1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The inline spiller modifies the machine function directly instead of
11 // inserting spills and restores in VirtRegMap.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "LiveRangeCalc.h"
16 #include "Spiller.h"
17 #include "SplitKit.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/CodeGen/LiveInterval.h"
29 #include "llvm/CodeGen/LiveIntervals.h"
30 #include "llvm/CodeGen/LiveRangeEdit.h"
31 #include "llvm/CodeGen/LiveStacks.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
34 #include "llvm/CodeGen/MachineDominators.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineInstrBundle.h"
40 #include "llvm/CodeGen/MachineLoopInfo.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/SlotIndexes.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetOpcodes.h"
46 #include "llvm/CodeGen/TargetRegisterInfo.h"
47 #include "llvm/CodeGen/TargetSubtargetInfo.h"
48 #include "llvm/CodeGen/VirtRegMap.h"
49 #include "llvm/Config/llvm-config.h"
50 #include "llvm/Support/BlockFrequency.h"
51 #include "llvm/Support/BranchProbability.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <cassert>
58 #include <iterator>
59 #include <tuple>
60 #include <utility>
61 #include <vector>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "regalloc"
66 
67 STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
68 STATISTIC(NumSnippets,        "Number of spilled snippets");
69 STATISTIC(NumSpills,          "Number of spills inserted");
70 STATISTIC(NumSpillsRemoved,   "Number of spills removed");
71 STATISTIC(NumReloads,         "Number of reloads inserted");
72 STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
73 STATISTIC(NumFolded,          "Number of folded stack accesses");
74 STATISTIC(NumFoldedLoads,     "Number of folded loads");
75 STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
76 
77 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
78                                      cl::desc("Disable inline spill hoisting"));
79 
80 namespace {
81 
82 class HoistSpillHelper : private LiveRangeEdit::Delegate {
83   MachineFunction &MF;
84   LiveIntervals &LIS;
85   LiveStacks &LSS;
86   AliasAnalysis *AA;
87   MachineDominatorTree &MDT;
88   MachineLoopInfo &Loops;
89   VirtRegMap &VRM;
90   MachineRegisterInfo &MRI;
91   const TargetInstrInfo &TII;
92   const TargetRegisterInfo &TRI;
93   const MachineBlockFrequencyInfo &MBFI;
94 
95   InsertPointAnalysis IPA;
96 
97   // Map from StackSlot to the LiveInterval of the original register.
98   // Note the LiveInterval of the original register may have been deleted
99   // after it is spilled. We keep a copy here to track the range where
100   // spills can be moved.
101   DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI;
102 
103   // Map from pair of (StackSlot and Original VNI) to a set of spills which
104   // have the same stackslot and have equal values defined by Original VNI.
105   // These spills are mergeable and are hoist candiates.
106   using MergeableSpillsMap =
107       MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>;
108   MergeableSpillsMap MergeableSpills;
109 
110   /// This is the map from original register to a set containing all its
111   /// siblings. To hoist a spill to another BB, we need to find out a live
112   /// sibling there and use it as the source of the new spill.
113   DenseMap<unsigned, SmallSetVector<unsigned, 16>> Virt2SiblingsMap;
114 
115   bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
116                      MachineBasicBlock &BB, unsigned &LiveReg);
117 
118   void rmRedundantSpills(
119       SmallPtrSet<MachineInstr *, 16> &Spills,
120       SmallVectorImpl<MachineInstr *> &SpillsToRm,
121       DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
122 
123   void getVisitOrders(
124       MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
125       SmallVectorImpl<MachineDomTreeNode *> &Orders,
126       SmallVectorImpl<MachineInstr *> &SpillsToRm,
127       DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
128       DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
129 
130   void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI,
131                       SmallPtrSet<MachineInstr *, 16> &Spills,
132                       SmallVectorImpl<MachineInstr *> &SpillsToRm,
133                       DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns);
134 
135 public:
136   HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf,
137                    VirtRegMap &vrm)
138       : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
139         LSS(pass.getAnalysis<LiveStacks>()),
140         AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
141         MDT(pass.getAnalysis<MachineDominatorTree>()),
142         Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
143         MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
144         TRI(*mf.getSubtarget().getRegisterInfo()),
145         MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
146         IPA(LIS, mf.getNumBlockIDs()) {}
147 
148   void addToMergeableSpills(MachineInstr &Spill, int StackSlot,
149                             unsigned Original);
150   bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot);
151   void hoistAllSpills();
152   void LRE_DidCloneVirtReg(unsigned, unsigned) override;
153 };
154 
155 class InlineSpiller : public Spiller {
156   MachineFunction &MF;
157   LiveIntervals &LIS;
158   LiveStacks &LSS;
159   AliasAnalysis *AA;
160   MachineDominatorTree &MDT;
161   MachineLoopInfo &Loops;
162   VirtRegMap &VRM;
163   MachineRegisterInfo &MRI;
164   const TargetInstrInfo &TII;
165   const TargetRegisterInfo &TRI;
166   const MachineBlockFrequencyInfo &MBFI;
167 
168   // Variables that are valid during spill(), but used by multiple methods.
169   LiveRangeEdit *Edit;
170   LiveInterval *StackInt;
171   int StackSlot;
172   unsigned Original;
173 
174   // All registers to spill to StackSlot, including the main register.
175   SmallVector<unsigned, 8> RegsToSpill;
176 
177   // All COPY instructions to/from snippets.
178   // They are ignored since both operands refer to the same stack slot.
179   SmallPtrSet<MachineInstr*, 8> SnippetCopies;
180 
181   // Values that failed to remat at some point.
182   SmallPtrSet<VNInfo*, 8> UsedValues;
183 
184   // Dead defs generated during spilling.
185   SmallVector<MachineInstr*, 8> DeadDefs;
186 
187   // Object records spills information and does the hoisting.
188   HoistSpillHelper HSpiller;
189 
190   ~InlineSpiller() override = default;
191 
192 public:
193   InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm)
194       : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
195         LSS(pass.getAnalysis<LiveStacks>()),
196         AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
197         MDT(pass.getAnalysis<MachineDominatorTree>()),
198         Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
199         MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
200         TRI(*mf.getSubtarget().getRegisterInfo()),
201         MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
202         HSpiller(pass, mf, vrm) {}
203 
204   void spill(LiveRangeEdit &) override;
205   void postOptimization() override;
206 
207 private:
208   bool isSnippet(const LiveInterval &SnipLI);
209   void collectRegsToSpill();
210 
211   bool isRegToSpill(unsigned Reg) { return is_contained(RegsToSpill, Reg); }
212 
213   bool isSibling(unsigned Reg);
214   bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
215   void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
216 
217   void markValueUsed(LiveInterval*, VNInfo*);
218   bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
219   void reMaterializeAll();
220 
221   bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
222   bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>,
223                          MachineInstr *LoadMI = nullptr);
224   void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI);
225   void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI);
226 
227   void spillAroundUses(unsigned Reg);
228   void spillAll();
229 };
230 
231 } // end anonymous namespace
232 
233 Spiller::~Spiller() = default;
234 
235 void Spiller::anchor() {}
236 
237 Spiller *llvm::createInlineSpiller(MachineFunctionPass &pass,
238                                    MachineFunction &mf,
239                                    VirtRegMap &vrm) {
240   return new InlineSpiller(pass, mf, vrm);
241 }
242 
243 //===----------------------------------------------------------------------===//
244 //                                Snippets
245 //===----------------------------------------------------------------------===//
246 
247 // When spilling a virtual register, we also spill any snippets it is connected
248 // to. The snippets are small live ranges that only have a single real use,
249 // leftovers from live range splitting. Spilling them enables memory operand
250 // folding or tightens the live range around the single use.
251 //
252 // This minimizes register pressure and maximizes the store-to-load distance for
253 // spill slots which can be important in tight loops.
254 
255 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
256 /// otherwise return 0.
257 static unsigned isFullCopyOf(const MachineInstr &MI, unsigned Reg) {
258   if (!MI.isFullCopy())
259     return 0;
260   if (MI.getOperand(0).getReg() == Reg)
261     return MI.getOperand(1).getReg();
262   if (MI.getOperand(1).getReg() == Reg)
263     return MI.getOperand(0).getReg();
264   return 0;
265 }
266 
267 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
268 /// It is assumed that SnipLI is a virtual register with the same original as
269 /// Edit->getReg().
270 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
271   unsigned Reg = Edit->getReg();
272 
273   // A snippet is a tiny live range with only a single instruction using it
274   // besides copies to/from Reg or spills/fills. We accept:
275   //
276   //   %snip = COPY %Reg / FILL fi#
277   //   %snip = USE %snip
278   //   %Reg = COPY %snip / SPILL %snip, fi#
279   //
280   if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
281     return false;
282 
283   MachineInstr *UseMI = nullptr;
284 
285   // Check that all uses satisfy our criteria.
286   for (MachineRegisterInfo::reg_instr_nodbg_iterator
287        RI = MRI.reg_instr_nodbg_begin(SnipLI.reg),
288        E = MRI.reg_instr_nodbg_end(); RI != E; ) {
289     MachineInstr &MI = *RI++;
290 
291     // Allow copies to/from Reg.
292     if (isFullCopyOf(MI, Reg))
293       continue;
294 
295     // Allow stack slot loads.
296     int FI;
297     if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
298       continue;
299 
300     // Allow stack slot stores.
301     if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
302       continue;
303 
304     // Allow a single additional instruction.
305     if (UseMI && &MI != UseMI)
306       return false;
307     UseMI = &MI;
308   }
309   return true;
310 }
311 
312 /// collectRegsToSpill - Collect live range snippets that only have a single
313 /// real use.
314 void InlineSpiller::collectRegsToSpill() {
315   unsigned Reg = Edit->getReg();
316 
317   // Main register always spills.
318   RegsToSpill.assign(1, Reg);
319   SnippetCopies.clear();
320 
321   // Snippets all have the same original, so there can't be any for an original
322   // register.
323   if (Original == Reg)
324     return;
325 
326   for (MachineRegisterInfo::reg_instr_iterator
327        RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) {
328     MachineInstr &MI = *RI++;
329     unsigned SnipReg = isFullCopyOf(MI, Reg);
330     if (!isSibling(SnipReg))
331       continue;
332     LiveInterval &SnipLI = LIS.getInterval(SnipReg);
333     if (!isSnippet(SnipLI))
334       continue;
335     SnippetCopies.insert(&MI);
336     if (isRegToSpill(SnipReg))
337       continue;
338     RegsToSpill.push_back(SnipReg);
339     DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
340     ++NumSnippets;
341   }
342 }
343 
344 bool InlineSpiller::isSibling(unsigned Reg) {
345   return TargetRegisterInfo::isVirtualRegister(Reg) &&
346            VRM.getOriginal(Reg) == Original;
347 }
348 
349 /// It is beneficial to spill to earlier place in the same BB in case
350 /// as follows:
351 /// There is an alternative def earlier in the same MBB.
352 /// Hoist the spill as far as possible in SpillMBB. This can ease
353 /// register pressure:
354 ///
355 ///   x = def
356 ///   y = use x
357 ///   s = copy x
358 ///
359 /// Hoisting the spill of s to immediately after the def removes the
360 /// interference between x and y:
361 ///
362 ///   x = def
363 ///   spill x
364 ///   y = use killed x
365 ///
366 /// This hoist only helps when the copy kills its source.
367 ///
368 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
369                                        MachineInstr &CopyMI) {
370   SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
371 #ifndef NDEBUG
372   VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
373   assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
374 #endif
375 
376   unsigned SrcReg = CopyMI.getOperand(1).getReg();
377   LiveInterval &SrcLI = LIS.getInterval(SrcReg);
378   VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx);
379   LiveQueryResult SrcQ = SrcLI.Query(Idx);
380   MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def);
381   if (DefMBB != CopyMI.getParent() || !SrcQ.isKill())
382     return false;
383 
384   // Conservatively extend the stack slot range to the range of the original
385   // value. We may be able to do better with stack slot coloring by being more
386   // careful here.
387   assert(StackInt && "No stack slot assigned yet.");
388   LiveInterval &OrigLI = LIS.getInterval(Original);
389   VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
390   StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
391   DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
392                << *StackInt << '\n');
393 
394   // We are going to spill SrcVNI immediately after its def, so clear out
395   // any later spills of the same value.
396   eliminateRedundantSpills(SrcLI, SrcVNI);
397 
398   MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
399   MachineBasicBlock::iterator MII;
400   if (SrcVNI->isPHIDef())
401     MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
402   else {
403     MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
404     assert(DefMI && "Defining instruction disappeared");
405     MII = DefMI;
406     ++MII;
407   }
408   // Insert spill without kill flag immediately after def.
409   TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot,
410                           MRI.getRegClass(SrcReg), &TRI);
411   --MII; // Point to store instruction.
412   LIS.InsertMachineInstrInMaps(*MII);
413   DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII);
414 
415   HSpiller.addToMergeableSpills(*MII, StackSlot, Original);
416   ++NumSpills;
417   return true;
418 }
419 
420 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
421 /// redundant spills of this value in SLI.reg and sibling copies.
422 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
423   assert(VNI && "Missing value");
424   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
425   WorkList.push_back(std::make_pair(&SLI, VNI));
426   assert(StackInt && "No stack slot assigned yet.");
427 
428   do {
429     LiveInterval *LI;
430     std::tie(LI, VNI) = WorkList.pop_back_val();
431     unsigned Reg = LI->reg;
432     DEBUG(dbgs() << "Checking redundant spills for "
433                  << VNI->id << '@' << VNI->def << " in " << *LI << '\n');
434 
435     // Regs to spill are taken care of.
436     if (isRegToSpill(Reg))
437       continue;
438 
439     // Add all of VNI's live range to StackInt.
440     StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
441     DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
442 
443     // Find all spills and copies of VNI.
444     for (MachineRegisterInfo::use_instr_nodbg_iterator
445          UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
446          UI != E; ) {
447       MachineInstr &MI = *UI++;
448       if (!MI.isCopy() && !MI.mayStore())
449         continue;
450       SlotIndex Idx = LIS.getInstructionIndex(MI);
451       if (LI->getVNInfoAt(Idx) != VNI)
452         continue;
453 
454       // Follow sibling copies down the dominator tree.
455       if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
456         if (isSibling(DstReg)) {
457            LiveInterval &DstLI = LIS.getInterval(DstReg);
458            VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
459            assert(DstVNI && "Missing defined value");
460            assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
461            WorkList.push_back(std::make_pair(&DstLI, DstVNI));
462         }
463         continue;
464       }
465 
466       // Erase spills.
467       int FI;
468       if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
469         DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI);
470         // eliminateDeadDefs won't normally remove stores, so switch opcode.
471         MI.setDesc(TII.get(TargetOpcode::KILL));
472         DeadDefs.push_back(&MI);
473         ++NumSpillsRemoved;
474         if (HSpiller.rmFromMergeableSpills(MI, StackSlot))
475           --NumSpills;
476       }
477     }
478   } while (!WorkList.empty());
479 }
480 
481 //===----------------------------------------------------------------------===//
482 //                            Rematerialization
483 //===----------------------------------------------------------------------===//
484 
485 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
486 /// instruction cannot be eliminated. See through snippet copies
487 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
488   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
489   WorkList.push_back(std::make_pair(LI, VNI));
490   do {
491     std::tie(LI, VNI) = WorkList.pop_back_val();
492     if (!UsedValues.insert(VNI).second)
493       continue;
494 
495     if (VNI->isPHIDef()) {
496       MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
497       for (MachineBasicBlock *P : MBB->predecessors()) {
498         VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
499         if (PVNI)
500           WorkList.push_back(std::make_pair(LI, PVNI));
501       }
502       continue;
503     }
504 
505     // Follow snippet copies.
506     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
507     if (!SnippetCopies.count(MI))
508       continue;
509     LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
510     assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
511     VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
512     assert(SnipVNI && "Snippet undefined before copy");
513     WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
514   } while (!WorkList.empty());
515 }
516 
517 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
518 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
519   // Analyze instruction
520   SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
521   MIBundleOperands::VirtRegInfo RI =
522       MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops);
523 
524   if (!RI.Reads)
525     return false;
526 
527   SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
528   VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
529 
530   if (!ParentVNI) {
531     DEBUG(dbgs() << "\tadding <undef> flags: ");
532     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
533       MachineOperand &MO = MI.getOperand(i);
534       if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
535         MO.setIsUndef();
536     }
537     DEBUG(dbgs() << UseIdx << '\t' << MI);
538     return true;
539   }
540 
541   if (SnippetCopies.count(&MI))
542     return false;
543 
544   LiveInterval &OrigLI = LIS.getInterval(Original);
545   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
546   LiveRangeEdit::Remat RM(ParentVNI);
547   RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
548 
549   if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) {
550     markValueUsed(&VirtReg, ParentVNI);
551     DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
552     return false;
553   }
554 
555   // If the instruction also writes VirtReg.reg, it had better not require the
556   // same register for uses and defs.
557   if (RI.Tied) {
558     markValueUsed(&VirtReg, ParentVNI);
559     DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI);
560     return false;
561   }
562 
563   // Before rematerializing into a register for a single instruction, try to
564   // fold a load into the instruction. That avoids allocating a new register.
565   if (RM.OrigMI->canFoldAsLoad() &&
566       foldMemoryOperand(Ops, RM.OrigMI)) {
567     Edit->markRematerialized(RM.ParentVNI);
568     ++NumFoldedLoads;
569     return true;
570   }
571 
572   // Allocate a new register for the remat.
573   unsigned NewVReg = Edit->createFrom(Original);
574 
575   // Finally we can rematerialize OrigMI before MI.
576   SlotIndex DefIdx =
577       Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);
578 
579   // We take the DebugLoc from MI, since OrigMI may be attributed to a
580   // different source location.
581   auto *NewMI = LIS.getInstructionFromIndex(DefIdx);
582   NewMI->setDebugLoc(MI.getDebugLoc());
583 
584   (void)DefIdx;
585   DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
586                << *LIS.getInstructionFromIndex(DefIdx));
587 
588   // Replace operands
589   for (const auto &OpPair : Ops) {
590     MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
591     if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
592       MO.setReg(NewVReg);
593       MO.setIsKill();
594     }
595   }
596   DEBUG(dbgs() << "\t        " << UseIdx << '\t' << MI << '\n');
597 
598   ++NumRemats;
599   return true;
600 }
601 
602 /// reMaterializeAll - Try to rematerialize as many uses as possible,
603 /// and trim the live ranges after.
604 void InlineSpiller::reMaterializeAll() {
605   if (!Edit->anyRematerializable(AA))
606     return;
607 
608   UsedValues.clear();
609 
610   // Try to remat before all uses of snippets.
611   bool anyRemat = false;
612   for (unsigned Reg : RegsToSpill) {
613     LiveInterval &LI = LIS.getInterval(Reg);
614     for (MachineRegisterInfo::reg_bundle_iterator
615            RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
616          RegI != E; ) {
617       MachineInstr &MI = *RegI++;
618 
619       // Debug values are not allowed to affect codegen.
620       if (MI.isDebugValue())
621         continue;
622 
623       anyRemat |= reMaterializeFor(LI, MI);
624     }
625   }
626   if (!anyRemat)
627     return;
628 
629   // Remove any values that were completely rematted.
630   for (unsigned Reg : RegsToSpill) {
631     LiveInterval &LI = LIS.getInterval(Reg);
632     for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
633          I != E; ++I) {
634       VNInfo *VNI = *I;
635       if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
636         continue;
637       MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
638       MI->addRegisterDead(Reg, &TRI);
639       if (!MI->allDefsAreDead())
640         continue;
641       DEBUG(dbgs() << "All defs dead: " << *MI);
642       DeadDefs.push_back(MI);
643     }
644   }
645 
646   // Eliminate dead code after remat. Note that some snippet copies may be
647   // deleted here.
648   if (DeadDefs.empty())
649     return;
650   DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
651   Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
652 
653   // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
654   // after rematerialization.  To remove a VNI for a vreg from its LiveInterval,
655   // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
656   // removed, PHI VNI are still left in the LiveInterval.
657   // So to get rid of unused reg, we need to check whether it has non-dbg
658   // reference instead of whether it has non-empty interval.
659   unsigned ResultPos = 0;
660   for (unsigned Reg : RegsToSpill) {
661     if (MRI.reg_nodbg_empty(Reg)) {
662       Edit->eraseVirtReg(Reg);
663       continue;
664     }
665 
666     assert(LIS.hasInterval(Reg) &&
667            (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
668            "Empty and not used live-range?!");
669 
670     RegsToSpill[ResultPos++] = Reg;
671   }
672   RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
673   DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n");
674 }
675 
676 //===----------------------------------------------------------------------===//
677 //                                 Spilling
678 //===----------------------------------------------------------------------===//
679 
680 /// If MI is a load or store of StackSlot, it can be removed.
681 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
682   int FI = 0;
683   unsigned InstrReg = TII.isLoadFromStackSlot(*MI, FI);
684   bool IsLoad = InstrReg;
685   if (!IsLoad)
686     InstrReg = TII.isStoreToStackSlot(*MI, FI);
687 
688   // We have a stack access. Is it the right register and slot?
689   if (InstrReg != Reg || FI != StackSlot)
690     return false;
691 
692   if (!IsLoad)
693     HSpiller.rmFromMergeableSpills(*MI, StackSlot);
694 
695   DEBUG(dbgs() << "Coalescing stack access: " << *MI);
696   LIS.RemoveMachineInstrFromMaps(*MI);
697   MI->eraseFromParent();
698 
699   if (IsLoad) {
700     ++NumReloadsRemoved;
701     --NumReloads;
702   } else {
703     ++NumSpillsRemoved;
704     --NumSpills;
705   }
706 
707   return true;
708 }
709 
710 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
711 LLVM_DUMP_METHOD
712 // Dump the range of instructions from B to E with their slot indexes.
713 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
714                                                MachineBasicBlock::iterator E,
715                                                LiveIntervals const &LIS,
716                                                const char *const header,
717                                                unsigned VReg =0) {
718   char NextLine = '\n';
719   char SlotIndent = '\t';
720 
721   if (std::next(B) == E) {
722     NextLine = ' ';
723     SlotIndent = ' ';
724   }
725 
726   dbgs() << '\t' << header << ": " << NextLine;
727 
728   for (MachineBasicBlock::iterator I = B; I != E; ++I) {
729     SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();
730 
731     // If a register was passed in and this instruction has it as a
732     // destination that is marked as an early clobber, print the
733     // early-clobber slot index.
734     if (VReg) {
735       MachineOperand *MO = I->findRegisterDefOperand(VReg);
736       if (MO && MO->isEarlyClobber())
737         Idx = Idx.getRegSlot(true);
738     }
739 
740     dbgs() << SlotIndent << Idx << '\t' << *I;
741   }
742 }
743 #endif
744 
745 /// foldMemoryOperand - Try folding stack slot references in Ops into their
746 /// instructions.
747 ///
748 /// @param Ops    Operand indices from analyzeVirtReg().
749 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
750 /// @return       True on success.
751 bool InlineSpiller::
752 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops,
753                   MachineInstr *LoadMI) {
754   if (Ops.empty())
755     return false;
756   // Don't attempt folding in bundles.
757   MachineInstr *MI = Ops.front().first;
758   if (Ops.back().first != MI || MI->isBundled())
759     return false;
760 
761   bool WasCopy = MI->isCopy();
762   unsigned ImpReg = 0;
763 
764   // Spill subregs if the target allows it.
765   // We always want to spill subregs for stackmap/patchpoint pseudos.
766   bool SpillSubRegs = TII.isSubregFoldable() ||
767                       MI->getOpcode() == TargetOpcode::STATEPOINT ||
768                       MI->getOpcode() == TargetOpcode::PATCHPOINT ||
769                       MI->getOpcode() == TargetOpcode::STACKMAP;
770 
771   // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
772   // operands.
773   SmallVector<unsigned, 8> FoldOps;
774   for (const auto &OpPair : Ops) {
775     unsigned Idx = OpPair.second;
776     assert(MI == OpPair.first && "Instruction conflict during operand folding");
777     MachineOperand &MO = MI->getOperand(Idx);
778     if (MO.isImplicit()) {
779       ImpReg = MO.getReg();
780       continue;
781     }
782 
783     if (!SpillSubRegs && MO.getSubReg())
784       return false;
785     // We cannot fold a load instruction into a def.
786     if (LoadMI && MO.isDef())
787       return false;
788     // Tied use operands should not be passed to foldMemoryOperand.
789     if (!MI->isRegTiedToDefOperand(Idx))
790       FoldOps.push_back(Idx);
791   }
792 
793   // If we only have implicit uses, we won't be able to fold that.
794   // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try!
795   if (FoldOps.empty())
796     return false;
797 
798   MachineInstrSpan MIS(MI);
799 
800   MachineInstr *FoldMI =
801       LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS)
802              : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS);
803   if (!FoldMI)
804     return false;
805 
806   // Remove LIS for any dead defs in the original MI not in FoldMI.
807   for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
808     if (!MO->isReg())
809       continue;
810     unsigned Reg = MO->getReg();
811     if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) ||
812         MRI.isReserved(Reg)) {
813       continue;
814     }
815     // Skip non-Defs, including undef uses and internal reads.
816     if (MO->isUse())
817       continue;
818     MIBundleOperands::PhysRegInfo RI =
819         MIBundleOperands(*FoldMI).analyzePhysReg(Reg, &TRI);
820     if (RI.FullyDefined)
821       continue;
822     // FoldMI does not define this physreg. Remove the LI segment.
823     assert(MO->isDead() && "Cannot fold physreg def");
824     SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
825     LIS.removePhysRegDefAt(Reg, Idx);
826   }
827 
828   int FI;
829   if (TII.isStoreToStackSlot(*MI, FI) &&
830       HSpiller.rmFromMergeableSpills(*MI, FI))
831     --NumSpills;
832   LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
833   MI->eraseFromParent();
834 
835   // Insert any new instructions other than FoldMI into the LIS maps.
836   assert(!MIS.empty() && "Unexpected empty span of instructions!");
837   for (MachineInstr &MI : MIS)
838     if (&MI != FoldMI)
839       LIS.InsertMachineInstrInMaps(MI);
840 
841   // TII.foldMemoryOperand may have left some implicit operands on the
842   // instruction.  Strip them.
843   if (ImpReg)
844     for (unsigned i = FoldMI->getNumOperands(); i; --i) {
845       MachineOperand &MO = FoldMI->getOperand(i - 1);
846       if (!MO.isReg() || !MO.isImplicit())
847         break;
848       if (MO.getReg() == ImpReg)
849         FoldMI->RemoveOperand(i - 1);
850     }
851 
852   DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
853                                            "folded"));
854 
855   if (!WasCopy)
856     ++NumFolded;
857   else if (Ops.front().second == 0) {
858     ++NumSpills;
859     HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original);
860   } else
861     ++NumReloads;
862   return true;
863 }
864 
865 void InlineSpiller::insertReload(unsigned NewVReg,
866                                  SlotIndex Idx,
867                                  MachineBasicBlock::iterator MI) {
868   MachineBasicBlock &MBB = *MI->getParent();
869 
870   MachineInstrSpan MIS(MI);
871   TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
872                            MRI.getRegClass(NewVReg), &TRI);
873 
874   LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
875 
876   DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
877                                            NewVReg));
878   ++NumReloads;
879 }
880 
881 /// Check if \p Def fully defines a VReg with an undefined value.
882 /// If that's the case, that means the value of VReg is actually
883 /// not relevant.
884 static bool isFullUndefDef(const MachineInstr &Def) {
885   if (!Def.isImplicitDef())
886     return false;
887   assert(Def.getNumOperands() == 1 &&
888          "Implicit def with more than one definition");
889   // We can say that the VReg defined by Def is undef, only if it is
890   // fully defined by Def. Otherwise, some of the lanes may not be
891   // undef and the value of the VReg matters.
892   return !Def.getOperand(0).getSubReg();
893 }
894 
895 /// insertSpill - Insert a spill of NewVReg after MI.
896 void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill,
897                                  MachineBasicBlock::iterator MI) {
898   MachineBasicBlock &MBB = *MI->getParent();
899 
900   MachineInstrSpan MIS(MI);
901   bool IsRealSpill = true;
902   if (isFullUndefDef(*MI)) {
903     // Don't spill undef value.
904     // Anything works for undef, in particular keeping the memory
905     // uninitialized is a viable option and it saves code size and
906     // run time.
907     BuildMI(MBB, std::next(MI), MI->getDebugLoc(), TII.get(TargetOpcode::KILL))
908         .addReg(NewVReg, getKillRegState(isKill));
909     IsRealSpill = false;
910   } else
911     TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot,
912                             MRI.getRegClass(NewVReg), &TRI);
913 
914   LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end());
915 
916   DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS,
917                                            "spill"));
918   ++NumSpills;
919   if (IsRealSpill)
920     HSpiller.addToMergeableSpills(*std::next(MI), StackSlot, Original);
921 }
922 
923 /// spillAroundUses - insert spill code around each use of Reg.
924 void InlineSpiller::spillAroundUses(unsigned Reg) {
925   DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n');
926   LiveInterval &OldLI = LIS.getInterval(Reg);
927 
928   // Iterate over instructions using Reg.
929   for (MachineRegisterInfo::reg_bundle_iterator
930        RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
931        RegI != E; ) {
932     MachineInstr *MI = &*(RegI++);
933 
934     // Debug values are not allowed to affect codegen.
935     if (MI->isDebugValue()) {
936       // Modify DBG_VALUE now that the value is in a spill slot.
937       MachineBasicBlock *MBB = MI->getParent();
938       DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI);
939       buildDbgValueForSpill(*MBB, MI, *MI, StackSlot);
940       MBB->erase(MI);
941       continue;
942     }
943 
944     // Ignore copies to/from snippets. We'll delete them.
945     if (SnippetCopies.count(MI))
946       continue;
947 
948     // Stack slot accesses may coalesce away.
949     if (coalesceStackAccess(MI, Reg))
950       continue;
951 
952     // Analyze instruction.
953     SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
954     MIBundleOperands::VirtRegInfo RI =
955         MIBundleOperands(*MI).analyzeVirtReg(Reg, &Ops);
956 
957     // Find the slot index where this instruction reads and writes OldLI.
958     // This is usually the def slot, except for tied early clobbers.
959     SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
960     if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
961       if (SlotIndex::isSameInstr(Idx, VNI->def))
962         Idx = VNI->def;
963 
964     // Check for a sibling copy.
965     unsigned SibReg = isFullCopyOf(*MI, Reg);
966     if (SibReg && isSibling(SibReg)) {
967       // This may actually be a copy between snippets.
968       if (isRegToSpill(SibReg)) {
969         DEBUG(dbgs() << "Found new snippet copy: " << *MI);
970         SnippetCopies.insert(MI);
971         continue;
972       }
973       if (RI.Writes) {
974         if (hoistSpillInsideBB(OldLI, *MI)) {
975           // This COPY is now dead, the value is already in the stack slot.
976           MI->getOperand(0).setIsDead();
977           DeadDefs.push_back(MI);
978           continue;
979         }
980       } else {
981         // This is a reload for a sib-reg copy. Drop spills downstream.
982         LiveInterval &SibLI = LIS.getInterval(SibReg);
983         eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
984         // The COPY will fold to a reload below.
985       }
986     }
987 
988     // Attempt to fold memory ops.
989     if (foldMemoryOperand(Ops))
990       continue;
991 
992     // Create a new virtual register for spill/fill.
993     // FIXME: Infer regclass from instruction alone.
994     unsigned NewVReg = Edit->createFrom(Reg);
995 
996     if (RI.Reads)
997       insertReload(NewVReg, Idx, MI);
998 
999     // Rewrite instruction operands.
1000     bool hasLiveDef = false;
1001     for (const auto &OpPair : Ops) {
1002       MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
1003       MO.setReg(NewVReg);
1004       if (MO.isUse()) {
1005         if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
1006           MO.setIsKill();
1007       } else {
1008         if (!MO.isDead())
1009           hasLiveDef = true;
1010       }
1011     }
1012     DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n');
1013 
1014     // FIXME: Use a second vreg if instruction has no tied ops.
1015     if (RI.Writes)
1016       if (hasLiveDef)
1017         insertSpill(NewVReg, true, MI);
1018   }
1019 }
1020 
1021 /// spillAll - Spill all registers remaining after rematerialization.
1022 void InlineSpiller::spillAll() {
1023   // Update LiveStacks now that we are committed to spilling.
1024   if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1025     StackSlot = VRM.assignVirt2StackSlot(Original);
1026     StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1027     StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1028   } else
1029     StackInt = &LSS.getInterval(StackSlot);
1030 
1031   if (Original != Edit->getReg())
1032     VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1033 
1034   assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1035   for (unsigned Reg : RegsToSpill)
1036     StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
1037                                      StackInt->getValNumInfo(0));
1038   DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1039 
1040   // Spill around uses of all RegsToSpill.
1041   for (unsigned Reg : RegsToSpill)
1042     spillAroundUses(Reg);
1043 
1044   // Hoisted spills may cause dead code.
1045   if (!DeadDefs.empty()) {
1046     DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1047     Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
1048   }
1049 
1050   // Finally delete the SnippetCopies.
1051   for (unsigned Reg : RegsToSpill) {
1052     for (MachineRegisterInfo::reg_instr_iterator
1053          RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end();
1054          RI != E; ) {
1055       MachineInstr &MI = *(RI++);
1056       assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy");
1057       // FIXME: Do this with a LiveRangeEdit callback.
1058       LIS.RemoveMachineInstrFromMaps(MI);
1059       MI.eraseFromParent();
1060     }
1061   }
1062 
1063   // Delete all spilled registers.
1064   for (unsigned Reg : RegsToSpill)
1065     Edit->eraseVirtReg(Reg);
1066 }
1067 
1068 void InlineSpiller::spill(LiveRangeEdit &edit) {
1069   ++NumSpilledRanges;
1070   Edit = &edit;
1071   assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
1072          && "Trying to spill a stack slot.");
1073   // Share a stack slot among all descendants of Original.
1074   Original = VRM.getOriginal(edit.getReg());
1075   StackSlot = VRM.getStackSlot(Original);
1076   StackInt = nullptr;
1077 
1078   DEBUG(dbgs() << "Inline spilling "
1079                << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
1080                << ':' << edit.getParent()
1081                << "\nFrom original " << printReg(Original) << '\n');
1082   assert(edit.getParent().isSpillable() &&
1083          "Attempting to spill already spilled value.");
1084   assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1085 
1086   collectRegsToSpill();
1087   reMaterializeAll();
1088 
1089   // Remat may handle everything.
1090   if (!RegsToSpill.empty())
1091     spillAll();
1092 
1093   Edit->calculateRegClassAndHint(MF, Loops, MBFI);
1094 }
1095 
1096 /// Optimizations after all the reg selections and spills are done.
1097 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); }
1098 
1099 /// When a spill is inserted, add the spill to MergeableSpills map.
1100 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot,
1101                                             unsigned Original) {
1102   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1103   LiveInterval &OrigLI = LIS.getInterval(Original);
1104   // save a copy of LiveInterval in StackSlotToOrigLI because the original
1105   // LiveInterval may be cleared after all its references are spilled.
1106   if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) {
1107     auto LI = llvm::make_unique<LiveInterval>(OrigLI.reg, OrigLI.weight);
1108     LI->assign(OrigLI, Allocator);
1109     StackSlotToOrigLI[StackSlot] = std::move(LI);
1110   }
1111   SlotIndex Idx = LIS.getInstructionIndex(Spill);
1112   VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot());
1113   std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1114   MergeableSpills[MIdx].insert(&Spill);
1115 }
1116 
1117 /// When a spill is removed, remove the spill from MergeableSpills map.
1118 /// Return true if the spill is removed successfully.
1119 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill,
1120                                              int StackSlot) {
1121   auto It = StackSlotToOrigLI.find(StackSlot);
1122   if (It == StackSlotToOrigLI.end())
1123     return false;
1124   SlotIndex Idx = LIS.getInstructionIndex(Spill);
1125   VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot());
1126   std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1127   return MergeableSpills[MIdx].erase(&Spill);
1128 }
1129 
1130 /// Check BB to see if it is a possible target BB to place a hoisted spill,
1131 /// i.e., there should be a living sibling of OrigReg at the insert point.
1132 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
1133                                      MachineBasicBlock &BB, unsigned &LiveReg) {
1134   SlotIndex Idx;
1135   unsigned OrigReg = OrigLI.reg;
1136   MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, BB);
1137   if (MI != BB.end())
1138     Idx = LIS.getInstructionIndex(*MI);
1139   else
1140     Idx = LIS.getMBBEndIdx(&BB).getPrevSlot();
1141   SmallSetVector<unsigned, 16> &Siblings = Virt2SiblingsMap[OrigReg];
1142   assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI");
1143 
1144   for (auto const SibReg : Siblings) {
1145     LiveInterval &LI = LIS.getInterval(SibReg);
1146     VNInfo *VNI = LI.getVNInfoAt(Idx);
1147     if (VNI) {
1148       LiveReg = SibReg;
1149       return true;
1150     }
1151   }
1152   return false;
1153 }
1154 
1155 /// Remove redundant spills in the same BB. Save those redundant spills in
1156 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
1157 void HoistSpillHelper::rmRedundantSpills(
1158     SmallPtrSet<MachineInstr *, 16> &Spills,
1159     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1160     DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1161   // For each spill saw, check SpillBBToSpill[] and see if its BB already has
1162   // another spill inside. If a BB contains more than one spill, only keep the
1163   // earlier spill with smaller SlotIndex.
1164   for (const auto CurrentSpill : Spills) {
1165     MachineBasicBlock *Block = CurrentSpill->getParent();
1166     MachineDomTreeNode *Node = MDT.getBase().getNode(Block);
1167     MachineInstr *PrevSpill = SpillBBToSpill[Node];
1168     if (PrevSpill) {
1169       SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
1170       SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill);
1171       MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
1172       MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
1173       SpillsToRm.push_back(SpillToRm);
1174       SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep;
1175     } else {
1176       SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill;
1177     }
1178   }
1179   for (const auto SpillToRm : SpillsToRm)
1180     Spills.erase(SpillToRm);
1181 }
1182 
1183 /// Starting from \p Root find a top-down traversal order of the dominator
1184 /// tree to visit all basic blocks containing the elements of \p Spills.
1185 /// Redundant spills will be found and put into \p SpillsToRm at the same
1186 /// time. \p SpillBBToSpill will be populated as part of the process and
1187 /// maps a basic block to the first store occurring in the basic block.
1188 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre
1189 void HoistSpillHelper::getVisitOrders(
1190     MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
1191     SmallVectorImpl<MachineDomTreeNode *> &Orders,
1192     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1193     DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
1194     DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1195   // The set contains all the possible BB nodes to which we may hoist
1196   // original spills.
1197   SmallPtrSet<MachineDomTreeNode *, 8> WorkSet;
1198   // Save the BB nodes on the path from the first BB node containing
1199   // non-redundant spill to the Root node.
1200   SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath;
1201   // All the spills to be hoisted must originate from a single def instruction
1202   // to the OrigReg. It means the def instruction should dominate all the spills
1203   // to be hoisted. We choose the BB where the def instruction is located as
1204   // the Root.
1205   MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom();
1206   // For every node on the dominator tree with spill, walk up on the dominator
1207   // tree towards the Root node until it is reached. If there is other node
1208   // containing spill in the middle of the path, the previous spill saw will
1209   // be redundant and the node containing it will be removed. All the nodes on
1210   // the path starting from the first node with non-redundant spill to the Root
1211   // node will be added to the WorkSet, which will contain all the possible
1212   // locations where spills may be hoisted to after the loop below is done.
1213   for (const auto Spill : Spills) {
1214     MachineBasicBlock *Block = Spill->getParent();
1215     MachineDomTreeNode *Node = MDT[Block];
1216     MachineInstr *SpillToRm = nullptr;
1217     while (Node != RootIDomNode) {
1218       // If Node dominates Block, and it already contains a spill, the spill in
1219       // Block will be redundant.
1220       if (Node != MDT[Block] && SpillBBToSpill[Node]) {
1221         SpillToRm = SpillBBToSpill[MDT[Block]];
1222         break;
1223         /// If we see the Node already in WorkSet, the path from the Node to
1224         /// the Root node must already be traversed by another spill.
1225         /// Then no need to repeat.
1226       } else if (WorkSet.count(Node)) {
1227         break;
1228       } else {
1229         NodesOnPath.insert(Node);
1230       }
1231       Node = Node->getIDom();
1232     }
1233     if (SpillToRm) {
1234       SpillsToRm.push_back(SpillToRm);
1235     } else {
1236       // Add a BB containing the original spills to SpillsToKeep -- i.e.,
1237       // set the initial status before hoisting start. The value of BBs
1238       // containing original spills is set to 0, in order to descriminate
1239       // with BBs containing hoisted spills which will be inserted to
1240       // SpillsToKeep later during hoisting.
1241       SpillsToKeep[MDT[Block]] = 0;
1242       WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end());
1243     }
1244     NodesOnPath.clear();
1245   }
1246 
1247   // Sort the nodes in WorkSet in top-down order and save the nodes
1248   // in Orders. Orders will be used for hoisting in runHoistSpills.
1249   unsigned idx = 0;
1250   Orders.push_back(MDT.getBase().getNode(Root));
1251   do {
1252     MachineDomTreeNode *Node = Orders[idx++];
1253     const std::vector<MachineDomTreeNode *> &Children = Node->getChildren();
1254     unsigned NumChildren = Children.size();
1255     for (unsigned i = 0; i != NumChildren; ++i) {
1256       MachineDomTreeNode *Child = Children[i];
1257       if (WorkSet.count(Child))
1258         Orders.push_back(Child);
1259     }
1260   } while (idx != Orders.size());
1261   assert(Orders.size() == WorkSet.size() &&
1262          "Orders have different size with WorkSet");
1263 
1264 #ifndef NDEBUG
1265   DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n");
1266   SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1267   for (; RIt != Orders.rend(); RIt++)
1268     DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",");
1269   DEBUG(dbgs() << "\n");
1270 #endif
1271 }
1272 
1273 /// Try to hoist spills according to BB hotness. The spills to removed will
1274 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in
1275 /// \p SpillsToIns.
1276 void HoistSpillHelper::runHoistSpills(
1277     LiveInterval &OrigLI, VNInfo &OrigVNI,
1278     SmallPtrSet<MachineInstr *, 16> &Spills,
1279     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1280     DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) {
1281   // Visit order of dominator tree nodes.
1282   SmallVector<MachineDomTreeNode *, 32> Orders;
1283   // SpillsToKeep contains all the nodes where spills are to be inserted
1284   // during hoisting. If the spill to be inserted is an original spill
1285   // (not a hoisted one), the value of the map entry is 0. If the spill
1286   // is a hoisted spill, the value of the map entry is the VReg to be used
1287   // as the source of the spill.
1288   DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep;
1289   // Map from BB to the first spill inside of it.
1290   DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill;
1291 
1292   rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill);
1293 
1294   MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def);
1295   getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep,
1296                  SpillBBToSpill);
1297 
1298   // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
1299   // nodes set and the cost of all the spills inside those nodes.
1300   // The nodes set are the locations where spills are to be inserted
1301   // in the subtree of current node.
1302   using NodesCostPair =
1303       std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>;
1304   DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap;
1305 
1306   // Iterate Orders set in reverse order, which will be a bottom-up order
1307   // in the dominator tree. Once we visit a dom tree node, we know its
1308   // children have already been visited and the spill locations in the
1309   // subtrees of all the children have been determined.
1310   SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1311   for (; RIt != Orders.rend(); RIt++) {
1312     MachineBasicBlock *Block = (*RIt)->getBlock();
1313 
1314     // If Block contains an original spill, simply continue.
1315     if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) {
1316       SpillsInSubTreeMap[*RIt].first.insert(*RIt);
1317       // SpillsInSubTreeMap[*RIt].second contains the cost of spill.
1318       SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block);
1319       continue;
1320     }
1321 
1322     // Collect spills in subtree of current node (*RIt) to
1323     // SpillsInSubTreeMap[*RIt].first.
1324     const std::vector<MachineDomTreeNode *> &Children = (*RIt)->getChildren();
1325     unsigned NumChildren = Children.size();
1326     for (unsigned i = 0; i != NumChildren; ++i) {
1327       MachineDomTreeNode *Child = Children[i];
1328       if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end())
1329         continue;
1330       // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below
1331       // should be placed before getting the begin and end iterators of
1332       // SpillsInSubTreeMap[Child].first, or else the iterators may be
1333       // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
1334       // and the map grows and then the original buckets in the map are moved.
1335       SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1336           SpillsInSubTreeMap[*RIt].first;
1337       BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1338       SubTreeCost += SpillsInSubTreeMap[Child].second;
1339       auto BI = SpillsInSubTreeMap[Child].first.begin();
1340       auto EI = SpillsInSubTreeMap[Child].first.end();
1341       SpillsInSubTree.insert(BI, EI);
1342       SpillsInSubTreeMap.erase(Child);
1343     }
1344 
1345     SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1346           SpillsInSubTreeMap[*RIt].first;
1347     BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1348     // No spills in subtree, simply continue.
1349     if (SpillsInSubTree.empty())
1350       continue;
1351 
1352     // Check whether Block is a possible candidate to insert spill.
1353     unsigned LiveReg = 0;
1354     if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg))
1355       continue;
1356 
1357     // If there are multiple spills that could be merged, bias a little
1358     // to hoist the spill.
1359     BranchProbability MarginProb = (SpillsInSubTree.size() > 1)
1360                                        ? BranchProbability(9, 10)
1361                                        : BranchProbability(1, 1);
1362     if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) {
1363       // Hoist: Move spills to current Block.
1364       for (const auto SpillBB : SpillsInSubTree) {
1365         // When SpillBB is a BB contains original spill, insert the spill
1366         // to SpillsToRm.
1367         if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() &&
1368             !SpillsToKeep[SpillBB]) {
1369           MachineInstr *SpillToRm = SpillBBToSpill[SpillBB];
1370           SpillsToRm.push_back(SpillToRm);
1371         }
1372         // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
1373         SpillsToKeep.erase(SpillBB);
1374       }
1375       // Current Block is the BB containing the new hoisted spill. Add it to
1376       // SpillsToKeep. LiveReg is the source of the new spill.
1377       SpillsToKeep[*RIt] = LiveReg;
1378       DEBUG({
1379         dbgs() << "spills in BB: ";
1380         for (const auto Rspill : SpillsInSubTree)
1381           dbgs() << Rspill->getBlock()->getNumber() << " ";
1382         dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()
1383                << "\n";
1384       });
1385       SpillsInSubTree.clear();
1386       SpillsInSubTree.insert(*RIt);
1387       SubTreeCost = MBFI.getBlockFreq(Block);
1388     }
1389   }
1390   // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
1391   // save them to SpillsToIns.
1392   for (const auto Ent : SpillsToKeep) {
1393     if (Ent.second)
1394       SpillsToIns[Ent.first->getBlock()] = Ent.second;
1395   }
1396 }
1397 
1398 /// For spills with equal values, remove redundant spills and hoist those left
1399 /// to less hot spots.
1400 ///
1401 /// Spills with equal values will be collected into the same set in
1402 /// MergeableSpills when spill is inserted. These equal spills are originated
1403 /// from the same defining instruction and are dominated by the instruction.
1404 /// Before hoisting all the equal spills, redundant spills inside in the same
1405 /// BB are first marked to be deleted. Then starting from the spills left, walk
1406 /// up on the dominator tree towards the Root node where the define instruction
1407 /// is located, mark the dominated spills to be deleted along the way and
1408 /// collect the BB nodes on the path from non-dominated spills to the define
1409 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places
1410 /// where we are considering to hoist the spills. We iterate the WorkSet in
1411 /// bottom-up order, and for each node, we will decide whether to hoist spills
1412 /// inside its subtree to that node. In this way, we can get benefit locally
1413 /// even if hoisting all the equal spills to one cold place is impossible.
1414 void HoistSpillHelper::hoistAllSpills() {
1415   SmallVector<unsigned, 4> NewVRegs;
1416   LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this);
1417 
1418   for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
1419     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1420     unsigned Original = VRM.getPreSplitReg(Reg);
1421     if (!MRI.def_empty(Reg))
1422       Virt2SiblingsMap[Original].insert(Reg);
1423   }
1424 
1425   // Each entry in MergeableSpills contains a spill set with equal values.
1426   for (auto &Ent : MergeableSpills) {
1427     int Slot = Ent.first.first;
1428     LiveInterval &OrigLI = *StackSlotToOrigLI[Slot];
1429     VNInfo *OrigVNI = Ent.first.second;
1430     SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second;
1431     if (Ent.second.empty())
1432       continue;
1433 
1434     DEBUG({
1435       dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"
1436              << "Equal spills in BB: ";
1437       for (const auto spill : EqValSpills)
1438         dbgs() << spill->getParent()->getNumber() << " ";
1439       dbgs() << "\n";
1440     });
1441 
1442     // SpillsToRm is the spill set to be removed from EqValSpills.
1443     SmallVector<MachineInstr *, 16> SpillsToRm;
1444     // SpillsToIns is the spill set to be newly inserted after hoisting.
1445     DenseMap<MachineBasicBlock *, unsigned> SpillsToIns;
1446 
1447     runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns);
1448 
1449     DEBUG({
1450       dbgs() << "Finally inserted spills in BB: ";
1451       for (const auto Ispill : SpillsToIns)
1452         dbgs() << Ispill.first->getNumber() << " ";
1453       dbgs() << "\nFinally removed spills in BB: ";
1454       for (const auto Rspill : SpillsToRm)
1455         dbgs() << Rspill->getParent()->getNumber() << " ";
1456       dbgs() << "\n";
1457     });
1458 
1459     // Stack live range update.
1460     LiveInterval &StackIntvl = LSS.getInterval(Slot);
1461     if (!SpillsToIns.empty() || !SpillsToRm.empty())
1462       StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI,
1463                                      StackIntvl.getValNumInfo(0));
1464 
1465     // Insert hoisted spills.
1466     for (auto const Insert : SpillsToIns) {
1467       MachineBasicBlock *BB = Insert.first;
1468       unsigned LiveReg = Insert.second;
1469       MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, *BB);
1470       TII.storeRegToStackSlot(*BB, MI, LiveReg, false, Slot,
1471                               MRI.getRegClass(LiveReg), &TRI);
1472       LIS.InsertMachineInstrRangeInMaps(std::prev(MI), MI);
1473       ++NumSpills;
1474     }
1475 
1476     // Remove redundant spills or change them to dead instructions.
1477     NumSpills -= SpillsToRm.size();
1478     for (auto const RMEnt : SpillsToRm) {
1479       RMEnt->setDesc(TII.get(TargetOpcode::KILL));
1480       for (unsigned i = RMEnt->getNumOperands(); i; --i) {
1481         MachineOperand &MO = RMEnt->getOperand(i - 1);
1482         if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead())
1483           RMEnt->RemoveOperand(i - 1);
1484       }
1485     }
1486     Edit.eliminateDeadDefs(SpillsToRm, None, AA);
1487   }
1488 }
1489 
1490 /// For VirtReg clone, the \p New register should have the same physreg or
1491 /// stackslot as the \p old register.
1492 void HoistSpillHelper::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
1493   if (VRM.hasPhys(Old))
1494     VRM.assignVirt2Phys(New, VRM.getPhys(Old));
1495   else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT)
1496     VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old));
1497   else
1498     llvm_unreachable("VReg should be assigned either physreg or stackslot");
1499 }
1500