1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The inline spiller modifies the machine function directly instead of 10 // inserting spills and restores in VirtRegMap. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SplitKit.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/LiveInterval.h" 26 #include "llvm/CodeGen/LiveIntervalCalc.h" 27 #include "llvm/CodeGen/LiveIntervals.h" 28 #include "llvm/CodeGen/LiveRangeEdit.h" 29 #include "llvm/CodeGen/LiveStacks.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineInstrBuilder.h" 37 #include "llvm/CodeGen/MachineInstrBundle.h" 38 #include "llvm/CodeGen/MachineLoopInfo.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/SlotIndexes.h" 42 #include "llvm/CodeGen/Spiller.h" 43 #include "llvm/CodeGen/StackMaps.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetOpcodes.h" 46 #include "llvm/CodeGen/TargetRegisterInfo.h" 47 #include "llvm/CodeGen/TargetSubtargetInfo.h" 48 #include "llvm/CodeGen/VirtRegMap.h" 49 #include "llvm/Config/llvm-config.h" 50 #include "llvm/Support/BlockFrequency.h" 51 #include "llvm/Support/BranchProbability.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <cassert> 58 #include <iterator> 59 #include <tuple> 60 #include <utility> 61 #include <vector> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "regalloc" 66 67 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 68 STATISTIC(NumSnippets, "Number of spilled snippets"); 69 STATISTIC(NumSpills, "Number of spills inserted"); 70 STATISTIC(NumSpillsRemoved, "Number of spills removed"); 71 STATISTIC(NumReloads, "Number of reloads inserted"); 72 STATISTIC(NumReloadsRemoved, "Number of reloads removed"); 73 STATISTIC(NumFolded, "Number of folded stack accesses"); 74 STATISTIC(NumFoldedLoads, "Number of folded loads"); 75 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 76 77 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden, 78 cl::desc("Disable inline spill hoisting")); 79 static cl::opt<bool> 80 RestrictStatepointRemat("restrict-statepoint-remat", 81 cl::init(false), cl::Hidden, 82 cl::desc("Restrict remat for statepoint operands")); 83 84 namespace { 85 86 class HoistSpillHelper : private LiveRangeEdit::Delegate { 87 MachineFunction &MF; 88 LiveIntervals &LIS; 89 LiveStacks &LSS; 90 AliasAnalysis *AA; 91 MachineDominatorTree &MDT; 92 MachineLoopInfo &Loops; 93 VirtRegMap &VRM; 94 MachineRegisterInfo &MRI; 95 const TargetInstrInfo &TII; 96 const TargetRegisterInfo &TRI; 97 const MachineBlockFrequencyInfo &MBFI; 98 99 InsertPointAnalysis IPA; 100 101 // Map from StackSlot to the LiveInterval of the original register. 102 // Note the LiveInterval of the original register may have been deleted 103 // after it is spilled. We keep a copy here to track the range where 104 // spills can be moved. 105 DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI; 106 107 // Map from pair of (StackSlot and Original VNI) to a set of spills which 108 // have the same stackslot and have equal values defined by Original VNI. 109 // These spills are mergeable and are hoist candiates. 110 using MergeableSpillsMap = 111 MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>; 112 MergeableSpillsMap MergeableSpills; 113 114 /// This is the map from original register to a set containing all its 115 /// siblings. To hoist a spill to another BB, we need to find out a live 116 /// sibling there and use it as the source of the new spill. 117 DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap; 118 119 bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 120 MachineBasicBlock &BB, Register &LiveReg); 121 122 void rmRedundantSpills( 123 SmallPtrSet<MachineInstr *, 16> &Spills, 124 SmallVectorImpl<MachineInstr *> &SpillsToRm, 125 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 126 127 void getVisitOrders( 128 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 129 SmallVectorImpl<MachineDomTreeNode *> &Orders, 130 SmallVectorImpl<MachineInstr *> &SpillsToRm, 131 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 132 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 133 134 void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI, 135 SmallPtrSet<MachineInstr *, 16> &Spills, 136 SmallVectorImpl<MachineInstr *> &SpillsToRm, 137 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns); 138 139 public: 140 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf, 141 VirtRegMap &vrm) 142 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 143 LSS(pass.getAnalysis<LiveStacks>()), 144 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 145 MDT(pass.getAnalysis<MachineDominatorTree>()), 146 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 147 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 148 TRI(*mf.getSubtarget().getRegisterInfo()), 149 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 150 IPA(LIS, mf.getNumBlockIDs()) {} 151 152 void addToMergeableSpills(MachineInstr &Spill, int StackSlot, 153 unsigned Original); 154 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot); 155 void hoistAllSpills(); 156 void LRE_DidCloneVirtReg(Register, Register) override; 157 }; 158 159 class InlineSpiller : public Spiller { 160 MachineFunction &MF; 161 LiveIntervals &LIS; 162 LiveStacks &LSS; 163 AliasAnalysis *AA; 164 MachineDominatorTree &MDT; 165 MachineLoopInfo &Loops; 166 VirtRegMap &VRM; 167 MachineRegisterInfo &MRI; 168 const TargetInstrInfo &TII; 169 const TargetRegisterInfo &TRI; 170 const MachineBlockFrequencyInfo &MBFI; 171 172 // Variables that are valid during spill(), but used by multiple methods. 173 LiveRangeEdit *Edit; 174 LiveInterval *StackInt; 175 int StackSlot; 176 Register Original; 177 178 // All registers to spill to StackSlot, including the main register. 179 SmallVector<Register, 8> RegsToSpill; 180 181 // All COPY instructions to/from snippets. 182 // They are ignored since both operands refer to the same stack slot. 183 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 184 185 // Values that failed to remat at some point. 186 SmallPtrSet<VNInfo*, 8> UsedValues; 187 188 // Dead defs generated during spilling. 189 SmallVector<MachineInstr*, 8> DeadDefs; 190 191 // Object records spills information and does the hoisting. 192 HoistSpillHelper HSpiller; 193 194 // Live range weight calculator. 195 VirtRegAuxInfo &VRAI; 196 197 ~InlineSpiller() override = default; 198 199 public: 200 InlineSpiller(MachineFunctionPass &Pass, MachineFunction &MF, VirtRegMap &VRM, 201 VirtRegAuxInfo &VRAI) 202 : MF(MF), LIS(Pass.getAnalysis<LiveIntervals>()), 203 LSS(Pass.getAnalysis<LiveStacks>()), 204 AA(&Pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 205 MDT(Pass.getAnalysis<MachineDominatorTree>()), 206 Loops(Pass.getAnalysis<MachineLoopInfo>()), VRM(VRM), 207 MRI(MF.getRegInfo()), TII(*MF.getSubtarget().getInstrInfo()), 208 TRI(*MF.getSubtarget().getRegisterInfo()), 209 MBFI(Pass.getAnalysis<MachineBlockFrequencyInfo>()), 210 HSpiller(Pass, MF, VRM), VRAI(VRAI) {} 211 212 void spill(LiveRangeEdit &) override; 213 void postOptimization() override; 214 215 private: 216 bool isSnippet(const LiveInterval &SnipLI); 217 void collectRegsToSpill(); 218 219 bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); } 220 221 bool isSibling(Register Reg); 222 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI); 223 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 224 225 void markValueUsed(LiveInterval*, VNInfo*); 226 bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI); 227 bool reMaterializeFor(LiveInterval &, MachineInstr &MI); 228 void reMaterializeAll(); 229 230 bool coalesceStackAccess(MachineInstr *MI, Register Reg); 231 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>, 232 MachineInstr *LoadMI = nullptr); 233 void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI); 234 void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI); 235 236 void spillAroundUses(Register Reg); 237 void spillAll(); 238 }; 239 240 } // end anonymous namespace 241 242 Spiller::~Spiller() = default; 243 244 void Spiller::anchor() {} 245 246 Spiller *llvm::createInlineSpiller(MachineFunctionPass &Pass, 247 MachineFunction &MF, VirtRegMap &VRM, 248 VirtRegAuxInfo &VRAI) { 249 return new InlineSpiller(Pass, MF, VRM, VRAI); 250 } 251 252 //===----------------------------------------------------------------------===// 253 // Snippets 254 //===----------------------------------------------------------------------===// 255 256 // When spilling a virtual register, we also spill any snippets it is connected 257 // to. The snippets are small live ranges that only have a single real use, 258 // leftovers from live range splitting. Spilling them enables memory operand 259 // folding or tightens the live range around the single use. 260 // 261 // This minimizes register pressure and maximizes the store-to-load distance for 262 // spill slots which can be important in tight loops. 263 264 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 265 /// otherwise return 0. 266 static Register isFullCopyOf(const MachineInstr &MI, Register Reg) { 267 if (!MI.isFullCopy()) 268 return Register(); 269 if (MI.getOperand(0).getReg() == Reg) 270 return MI.getOperand(1).getReg(); 271 if (MI.getOperand(1).getReg() == Reg) 272 return MI.getOperand(0).getReg(); 273 return Register(); 274 } 275 276 static void getVDefInterval(const MachineInstr &MI, LiveIntervals &LIS) { 277 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 278 const MachineOperand &MO = MI.getOperand(I); 279 if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg())) 280 LIS.getInterval(MO.getReg()); 281 } 282 } 283 284 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 285 /// It is assumed that SnipLI is a virtual register with the same original as 286 /// Edit->getReg(). 287 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 288 Register Reg = Edit->getReg(); 289 290 // A snippet is a tiny live range with only a single instruction using it 291 // besides copies to/from Reg or spills/fills. We accept: 292 // 293 // %snip = COPY %Reg / FILL fi# 294 // %snip = USE %snip 295 // %Reg = COPY %snip / SPILL %snip, fi# 296 // 297 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) 298 return false; 299 300 MachineInstr *UseMI = nullptr; 301 302 // Check that all uses satisfy our criteria. 303 for (MachineRegisterInfo::reg_instr_nodbg_iterator 304 RI = MRI.reg_instr_nodbg_begin(SnipLI.reg()), 305 E = MRI.reg_instr_nodbg_end(); 306 RI != E;) { 307 MachineInstr &MI = *RI++; 308 309 // Allow copies to/from Reg. 310 if (isFullCopyOf(MI, Reg)) 311 continue; 312 313 // Allow stack slot loads. 314 int FI; 315 if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 316 continue; 317 318 // Allow stack slot stores. 319 if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 320 continue; 321 322 // Allow a single additional instruction. 323 if (UseMI && &MI != UseMI) 324 return false; 325 UseMI = &MI; 326 } 327 return true; 328 } 329 330 /// collectRegsToSpill - Collect live range snippets that only have a single 331 /// real use. 332 void InlineSpiller::collectRegsToSpill() { 333 Register Reg = Edit->getReg(); 334 335 // Main register always spills. 336 RegsToSpill.assign(1, Reg); 337 SnippetCopies.clear(); 338 339 // Snippets all have the same original, so there can't be any for an original 340 // register. 341 if (Original == Reg) 342 return; 343 344 for (MachineInstr &MI : 345 llvm::make_early_inc_range(MRI.reg_instructions(Reg))) { 346 Register SnipReg = isFullCopyOf(MI, Reg); 347 if (!isSibling(SnipReg)) 348 continue; 349 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 350 if (!isSnippet(SnipLI)) 351 continue; 352 SnippetCopies.insert(&MI); 353 if (isRegToSpill(SnipReg)) 354 continue; 355 RegsToSpill.push_back(SnipReg); 356 LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 357 ++NumSnippets; 358 } 359 } 360 361 bool InlineSpiller::isSibling(Register Reg) { 362 return Reg.isVirtual() && VRM.getOriginal(Reg) == Original; 363 } 364 365 /// It is beneficial to spill to earlier place in the same BB in case 366 /// as follows: 367 /// There is an alternative def earlier in the same MBB. 368 /// Hoist the spill as far as possible in SpillMBB. This can ease 369 /// register pressure: 370 /// 371 /// x = def 372 /// y = use x 373 /// s = copy x 374 /// 375 /// Hoisting the spill of s to immediately after the def removes the 376 /// interference between x and y: 377 /// 378 /// x = def 379 /// spill x 380 /// y = use killed x 381 /// 382 /// This hoist only helps when the copy kills its source. 383 /// 384 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI, 385 MachineInstr &CopyMI) { 386 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 387 #ifndef NDEBUG 388 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); 389 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); 390 #endif 391 392 Register SrcReg = CopyMI.getOperand(1).getReg(); 393 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 394 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx); 395 LiveQueryResult SrcQ = SrcLI.Query(Idx); 396 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def); 397 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill()) 398 return false; 399 400 // Conservatively extend the stack slot range to the range of the original 401 // value. We may be able to do better with stack slot coloring by being more 402 // careful here. 403 assert(StackInt && "No stack slot assigned yet."); 404 LiveInterval &OrigLI = LIS.getInterval(Original); 405 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 406 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 407 LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 408 << *StackInt << '\n'); 409 410 // We are going to spill SrcVNI immediately after its def, so clear out 411 // any later spills of the same value. 412 eliminateRedundantSpills(SrcLI, SrcVNI); 413 414 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def); 415 MachineBasicBlock::iterator MII; 416 if (SrcVNI->isPHIDef()) 417 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 418 else { 419 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def); 420 assert(DefMI && "Defining instruction disappeared"); 421 MII = DefMI; 422 ++MII; 423 } 424 MachineInstrSpan MIS(MII, MBB); 425 // Insert spill without kill flag immediately after def. 426 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot, 427 MRI.getRegClass(SrcReg), &TRI); 428 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII); 429 for (const MachineInstr &MI : make_range(MIS.begin(), MII)) 430 getVDefInterval(MI, LIS); 431 --MII; // Point to store instruction. 432 LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII); 433 434 // If there is only 1 store instruction is required for spill, add it 435 // to mergeable list. In X86 AMX, 2 intructions are required to store. 436 // We disable the merge for this case. 437 if (MIS.begin() == MII) 438 HSpiller.addToMergeableSpills(*MII, StackSlot, Original); 439 ++NumSpills; 440 return true; 441 } 442 443 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 444 /// redundant spills of this value in SLI.reg and sibling copies. 445 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 446 assert(VNI && "Missing value"); 447 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 448 WorkList.push_back(std::make_pair(&SLI, VNI)); 449 assert(StackInt && "No stack slot assigned yet."); 450 451 do { 452 LiveInterval *LI; 453 std::tie(LI, VNI) = WorkList.pop_back_val(); 454 Register Reg = LI->reg(); 455 LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@' 456 << VNI->def << " in " << *LI << '\n'); 457 458 // Regs to spill are taken care of. 459 if (isRegToSpill(Reg)) 460 continue; 461 462 // Add all of VNI's live range to StackInt. 463 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 464 LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 465 466 // Find all spills and copies of VNI. 467 for (MachineRegisterInfo::use_instr_nodbg_iterator 468 UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 469 UI != E; ) { 470 MachineInstr &MI = *UI++; 471 if (!MI.isCopy() && !MI.mayStore()) 472 continue; 473 SlotIndex Idx = LIS.getInstructionIndex(MI); 474 if (LI->getVNInfoAt(Idx) != VNI) 475 continue; 476 477 // Follow sibling copies down the dominator tree. 478 if (Register DstReg = isFullCopyOf(MI, Reg)) { 479 if (isSibling(DstReg)) { 480 LiveInterval &DstLI = LIS.getInterval(DstReg); 481 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); 482 assert(DstVNI && "Missing defined value"); 483 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); 484 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 485 } 486 continue; 487 } 488 489 // Erase spills. 490 int FI; 491 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 492 LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI); 493 // eliminateDeadDefs won't normally remove stores, so switch opcode. 494 MI.setDesc(TII.get(TargetOpcode::KILL)); 495 DeadDefs.push_back(&MI); 496 ++NumSpillsRemoved; 497 if (HSpiller.rmFromMergeableSpills(MI, StackSlot)) 498 --NumSpills; 499 } 500 } 501 } while (!WorkList.empty()); 502 } 503 504 //===----------------------------------------------------------------------===// 505 // Rematerialization 506 //===----------------------------------------------------------------------===// 507 508 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 509 /// instruction cannot be eliminated. See through snippet copies 510 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 511 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 512 WorkList.push_back(std::make_pair(LI, VNI)); 513 do { 514 std::tie(LI, VNI) = WorkList.pop_back_val(); 515 if (!UsedValues.insert(VNI).second) 516 continue; 517 518 if (VNI->isPHIDef()) { 519 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 520 for (MachineBasicBlock *P : MBB->predecessors()) { 521 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P)); 522 if (PVNI) 523 WorkList.push_back(std::make_pair(LI, PVNI)); 524 } 525 continue; 526 } 527 528 // Follow snippet copies. 529 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 530 if (!SnippetCopies.count(MI)) 531 continue; 532 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 533 assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy"); 534 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); 535 assert(SnipVNI && "Snippet undefined before copy"); 536 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 537 } while (!WorkList.empty()); 538 } 539 540 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg, 541 MachineInstr &MI) { 542 if (!RestrictStatepointRemat) 543 return true; 544 // Here's a quick explanation of the problem we're trying to handle here: 545 // * There are some pseudo instructions with more vreg uses than there are 546 // physical registers on the machine. 547 // * This is normally handled by spilling the vreg, and folding the reload 548 // into the user instruction. (Thus decreasing the number of used vregs 549 // until the remainder can be assigned to physregs.) 550 // * However, since we may try to spill vregs in any order, we can end up 551 // trying to spill each operand to the instruction, and then rematting it 552 // instead. When that happens, the new live intervals (for the remats) are 553 // expected to be trivially assignable (i.e. RS_Done). However, since we 554 // may have more remats than physregs, we're guaranteed to fail to assign 555 // one. 556 // At the moment, we only handle this for STATEPOINTs since they're the only 557 // pseudo op where we've seen this. If we start seeing other instructions 558 // with the same problem, we need to revisit this. 559 if (MI.getOpcode() != TargetOpcode::STATEPOINT) 560 return true; 561 // For STATEPOINTs we allow re-materialization for fixed arguments only hoping 562 // that number of physical registers is enough to cover all fixed arguments. 563 // If it is not true we need to revisit it. 564 for (unsigned Idx = StatepointOpers(&MI).getVarIdx(), 565 EndIdx = MI.getNumOperands(); 566 Idx < EndIdx; ++Idx) { 567 MachineOperand &MO = MI.getOperand(Idx); 568 if (MO.isReg() && MO.getReg() == VReg) 569 return false; 570 } 571 return true; 572 } 573 574 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 575 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) { 576 // Analyze instruction 577 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 578 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg(), &Ops); 579 580 if (!RI.Reads) 581 return false; 582 583 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); 584 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 585 586 if (!ParentVNI) { 587 LLVM_DEBUG(dbgs() << "\tadding <undef> flags: "); 588 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 589 MachineOperand &MO = MI.getOperand(i); 590 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) 591 MO.setIsUndef(); 592 } 593 LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI); 594 return true; 595 } 596 597 if (SnippetCopies.count(&MI)) 598 return false; 599 600 LiveInterval &OrigLI = LIS.getInterval(Original); 601 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 602 LiveRangeEdit::Remat RM(ParentVNI); 603 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 604 605 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) { 606 markValueUsed(&VirtReg, ParentVNI); 607 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 608 return false; 609 } 610 611 // If the instruction also writes VirtReg.reg, it had better not require the 612 // same register for uses and defs. 613 if (RI.Tied) { 614 markValueUsed(&VirtReg, ParentVNI); 615 LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI); 616 return false; 617 } 618 619 // Before rematerializing into a register for a single instruction, try to 620 // fold a load into the instruction. That avoids allocating a new register. 621 if (RM.OrigMI->canFoldAsLoad() && 622 foldMemoryOperand(Ops, RM.OrigMI)) { 623 Edit->markRematerialized(RM.ParentVNI); 624 ++NumFoldedLoads; 625 return true; 626 } 627 628 // If we can't guarantee that we'll be able to actually assign the new vreg, 629 // we can't remat. 630 if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg(), MI)) { 631 markValueUsed(&VirtReg, ParentVNI); 632 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 633 return false; 634 } 635 636 // Allocate a new register for the remat. 637 Register NewVReg = Edit->createFrom(Original); 638 639 // Finally we can rematerialize OrigMI before MI. 640 SlotIndex DefIdx = 641 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI); 642 643 // We take the DebugLoc from MI, since OrigMI may be attributed to a 644 // different source location. 645 auto *NewMI = LIS.getInstructionFromIndex(DefIdx); 646 NewMI->setDebugLoc(MI.getDebugLoc()); 647 648 (void)DefIdx; 649 LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 650 << *LIS.getInstructionFromIndex(DefIdx)); 651 652 // Replace operands 653 for (const auto &OpPair : Ops) { 654 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 655 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) { 656 MO.setReg(NewVReg); 657 MO.setIsKill(); 658 } 659 } 660 LLVM_DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n'); 661 662 ++NumRemats; 663 return true; 664 } 665 666 /// reMaterializeAll - Try to rematerialize as many uses as possible, 667 /// and trim the live ranges after. 668 void InlineSpiller::reMaterializeAll() { 669 if (!Edit->anyRematerializable(AA)) 670 return; 671 672 UsedValues.clear(); 673 674 // Try to remat before all uses of snippets. 675 bool anyRemat = false; 676 for (Register Reg : RegsToSpill) { 677 LiveInterval &LI = LIS.getInterval(Reg); 678 for (MachineRegisterInfo::reg_bundle_iterator 679 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 680 RegI != E; ) { 681 MachineInstr &MI = *RegI++; 682 683 // Debug values are not allowed to affect codegen. 684 if (MI.isDebugValue()) 685 continue; 686 687 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug " 688 "instruction that isn't a DBG_VALUE"); 689 690 anyRemat |= reMaterializeFor(LI, MI); 691 } 692 } 693 if (!anyRemat) 694 return; 695 696 // Remove any values that were completely rematted. 697 for (Register Reg : RegsToSpill) { 698 LiveInterval &LI = LIS.getInterval(Reg); 699 for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 700 I != E; ++I) { 701 VNInfo *VNI = *I; 702 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 703 continue; 704 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 705 MI->addRegisterDead(Reg, &TRI); 706 if (!MI->allDefsAreDead()) 707 continue; 708 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); 709 DeadDefs.push_back(MI); 710 } 711 } 712 713 // Eliminate dead code after remat. Note that some snippet copies may be 714 // deleted here. 715 if (DeadDefs.empty()) 716 return; 717 LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 718 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 719 720 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions 721 // after rematerialization. To remove a VNI for a vreg from its LiveInterval, 722 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all 723 // removed, PHI VNI are still left in the LiveInterval. 724 // So to get rid of unused reg, we need to check whether it has non-dbg 725 // reference instead of whether it has non-empty interval. 726 unsigned ResultPos = 0; 727 for (Register Reg : RegsToSpill) { 728 if (MRI.reg_nodbg_empty(Reg)) { 729 Edit->eraseVirtReg(Reg); 730 continue; 731 } 732 733 assert(LIS.hasInterval(Reg) && 734 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && 735 "Empty and not used live-range?!"); 736 737 RegsToSpill[ResultPos++] = Reg; 738 } 739 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); 740 LLVM_DEBUG(dbgs() << RegsToSpill.size() 741 << " registers to spill after remat.\n"); 742 } 743 744 //===----------------------------------------------------------------------===// 745 // Spilling 746 //===----------------------------------------------------------------------===// 747 748 /// If MI is a load or store of StackSlot, it can be removed. 749 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) { 750 int FI = 0; 751 Register InstrReg = TII.isLoadFromStackSlot(*MI, FI); 752 bool IsLoad = InstrReg; 753 if (!IsLoad) 754 InstrReg = TII.isStoreToStackSlot(*MI, FI); 755 756 // We have a stack access. Is it the right register and slot? 757 if (InstrReg != Reg || FI != StackSlot) 758 return false; 759 760 if (!IsLoad) 761 HSpiller.rmFromMergeableSpills(*MI, StackSlot); 762 763 LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI); 764 LIS.RemoveMachineInstrFromMaps(*MI); 765 MI->eraseFromParent(); 766 767 if (IsLoad) { 768 ++NumReloadsRemoved; 769 --NumReloads; 770 } else { 771 ++NumSpillsRemoved; 772 --NumSpills; 773 } 774 775 return true; 776 } 777 778 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 779 LLVM_DUMP_METHOD 780 // Dump the range of instructions from B to E with their slot indexes. 781 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, 782 MachineBasicBlock::iterator E, 783 LiveIntervals const &LIS, 784 const char *const header, 785 Register VReg = Register()) { 786 char NextLine = '\n'; 787 char SlotIndent = '\t'; 788 789 if (std::next(B) == E) { 790 NextLine = ' '; 791 SlotIndent = ' '; 792 } 793 794 dbgs() << '\t' << header << ": " << NextLine; 795 796 for (MachineBasicBlock::iterator I = B; I != E; ++I) { 797 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot(); 798 799 // If a register was passed in and this instruction has it as a 800 // destination that is marked as an early clobber, print the 801 // early-clobber slot index. 802 if (VReg) { 803 MachineOperand *MO = I->findRegisterDefOperand(VReg); 804 if (MO && MO->isEarlyClobber()) 805 Idx = Idx.getRegSlot(true); 806 } 807 808 dbgs() << SlotIndent << Idx << '\t' << *I; 809 } 810 } 811 #endif 812 813 /// foldMemoryOperand - Try folding stack slot references in Ops into their 814 /// instructions. 815 /// 816 /// @param Ops Operand indices from AnalyzeVirtRegInBundle(). 817 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 818 /// @return True on success. 819 bool InlineSpiller:: 820 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops, 821 MachineInstr *LoadMI) { 822 if (Ops.empty()) 823 return false; 824 // Don't attempt folding in bundles. 825 MachineInstr *MI = Ops.front().first; 826 if (Ops.back().first != MI || MI->isBundled()) 827 return false; 828 829 bool WasCopy = MI->isCopy(); 830 Register ImpReg; 831 832 // TII::foldMemoryOperand will do what we need here for statepoint 833 // (fold load into use and remove corresponding def). We will replace 834 // uses of removed def with loads (spillAroundUses). 835 // For that to work we need to untie def and use to pass it through 836 // foldMemoryOperand and signal foldPatchpoint that it is allowed to 837 // fold them. 838 bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT; 839 840 // Spill subregs if the target allows it. 841 // We always want to spill subregs for stackmap/patchpoint pseudos. 842 bool SpillSubRegs = TII.isSubregFoldable() || 843 MI->getOpcode() == TargetOpcode::STATEPOINT || 844 MI->getOpcode() == TargetOpcode::PATCHPOINT || 845 MI->getOpcode() == TargetOpcode::STACKMAP; 846 847 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 848 // operands. 849 SmallVector<unsigned, 8> FoldOps; 850 for (const auto &OpPair : Ops) { 851 unsigned Idx = OpPair.second; 852 assert(MI == OpPair.first && "Instruction conflict during operand folding"); 853 MachineOperand &MO = MI->getOperand(Idx); 854 if (MO.isImplicit()) { 855 ImpReg = MO.getReg(); 856 continue; 857 } 858 859 if (!SpillSubRegs && MO.getSubReg()) 860 return false; 861 // We cannot fold a load instruction into a def. 862 if (LoadMI && MO.isDef()) 863 return false; 864 // Tied use operands should not be passed to foldMemoryOperand. 865 if (UntieRegs || !MI->isRegTiedToDefOperand(Idx)) 866 FoldOps.push_back(Idx); 867 } 868 869 // If we only have implicit uses, we won't be able to fold that. 870 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try! 871 if (FoldOps.empty()) 872 return false; 873 874 MachineInstrSpan MIS(MI, MI->getParent()); 875 876 SmallVector<std::pair<unsigned, unsigned> > TiedOps; 877 if (UntieRegs) 878 for (unsigned Idx : FoldOps) { 879 MachineOperand &MO = MI->getOperand(Idx); 880 if (!MO.isTied()) 881 continue; 882 unsigned Tied = MI->findTiedOperandIdx(Idx); 883 if (MO.isUse()) 884 TiedOps.emplace_back(Tied, Idx); 885 else { 886 assert(MO.isDef() && "Tied to not use and def?"); 887 TiedOps.emplace_back(Idx, Tied); 888 } 889 MI->untieRegOperand(Idx); 890 } 891 892 MachineInstr *FoldMI = 893 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS) 894 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM); 895 if (!FoldMI) { 896 // Re-tie operands. 897 for (auto Tied : TiedOps) 898 MI->tieOperands(Tied.first, Tied.second); 899 return false; 900 } 901 902 // Remove LIS for any dead defs in the original MI not in FoldMI. 903 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) { 904 if (!MO->isReg()) 905 continue; 906 Register Reg = MO->getReg(); 907 if (!Reg || Register::isVirtualRegister(Reg) || MRI.isReserved(Reg)) { 908 continue; 909 } 910 // Skip non-Defs, including undef uses and internal reads. 911 if (MO->isUse()) 912 continue; 913 PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI); 914 if (RI.FullyDefined) 915 continue; 916 // FoldMI does not define this physreg. Remove the LI segment. 917 assert(MO->isDead() && "Cannot fold physreg def"); 918 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 919 LIS.removePhysRegDefAt(Reg.asMCReg(), Idx); 920 } 921 922 int FI; 923 if (TII.isStoreToStackSlot(*MI, FI) && 924 HSpiller.rmFromMergeableSpills(*MI, FI)) 925 --NumSpills; 926 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI); 927 // Update the call site info. 928 if (MI->isCandidateForCallSiteEntry()) 929 MI->getMF()->moveCallSiteInfo(MI, FoldMI); 930 931 // If we've folded a store into an instruction labelled with debug-info, 932 // record a substitution from the old operand to the memory operand. Handle 933 // the simple common case where operand 0 is the one being folded, plus when 934 // the destination operand is also a tied def. More values could be 935 // substituted / preserved with more analysis. 936 if (MI->peekDebugInstrNum() && Ops[0].second == 0) { 937 // Helper lambda. 938 auto MakeSubstitution = [this,FoldMI,MI,&Ops]() { 939 // Substitute old operand zero to the new instructions memory operand. 940 unsigned OldOperandNum = Ops[0].second; 941 unsigned NewNum = FoldMI->getDebugInstrNum(); 942 unsigned OldNum = MI->getDebugInstrNum(); 943 MF.makeDebugValueSubstitution({OldNum, OldOperandNum}, 944 {NewNum, MachineFunction::DebugOperandMemNumber}); 945 }; 946 947 const MachineOperand &Op0 = MI->getOperand(Ops[0].second); 948 if (Ops.size() == 1 && Op0.isDef()) { 949 MakeSubstitution(); 950 } else if (Ops.size() == 2 && Op0.isDef() && MI->getOperand(1).isTied() && 951 Op0.getReg() == MI->getOperand(1).getReg()) { 952 MakeSubstitution(); 953 } 954 } else if (MI->peekDebugInstrNum()) { 955 // This is a debug-labelled instruction, but the operand being folded isn't 956 // at operand zero. Most likely this means it's a load being folded in. 957 // Substitute any register defs from operand zero up to the one being 958 // folded -- past that point, we don't know what the new operand indexes 959 // will be. 960 MF.substituteDebugValuesForInst(*MI, *FoldMI, Ops[0].second); 961 } 962 963 MI->eraseFromParent(); 964 965 // Insert any new instructions other than FoldMI into the LIS maps. 966 assert(!MIS.empty() && "Unexpected empty span of instructions!"); 967 for (MachineInstr &MI : MIS) 968 if (&MI != FoldMI) 969 LIS.InsertMachineInstrInMaps(MI); 970 971 // TII.foldMemoryOperand may have left some implicit operands on the 972 // instruction. Strip them. 973 if (ImpReg) 974 for (unsigned i = FoldMI->getNumOperands(); i; --i) { 975 MachineOperand &MO = FoldMI->getOperand(i - 1); 976 if (!MO.isReg() || !MO.isImplicit()) 977 break; 978 if (MO.getReg() == ImpReg) 979 FoldMI->RemoveOperand(i - 1); 980 } 981 982 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, 983 "folded")); 984 985 if (!WasCopy) 986 ++NumFolded; 987 else if (Ops.front().second == 0) { 988 ++NumSpills; 989 // If there is only 1 store instruction is required for spill, add it 990 // to mergeable list. In X86 AMX, 2 intructions are required to store. 991 // We disable the merge for this case. 992 if (std::distance(MIS.begin(), MIS.end()) <= 1) 993 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original); 994 } else 995 ++NumReloads; 996 return true; 997 } 998 999 void InlineSpiller::insertReload(Register NewVReg, 1000 SlotIndex Idx, 1001 MachineBasicBlock::iterator MI) { 1002 MachineBasicBlock &MBB = *MI->getParent(); 1003 1004 MachineInstrSpan MIS(MI, &MBB); 1005 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, 1006 MRI.getRegClass(NewVReg), &TRI); 1007 1008 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); 1009 1010 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload", 1011 NewVReg)); 1012 ++NumReloads; 1013 } 1014 1015 /// Check if \p Def fully defines a VReg with an undefined value. 1016 /// If that's the case, that means the value of VReg is actually 1017 /// not relevant. 1018 static bool isRealSpill(const MachineInstr &Def) { 1019 if (!Def.isImplicitDef()) 1020 return true; 1021 assert(Def.getNumOperands() == 1 && 1022 "Implicit def with more than one definition"); 1023 // We can say that the VReg defined by Def is undef, only if it is 1024 // fully defined by Def. Otherwise, some of the lanes may not be 1025 // undef and the value of the VReg matters. 1026 return Def.getOperand(0).getSubReg(); 1027 } 1028 1029 /// insertSpill - Insert a spill of NewVReg after MI. 1030 void InlineSpiller::insertSpill(Register NewVReg, bool isKill, 1031 MachineBasicBlock::iterator MI) { 1032 // Spill are not terminators, so inserting spills after terminators will 1033 // violate invariants in MachineVerifier. 1034 assert(!MI->isTerminator() && "Inserting a spill after a terminator"); 1035 MachineBasicBlock &MBB = *MI->getParent(); 1036 1037 MachineInstrSpan MIS(MI, &MBB); 1038 MachineBasicBlock::iterator SpillBefore = std::next(MI); 1039 bool IsRealSpill = isRealSpill(*MI); 1040 1041 if (IsRealSpill) 1042 TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot, 1043 MRI.getRegClass(NewVReg), &TRI); 1044 else 1045 // Don't spill undef value. 1046 // Anything works for undef, in particular keeping the memory 1047 // uninitialized is a viable option and it saves code size and 1048 // run time. 1049 BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL)) 1050 .addReg(NewVReg, getKillRegState(isKill)); 1051 1052 MachineBasicBlock::iterator Spill = std::next(MI); 1053 LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end()); 1054 for (const MachineInstr &MI : make_range(Spill, MIS.end())) 1055 getVDefInterval(MI, LIS); 1056 1057 LLVM_DEBUG( 1058 dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill")); 1059 ++NumSpills; 1060 // If there is only 1 store instruction is required for spill, add it 1061 // to mergeable list. In X86 AMX, 2 intructions are required to store. 1062 // We disable the merge for this case. 1063 if (IsRealSpill && std::distance(Spill, MIS.end()) <= 1) 1064 HSpiller.addToMergeableSpills(*Spill, StackSlot, Original); 1065 } 1066 1067 /// spillAroundUses - insert spill code around each use of Reg. 1068 void InlineSpiller::spillAroundUses(Register Reg) { 1069 LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n'); 1070 LiveInterval &OldLI = LIS.getInterval(Reg); 1071 1072 // Iterate over instructions using Reg. 1073 for (MachineRegisterInfo::reg_bundle_iterator 1074 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 1075 RegI != E; ) { 1076 MachineInstr *MI = &*(RegI++); 1077 1078 // Debug values are not allowed to affect codegen. 1079 if (MI->isDebugValue()) { 1080 // Modify DBG_VALUE now that the value is in a spill slot. 1081 MachineBasicBlock *MBB = MI->getParent(); 1082 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI); 1083 buildDbgValueForSpill(*MBB, MI, *MI, StackSlot, Reg); 1084 MBB->erase(MI); 1085 continue; 1086 } 1087 1088 assert(!MI->isDebugInstr() && "Did not expect to find a use in debug " 1089 "instruction that isn't a DBG_VALUE"); 1090 1091 // Ignore copies to/from snippets. We'll delete them. 1092 if (SnippetCopies.count(MI)) 1093 continue; 1094 1095 // Stack slot accesses may coalesce away. 1096 if (coalesceStackAccess(MI, Reg)) 1097 continue; 1098 1099 // Analyze instruction. 1100 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; 1101 VirtRegInfo RI = AnalyzeVirtRegInBundle(*MI, Reg, &Ops); 1102 1103 // Find the slot index where this instruction reads and writes OldLI. 1104 // This is usually the def slot, except for tied early clobbers. 1105 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 1106 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) 1107 if (SlotIndex::isSameInstr(Idx, VNI->def)) 1108 Idx = VNI->def; 1109 1110 // Check for a sibling copy. 1111 Register SibReg = isFullCopyOf(*MI, Reg); 1112 if (SibReg && isSibling(SibReg)) { 1113 // This may actually be a copy between snippets. 1114 if (isRegToSpill(SibReg)) { 1115 LLVM_DEBUG(dbgs() << "Found new snippet copy: " << *MI); 1116 SnippetCopies.insert(MI); 1117 continue; 1118 } 1119 if (RI.Writes) { 1120 if (hoistSpillInsideBB(OldLI, *MI)) { 1121 // This COPY is now dead, the value is already in the stack slot. 1122 MI->getOperand(0).setIsDead(); 1123 DeadDefs.push_back(MI); 1124 continue; 1125 } 1126 } else { 1127 // This is a reload for a sib-reg copy. Drop spills downstream. 1128 LiveInterval &SibLI = LIS.getInterval(SibReg); 1129 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 1130 // The COPY will fold to a reload below. 1131 } 1132 } 1133 1134 // Attempt to fold memory ops. 1135 if (foldMemoryOperand(Ops)) 1136 continue; 1137 1138 // Create a new virtual register for spill/fill. 1139 // FIXME: Infer regclass from instruction alone. 1140 Register NewVReg = Edit->createFrom(Reg); 1141 1142 if (RI.Reads) 1143 insertReload(NewVReg, Idx, MI); 1144 1145 // Rewrite instruction operands. 1146 bool hasLiveDef = false; 1147 for (const auto &OpPair : Ops) { 1148 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 1149 MO.setReg(NewVReg); 1150 if (MO.isUse()) { 1151 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second)) 1152 MO.setIsKill(); 1153 } else { 1154 if (!MO.isDead()) 1155 hasLiveDef = true; 1156 } 1157 } 1158 LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n'); 1159 1160 // FIXME: Use a second vreg if instruction has no tied ops. 1161 if (RI.Writes) 1162 if (hasLiveDef) 1163 insertSpill(NewVReg, true, MI); 1164 } 1165 } 1166 1167 /// spillAll - Spill all registers remaining after rematerialization. 1168 void InlineSpiller::spillAll() { 1169 // Update LiveStacks now that we are committed to spilling. 1170 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 1171 StackSlot = VRM.assignVirt2StackSlot(Original); 1172 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 1173 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); 1174 } else 1175 StackInt = &LSS.getInterval(StackSlot); 1176 1177 if (Original != Edit->getReg()) 1178 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 1179 1180 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 1181 for (Register Reg : RegsToSpill) 1182 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg), 1183 StackInt->getValNumInfo(0)); 1184 LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 1185 1186 // Spill around uses of all RegsToSpill. 1187 for (Register Reg : RegsToSpill) 1188 spillAroundUses(Reg); 1189 1190 // Hoisted spills may cause dead code. 1191 if (!DeadDefs.empty()) { 1192 LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 1193 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 1194 } 1195 1196 // Finally delete the SnippetCopies. 1197 for (Register Reg : RegsToSpill) { 1198 for (MachineRegisterInfo::reg_instr_iterator 1199 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); 1200 RI != E; ) { 1201 MachineInstr &MI = *(RI++); 1202 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy"); 1203 // FIXME: Do this with a LiveRangeEdit callback. 1204 LIS.RemoveMachineInstrFromMaps(MI); 1205 MI.eraseFromParent(); 1206 } 1207 } 1208 1209 // Delete all spilled registers. 1210 for (Register Reg : RegsToSpill) 1211 Edit->eraseVirtReg(Reg); 1212 } 1213 1214 void InlineSpiller::spill(LiveRangeEdit &edit) { 1215 ++NumSpilledRanges; 1216 Edit = &edit; 1217 assert(!Register::isStackSlot(edit.getReg()) && 1218 "Trying to spill a stack slot."); 1219 // Share a stack slot among all descendants of Original. 1220 Original = VRM.getOriginal(edit.getReg()); 1221 StackSlot = VRM.getStackSlot(Original); 1222 StackInt = nullptr; 1223 1224 LLVM_DEBUG(dbgs() << "Inline spilling " 1225 << TRI.getRegClassName(MRI.getRegClass(edit.getReg())) 1226 << ':' << edit.getParent() << "\nFrom original " 1227 << printReg(Original) << '\n'); 1228 assert(edit.getParent().isSpillable() && 1229 "Attempting to spill already spilled value."); 1230 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1231 1232 collectRegsToSpill(); 1233 reMaterializeAll(); 1234 1235 // Remat may handle everything. 1236 if (!RegsToSpill.empty()) 1237 spillAll(); 1238 1239 Edit->calculateRegClassAndHint(MF, VRAI); 1240 } 1241 1242 /// Optimizations after all the reg selections and spills are done. 1243 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); } 1244 1245 /// When a spill is inserted, add the spill to MergeableSpills map. 1246 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot, 1247 unsigned Original) { 1248 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1249 LiveInterval &OrigLI = LIS.getInterval(Original); 1250 // save a copy of LiveInterval in StackSlotToOrigLI because the original 1251 // LiveInterval may be cleared after all its references are spilled. 1252 if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) { 1253 auto LI = std::make_unique<LiveInterval>(OrigLI.reg(), OrigLI.weight()); 1254 LI->assign(OrigLI, Allocator); 1255 StackSlotToOrigLI[StackSlot] = std::move(LI); 1256 } 1257 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1258 VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot()); 1259 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1260 MergeableSpills[MIdx].insert(&Spill); 1261 } 1262 1263 /// When a spill is removed, remove the spill from MergeableSpills map. 1264 /// Return true if the spill is removed successfully. 1265 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill, 1266 int StackSlot) { 1267 auto It = StackSlotToOrigLI.find(StackSlot); 1268 if (It == StackSlotToOrigLI.end()) 1269 return false; 1270 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1271 VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot()); 1272 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1273 return MergeableSpills[MIdx].erase(&Spill); 1274 } 1275 1276 /// Check BB to see if it is a possible target BB to place a hoisted spill, 1277 /// i.e., there should be a living sibling of OrigReg at the insert point. 1278 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 1279 MachineBasicBlock &BB, Register &LiveReg) { 1280 SlotIndex Idx = IPA.getLastInsertPoint(OrigLI, BB); 1281 // The original def could be after the last insert point in the root block, 1282 // we can't hoist to here. 1283 if (Idx < OrigVNI.def) { 1284 // TODO: We could be better here. If LI is not alive in landing pad 1285 // we could hoist spill after LIP. 1286 LLVM_DEBUG(dbgs() << "can't spill in root block - def after LIP\n"); 1287 return false; 1288 } 1289 Register OrigReg = OrigLI.reg(); 1290 SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg]; 1291 assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI"); 1292 1293 for (const Register &SibReg : Siblings) { 1294 LiveInterval &LI = LIS.getInterval(SibReg); 1295 VNInfo *VNI = LI.getVNInfoAt(Idx); 1296 if (VNI) { 1297 LiveReg = SibReg; 1298 return true; 1299 } 1300 } 1301 return false; 1302 } 1303 1304 /// Remove redundant spills in the same BB. Save those redundant spills in 1305 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map. 1306 void HoistSpillHelper::rmRedundantSpills( 1307 SmallPtrSet<MachineInstr *, 16> &Spills, 1308 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1309 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1310 // For each spill saw, check SpillBBToSpill[] and see if its BB already has 1311 // another spill inside. If a BB contains more than one spill, only keep the 1312 // earlier spill with smaller SlotIndex. 1313 for (const auto CurrentSpill : Spills) { 1314 MachineBasicBlock *Block = CurrentSpill->getParent(); 1315 MachineDomTreeNode *Node = MDT.getBase().getNode(Block); 1316 MachineInstr *PrevSpill = SpillBBToSpill[Node]; 1317 if (PrevSpill) { 1318 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill); 1319 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill); 1320 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill; 1321 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill; 1322 SpillsToRm.push_back(SpillToRm); 1323 SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep; 1324 } else { 1325 SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill; 1326 } 1327 } 1328 for (const auto SpillToRm : SpillsToRm) 1329 Spills.erase(SpillToRm); 1330 } 1331 1332 /// Starting from \p Root find a top-down traversal order of the dominator 1333 /// tree to visit all basic blocks containing the elements of \p Spills. 1334 /// Redundant spills will be found and put into \p SpillsToRm at the same 1335 /// time. \p SpillBBToSpill will be populated as part of the process and 1336 /// maps a basic block to the first store occurring in the basic block. 1337 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre 1338 void HoistSpillHelper::getVisitOrders( 1339 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 1340 SmallVectorImpl<MachineDomTreeNode *> &Orders, 1341 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1342 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 1343 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1344 // The set contains all the possible BB nodes to which we may hoist 1345 // original spills. 1346 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet; 1347 // Save the BB nodes on the path from the first BB node containing 1348 // non-redundant spill to the Root node. 1349 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath; 1350 // All the spills to be hoisted must originate from a single def instruction 1351 // to the OrigReg. It means the def instruction should dominate all the spills 1352 // to be hoisted. We choose the BB where the def instruction is located as 1353 // the Root. 1354 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom(); 1355 // For every node on the dominator tree with spill, walk up on the dominator 1356 // tree towards the Root node until it is reached. If there is other node 1357 // containing spill in the middle of the path, the previous spill saw will 1358 // be redundant and the node containing it will be removed. All the nodes on 1359 // the path starting from the first node with non-redundant spill to the Root 1360 // node will be added to the WorkSet, which will contain all the possible 1361 // locations where spills may be hoisted to after the loop below is done. 1362 for (const auto Spill : Spills) { 1363 MachineBasicBlock *Block = Spill->getParent(); 1364 MachineDomTreeNode *Node = MDT[Block]; 1365 MachineInstr *SpillToRm = nullptr; 1366 while (Node != RootIDomNode) { 1367 // If Node dominates Block, and it already contains a spill, the spill in 1368 // Block will be redundant. 1369 if (Node != MDT[Block] && SpillBBToSpill[Node]) { 1370 SpillToRm = SpillBBToSpill[MDT[Block]]; 1371 break; 1372 /// If we see the Node already in WorkSet, the path from the Node to 1373 /// the Root node must already be traversed by another spill. 1374 /// Then no need to repeat. 1375 } else if (WorkSet.count(Node)) { 1376 break; 1377 } else { 1378 NodesOnPath.insert(Node); 1379 } 1380 Node = Node->getIDom(); 1381 } 1382 if (SpillToRm) { 1383 SpillsToRm.push_back(SpillToRm); 1384 } else { 1385 // Add a BB containing the original spills to SpillsToKeep -- i.e., 1386 // set the initial status before hoisting start. The value of BBs 1387 // containing original spills is set to 0, in order to descriminate 1388 // with BBs containing hoisted spills which will be inserted to 1389 // SpillsToKeep later during hoisting. 1390 SpillsToKeep[MDT[Block]] = 0; 1391 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end()); 1392 } 1393 NodesOnPath.clear(); 1394 } 1395 1396 // Sort the nodes in WorkSet in top-down order and save the nodes 1397 // in Orders. Orders will be used for hoisting in runHoistSpills. 1398 unsigned idx = 0; 1399 Orders.push_back(MDT.getBase().getNode(Root)); 1400 do { 1401 MachineDomTreeNode *Node = Orders[idx++]; 1402 for (MachineDomTreeNode *Child : Node->children()) { 1403 if (WorkSet.count(Child)) 1404 Orders.push_back(Child); 1405 } 1406 } while (idx != Orders.size()); 1407 assert(Orders.size() == WorkSet.size() && 1408 "Orders have different size with WorkSet"); 1409 1410 #ifndef NDEBUG 1411 LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n"); 1412 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1413 for (; RIt != Orders.rend(); RIt++) 1414 LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ","); 1415 LLVM_DEBUG(dbgs() << "\n"); 1416 #endif 1417 } 1418 1419 /// Try to hoist spills according to BB hotness. The spills to removed will 1420 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in 1421 /// \p SpillsToIns. 1422 void HoistSpillHelper::runHoistSpills( 1423 LiveInterval &OrigLI, VNInfo &OrigVNI, 1424 SmallPtrSet<MachineInstr *, 16> &Spills, 1425 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1426 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) { 1427 // Visit order of dominator tree nodes. 1428 SmallVector<MachineDomTreeNode *, 32> Orders; 1429 // SpillsToKeep contains all the nodes where spills are to be inserted 1430 // during hoisting. If the spill to be inserted is an original spill 1431 // (not a hoisted one), the value of the map entry is 0. If the spill 1432 // is a hoisted spill, the value of the map entry is the VReg to be used 1433 // as the source of the spill. 1434 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep; 1435 // Map from BB to the first spill inside of it. 1436 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill; 1437 1438 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill); 1439 1440 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def); 1441 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep, 1442 SpillBBToSpill); 1443 1444 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of 1445 // nodes set and the cost of all the spills inside those nodes. 1446 // The nodes set are the locations where spills are to be inserted 1447 // in the subtree of current node. 1448 using NodesCostPair = 1449 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>; 1450 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap; 1451 1452 // Iterate Orders set in reverse order, which will be a bottom-up order 1453 // in the dominator tree. Once we visit a dom tree node, we know its 1454 // children have already been visited and the spill locations in the 1455 // subtrees of all the children have been determined. 1456 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1457 for (; RIt != Orders.rend(); RIt++) { 1458 MachineBasicBlock *Block = (*RIt)->getBlock(); 1459 1460 // If Block contains an original spill, simply continue. 1461 if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) { 1462 SpillsInSubTreeMap[*RIt].first.insert(*RIt); 1463 // SpillsInSubTreeMap[*RIt].second contains the cost of spill. 1464 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block); 1465 continue; 1466 } 1467 1468 // Collect spills in subtree of current node (*RIt) to 1469 // SpillsInSubTreeMap[*RIt].first. 1470 for (MachineDomTreeNode *Child : (*RIt)->children()) { 1471 if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end()) 1472 continue; 1473 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below 1474 // should be placed before getting the begin and end iterators of 1475 // SpillsInSubTreeMap[Child].first, or else the iterators may be 1476 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time 1477 // and the map grows and then the original buckets in the map are moved. 1478 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1479 SpillsInSubTreeMap[*RIt].first; 1480 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1481 SubTreeCost += SpillsInSubTreeMap[Child].second; 1482 auto BI = SpillsInSubTreeMap[Child].first.begin(); 1483 auto EI = SpillsInSubTreeMap[Child].first.end(); 1484 SpillsInSubTree.insert(BI, EI); 1485 SpillsInSubTreeMap.erase(Child); 1486 } 1487 1488 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1489 SpillsInSubTreeMap[*RIt].first; 1490 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1491 // No spills in subtree, simply continue. 1492 if (SpillsInSubTree.empty()) 1493 continue; 1494 1495 // Check whether Block is a possible candidate to insert spill. 1496 Register LiveReg; 1497 if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg)) 1498 continue; 1499 1500 // If there are multiple spills that could be merged, bias a little 1501 // to hoist the spill. 1502 BranchProbability MarginProb = (SpillsInSubTree.size() > 1) 1503 ? BranchProbability(9, 10) 1504 : BranchProbability(1, 1); 1505 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) { 1506 // Hoist: Move spills to current Block. 1507 for (const auto SpillBB : SpillsInSubTree) { 1508 // When SpillBB is a BB contains original spill, insert the spill 1509 // to SpillsToRm. 1510 if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() && 1511 !SpillsToKeep[SpillBB]) { 1512 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB]; 1513 SpillsToRm.push_back(SpillToRm); 1514 } 1515 // SpillBB will not contain spill anymore, remove it from SpillsToKeep. 1516 SpillsToKeep.erase(SpillBB); 1517 } 1518 // Current Block is the BB containing the new hoisted spill. Add it to 1519 // SpillsToKeep. LiveReg is the source of the new spill. 1520 SpillsToKeep[*RIt] = LiveReg; 1521 LLVM_DEBUG({ 1522 dbgs() << "spills in BB: "; 1523 for (const auto Rspill : SpillsInSubTree) 1524 dbgs() << Rspill->getBlock()->getNumber() << " "; 1525 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber() 1526 << "\n"; 1527 }); 1528 SpillsInSubTree.clear(); 1529 SpillsInSubTree.insert(*RIt); 1530 SubTreeCost = MBFI.getBlockFreq(Block); 1531 } 1532 } 1533 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill), 1534 // save them to SpillsToIns. 1535 for (const auto &Ent : SpillsToKeep) { 1536 if (Ent.second) 1537 SpillsToIns[Ent.first->getBlock()] = Ent.second; 1538 } 1539 } 1540 1541 /// For spills with equal values, remove redundant spills and hoist those left 1542 /// to less hot spots. 1543 /// 1544 /// Spills with equal values will be collected into the same set in 1545 /// MergeableSpills when spill is inserted. These equal spills are originated 1546 /// from the same defining instruction and are dominated by the instruction. 1547 /// Before hoisting all the equal spills, redundant spills inside in the same 1548 /// BB are first marked to be deleted. Then starting from the spills left, walk 1549 /// up on the dominator tree towards the Root node where the define instruction 1550 /// is located, mark the dominated spills to be deleted along the way and 1551 /// collect the BB nodes on the path from non-dominated spills to the define 1552 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places 1553 /// where we are considering to hoist the spills. We iterate the WorkSet in 1554 /// bottom-up order, and for each node, we will decide whether to hoist spills 1555 /// inside its subtree to that node. In this way, we can get benefit locally 1556 /// even if hoisting all the equal spills to one cold place is impossible. 1557 void HoistSpillHelper::hoistAllSpills() { 1558 SmallVector<Register, 4> NewVRegs; 1559 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this); 1560 1561 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { 1562 Register Reg = Register::index2VirtReg(i); 1563 Register Original = VRM.getPreSplitReg(Reg); 1564 if (!MRI.def_empty(Reg)) 1565 Virt2SiblingsMap[Original].insert(Reg); 1566 } 1567 1568 // Each entry in MergeableSpills contains a spill set with equal values. 1569 for (auto &Ent : MergeableSpills) { 1570 int Slot = Ent.first.first; 1571 LiveInterval &OrigLI = *StackSlotToOrigLI[Slot]; 1572 VNInfo *OrigVNI = Ent.first.second; 1573 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second; 1574 if (Ent.second.empty()) 1575 continue; 1576 1577 LLVM_DEBUG({ 1578 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n" 1579 << "Equal spills in BB: "; 1580 for (const auto spill : EqValSpills) 1581 dbgs() << spill->getParent()->getNumber() << " "; 1582 dbgs() << "\n"; 1583 }); 1584 1585 // SpillsToRm is the spill set to be removed from EqValSpills. 1586 SmallVector<MachineInstr *, 16> SpillsToRm; 1587 // SpillsToIns is the spill set to be newly inserted after hoisting. 1588 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns; 1589 1590 runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns); 1591 1592 LLVM_DEBUG({ 1593 dbgs() << "Finally inserted spills in BB: "; 1594 for (const auto &Ispill : SpillsToIns) 1595 dbgs() << Ispill.first->getNumber() << " "; 1596 dbgs() << "\nFinally removed spills in BB: "; 1597 for (const auto Rspill : SpillsToRm) 1598 dbgs() << Rspill->getParent()->getNumber() << " "; 1599 dbgs() << "\n"; 1600 }); 1601 1602 // Stack live range update. 1603 LiveInterval &StackIntvl = LSS.getInterval(Slot); 1604 if (!SpillsToIns.empty() || !SpillsToRm.empty()) 1605 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI, 1606 StackIntvl.getValNumInfo(0)); 1607 1608 // Insert hoisted spills. 1609 for (auto const &Insert : SpillsToIns) { 1610 MachineBasicBlock *BB = Insert.first; 1611 Register LiveReg = Insert.second; 1612 MachineBasicBlock::iterator MII = IPA.getLastInsertPointIter(OrigLI, *BB); 1613 MachineInstrSpan MIS(MII, BB); 1614 TII.storeRegToStackSlot(*BB, MII, LiveReg, false, Slot, 1615 MRI.getRegClass(LiveReg), &TRI); 1616 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII); 1617 for (const MachineInstr &MI : make_range(MIS.begin(), MII)) 1618 getVDefInterval(MI, LIS); 1619 ++NumSpills; 1620 } 1621 1622 // Remove redundant spills or change them to dead instructions. 1623 NumSpills -= SpillsToRm.size(); 1624 for (auto const RMEnt : SpillsToRm) { 1625 RMEnt->setDesc(TII.get(TargetOpcode::KILL)); 1626 for (unsigned i = RMEnt->getNumOperands(); i; --i) { 1627 MachineOperand &MO = RMEnt->getOperand(i - 1); 1628 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead()) 1629 RMEnt->RemoveOperand(i - 1); 1630 } 1631 } 1632 Edit.eliminateDeadDefs(SpillsToRm, None, AA); 1633 } 1634 } 1635 1636 /// For VirtReg clone, the \p New register should have the same physreg or 1637 /// stackslot as the \p old register. 1638 void HoistSpillHelper::LRE_DidCloneVirtReg(Register New, Register Old) { 1639 if (VRM.hasPhys(Old)) 1640 VRM.assignVirt2Phys(New, VRM.getPhys(Old)); 1641 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT) 1642 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old)); 1643 else 1644 llvm_unreachable("VReg should be assigned either physreg or stackslot"); 1645 if (VRM.hasShape(Old)) 1646 VRM.assignVirt2Shape(New, VRM.getShape(Old)); 1647 } 1648