MI, Reg)) {
479         if (isSibling(DstReg)) {
480            LiveInterval &DstLI = LIS.getInterval(DstReg);
481            VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
482            assert(DstVNI && "Missing defined value");
483            assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
484            WorkList.push_back(std::make_pair(&DstLI, DstVNI));
485         }
486         continue;
487       }
488 
489       // Erase spills.
490       int FI;
491       if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
492         LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI);
493         // eliminateDeadDefs won't normally remove stores, so switch opcode.
494         MI.setDesc(TII.get(TargetOpcode::KILL));
495         DeadDefs.push_back(&MI);
496         ++NumSpillsRemoved;
497         if (HSpiller.rmFromMergeableSpills(MI, StackSlot))
498           --NumSpills;
499       }
500     }
501   } while (!WorkList.empty());
502 }
503 
504 //===----------------------------------------------------------------------===//
505 //                            Rematerialization
506 //===----------------------------------------------------------------------===//
507 
508 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
509 /// instruction cannot be eliminated. See through snippet copies
510 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
511   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
512   WorkList.push_back(std::make_pair(LI, VNI));
513   do {
514     std::tie(LI, VNI) = WorkList.pop_back_val();
515     if (!UsedValues.insert(VNI).second)
516       continue;
517 
518     if (VNI->isPHIDef()) {
519       MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
520       for (MachineBasicBlock *P : MBB->predecessors()) {
521         VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
522         if (PVNI)
523           WorkList.push_back(std::make_pair(LI, PVNI));
524       }
525       continue;
526     }
527 
528     // Follow snippet copies.
529     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
530     if (!SnippetCopies.count(MI))
531       continue;
532     LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
533     assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy");
534     VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
535     assert(SnipVNI && "Snippet undefined before copy");
536     WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
537   } while (!WorkList.empty());
538 }
539 
540 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg,
541                                                      MachineInstr &MI) {
542   if (!RestrictStatepointRemat)
543     return true;
544   // Here's a quick explanation of the problem we're trying to handle here:
545   // * There are some pseudo instructions with more vreg uses than there are
546   //   physical registers on the machine.
547   // * This is normally handled by spilling the vreg, and folding the reload
548   //   into the user instruction.  (Thus decreasing the number of used vregs
549   //   until the remainder can be assigned to physregs.)
550   // * However, since we may try to spill vregs in any order, we can end up
551   //   trying to spill each operand to the instruction, and then rematting it
552   //   instead.  When that happens, the new live intervals (for the remats) are
553   //   expected to be trivially assignable (i.e. RS_Done).  However, since we
554   //   may have more remats than physregs, we're guaranteed to fail to assign
555   //   one.
556   // At the moment, we only handle this for STATEPOINTs since they're the only
557   // pseudo op where we've seen this.  If we start seeing other instructions
558   // with the same problem, we need to revisit this.
559   if (MI.getOpcode() != TargetOpcode::STATEPOINT)
560     return true;
561   // For STATEPOINTs we allow re-materialization for fixed arguments only hoping
562   // that number of physical registers is enough to cover all fixed arguments.
563   // If it is not true we need to revisit it.
564   for (unsigned Idx = StatepointOpers(&MI).getVarIdx(),
565                 EndIdx = MI.getNumOperands();
566        Idx < EndIdx; ++Idx) {
567     MachineOperand &MO = MI.getOperand(Idx);
568     if (MO.isReg() && MO.getReg() == VReg)
569       return false;
570   }
571   return true;
572 }
573 
574 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
575 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
576   // Analyze instruction
577   SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
578   VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg(), &Ops);
579 
580   if (!RI.Reads)
581     return false;
582 
583   SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
584   VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
585 
586   if (!ParentVNI) {
587     LLVM_DEBUG(dbgs() << "\tadding <undef> flags: ");
588     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
589       MachineOperand &MO = MI.getOperand(i);
590       if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg())
591         MO.setIsUndef();
592     }
593     LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI);
594     return true;
595   }
596 
597   if (SnippetCopies.count(&MI))
598     return false;
599 
600   LiveInterval &OrigLI = LIS.getInterval(Original);
601   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
602   LiveRangeEdit::Remat RM(ParentVNI);
603   RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
604 
605   if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) {
606     markValueUsed(&VirtReg, ParentVNI);
607     LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
608     return false;
609   }
610 
611   // If the instruction also writes VirtReg.reg, it had better not require the
612   // same register for uses and defs.
613   if (RI.Tied) {
614     markValueUsed(&VirtReg, ParentVNI);
615     LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI);
616     return false;
617   }
618 
619   // Before rematerializing into a register for a single instruction, try to
620   // fold a load into the instruction. That avoids allocating a new register.
621   if (RM.OrigMI->canFoldAsLoad() &&
622       foldMemoryOperand(Ops, RM.OrigMI)) {
623     Edit->markRematerialized(RM.ParentVNI);
624     ++NumFoldedLoads;
625     return true;
626   }
627 
628   // If we can't guarantee that we'll be able to actually assign the new vreg,
629   // we can't remat.
630   if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg(), MI)) {
631     markValueUsed(&VirtReg, ParentVNI);
632     LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
633     return false;
634   }
635 
636   // Allocate a new register for the remat.
637   Register NewVReg = Edit->createFrom(Original);
638 
639   // Finally we can rematerialize OrigMI before MI.
640   SlotIndex DefIdx =
641       Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);
642 
643   // We take the DebugLoc from MI, since OrigMI may be attributed to a
644   // different source location.
645   auto *NewMI = LIS.getInstructionFromIndex(DefIdx);
646   NewMI->setDebugLoc(MI.getDebugLoc());
647 
648   (void)DefIdx;
649   LLVM_DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
650                     << *LIS.getInstructionFromIndex(DefIdx));
651 
652   // Replace operands
653   for (const auto &OpPair : Ops) {
654     MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
655     if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) {
656       MO.setReg(NewVReg);
657       MO.setIsKill();
658     }
659   }
660   LLVM_DEBUG(dbgs() << "\t        " << UseIdx << '\t' << MI << '\n');
661 
662   ++NumRemats;
663   return true;
664 }
665 
666 /// reMaterializeAll - Try to rematerialize as many uses as possible,
667 /// and trim the live ranges after.
668 void InlineSpiller::reMaterializeAll() {
669   if (!Edit->anyRematerializable(AA))
670     return;
671 
672   UsedValues.clear();
673 
674   // Try to remat before all uses of snippets.
675   bool anyRemat = false;
676   for (Register Reg : RegsToSpill) {
677     LiveInterval &LI = LIS.getInterval(Reg);
678     for (MachineRegisterInfo::reg_bundle_iterator
679            RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
680          RegI != E; ) {
681       MachineInstr &MI = *RegI++;
682 
683       // Debug values are not allowed to affect codegen.
684       if (MI.isDebugValue())
685         continue;
686 
687       assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
688              "instruction that isn't a DBG_VALUE");
689 
690       anyRemat |= reMaterializeFor(LI, MI);
691     }
692   }
693   if (!anyRemat)
694     return;
695 
696   // Remove any values that were completely rematted.
697   for (Register Reg : RegsToSpill) {
698     LiveInterval &LI = LIS.getInterval(Reg);
699     for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
700          I != E; ++I) {
701       VNInfo *VNI = *I;
702       if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
703         continue;
704       MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
705       MI->addRegisterDead(Reg, &TRI);
706       if (!MI->allDefsAreDead())
707         continue;
708       LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
709       DeadDefs.push_back(MI);
710     }
711   }
712 
713   // Eliminate dead code after remat. Note that some snippet copies may be
714   // deleted here.
715   if (DeadDefs.empty())
716     return;
717   LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
718   Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
719 
720   // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
721   // after rematerialization.  To remove a VNI for a vreg from its LiveInterval,
722   // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
723   // removed, PHI VNI are still left in the LiveInterval.
724   // So to get rid of unused reg, we need to check whether it has non-dbg
725   // reference instead of whether it has non-empty interval.
726   unsigned ResultPos = 0;
727   for (Register Reg : RegsToSpill) {
728     if (MRI.reg_nodbg_empty(Reg)) {
729       Edit->eraseVirtReg(Reg);
730       continue;
731     }
732 
733     assert(LIS.hasInterval(Reg) &&
734            (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
735            "Empty and not used live-range?!");
736 
737     RegsToSpill[ResultPos++] = Reg;
738   }
739   RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
740   LLVM_DEBUG(dbgs() << RegsToSpill.size()
741                     << " registers to spill after remat.\n");
742 }
743 
744 //===----------------------------------------------------------------------===//
745 //                                 Spilling
746 //===----------------------------------------------------------------------===//
747 
748 /// If MI is a load or store of StackSlot, it can be removed.
749 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) {
750   int FI = 0;
751   Register InstrReg = TII.isLoadFromStackSlot(*MI, FI);
752   bool IsLoad = InstrReg;
753   if (!IsLoad)
754     InstrReg = TII.isStoreToStackSlot(*MI, FI);
755 
756   // We have a stack access. Is it the right register and slot?
757   if (InstrReg != Reg || FI != StackSlot)
758     return false;
759 
760   if (!IsLoad)
761     HSpiller.rmFromMergeableSpills(*MI, StackSlot);
762 
763   LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI);
764   LIS.RemoveMachineInstrFromMaps(*MI);
765   MI->eraseFromParent();
766 
767   if (IsLoad) {
768     ++NumReloadsRemoved;
769     --NumReloads;
770   } else {
771     ++NumSpillsRemoved;
772     --NumSpills;
773   }
774 
775   return true;
776 }
777 
778 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
779 LLVM_DUMP_METHOD
780 // Dump the range of instructions from B to E with their slot indexes.
781 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
782                                                MachineBasicBlock::iterator E,
783                                                LiveIntervals const &LIS,
784                                                const char *const header,
785                                                Register VReg = Register()) {
786   char NextLine = '\n';
787   char SlotIndent = '\t';
788 
789   if (std::next(B) == E) {
790     NextLine = ' ';
791     SlotIndent = ' ';
792   }
793 
794   dbgs() << '\t' << header << ": " << NextLine;
795 
796   for (MachineBasicBlock::iterator I = B; I != E; ++I) {
797     SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();
798 
799     // If a register was passed in and this instruction has it as a
800     // destination that is marked as an early clobber, print the
801     // early-clobber slot index.
802     if (VReg) {
803       MachineOperand *MO = I->findRegisterDefOperand(VReg);
804       if (MO && MO->isEarlyClobber())
805         Idx = Idx.getRegSlot(true);
806     }
807 
808     dbgs() << SlotIndent << Idx << '\t' << *I;
809   }
810 }
811 #endif
812 
813 /// foldMemoryOperand - Try folding stack slot references in Ops into their
814 /// instructions.
815 ///
816 /// @param Ops    Operand indices from AnalyzeVirtRegInBundle().
817 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
818 /// @return       True on success.
819 bool InlineSpiller::
820 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops,
821                   MachineInstr *LoadMI) {
822   if (Ops.empty())
823     return false;
824   // Don't attempt folding in bundles.
825   MachineInstr *MI = Ops.front().first;
826   if (Ops.back().first != MI || MI->isBundled())
827     return false;
828 
829   bool WasCopy = MI->isCopy();
830   Register ImpReg;
831 
832   // TII::foldMemoryOperand will do what we need here for statepoint
833   // (fold load into use and remove corresponding def). We will replace
834   // uses of removed def with loads (spillAroundUses).
835   // For that to work we need to untie def and use to pass it through
836   // foldMemoryOperand and signal foldPatchpoint that it is allowed to
837   // fold them.
838   bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT;
839 
840   // Spill subregs if the target allows it.
841   // We always want to spill subregs for stackmap/patchpoint pseudos.
842   bool SpillSubRegs = TII.isSubregFoldable() ||
843                       MI->getOpcode() == TargetOpcode::STATEPOINT ||
844                       MI->getOpcode() == TargetOpcode::PATCHPOINT ||
845                       MI->getOpcode() == TargetOpcode::STACKMAP;
846 
847   // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
848   // operands.
849   SmallVector<unsigned, 8> FoldOps;
850   for (const auto &OpPair : Ops) {
851     unsigned Idx = OpPair.second;
852     assert(MI == OpPair.first && "Instruction conflict during operand folding");
853     MachineOperand &MO = MI->getOperand(Idx);
854     if (MO.isImplicit()) {
855       ImpReg = MO.getReg();
856       continue;
857     }
858 
859     if (!SpillSubRegs && MO.getSubReg())
860       return false;
861     // We cannot fold a load instruction into a def.
862     if (LoadMI && MO.isDef())
863       return false;
864     // Tied use operands should not be passed to foldMemoryOperand.
865     if (UntieRegs || !MI->isRegTiedToDefOperand(Idx))
866       FoldOps.push_back(Idx);
867   }
868 
869   // If we only have implicit uses, we won't be able to fold that.
870   // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try!
871   if (FoldOps.empty())
872     return false;
873 
874   MachineInstrSpan MIS(MI, MI->getParent());
875 
876   SmallVector<std::pair<unsigned, unsigned> > TiedOps;
877   if (UntieRegs)
878     for (unsigned Idx : FoldOps) {
879       MachineOperand &MO = MI->getOperand(Idx);
880       if (!MO.isTied())
881         continue;
882       unsigned Tied = MI->findTiedOperandIdx(Idx);
883       if (MO.isUse())
884         TiedOps.emplace_back(Tied, Idx);
885       else {
886         assert(MO.isDef() && "Tied to not use and def?");
887         TiedOps.emplace_back(Idx, Tied);
888       }
889       MI->untieRegOperand(Idx);
890     }
891 
892   MachineInstr *FoldMI =
893       LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS)
894              : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM);
895   if (!FoldMI) {
896     // Re-tie operands.
897     for (auto Tied : TiedOps)
898       MI->tieOperands(Tied.first, Tied.second);
899     return false;
900   }
901 
902   // Remove LIS for any dead defs in the original MI not in FoldMI.
903   for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
904     if (!MO->isReg())
905       continue;
906     Register Reg = MO->getReg();
907     if (!Reg || Register::isVirtualRegister(Reg) || MRI.isReserved(Reg)) {
908       continue;
909     }
910     // Skip non-Defs, including undef uses and internal reads.
911     if (MO->isUse())
912       continue;
913     PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI);
914     if (RI.FullyDefined)
915       continue;
916     // FoldMI does not define this physreg. Remove the LI segment.
917     assert(MO->isDead() && "Cannot fold physreg def");
918     SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
919     LIS.removePhysRegDefAt(Reg.asMCReg(), Idx);
920   }
921 
922   int FI;
923   if (TII.isStoreToStackSlot(*MI, FI) &&
924       HSpiller.rmFromMergeableSpills(*MI, FI))
925     --NumSpills;
926   LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
927   // Update the call site info.
928   if (MI->isCandidateForCallSiteEntry())
929     MI->getMF()->moveCallSiteInfo(MI, FoldMI);
930 
931   // If we've folded a store into an instruction labelled with debug-info,
932   // record a substitution from the old operand to the memory operand. Handle
933   // the simple common case where operand 0 is the one being folded, plus when
934   // the destination operand is also a tied def. More values could be
935   // substituted / preserved with more analysis.
936   if (MI->peekDebugInstrNum() && Ops[0].second == 0) {
937     // Helper lambda.
938     auto MakeSubstitution = [this,FoldMI,MI,&Ops]() {
939       // Substitute old operand zero to the new instructions memory operand.
940       unsigned OldOperandNum = Ops[0].second;
941       unsigned NewNum = FoldMI->getDebugInstrNum();
942       unsigned OldNum = MI->getDebugInstrNum();
943       MF.makeDebugValueSubstitution({OldNum, OldOperandNum},
944                          {NewNum, MachineFunction::DebugOperandMemNumber});
945     };
946 
947     const MachineOperand &Op0 = MI->getOperand(Ops[0].second);
948     if (Ops.size() == 1 && Op0.isDef()) {
949       MakeSubstitution();
950     } else if (Ops.size() == 2 && Op0.isDef() && MI->getOperand(1).isTied() &&
951                Op0.getReg() == MI->getOperand(1).getReg()) {
952       MakeSubstitution();
953     }
954   } else if (MI->peekDebugInstrNum()) {
955     // This is a debug-labelled instruction, but the operand being folded isn't
956     // at operand zero. Most likely this means it's a load being folded in.
957     // Substitute any register defs from operand zero up to the one being
958     // folded -- past that point, we don't know what the new operand indexes
959     // will be.
960     MF.substituteDebugValuesForInst(*MI, *FoldMI, Ops[0].second);
961   }
962 
963   MI->eraseFromParent();
964 
965   // Insert any new instructions other than FoldMI into the LIS maps.
966   assert(!MIS.empty() && "Unexpected empty span of instructions!");
967   for (MachineInstr &MI : MIS)
968     if (&MI != FoldMI)
969       LIS.InsertMachineInstrInMaps(MI);
970 
971   // TII.foldMemoryOperand may have left some implicit operands on the
972   // instruction.  Strip them.
973   if (ImpReg)
974     for (unsigned i = FoldMI->getNumOperands(); i; --i) {
975       MachineOperand &MO = FoldMI->getOperand(i - 1);
976       if (!MO.isReg() || !MO.isImplicit())
977         break;
978       if (MO.getReg() == ImpReg)
979         FoldMI->RemoveOperand(i - 1);
980     }
981 
982   LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
983                                                 "folded"));
984 
985   if (!WasCopy)
986     ++NumFolded;
987   else if (Ops.front().second == 0) {
988     ++NumSpills;
989     // If there is only 1 store instruction is required for spill, add it
990     // to mergeable list. In X86 AMX, 2 intructions are required to store.
991     // We disable the merge for this case.
992     if (std::distance(MIS.begin(), MIS.end()) <= 1)
993       HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original);
994   } else
995     ++NumReloads;
996   return true;
997 }
998 
999 void InlineSpiller::insertReload(Register NewVReg,
1000                                  SlotIndex Idx,
1001                                  MachineBasicBlock::iterator MI) {
1002   MachineBasicBlock &MBB = *MI->getParent();
1003 
1004   MachineInstrSpan MIS(MI, &MBB);
1005   TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
1006                            MRI.getRegClass(NewVReg), &TRI);
1007 
1008   LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
1009 
1010   LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
1011                                                 NewVReg));
1012   ++NumReloads;
1013 }
1014 
1015 /// Check if \p Def fully defines a VReg with an undefined value.
1016 /// If that's the case, that means the value of VReg is actually
1017 /// not relevant.
1018 static bool isRealSpill(const MachineInstr &Def) {
1019   if (!Def.isImplicitDef())
1020     return true;
1021   assert(Def.getNumOperands() == 1 &&
1022          "Implicit def with more than one definition");
1023   // We can say that the VReg defined by Def is undef, only if it is
1024   // fully defined by Def. Otherwise, some of the lanes may not be
1025   // undef and the value of the VReg matters.
1026   return Def.getOperand(0).getSubReg();
1027 }
1028 
1029 /// insertSpill - Insert a spill of NewVReg after MI.
1030 void InlineSpiller::insertSpill(Register NewVReg, bool isKill,
1031                                  MachineBasicBlock::iterator MI) {
1032   // Spill are not terminators, so inserting spills after terminators will
1033   // violate invariants in MachineVerifier.
1034   assert(!MI->isTerminator() && "Inserting a spill after a terminator");
1035   MachineBasicBlock &MBB = *MI->getParent();
1036 
1037   MachineInstrSpan MIS(MI, &MBB);
1038   MachineBasicBlock::iterator SpillBefore = std::next(MI);
1039   bool IsRealSpill = isRealSpill(*MI);
1040 
1041   if (IsRealSpill)
1042     TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot,
1043                             MRI.getRegClass(NewVReg), &TRI);
1044   else
1045     // Don't spill undef value.
1046     // Anything works for undef, in particular keeping the memory
1047     // uninitialized is a viable option and it saves code size and
1048     // run time.
1049     BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL))
1050         .addReg(NewVReg, getKillRegState(isKill));
1051 
1052   MachineBasicBlock::iterator Spill = std::next(MI);
1053   LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end());
1054   for (const MachineInstr &MI : make_range(Spill, MIS.end()))
1055     getVDefInterval(MI, LIS);
1056 
1057   LLVM_DEBUG(
1058       dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill"));
1059   ++NumSpills;
1060   // If there is only 1 store instruction is required for spill, add it
1061   // to mergeable list. In X86 AMX, 2 intructions are required to store.
1062   // We disable the merge for this case.
1063   if (IsRealSpill && std::distance(Spill, MIS.end()) <= 1)
1064     HSpiller.addToMergeableSpills(*Spill, StackSlot, Original);
1065 }
1066 
1067 /// spillAroundUses - insert spill code around each use of Reg.
1068 void InlineSpiller::spillAroundUses(Register Reg) {
1069   LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n');
1070   LiveInterval &OldLI = LIS.getInterval(Reg);
1071 
1072   // Iterate over instructions using Reg.
1073   for (MachineRegisterInfo::reg_bundle_iterator
1074        RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
1075        RegI != E; ) {
1076     MachineInstr *MI = &*(RegI++);
1077 
1078     // Debug values are not allowed to affect codegen.
1079     if (MI->isDebugValue()) {
1080       // Modify DBG_VALUE now that the value is in a spill slot.
1081       MachineBasicBlock *MBB = MI->getParent();
1082       LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI);
1083       buildDbgValueForSpill(*MBB, MI, *MI, StackSlot, Reg);
1084       MBB->erase(MI);
1085       continue;
1086     }
1087 
1088     assert(!MI->isDebugInstr() && "Did not expect to find a use in debug "
1089            "instruction that isn't a DBG_VALUE");
1090 
1091     // Ignore copies to/from snippets. We'll delete them.
1092     if (SnippetCopies.count(MI))
1093       continue;
1094 
1095     // Stack slot accesses may coalesce away.
1096     if (coalesceStackAccess(MI, Reg))
1097       continue;
1098 
1099     // Analyze instruction.
1100     SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
1101     VirtRegInfo RI = AnalyzeVirtRegInBundle(*MI, Reg, &Ops);
1102 
1103     // Find the slot index where this instruction reads and writes OldLI.
1104     // This is usually the def slot, except for tied early clobbers.
1105     SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
1106     if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
1107       if (SlotIndex::isSameInstr(Idx, VNI->def))
1108         Idx = VNI->def;
1109 
1110     // Check for a sibling copy.
1111     Register SibReg = isFullCopyOf(*MI, Reg);
1112     if (SibReg && isSibling(SibReg)) {
1113       // This may actually be a copy between snippets.
1114       if (isRegToSpill(SibReg)) {
1115         LLVM_DEBUG(dbgs() << "Found new snippet copy: " << *MI);
1116         SnippetCopies.insert(MI);
1117         continue;
1118       }
1119       if (RI.Writes) {
1120         if (hoistSpillInsideBB(OldLI, *MI)) {
1121           // This COPY is now dead, the value is already in the stack slot.
1122           MI->getOperand(0).setIsDead();
1123           DeadDefs.push_back(MI);
1124           continue;
1125         }
1126       } else {
1127         // This is a reload for a sib-reg copy. Drop spills downstream.
1128         LiveInterval &SibLI = LIS.getInterval(SibReg);
1129         eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
1130         // The COPY will fold to a reload below.
1131       }
1132     }
1133 
1134     // Attempt to fold memory ops.
1135     if (foldMemoryOperand(Ops))
1136       continue;
1137 
1138     // Create a new virtual register for spill/fill.
1139     // FIXME: Infer regclass from instruction alone.
1140     Register NewVReg = Edit->createFrom(Reg);
1141 
1142     if (RI.Reads)
1143       insertReload(NewVReg, Idx, MI);
1144 
1145     // Rewrite instruction operands.
1146     bool hasLiveDef = false;
1147     for (const auto &OpPair : Ops) {
1148       MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
1149       MO.setReg(NewVReg);
1150       if (MO.isUse()) {
1151         if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
1152           MO.setIsKill();
1153       } else {
1154         if (!MO.isDead())
1155           hasLiveDef = true;
1156       }
1157     }
1158     LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n');
1159 
1160     // FIXME: Use a second vreg if instruction has no tied ops.
1161     if (RI.Writes)
1162       if (hasLiveDef)
1163         insertSpill(NewVReg, true, MI);
1164   }
1165 }
1166 
1167 /// spillAll - Spill all registers remaining after rematerialization.
1168 void InlineSpiller::spillAll() {
1169   // Update LiveStacks now that we are committed to spilling.
1170   if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1171     StackSlot = VRM.assignVirt2StackSlot(Original);
1172     StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1173     StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1174   } else
1175     StackInt = &LSS.getInterval(StackSlot);
1176 
1177   if (Original != Edit->getReg())
1178     VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1179 
1180   assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1181   for (Register Reg : RegsToSpill)
1182     StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
1183                                      StackInt->getValNumInfo(0));
1184   LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1185 
1186   // Spill around uses of all RegsToSpill.
1187   for (Register Reg : RegsToSpill)
1188     spillAroundUses(Reg);
1189 
1190   // Hoisted spills may cause dead code.
1191   if (!DeadDefs.empty()) {
1192     LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1193     Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
1194   }
1195 
1196   // Finally delete the SnippetCopies.
1197   for (Register Reg : RegsToSpill) {
1198     for (MachineRegisterInfo::reg_instr_iterator
1199          RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end();
1200          RI != E; ) {
1201       MachineInstr &MI = *(RI++);
1202       assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy");
1203       // FIXME: Do this with a LiveRangeEdit callback.
1204       LIS.RemoveMachineInstrFromMaps(MI);
1205       MI.eraseFromParent();
1206     }
1207   }
1208 
1209   // Delete all spilled registers.
1210   for (Register Reg : RegsToSpill)
1211     Edit->eraseVirtReg(Reg);
1212 }
1213 
1214 void InlineSpiller::spill(LiveRangeEdit &edit) {
1215   ++NumSpilledRanges;
1216   Edit = &edit;
1217   assert(!Register::isStackSlot(edit.getReg()) &&
1218          "Trying to spill a stack slot.");
1219   // Share a stack slot among all descendants of Original.
1220   Original = VRM.getOriginal(edit.getReg());
1221   StackSlot = VRM.getStackSlot(Original);
1222   StackInt = nullptr;
1223 
1224   LLVM_DEBUG(dbgs() << "Inline spilling "
1225                     << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
1226                     << ':' << edit.getParent() << "\nFrom original "
1227                     << printReg(Original) << '\n');
1228   assert(edit.getParent().isSpillable() &&
1229          "Attempting to spill already spilled value.");
1230   assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1231 
1232   collectRegsToSpill();
1233   reMaterializeAll();
1234 
1235   // Remat may handle everything.
1236   if (!RegsToSpill.empty())
1237     spillAll();
1238 
1239   Edit->calculateRegClassAndHint(MF, VRAI);
1240 }
1241 
1242 /// Optimizations after all the reg selections and spills are done.
1243 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); }
1244 
1245 /// When a spill is inserted, add the spill to MergeableSpills map.
1246 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot,
1247                                             unsigned Original) {
1248   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1249   LiveInterval &OrigLI = LIS.getInterval(Original);
1250   // save a copy of LiveInterval in StackSlotToOrigLI because the original
1251   // LiveInterval may be cleared after all its references are spilled.
1252   if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) {
1253     auto LI = std::make_unique<LiveInterval>(OrigLI.reg(), OrigLI.weight());
1254     LI->assign(OrigLI, Allocator);
1255     StackSlotToOrigLI[StackSlot] = std::move(LI);
1256   }
1257   SlotIndex Idx = LIS.getInstructionIndex(Spill);
1258   VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot());
1259   std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1260   MergeableSpills[MIdx].insert(&Spill);
1261 }
1262 
1263 /// When a spill is removed, remove the spill from MergeableSpills map.
1264 /// Return true if the spill is removed successfully.
1265 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill,
1266                                              int StackSlot) {
1267   auto It = StackSlotToOrigLI.find(StackSlot);
1268   if (It == StackSlotToOrigLI.end())
1269     return false;
1270   SlotIndex Idx = LIS.getInstructionIndex(Spill);
1271   VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot());
1272   std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1273   return MergeableSpills[MIdx].erase(&Spill);
1274 }
1275 
1276 /// Check BB to see if it is a possible target BB to place a hoisted spill,
1277 /// i.e., there should be a living sibling of OrigReg at the insert point.
1278 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
1279                                      MachineBasicBlock &BB, Register &LiveReg) {
1280   SlotIndex Idx = IPA.getLastInsertPoint(OrigLI, BB);
1281   // The original def could be after the last insert point in the root block,
1282   // we can't hoist to here.
1283   if (Idx < OrigVNI.def) {
1284     // TODO: We could be better here. If LI is not alive in landing pad
1285     // we could hoist spill after LIP.
1286     LLVM_DEBUG(dbgs() << "can't spill in root block - def after LIP\n");
1287     return false;
1288   }
1289   Register OrigReg = OrigLI.reg();
1290   SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg];
1291   assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI");
1292 
1293   for (const Register &SibReg : Siblings) {
1294     LiveInterval &LI = LIS.getInterval(SibReg);
1295     VNInfo *VNI = LI.getVNInfoAt(Idx);
1296     if (VNI) {
1297       LiveReg = SibReg;
1298       return true;
1299     }
1300   }
1301   return false;
1302 }
1303 
1304 /// Remove redundant spills in the same BB. Save those redundant spills in
1305 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
1306 void HoistSpillHelper::rmRedundantSpills(
1307     SmallPtrSet<MachineInstr *, 16> &Spills,
1308     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1309     DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1310   // For each spill saw, check SpillBBToSpill[] and see if its BB already has
1311   // another spill inside. If a BB contains more than one spill, only keep the
1312   // earlier spill with smaller SlotIndex.
1313   for (const auto CurrentSpill : Spills) {
1314     MachineBasicBlock *Block = CurrentSpill->getParent();
1315     MachineDomTreeNode *Node = MDT.getBase().getNode(Block);
1316     MachineInstr *PrevSpill = SpillBBToSpill[Node];
1317     if (PrevSpill) {
1318       SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
1319       SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill);
1320       MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
1321       MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
1322       SpillsToRm.push_back(SpillToRm);
1323       SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep;
1324     } else {
1325       SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill;
1326     }
1327   }
1328   for (const auto SpillToRm : SpillsToRm)
1329     Spills.erase(SpillToRm);
1330 }
1331 
1332 /// Starting from \p Root find a top-down traversal order of the dominator
1333 /// tree to visit all basic blocks containing the elements of \p Spills.
1334 /// Redundant spills will be found and put into \p SpillsToRm at the same
1335 /// time. \p SpillBBToSpill will be populated as part of the process and
1336 /// maps a basic block to the first store occurring in the basic block.
1337 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre
1338 void HoistSpillHelper::getVisitOrders(
1339     MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
1340     SmallVectorImpl<MachineDomTreeNode *> &Orders,
1341     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1342     DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
1343     DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1344   // The set contains all the possible BB nodes to which we may hoist
1345   // original spills.
1346   SmallPtrSet<MachineDomTreeNode *, 8> WorkSet;
1347   // Save the BB nodes on the path from the first BB node containing
1348   // non-redundant spill to the Root node.
1349   SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath;
1350   // All the spills to be hoisted must originate from a single def instruction
1351   // to the OrigReg. It means the def instruction should dominate all the spills
1352   // to be hoisted. We choose the BB where the def instruction is located as
1353   // the Root.
1354   MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom();
1355   // For every node on the dominator tree with spill, walk up on the dominator
1356   // tree towards the Root node until it is reached. If there is other node
1357   // containing spill in the middle of the path, the previous spill saw will
1358   // be redundant and the node containing it will be removed. All the nodes on
1359   // the path starting from the first node with non-redundant spill to the Root
1360   // node will be added to the WorkSet, which will contain all the possible
1361   // locations where spills may be hoisted to after the loop below is done.
1362   for (const auto Spill : Spills) {
1363     MachineBasicBlock *Block = Spill->getParent();
1364     MachineDomTreeNode *Node = MDT[Block];
1365     MachineInstr *SpillToRm = nullptr;
1366     while (Node != RootIDomNode) {
1367       // If Node dominates Block, and it already contains a spill, the spill in
1368       // Block will be redundant.
1369       if (Node != MDT[Block] && SpillBBToSpill[Node]) {
1370         SpillToRm = SpillBBToSpill[MDT[Block]];
1371         break;
1372         /// If we see the Node already in WorkSet, the path from the Node to
1373         /// the Root node must already be traversed by another spill.
1374         /// Then no need to repeat.
1375       } else if (WorkSet.count(Node)) {
1376         break;
1377       } else {
1378         NodesOnPath.insert(Node);
1379       }
1380       Node = Node->getIDom();
1381     }
1382     if (SpillToRm) {
1383       SpillsToRm.push_back(SpillToRm);
1384     } else {
1385       // Add a BB containing the original spills to SpillsToKeep -- i.e.,
1386       // set the initial status before hoisting start. The value of BBs
1387       // containing original spills is set to 0, in order to descriminate
1388       // with BBs containing hoisted spills which will be inserted to
1389       // SpillsToKeep later during hoisting.
1390       SpillsToKeep[MDT[Block]] = 0;
1391       WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end());
1392     }
1393     NodesOnPath.clear();
1394   }
1395 
1396   // Sort the nodes in WorkSet in top-down order and save the nodes
1397   // in Orders. Orders will be used for hoisting in runHoistSpills.
1398   unsigned idx = 0;
1399   Orders.push_back(MDT.getBase().getNode(Root));
1400   do {
1401     MachineDomTreeNode *Node = Orders[idx++];
1402     for (MachineDomTreeNode *Child : Node->children()) {
1403       if (WorkSet.count(Child))
1404         Orders.push_back(Child);
1405     }
1406   } while (idx != Orders.size());
1407   assert(Orders.size() == WorkSet.size() &&
1408          "Orders have different size with WorkSet");
1409 
1410 #ifndef NDEBUG
1411   LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n");
1412   SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1413   for (; RIt != Orders.rend(); RIt++)
1414     LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",");
1415   LLVM_DEBUG(dbgs() << "\n");
1416 #endif
1417 }
1418 
1419 /// Try to hoist spills according to BB hotness. The spills to removed will
1420 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in
1421 /// \p SpillsToIns.
1422 void HoistSpillHelper::runHoistSpills(
1423     LiveInterval &OrigLI, VNInfo &OrigVNI,
1424     SmallPtrSet<MachineInstr *, 16> &Spills,
1425     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1426     DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) {
1427   // Visit order of dominator tree nodes.
1428   SmallVector<MachineDomTreeNode *, 32> Orders;
1429   // SpillsToKeep contains all the nodes where spills are to be inserted
1430   // during hoisting. If the spill to be inserted is an original spill
1431   // (not a hoisted one), the value of the map entry is 0. If the spill
1432   // is a hoisted spill, the value of the map entry is the VReg to be used
1433   // as the source of the spill.
1434   DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep;
1435   // Map from BB to the first spill inside of it.
1436   DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill;
1437 
1438   rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill);
1439 
1440   MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def);
1441   getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep,
1442                  SpillBBToSpill);
1443 
1444   // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
1445   // nodes set and the cost of all the spills inside those nodes.
1446   // The nodes set are the locations where spills are to be inserted
1447   // in the subtree of current node.
1448   using NodesCostPair =
1449       std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>;
1450   DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap;
1451 
1452   // Iterate Orders set in reverse order, which will be a bottom-up order
1453   // in the dominator tree. Once we visit a dom tree node, we know its
1454   // children have already been visited and the spill locations in the
1455   // subtrees of all the children have been determined.
1456   SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1457   for (; RIt != Orders.rend(); RIt++) {
1458     MachineBasicBlock *Block = (*RIt)->getBlock();
1459 
1460     // If Block contains an original spill, simply continue.
1461     if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) {
1462       SpillsInSubTreeMap[*RIt].first.insert(*RIt);
1463       // SpillsInSubTreeMap[*RIt].second contains the cost of spill.
1464       SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block);
1465       continue;
1466     }
1467 
1468     // Collect spills in subtree of current node (*RIt) to
1469     // SpillsInSubTreeMap[*RIt].first.
1470     for (MachineDomTreeNode *Child : (*RIt)->children()) {
1471       if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end())
1472         continue;
1473       // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below
1474       // should be placed before getting the begin and end iterators of
1475       // SpillsInSubTreeMap[Child].first, or else the iterators may be
1476       // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
1477       // and the map grows and then the original buckets in the map are moved.
1478       SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1479           SpillsInSubTreeMap[*RIt].first;
1480       BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1481       SubTreeCost += SpillsInSubTreeMap[Child].second;
1482       auto BI = SpillsInSubTreeMap[Child].first.begin();
1483       auto EI = SpillsInSubTreeMap[Child].first.end();
1484       SpillsInSubTree.insert(BI, EI);
1485       SpillsInSubTreeMap.erase(Child);
1486     }
1487 
1488     SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1489           SpillsInSubTreeMap[*RIt].first;
1490     BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1491     // No spills in subtree, simply continue.
1492     if (SpillsInSubTree.empty())
1493       continue;
1494 
1495     // Check whether Block is a possible candidate to insert spill.
1496     Register LiveReg;
1497     if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg))
1498       continue;
1499 
1500     // If there are multiple spills that could be merged, bias a little
1501     // to hoist the spill.
1502     BranchProbability MarginProb = (SpillsInSubTree.size() > 1)
1503                                        ? BranchProbability(9, 10)
1504                                        : BranchProbability(1, 1);
1505     if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) {
1506       // Hoist: Move spills to current Block.
1507       for (const auto SpillBB : SpillsInSubTree) {
1508         // When SpillBB is a BB contains original spill, insert the spill
1509         // to SpillsToRm.
1510         if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() &&
1511             !SpillsToKeep[SpillBB]) {
1512           MachineInstr *SpillToRm = SpillBBToSpill[SpillBB];
1513           SpillsToRm.push_back(SpillToRm);
1514         }
1515         // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
1516         SpillsToKeep.erase(SpillBB);
1517       }
1518       // Current Block is the BB containing the new hoisted spill. Add it to
1519       // SpillsToKeep. LiveReg is the source of the new spill.
1520       SpillsToKeep[*RIt] = LiveReg;
1521       LLVM_DEBUG({
1522         dbgs() << "spills in BB: ";
1523         for (const auto Rspill : SpillsInSubTree)
1524           dbgs() << Rspill->getBlock()->getNumber() << " ";
1525         dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()
1526                << "\n";
1527       });
1528       SpillsInSubTree.clear();
1529       SpillsInSubTree.insert(*RIt);
1530       SubTreeCost = MBFI.getBlockFreq(Block);
1531     }
1532   }
1533   // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
1534   // save them to SpillsToIns.
1535   for (const auto &Ent : SpillsToKeep) {
1536     if (Ent.second)
1537       SpillsToIns[Ent.first->getBlock()] = Ent.second;
1538   }
1539 }
1540 
1541 /// For spills with equal values, remove redundant spills and hoist those left
1542 /// to less hot spots.
1543 ///
1544 /// Spills with equal values will be collected into the same set in
1545 /// MergeableSpills when spill is inserted. These equal spills are originated
1546 /// from the same defining instruction and are dominated by the instruction.
1547 /// Before hoisting all the equal spills, redundant spills inside in the same
1548 /// BB are first marked to be deleted. Then starting from the spills left, walk
1549 /// up on the dominator tree towards the Root node where the define instruction
1550 /// is located, mark the dominated spills to be deleted along the way and
1551 /// collect the BB nodes on the path from non-dominated spills to the define
1552 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places
1553 /// where we are considering to hoist the spills. We iterate the WorkSet in
1554 /// bottom-up order, and for each node, we will decide whether to hoist spills
1555 /// inside its subtree to that node. In this way, we can get benefit locally
1556 /// even if hoisting all the equal spills to one cold place is impossible.
1557 void HoistSpillHelper::hoistAllSpills() {
1558   SmallVector<Register, 4> NewVRegs;
1559   LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this);
1560 
1561   for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
1562     Register Reg = Register::index2VirtReg(i);
1563     Register Original = VRM.getPreSplitReg(Reg);
1564     if (!MRI.def_empty(Reg))
1565       Virt2SiblingsMap[Original].insert(Reg);
1566   }
1567 
1568   // Each entry in MergeableSpills contains a spill set with equal values.
1569   for (auto &Ent : MergeableSpills) {
1570     int Slot = Ent.first.first;
1571     LiveInterval &OrigLI = *StackSlotToOrigLI[Slot];
1572     VNInfo *OrigVNI = Ent.first.second;
1573     SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second;
1574     if (Ent.second.empty())
1575       continue;
1576 
1577     LLVM_DEBUG({
1578       dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"
1579              << "Equal spills in BB: ";
1580       for (const auto spill : EqValSpills)
1581         dbgs() << spill->getParent()->getNumber() << " ";
1582       dbgs() << "\n";
1583     });
1584 
1585     // SpillsToRm is the spill set to be removed from EqValSpills.
1586     SmallVector<MachineInstr *, 16> SpillsToRm;
1587     // SpillsToIns is the spill set to be newly inserted after hoisting.
1588     DenseMap<MachineBasicBlock *, unsigned> SpillsToIns;
1589 
1590     runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns);
1591 
1592     LLVM_DEBUG({
1593       dbgs() << "Finally inserted spills in BB: ";
1594       for (const auto &Ispill : SpillsToIns)
1595         dbgs() << Ispill.first->getNumber() << " ";
1596       dbgs() << "\nFinally removed spills in BB: ";
1597       for (const auto Rspill : SpillsToRm)
1598         dbgs() << Rspill->getParent()->getNumber() << " ";
1599       dbgs() << "\n";
1600     });
1601 
1602     // Stack live range update.
1603     LiveInterval &StackIntvl = LSS.getInterval(Slot);
1604     if (!SpillsToIns.empty() || !SpillsToRm.empty())
1605       StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI,
1606                                      StackIntvl.getValNumInfo(0));
1607 
1608     // Insert hoisted spills.
1609     for (auto const &Insert : SpillsToIns) {
1610       MachineBasicBlock *BB = Insert.first;
1611       Register LiveReg = Insert.second;
1612       MachineBasicBlock::iterator MII = IPA.getLastInsertPointIter(OrigLI, *BB);
1613       MachineInstrSpan MIS(MII, BB);
1614       TII.storeRegToStackSlot(*BB, MII, LiveReg, false, Slot,
1615                               MRI.getRegClass(LiveReg), &TRI);
1616       LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII);
1617       for (const MachineInstr &MI : make_range(MIS.begin(), MII))
1618         getVDefInterval(MI, LIS);
1619       ++NumSpills;
1620     }
1621 
1622     // Remove redundant spills or change them to dead instructions.
1623     NumSpills -= SpillsToRm.size();
1624     for (auto const RMEnt : SpillsToRm) {
1625       RMEnt->setDesc(TII.get(TargetOpcode::KILL));
1626       for (unsigned i = RMEnt->getNumOperands(); i; --i) {
1627         MachineOperand &MO = RMEnt->getOperand(i - 1);
1628         if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead())
1629           RMEnt->RemoveOperand(i - 1);
1630       }
1631     }
1632     Edit.eliminateDeadDefs(SpillsToRm, None, AA);
1633   }
1634 }
1635 
1636 /// For VirtReg clone, the \p New register should have the same physreg or
1637 /// stackslot as the \p old register.
1638 void HoistSpillHelper::LRE_DidCloneVirtReg(Register New, Register Old) {
1639   if (VRM.hasPhys(Old))
1640     VRM.assignVirt2Phys(New, VRM.getPhys(Old));
1641   else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT)
1642     VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old));
1643   else
1644     llvm_unreachable("VReg should be assigned either physreg or stackslot");
1645   if (VRM.hasShape(Old))
1646     VRM.assignVirt2Shape(New, VRM.getShape(Old));
1647 }
1648