1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The inline spiller modifies the machine function directly instead of 11 // inserting spills and restores in VirtRegMap. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "LiveRangeCalc.h" 16 #include "Spiller.h" 17 #include "SplitKit.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/CodeGen/LiveInterval.h" 29 #include "llvm/CodeGen/LiveIntervals.h" 30 #include "llvm/CodeGen/LiveRangeEdit.h" 31 #include "llvm/CodeGen/LiveStacks.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 34 #include "llvm/CodeGen/MachineDominators.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineFunctionPass.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineInstrBundle.h" 40 #include "llvm/CodeGen/MachineLoopInfo.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/CodeGen/SlotIndexes.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetOpcodes.h" 46 #include "llvm/CodeGen/TargetRegisterInfo.h" 47 #include "llvm/CodeGen/TargetSubtargetInfo.h" 48 #include "llvm/CodeGen/VirtRegMap.h" 49 #include "llvm/Config/llvm-config.h" 50 #include "llvm/Support/BlockFrequency.h" 51 #include "llvm/Support/BranchProbability.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <cassert> 58 #include <iterator> 59 #include <tuple> 60 #include <utility> 61 #include <vector> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "regalloc" 66 67 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 68 STATISTIC(NumSnippets, "Number of spilled snippets"); 69 STATISTIC(NumSpills, "Number of spills inserted"); 70 STATISTIC(NumSpillsRemoved, "Number of spills removed"); 71 STATISTIC(NumReloads, "Number of reloads inserted"); 72 STATISTIC(NumReloadsRemoved, "Number of reloads removed"); 73 STATISTIC(NumFolded, "Number of folded stack accesses"); 74 STATISTIC(NumFoldedLoads, "Number of folded loads"); 75 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 76 77 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden, 78 cl::desc("Disable inline spill hoisting")); 79 80 namespace { 81 82 class HoistSpillHelper : private LiveRangeEdit::Delegate { 83 MachineFunction &MF; 84 LiveIntervals &LIS; 85 LiveStacks &LSS; 86 AliasAnalysis *AA; 87 MachineDominatorTree &MDT; 88 MachineLoopInfo &Loops; 89 VirtRegMap &VRM; 90 MachineRegisterInfo &MRI; 91 const TargetInstrInfo &TII; 92 const TargetRegisterInfo &TRI; 93 const MachineBlockFrequencyInfo &MBFI; 94 95 InsertPointAnalysis IPA; 96 97 // Map from StackSlot to the LiveInterval of the original register. 98 // Note the LiveInterval of the original register may have been deleted 99 // after it is spilled. We keep a copy here to track the range where 100 // spills can be moved. 101 DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI; 102 103 // Map from pair of (StackSlot and Original VNI) to a set of spills which 104 // have the same stackslot and have equal values defined by Original VNI. 105 // These spills are mergeable and are hoist candiates. 106 using MergeableSpillsMap = 107 MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>; 108 MergeableSpillsMap MergeableSpills; 109 110 /// This is the map from original register to a set containing all its 111 /// siblings. To hoist a spill to another BB, we need to find out a live 112 /// sibling there and use it as the source of the new spill. 113 DenseMap<unsigned, SmallSetVector<unsigned, 16>> Virt2SiblingsMap; 114 115 bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 116 MachineBasicBlock &BB, unsigned &LiveReg); 117 118 void rmRedundantSpills( 119 SmallPtrSet<MachineInstr *, 16> &Spills, 120 SmallVectorImpl<MachineInstr *> &SpillsToRm, 121 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 122 123 void getVisitOrders( 124 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 125 SmallVectorImpl<MachineDomTreeNode *> &Orders, 126 SmallVectorImpl<MachineInstr *> &SpillsToRm, 127 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 128 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 129 130 void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI, 131 SmallPtrSet<MachineInstr *, 16> &Spills, 132 SmallVectorImpl<MachineInstr *> &SpillsToRm, 133 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns); 134 135 public: 136 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf, 137 VirtRegMap &vrm) 138 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 139 LSS(pass.getAnalysis<LiveStacks>()), 140 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 141 MDT(pass.getAnalysis<MachineDominatorTree>()), 142 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 143 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 144 TRI(*mf.getSubtarget().getRegisterInfo()), 145 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 146 IPA(LIS, mf.getNumBlockIDs()) {} 147 148 void addToMergeableSpills(MachineInstr &Spill, int StackSlot, 149 unsigned Original); 150 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot); 151 void hoistAllSpills(); 152 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 153 }; 154 155 class InlineSpiller : public Spiller { 156 MachineFunction &MF; 157 LiveIntervals &LIS; 158 LiveStacks &LSS; 159 AliasAnalysis *AA; 160 MachineDominatorTree &MDT; 161 MachineLoopInfo &Loops; 162 VirtRegMap &VRM; 163 MachineRegisterInfo &MRI; 164 const TargetInstrInfo &TII; 165 const TargetRegisterInfo &TRI; 166 const MachineBlockFrequencyInfo &MBFI; 167 168 // Variables that are valid during spill(), but used by multiple methods. 169 LiveRangeEdit *Edit; 170 LiveInterval *StackInt; 171 int StackSlot; 172 unsigned Original; 173 174 // All registers to spill to StackSlot, including the main register. 175 SmallVector<unsigned, 8> RegsToSpill; 176 177 // All COPY instructions to/from snippets. 178 // They are ignored since both operands refer to the same stack slot. 179 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 180 181 // Values that failed to remat at some point. 182 SmallPtrSet<VNInfo*, 8> UsedValues; 183 184 // Dead defs generated during spilling. 185 SmallVector<MachineInstr*, 8> DeadDefs; 186 187 // Object records spills information and does the hoisting. 188 HoistSpillHelper HSpiller; 189 190 ~InlineSpiller() override = default; 191 192 public: 193 InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm) 194 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 195 LSS(pass.getAnalysis<LiveStacks>()), 196 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 197 MDT(pass.getAnalysis<MachineDominatorTree>()), 198 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 199 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 200 TRI(*mf.getSubtarget().getRegisterInfo()), 201 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 202 HSpiller(pass, mf, vrm) {} 203 204 void spill(LiveRangeEdit &) override; 205 void postOptimization() override; 206 207 private: 208 bool isSnippet(const LiveInterval &SnipLI); 209 void collectRegsToSpill(); 210 211 bool isRegToSpill(unsigned Reg) { return is_contained(RegsToSpill, Reg); } 212 213 bool isSibling(unsigned Reg); 214 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI); 215 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 216 217 void markValueUsed(LiveInterval*, VNInfo*); 218 bool reMaterializeFor(LiveInterval &, MachineInstr &MI); 219 void reMaterializeAll(); 220 221 bool coalesceStackAccess(MachineInstr *MI, unsigned Reg); 222 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>, 223 MachineInstr *LoadMI = nullptr); 224 void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI); 225 void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI); 226 227 void spillAroundUses(unsigned Reg); 228 void spillAll(); 229 }; 230 231 } // end anonymous namespace 232 233 Spiller::~Spiller() = default; 234 235 void Spiller::anchor() {} 236 237 Spiller *llvm::createInlineSpiller(MachineFunctionPass &pass, 238 MachineFunction &mf, 239 VirtRegMap &vrm) { 240 return new InlineSpiller(pass, mf, vrm); 241 } 242 243 //===----------------------------------------------------------------------===// 244 // Snippets 245 //===----------------------------------------------------------------------===// 246 247 // When spilling a virtual register, we also spill any snippets it is connected 248 // to. The snippets are small live ranges that only have a single real use, 249 // leftovers from live range splitting. Spilling them enables memory operand 250 // folding or tightens the live range around the single use. 251 // 252 // This minimizes register pressure and maximizes the store-to-load distance for 253 // spill slots which can be important in tight loops. 254 255 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 256 /// otherwise return 0. 257 static unsigned isFullCopyOf(const MachineInstr &MI, unsigned Reg) { 258 if (!MI.isFullCopy()) 259 return 0; 260 if (MI.getOperand(0).getReg() == Reg) 261 return MI.getOperand(1).getReg(); 262 if (MI.getOperand(1).getReg() == Reg) 263 return MI.getOperand(0).getReg(); 264 return 0; 265 } 266 267 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 268 /// It is assumed that SnipLI is a virtual register with the same original as 269 /// Edit->getReg(). 270 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 271 unsigned Reg = Edit->getReg(); 272 273 // A snippet is a tiny live range with only a single instruction using it 274 // besides copies to/from Reg or spills/fills. We accept: 275 // 276 // %snip = COPY %Reg / FILL fi# 277 // %snip = USE %snip 278 // %Reg = COPY %snip / SPILL %snip, fi# 279 // 280 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) 281 return false; 282 283 MachineInstr *UseMI = nullptr; 284 285 // Check that all uses satisfy our criteria. 286 for (MachineRegisterInfo::reg_instr_nodbg_iterator 287 RI = MRI.reg_instr_nodbg_begin(SnipLI.reg), 288 E = MRI.reg_instr_nodbg_end(); RI != E; ) { 289 MachineInstr &MI = *RI++; 290 291 // Allow copies to/from Reg. 292 if (isFullCopyOf(MI, Reg)) 293 continue; 294 295 // Allow stack slot loads. 296 int FI; 297 if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 298 continue; 299 300 // Allow stack slot stores. 301 if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 302 continue; 303 304 // Allow a single additional instruction. 305 if (UseMI && &MI != UseMI) 306 return false; 307 UseMI = &MI; 308 } 309 return true; 310 } 311 312 /// collectRegsToSpill - Collect live range snippets that only have a single 313 /// real use. 314 void InlineSpiller::collectRegsToSpill() { 315 unsigned Reg = Edit->getReg(); 316 317 // Main register always spills. 318 RegsToSpill.assign(1, Reg); 319 SnippetCopies.clear(); 320 321 // Snippets all have the same original, so there can't be any for an original 322 // register. 323 if (Original == Reg) 324 return; 325 326 for (MachineRegisterInfo::reg_instr_iterator 327 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) { 328 MachineInstr &MI = *RI++; 329 unsigned SnipReg = isFullCopyOf(MI, Reg); 330 if (!isSibling(SnipReg)) 331 continue; 332 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 333 if (!isSnippet(SnipLI)) 334 continue; 335 SnippetCopies.insert(&MI); 336 if (isRegToSpill(SnipReg)) 337 continue; 338 RegsToSpill.push_back(SnipReg); 339 DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 340 ++NumSnippets; 341 } 342 } 343 344 bool InlineSpiller::isSibling(unsigned Reg) { 345 return TargetRegisterInfo::isVirtualRegister(Reg) && 346 VRM.getOriginal(Reg) == Original; 347 } 348 349 /// It is beneficial to spill to earlier place in the same BB in case 350 /// as follows: 351 /// There is an alternative def earlier in the same MBB. 352 /// Hoist the spill as far as possible in SpillMBB. This can ease 353 /// register pressure: 354 /// 355 /// x = def 356 /// y = use x 357 /// s = copy x 358 /// 359 /// Hoisting the spill of s to immediately after the def removes the 360 /// interference between x and y: 361 /// 362 /// x = def 363 /// spill x 364 /// y = use killed x 365 /// 366 /// This hoist only helps when the copy kills its source. 367 /// 368 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI, 369 MachineInstr &CopyMI) { 370 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 371 #ifndef NDEBUG 372 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); 373 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); 374 #endif 375 376 unsigned SrcReg = CopyMI.getOperand(1).getReg(); 377 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 378 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx); 379 LiveQueryResult SrcQ = SrcLI.Query(Idx); 380 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def); 381 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill()) 382 return false; 383 384 // Conservatively extend the stack slot range to the range of the original 385 // value. We may be able to do better with stack slot coloring by being more 386 // careful here. 387 assert(StackInt && "No stack slot assigned yet."); 388 LiveInterval &OrigLI = LIS.getInterval(Original); 389 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 390 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 391 DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 392 << *StackInt << '\n'); 393 394 // We are going to spill SrcVNI immediately after its def, so clear out 395 // any later spills of the same value. 396 eliminateRedundantSpills(SrcLI, SrcVNI); 397 398 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def); 399 MachineBasicBlock::iterator MII; 400 if (SrcVNI->isPHIDef()) 401 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 402 else { 403 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def); 404 assert(DefMI && "Defining instruction disappeared"); 405 MII = DefMI; 406 ++MII; 407 } 408 // Insert spill without kill flag immediately after def. 409 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot, 410 MRI.getRegClass(SrcReg), &TRI); 411 --MII; // Point to store instruction. 412 LIS.InsertMachineInstrInMaps(*MII); 413 DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII); 414 415 HSpiller.addToMergeableSpills(*MII, StackSlot, Original); 416 ++NumSpills; 417 return true; 418 } 419 420 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 421 /// redundant spills of this value in SLI.reg and sibling copies. 422 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 423 assert(VNI && "Missing value"); 424 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 425 WorkList.push_back(std::make_pair(&SLI, VNI)); 426 assert(StackInt && "No stack slot assigned yet."); 427 428 do { 429 LiveInterval *LI; 430 std::tie(LI, VNI) = WorkList.pop_back_val(); 431 unsigned Reg = LI->reg; 432 DEBUG(dbgs() << "Checking redundant spills for " 433 << VNI->id << '@' << VNI->def << " in " << *LI << '\n'); 434 435 // Regs to spill are taken care of. 436 if (isRegToSpill(Reg)) 437 continue; 438 439 // Add all of VNI's live range to StackInt. 440 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 441 DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 442 443 // Find all spills and copies of VNI. 444 for (MachineRegisterInfo::use_instr_nodbg_iterator 445 UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 446 UI != E; ) { 447 MachineInstr &MI = *UI++; 448 if (!MI.isCopy() && !MI.mayStore()) 449 continue; 450 SlotIndex Idx = LIS.getInstructionIndex(MI); 451 if (LI->getVNInfoAt(Idx) != VNI) 452 continue; 453 454 // Follow sibling copies down the dominator tree. 455 if (unsigned DstReg = isFullCopyOf(MI, Reg)) { 456 if (isSibling(DstReg)) { 457 LiveInterval &DstLI = LIS.getInterval(DstReg); 458 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); 459 assert(DstVNI && "Missing defined value"); 460 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); 461 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 462 } 463 continue; 464 } 465 466 // Erase spills. 467 int FI; 468 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 469 DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI); 470 // eliminateDeadDefs won't normally remove stores, so switch opcode. 471 MI.setDesc(TII.get(TargetOpcode::KILL)); 472 DeadDefs.push_back(&MI); 473 ++NumSpillsRemoved; 474 if (HSpiller.rmFromMergeableSpills(MI, StackSlot)) 475 --NumSpills; 476 } 477 } 478 } while (!WorkList.empty()); 479 } 480 481 //===----------------------------------------------------------------------===// 482 // Rematerialization 483 //===----------------------------------------------------------------------===// 484 485 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 486 /// instruction cannot be eliminated. See through snippet copies 487 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 488 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 489 WorkList.push_back(std::make_pair(LI, VNI)); 490 do { 491 std::tie(LI, VNI) = WorkList.pop_back_val(); 492 if (!UsedValues.insert(VNI).second) 493 continue; 494 495 if (VNI->isPHIDef()) { 496 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 497 for (MachineBasicBlock *P : MBB->predecessors()) { 498 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P)); 499 if (PVNI) 500 WorkList.push_back(std::make_pair(LI, PVNI)); 501 } 502 continue; 503 } 504 505 // Follow snippet copies. 506 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 507 if (!SnippetCopies.count(MI)) 508 continue; 509 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 510 assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy"); 511 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); 512 assert(SnipVNI && "Snippet undefined before copy"); 513 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 514 } while (!WorkList.empty()); 515 } 516 517 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 518 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) { 519 // Analyze instruction 520 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 521 MIBundleOperands::VirtRegInfo RI = 522 MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops); 523 524 if (!RI.Reads) 525 return false; 526 527 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); 528 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 529 530 if (!ParentVNI) { 531 DEBUG(dbgs() << "\tadding <undef> flags: "); 532 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 533 MachineOperand &MO = MI.getOperand(i); 534 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) 535 MO.setIsUndef(); 536 } 537 DEBUG(dbgs() << UseIdx << '\t' << MI); 538 return true; 539 } 540 541 if (SnippetCopies.count(&MI)) 542 return false; 543 544 LiveInterval &OrigLI = LIS.getInterval(Original); 545 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 546 LiveRangeEdit::Remat RM(ParentVNI); 547 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 548 549 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) { 550 markValueUsed(&VirtReg, ParentVNI); 551 DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 552 return false; 553 } 554 555 // If the instruction also writes VirtReg.reg, it had better not require the 556 // same register for uses and defs. 557 if (RI.Tied) { 558 markValueUsed(&VirtReg, ParentVNI); 559 DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI); 560 return false; 561 } 562 563 // Before rematerializing into a register for a single instruction, try to 564 // fold a load into the instruction. That avoids allocating a new register. 565 if (RM.OrigMI->canFoldAsLoad() && 566 foldMemoryOperand(Ops, RM.OrigMI)) { 567 Edit->markRematerialized(RM.ParentVNI); 568 ++NumFoldedLoads; 569 return true; 570 } 571 572 // Allocate a new register for the remat. 573 unsigned NewVReg = Edit->createFrom(Original); 574 575 // Finally we can rematerialize OrigMI before MI. 576 SlotIndex DefIdx = 577 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI); 578 579 // We take the DebugLoc from MI, since OrigMI may be attributed to a 580 // different source location. 581 auto *NewMI = LIS.getInstructionFromIndex(DefIdx); 582 NewMI->setDebugLoc(MI.getDebugLoc()); 583 584 (void)DefIdx; 585 DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 586 << *LIS.getInstructionFromIndex(DefIdx)); 587 588 // Replace operands 589 for (const auto &OpPair : Ops) { 590 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 591 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) { 592 MO.setReg(NewVReg); 593 MO.setIsKill(); 594 } 595 } 596 DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n'); 597 598 ++NumRemats; 599 return true; 600 } 601 602 /// reMaterializeAll - Try to rematerialize as many uses as possible, 603 /// and trim the live ranges after. 604 void InlineSpiller::reMaterializeAll() { 605 if (!Edit->anyRematerializable(AA)) 606 return; 607 608 UsedValues.clear(); 609 610 // Try to remat before all uses of snippets. 611 bool anyRemat = false; 612 for (unsigned Reg : RegsToSpill) { 613 LiveInterval &LI = LIS.getInterval(Reg); 614 for (MachineRegisterInfo::reg_bundle_iterator 615 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 616 RegI != E; ) { 617 MachineInstr &MI = *RegI++; 618 619 // Debug values are not allowed to affect codegen. 620 if (MI.isDebugValue()) 621 continue; 622 623 anyRemat |= reMaterializeFor(LI, MI); 624 } 625 } 626 if (!anyRemat) 627 return; 628 629 // Remove any values that were completely rematted. 630 for (unsigned Reg : RegsToSpill) { 631 LiveInterval &LI = LIS.getInterval(Reg); 632 for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 633 I != E; ++I) { 634 VNInfo *VNI = *I; 635 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 636 continue; 637 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 638 MI->addRegisterDead(Reg, &TRI); 639 if (!MI->allDefsAreDead()) 640 continue; 641 DEBUG(dbgs() << "All defs dead: " << *MI); 642 DeadDefs.push_back(MI); 643 } 644 } 645 646 // Eliminate dead code after remat. Note that some snippet copies may be 647 // deleted here. 648 if (DeadDefs.empty()) 649 return; 650 DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 651 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 652 653 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions 654 // after rematerialization. To remove a VNI for a vreg from its LiveInterval, 655 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all 656 // removed, PHI VNI are still left in the LiveInterval. 657 // So to get rid of unused reg, we need to check whether it has non-dbg 658 // reference instead of whether it has non-empty interval. 659 unsigned ResultPos = 0; 660 for (unsigned Reg : RegsToSpill) { 661 if (MRI.reg_nodbg_empty(Reg)) { 662 Edit->eraseVirtReg(Reg); 663 continue; 664 } 665 666 assert(LIS.hasInterval(Reg) && 667 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && 668 "Empty and not used live-range?!"); 669 670 RegsToSpill[ResultPos++] = Reg; 671 } 672 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); 673 DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n"); 674 } 675 676 //===----------------------------------------------------------------------===// 677 // Spilling 678 //===----------------------------------------------------------------------===// 679 680 /// If MI is a load or store of StackSlot, it can be removed. 681 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) { 682 int FI = 0; 683 unsigned InstrReg = TII.isLoadFromStackSlot(*MI, FI); 684 bool IsLoad = InstrReg; 685 if (!IsLoad) 686 InstrReg = TII.isStoreToStackSlot(*MI, FI); 687 688 // We have a stack access. Is it the right register and slot? 689 if (InstrReg != Reg || FI != StackSlot) 690 return false; 691 692 if (!IsLoad) 693 HSpiller.rmFromMergeableSpills(*MI, StackSlot); 694 695 DEBUG(dbgs() << "Coalescing stack access: " << *MI); 696 LIS.RemoveMachineInstrFromMaps(*MI); 697 MI->eraseFromParent(); 698 699 if (IsLoad) { 700 ++NumReloadsRemoved; 701 --NumReloads; 702 } else { 703 ++NumSpillsRemoved; 704 --NumSpills; 705 } 706 707 return true; 708 } 709 710 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 711 LLVM_DUMP_METHOD 712 // Dump the range of instructions from B to E with their slot indexes. 713 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, 714 MachineBasicBlock::iterator E, 715 LiveIntervals const &LIS, 716 const char *const header, 717 unsigned VReg =0) { 718 char NextLine = '\n'; 719 char SlotIndent = '\t'; 720 721 if (std::next(B) == E) { 722 NextLine = ' '; 723 SlotIndent = ' '; 724 } 725 726 dbgs() << '\t' << header << ": " << NextLine; 727 728 for (MachineBasicBlock::iterator I = B; I != E; ++I) { 729 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot(); 730 731 // If a register was passed in and this instruction has it as a 732 // destination that is marked as an early clobber, print the 733 // early-clobber slot index. 734 if (VReg) { 735 MachineOperand *MO = I->findRegisterDefOperand(VReg); 736 if (MO && MO->isEarlyClobber()) 737 Idx = Idx.getRegSlot(true); 738 } 739 740 dbgs() << SlotIndent << Idx << '\t' << *I; 741 } 742 } 743 #endif 744 745 /// foldMemoryOperand - Try folding stack slot references in Ops into their 746 /// instructions. 747 /// 748 /// @param Ops Operand indices from analyzeVirtReg(). 749 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 750 /// @return True on success. 751 bool InlineSpiller:: 752 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops, 753 MachineInstr *LoadMI) { 754 if (Ops.empty()) 755 return false; 756 // Don't attempt folding in bundles. 757 MachineInstr *MI = Ops.front().first; 758 if (Ops.back().first != MI || MI->isBundled()) 759 return false; 760 761 bool WasCopy = MI->isCopy(); 762 unsigned ImpReg = 0; 763 764 // Spill subregs if the target allows it. 765 // We always want to spill subregs for stackmap/patchpoint pseudos. 766 bool SpillSubRegs = TII.isSubregFoldable() || 767 MI->getOpcode() == TargetOpcode::STATEPOINT || 768 MI->getOpcode() == TargetOpcode::PATCHPOINT || 769 MI->getOpcode() == TargetOpcode::STACKMAP; 770 771 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 772 // operands. 773 SmallVector<unsigned, 8> FoldOps; 774 for (const auto &OpPair : Ops) { 775 unsigned Idx = OpPair.second; 776 assert(MI == OpPair.first && "Instruction conflict during operand folding"); 777 MachineOperand &MO = MI->getOperand(Idx); 778 if (MO.isImplicit()) { 779 ImpReg = MO.getReg(); 780 continue; 781 } 782 783 if (!SpillSubRegs && MO.getSubReg()) 784 return false; 785 // We cannot fold a load instruction into a def. 786 if (LoadMI && MO.isDef()) 787 return false; 788 // Tied use operands should not be passed to foldMemoryOperand. 789 if (!MI->isRegTiedToDefOperand(Idx)) 790 FoldOps.push_back(Idx); 791 } 792 793 // If we only have implicit uses, we won't be able to fold that. 794 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try! 795 if (FoldOps.empty()) 796 return false; 797 798 MachineInstrSpan MIS(MI); 799 800 MachineInstr *FoldMI = 801 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS) 802 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS); 803 if (!FoldMI) 804 return false; 805 806 // Remove LIS for any dead defs in the original MI not in FoldMI. 807 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) { 808 if (!MO->isReg()) 809 continue; 810 unsigned Reg = MO->getReg(); 811 if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) || 812 MRI.isReserved(Reg)) { 813 continue; 814 } 815 // Skip non-Defs, including undef uses and internal reads. 816 if (MO->isUse()) 817 continue; 818 MIBundleOperands::PhysRegInfo RI = 819 MIBundleOperands(*FoldMI).analyzePhysReg(Reg, &TRI); 820 if (RI.FullyDefined) 821 continue; 822 // FoldMI does not define this physreg. Remove the LI segment. 823 assert(MO->isDead() && "Cannot fold physreg def"); 824 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 825 LIS.removePhysRegDefAt(Reg, Idx); 826 } 827 828 int FI; 829 if (TII.isStoreToStackSlot(*MI, FI) && 830 HSpiller.rmFromMergeableSpills(*MI, FI)) 831 --NumSpills; 832 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI); 833 MI->eraseFromParent(); 834 835 // Insert any new instructions other than FoldMI into the LIS maps. 836 assert(!MIS.empty() && "Unexpected empty span of instructions!"); 837 for (MachineInstr &MI : MIS) 838 if (&MI != FoldMI) 839 LIS.InsertMachineInstrInMaps(MI); 840 841 // TII.foldMemoryOperand may have left some implicit operands on the 842 // instruction. Strip them. 843 if (ImpReg) 844 for (unsigned i = FoldMI->getNumOperands(); i; --i) { 845 MachineOperand &MO = FoldMI->getOperand(i - 1); 846 if (!MO.isReg() || !MO.isImplicit()) 847 break; 848 if (MO.getReg() == ImpReg) 849 FoldMI->RemoveOperand(i - 1); 850 } 851 852 DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, 853 "folded")); 854 855 if (!WasCopy) 856 ++NumFolded; 857 else if (Ops.front().second == 0) { 858 ++NumSpills; 859 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original); 860 } else 861 ++NumReloads; 862 return true; 863 } 864 865 void InlineSpiller::insertReload(unsigned NewVReg, 866 SlotIndex Idx, 867 MachineBasicBlock::iterator MI) { 868 MachineBasicBlock &MBB = *MI->getParent(); 869 870 MachineInstrSpan MIS(MI); 871 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, 872 MRI.getRegClass(NewVReg), &TRI); 873 874 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); 875 876 DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload", 877 NewVReg)); 878 ++NumReloads; 879 } 880 881 /// Check if \p Def fully defines a VReg with an undefined value. 882 /// If that's the case, that means the value of VReg is actually 883 /// not relevant. 884 static bool isFullUndefDef(const MachineInstr &Def) { 885 if (!Def.isImplicitDef()) 886 return false; 887 assert(Def.getNumOperands() == 1 && 888 "Implicit def with more than one definition"); 889 // We can say that the VReg defined by Def is undef, only if it is 890 // fully defined by Def. Otherwise, some of the lanes may not be 891 // undef and the value of the VReg matters. 892 return !Def.getOperand(0).getSubReg(); 893 } 894 895 /// insertSpill - Insert a spill of NewVReg after MI. 896 void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill, 897 MachineBasicBlock::iterator MI) { 898 MachineBasicBlock &MBB = *MI->getParent(); 899 900 MachineInstrSpan MIS(MI); 901 bool IsRealSpill = true; 902 if (isFullUndefDef(*MI)) { 903 // Don't spill undef value. 904 // Anything works for undef, in particular keeping the memory 905 // uninitialized is a viable option and it saves code size and 906 // run time. 907 BuildMI(MBB, std::next(MI), MI->getDebugLoc(), TII.get(TargetOpcode::KILL)) 908 .addReg(NewVReg, getKillRegState(isKill)); 909 IsRealSpill = false; 910 } else 911 TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot, 912 MRI.getRegClass(NewVReg), &TRI); 913 914 LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end()); 915 916 DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS, 917 "spill")); 918 ++NumSpills; 919 if (IsRealSpill) 920 HSpiller.addToMergeableSpills(*std::next(MI), StackSlot, Original); 921 } 922 923 /// spillAroundUses - insert spill code around each use of Reg. 924 void InlineSpiller::spillAroundUses(unsigned Reg) { 925 DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n'); 926 LiveInterval &OldLI = LIS.getInterval(Reg); 927 928 // Iterate over instructions using Reg. 929 for (MachineRegisterInfo::reg_bundle_iterator 930 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 931 RegI != E; ) { 932 MachineInstr *MI = &*(RegI++); 933 934 // Debug values are not allowed to affect codegen. 935 if (MI->isDebugValue()) { 936 // Modify DBG_VALUE now that the value is in a spill slot. 937 MachineBasicBlock *MBB = MI->getParent(); 938 DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI); 939 buildDbgValueForSpill(*MBB, MI, *MI, StackSlot); 940 MBB->erase(MI); 941 continue; 942 } 943 944 // Ignore copies to/from snippets. We'll delete them. 945 if (SnippetCopies.count(MI)) 946 continue; 947 948 // Stack slot accesses may coalesce away. 949 if (coalesceStackAccess(MI, Reg)) 950 continue; 951 952 // Analyze instruction. 953 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; 954 MIBundleOperands::VirtRegInfo RI = 955 MIBundleOperands(*MI).analyzeVirtReg(Reg, &Ops); 956 957 // Find the slot index where this instruction reads and writes OldLI. 958 // This is usually the def slot, except for tied early clobbers. 959 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 960 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) 961 if (SlotIndex::isSameInstr(Idx, VNI->def)) 962 Idx = VNI->def; 963 964 // Check for a sibling copy. 965 unsigned SibReg = isFullCopyOf(*MI, Reg); 966 if (SibReg && isSibling(SibReg)) { 967 // This may actually be a copy between snippets. 968 if (isRegToSpill(SibReg)) { 969 DEBUG(dbgs() << "Found new snippet copy: " << *MI); 970 SnippetCopies.insert(MI); 971 continue; 972 } 973 if (RI.Writes) { 974 if (hoistSpillInsideBB(OldLI, *MI)) { 975 // This COPY is now dead, the value is already in the stack slot. 976 MI->getOperand(0).setIsDead(); 977 DeadDefs.push_back(MI); 978 continue; 979 } 980 } else { 981 // This is a reload for a sib-reg copy. Drop spills downstream. 982 LiveInterval &SibLI = LIS.getInterval(SibReg); 983 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 984 // The COPY will fold to a reload below. 985 } 986 } 987 988 // Attempt to fold memory ops. 989 if (foldMemoryOperand(Ops)) 990 continue; 991 992 // Create a new virtual register for spill/fill. 993 // FIXME: Infer regclass from instruction alone. 994 unsigned NewVReg = Edit->createFrom(Reg); 995 996 if (RI.Reads) 997 insertReload(NewVReg, Idx, MI); 998 999 // Rewrite instruction operands. 1000 bool hasLiveDef = false; 1001 for (const auto &OpPair : Ops) { 1002 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 1003 MO.setReg(NewVReg); 1004 if (MO.isUse()) { 1005 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second)) 1006 MO.setIsKill(); 1007 } else { 1008 if (!MO.isDead()) 1009 hasLiveDef = true; 1010 } 1011 } 1012 DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n'); 1013 1014 // FIXME: Use a second vreg if instruction has no tied ops. 1015 if (RI.Writes) 1016 if (hasLiveDef) 1017 insertSpill(NewVReg, true, MI); 1018 } 1019 } 1020 1021 /// spillAll - Spill all registers remaining after rematerialization. 1022 void InlineSpiller::spillAll() { 1023 // Update LiveStacks now that we are committed to spilling. 1024 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 1025 StackSlot = VRM.assignVirt2StackSlot(Original); 1026 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 1027 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); 1028 } else 1029 StackInt = &LSS.getInterval(StackSlot); 1030 1031 if (Original != Edit->getReg()) 1032 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 1033 1034 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 1035 for (unsigned Reg : RegsToSpill) 1036 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg), 1037 StackInt->getValNumInfo(0)); 1038 DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 1039 1040 // Spill around uses of all RegsToSpill. 1041 for (unsigned Reg : RegsToSpill) 1042 spillAroundUses(Reg); 1043 1044 // Hoisted spills may cause dead code. 1045 if (!DeadDefs.empty()) { 1046 DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 1047 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 1048 } 1049 1050 // Finally delete the SnippetCopies. 1051 for (unsigned Reg : RegsToSpill) { 1052 for (MachineRegisterInfo::reg_instr_iterator 1053 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); 1054 RI != E; ) { 1055 MachineInstr &MI = *(RI++); 1056 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy"); 1057 // FIXME: Do this with a LiveRangeEdit callback. 1058 LIS.RemoveMachineInstrFromMaps(MI); 1059 MI.eraseFromParent(); 1060 } 1061 } 1062 1063 // Delete all spilled registers. 1064 for (unsigned Reg : RegsToSpill) 1065 Edit->eraseVirtReg(Reg); 1066 } 1067 1068 void InlineSpiller::spill(LiveRangeEdit &edit) { 1069 ++NumSpilledRanges; 1070 Edit = &edit; 1071 assert(!TargetRegisterInfo::isStackSlot(edit.getReg()) 1072 && "Trying to spill a stack slot."); 1073 // Share a stack slot among all descendants of Original. 1074 Original = VRM.getOriginal(edit.getReg()); 1075 StackSlot = VRM.getStackSlot(Original); 1076 StackInt = nullptr; 1077 1078 DEBUG(dbgs() << "Inline spilling " 1079 << TRI.getRegClassName(MRI.getRegClass(edit.getReg())) 1080 << ':' << edit.getParent() 1081 << "\nFrom original " << printReg(Original) << '\n'); 1082 assert(edit.getParent().isSpillable() && 1083 "Attempting to spill already spilled value."); 1084 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1085 1086 collectRegsToSpill(); 1087 reMaterializeAll(); 1088 1089 // Remat may handle everything. 1090 if (!RegsToSpill.empty()) 1091 spillAll(); 1092 1093 Edit->calculateRegClassAndHint(MF, Loops, MBFI); 1094 } 1095 1096 /// Optimizations after all the reg selections and spills are done. 1097 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); } 1098 1099 /// When a spill is inserted, add the spill to MergeableSpills map. 1100 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot, 1101 unsigned Original) { 1102 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1103 LiveInterval &OrigLI = LIS.getInterval(Original); 1104 // save a copy of LiveInterval in StackSlotToOrigLI because the original 1105 // LiveInterval may be cleared after all its references are spilled. 1106 if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) { 1107 auto LI = llvm::make_unique<LiveInterval>(OrigLI.reg, OrigLI.weight); 1108 LI->assign(OrigLI, Allocator); 1109 StackSlotToOrigLI[StackSlot] = std::move(LI); 1110 } 1111 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1112 VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot()); 1113 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1114 MergeableSpills[MIdx].insert(&Spill); 1115 } 1116 1117 /// When a spill is removed, remove the spill from MergeableSpills map. 1118 /// Return true if the spill is removed successfully. 1119 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill, 1120 int StackSlot) { 1121 auto It = StackSlotToOrigLI.find(StackSlot); 1122 if (It == StackSlotToOrigLI.end()) 1123 return false; 1124 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1125 VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot()); 1126 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1127 return MergeableSpills[MIdx].erase(&Spill); 1128 } 1129 1130 /// Check BB to see if it is a possible target BB to place a hoisted spill, 1131 /// i.e., there should be a living sibling of OrigReg at the insert point. 1132 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 1133 MachineBasicBlock &BB, unsigned &LiveReg) { 1134 SlotIndex Idx; 1135 unsigned OrigReg = OrigLI.reg; 1136 MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, BB); 1137 if (MI != BB.end()) 1138 Idx = LIS.getInstructionIndex(*MI); 1139 else 1140 Idx = LIS.getMBBEndIdx(&BB).getPrevSlot(); 1141 SmallSetVector<unsigned, 16> &Siblings = Virt2SiblingsMap[OrigReg]; 1142 assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI"); 1143 1144 for (auto const SibReg : Siblings) { 1145 LiveInterval &LI = LIS.getInterval(SibReg); 1146 VNInfo *VNI = LI.getVNInfoAt(Idx); 1147 if (VNI) { 1148 LiveReg = SibReg; 1149 return true; 1150 } 1151 } 1152 return false; 1153 } 1154 1155 /// Remove redundant spills in the same BB. Save those redundant spills in 1156 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map. 1157 void HoistSpillHelper::rmRedundantSpills( 1158 SmallPtrSet<MachineInstr *, 16> &Spills, 1159 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1160 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1161 // For each spill saw, check SpillBBToSpill[] and see if its BB already has 1162 // another spill inside. If a BB contains more than one spill, only keep the 1163 // earlier spill with smaller SlotIndex. 1164 for (const auto CurrentSpill : Spills) { 1165 MachineBasicBlock *Block = CurrentSpill->getParent(); 1166 MachineDomTreeNode *Node = MDT.getBase().getNode(Block); 1167 MachineInstr *PrevSpill = SpillBBToSpill[Node]; 1168 if (PrevSpill) { 1169 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill); 1170 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill); 1171 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill; 1172 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill; 1173 SpillsToRm.push_back(SpillToRm); 1174 SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep; 1175 } else { 1176 SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill; 1177 } 1178 } 1179 for (const auto SpillToRm : SpillsToRm) 1180 Spills.erase(SpillToRm); 1181 } 1182 1183 /// Starting from \p Root find a top-down traversal order of the dominator 1184 /// tree to visit all basic blocks containing the elements of \p Spills. 1185 /// Redundant spills will be found and put into \p SpillsToRm at the same 1186 /// time. \p SpillBBToSpill will be populated as part of the process and 1187 /// maps a basic block to the first store occurring in the basic block. 1188 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre 1189 void HoistSpillHelper::getVisitOrders( 1190 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 1191 SmallVectorImpl<MachineDomTreeNode *> &Orders, 1192 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1193 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 1194 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1195 // The set contains all the possible BB nodes to which we may hoist 1196 // original spills. 1197 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet; 1198 // Save the BB nodes on the path from the first BB node containing 1199 // non-redundant spill to the Root node. 1200 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath; 1201 // All the spills to be hoisted must originate from a single def instruction 1202 // to the OrigReg. It means the def instruction should dominate all the spills 1203 // to be hoisted. We choose the BB where the def instruction is located as 1204 // the Root. 1205 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom(); 1206 // For every node on the dominator tree with spill, walk up on the dominator 1207 // tree towards the Root node until it is reached. If there is other node 1208 // containing spill in the middle of the path, the previous spill saw will 1209 // be redundant and the node containing it will be removed. All the nodes on 1210 // the path starting from the first node with non-redundant spill to the Root 1211 // node will be added to the WorkSet, which will contain all the possible 1212 // locations where spills may be hoisted to after the loop below is done. 1213 for (const auto Spill : Spills) { 1214 MachineBasicBlock *Block = Spill->getParent(); 1215 MachineDomTreeNode *Node = MDT[Block]; 1216 MachineInstr *SpillToRm = nullptr; 1217 while (Node != RootIDomNode) { 1218 // If Node dominates Block, and it already contains a spill, the spill in 1219 // Block will be redundant. 1220 if (Node != MDT[Block] && SpillBBToSpill[Node]) { 1221 SpillToRm = SpillBBToSpill[MDT[Block]]; 1222 break; 1223 /// If we see the Node already in WorkSet, the path from the Node to 1224 /// the Root node must already be traversed by another spill. 1225 /// Then no need to repeat. 1226 } else if (WorkSet.count(Node)) { 1227 break; 1228 } else { 1229 NodesOnPath.insert(Node); 1230 } 1231 Node = Node->getIDom(); 1232 } 1233 if (SpillToRm) { 1234 SpillsToRm.push_back(SpillToRm); 1235 } else { 1236 // Add a BB containing the original spills to SpillsToKeep -- i.e., 1237 // set the initial status before hoisting start. The value of BBs 1238 // containing original spills is set to 0, in order to descriminate 1239 // with BBs containing hoisted spills which will be inserted to 1240 // SpillsToKeep later during hoisting. 1241 SpillsToKeep[MDT[Block]] = 0; 1242 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end()); 1243 } 1244 NodesOnPath.clear(); 1245 } 1246 1247 // Sort the nodes in WorkSet in top-down order and save the nodes 1248 // in Orders. Orders will be used for hoisting in runHoistSpills. 1249 unsigned idx = 0; 1250 Orders.push_back(MDT.getBase().getNode(Root)); 1251 do { 1252 MachineDomTreeNode *Node = Orders[idx++]; 1253 const std::vector<MachineDomTreeNode *> &Children = Node->getChildren(); 1254 unsigned NumChildren = Children.size(); 1255 for (unsigned i = 0; i != NumChildren; ++i) { 1256 MachineDomTreeNode *Child = Children[i]; 1257 if (WorkSet.count(Child)) 1258 Orders.push_back(Child); 1259 } 1260 } while (idx != Orders.size()); 1261 assert(Orders.size() == WorkSet.size() && 1262 "Orders have different size with WorkSet"); 1263 1264 #ifndef NDEBUG 1265 DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n"); 1266 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1267 for (; RIt != Orders.rend(); RIt++) 1268 DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ","); 1269 DEBUG(dbgs() << "\n"); 1270 #endif 1271 } 1272 1273 /// Try to hoist spills according to BB hotness. The spills to removed will 1274 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in 1275 /// \p SpillsToIns. 1276 void HoistSpillHelper::runHoistSpills( 1277 LiveInterval &OrigLI, VNInfo &OrigVNI, 1278 SmallPtrSet<MachineInstr *, 16> &Spills, 1279 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1280 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) { 1281 // Visit order of dominator tree nodes. 1282 SmallVector<MachineDomTreeNode *, 32> Orders; 1283 // SpillsToKeep contains all the nodes where spills are to be inserted 1284 // during hoisting. If the spill to be inserted is an original spill 1285 // (not a hoisted one), the value of the map entry is 0. If the spill 1286 // is a hoisted spill, the value of the map entry is the VReg to be used 1287 // as the source of the spill. 1288 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep; 1289 // Map from BB to the first spill inside of it. 1290 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill; 1291 1292 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill); 1293 1294 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def); 1295 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep, 1296 SpillBBToSpill); 1297 1298 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of 1299 // nodes set and the cost of all the spills inside those nodes. 1300 // The nodes set are the locations where spills are to be inserted 1301 // in the subtree of current node. 1302 using NodesCostPair = 1303 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>; 1304 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap; 1305 1306 // Iterate Orders set in reverse order, which will be a bottom-up order 1307 // in the dominator tree. Once we visit a dom tree node, we know its 1308 // children have already been visited and the spill locations in the 1309 // subtrees of all the children have been determined. 1310 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1311 for (; RIt != Orders.rend(); RIt++) { 1312 MachineBasicBlock *Block = (*RIt)->getBlock(); 1313 1314 // If Block contains an original spill, simply continue. 1315 if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) { 1316 SpillsInSubTreeMap[*RIt].first.insert(*RIt); 1317 // SpillsInSubTreeMap[*RIt].second contains the cost of spill. 1318 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block); 1319 continue; 1320 } 1321 1322 // Collect spills in subtree of current node (*RIt) to 1323 // SpillsInSubTreeMap[*RIt].first. 1324 const std::vector<MachineDomTreeNode *> &Children = (*RIt)->getChildren(); 1325 unsigned NumChildren = Children.size(); 1326 for (unsigned i = 0; i != NumChildren; ++i) { 1327 MachineDomTreeNode *Child = Children[i]; 1328 if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end()) 1329 continue; 1330 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below 1331 // should be placed before getting the begin and end iterators of 1332 // SpillsInSubTreeMap[Child].first, or else the iterators may be 1333 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time 1334 // and the map grows and then the original buckets in the map are moved. 1335 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1336 SpillsInSubTreeMap[*RIt].first; 1337 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1338 SubTreeCost += SpillsInSubTreeMap[Child].second; 1339 auto BI = SpillsInSubTreeMap[Child].first.begin(); 1340 auto EI = SpillsInSubTreeMap[Child].first.end(); 1341 SpillsInSubTree.insert(BI, EI); 1342 SpillsInSubTreeMap.erase(Child); 1343 } 1344 1345 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1346 SpillsInSubTreeMap[*RIt].first; 1347 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1348 // No spills in subtree, simply continue. 1349 if (SpillsInSubTree.empty()) 1350 continue; 1351 1352 // Check whether Block is a possible candidate to insert spill. 1353 unsigned LiveReg = 0; 1354 if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg)) 1355 continue; 1356 1357 // If there are multiple spills that could be merged, bias a little 1358 // to hoist the spill. 1359 BranchProbability MarginProb = (SpillsInSubTree.size() > 1) 1360 ? BranchProbability(9, 10) 1361 : BranchProbability(1, 1); 1362 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) { 1363 // Hoist: Move spills to current Block. 1364 for (const auto SpillBB : SpillsInSubTree) { 1365 // When SpillBB is a BB contains original spill, insert the spill 1366 // to SpillsToRm. 1367 if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() && 1368 !SpillsToKeep[SpillBB]) { 1369 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB]; 1370 SpillsToRm.push_back(SpillToRm); 1371 } 1372 // SpillBB will not contain spill anymore, remove it from SpillsToKeep. 1373 SpillsToKeep.erase(SpillBB); 1374 } 1375 // Current Block is the BB containing the new hoisted spill. Add it to 1376 // SpillsToKeep. LiveReg is the source of the new spill. 1377 SpillsToKeep[*RIt] = LiveReg; 1378 DEBUG({ 1379 dbgs() << "spills in BB: "; 1380 for (const auto Rspill : SpillsInSubTree) 1381 dbgs() << Rspill->getBlock()->getNumber() << " "; 1382 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber() 1383 << "\n"; 1384 }); 1385 SpillsInSubTree.clear(); 1386 SpillsInSubTree.insert(*RIt); 1387 SubTreeCost = MBFI.getBlockFreq(Block); 1388 } 1389 } 1390 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill), 1391 // save them to SpillsToIns. 1392 for (const auto Ent : SpillsToKeep) { 1393 if (Ent.second) 1394 SpillsToIns[Ent.first->getBlock()] = Ent.second; 1395 } 1396 } 1397 1398 /// For spills with equal values, remove redundant spills and hoist those left 1399 /// to less hot spots. 1400 /// 1401 /// Spills with equal values will be collected into the same set in 1402 /// MergeableSpills when spill is inserted. These equal spills are originated 1403 /// from the same defining instruction and are dominated by the instruction. 1404 /// Before hoisting all the equal spills, redundant spills inside in the same 1405 /// BB are first marked to be deleted. Then starting from the spills left, walk 1406 /// up on the dominator tree towards the Root node where the define instruction 1407 /// is located, mark the dominated spills to be deleted along the way and 1408 /// collect the BB nodes on the path from non-dominated spills to the define 1409 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places 1410 /// where we are considering to hoist the spills. We iterate the WorkSet in 1411 /// bottom-up order, and for each node, we will decide whether to hoist spills 1412 /// inside its subtree to that node. In this way, we can get benefit locally 1413 /// even if hoisting all the equal spills to one cold place is impossible. 1414 void HoistSpillHelper::hoistAllSpills() { 1415 SmallVector<unsigned, 4> NewVRegs; 1416 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this); 1417 1418 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { 1419 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1420 unsigned Original = VRM.getPreSplitReg(Reg); 1421 if (!MRI.def_empty(Reg)) 1422 Virt2SiblingsMap[Original].insert(Reg); 1423 } 1424 1425 // Each entry in MergeableSpills contains a spill set with equal values. 1426 for (auto &Ent : MergeableSpills) { 1427 int Slot = Ent.first.first; 1428 LiveInterval &OrigLI = *StackSlotToOrigLI[Slot]; 1429 VNInfo *OrigVNI = Ent.first.second; 1430 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second; 1431 if (Ent.second.empty()) 1432 continue; 1433 1434 DEBUG({ 1435 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n" 1436 << "Equal spills in BB: "; 1437 for (const auto spill : EqValSpills) 1438 dbgs() << spill->getParent()->getNumber() << " "; 1439 dbgs() << "\n"; 1440 }); 1441 1442 // SpillsToRm is the spill set to be removed from EqValSpills. 1443 SmallVector<MachineInstr *, 16> SpillsToRm; 1444 // SpillsToIns is the spill set to be newly inserted after hoisting. 1445 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns; 1446 1447 runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns); 1448 1449 DEBUG({ 1450 dbgs() << "Finally inserted spills in BB: "; 1451 for (const auto Ispill : SpillsToIns) 1452 dbgs() << Ispill.first->getNumber() << " "; 1453 dbgs() << "\nFinally removed spills in BB: "; 1454 for (const auto Rspill : SpillsToRm) 1455 dbgs() << Rspill->getParent()->getNumber() << " "; 1456 dbgs() << "\n"; 1457 }); 1458 1459 // Stack live range update. 1460 LiveInterval &StackIntvl = LSS.getInterval(Slot); 1461 if (!SpillsToIns.empty() || !SpillsToRm.empty()) 1462 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI, 1463 StackIntvl.getValNumInfo(0)); 1464 1465 // Insert hoisted spills. 1466 for (auto const Insert : SpillsToIns) { 1467 MachineBasicBlock *BB = Insert.first; 1468 unsigned LiveReg = Insert.second; 1469 MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, *BB); 1470 TII.storeRegToStackSlot(*BB, MI, LiveReg, false, Slot, 1471 MRI.getRegClass(LiveReg), &TRI); 1472 LIS.InsertMachineInstrRangeInMaps(std::prev(MI), MI); 1473 ++NumSpills; 1474 } 1475 1476 // Remove redundant spills or change them to dead instructions. 1477 NumSpills -= SpillsToRm.size(); 1478 for (auto const RMEnt : SpillsToRm) { 1479 RMEnt->setDesc(TII.get(TargetOpcode::KILL)); 1480 for (unsigned i = RMEnt->getNumOperands(); i; --i) { 1481 MachineOperand &MO = RMEnt->getOperand(i - 1); 1482 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead()) 1483 RMEnt->RemoveOperand(i - 1); 1484 } 1485 } 1486 Edit.eliminateDeadDefs(SpillsToRm, None, AA); 1487 } 1488 } 1489 1490 /// For VirtReg clone, the \p New register should have the same physreg or 1491 /// stackslot as the \p old register. 1492 void HoistSpillHelper::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 1493 if (VRM.hasPhys(Old)) 1494 VRM.assignVirt2Phys(New, VRM.getPhys(Old)); 1495 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT) 1496 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old)); 1497 else 1498 llvm_unreachable("VReg should be assigned either physreg or stackslot"); 1499 } 1500