1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The inline spiller modifies the machine function directly instead of
10 // inserting spills and restores in VirtRegMap.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SplitKit.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/LiveInterval.h"
26 #include "llvm/CodeGen/LiveIntervalCalc.h"
27 #include "llvm/CodeGen/LiveIntervals.h"
28 #include "llvm/CodeGen/LiveRangeEdit.h"
29 #include "llvm/CodeGen/LiveStacks.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32 #include "llvm/CodeGen/MachineDominators.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineInstrBundle.h"
38 #include "llvm/CodeGen/MachineLoopInfo.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/Spiller.h"
43 #include "llvm/CodeGen/StackMaps.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetOpcodes.h"
46 #include "llvm/CodeGen/TargetRegisterInfo.h"
47 #include "llvm/CodeGen/TargetSubtargetInfo.h"
48 #include "llvm/CodeGen/VirtRegMap.h"
49 #include "llvm/Config/llvm-config.h"
50 #include "llvm/Support/BlockFrequency.h"
51 #include "llvm/Support/BranchProbability.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <cassert>
58 #include <iterator>
59 #include <tuple>
60 #include <utility>
61 #include <vector>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "regalloc"
66 
67 STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
68 STATISTIC(NumSnippets,        "Number of spilled snippets");
69 STATISTIC(NumSpills,          "Number of spills inserted");
70 STATISTIC(NumSpillsRemoved,   "Number of spills removed");
71 STATISTIC(NumReloads,         "Number of reloads inserted");
72 STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
73 STATISTIC(NumFolded,          "Number of folded stack accesses");
74 STATISTIC(NumFoldedLoads,     "Number of folded loads");
75 STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
76 
77 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
78                                      cl::desc("Disable inline spill hoisting"));
79 static cl::opt<bool>
80 RestrictStatepointRemat("restrict-statepoint-remat",
81                        cl::init(false), cl::Hidden,
82                        cl::desc("Restrict remat for statepoint operands"));
83 
84 namespace {
85 
86 class HoistSpillHelper : private LiveRangeEdit::Delegate {
87   MachineFunction &MF;
88   LiveIntervals &LIS;
89   LiveStacks &LSS;
90   AliasAnalysis *AA;
91   MachineDominatorTree &MDT;
92   MachineLoopInfo &Loops;
93   VirtRegMap &VRM;
94   MachineRegisterInfo &MRI;
95   const TargetInstrInfo &TII;
96   const TargetRegisterInfo &TRI;
97   const MachineBlockFrequencyInfo &MBFI;
98 
99   InsertPointAnalysis IPA;
100 
101   // Map from StackSlot to the LiveInterval of the original register.
102   // Note the LiveInterval of the original register may have been deleted
103   // after it is spilled. We keep a copy here to track the range where
104   // spills can be moved.
105   DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI;
106 
107   // Map from pair of (StackSlot and Original VNI) to a set of spills which
108   // have the same stackslot and have equal values defined by Original VNI.
109   // These spills are mergeable and are hoist candiates.
110   using MergeableSpillsMap =
111       MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>;
112   MergeableSpillsMap MergeableSpills;
113 
114   /// This is the map from original register to a set containing all its
115   /// siblings. To hoist a spill to another BB, we need to find out a live
116   /// sibling there and use it as the source of the new spill.
117   DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap;
118 
119   bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
120                      MachineBasicBlock &BB, Register &LiveReg);
121 
122   void rmRedundantSpills(
123       SmallPtrSet<MachineInstr *, 16> &Spills,
124       SmallVectorImpl<MachineInstr *> &SpillsToRm,
125       DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
126 
127   void getVisitOrders(
128       MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
129       SmallVectorImpl<MachineDomTreeNode *> &Orders,
130       SmallVectorImpl<MachineInstr *> &SpillsToRm,
131       DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
132       DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
133 
134   void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI,
135                       SmallPtrSet<MachineInstr *, 16> &Spills,
136                       SmallVectorImpl<MachineInstr *> &SpillsToRm,
137                       DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns);
138 
139 public:
140   HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf,
141                    VirtRegMap &vrm)
142       : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
143         LSS(pass.getAnalysis<LiveStacks>()),
144         AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
145         MDT(pass.getAnalysis<MachineDominatorTree>()),
146         Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
147         MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
148         TRI(*mf.getSubtarget().getRegisterInfo()),
149         MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
150         IPA(LIS, mf.getNumBlockIDs()) {}
151 
152   void addToMergeableSpills(MachineInstr &Spill, int StackSlot,
153                             unsigned Original);
154   bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot);
155   void hoistAllSpills();
156   void LRE_DidCloneVirtReg(Register, Register) override;
157 };
158 
159 class InlineSpiller : public Spiller {
160   MachineFunction &MF;
161   LiveIntervals &LIS;
162   LiveStacks &LSS;
163   AliasAnalysis *AA;
164   MachineDominatorTree &MDT;
165   MachineLoopInfo &Loops;
166   VirtRegMap &VRM;
167   MachineRegisterInfo &MRI;
168   const TargetInstrInfo &TII;
169   const TargetRegisterInfo &TRI;
170   const MachineBlockFrequencyInfo &MBFI;
171 
172   // Variables that are valid during spill(), but used by multiple methods.
173   LiveRangeEdit *Edit;
174   LiveInterval *StackInt;
175   int StackSlot;
176   unsigned Original;
177 
178   // All registers to spill to StackSlot, including the main register.
179   SmallVector<Register, 8> RegsToSpill;
180 
181   // All COPY instructions to/from snippets.
182   // They are ignored since both operands refer to the same stack slot.
183   SmallPtrSet<MachineInstr*, 8> SnippetCopies;
184 
185   // Values that failed to remat at some point.
186   SmallPtrSet<VNInfo*, 8> UsedValues;
187 
188   // Dead defs generated during spilling.
189   SmallVector<MachineInstr*, 8> DeadDefs;
190 
191   // Object records spills information and does the hoisting.
192   HoistSpillHelper HSpiller;
193 
194   ~InlineSpiller() override = default;
195 
196 public:
197   InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm)
198       : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
199         LSS(pass.getAnalysis<LiveStacks>()),
200         AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
201         MDT(pass.getAnalysis<MachineDominatorTree>()),
202         Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
203         MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
204         TRI(*mf.getSubtarget().getRegisterInfo()),
205         MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
206         HSpiller(pass, mf, vrm) {}
207 
208   void spill(LiveRangeEdit &) override;
209   void postOptimization() override;
210 
211 private:
212   bool isSnippet(const LiveInterval &SnipLI);
213   void collectRegsToSpill();
214 
215   bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); }
216 
217   bool isSibling(Register Reg);
218   bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
219   void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
220 
221   void markValueUsed(LiveInterval*, VNInfo*);
222   bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI);
223   bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
224   void reMaterializeAll();
225 
226   bool coalesceStackAccess(MachineInstr *MI, Register Reg);
227   bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>,
228                          MachineInstr *LoadMI = nullptr);
229   void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI);
230   void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI);
231 
232   void spillAroundUses(Register Reg);
233   void spillAll();
234 };
235 
236 } // end anonymous namespace
237 
238 Spiller::~Spiller() = default;
239 
240 void Spiller::anchor() {}
241 
242 Spiller *llvm::createInlineSpiller(MachineFunctionPass &pass,
243                                    MachineFunction &mf,
244                                    VirtRegMap &vrm) {
245   return new InlineSpiller(pass, mf, vrm);
246 }
247 
248 //===----------------------------------------------------------------------===//
249 //                                Snippets
250 //===----------------------------------------------------------------------===//
251 
252 // When spilling a virtual register, we also spill any snippets it is connected
253 // to. The snippets are small live ranges that only have a single real use,
254 // leftovers from live range splitting. Spilling them enables memory operand
255 // folding or tightens the live range around the single use.
256 //
257 // This minimizes register pressure and maximizes the store-to-load distance for
258 // spill slots which can be important in tight loops.
259 
260 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
261 /// otherwise return 0.
262 static Register isFullCopyOf(const MachineInstr &MI, Register Reg) {
263   if (!MI.isFullCopy())
264     return Register();
265   if (MI.getOperand(0).getReg() == Reg)
266     return MI.getOperand(1).getReg();
267   if (MI.getOperand(1).getReg() == Reg)
268     return MI.getOperand(0).getReg();
269   return Register();
270 }
271 
272 static void getVDefInterval(const MachineInstr &MI, LiveIntervals &LIS) {
273   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
274     const MachineOperand &MO = MI.getOperand(I);
275     if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
276       LIS.getInterval(MO.getReg());
277   }
278 }
279 
280 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
281 /// It is assumed that SnipLI is a virtual register with the same original as
282 /// Edit->getReg().
283 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
284   Register Reg = Edit->getReg();
285 
286   // A snippet is a tiny live range with only a single instruction using it
287   // besides copies to/from Reg or spills/fills. We accept:
288   //
289   //   %snip = COPY %Reg / FILL fi#
290   //   %snip = USE %snip
291   //   %Reg = COPY %snip / SPILL %snip, fi#
292   //
293   if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
294     return false;
295 
296   MachineInstr *UseMI = nullptr;
297 
298   // Check that all uses satisfy our criteria.
299   for (MachineRegisterInfo::reg_instr_nodbg_iterator
300            RI = MRI.reg_instr_nodbg_begin(SnipLI.reg()),
301            E = MRI.reg_instr_nodbg_end();
302        RI != E;) {
303     MachineInstr &MI = *RI++;
304 
305     // Allow copies to/from Reg.
306     if (isFullCopyOf(MI, Reg))
307       continue;
308 
309     // Allow stack slot loads.
310     int FI;
311     if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
312       continue;
313 
314     // Allow stack slot stores.
315     if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
316       continue;
317 
318     // Allow a single additional instruction.
319     if (UseMI && &MI != UseMI)
320       return false;
321     UseMI = &MI;
322   }
323   return true;
324 }
325 
326 /// collectRegsToSpill - Collect live range snippets that only have a single
327 /// real use.
328 void InlineSpiller::collectRegsToSpill() {
329   Register Reg = Edit->getReg();
330 
331   // Main register always spills.
332   RegsToSpill.assign(1, Reg);
333   SnippetCopies.clear();
334 
335   // Snippets all have the same original, so there can't be any for an original
336   // register.
337   if (Original == Reg)
338     return;
339 
340   for (MachineRegisterInfo::reg_instr_iterator
341        RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) {
342     MachineInstr &MI = *RI++;
343     Register SnipReg = isFullCopyOf(MI, Reg);
344     if (!isSibling(SnipReg))
345       continue;
346     LiveInterval &SnipLI = LIS.getInterval(SnipReg);
347     if (!isSnippet(SnipLI))
348       continue;
349     SnippetCopies.insert(&MI);
350     if (isRegToSpill(SnipReg))
351       continue;
352     RegsToSpill.push_back(SnipReg);
353     LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
354     ++NumSnippets;
355   }
356 }
357 
358 bool InlineSpiller::isSibling(Register Reg) {
359   return Reg.isVirtual() && VRM.getOriginal(Reg) == Original;
360 }
361 
362 /// It is beneficial to spill to earlier place in the same BB in case
363 /// as follows:
364 /// There is an alternative def earlier in the same MBB.
365 /// Hoist the spill as far as possible in SpillMBB. This can ease
366 /// register pressure:
367 ///
368 ///   x = def
369 ///   y = use x
370 ///   s = copy x
371 ///
372 /// Hoisting the spill of s to immediately after the def removes the
373 /// interference between x and y:
374 ///
375 ///   x = def
376 ///   spill x
377 ///   y = use killed x
378 ///
379 /// This hoist only helps when the copy kills its source.
380 ///
381 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
382                                        MachineInstr &CopyMI) {
383   SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
384 #ifndef NDEBUG
385   VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
386   assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
387 #endif
388 
389   Register SrcReg = CopyMI.getOperand(1).getReg();
390   LiveInterval &SrcLI = LIS.getInterval(SrcReg);
391   VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx);
392   LiveQueryResult SrcQ = SrcLI.Query(Idx);
393   MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def);
394   if (DefMBB != CopyMI.getParent() || !SrcQ.isKill())
395     return false;
396 
397   // Conservatively extend the stack slot range to the range of the original
398   // value. We may be able to do better with stack slot coloring by being more
399   // careful here.
400   assert(StackInt && "No stack slot assigned yet.");
401   LiveInterval &OrigLI = LIS.getInterval(Original);
402   VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
403   StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
404   LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
405                     << *StackInt << '\n');
406 
407   // We are going to spill SrcVNI immediately after its def, so clear out
408   // any later spills of the same value.
409   eliminateRedundantSpills(SrcLI, SrcVNI);
410 
411   MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
412   MachineBasicBlock::iterator MII;
413   if (SrcVNI->isPHIDef())
414     MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
415   else {
416     MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
417     assert(DefMI && "Defining instruction disappeared");
418     MII = DefMI;
419     ++MII;
420   }
421   MachineInstrSpan MIS(MII, MBB);
422   // Insert spill without kill flag immediately after def.
423   TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot,
424                           MRI.getRegClass(SrcReg), &TRI);
425   LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII);
426   for (const MachineInstr &MI : make_range(MIS.begin(), MII))
427     getVDefInterval(MI, LIS);
428   --MII; // Point to store instruction.
429   LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII);
430 
431   // If there is only 1 store instruction is required for spill, add it
432   // to mergeable list. In X86 AMX, 2 intructions are required to store.
433   // We disable the merge for this case.
434   if (std::distance(MIS.begin(), MII) <= 1)
435     HSpiller.addToMergeableSpills(*MII, StackSlot, Original);
436   ++NumSpills;
437   return true;
438 }
439 
440 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
441 /// redundant spills of this value in SLI.reg and sibling copies.
442 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
443   assert(VNI && "Missing value");
444   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
445   WorkList.push_back(std::make_pair(&SLI, VNI));
446   assert(StackInt && "No stack slot assigned yet.");
447 
448   do {
449     LiveInterval *LI;
450     std::tie(LI, VNI) = WorkList.pop_back_val();
451     Register Reg = LI->reg();
452     LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@'
453                       << VNI->def << " in " << *LI << '\n');
454 
455     // Regs to spill are taken care of.
456     if (isRegToSpill(Reg))
457       continue;
458 
459     // Add all of VNI's live range to StackInt.
460     StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
461     LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
462 
463     // Find all spills and copies of VNI.
464     for (MachineRegisterInfo::use_instr_nodbg_iterator
465          UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
466          UI != E; ) {
467       MachineInstr &MI = *UI++;
468       if (!MI.isCopy() && !MI.mayStore())
469         continue;
470       SlotIndex Idx = LIS.getInstructionIndex(MI);
471       if (LI->getVNInfoAt(Idx) != VNI)
472         continue;
473 
474       // Follow sibling copies down the dominator tree.
475       if (Register DstReg = isFullCopyOf(MI, Reg)) {
476         if (isSibling(DstReg)) {
477            LiveInterval &DstLI = LIS.getInterval(DstReg);
478            VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
479            assert(DstVNI && "Missing defined value");
480            assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
481            WorkList.push_back(std::make_pair(&DstLI, DstVNI));
482         }
483         continue;
484       }
485 
486       // Erase spills.
487       int FI;
488       if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
489         LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI);
490         // eliminateDeadDefs won't normally remove stores, so switch opcode.
491         MI.setDesc(TII.get(TargetOpcode::KILL));
492         DeadDefs.push_back(&MI);
493         ++NumSpillsRemoved;
494         if (HSpiller.rmFromMergeableSpills(MI, StackSlot))
495           --NumSpills;
496       }
497     }
498   } while (!WorkList.empty());
499 }
500 
501 //===----------------------------------------------------------------------===//
502 //                            Rematerialization
503 //===----------------------------------------------------------------------===//
504 
505 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
506 /// instruction cannot be eliminated. See through snippet copies
507 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
508   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
509   WorkList.push_back(std::make_pair(LI, VNI));
510   do {
511     std::tie(LI, VNI) = WorkList.pop_back_val();
512     if (!UsedValues.insert(VNI).second)
513       continue;
514 
515     if (VNI->isPHIDef()) {
516       MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
517       for (MachineBasicBlock *P : MBB->predecessors()) {
518         VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
519         if (PVNI)
520           WorkList.push_back(std::make_pair(LI, PVNI));
521       }
522       continue;
523     }
524 
525     // Follow snippet copies.
526     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
527     if (!SnippetCopies.count(MI))
528       continue;
529     LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
530     assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy");
531     VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
532     assert(SnipVNI && "Snippet undefined before copy");
533     WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
534   } while (!WorkList.empty());
535 }
536 
537 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg,
538                                                      MachineInstr &MI) {
539   if (!RestrictStatepointRemat)
540     return true;
541   // Here's a quick explanation of the problem we're trying to handle here:
542   // * There are some pseudo instructions with more vreg uses than there are
543   //   physical registers on the machine.
544   // * This is normally handled by spilling the vreg, and folding the reload
545   //   into the user instruction.  (Thus decreasing the number of used vregs
546   //   until the remainder can be assigned to physregs.)
547   // * However, since we may try to spill vregs in any order, we can end up
548   //   trying to spill each operand to the instruction, and then rematting it
549   //   instead.  When that happens, the new live intervals (for the remats) are
550   //   expected to be trivially assignable (i.e. RS_Done).  However, since we
551   //   may have more remats than physregs, we're guaranteed to fail to assign
552   //   one.
553   // At the moment, we only handle this for STATEPOINTs since they're the only
554   // pseudo op where we've seen this.  If we start seeing other instructions
555   // with the same problem, we need to revisit this.
556   if (MI.getOpcode() != TargetOpcode::STATEPOINT)
557     return true;
558   // For STATEPOINTs we allow re-materialization for fixed arguments only hoping
559   // that number of physical registers is enough to cover all fixed arguments.
560   // If it is not true we need to revisit it.
561   for (unsigned Idx = StatepointOpers(&MI).getVarIdx(),
562                 EndIdx = MI.getNumOperands();
563        Idx < EndIdx; ++Idx) {
564     MachineOperand &MO = MI.getOperand(Idx);
565     if (MO.isReg() && MO.getReg() == VReg)
566       return false;
567   }
568   return true;
569 }
570 
571 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
572 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
573   // Analyze instruction
574   SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
575   VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg(), &Ops);
576 
577   if (!RI.Reads)
578     return false;
579 
580   SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
581   VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
582 
583   if (!ParentVNI) {
584     LLVM_DEBUG(dbgs() << "\tadding <undef> flags: ");
585     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
586       MachineOperand &MO = MI.getOperand(i);
587       if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg())
588         MO.setIsUndef();
589     }
590     LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI);
591     return true;
592   }
593 
594   if (SnippetCopies.count(&MI))
595     return false;
596 
597   LiveInterval &OrigLI = LIS.getInterval(Original);
598   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
599   LiveRangeEdit::Remat RM(ParentVNI);
600   RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
601 
602   if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) {
603     markValueUsed(&VirtReg, ParentVNI);
604     LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
605     return false;
606   }
607 
608   // If the instruction also writes VirtReg.reg, it had better not require the
609   // same register for uses and defs.
610   if (RI.Tied) {
611     markValueUsed(&VirtReg, ParentVNI);
612     LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI);
613     return false;
614   }
615 
616   // Before rematerializing into a register for a single instruction, try to
617   // fold a load into the instruction. That avoids allocating a new register.
618   if (RM.OrigMI->canFoldAsLoad() &&
619       foldMemoryOperand(Ops, RM.OrigMI)) {
620     Edit->markRematerialized(RM.ParentVNI);
621     ++NumFoldedLoads;
622     return true;
623   }
624 
625   // If we can't guarantee that we'll be able to actually assign the new vreg,
626   // we can't remat.
627   if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg(), MI)) {
628     markValueUsed(&VirtReg, ParentVNI);
629     LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
630     return false;
631   }
632 
633   // Allocate a new register for the remat.
634   Register NewVReg = Edit->createFrom(Original);
635 
636   // Finally we can rematerialize OrigMI before MI.
637   SlotIndex DefIdx =
638       Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);
639 
640   // We take the DebugLoc from MI, since OrigMI may be attributed to a
641   // different source location.
642   auto *NewMI = LIS.getInstructionFromIndex(DefIdx);
643   NewMI->setDebugLoc(MI.getDebugLoc());
644 
645   (void)DefIdx;
646   LLVM_DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
647                     << *LIS.getInstructionFromIndex(DefIdx));
648 
649   // Replace operands
650   for (const auto &OpPair : Ops) {
651     MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
652     if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) {
653       MO.setReg(NewVReg);
654       MO.setIsKill();
655     }
656   }
657   LLVM_DEBUG(dbgs() << "\t        " << UseIdx << '\t' << MI << '\n');
658 
659   ++NumRemats;
660   return true;
661 }
662 
663 /// reMaterializeAll - Try to rematerialize as many uses as possible,
664 /// and trim the live ranges after.
665 void InlineSpiller::reMaterializeAll() {
666   if (!Edit->anyRematerializable(AA))
667     return;
668 
669   UsedValues.clear();
670 
671   // Try to remat before all uses of snippets.
672   bool anyRemat = false;
673   for (Register Reg : RegsToSpill) {
674     LiveInterval &LI = LIS.getInterval(Reg);
675     for (MachineRegisterInfo::reg_bundle_iterator
676            RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
677          RegI != E; ) {
678       MachineInstr &MI = *RegI++;
679 
680       // Debug values are not allowed to affect codegen.
681       if (MI.isDebugValue())
682         continue;
683 
684       assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
685              "instruction that isn't a DBG_VALUE");
686 
687       anyRemat |= reMaterializeFor(LI, MI);
688     }
689   }
690   if (!anyRemat)
691     return;
692 
693   // Remove any values that were completely rematted.
694   for (Register Reg : RegsToSpill) {
695     LiveInterval &LI = LIS.getInterval(Reg);
696     for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
697          I != E; ++I) {
698       VNInfo *VNI = *I;
699       if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
700         continue;
701       MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
702       MI->addRegisterDead(Reg, &TRI);
703       if (!MI->allDefsAreDead())
704         continue;
705       LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
706       DeadDefs.push_back(MI);
707     }
708   }
709 
710   // Eliminate dead code after remat. Note that some snippet copies may be
711   // deleted here.
712   if (DeadDefs.empty())
713     return;
714   LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
715   Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
716 
717   // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
718   // after rematerialization.  To remove a VNI for a vreg from its LiveInterval,
719   // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
720   // removed, PHI VNI are still left in the LiveInterval.
721   // So to get rid of unused reg, we need to check whether it has non-dbg
722   // reference instead of whether it has non-empty interval.
723   unsigned ResultPos = 0;
724   for (Register Reg : RegsToSpill) {
725     if (MRI.reg_nodbg_empty(Reg)) {
726       Edit->eraseVirtReg(Reg);
727       continue;
728     }
729 
730     assert(LIS.hasInterval(Reg) &&
731            (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
732            "Empty and not used live-range?!");
733 
734     RegsToSpill[ResultPos++] = Reg;
735   }
736   RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
737   LLVM_DEBUG(dbgs() << RegsToSpill.size()
738                     << " registers to spill after remat.\n");
739 }
740 
741 //===----------------------------------------------------------------------===//
742 //                                 Spilling
743 //===----------------------------------------------------------------------===//
744 
745 /// If MI is a load or store of StackSlot, it can be removed.
746 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) {
747   int FI = 0;
748   Register InstrReg = TII.isLoadFromStackSlot(*MI, FI);
749   bool IsLoad = InstrReg;
750   if (!IsLoad)
751     InstrReg = TII.isStoreToStackSlot(*MI, FI);
752 
753   // We have a stack access. Is it the right register and slot?
754   if (InstrReg != Reg || FI != StackSlot)
755     return false;
756 
757   if (!IsLoad)
758     HSpiller.rmFromMergeableSpills(*MI, StackSlot);
759 
760   LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI);
761   LIS.RemoveMachineInstrFromMaps(*MI);
762   MI->eraseFromParent();
763 
764   if (IsLoad) {
765     ++NumReloadsRemoved;
766     --NumReloads;
767   } else {
768     ++NumSpillsRemoved;
769     --NumSpills;
770   }
771 
772   return true;
773 }
774 
775 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
776 LLVM_DUMP_METHOD
777 // Dump the range of instructions from B to E with their slot indexes.
778 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
779                                                MachineBasicBlock::iterator E,
780                                                LiveIntervals const &LIS,
781                                                const char *const header,
782                                                Register VReg = Register()) {
783   char NextLine = '\n';
784   char SlotIndent = '\t';
785 
786   if (std::next(B) == E) {
787     NextLine = ' ';
788     SlotIndent = ' ';
789   }
790 
791   dbgs() << '\t' << header << ": " << NextLine;
792 
793   for (MachineBasicBlock::iterator I = B; I != E; ++I) {
794     SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();
795 
796     // If a register was passed in and this instruction has it as a
797     // destination that is marked as an early clobber, print the
798     // early-clobber slot index.
799     if (VReg) {
800       MachineOperand *MO = I->findRegisterDefOperand(VReg);
801       if (MO && MO->isEarlyClobber())
802         Idx = Idx.getRegSlot(true);
803     }
804 
805     dbgs() << SlotIndent << Idx << '\t' << *I;
806   }
807 }
808 #endif
809 
810 /// foldMemoryOperand - Try folding stack slot references in Ops into their
811 /// instructions.
812 ///
813 /// @param Ops    Operand indices from AnalyzeVirtRegInBundle().
814 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
815 /// @return       True on success.
816 bool InlineSpiller::
817 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops,
818                   MachineInstr *LoadMI) {
819   if (Ops.empty())
820     return false;
821   // Don't attempt folding in bundles.
822   MachineInstr *MI = Ops.front().first;
823   if (Ops.back().first != MI || MI->isBundled())
824     return false;
825 
826   bool WasCopy = MI->isCopy();
827   Register ImpReg;
828 
829   // TII::foldMemoryOperand will do what we need here for statepoint
830   // (fold load into use and remove corresponding def). We will replace
831   // uses of removed def with loads (spillAroundUses).
832   // For that to work we need to untie def and use to pass it through
833   // foldMemoryOperand and signal foldPatchpoint that it is allowed to
834   // fold them.
835   bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT;
836 
837   // Spill subregs if the target allows it.
838   // We always want to spill subregs for stackmap/patchpoint pseudos.
839   bool SpillSubRegs = TII.isSubregFoldable() ||
840                       MI->getOpcode() == TargetOpcode::STATEPOINT ||
841                       MI->getOpcode() == TargetOpcode::PATCHPOINT ||
842                       MI->getOpcode() == TargetOpcode::STACKMAP;
843 
844   // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
845   // operands.
846   SmallVector<unsigned, 8> FoldOps;
847   for (const auto &OpPair : Ops) {
848     unsigned Idx = OpPair.second;
849     assert(MI == OpPair.first && "Instruction conflict during operand folding");
850     MachineOperand &MO = MI->getOperand(Idx);
851     if (MO.isImplicit()) {
852       ImpReg = MO.getReg();
853       continue;
854     }
855 
856     if (UntieRegs && MO.isTied())
857       MI->untieRegOperand(Idx);
858 
859     if (!SpillSubRegs && MO.getSubReg())
860       return false;
861     // We cannot fold a load instruction into a def.
862     if (LoadMI && MO.isDef())
863       return false;
864     // Tied use operands should not be passed to foldMemoryOperand.
865     if (!MI->isRegTiedToDefOperand(Idx))
866       FoldOps.push_back(Idx);
867   }
868 
869   // If we only have implicit uses, we won't be able to fold that.
870   // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try!
871   if (FoldOps.empty())
872     return false;
873 
874   MachineInstrSpan MIS(MI, MI->getParent());
875 
876   MachineInstr *FoldMI =
877       LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS)
878              : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM);
879   if (!FoldMI)
880     return false;
881 
882   // Remove LIS for any dead defs in the original MI not in FoldMI.
883   for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
884     if (!MO->isReg())
885       continue;
886     Register Reg = MO->getReg();
887     if (!Reg || Register::isVirtualRegister(Reg) || MRI.isReserved(Reg)) {
888       continue;
889     }
890     // Skip non-Defs, including undef uses and internal reads.
891     if (MO->isUse())
892       continue;
893     PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI);
894     if (RI.FullyDefined)
895       continue;
896     // FoldMI does not define this physreg. Remove the LI segment.
897     assert(MO->isDead() && "Cannot fold physreg def");
898     SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
899     LIS.removePhysRegDefAt(Reg.asMCReg(), Idx);
900   }
901 
902   int FI;
903   if (TII.isStoreToStackSlot(*MI, FI) &&
904       HSpiller.rmFromMergeableSpills(*MI, FI))
905     --NumSpills;
906   LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
907   // Update the call site info.
908   if (MI->isCandidateForCallSiteEntry())
909     MI->getMF()->moveCallSiteInfo(MI, FoldMI);
910   MI->eraseFromParent();
911 
912   // Insert any new instructions other than FoldMI into the LIS maps.
913   assert(!MIS.empty() && "Unexpected empty span of instructions!");
914   for (MachineInstr &MI : MIS)
915     if (&MI != FoldMI)
916       LIS.InsertMachineInstrInMaps(MI);
917 
918   // TII.foldMemoryOperand may have left some implicit operands on the
919   // instruction.  Strip them.
920   if (ImpReg)
921     for (unsigned i = FoldMI->getNumOperands(); i; --i) {
922       MachineOperand &MO = FoldMI->getOperand(i - 1);
923       if (!MO.isReg() || !MO.isImplicit())
924         break;
925       if (MO.getReg() == ImpReg)
926         FoldMI->RemoveOperand(i - 1);
927     }
928 
929   LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
930                                                 "folded"));
931 
932   if (!WasCopy)
933     ++NumFolded;
934   else if (Ops.front().second == 0) {
935     ++NumSpills;
936     // If there is only 1 store instruction is required for spill, add it
937     // to mergeable list. In X86 AMX, 2 intructions are required to store.
938     // We disable the merge for this case.
939     if (std::distance(MIS.begin(), MIS.end()) <= 1)
940       HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original);
941   } else
942     ++NumReloads;
943   return true;
944 }
945 
946 void InlineSpiller::insertReload(Register NewVReg,
947                                  SlotIndex Idx,
948                                  MachineBasicBlock::iterator MI) {
949   MachineBasicBlock &MBB = *MI->getParent();
950 
951   MachineInstrSpan MIS(MI, &MBB);
952   TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
953                            MRI.getRegClass(NewVReg), &TRI);
954 
955   LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
956 
957   LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
958                                                 NewVReg));
959   ++NumReloads;
960 }
961 
962 /// Check if \p Def fully defines a VReg with an undefined value.
963 /// If that's the case, that means the value of VReg is actually
964 /// not relevant.
965 static bool isRealSpill(const MachineInstr &Def) {
966   if (!Def.isImplicitDef())
967     return true;
968   assert(Def.getNumOperands() == 1 &&
969          "Implicit def with more than one definition");
970   // We can say that the VReg defined by Def is undef, only if it is
971   // fully defined by Def. Otherwise, some of the lanes may not be
972   // undef and the value of the VReg matters.
973   return Def.getOperand(0).getSubReg();
974 }
975 
976 /// insertSpill - Insert a spill of NewVReg after MI.
977 void InlineSpiller::insertSpill(Register NewVReg, bool isKill,
978                                  MachineBasicBlock::iterator MI) {
979   // Spill are not terminators, so inserting spills after terminators will
980   // violate invariants in MachineVerifier.
981   assert(!MI->isTerminator() && "Inserting a spill after a terminator");
982   MachineBasicBlock &MBB = *MI->getParent();
983 
984   MachineInstrSpan MIS(MI, &MBB);
985   MachineBasicBlock::iterator SpillBefore = std::next(MI);
986   bool IsRealSpill = isRealSpill(*MI);
987 
988   if (IsRealSpill)
989     TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot,
990                             MRI.getRegClass(NewVReg), &TRI);
991   else
992     // Don't spill undef value.
993     // Anything works for undef, in particular keeping the memory
994     // uninitialized is a viable option and it saves code size and
995     // run time.
996     BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL))
997         .addReg(NewVReg, getKillRegState(isKill));
998 
999   MachineBasicBlock::iterator Spill = std::next(MI);
1000   LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end());
1001   for (const MachineInstr &MI : make_range(Spill, MIS.end()))
1002     getVDefInterval(MI, LIS);
1003 
1004   LLVM_DEBUG(
1005       dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill"));
1006   ++NumSpills;
1007   // If there is only 1 store instruction is required for spill, add it
1008   // to mergeable list. In X86 AMX, 2 intructions are required to store.
1009   // We disable the merge for this case.
1010   if (IsRealSpill && std::distance(Spill, MIS.end()) <= 1)
1011     HSpiller.addToMergeableSpills(*Spill, StackSlot, Original);
1012 }
1013 
1014 /// spillAroundUses - insert spill code around each use of Reg.
1015 void InlineSpiller::spillAroundUses(Register Reg) {
1016   LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n');
1017   LiveInterval &OldLI = LIS.getInterval(Reg);
1018 
1019   // Iterate over instructions using Reg.
1020   for (MachineRegisterInfo::reg_bundle_iterator
1021        RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
1022        RegI != E; ) {
1023     MachineInstr *MI = &*(RegI++);
1024 
1025     // Debug values are not allowed to affect codegen.
1026     if (MI->isDebugValue()) {
1027       // Modify DBG_VALUE now that the value is in a spill slot.
1028       MachineBasicBlock *MBB = MI->getParent();
1029       LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI);
1030       buildDbgValueForSpill(*MBB, MI, *MI, StackSlot);
1031       MBB->erase(MI);
1032       continue;
1033     }
1034 
1035     assert(!MI->isDebugInstr() && "Did not expect to find a use in debug "
1036            "instruction that isn't a DBG_VALUE");
1037 
1038     // Ignore copies to/from snippets. We'll delete them.
1039     if (SnippetCopies.count(MI))
1040       continue;
1041 
1042     // Stack slot accesses may coalesce away.
1043     if (coalesceStackAccess(MI, Reg))
1044       continue;
1045 
1046     // Analyze instruction.
1047     SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
1048     VirtRegInfo RI = AnalyzeVirtRegInBundle(*MI, Reg, &Ops);
1049 
1050     // Find the slot index where this instruction reads and writes OldLI.
1051     // This is usually the def slot, except for tied early clobbers.
1052     SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
1053     if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
1054       if (SlotIndex::isSameInstr(Idx, VNI->def))
1055         Idx = VNI->def;
1056 
1057     // Check for a sibling copy.
1058     Register SibReg = isFullCopyOf(*MI, Reg);
1059     if (SibReg && isSibling(SibReg)) {
1060       // This may actually be a copy between snippets.
1061       if (isRegToSpill(SibReg)) {
1062         LLVM_DEBUG(dbgs() << "Found new snippet copy: " << *MI);
1063         SnippetCopies.insert(MI);
1064         continue;
1065       }
1066       if (RI.Writes) {
1067         if (hoistSpillInsideBB(OldLI, *MI)) {
1068           // This COPY is now dead, the value is already in the stack slot.
1069           MI->getOperand(0).setIsDead();
1070           DeadDefs.push_back(MI);
1071           continue;
1072         }
1073       } else {
1074         // This is a reload for a sib-reg copy. Drop spills downstream.
1075         LiveInterval &SibLI = LIS.getInterval(SibReg);
1076         eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
1077         // The COPY will fold to a reload below.
1078       }
1079     }
1080 
1081     // Attempt to fold memory ops.
1082     if (foldMemoryOperand(Ops))
1083       continue;
1084 
1085     // Create a new virtual register for spill/fill.
1086     // FIXME: Infer regclass from instruction alone.
1087     Register NewVReg = Edit->createFrom(Reg);
1088 
1089     if (RI.Reads)
1090       insertReload(NewVReg, Idx, MI);
1091 
1092     // Rewrite instruction operands.
1093     bool hasLiveDef = false;
1094     for (const auto &OpPair : Ops) {
1095       MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
1096       MO.setReg(NewVReg);
1097       if (MO.isUse()) {
1098         if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
1099           MO.setIsKill();
1100       } else {
1101         if (!MO.isDead())
1102           hasLiveDef = true;
1103       }
1104     }
1105     LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n');
1106 
1107     // FIXME: Use a second vreg if instruction has no tied ops.
1108     if (RI.Writes)
1109       if (hasLiveDef)
1110         insertSpill(NewVReg, true, MI);
1111   }
1112 }
1113 
1114 /// spillAll - Spill all registers remaining after rematerialization.
1115 void InlineSpiller::spillAll() {
1116   // Update LiveStacks now that we are committed to spilling.
1117   if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1118     StackSlot = VRM.assignVirt2StackSlot(Original);
1119     StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1120     StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1121   } else
1122     StackInt = &LSS.getInterval(StackSlot);
1123 
1124   if (Original != Edit->getReg())
1125     VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1126 
1127   assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1128   for (Register Reg : RegsToSpill)
1129     StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
1130                                      StackInt->getValNumInfo(0));
1131   LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1132 
1133   // Spill around uses of all RegsToSpill.
1134   for (Register Reg : RegsToSpill)
1135     spillAroundUses(Reg);
1136 
1137   // Hoisted spills may cause dead code.
1138   if (!DeadDefs.empty()) {
1139     LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1140     Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
1141   }
1142 
1143   // Finally delete the SnippetCopies.
1144   for (Register Reg : RegsToSpill) {
1145     for (MachineRegisterInfo::reg_instr_iterator
1146          RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end();
1147          RI != E; ) {
1148       MachineInstr &MI = *(RI++);
1149       assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy");
1150       // FIXME: Do this with a LiveRangeEdit callback.
1151       LIS.RemoveMachineInstrFromMaps(MI);
1152       MI.eraseFromParent();
1153     }
1154   }
1155 
1156   // Delete all spilled registers.
1157   for (Register Reg : RegsToSpill)
1158     Edit->eraseVirtReg(Reg);
1159 }
1160 
1161 void InlineSpiller::spill(LiveRangeEdit &edit) {
1162   ++NumSpilledRanges;
1163   Edit = &edit;
1164   assert(!Register::isStackSlot(edit.getReg()) &&
1165          "Trying to spill a stack slot.");
1166   // Share a stack slot among all descendants of Original.
1167   Original = VRM.getOriginal(edit.getReg());
1168   StackSlot = VRM.getStackSlot(Original);
1169   StackInt = nullptr;
1170 
1171   LLVM_DEBUG(dbgs() << "Inline spilling "
1172                     << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
1173                     << ':' << edit.getParent() << "\nFrom original "
1174                     << printReg(Original) << '\n');
1175   assert(edit.getParent().isSpillable() &&
1176          "Attempting to spill already spilled value.");
1177   assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1178 
1179   collectRegsToSpill();
1180   reMaterializeAll();
1181 
1182   // Remat may handle everything.
1183   if (!RegsToSpill.empty())
1184     spillAll();
1185 
1186   Edit->calculateRegClassAndHint(MF, Loops, MBFI);
1187 }
1188 
1189 /// Optimizations after all the reg selections and spills are done.
1190 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); }
1191 
1192 /// When a spill is inserted, add the spill to MergeableSpills map.
1193 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot,
1194                                             unsigned Original) {
1195   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1196   LiveInterval &OrigLI = LIS.getInterval(Original);
1197   // save a copy of LiveInterval in StackSlotToOrigLI because the original
1198   // LiveInterval may be cleared after all its references are spilled.
1199   if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) {
1200     auto LI = std::make_unique<LiveInterval>(OrigLI.reg(), OrigLI.weight());
1201     LI->assign(OrigLI, Allocator);
1202     StackSlotToOrigLI[StackSlot] = std::move(LI);
1203   }
1204   SlotIndex Idx = LIS.getInstructionIndex(Spill);
1205   VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot());
1206   std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1207   MergeableSpills[MIdx].insert(&Spill);
1208 }
1209 
1210 /// When a spill is removed, remove the spill from MergeableSpills map.
1211 /// Return true if the spill is removed successfully.
1212 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill,
1213                                              int StackSlot) {
1214   auto It = StackSlotToOrigLI.find(StackSlot);
1215   if (It == StackSlotToOrigLI.end())
1216     return false;
1217   SlotIndex Idx = LIS.getInstructionIndex(Spill);
1218   VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot());
1219   std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1220   return MergeableSpills[MIdx].erase(&Spill);
1221 }
1222 
1223 /// Check BB to see if it is a possible target BB to place a hoisted spill,
1224 /// i.e., there should be a living sibling of OrigReg at the insert point.
1225 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
1226                                      MachineBasicBlock &BB, Register &LiveReg) {
1227   SlotIndex Idx;
1228   Register OrigReg = OrigLI.reg();
1229   MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, BB);
1230   if (MI != BB.end())
1231     Idx = LIS.getInstructionIndex(*MI);
1232   else
1233     Idx = LIS.getMBBEndIdx(&BB).getPrevSlot();
1234   SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg];
1235   assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI");
1236 
1237   for (const Register &SibReg : Siblings) {
1238     LiveInterval &LI = LIS.getInterval(SibReg);
1239     VNInfo *VNI = LI.getVNInfoAt(Idx);
1240     if (VNI) {
1241       LiveReg = SibReg;
1242       return true;
1243     }
1244   }
1245   return false;
1246 }
1247 
1248 /// Remove redundant spills in the same BB. Save those redundant spills in
1249 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
1250 void HoistSpillHelper::rmRedundantSpills(
1251     SmallPtrSet<MachineInstr *, 16> &Spills,
1252     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1253     DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1254   // For each spill saw, check SpillBBToSpill[] and see if its BB already has
1255   // another spill inside. If a BB contains more than one spill, only keep the
1256   // earlier spill with smaller SlotIndex.
1257   for (const auto CurrentSpill : Spills) {
1258     MachineBasicBlock *Block = CurrentSpill->getParent();
1259     MachineDomTreeNode *Node = MDT.getBase().getNode(Block);
1260     MachineInstr *PrevSpill = SpillBBToSpill[Node];
1261     if (PrevSpill) {
1262       SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
1263       SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill);
1264       MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
1265       MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
1266       SpillsToRm.push_back(SpillToRm);
1267       SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep;
1268     } else {
1269       SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill;
1270     }
1271   }
1272   for (const auto SpillToRm : SpillsToRm)
1273     Spills.erase(SpillToRm);
1274 }
1275 
1276 /// Starting from \p Root find a top-down traversal order of the dominator
1277 /// tree to visit all basic blocks containing the elements of \p Spills.
1278 /// Redundant spills will be found and put into \p SpillsToRm at the same
1279 /// time. \p SpillBBToSpill will be populated as part of the process and
1280 /// maps a basic block to the first store occurring in the basic block.
1281 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre
1282 void HoistSpillHelper::getVisitOrders(
1283     MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
1284     SmallVectorImpl<MachineDomTreeNode *> &Orders,
1285     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1286     DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
1287     DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1288   // The set contains all the possible BB nodes to which we may hoist
1289   // original spills.
1290   SmallPtrSet<MachineDomTreeNode *, 8> WorkSet;
1291   // Save the BB nodes on the path from the first BB node containing
1292   // non-redundant spill to the Root node.
1293   SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath;
1294   // All the spills to be hoisted must originate from a single def instruction
1295   // to the OrigReg. It means the def instruction should dominate all the spills
1296   // to be hoisted. We choose the BB where the def instruction is located as
1297   // the Root.
1298   MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom();
1299   // For every node on the dominator tree with spill, walk up on the dominator
1300   // tree towards the Root node until it is reached. If there is other node
1301   // containing spill in the middle of the path, the previous spill saw will
1302   // be redundant and the node containing it will be removed. All the nodes on
1303   // the path starting from the first node with non-redundant spill to the Root
1304   // node will be added to the WorkSet, which will contain all the possible
1305   // locations where spills may be hoisted to after the loop below is done.
1306   for (const auto Spill : Spills) {
1307     MachineBasicBlock *Block = Spill->getParent();
1308     MachineDomTreeNode *Node = MDT[Block];
1309     MachineInstr *SpillToRm = nullptr;
1310     while (Node != RootIDomNode) {
1311       // If Node dominates Block, and it already contains a spill, the spill in
1312       // Block will be redundant.
1313       if (Node != MDT[Block] && SpillBBToSpill[Node]) {
1314         SpillToRm = SpillBBToSpill[MDT[Block]];
1315         break;
1316         /// If we see the Node already in WorkSet, the path from the Node to
1317         /// the Root node must already be traversed by another spill.
1318         /// Then no need to repeat.
1319       } else if (WorkSet.count(Node)) {
1320         break;
1321       } else {
1322         NodesOnPath.insert(Node);
1323       }
1324       Node = Node->getIDom();
1325     }
1326     if (SpillToRm) {
1327       SpillsToRm.push_back(SpillToRm);
1328     } else {
1329       // Add a BB containing the original spills to SpillsToKeep -- i.e.,
1330       // set the initial status before hoisting start. The value of BBs
1331       // containing original spills is set to 0, in order to descriminate
1332       // with BBs containing hoisted spills which will be inserted to
1333       // SpillsToKeep later during hoisting.
1334       SpillsToKeep[MDT[Block]] = 0;
1335       WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end());
1336     }
1337     NodesOnPath.clear();
1338   }
1339 
1340   // Sort the nodes in WorkSet in top-down order and save the nodes
1341   // in Orders. Orders will be used for hoisting in runHoistSpills.
1342   unsigned idx = 0;
1343   Orders.push_back(MDT.getBase().getNode(Root));
1344   do {
1345     MachineDomTreeNode *Node = Orders[idx++];
1346     for (MachineDomTreeNode *Child : Node->children()) {
1347       if (WorkSet.count(Child))
1348         Orders.push_back(Child);
1349     }
1350   } while (idx != Orders.size());
1351   assert(Orders.size() == WorkSet.size() &&
1352          "Orders have different size with WorkSet");
1353 
1354 #ifndef NDEBUG
1355   LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n");
1356   SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1357   for (; RIt != Orders.rend(); RIt++)
1358     LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",");
1359   LLVM_DEBUG(dbgs() << "\n");
1360 #endif
1361 }
1362 
1363 /// Try to hoist spills according to BB hotness. The spills to removed will
1364 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in
1365 /// \p SpillsToIns.
1366 void HoistSpillHelper::runHoistSpills(
1367     LiveInterval &OrigLI, VNInfo &OrigVNI,
1368     SmallPtrSet<MachineInstr *, 16> &Spills,
1369     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1370     DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) {
1371   // Visit order of dominator tree nodes.
1372   SmallVector<MachineDomTreeNode *, 32> Orders;
1373   // SpillsToKeep contains all the nodes where spills are to be inserted
1374   // during hoisting. If the spill to be inserted is an original spill
1375   // (not a hoisted one), the value of the map entry is 0. If the spill
1376   // is a hoisted spill, the value of the map entry is the VReg to be used
1377   // as the source of the spill.
1378   DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep;
1379   // Map from BB to the first spill inside of it.
1380   DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill;
1381 
1382   rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill);
1383 
1384   MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def);
1385   getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep,
1386                  SpillBBToSpill);
1387 
1388   // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
1389   // nodes set and the cost of all the spills inside those nodes.
1390   // The nodes set are the locations where spills are to be inserted
1391   // in the subtree of current node.
1392   using NodesCostPair =
1393       std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>;
1394   DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap;
1395 
1396   // Iterate Orders set in reverse order, which will be a bottom-up order
1397   // in the dominator tree. Once we visit a dom tree node, we know its
1398   // children have already been visited and the spill locations in the
1399   // subtrees of all the children have been determined.
1400   SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1401   for (; RIt != Orders.rend(); RIt++) {
1402     MachineBasicBlock *Block = (*RIt)->getBlock();
1403 
1404     // If Block contains an original spill, simply continue.
1405     if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) {
1406       SpillsInSubTreeMap[*RIt].first.insert(*RIt);
1407       // SpillsInSubTreeMap[*RIt].second contains the cost of spill.
1408       SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block);
1409       continue;
1410     }
1411 
1412     // Collect spills in subtree of current node (*RIt) to
1413     // SpillsInSubTreeMap[*RIt].first.
1414     for (MachineDomTreeNode *Child : (*RIt)->children()) {
1415       if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end())
1416         continue;
1417       // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below
1418       // should be placed before getting the begin and end iterators of
1419       // SpillsInSubTreeMap[Child].first, or else the iterators may be
1420       // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
1421       // and the map grows and then the original buckets in the map are moved.
1422       SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1423           SpillsInSubTreeMap[*RIt].first;
1424       BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1425       SubTreeCost += SpillsInSubTreeMap[Child].second;
1426       auto BI = SpillsInSubTreeMap[Child].first.begin();
1427       auto EI = SpillsInSubTreeMap[Child].first.end();
1428       SpillsInSubTree.insert(BI, EI);
1429       SpillsInSubTreeMap.erase(Child);
1430     }
1431 
1432     SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1433           SpillsInSubTreeMap[*RIt].first;
1434     BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1435     // No spills in subtree, simply continue.
1436     if (SpillsInSubTree.empty())
1437       continue;
1438 
1439     // Check whether Block is a possible candidate to insert spill.
1440     Register LiveReg;
1441     if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg))
1442       continue;
1443 
1444     // If there are multiple spills that could be merged, bias a little
1445     // to hoist the spill.
1446     BranchProbability MarginProb = (SpillsInSubTree.size() > 1)
1447                                        ? BranchProbability(9, 10)
1448                                        : BranchProbability(1, 1);
1449     if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) {
1450       // Hoist: Move spills to current Block.
1451       for (const auto SpillBB : SpillsInSubTree) {
1452         // When SpillBB is a BB contains original spill, insert the spill
1453         // to SpillsToRm.
1454         if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() &&
1455             !SpillsToKeep[SpillBB]) {
1456           MachineInstr *SpillToRm = SpillBBToSpill[SpillBB];
1457           SpillsToRm.push_back(SpillToRm);
1458         }
1459         // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
1460         SpillsToKeep.erase(SpillBB);
1461       }
1462       // Current Block is the BB containing the new hoisted spill. Add it to
1463       // SpillsToKeep. LiveReg is the source of the new spill.
1464       SpillsToKeep[*RIt] = LiveReg;
1465       LLVM_DEBUG({
1466         dbgs() << "spills in BB: ";
1467         for (const auto Rspill : SpillsInSubTree)
1468           dbgs() << Rspill->getBlock()->getNumber() << " ";
1469         dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()
1470                << "\n";
1471       });
1472       SpillsInSubTree.clear();
1473       SpillsInSubTree.insert(*RIt);
1474       SubTreeCost = MBFI.getBlockFreq(Block);
1475     }
1476   }
1477   // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
1478   // save them to SpillsToIns.
1479   for (const auto &Ent : SpillsToKeep) {
1480     if (Ent.second)
1481       SpillsToIns[Ent.first->getBlock()] = Ent.second;
1482   }
1483 }
1484 
1485 /// For spills with equal values, remove redundant spills and hoist those left
1486 /// to less hot spots.
1487 ///
1488 /// Spills with equal values will be collected into the same set in
1489 /// MergeableSpills when spill is inserted. These equal spills are originated
1490 /// from the same defining instruction and are dominated by the instruction.
1491 /// Before hoisting all the equal spills, redundant spills inside in the same
1492 /// BB are first marked to be deleted. Then starting from the spills left, walk
1493 /// up on the dominator tree towards the Root node where the define instruction
1494 /// is located, mark the dominated spills to be deleted along the way and
1495 /// collect the BB nodes on the path from non-dominated spills to the define
1496 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places
1497 /// where we are considering to hoist the spills. We iterate the WorkSet in
1498 /// bottom-up order, and for each node, we will decide whether to hoist spills
1499 /// inside its subtree to that node. In this way, we can get benefit locally
1500 /// even if hoisting all the equal spills to one cold place is impossible.
1501 void HoistSpillHelper::hoistAllSpills() {
1502   SmallVector<Register, 4> NewVRegs;
1503   LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this);
1504 
1505   for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
1506     Register Reg = Register::index2VirtReg(i);
1507     Register Original = VRM.getPreSplitReg(Reg);
1508     if (!MRI.def_empty(Reg))
1509       Virt2SiblingsMap[Original].insert(Reg);
1510   }
1511 
1512   // Each entry in MergeableSpills contains a spill set with equal values.
1513   for (auto &Ent : MergeableSpills) {
1514     int Slot = Ent.first.first;
1515     LiveInterval &OrigLI = *StackSlotToOrigLI[Slot];
1516     VNInfo *OrigVNI = Ent.first.second;
1517     SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second;
1518     if (Ent.second.empty())
1519       continue;
1520 
1521     LLVM_DEBUG({
1522       dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"
1523              << "Equal spills in BB: ";
1524       for (const auto spill : EqValSpills)
1525         dbgs() << spill->getParent()->getNumber() << " ";
1526       dbgs() << "\n";
1527     });
1528 
1529     // SpillsToRm is the spill set to be removed from EqValSpills.
1530     SmallVector<MachineInstr *, 16> SpillsToRm;
1531     // SpillsToIns is the spill set to be newly inserted after hoisting.
1532     DenseMap<MachineBasicBlock *, unsigned> SpillsToIns;
1533 
1534     runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns);
1535 
1536     LLVM_DEBUG({
1537       dbgs() << "Finally inserted spills in BB: ";
1538       for (const auto &Ispill : SpillsToIns)
1539         dbgs() << Ispill.first->getNumber() << " ";
1540       dbgs() << "\nFinally removed spills in BB: ";
1541       for (const auto Rspill : SpillsToRm)
1542         dbgs() << Rspill->getParent()->getNumber() << " ";
1543       dbgs() << "\n";
1544     });
1545 
1546     // Stack live range update.
1547     LiveInterval &StackIntvl = LSS.getInterval(Slot);
1548     if (!SpillsToIns.empty() || !SpillsToRm.empty())
1549       StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI,
1550                                      StackIntvl.getValNumInfo(0));
1551 
1552     // Insert hoisted spills.
1553     for (auto const &Insert : SpillsToIns) {
1554       MachineBasicBlock *BB = Insert.first;
1555       Register LiveReg = Insert.second;
1556       MachineBasicBlock::iterator MII = IPA.getLastInsertPointIter(OrigLI, *BB);
1557       MachineInstrSpan MIS(MII, BB);
1558       TII.storeRegToStackSlot(*BB, MII, LiveReg, false, Slot,
1559                               MRI.getRegClass(LiveReg), &TRI);
1560       LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII);
1561       for (const MachineInstr &MI : make_range(MIS.begin(), MII))
1562         getVDefInterval(MI, LIS);
1563       ++NumSpills;
1564     }
1565 
1566     // Remove redundant spills or change them to dead instructions.
1567     NumSpills -= SpillsToRm.size();
1568     for (auto const RMEnt : SpillsToRm) {
1569       RMEnt->setDesc(TII.get(TargetOpcode::KILL));
1570       for (unsigned i = RMEnt->getNumOperands(); i; --i) {
1571         MachineOperand &MO = RMEnt->getOperand(i - 1);
1572         if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead())
1573           RMEnt->RemoveOperand(i - 1);
1574       }
1575     }
1576     Edit.eliminateDeadDefs(SpillsToRm, None, AA);
1577   }
1578 }
1579 
1580 /// For VirtReg clone, the \p New register should have the same physreg or
1581 /// stackslot as the \p old register.
1582 void HoistSpillHelper::LRE_DidCloneVirtReg(Register New, Register Old) {
1583   if (VRM.hasPhys(Old))
1584     VRM.assignVirt2Phys(New, VRM.getPhys(Old));
1585   else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT)
1586     VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old));
1587   else
1588     llvm_unreachable("VReg should be assigned either physreg or stackslot");
1589   if (VRM.hasShape(Old))
1590     VRM.assignVirt2Shape(New, VRM.getShape(Old));
1591 }
1592