1 //===-------- InlineSpiller.cpp - Insert spills and restores inline -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The inline spiller modifies the machine function directly instead of 11 // inserting spills and restores in VirtRegMap. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "Spiller.h" 16 #include "SplitKit.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/TinyPtrVector.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 23 #include "llvm/CodeGen/LiveRangeEdit.h" 24 #include "llvm/CodeGen/LiveStackAnalysis.h" 25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineInstrBundle.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/VirtRegMap.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetInstrInfo.h" 40 41 using namespace llvm; 42 43 #define DEBUG_TYPE "regalloc" 44 45 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 46 STATISTIC(NumSnippets, "Number of spilled snippets"); 47 STATISTIC(NumSpills, "Number of spills inserted"); 48 STATISTIC(NumSpillsRemoved, "Number of spills removed"); 49 STATISTIC(NumReloads, "Number of reloads inserted"); 50 STATISTIC(NumReloadsRemoved, "Number of reloads removed"); 51 STATISTIC(NumFolded, "Number of folded stack accesses"); 52 STATISTIC(NumFoldedLoads, "Number of folded loads"); 53 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 54 55 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden, 56 cl::desc("Disable inline spill hoisting")); 57 58 namespace { 59 class HoistSpillHelper : private LiveRangeEdit::Delegate { 60 MachineFunction &MF; 61 LiveIntervals &LIS; 62 LiveStacks &LSS; 63 AliasAnalysis *AA; 64 MachineDominatorTree &MDT; 65 MachineLoopInfo &Loops; 66 VirtRegMap &VRM; 67 MachineFrameInfo &MFI; 68 MachineRegisterInfo &MRI; 69 const TargetInstrInfo &TII; 70 const TargetRegisterInfo &TRI; 71 const MachineBlockFrequencyInfo &MBFI; 72 73 InsertPointAnalysis IPA; 74 75 // Map from StackSlot to its original register. 76 DenseMap<int, unsigned> StackSlotToReg; 77 // Map from pair of (StackSlot and Original VNI) to a set of spills which 78 // have the same stackslot and have equal values defined by Original VNI. 79 // These spills are mergeable and are hoist candiates. 80 typedef MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>> 81 MergeableSpillsMap; 82 MergeableSpillsMap MergeableSpills; 83 84 /// This is the map from original register to a set containing all its 85 /// siblings. To hoist a spill to another BB, we need to find out a live 86 /// sibling there and use it as the source of the new spill. 87 DenseMap<unsigned, SmallSetVector<unsigned, 16>> Virt2SiblingsMap; 88 89 bool isSpillCandBB(unsigned OrigReg, VNInfo &OrigVNI, MachineBasicBlock &BB, 90 unsigned &LiveReg); 91 92 void rmRedundantSpills( 93 SmallPtrSet<MachineInstr *, 16> &Spills, 94 SmallVectorImpl<MachineInstr *> &SpillsToRm, 95 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 96 97 void getVisitOrders( 98 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 99 SmallVectorImpl<MachineDomTreeNode *> &Orders, 100 SmallVectorImpl<MachineInstr *> &SpillsToRm, 101 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 102 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 103 104 void runHoistSpills(unsigned OrigReg, VNInfo &OrigVNI, 105 SmallPtrSet<MachineInstr *, 16> &Spills, 106 SmallVectorImpl<MachineInstr *> &SpillsToRm, 107 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns); 108 109 public: 110 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf, 111 VirtRegMap &vrm) 112 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 113 LSS(pass.getAnalysis<LiveStacks>()), 114 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 115 MDT(pass.getAnalysis<MachineDominatorTree>()), 116 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 117 MFI(mf.getFrameInfo()), MRI(mf.getRegInfo()), 118 TII(*mf.getSubtarget().getInstrInfo()), 119 TRI(*mf.getSubtarget().getRegisterInfo()), 120 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 121 IPA(LIS, mf.getNumBlockIDs()) {} 122 123 void addToMergeableSpills(MachineInstr &Spill, int StackSlot, 124 unsigned Original); 125 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot); 126 void hoistAllSpills(); 127 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 128 }; 129 130 class InlineSpiller : public Spiller { 131 MachineFunction &MF; 132 LiveIntervals &LIS; 133 LiveStacks &LSS; 134 AliasAnalysis *AA; 135 MachineDominatorTree &MDT; 136 MachineLoopInfo &Loops; 137 VirtRegMap &VRM; 138 MachineFrameInfo &MFI; 139 MachineRegisterInfo &MRI; 140 const TargetInstrInfo &TII; 141 const TargetRegisterInfo &TRI; 142 const MachineBlockFrequencyInfo &MBFI; 143 144 // Variables that are valid during spill(), but used by multiple methods. 145 LiveRangeEdit *Edit; 146 LiveInterval *StackInt; 147 int StackSlot; 148 unsigned Original; 149 150 // All registers to spill to StackSlot, including the main register. 151 SmallVector<unsigned, 8> RegsToSpill; 152 153 // All COPY instructions to/from snippets. 154 // They are ignored since both operands refer to the same stack slot. 155 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 156 157 // Values that failed to remat at some point. 158 SmallPtrSet<VNInfo*, 8> UsedValues; 159 160 // Dead defs generated during spilling. 161 SmallVector<MachineInstr*, 8> DeadDefs; 162 163 // Object records spills information and does the hoisting. 164 HoistSpillHelper HSpiller; 165 166 ~InlineSpiller() override {} 167 168 public: 169 InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm) 170 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 171 LSS(pass.getAnalysis<LiveStacks>()), 172 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 173 MDT(pass.getAnalysis<MachineDominatorTree>()), 174 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 175 MFI(mf.getFrameInfo()), MRI(mf.getRegInfo()), 176 TII(*mf.getSubtarget().getInstrInfo()), 177 TRI(*mf.getSubtarget().getRegisterInfo()), 178 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 179 HSpiller(pass, mf, vrm) {} 180 181 void spill(LiveRangeEdit &) override; 182 void postOptimization() override; 183 184 private: 185 bool isSnippet(const LiveInterval &SnipLI); 186 void collectRegsToSpill(); 187 188 bool isRegToSpill(unsigned Reg) { return is_contained(RegsToSpill, Reg); } 189 190 bool isSibling(unsigned Reg); 191 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI); 192 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 193 194 void markValueUsed(LiveInterval*, VNInfo*); 195 bool reMaterializeFor(LiveInterval &, MachineInstr &MI); 196 void reMaterializeAll(); 197 198 bool coalesceStackAccess(MachineInstr *MI, unsigned Reg); 199 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> >, 200 MachineInstr *LoadMI = nullptr); 201 void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI); 202 void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI); 203 204 void spillAroundUses(unsigned Reg); 205 void spillAll(); 206 }; 207 } 208 209 namespace llvm { 210 211 Spiller::~Spiller() { } 212 void Spiller::anchor() { } 213 214 Spiller *createInlineSpiller(MachineFunctionPass &pass, 215 MachineFunction &mf, 216 VirtRegMap &vrm) { 217 return new InlineSpiller(pass, mf, vrm); 218 } 219 220 } 221 222 //===----------------------------------------------------------------------===// 223 // Snippets 224 //===----------------------------------------------------------------------===// 225 226 // When spilling a virtual register, we also spill any snippets it is connected 227 // to. The snippets are small live ranges that only have a single real use, 228 // leftovers from live range splitting. Spilling them enables memory operand 229 // folding or tightens the live range around the single use. 230 // 231 // This minimizes register pressure and maximizes the store-to-load distance for 232 // spill slots which can be important in tight loops. 233 234 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 235 /// otherwise return 0. 236 static unsigned isFullCopyOf(const MachineInstr &MI, unsigned Reg) { 237 if (!MI.isFullCopy()) 238 return 0; 239 if (MI.getOperand(0).getReg() == Reg) 240 return MI.getOperand(1).getReg(); 241 if (MI.getOperand(1).getReg() == Reg) 242 return MI.getOperand(0).getReg(); 243 return 0; 244 } 245 246 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 247 /// It is assumed that SnipLI is a virtual register with the same original as 248 /// Edit->getReg(). 249 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 250 unsigned Reg = Edit->getReg(); 251 252 // A snippet is a tiny live range with only a single instruction using it 253 // besides copies to/from Reg or spills/fills. We accept: 254 // 255 // %snip = COPY %Reg / FILL fi# 256 // %snip = USE %snip 257 // %Reg = COPY %snip / SPILL %snip, fi# 258 // 259 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) 260 return false; 261 262 MachineInstr *UseMI = nullptr; 263 264 // Check that all uses satisfy our criteria. 265 for (MachineRegisterInfo::reg_instr_nodbg_iterator 266 RI = MRI.reg_instr_nodbg_begin(SnipLI.reg), 267 E = MRI.reg_instr_nodbg_end(); RI != E; ) { 268 MachineInstr &MI = *RI++; 269 270 // Allow copies to/from Reg. 271 if (isFullCopyOf(MI, Reg)) 272 continue; 273 274 // Allow stack slot loads. 275 int FI; 276 if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 277 continue; 278 279 // Allow stack slot stores. 280 if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 281 continue; 282 283 // Allow a single additional instruction. 284 if (UseMI && &MI != UseMI) 285 return false; 286 UseMI = &MI; 287 } 288 return true; 289 } 290 291 /// collectRegsToSpill - Collect live range snippets that only have a single 292 /// real use. 293 void InlineSpiller::collectRegsToSpill() { 294 unsigned Reg = Edit->getReg(); 295 296 // Main register always spills. 297 RegsToSpill.assign(1, Reg); 298 SnippetCopies.clear(); 299 300 // Snippets all have the same original, so there can't be any for an original 301 // register. 302 if (Original == Reg) 303 return; 304 305 for (MachineRegisterInfo::reg_instr_iterator 306 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) { 307 MachineInstr &MI = *RI++; 308 unsigned SnipReg = isFullCopyOf(MI, Reg); 309 if (!isSibling(SnipReg)) 310 continue; 311 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 312 if (!isSnippet(SnipLI)) 313 continue; 314 SnippetCopies.insert(&MI); 315 if (isRegToSpill(SnipReg)) 316 continue; 317 RegsToSpill.push_back(SnipReg); 318 DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 319 ++NumSnippets; 320 } 321 } 322 323 bool InlineSpiller::isSibling(unsigned Reg) { 324 return TargetRegisterInfo::isVirtualRegister(Reg) && 325 VRM.getOriginal(Reg) == Original; 326 } 327 328 /// It is beneficial to spill to earlier place in the same BB in case 329 /// as follows: 330 /// There is an alternative def earlier in the same MBB. 331 /// Hoist the spill as far as possible in SpillMBB. This can ease 332 /// register pressure: 333 /// 334 /// x = def 335 /// y = use x 336 /// s = copy x 337 /// 338 /// Hoisting the spill of s to immediately after the def removes the 339 /// interference between x and y: 340 /// 341 /// x = def 342 /// spill x 343 /// y = use x<kill> 344 /// 345 /// This hoist only helps when the copy kills its source. 346 /// 347 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI, 348 MachineInstr &CopyMI) { 349 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 350 #ifndef NDEBUG 351 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); 352 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); 353 #endif 354 355 unsigned SrcReg = CopyMI.getOperand(1).getReg(); 356 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 357 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx); 358 LiveQueryResult SrcQ = SrcLI.Query(Idx); 359 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def); 360 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill()) 361 return false; 362 363 // Conservatively extend the stack slot range to the range of the original 364 // value. We may be able to do better with stack slot coloring by being more 365 // careful here. 366 assert(StackInt && "No stack slot assigned yet."); 367 LiveInterval &OrigLI = LIS.getInterval(Original); 368 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 369 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 370 DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 371 << *StackInt << '\n'); 372 373 // We are going to spill SrcVNI immediately after its def, so clear out 374 // any later spills of the same value. 375 eliminateRedundantSpills(SrcLI, SrcVNI); 376 377 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def); 378 MachineBasicBlock::iterator MII; 379 if (SrcVNI->isPHIDef()) 380 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 381 else { 382 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def); 383 assert(DefMI && "Defining instruction disappeared"); 384 MII = DefMI; 385 ++MII; 386 } 387 // Insert spill without kill flag immediately after def. 388 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot, 389 MRI.getRegClass(SrcReg), &TRI); 390 --MII; // Point to store instruction. 391 LIS.InsertMachineInstrInMaps(*MII); 392 DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII); 393 394 HSpiller.addToMergeableSpills(*MII, StackSlot, Original); 395 ++NumSpills; 396 return true; 397 } 398 399 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 400 /// redundant spills of this value in SLI.reg and sibling copies. 401 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 402 assert(VNI && "Missing value"); 403 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 404 WorkList.push_back(std::make_pair(&SLI, VNI)); 405 assert(StackInt && "No stack slot assigned yet."); 406 407 do { 408 LiveInterval *LI; 409 std::tie(LI, VNI) = WorkList.pop_back_val(); 410 unsigned Reg = LI->reg; 411 DEBUG(dbgs() << "Checking redundant spills for " 412 << VNI->id << '@' << VNI->def << " in " << *LI << '\n'); 413 414 // Regs to spill are taken care of. 415 if (isRegToSpill(Reg)) 416 continue; 417 418 // Add all of VNI's live range to StackInt. 419 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 420 DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 421 422 // Find all spills and copies of VNI. 423 for (MachineRegisterInfo::use_instr_nodbg_iterator 424 UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 425 UI != E; ) { 426 MachineInstr &MI = *UI++; 427 if (!MI.isCopy() && !MI.mayStore()) 428 continue; 429 SlotIndex Idx = LIS.getInstructionIndex(MI); 430 if (LI->getVNInfoAt(Idx) != VNI) 431 continue; 432 433 // Follow sibling copies down the dominator tree. 434 if (unsigned DstReg = isFullCopyOf(MI, Reg)) { 435 if (isSibling(DstReg)) { 436 LiveInterval &DstLI = LIS.getInterval(DstReg); 437 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); 438 assert(DstVNI && "Missing defined value"); 439 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); 440 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 441 } 442 continue; 443 } 444 445 // Erase spills. 446 int FI; 447 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 448 DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI); 449 // eliminateDeadDefs won't normally remove stores, so switch opcode. 450 MI.setDesc(TII.get(TargetOpcode::KILL)); 451 DeadDefs.push_back(&MI); 452 ++NumSpillsRemoved; 453 if (HSpiller.rmFromMergeableSpills(MI, StackSlot)) 454 --NumSpills; 455 } 456 } 457 } while (!WorkList.empty()); 458 } 459 460 461 //===----------------------------------------------------------------------===// 462 // Rematerialization 463 //===----------------------------------------------------------------------===// 464 465 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 466 /// instruction cannot be eliminated. See through snippet copies 467 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 468 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 469 WorkList.push_back(std::make_pair(LI, VNI)); 470 do { 471 std::tie(LI, VNI) = WorkList.pop_back_val(); 472 if (!UsedValues.insert(VNI).second) 473 continue; 474 475 if (VNI->isPHIDef()) { 476 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 477 for (MachineBasicBlock *P : MBB->predecessors()) { 478 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P)); 479 if (PVNI) 480 WorkList.push_back(std::make_pair(LI, PVNI)); 481 } 482 continue; 483 } 484 485 // Follow snippet copies. 486 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 487 if (!SnippetCopies.count(MI)) 488 continue; 489 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 490 assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy"); 491 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); 492 assert(SnipVNI && "Snippet undefined before copy"); 493 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 494 } while (!WorkList.empty()); 495 } 496 497 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 498 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) { 499 500 // Analyze instruction 501 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 502 MIBundleOperands::VirtRegInfo RI = 503 MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops); 504 505 if (!RI.Reads) 506 return false; 507 508 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); 509 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 510 511 if (!ParentVNI) { 512 DEBUG(dbgs() << "\tadding <undef> flags: "); 513 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 514 MachineOperand &MO = MI.getOperand(i); 515 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) 516 MO.setIsUndef(); 517 } 518 DEBUG(dbgs() << UseIdx << '\t' << MI); 519 return true; 520 } 521 522 if (SnippetCopies.count(&MI)) 523 return false; 524 525 LiveInterval &OrigLI = LIS.getInterval(Original); 526 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 527 LiveRangeEdit::Remat RM(ParentVNI); 528 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 529 530 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) { 531 markValueUsed(&VirtReg, ParentVNI); 532 DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 533 return false; 534 } 535 536 // If the instruction also writes VirtReg.reg, it had better not require the 537 // same register for uses and defs. 538 if (RI.Tied) { 539 markValueUsed(&VirtReg, ParentVNI); 540 DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI); 541 return false; 542 } 543 544 // Before rematerializing into a register for a single instruction, try to 545 // fold a load into the instruction. That avoids allocating a new register. 546 if (RM.OrigMI->canFoldAsLoad() && 547 foldMemoryOperand(Ops, RM.OrigMI)) { 548 Edit->markRematerialized(RM.ParentVNI); 549 ++NumFoldedLoads; 550 return true; 551 } 552 553 // Allocate a new register for the remat. 554 unsigned NewVReg = Edit->createFrom(Original); 555 556 // Finally we can rematerialize OrigMI before MI. 557 SlotIndex DefIdx = 558 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI); 559 560 // We take the DebugLoc from MI, since OrigMI may be attributed to a 561 // different source location. 562 auto *NewMI = LIS.getInstructionFromIndex(DefIdx); 563 NewMI->setDebugLoc(MI.getDebugLoc()); 564 565 (void)DefIdx; 566 DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 567 << *LIS.getInstructionFromIndex(DefIdx)); 568 569 // Replace operands 570 for (const auto &OpPair : Ops) { 571 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 572 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) { 573 MO.setReg(NewVReg); 574 MO.setIsKill(); 575 } 576 } 577 DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n'); 578 579 ++NumRemats; 580 return true; 581 } 582 583 /// reMaterializeAll - Try to rematerialize as many uses as possible, 584 /// and trim the live ranges after. 585 void InlineSpiller::reMaterializeAll() { 586 if (!Edit->anyRematerializable(AA)) 587 return; 588 589 UsedValues.clear(); 590 591 // Try to remat before all uses of snippets. 592 bool anyRemat = false; 593 for (unsigned Reg : RegsToSpill) { 594 LiveInterval &LI = LIS.getInterval(Reg); 595 for (MachineRegisterInfo::reg_bundle_iterator 596 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 597 RegI != E; ) { 598 MachineInstr &MI = *RegI++; 599 600 // Debug values are not allowed to affect codegen. 601 if (MI.isDebugValue()) 602 continue; 603 604 anyRemat |= reMaterializeFor(LI, MI); 605 } 606 } 607 if (!anyRemat) 608 return; 609 610 // Remove any values that were completely rematted. 611 for (unsigned Reg : RegsToSpill) { 612 LiveInterval &LI = LIS.getInterval(Reg); 613 for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 614 I != E; ++I) { 615 VNInfo *VNI = *I; 616 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 617 continue; 618 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 619 MI->addRegisterDead(Reg, &TRI); 620 if (!MI->allDefsAreDead()) 621 continue; 622 DEBUG(dbgs() << "All defs dead: " << *MI); 623 DeadDefs.push_back(MI); 624 } 625 } 626 627 // Eliminate dead code after remat. Note that some snippet copies may be 628 // deleted here. 629 if (DeadDefs.empty()) 630 return; 631 DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 632 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 633 634 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions 635 // after rematerialization. To remove a VNI for a vreg from its LiveInterval, 636 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all 637 // removed, PHI VNI are still left in the LiveInterval. 638 // So to get rid of unused reg, we need to check whether it has non-dbg 639 // reference instead of whether it has non-empty interval. 640 unsigned ResultPos = 0; 641 for (unsigned Reg : RegsToSpill) { 642 if (MRI.reg_nodbg_empty(Reg)) { 643 Edit->eraseVirtReg(Reg); 644 continue; 645 } 646 assert((LIS.hasInterval(Reg) && !LIS.getInterval(Reg).empty()) && 647 "Reg with empty interval has reference"); 648 RegsToSpill[ResultPos++] = Reg; 649 } 650 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); 651 DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n"); 652 } 653 654 655 //===----------------------------------------------------------------------===// 656 // Spilling 657 //===----------------------------------------------------------------------===// 658 659 /// If MI is a load or store of StackSlot, it can be removed. 660 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) { 661 int FI = 0; 662 unsigned InstrReg = TII.isLoadFromStackSlot(*MI, FI); 663 bool IsLoad = InstrReg; 664 if (!IsLoad) 665 InstrReg = TII.isStoreToStackSlot(*MI, FI); 666 667 // We have a stack access. Is it the right register and slot? 668 if (InstrReg != Reg || FI != StackSlot) 669 return false; 670 671 if (!IsLoad) 672 HSpiller.rmFromMergeableSpills(*MI, StackSlot); 673 674 DEBUG(dbgs() << "Coalescing stack access: " << *MI); 675 LIS.RemoveMachineInstrFromMaps(*MI); 676 MI->eraseFromParent(); 677 678 if (IsLoad) { 679 ++NumReloadsRemoved; 680 --NumReloads; 681 } else { 682 ++NumSpillsRemoved; 683 --NumSpills; 684 } 685 686 return true; 687 } 688 689 #if !defined(NDEBUG) 690 // Dump the range of instructions from B to E with their slot indexes. 691 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, 692 MachineBasicBlock::iterator E, 693 LiveIntervals const &LIS, 694 const char *const header, 695 unsigned VReg =0) { 696 char NextLine = '\n'; 697 char SlotIndent = '\t'; 698 699 if (std::next(B) == E) { 700 NextLine = ' '; 701 SlotIndent = ' '; 702 } 703 704 dbgs() << '\t' << header << ": " << NextLine; 705 706 for (MachineBasicBlock::iterator I = B; I != E; ++I) { 707 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot(); 708 709 // If a register was passed in and this instruction has it as a 710 // destination that is marked as an early clobber, print the 711 // early-clobber slot index. 712 if (VReg) { 713 MachineOperand *MO = I->findRegisterDefOperand(VReg); 714 if (MO && MO->isEarlyClobber()) 715 Idx = Idx.getRegSlot(true); 716 } 717 718 dbgs() << SlotIndent << Idx << '\t' << *I; 719 } 720 } 721 #endif 722 723 /// foldMemoryOperand - Try folding stack slot references in Ops into their 724 /// instructions. 725 /// 726 /// @param Ops Operand indices from analyzeVirtReg(). 727 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 728 /// @return True on success. 729 bool InlineSpiller:: 730 foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops, 731 MachineInstr *LoadMI) { 732 if (Ops.empty()) 733 return false; 734 // Don't attempt folding in bundles. 735 MachineInstr *MI = Ops.front().first; 736 if (Ops.back().first != MI || MI->isBundled()) 737 return false; 738 739 bool WasCopy = MI->isCopy(); 740 unsigned ImpReg = 0; 741 742 bool SpillSubRegs = (MI->getOpcode() == TargetOpcode::STATEPOINT || 743 MI->getOpcode() == TargetOpcode::PATCHPOINT || 744 MI->getOpcode() == TargetOpcode::STACKMAP); 745 746 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 747 // operands. 748 SmallVector<unsigned, 8> FoldOps; 749 for (const auto &OpPair : Ops) { 750 unsigned Idx = OpPair.second; 751 assert(MI == OpPair.first && "Instruction conflict during operand folding"); 752 MachineOperand &MO = MI->getOperand(Idx); 753 if (MO.isImplicit()) { 754 ImpReg = MO.getReg(); 755 continue; 756 } 757 // FIXME: Teach targets to deal with subregs. 758 if (!SpillSubRegs && MO.getSubReg()) 759 return false; 760 // We cannot fold a load instruction into a def. 761 if (LoadMI && MO.isDef()) 762 return false; 763 // Tied use operands should not be passed to foldMemoryOperand. 764 if (!MI->isRegTiedToDefOperand(Idx)) 765 FoldOps.push_back(Idx); 766 } 767 768 MachineInstrSpan MIS(MI); 769 770 MachineInstr *FoldMI = 771 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS) 772 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS); 773 if (!FoldMI) 774 return false; 775 776 // Remove LIS for any dead defs in the original MI not in FoldMI. 777 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) { 778 if (!MO->isReg()) 779 continue; 780 unsigned Reg = MO->getReg(); 781 if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) || 782 MRI.isReserved(Reg)) { 783 continue; 784 } 785 // Skip non-Defs, including undef uses and internal reads. 786 if (MO->isUse()) 787 continue; 788 MIBundleOperands::PhysRegInfo RI = 789 MIBundleOperands(*FoldMI).analyzePhysReg(Reg, &TRI); 790 if (RI.FullyDefined) 791 continue; 792 // FoldMI does not define this physreg. Remove the LI segment. 793 assert(MO->isDead() && "Cannot fold physreg def"); 794 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 795 LIS.removePhysRegDefAt(Reg, Idx); 796 } 797 798 int FI; 799 if (TII.isStoreToStackSlot(*MI, FI) && 800 HSpiller.rmFromMergeableSpills(*MI, FI)) 801 --NumSpills; 802 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI); 803 MI->eraseFromParent(); 804 805 // Insert any new instructions other than FoldMI into the LIS maps. 806 assert(!MIS.empty() && "Unexpected empty span of instructions!"); 807 for (MachineInstr &MI : MIS) 808 if (&MI != FoldMI) 809 LIS.InsertMachineInstrInMaps(MI); 810 811 // TII.foldMemoryOperand may have left some implicit operands on the 812 // instruction. Strip them. 813 if (ImpReg) 814 for (unsigned i = FoldMI->getNumOperands(); i; --i) { 815 MachineOperand &MO = FoldMI->getOperand(i - 1); 816 if (!MO.isReg() || !MO.isImplicit()) 817 break; 818 if (MO.getReg() == ImpReg) 819 FoldMI->RemoveOperand(i - 1); 820 } 821 822 DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, 823 "folded")); 824 825 if (!WasCopy) 826 ++NumFolded; 827 else if (Ops.front().second == 0) { 828 ++NumSpills; 829 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original); 830 } else 831 ++NumReloads; 832 return true; 833 } 834 835 void InlineSpiller::insertReload(unsigned NewVReg, 836 SlotIndex Idx, 837 MachineBasicBlock::iterator MI) { 838 MachineBasicBlock &MBB = *MI->getParent(); 839 840 MachineInstrSpan MIS(MI); 841 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, 842 MRI.getRegClass(NewVReg), &TRI); 843 844 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); 845 846 DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload", 847 NewVReg)); 848 ++NumReloads; 849 } 850 851 /// insertSpill - Insert a spill of NewVReg after MI. 852 void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill, 853 MachineBasicBlock::iterator MI) { 854 MachineBasicBlock &MBB = *MI->getParent(); 855 856 MachineInstrSpan MIS(MI); 857 TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot, 858 MRI.getRegClass(NewVReg), &TRI); 859 860 LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end()); 861 862 DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS, 863 "spill")); 864 ++NumSpills; 865 HSpiller.addToMergeableSpills(*std::next(MI), StackSlot, Original); 866 } 867 868 /// spillAroundUses - insert spill code around each use of Reg. 869 void InlineSpiller::spillAroundUses(unsigned Reg) { 870 DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n'); 871 LiveInterval &OldLI = LIS.getInterval(Reg); 872 873 // Iterate over instructions using Reg. 874 for (MachineRegisterInfo::reg_bundle_iterator 875 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 876 RegI != E; ) { 877 MachineInstr *MI = &*(RegI++); 878 879 // Debug values are not allowed to affect codegen. 880 if (MI->isDebugValue()) { 881 // Modify DBG_VALUE now that the value is in a spill slot. 882 bool IsIndirect = MI->isIndirectDebugValue(); 883 uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0; 884 const MDNode *Var = MI->getDebugVariable(); 885 const MDNode *Expr = MI->getDebugExpression(); 886 DebugLoc DL = MI->getDebugLoc(); 887 DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI); 888 MachineBasicBlock *MBB = MI->getParent(); 889 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 890 "Expected inlined-at fields to agree"); 891 BuildMI(*MBB, MBB->erase(MI), DL, TII.get(TargetOpcode::DBG_VALUE)) 892 .addFrameIndex(StackSlot) 893 .addImm(Offset) 894 .addMetadata(Var) 895 .addMetadata(Expr); 896 continue; 897 } 898 899 // Ignore copies to/from snippets. We'll delete them. 900 if (SnippetCopies.count(MI)) 901 continue; 902 903 // Stack slot accesses may coalesce away. 904 if (coalesceStackAccess(MI, Reg)) 905 continue; 906 907 // Analyze instruction. 908 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; 909 MIBundleOperands::VirtRegInfo RI = 910 MIBundleOperands(*MI).analyzeVirtReg(Reg, &Ops); 911 912 // Find the slot index where this instruction reads and writes OldLI. 913 // This is usually the def slot, except for tied early clobbers. 914 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 915 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) 916 if (SlotIndex::isSameInstr(Idx, VNI->def)) 917 Idx = VNI->def; 918 919 // Check for a sibling copy. 920 unsigned SibReg = isFullCopyOf(*MI, Reg); 921 if (SibReg && isSibling(SibReg)) { 922 // This may actually be a copy between snippets. 923 if (isRegToSpill(SibReg)) { 924 DEBUG(dbgs() << "Found new snippet copy: " << *MI); 925 SnippetCopies.insert(MI); 926 continue; 927 } 928 if (RI.Writes) { 929 if (hoistSpillInsideBB(OldLI, *MI)) { 930 // This COPY is now dead, the value is already in the stack slot. 931 MI->getOperand(0).setIsDead(); 932 DeadDefs.push_back(MI); 933 continue; 934 } 935 } else { 936 // This is a reload for a sib-reg copy. Drop spills downstream. 937 LiveInterval &SibLI = LIS.getInterval(SibReg); 938 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 939 // The COPY will fold to a reload below. 940 } 941 } 942 943 // Attempt to fold memory ops. 944 if (foldMemoryOperand(Ops)) 945 continue; 946 947 // Create a new virtual register for spill/fill. 948 // FIXME: Infer regclass from instruction alone. 949 unsigned NewVReg = Edit->createFrom(Reg); 950 951 if (RI.Reads) 952 insertReload(NewVReg, Idx, MI); 953 954 // Rewrite instruction operands. 955 bool hasLiveDef = false; 956 for (const auto &OpPair : Ops) { 957 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 958 MO.setReg(NewVReg); 959 if (MO.isUse()) { 960 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second)) 961 MO.setIsKill(); 962 } else { 963 if (!MO.isDead()) 964 hasLiveDef = true; 965 } 966 } 967 DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n'); 968 969 // FIXME: Use a second vreg if instruction has no tied ops. 970 if (RI.Writes) 971 if (hasLiveDef) 972 insertSpill(NewVReg, true, MI); 973 } 974 } 975 976 /// spillAll - Spill all registers remaining after rematerialization. 977 void InlineSpiller::spillAll() { 978 // Update LiveStacks now that we are committed to spilling. 979 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 980 StackSlot = VRM.assignVirt2StackSlot(Original); 981 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 982 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); 983 } else 984 StackInt = &LSS.getInterval(StackSlot); 985 986 if (Original != Edit->getReg()) 987 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 988 989 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 990 for (unsigned Reg : RegsToSpill) 991 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg), 992 StackInt->getValNumInfo(0)); 993 DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 994 995 // Spill around uses of all RegsToSpill. 996 for (unsigned Reg : RegsToSpill) 997 spillAroundUses(Reg); 998 999 // Hoisted spills may cause dead code. 1000 if (!DeadDefs.empty()) { 1001 DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 1002 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 1003 } 1004 1005 // Finally delete the SnippetCopies. 1006 for (unsigned Reg : RegsToSpill) { 1007 for (MachineRegisterInfo::reg_instr_iterator 1008 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); 1009 RI != E; ) { 1010 MachineInstr &MI = *(RI++); 1011 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy"); 1012 // FIXME: Do this with a LiveRangeEdit callback. 1013 LIS.RemoveMachineInstrFromMaps(MI); 1014 MI.eraseFromParent(); 1015 } 1016 } 1017 1018 // Delete all spilled registers. 1019 for (unsigned Reg : RegsToSpill) 1020 Edit->eraseVirtReg(Reg); 1021 } 1022 1023 void InlineSpiller::spill(LiveRangeEdit &edit) { 1024 ++NumSpilledRanges; 1025 Edit = &edit; 1026 assert(!TargetRegisterInfo::isStackSlot(edit.getReg()) 1027 && "Trying to spill a stack slot."); 1028 // Share a stack slot among all descendants of Original. 1029 Original = VRM.getOriginal(edit.getReg()); 1030 StackSlot = VRM.getStackSlot(Original); 1031 StackInt = nullptr; 1032 1033 DEBUG(dbgs() << "Inline spilling " 1034 << TRI.getRegClassName(MRI.getRegClass(edit.getReg())) 1035 << ':' << edit.getParent() 1036 << "\nFrom original " << PrintReg(Original) << '\n'); 1037 assert(edit.getParent().isSpillable() && 1038 "Attempting to spill already spilled value."); 1039 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1040 1041 collectRegsToSpill(); 1042 reMaterializeAll(); 1043 1044 // Remat may handle everything. 1045 if (!RegsToSpill.empty()) 1046 spillAll(); 1047 1048 Edit->calculateRegClassAndHint(MF, Loops, MBFI); 1049 } 1050 1051 /// Optimizations after all the reg selections and spills are done. 1052 /// 1053 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); } 1054 1055 /// When a spill is inserted, add the spill to MergeableSpills map. 1056 /// 1057 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot, 1058 unsigned Original) { 1059 StackSlotToReg[StackSlot] = Original; 1060 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1061 VNInfo *OrigVNI = LIS.getInterval(Original).getVNInfoAt(Idx.getRegSlot()); 1062 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1063 MergeableSpills[MIdx].insert(&Spill); 1064 } 1065 1066 /// When a spill is removed, remove the spill from MergeableSpills map. 1067 /// Return true if the spill is removed successfully. 1068 /// 1069 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill, 1070 int StackSlot) { 1071 int Original = StackSlotToReg[StackSlot]; 1072 if (!Original) 1073 return false; 1074 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1075 VNInfo *OrigVNI = LIS.getInterval(Original).getVNInfoAt(Idx.getRegSlot()); 1076 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1077 return MergeableSpills[MIdx].erase(&Spill); 1078 } 1079 1080 /// Check BB to see if it is a possible target BB to place a hoisted spill, 1081 /// i.e., there should be a living sibling of OrigReg at the insert point. 1082 /// 1083 bool HoistSpillHelper::isSpillCandBB(unsigned OrigReg, VNInfo &OrigVNI, 1084 MachineBasicBlock &BB, unsigned &LiveReg) { 1085 SlotIndex Idx; 1086 LiveInterval &OrigLI = LIS.getInterval(OrigReg); 1087 MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, BB); 1088 if (MI != BB.end()) 1089 Idx = LIS.getInstructionIndex(*MI); 1090 else 1091 Idx = LIS.getMBBEndIdx(&BB).getPrevSlot(); 1092 SmallSetVector<unsigned, 16> &Siblings = Virt2SiblingsMap[OrigReg]; 1093 assert((LIS.getInterval(OrigReg)).getVNInfoAt(Idx) == &OrigVNI && 1094 "Unexpected VNI"); 1095 1096 for (auto const SibReg : Siblings) { 1097 LiveInterval &LI = LIS.getInterval(SibReg); 1098 VNInfo *VNI = LI.getVNInfoAt(Idx); 1099 if (VNI) { 1100 LiveReg = SibReg; 1101 return true; 1102 } 1103 } 1104 return false; 1105 } 1106 1107 /// Remove redundant spills in the same BB. Save those redundant spills in 1108 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map. 1109 /// 1110 void HoistSpillHelper::rmRedundantSpills( 1111 SmallPtrSet<MachineInstr *, 16> &Spills, 1112 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1113 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1114 // For each spill saw, check SpillBBToSpill[] and see if its BB already has 1115 // another spill inside. If a BB contains more than one spill, only keep the 1116 // earlier spill with smaller SlotIndex. 1117 for (const auto CurrentSpill : Spills) { 1118 MachineBasicBlock *Block = CurrentSpill->getParent(); 1119 MachineDomTreeNode *Node = MDT.DT->getNode(Block); 1120 MachineInstr *PrevSpill = SpillBBToSpill[Node]; 1121 if (PrevSpill) { 1122 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill); 1123 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill); 1124 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill; 1125 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill; 1126 SpillsToRm.push_back(SpillToRm); 1127 SpillBBToSpill[MDT.DT->getNode(Block)] = SpillToKeep; 1128 } else { 1129 SpillBBToSpill[MDT.DT->getNode(Block)] = CurrentSpill; 1130 } 1131 } 1132 for (const auto SpillToRm : SpillsToRm) 1133 Spills.erase(SpillToRm); 1134 } 1135 1136 /// Starting from \p Root find a top-down traversal order of the dominator 1137 /// tree to visit all basic blocks containing the elements of \p Spills. 1138 /// Redundant spills will be found and put into \p SpillsToRm at the same 1139 /// time. \p SpillBBToSpill will be populated as part of the process and 1140 /// maps a basic block to the first store occurring in the basic block. 1141 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre 1142 /// 1143 void HoistSpillHelper::getVisitOrders( 1144 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 1145 SmallVectorImpl<MachineDomTreeNode *> &Orders, 1146 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1147 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 1148 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1149 // The set contains all the possible BB nodes to which we may hoist 1150 // original spills. 1151 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet; 1152 // Save the BB nodes on the path from the first BB node containing 1153 // non-redundant spill to the Root node. 1154 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath; 1155 // All the spills to be hoisted must originate from a single def instruction 1156 // to the OrigReg. It means the def instruction should dominate all the spills 1157 // to be hoisted. We choose the BB where the def instruction is located as 1158 // the Root. 1159 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom(); 1160 // For every node on the dominator tree with spill, walk up on the dominator 1161 // tree towards the Root node until it is reached. If there is other node 1162 // containing spill in the middle of the path, the previous spill saw will 1163 // be redundant and the node containing it will be removed. All the nodes on 1164 // the path starting from the first node with non-redundant spill to the Root 1165 // node will be added to the WorkSet, which will contain all the possible 1166 // locations where spills may be hoisted to after the loop below is done. 1167 for (const auto Spill : Spills) { 1168 MachineBasicBlock *Block = Spill->getParent(); 1169 MachineDomTreeNode *Node = MDT[Block]; 1170 MachineInstr *SpillToRm = nullptr; 1171 while (Node != RootIDomNode) { 1172 // If Node dominates Block, and it already contains a spill, the spill in 1173 // Block will be redundant. 1174 if (Node != MDT[Block] && SpillBBToSpill[Node]) { 1175 SpillToRm = SpillBBToSpill[MDT[Block]]; 1176 break; 1177 /// If we see the Node already in WorkSet, the path from the Node to 1178 /// the Root node must already be traversed by another spill. 1179 /// Then no need to repeat. 1180 } else if (WorkSet.count(Node)) { 1181 break; 1182 } else { 1183 NodesOnPath.insert(Node); 1184 } 1185 Node = Node->getIDom(); 1186 } 1187 if (SpillToRm) { 1188 SpillsToRm.push_back(SpillToRm); 1189 } else { 1190 // Add a BB containing the original spills to SpillsToKeep -- i.e., 1191 // set the initial status before hoisting start. The value of BBs 1192 // containing original spills is set to 0, in order to descriminate 1193 // with BBs containing hoisted spills which will be inserted to 1194 // SpillsToKeep later during hoisting. 1195 SpillsToKeep[MDT[Block]] = 0; 1196 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end()); 1197 } 1198 NodesOnPath.clear(); 1199 } 1200 1201 // Sort the nodes in WorkSet in top-down order and save the nodes 1202 // in Orders. Orders will be used for hoisting in runHoistSpills. 1203 unsigned idx = 0; 1204 Orders.push_back(MDT.DT->getNode(Root)); 1205 do { 1206 MachineDomTreeNode *Node = Orders[idx++]; 1207 const std::vector<MachineDomTreeNode *> &Children = Node->getChildren(); 1208 unsigned NumChildren = Children.size(); 1209 for (unsigned i = 0; i != NumChildren; ++i) { 1210 MachineDomTreeNode *Child = Children[i]; 1211 if (WorkSet.count(Child)) 1212 Orders.push_back(Child); 1213 } 1214 } while (idx != Orders.size()); 1215 assert(Orders.size() == WorkSet.size() && 1216 "Orders have different size with WorkSet"); 1217 1218 #ifndef NDEBUG 1219 DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n"); 1220 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1221 for (; RIt != Orders.rend(); RIt++) 1222 DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ","); 1223 DEBUG(dbgs() << "\n"); 1224 #endif 1225 } 1226 1227 /// Try to hoist spills according to BB hotness. The spills to removed will 1228 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in 1229 /// \p SpillsToIns. 1230 /// 1231 void HoistSpillHelper::runHoistSpills( 1232 unsigned OrigReg, VNInfo &OrigVNI, SmallPtrSet<MachineInstr *, 16> &Spills, 1233 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1234 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) { 1235 // Visit order of dominator tree nodes. 1236 SmallVector<MachineDomTreeNode *, 32> Orders; 1237 // SpillsToKeep contains all the nodes where spills are to be inserted 1238 // during hoisting. If the spill to be inserted is an original spill 1239 // (not a hoisted one), the value of the map entry is 0. If the spill 1240 // is a hoisted spill, the value of the map entry is the VReg to be used 1241 // as the source of the spill. 1242 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep; 1243 // Map from BB to the first spill inside of it. 1244 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill; 1245 1246 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill); 1247 1248 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def); 1249 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep, 1250 SpillBBToSpill); 1251 1252 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of 1253 // nodes set and the cost of all the spills inside those nodes. 1254 // The nodes set are the locations where spills are to be inserted 1255 // in the subtree of current node. 1256 typedef std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency> 1257 NodesCostPair; 1258 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap; 1259 // Iterate Orders set in reverse order, which will be a bottom-up order 1260 // in the dominator tree. Once we visit a dom tree node, we know its 1261 // children have already been visited and the spill locations in the 1262 // subtrees of all the children have been determined. 1263 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1264 for (; RIt != Orders.rend(); RIt++) { 1265 MachineBasicBlock *Block = (*RIt)->getBlock(); 1266 1267 // If Block contains an original spill, simply continue. 1268 if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) { 1269 SpillsInSubTreeMap[*RIt].first.insert(*RIt); 1270 // SpillsInSubTreeMap[*RIt].second contains the cost of spill. 1271 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block); 1272 continue; 1273 } 1274 1275 // Collect spills in subtree of current node (*RIt) to 1276 // SpillsInSubTreeMap[*RIt].first. 1277 const std::vector<MachineDomTreeNode *> &Children = (*RIt)->getChildren(); 1278 unsigned NumChildren = Children.size(); 1279 for (unsigned i = 0; i != NumChildren; ++i) { 1280 MachineDomTreeNode *Child = Children[i]; 1281 if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end()) 1282 continue; 1283 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below 1284 // should be placed before getting the begin and end iterators of 1285 // SpillsInSubTreeMap[Child].first, or else the iterators may be 1286 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time 1287 // and the map grows and then the original buckets in the map are moved. 1288 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1289 SpillsInSubTreeMap[*RIt].first; 1290 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1291 SubTreeCost += SpillsInSubTreeMap[Child].second; 1292 auto BI = SpillsInSubTreeMap[Child].first.begin(); 1293 auto EI = SpillsInSubTreeMap[Child].first.end(); 1294 SpillsInSubTree.insert(BI, EI); 1295 SpillsInSubTreeMap.erase(Child); 1296 } 1297 1298 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1299 SpillsInSubTreeMap[*RIt].first; 1300 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1301 // No spills in subtree, simply continue. 1302 if (SpillsInSubTree.empty()) 1303 continue; 1304 1305 // Check whether Block is a possible candidate to insert spill. 1306 unsigned LiveReg = 0; 1307 if (!isSpillCandBB(OrigReg, OrigVNI, *Block, LiveReg)) 1308 continue; 1309 1310 // If there are multiple spills that could be merged, bias a little 1311 // to hoist the spill. 1312 BranchProbability MarginProb = (SpillsInSubTree.size() > 1) 1313 ? BranchProbability(9, 10) 1314 : BranchProbability(1, 1); 1315 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) { 1316 // Hoist: Move spills to current Block. 1317 for (const auto SpillBB : SpillsInSubTree) { 1318 // When SpillBB is a BB contains original spill, insert the spill 1319 // to SpillsToRm. 1320 if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() && 1321 !SpillsToKeep[SpillBB]) { 1322 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB]; 1323 SpillsToRm.push_back(SpillToRm); 1324 } 1325 // SpillBB will not contain spill anymore, remove it from SpillsToKeep. 1326 SpillsToKeep.erase(SpillBB); 1327 } 1328 // Current Block is the BB containing the new hoisted spill. Add it to 1329 // SpillsToKeep. LiveReg is the source of the new spill. 1330 SpillsToKeep[*RIt] = LiveReg; 1331 DEBUG({ 1332 dbgs() << "spills in BB: "; 1333 for (const auto Rspill : SpillsInSubTree) 1334 dbgs() << Rspill->getBlock()->getNumber() << " "; 1335 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber() 1336 << "\n"; 1337 }); 1338 SpillsInSubTree.clear(); 1339 SpillsInSubTree.insert(*RIt); 1340 SubTreeCost = MBFI.getBlockFreq(Block); 1341 } 1342 } 1343 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill), 1344 // save them to SpillsToIns. 1345 for (const auto Ent : SpillsToKeep) { 1346 if (Ent.second) 1347 SpillsToIns[Ent.first->getBlock()] = Ent.second; 1348 } 1349 } 1350 1351 /// For spills with equal values, remove redundant spills and hoist those left 1352 /// to less hot spots. 1353 /// 1354 /// Spills with equal values will be collected into the same set in 1355 /// MergeableSpills when spill is inserted. These equal spills are originated 1356 /// from the same defining instruction and are dominated by the instruction. 1357 /// Before hoisting all the equal spills, redundant spills inside in the same 1358 /// BB are first marked to be deleted. Then starting from the spills left, walk 1359 /// up on the dominator tree towards the Root node where the define instruction 1360 /// is located, mark the dominated spills to be deleted along the way and 1361 /// collect the BB nodes on the path from non-dominated spills to the define 1362 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places 1363 /// where we are considering to hoist the spills. We iterate the WorkSet in 1364 /// bottom-up order, and for each node, we will decide whether to hoist spills 1365 /// inside its subtree to that node. In this way, we can get benefit locally 1366 /// even if hoisting all the equal spills to one cold place is impossible. 1367 /// 1368 void HoistSpillHelper::hoistAllSpills() { 1369 SmallVector<unsigned, 4> NewVRegs; 1370 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this); 1371 1372 // Save the mapping between stackslot and its original reg. 1373 DenseMap<int, unsigned> SlotToOrigReg; 1374 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { 1375 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1376 int Slot = VRM.getStackSlot(Reg); 1377 if (Slot != VirtRegMap::NO_STACK_SLOT) 1378 SlotToOrigReg[Slot] = VRM.getOriginal(Reg); 1379 unsigned Original = VRM.getPreSplitReg(Reg); 1380 if (!MRI.def_empty(Reg)) 1381 Virt2SiblingsMap[Original].insert(Reg); 1382 } 1383 1384 // Each entry in MergeableSpills contains a spill set with equal values. 1385 for (auto &Ent : MergeableSpills) { 1386 int Slot = Ent.first.first; 1387 unsigned OrigReg = SlotToOrigReg[Slot]; 1388 LiveInterval &OrigLI = LIS.getInterval(OrigReg); 1389 VNInfo *OrigVNI = Ent.first.second; 1390 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second; 1391 if (Ent.second.empty()) 1392 continue; 1393 1394 DEBUG({ 1395 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n" 1396 << "Equal spills in BB: "; 1397 for (const auto spill : EqValSpills) 1398 dbgs() << spill->getParent()->getNumber() << " "; 1399 dbgs() << "\n"; 1400 }); 1401 1402 // SpillsToRm is the spill set to be removed from EqValSpills. 1403 SmallVector<MachineInstr *, 16> SpillsToRm; 1404 // SpillsToIns is the spill set to be newly inserted after hoisting. 1405 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns; 1406 1407 runHoistSpills(OrigReg, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns); 1408 1409 DEBUG({ 1410 dbgs() << "Finally inserted spills in BB: "; 1411 for (const auto Ispill : SpillsToIns) 1412 dbgs() << Ispill.first->getNumber() << " "; 1413 dbgs() << "\nFinally removed spills in BB: "; 1414 for (const auto Rspill : SpillsToRm) 1415 dbgs() << Rspill->getParent()->getNumber() << " "; 1416 dbgs() << "\n"; 1417 }); 1418 1419 // Stack live range update. 1420 LiveInterval &StackIntvl = LSS.getInterval(Slot); 1421 if (!SpillsToIns.empty() || !SpillsToRm.empty()) 1422 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI, 1423 StackIntvl.getValNumInfo(0)); 1424 1425 // Insert hoisted spills. 1426 for (auto const Insert : SpillsToIns) { 1427 MachineBasicBlock *BB = Insert.first; 1428 unsigned LiveReg = Insert.second; 1429 MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, *BB); 1430 TII.storeRegToStackSlot(*BB, MI, LiveReg, false, Slot, 1431 MRI.getRegClass(LiveReg), &TRI); 1432 LIS.InsertMachineInstrRangeInMaps(std::prev(MI), MI); 1433 ++NumSpills; 1434 } 1435 1436 // Remove redundant spills or change them to dead instructions. 1437 NumSpills -= SpillsToRm.size(); 1438 for (auto const RMEnt : SpillsToRm) { 1439 RMEnt->setDesc(TII.get(TargetOpcode::KILL)); 1440 for (unsigned i = RMEnt->getNumOperands(); i; --i) { 1441 MachineOperand &MO = RMEnt->getOperand(i - 1); 1442 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead()) 1443 RMEnt->RemoveOperand(i - 1); 1444 } 1445 } 1446 Edit.eliminateDeadDefs(SpillsToRm, None, AA); 1447 } 1448 } 1449 1450 /// For VirtReg clone, the \p New register should have the same physreg or 1451 /// stackslot as the \p old register. 1452 void HoistSpillHelper::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 1453 if (VRM.hasPhys(Old)) 1454 VRM.assignVirt2Phys(New, VRM.getPhys(Old)); 1455 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT) 1456 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old)); 1457 else 1458 llvm_unreachable("VReg should be assigned either physreg or stackslot"); 1459 } 1460