1 //===-------- InlineSpiller.cpp - Insert spills and restores inline -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The inline spiller modifies the machine function directly instead of 11 // inserting spills and restores in VirtRegMap. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "Spiller.h" 17 #include "LiveRangeEdit.h" 18 #include "VirtRegMap.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/LiveStackAnalysis.h" 23 #include "llvm/CodeGen/MachineDominators.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineLoopInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/Target/TargetMachine.h" 29 #include "llvm/Target/TargetInstrInfo.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 35 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 36 STATISTIC(NumSnippets, "Number of snippets included in spills"); 37 STATISTIC(NumSpills, "Number of spills inserted"); 38 STATISTIC(NumReloads, "Number of reloads inserted"); 39 STATISTIC(NumFolded, "Number of folded stack accesses"); 40 STATISTIC(NumFoldedLoads, "Number of folded loads"); 41 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 42 STATISTIC(NumOmitReloadSpill, "Number of omitted spills after reloads"); 43 STATISTIC(NumHoistLocal, "Number of locally hoisted spills"); 44 STATISTIC(NumHoistGlobal, "Number of globally hoisted spills"); 45 STATISTIC(NumRedundantSpills, "Number of redundant spills identified"); 46 47 namespace { 48 class InlineSpiller : public Spiller { 49 MachineFunctionPass &Pass; 50 MachineFunction &MF; 51 LiveIntervals &LIS; 52 LiveStacks &LSS; 53 AliasAnalysis *AA; 54 MachineDominatorTree &MDT; 55 MachineLoopInfo &Loops; 56 VirtRegMap &VRM; 57 MachineFrameInfo &MFI; 58 MachineRegisterInfo &MRI; 59 const TargetInstrInfo &TII; 60 const TargetRegisterInfo &TRI; 61 62 // Variables that are valid during spill(), but used by multiple methods. 63 LiveRangeEdit *Edit; 64 LiveInterval *StackInt; 65 int StackSlot; 66 unsigned Original; 67 68 // All registers to spill to StackSlot, including the main register. 69 SmallVector<unsigned, 8> RegsToSpill; 70 71 // All COPY instructions to/from snippets. 72 // They are ignored since both operands refer to the same stack slot. 73 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 74 75 // Values that failed to remat at some point. 76 SmallPtrSet<VNInfo*, 8> UsedValues; 77 78 // Information about a value that was defined by a copy from a sibling 79 // register. 80 struct SibValueInfo { 81 // True when all reaching defs were reloads: No spill is necessary. 82 bool AllDefsAreReloads; 83 84 // The preferred register to spill. 85 unsigned SpillReg; 86 87 // The value of SpillReg that should be spilled. 88 VNInfo *SpillVNI; 89 90 // A defining instruction that is not a sibling copy or a reload, or NULL. 91 // This can be used as a template for rematerialization. 92 MachineInstr *DefMI; 93 94 SibValueInfo(unsigned Reg, VNInfo *VNI) 95 : AllDefsAreReloads(false), SpillReg(Reg), SpillVNI(VNI), DefMI(0) {} 96 }; 97 98 // Values in RegsToSpill defined by sibling copies. 99 typedef DenseMap<VNInfo*, SibValueInfo> SibValueMap; 100 SibValueMap SibValues; 101 102 // Dead defs generated during spilling. 103 SmallVector<MachineInstr*, 8> DeadDefs; 104 105 ~InlineSpiller() {} 106 107 public: 108 InlineSpiller(MachineFunctionPass &pass, 109 MachineFunction &mf, 110 VirtRegMap &vrm) 111 : Pass(pass), 112 MF(mf), 113 LIS(pass.getAnalysis<LiveIntervals>()), 114 LSS(pass.getAnalysis<LiveStacks>()), 115 AA(&pass.getAnalysis<AliasAnalysis>()), 116 MDT(pass.getAnalysis<MachineDominatorTree>()), 117 Loops(pass.getAnalysis<MachineLoopInfo>()), 118 VRM(vrm), 119 MFI(*mf.getFrameInfo()), 120 MRI(mf.getRegInfo()), 121 TII(*mf.getTarget().getInstrInfo()), 122 TRI(*mf.getTarget().getRegisterInfo()) {} 123 124 void spill(LiveRangeEdit &); 125 126 private: 127 bool isSnippet(const LiveInterval &SnipLI); 128 void collectRegsToSpill(); 129 130 bool isRegToSpill(unsigned Reg) { 131 return std::find(RegsToSpill.begin(), 132 RegsToSpill.end(), Reg) != RegsToSpill.end(); 133 } 134 135 bool isSibling(unsigned Reg); 136 MachineInstr *traceSiblingValue(unsigned, VNInfo*, VNInfo*); 137 void analyzeSiblingValues(); 138 139 bool hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI); 140 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 141 142 void markValueUsed(LiveInterval*, VNInfo*); 143 bool reMaterializeFor(LiveInterval&, MachineBasicBlock::iterator MI); 144 void reMaterializeAll(); 145 146 bool coalesceStackAccess(MachineInstr *MI, unsigned Reg); 147 bool foldMemoryOperand(MachineBasicBlock::iterator MI, 148 const SmallVectorImpl<unsigned> &Ops, 149 MachineInstr *LoadMI = 0); 150 void insertReload(LiveInterval &NewLI, SlotIndex, 151 MachineBasicBlock::iterator MI); 152 void insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI, 153 SlotIndex, MachineBasicBlock::iterator MI); 154 155 void spillAroundUses(unsigned Reg); 156 void spillAll(); 157 }; 158 } 159 160 namespace llvm { 161 Spiller *createInlineSpiller(MachineFunctionPass &pass, 162 MachineFunction &mf, 163 VirtRegMap &vrm) { 164 return new InlineSpiller(pass, mf, vrm); 165 } 166 } 167 168 //===----------------------------------------------------------------------===// 169 // Snippets 170 //===----------------------------------------------------------------------===// 171 172 // When spilling a virtual register, we also spill any snippets it is connected 173 // to. The snippets are small live ranges that only have a single real use, 174 // leftovers from live range splitting. Spilling them enables memory operand 175 // folding or tightens the live range around the single use. 176 // 177 // This minimizes register pressure and maximizes the store-to-load distance for 178 // spill slots which can be important in tight loops. 179 180 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 181 /// otherwise return 0. 182 static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) { 183 if (!MI->isFullCopy()) 184 return 0; 185 if (MI->getOperand(0).getReg() == Reg) 186 return MI->getOperand(1).getReg(); 187 if (MI->getOperand(1).getReg() == Reg) 188 return MI->getOperand(0).getReg(); 189 return 0; 190 } 191 192 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 193 /// It is assumed that SnipLI is a virtual register with the same original as 194 /// Edit->getReg(). 195 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 196 unsigned Reg = Edit->getReg(); 197 198 // A snippet is a tiny live range with only a single instruction using it 199 // besides copies to/from Reg or spills/fills. We accept: 200 // 201 // %snip = COPY %Reg / FILL fi# 202 // %snip = USE %snip 203 // %Reg = COPY %snip / SPILL %snip, fi# 204 // 205 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) 206 return false; 207 208 MachineInstr *UseMI = 0; 209 210 // Check that all uses satisfy our criteria. 211 for (MachineRegisterInfo::reg_nodbg_iterator 212 RI = MRI.reg_nodbg_begin(SnipLI.reg); 213 MachineInstr *MI = RI.skipInstruction();) { 214 215 // Allow copies to/from Reg. 216 if (isFullCopyOf(MI, Reg)) 217 continue; 218 219 // Allow stack slot loads. 220 int FI; 221 if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 222 continue; 223 224 // Allow stack slot stores. 225 if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 226 continue; 227 228 // Allow a single additional instruction. 229 if (UseMI && MI != UseMI) 230 return false; 231 UseMI = MI; 232 } 233 return true; 234 } 235 236 /// collectRegsToSpill - Collect live range snippets that only have a single 237 /// real use. 238 void InlineSpiller::collectRegsToSpill() { 239 unsigned Reg = Edit->getReg(); 240 241 // Main register always spills. 242 RegsToSpill.assign(1, Reg); 243 SnippetCopies.clear(); 244 245 // Snippets all have the same original, so there can't be any for an original 246 // register. 247 if (Original == Reg) 248 return; 249 250 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg); 251 MachineInstr *MI = RI.skipInstruction();) { 252 unsigned SnipReg = isFullCopyOf(MI, Reg); 253 if (!isSibling(SnipReg)) 254 continue; 255 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 256 if (!isSnippet(SnipLI)) 257 continue; 258 SnippetCopies.insert(MI); 259 if (isRegToSpill(SnipReg)) 260 continue; 261 RegsToSpill.push_back(SnipReg); 262 DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 263 ++NumSnippets; 264 } 265 } 266 267 268 //===----------------------------------------------------------------------===// 269 // Sibling Values 270 //===----------------------------------------------------------------------===// 271 272 // After live range splitting, some values to be spilled may be defined by 273 // copies from sibling registers. We trace the sibling copies back to the 274 // original value if it still exists. We need it for rematerialization. 275 // 276 // Even when the value can't be rematerialized, we still want to determine if 277 // the value has already been spilled, or we may want to hoist the spill from a 278 // loop. 279 280 bool InlineSpiller::isSibling(unsigned Reg) { 281 return TargetRegisterInfo::isVirtualRegister(Reg) && 282 VRM.getOriginal(Reg) == Original; 283 } 284 285 /// traceSiblingValue - Trace a value that is about to be spilled back to the 286 /// real defining instructions by looking through sibling copies. Always stay 287 /// within the range of OrigVNI so the registers are known to carry the same 288 /// value. 289 /// 290 /// Determine if the value is defined by all reloads, so spilling isn't 291 /// necessary - the value is already in the stack slot. 292 /// 293 /// Return a defining instruction that may be a candidate for rematerialization. 294 /// 295 MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI, 296 VNInfo *OrigVNI) { 297 DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':' 298 << UseVNI->id << '@' << UseVNI->def << '\n'); 299 SmallPtrSet<VNInfo*, 8> Visited; 300 SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList; 301 WorkList.push_back(std::make_pair(UseReg, UseVNI)); 302 303 // Best spill candidate seen so far. This must dominate UseVNI. 304 SibValueInfo SVI(UseReg, UseVNI); 305 MachineBasicBlock *UseMBB = LIS.getMBBFromIndex(UseVNI->def); 306 MachineBasicBlock *SpillMBB = UseMBB; 307 unsigned SpillDepth = Loops.getLoopDepth(SpillMBB); 308 bool SeenOrigPHI = false; // Original PHI met. 309 310 do { 311 unsigned Reg; 312 VNInfo *VNI; 313 tie(Reg, VNI) = WorkList.pop_back_val(); 314 if (!Visited.insert(VNI)) 315 continue; 316 317 // Is this value a better spill candidate? 318 if (!isRegToSpill(Reg)) { 319 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 320 if (MBB == SpillMBB) { 321 // This is an alternative def earlier in the same MBB. 322 // Hoist the spill as far as possible in SpillMBB. This can ease 323 // register pressure: 324 // 325 // x = def 326 // y = use x 327 // s = copy x 328 // 329 // Hoisting the spill of s to immediately after the def removes the 330 // interference between x and y: 331 // 332 // x = def 333 // spill x 334 // y = use x<kill> 335 // 336 if (VNI->def < SVI.SpillVNI->def) { 337 DEBUG(dbgs() << " hoist in BB#" << MBB->getNumber() << ": " 338 << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def 339 << '\n'); 340 SVI.SpillReg = Reg; 341 SVI.SpillVNI = VNI; 342 } 343 } else if (MBB != UseMBB && MDT.dominates(MBB, UseMBB)) { 344 // This is a valid spill location dominating UseVNI. 345 // Prefer to spill at a smaller loop depth. 346 unsigned Depth = Loops.getLoopDepth(MBB); 347 if (Depth < SpillDepth) { 348 DEBUG(dbgs() << " spill depth " << Depth << ": " << PrintReg(Reg) 349 << ':' << VNI->id << '@' << VNI->def << '\n'); 350 SVI.SpillReg = Reg; 351 SVI.SpillVNI = VNI; 352 SpillMBB = MBB; 353 SpillDepth = Depth; 354 } 355 } 356 } 357 358 // Trace through PHI-defs created by live range splitting. 359 if (VNI->isPHIDef()) { 360 if (VNI->def == OrigVNI->def) { 361 DEBUG(dbgs() << " orig phi value " << PrintReg(Reg) << ':' 362 << VNI->id << '@' << VNI->def << '\n'); 363 SeenOrigPHI = true; 364 continue; 365 } 366 // Get values live-out of predecessors. 367 LiveInterval &LI = LIS.getInterval(Reg); 368 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 369 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 370 PE = MBB->pred_end(); PI != PE; ++PI) { 371 VNInfo *PVNI = LI.getVNInfoAt(LIS.getMBBEndIdx(*PI).getPrevSlot()); 372 if (PVNI) 373 WorkList.push_back(std::make_pair(Reg, PVNI)); 374 } 375 continue; 376 } 377 378 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 379 assert(MI && "Missing def"); 380 381 // Trace through sibling copies. 382 if (unsigned SrcReg = isFullCopyOf(MI, Reg)) { 383 if (isSibling(SrcReg)) { 384 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 385 VNInfo *SrcVNI = SrcLI.getVNInfoAt(VNI->def.getUseIndex()); 386 assert(SrcVNI && "Copy from non-existing value"); 387 DEBUG(dbgs() << " copy of " << PrintReg(SrcReg) << ':' 388 << SrcVNI->id << '@' << SrcVNI->def << '\n'); 389 WorkList.push_back(std::make_pair(SrcReg, SrcVNI)); 390 continue; 391 } 392 } 393 394 // Track reachable reloads. 395 int FI; 396 if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) { 397 DEBUG(dbgs() << " reload " << PrintReg(Reg) << ':' 398 << VNI->id << "@" << VNI->def << '\n'); 399 SVI.AllDefsAreReloads = true; 400 continue; 401 } 402 403 // We have an 'original' def. Don't record trivial cases. 404 if (VNI == UseVNI) { 405 DEBUG(dbgs() << "Not a sibling copy.\n"); 406 return MI; 407 } 408 409 // Potential remat candidate. 410 DEBUG(dbgs() << " def " << PrintReg(Reg) << ':' 411 << VNI->id << '@' << VNI->def << '\t' << *MI); 412 SVI.DefMI = MI; 413 } while (!WorkList.empty()); 414 415 if (SeenOrigPHI || SVI.DefMI) 416 SVI.AllDefsAreReloads = false; 417 418 DEBUG({ 419 if (SVI.AllDefsAreReloads) 420 dbgs() << "All defs are reloads.\n"; 421 else 422 dbgs() << "Prefer to spill " << PrintReg(SVI.SpillReg) << ':' 423 << SVI.SpillVNI->id << '@' << SVI.SpillVNI->def << '\n'; 424 }); 425 SibValues.insert(std::make_pair(UseVNI, SVI)); 426 return SVI.DefMI; 427 } 428 429 /// analyzeSiblingValues - Trace values defined by sibling copies back to 430 /// something that isn't a sibling copy. 431 /// 432 /// Keep track of values that may be rematerializable. 433 void InlineSpiller::analyzeSiblingValues() { 434 SibValues.clear(); 435 436 // No siblings at all? 437 if (Edit->getReg() == Original) 438 return; 439 440 LiveInterval &OrigLI = LIS.getInterval(Original); 441 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 442 unsigned Reg = RegsToSpill[i]; 443 LiveInterval &LI = LIS.getInterval(Reg); 444 for (LiveInterval::const_vni_iterator VI = LI.vni_begin(), 445 VE = LI.vni_end(); VI != VE; ++VI) { 446 VNInfo *VNI = *VI; 447 if (VNI->isUnused()) 448 continue; 449 MachineInstr *DefMI = 0; 450 // Check possible sibling copies. 451 if (VNI->isPHIDef() || VNI->getCopy()) { 452 VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def); 453 assert(OrigVNI && "Def outside original live range"); 454 if (OrigVNI->def != VNI->def) 455 DefMI = traceSiblingValue(Reg, VNI, OrigVNI); 456 } 457 if (!DefMI && !VNI->isPHIDef()) 458 DefMI = LIS.getInstructionFromIndex(VNI->def); 459 if (DefMI && Edit->checkRematerializable(VNI, DefMI, TII, AA)) { 460 DEBUG(dbgs() << "Value " << PrintReg(Reg) << ':' << VNI->id << '@' 461 << VNI->def << " may remat from " << *DefMI); 462 } 463 } 464 } 465 } 466 467 /// hoistSpill - Given a sibling copy that defines a value to be spilled, insert 468 /// a spill at a better location. 469 bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI) { 470 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 471 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getDefIndex()); 472 assert(VNI && VNI->def == Idx.getDefIndex() && "Not defined by copy"); 473 SibValueMap::iterator I = SibValues.find(VNI); 474 if (I == SibValues.end()) 475 return false; 476 477 const SibValueInfo &SVI = I->second; 478 479 // Let the normal folding code deal with the boring case. 480 if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI) 481 return false; 482 483 // SpillReg may have been deleted by remat and DCE. 484 if (!LIS.hasInterval(SVI.SpillReg)) { 485 DEBUG(dbgs() << "Stale interval: " << PrintReg(SVI.SpillReg) << '\n'); 486 SibValues.erase(I); 487 return false; 488 } 489 490 LiveInterval &SibLI = LIS.getInterval(SVI.SpillReg); 491 if (!SibLI.containsValue(SVI.SpillVNI)) { 492 DEBUG(dbgs() << "Stale value: " << PrintReg(SVI.SpillReg) << '\n'); 493 SibValues.erase(I); 494 return false; 495 } 496 497 // Conservatively extend the stack slot range to the range of the original 498 // value. We may be able to do better with stack slot coloring by being more 499 // careful here. 500 assert(StackInt && "No stack slot assigned yet."); 501 LiveInterval &OrigLI = LIS.getInterval(Original); 502 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 503 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 504 DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 505 << *StackInt << '\n'); 506 507 // Already spilled everywhere. 508 if (SVI.AllDefsAreReloads) { 509 ++NumOmitReloadSpill; 510 return true; 511 } 512 // We are going to spill SVI.SpillVNI immediately after its def, so clear out 513 // any later spills of the same value. 514 eliminateRedundantSpills(SibLI, SVI.SpillVNI); 515 516 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def); 517 MachineBasicBlock::iterator MII; 518 if (SVI.SpillVNI->isPHIDef()) 519 MII = MBB->SkipPHIsAndLabels(MBB->begin()); 520 else { 521 MachineInstr *DefMI = LIS.getInstructionFromIndex(SVI.SpillVNI->def); 522 assert(DefMI && "Defining instruction disappeared"); 523 MII = DefMI; 524 ++MII; 525 } 526 // Insert spill without kill flag immediately after def. 527 TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot, 528 MRI.getRegClass(SVI.SpillReg), &TRI); 529 --MII; // Point to store instruction. 530 LIS.InsertMachineInstrInMaps(MII); 531 VRM.addSpillSlotUse(StackSlot, MII); 532 DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII); 533 534 if (MBB == CopyMI->getParent()) 535 ++NumHoistLocal; 536 else 537 ++NumHoistGlobal; 538 return true; 539 } 540 541 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 542 /// redundant spills of this value in SLI.reg and sibling copies. 543 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 544 assert(VNI && "Missing value"); 545 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 546 WorkList.push_back(std::make_pair(&SLI, VNI)); 547 assert(StackInt && "No stack slot assigned yet."); 548 549 do { 550 LiveInterval *LI; 551 tie(LI, VNI) = WorkList.pop_back_val(); 552 unsigned Reg = LI->reg; 553 DEBUG(dbgs() << "Checking redundant spills for " 554 << VNI->id << '@' << VNI->def << " in " << *LI << '\n'); 555 556 // Regs to spill are taken care of. 557 if (isRegToSpill(Reg)) 558 continue; 559 560 // Add all of VNI's live range to StackInt. 561 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 562 DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 563 564 // Find all spills and copies of VNI. 565 for (MachineRegisterInfo::use_nodbg_iterator UI = MRI.use_nodbg_begin(Reg); 566 MachineInstr *MI = UI.skipInstruction();) { 567 if (!MI->isCopy() && !MI->getDesc().mayStore()) 568 continue; 569 SlotIndex Idx = LIS.getInstructionIndex(MI); 570 if (LI->getVNInfoAt(Idx) != VNI) 571 continue; 572 573 // Follow sibling copies down the dominator tree. 574 if (unsigned DstReg = isFullCopyOf(MI, Reg)) { 575 if (isSibling(DstReg)) { 576 LiveInterval &DstLI = LIS.getInterval(DstReg); 577 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getDefIndex()); 578 assert(DstVNI && "Missing defined value"); 579 assert(DstVNI->def == Idx.getDefIndex() && "Wrong copy def slot"); 580 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 581 } 582 continue; 583 } 584 585 // Erase spills. 586 int FI; 587 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 588 DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI); 589 // eliminateDeadDefs won't normally remove stores, so switch opcode. 590 MI->setDesc(TII.get(TargetOpcode::KILL)); 591 DeadDefs.push_back(MI); 592 ++NumRedundantSpills; 593 } 594 } 595 } while (!WorkList.empty()); 596 } 597 598 599 //===----------------------------------------------------------------------===// 600 // Rematerialization 601 //===----------------------------------------------------------------------===// 602 603 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 604 /// instruction cannot be eliminated. See through snippet copies 605 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 606 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 607 WorkList.push_back(std::make_pair(LI, VNI)); 608 do { 609 tie(LI, VNI) = WorkList.pop_back_val(); 610 if (!UsedValues.insert(VNI)) 611 continue; 612 613 if (VNI->isPHIDef()) { 614 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 615 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 616 PE = MBB->pred_end(); PI != PE; ++PI) { 617 VNInfo *PVNI = LI->getVNInfoAt(LIS.getMBBEndIdx(*PI).getPrevSlot()); 618 if (PVNI) 619 WorkList.push_back(std::make_pair(LI, PVNI)); 620 } 621 continue; 622 } 623 624 // Follow snippet copies. 625 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 626 if (!SnippetCopies.count(MI)) 627 continue; 628 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 629 assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy"); 630 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getUseIndex()); 631 assert(SnipVNI && "Snippet undefined before copy"); 632 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 633 } while (!WorkList.empty()); 634 } 635 636 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 637 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, 638 MachineBasicBlock::iterator MI) { 639 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getUseIndex(); 640 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx); 641 642 if (!ParentVNI) { 643 DEBUG(dbgs() << "\tadding <undef> flags: "); 644 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 645 MachineOperand &MO = MI->getOperand(i); 646 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) 647 MO.setIsUndef(); 648 } 649 DEBUG(dbgs() << UseIdx << '\t' << *MI); 650 return true; 651 } 652 653 if (SnippetCopies.count(MI)) 654 return false; 655 656 // Use an OrigVNI from traceSiblingValue when ParentVNI is a sibling copy. 657 LiveRangeEdit::Remat RM(ParentVNI); 658 SibValueMap::const_iterator SibI = SibValues.find(ParentVNI); 659 if (SibI != SibValues.end()) 660 RM.OrigMI = SibI->second.DefMI; 661 if (!Edit->canRematerializeAt(RM, UseIdx, false, LIS)) { 662 markValueUsed(&VirtReg, ParentVNI); 663 DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI); 664 return false; 665 } 666 667 // If the instruction also writes VirtReg.reg, it had better not require the 668 // same register for uses and defs. 669 bool Reads, Writes; 670 SmallVector<unsigned, 8> Ops; 671 tie(Reads, Writes) = MI->readsWritesVirtualRegister(VirtReg.reg, &Ops); 672 if (Writes) { 673 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 674 MachineOperand &MO = MI->getOperand(Ops[i]); 675 if (MO.isUse() ? MI->isRegTiedToDefOperand(Ops[i]) : MO.getSubReg()) { 676 markValueUsed(&VirtReg, ParentVNI); 677 DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI); 678 return false; 679 } 680 } 681 } 682 683 // Before rematerializing into a register for a single instruction, try to 684 // fold a load into the instruction. That avoids allocating a new register. 685 if (RM.OrigMI->getDesc().canFoldAsLoad() && 686 foldMemoryOperand(MI, Ops, RM.OrigMI)) { 687 Edit->markRematerialized(RM.ParentVNI); 688 ++NumFoldedLoads; 689 return true; 690 } 691 692 // Alocate a new register for the remat. 693 LiveInterval &NewLI = Edit->createFrom(Original, LIS, VRM); 694 NewLI.markNotSpillable(); 695 696 // Finally we can rematerialize OrigMI before MI. 697 SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewLI.reg, RM, 698 LIS, TII, TRI); 699 DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 700 << *LIS.getInstructionFromIndex(DefIdx)); 701 702 // Replace operands 703 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 704 MachineOperand &MO = MI->getOperand(Ops[i]); 705 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) { 706 MO.setReg(NewLI.reg); 707 MO.setIsKill(); 708 } 709 } 710 DEBUG(dbgs() << "\t " << UseIdx << '\t' << *MI); 711 712 VNInfo *DefVNI = NewLI.getNextValue(DefIdx, 0, LIS.getVNInfoAllocator()); 713 NewLI.addRange(LiveRange(DefIdx, UseIdx.getDefIndex(), DefVNI)); 714 DEBUG(dbgs() << "\tinterval: " << NewLI << '\n'); 715 ++NumRemats; 716 return true; 717 } 718 719 /// reMaterializeAll - Try to rematerialize as many uses as possible, 720 /// and trim the live ranges after. 721 void InlineSpiller::reMaterializeAll() { 722 // analyzeSiblingValues has already tested all relevant defining instructions. 723 if (!Edit->anyRematerializable(LIS, TII, AA)) 724 return; 725 726 UsedValues.clear(); 727 728 // Try to remat before all uses of snippets. 729 bool anyRemat = false; 730 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 731 unsigned Reg = RegsToSpill[i]; 732 LiveInterval &LI = LIS.getInterval(Reg); 733 for (MachineRegisterInfo::use_nodbg_iterator 734 RI = MRI.use_nodbg_begin(Reg); 735 MachineInstr *MI = RI.skipInstruction();) 736 anyRemat |= reMaterializeFor(LI, MI); 737 } 738 if (!anyRemat) 739 return; 740 741 // Remove any values that were completely rematted. 742 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 743 unsigned Reg = RegsToSpill[i]; 744 LiveInterval &LI = LIS.getInterval(Reg); 745 for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 746 I != E; ++I) { 747 VNInfo *VNI = *I; 748 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 749 continue; 750 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 751 MI->addRegisterDead(Reg, &TRI); 752 if (!MI->allDefsAreDead()) 753 continue; 754 DEBUG(dbgs() << "All defs dead: " << *MI); 755 DeadDefs.push_back(MI); 756 } 757 } 758 759 // Eliminate dead code after remat. Note that some snippet copies may be 760 // deleted here. 761 if (DeadDefs.empty()) 762 return; 763 DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 764 Edit->eliminateDeadDefs(DeadDefs, LIS, VRM, TII); 765 766 // Get rid of deleted and empty intervals. 767 for (unsigned i = RegsToSpill.size(); i != 0; --i) { 768 unsigned Reg = RegsToSpill[i-1]; 769 if (!LIS.hasInterval(Reg)) { 770 RegsToSpill.erase(RegsToSpill.begin() + (i - 1)); 771 continue; 772 } 773 LiveInterval &LI = LIS.getInterval(Reg); 774 if (!LI.empty()) 775 continue; 776 Edit->eraseVirtReg(Reg, LIS); 777 RegsToSpill.erase(RegsToSpill.begin() + (i - 1)); 778 } 779 DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n"); 780 } 781 782 783 //===----------------------------------------------------------------------===// 784 // Spilling 785 //===----------------------------------------------------------------------===// 786 787 /// If MI is a load or store of StackSlot, it can be removed. 788 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) { 789 int FI = 0; 790 unsigned InstrReg; 791 if (!(InstrReg = TII.isLoadFromStackSlot(MI, FI)) && 792 !(InstrReg = TII.isStoreToStackSlot(MI, FI))) 793 return false; 794 795 // We have a stack access. Is it the right register and slot? 796 if (InstrReg != Reg || FI != StackSlot) 797 return false; 798 799 DEBUG(dbgs() << "Coalescing stack access: " << *MI); 800 LIS.RemoveMachineInstrFromMaps(MI); 801 MI->eraseFromParent(); 802 return true; 803 } 804 805 /// foldMemoryOperand - Try folding stack slot references in Ops into MI. 806 /// @param MI Instruction using or defining the current register. 807 /// @param Ops Operand indices from readsWritesVirtualRegister(). 808 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 809 /// @return True on success, and MI will be erased. 810 bool InlineSpiller::foldMemoryOperand(MachineBasicBlock::iterator MI, 811 const SmallVectorImpl<unsigned> &Ops, 812 MachineInstr *LoadMI) { 813 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 814 // operands. 815 SmallVector<unsigned, 8> FoldOps; 816 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 817 unsigned Idx = Ops[i]; 818 MachineOperand &MO = MI->getOperand(Idx); 819 if (MO.isImplicit()) 820 continue; 821 // FIXME: Teach targets to deal with subregs. 822 if (MO.getSubReg()) 823 return false; 824 // We cannot fold a load instruction into a def. 825 if (LoadMI && MO.isDef()) 826 return false; 827 // Tied use operands should not be passed to foldMemoryOperand. 828 if (!MI->isRegTiedToDefOperand(Idx)) 829 FoldOps.push_back(Idx); 830 } 831 832 MachineInstr *FoldMI = 833 LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI) 834 : TII.foldMemoryOperand(MI, FoldOps, StackSlot); 835 if (!FoldMI) 836 return false; 837 LIS.ReplaceMachineInstrInMaps(MI, FoldMI); 838 if (!LoadMI) 839 VRM.addSpillSlotUse(StackSlot, FoldMI); 840 MI->eraseFromParent(); 841 DEBUG(dbgs() << "\tfolded: " << *FoldMI); 842 ++NumFolded; 843 return true; 844 } 845 846 /// insertReload - Insert a reload of NewLI.reg before MI. 847 void InlineSpiller::insertReload(LiveInterval &NewLI, 848 SlotIndex Idx, 849 MachineBasicBlock::iterator MI) { 850 MachineBasicBlock &MBB = *MI->getParent(); 851 TII.loadRegFromStackSlot(MBB, MI, NewLI.reg, StackSlot, 852 MRI.getRegClass(NewLI.reg), &TRI); 853 --MI; // Point to load instruction. 854 SlotIndex LoadIdx = LIS.InsertMachineInstrInMaps(MI).getDefIndex(); 855 VRM.addSpillSlotUse(StackSlot, MI); 856 DEBUG(dbgs() << "\treload: " << LoadIdx << '\t' << *MI); 857 VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, 0, 858 LIS.getVNInfoAllocator()); 859 NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI)); 860 ++NumReloads; 861 } 862 863 /// insertSpill - Insert a spill of NewLI.reg after MI. 864 void InlineSpiller::insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI, 865 SlotIndex Idx, MachineBasicBlock::iterator MI) { 866 MachineBasicBlock &MBB = *MI->getParent(); 867 TII.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, StackSlot, 868 MRI.getRegClass(NewLI.reg), &TRI); 869 --MI; // Point to store instruction. 870 SlotIndex StoreIdx = LIS.InsertMachineInstrInMaps(MI).getDefIndex(); 871 VRM.addSpillSlotUse(StackSlot, MI); 872 DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI); 873 VNInfo *StoreVNI = NewLI.getNextValue(Idx, 0, LIS.getVNInfoAllocator()); 874 NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI)); 875 ++NumSpills; 876 } 877 878 /// spillAroundUses - insert spill code around each use of Reg. 879 void InlineSpiller::spillAroundUses(unsigned Reg) { 880 DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n'); 881 LiveInterval &OldLI = LIS.getInterval(Reg); 882 883 // Iterate over instructions using Reg. 884 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg); 885 MachineInstr *MI = RI.skipInstruction();) { 886 887 // Debug values are not allowed to affect codegen. 888 if (MI->isDebugValue()) { 889 // Modify DBG_VALUE now that the value is in a spill slot. 890 uint64_t Offset = MI->getOperand(1).getImm(); 891 const MDNode *MDPtr = MI->getOperand(2).getMetadata(); 892 DebugLoc DL = MI->getDebugLoc(); 893 if (MachineInstr *NewDV = TII.emitFrameIndexDebugValue(MF, StackSlot, 894 Offset, MDPtr, DL)) { 895 DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI); 896 MachineBasicBlock *MBB = MI->getParent(); 897 MBB->insert(MBB->erase(MI), NewDV); 898 } else { 899 DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI); 900 MI->eraseFromParent(); 901 } 902 continue; 903 } 904 905 // Ignore copies to/from snippets. We'll delete them. 906 if (SnippetCopies.count(MI)) 907 continue; 908 909 // Stack slot accesses may coalesce away. 910 if (coalesceStackAccess(MI, Reg)) 911 continue; 912 913 // Analyze instruction. 914 bool Reads, Writes; 915 SmallVector<unsigned, 8> Ops; 916 tie(Reads, Writes) = MI->readsWritesVirtualRegister(Reg, &Ops); 917 918 // Find the slot index where this instruction reads and writes OldLI. 919 // This is usually the def slot, except for tied early clobbers. 920 SlotIndex Idx = LIS.getInstructionIndex(MI).getDefIndex(); 921 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getUseIndex())) 922 if (SlotIndex::isSameInstr(Idx, VNI->def)) 923 Idx = VNI->def; 924 925 // Check for a sibling copy. 926 unsigned SibReg = isFullCopyOf(MI, Reg); 927 if (SibReg && isSibling(SibReg)) { 928 // This may actually be a copy between snippets. 929 if (isRegToSpill(SibReg)) { 930 DEBUG(dbgs() << "Found new snippet copy: " << *MI); 931 SnippetCopies.insert(MI); 932 continue; 933 } 934 if (Writes) { 935 // Hoist the spill of a sib-reg copy. 936 if (hoistSpill(OldLI, MI)) { 937 // This COPY is now dead, the value is already in the stack slot. 938 MI->getOperand(0).setIsDead(); 939 DeadDefs.push_back(MI); 940 continue; 941 } 942 } else { 943 // This is a reload for a sib-reg copy. Drop spills downstream. 944 LiveInterval &SibLI = LIS.getInterval(SibReg); 945 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 946 // The COPY will fold to a reload below. 947 } 948 } 949 950 // Attempt to fold memory ops. 951 if (foldMemoryOperand(MI, Ops)) 952 continue; 953 954 // Allocate interval around instruction. 955 // FIXME: Infer regclass from instruction alone. 956 LiveInterval &NewLI = Edit->createFrom(Reg, LIS, VRM); 957 NewLI.markNotSpillable(); 958 959 if (Reads) 960 insertReload(NewLI, Idx, MI); 961 962 // Rewrite instruction operands. 963 bool hasLiveDef = false; 964 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 965 MachineOperand &MO = MI->getOperand(Ops[i]); 966 MO.setReg(NewLI.reg); 967 if (MO.isUse()) { 968 if (!MI->isRegTiedToDefOperand(Ops[i])) 969 MO.setIsKill(); 970 } else { 971 if (!MO.isDead()) 972 hasLiveDef = true; 973 } 974 } 975 DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI); 976 977 // FIXME: Use a second vreg if instruction has no tied ops. 978 if (Writes && hasLiveDef) 979 insertSpill(NewLI, OldLI, Idx, MI); 980 981 DEBUG(dbgs() << "\tinterval: " << NewLI << '\n'); 982 } 983 } 984 985 /// spillAll - Spill all registers remaining after rematerialization. 986 void InlineSpiller::spillAll() { 987 // Update LiveStacks now that we are committed to spilling. 988 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 989 StackSlot = VRM.assignVirt2StackSlot(Original); 990 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 991 StackInt->getNextValue(SlotIndex(), 0, LSS.getVNInfoAllocator()); 992 } else 993 StackInt = &LSS.getInterval(StackSlot); 994 995 if (Original != Edit->getReg()) 996 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 997 998 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 999 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) 1000 StackInt->MergeRangesInAsValue(LIS.getInterval(RegsToSpill[i]), 1001 StackInt->getValNumInfo(0)); 1002 DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 1003 1004 // Spill around uses of all RegsToSpill. 1005 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) 1006 spillAroundUses(RegsToSpill[i]); 1007 1008 // Hoisted spills may cause dead code. 1009 if (!DeadDefs.empty()) { 1010 DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 1011 Edit->eliminateDeadDefs(DeadDefs, LIS, VRM, TII); 1012 } 1013 1014 // Finally delete the SnippetCopies. 1015 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) { 1016 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(RegsToSpill[i]); 1017 MachineInstr *MI = RI.skipInstruction();) { 1018 assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy"); 1019 // FIXME: Do this with a LiveRangeEdit callback. 1020 VRM.RemoveMachineInstrFromMaps(MI); 1021 LIS.RemoveMachineInstrFromMaps(MI); 1022 MI->eraseFromParent(); 1023 } 1024 } 1025 1026 // Delete all spilled registers. 1027 for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) 1028 Edit->eraseVirtReg(RegsToSpill[i], LIS); 1029 } 1030 1031 void InlineSpiller::spill(LiveRangeEdit &edit) { 1032 ++NumSpilledRanges; 1033 Edit = &edit; 1034 assert(!TargetRegisterInfo::isStackSlot(edit.getReg()) 1035 && "Trying to spill a stack slot."); 1036 // Share a stack slot among all descendants of Original. 1037 Original = VRM.getOriginal(edit.getReg()); 1038 StackSlot = VRM.getStackSlot(Original); 1039 StackInt = 0; 1040 1041 DEBUG(dbgs() << "Inline spilling " 1042 << MRI.getRegClass(edit.getReg())->getName() 1043 << ':' << edit.getParent() << "\nFrom original " 1044 << LIS.getInterval(Original) << '\n'); 1045 assert(edit.getParent().isSpillable() && 1046 "Attempting to spill already spilled value."); 1047 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1048 1049 collectRegsToSpill(); 1050 analyzeSiblingValues(); 1051 reMaterializeAll(); 1052 1053 // Remat may handle everything. 1054 if (!RegsToSpill.empty()) 1055 spillAll(); 1056 1057 Edit->calculateRegClassAndHint(MF, LIS, Loops); 1058 } 1059