1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The inline spiller modifies the machine function directly instead of
11 // inserting spills and restores in VirtRegMap.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "LiveRangeCalc.h"
16 #include "Spiller.h"
17 #include "SplitKit.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/CodeGen/LiveInterval.h"
29 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
30 #include "llvm/CodeGen/LiveRangeEdit.h"
31 #include "llvm/CodeGen/LiveStackAnalysis.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
34 #include "llvm/CodeGen/MachineDominators.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineInstrBundle.h"
40 #include "llvm/CodeGen/MachineLoopInfo.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/SlotIndexes.h"
44 #include "llvm/CodeGen/VirtRegMap.h"
45 #include "llvm/Support/BlockFrequency.h"
46 #include "llvm/Support/BranchProbability.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Target/TargetInstrInfo.h"
53 #include "llvm/Target/TargetOpcodes.h"
54 #include "llvm/Target/TargetRegisterInfo.h"
55 #include "llvm/Target/TargetSubtargetInfo.h"
56 #include <cassert>
57 #include <iterator>
58 #include <tuple>
59 #include <utility>
60 #include <vector>
61 
62 using namespace llvm;
63 
64 #define DEBUG_TYPE "regalloc"
65 
66 STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
67 STATISTIC(NumSnippets,        "Number of spilled snippets");
68 STATISTIC(NumSpills,          "Number of spills inserted");
69 STATISTIC(NumSpillsRemoved,   "Number of spills removed");
70 STATISTIC(NumReloads,         "Number of reloads inserted");
71 STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
72 STATISTIC(NumFolded,          "Number of folded stack accesses");
73 STATISTIC(NumFoldedLoads,     "Number of folded loads");
74 STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
75 
76 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
77                                      cl::desc("Disable inline spill hoisting"));
78 
79 namespace {
80 
81 class HoistSpillHelper : private LiveRangeEdit::Delegate {
82   MachineFunction &MF;
83   LiveIntervals &LIS;
84   LiveStacks &LSS;
85   AliasAnalysis *AA;
86   MachineDominatorTree &MDT;
87   MachineLoopInfo &Loops;
88   VirtRegMap &VRM;
89   MachineRegisterInfo &MRI;
90   const TargetInstrInfo &TII;
91   const TargetRegisterInfo &TRI;
92   const MachineBlockFrequencyInfo &MBFI;
93 
94   InsertPointAnalysis IPA;
95 
96   // Map from StackSlot to its original register.
97   DenseMap<int, unsigned> StackSlotToReg;
98 
99   // Map from pair of (StackSlot and Original VNI) to a set of spills which
100   // have the same stackslot and have equal values defined by Original VNI.
101   // These spills are mergeable and are hoist candiates.
102   using MergeableSpillsMap =
103       MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>;
104   MergeableSpillsMap MergeableSpills;
105 
106   /// This is the map from original register to a set containing all its
107   /// siblings. To hoist a spill to another BB, we need to find out a live
108   /// sibling there and use it as the source of the new spill.
109   DenseMap<unsigned, SmallSetVector<unsigned, 16>> Virt2SiblingsMap;
110 
111   bool isSpillCandBB(unsigned OrigReg, VNInfo &OrigVNI, MachineBasicBlock &BB,
112                      unsigned &LiveReg);
113 
114   void rmRedundantSpills(
115       SmallPtrSet<MachineInstr *, 16> &Spills,
116       SmallVectorImpl<MachineInstr *> &SpillsToRm,
117       DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
118 
119   void getVisitOrders(
120       MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
121       SmallVectorImpl<MachineDomTreeNode *> &Orders,
122       SmallVectorImpl<MachineInstr *> &SpillsToRm,
123       DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
124       DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
125 
126   void runHoistSpills(unsigned OrigReg, VNInfo &OrigVNI,
127                       SmallPtrSet<MachineInstr *, 16> &Spills,
128                       SmallVectorImpl<MachineInstr *> &SpillsToRm,
129                       DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns);
130 
131 public:
132   HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf,
133                    VirtRegMap &vrm)
134       : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
135         LSS(pass.getAnalysis<LiveStacks>()),
136         AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
137         MDT(pass.getAnalysis<MachineDominatorTree>()),
138         Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
139         MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
140         TRI(*mf.getSubtarget().getRegisterInfo()),
141         MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
142         IPA(LIS, mf.getNumBlockIDs()) {}
143 
144   void addToMergeableSpills(MachineInstr &Spill, int StackSlot,
145                             unsigned Original);
146   bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot);
147   void hoistAllSpills();
148   void LRE_DidCloneVirtReg(unsigned, unsigned) override;
149 };
150 
151 class InlineSpiller : public Spiller {
152   MachineFunction &MF;
153   LiveIntervals &LIS;
154   LiveStacks &LSS;
155   AliasAnalysis *AA;
156   MachineDominatorTree &MDT;
157   MachineLoopInfo &Loops;
158   VirtRegMap &VRM;
159   MachineRegisterInfo &MRI;
160   const TargetInstrInfo &TII;
161   const TargetRegisterInfo &TRI;
162   const MachineBlockFrequencyInfo &MBFI;
163 
164   // Variables that are valid during spill(), but used by multiple methods.
165   LiveRangeEdit *Edit;
166   LiveInterval *StackInt;
167   int StackSlot;
168   unsigned Original;
169 
170   // All registers to spill to StackSlot, including the main register.
171   SmallVector<unsigned, 8> RegsToSpill;
172 
173   // All COPY instructions to/from snippets.
174   // They are ignored since both operands refer to the same stack slot.
175   SmallPtrSet<MachineInstr*, 8> SnippetCopies;
176 
177   // Values that failed to remat at some point.
178   SmallPtrSet<VNInfo*, 8> UsedValues;
179 
180   // Dead defs generated during spilling.
181   SmallVector<MachineInstr*, 8> DeadDefs;
182 
183   // Object records spills information and does the hoisting.
184   HoistSpillHelper HSpiller;
185 
186   ~InlineSpiller() override = default;
187 
188 public:
189   InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm)
190       : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
191         LSS(pass.getAnalysis<LiveStacks>()),
192         AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
193         MDT(pass.getAnalysis<MachineDominatorTree>()),
194         Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
195         MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
196         TRI(*mf.getSubtarget().getRegisterInfo()),
197         MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
198         HSpiller(pass, mf, vrm) {}
199 
200   void spill(LiveRangeEdit &) override;
201   void postOptimization() override;
202 
203 private:
204   bool isSnippet(const LiveInterval &SnipLI);
205   void collectRegsToSpill();
206 
207   bool isRegToSpill(unsigned Reg) { return is_contained(RegsToSpill, Reg); }
208 
209   bool isSibling(unsigned Reg);
210   bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
211   void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
212 
213   void markValueUsed(LiveInterval*, VNInfo*);
214   bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
215   void reMaterializeAll();
216 
217   bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
218   bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>,
219                          MachineInstr *LoadMI = nullptr);
220   void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI);
221   void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI);
222 
223   void spillAroundUses(unsigned Reg);
224   void spillAll();
225 };
226 
227 } // end anonymous namespace
228 
229 Spiller::~Spiller() = default;
230 
231 void Spiller::anchor() {}
232 
233 Spiller *llvm::createInlineSpiller(MachineFunctionPass &pass,
234                                    MachineFunction &mf,
235                                    VirtRegMap &vrm) {
236   return new InlineSpiller(pass, mf, vrm);
237 }
238 
239 //===----------------------------------------------------------------------===//
240 //                                Snippets
241 //===----------------------------------------------------------------------===//
242 
243 // When spilling a virtual register, we also spill any snippets it is connected
244 // to. The snippets are small live ranges that only have a single real use,
245 // leftovers from live range splitting. Spilling them enables memory operand
246 // folding or tightens the live range around the single use.
247 //
248 // This minimizes register pressure and maximizes the store-to-load distance for
249 // spill slots which can be important in tight loops.
250 
251 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
252 /// otherwise return 0.
253 static unsigned isFullCopyOf(const MachineInstr &MI, unsigned Reg) {
254   if (!MI.isFullCopy())
255     return 0;
256   if (MI.getOperand(0).getReg() == Reg)
257     return MI.getOperand(1).getReg();
258   if (MI.getOperand(1).getReg() == Reg)
259     return MI.getOperand(0).getReg();
260   return 0;
261 }
262 
263 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
264 /// It is assumed that SnipLI is a virtual register with the same original as
265 /// Edit->getReg().
266 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
267   unsigned Reg = Edit->getReg();
268 
269   // A snippet is a tiny live range with only a single instruction using it
270   // besides copies to/from Reg or spills/fills. We accept:
271   //
272   //   %snip = COPY %Reg / FILL fi#
273   //   %snip = USE %snip
274   //   %Reg = COPY %snip / SPILL %snip, fi#
275   //
276   if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
277     return false;
278 
279   MachineInstr *UseMI = nullptr;
280 
281   // Check that all uses satisfy our criteria.
282   for (MachineRegisterInfo::reg_instr_nodbg_iterator
283        RI = MRI.reg_instr_nodbg_begin(SnipLI.reg),
284        E = MRI.reg_instr_nodbg_end(); RI != E; ) {
285     MachineInstr &MI = *RI++;
286 
287     // Allow copies to/from Reg.
288     if (isFullCopyOf(MI, Reg))
289       continue;
290 
291     // Allow stack slot loads.
292     int FI;
293     if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
294       continue;
295 
296     // Allow stack slot stores.
297     if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
298       continue;
299 
300     // Allow a single additional instruction.
301     if (UseMI && &MI != UseMI)
302       return false;
303     UseMI = &MI;
304   }
305   return true;
306 }
307 
308 /// collectRegsToSpill - Collect live range snippets that only have a single
309 /// real use.
310 void InlineSpiller::collectRegsToSpill() {
311   unsigned Reg = Edit->getReg();
312 
313   // Main register always spills.
314   RegsToSpill.assign(1, Reg);
315   SnippetCopies.clear();
316 
317   // Snippets all have the same original, so there can't be any for an original
318   // register.
319   if (Original == Reg)
320     return;
321 
322   for (MachineRegisterInfo::reg_instr_iterator
323        RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) {
324     MachineInstr &MI = *RI++;
325     unsigned SnipReg = isFullCopyOf(MI, Reg);
326     if (!isSibling(SnipReg))
327       continue;
328     LiveInterval &SnipLI = LIS.getInterval(SnipReg);
329     if (!isSnippet(SnipLI))
330       continue;
331     SnippetCopies.insert(&MI);
332     if (isRegToSpill(SnipReg))
333       continue;
334     RegsToSpill.push_back(SnipReg);
335     DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
336     ++NumSnippets;
337   }
338 }
339 
340 bool InlineSpiller::isSibling(unsigned Reg) {
341   return TargetRegisterInfo::isVirtualRegister(Reg) &&
342            VRM.getOriginal(Reg) == Original;
343 }
344 
345 /// It is beneficial to spill to earlier place in the same BB in case
346 /// as follows:
347 /// There is an alternative def earlier in the same MBB.
348 /// Hoist the spill as far as possible in SpillMBB. This can ease
349 /// register pressure:
350 ///
351 ///   x = def
352 ///   y = use x
353 ///   s = copy x
354 ///
355 /// Hoisting the spill of s to immediately after the def removes the
356 /// interference between x and y:
357 ///
358 ///   x = def
359 ///   spill x
360 ///   y = use x<kill>
361 ///
362 /// This hoist only helps when the copy kills its source.
363 ///
364 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
365                                        MachineInstr &CopyMI) {
366   SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
367 #ifndef NDEBUG
368   VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
369   assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
370 #endif
371 
372   unsigned SrcReg = CopyMI.getOperand(1).getReg();
373   LiveInterval &SrcLI = LIS.getInterval(SrcReg);
374   VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx);
375   LiveQueryResult SrcQ = SrcLI.Query(Idx);
376   MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def);
377   if (DefMBB != CopyMI.getParent() || !SrcQ.isKill())
378     return false;
379 
380   // Conservatively extend the stack slot range to the range of the original
381   // value. We may be able to do better with stack slot coloring by being more
382   // careful here.
383   assert(StackInt && "No stack slot assigned yet.");
384   LiveInterval &OrigLI = LIS.getInterval(Original);
385   VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
386   StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
387   DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
388                << *StackInt << '\n');
389 
390   // We are going to spill SrcVNI immediately after its def, so clear out
391   // any later spills of the same value.
392   eliminateRedundantSpills(SrcLI, SrcVNI);
393 
394   MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
395   MachineBasicBlock::iterator MII;
396   if (SrcVNI->isPHIDef())
397     MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
398   else {
399     MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
400     assert(DefMI && "Defining instruction disappeared");
401     MII = DefMI;
402     ++MII;
403   }
404   // Insert spill without kill flag immediately after def.
405   TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot,
406                           MRI.getRegClass(SrcReg), &TRI);
407   --MII; // Point to store instruction.
408   LIS.InsertMachineInstrInMaps(*MII);
409   DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII);
410 
411   HSpiller.addToMergeableSpills(*MII, StackSlot, Original);
412   ++NumSpills;
413   return true;
414 }
415 
416 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
417 /// redundant spills of this value in SLI.reg and sibling copies.
418 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
419   assert(VNI && "Missing value");
420   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
421   WorkList.push_back(std::make_pair(&SLI, VNI));
422   assert(StackInt && "No stack slot assigned yet.");
423 
424   do {
425     LiveInterval *LI;
426     std::tie(LI, VNI) = WorkList.pop_back_val();
427     unsigned Reg = LI->reg;
428     DEBUG(dbgs() << "Checking redundant spills for "
429                  << VNI->id << '@' << VNI->def << " in " << *LI << '\n');
430 
431     // Regs to spill are taken care of.
432     if (isRegToSpill(Reg))
433       continue;
434 
435     // Add all of VNI's live range to StackInt.
436     StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
437     DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
438 
439     // Find all spills and copies of VNI.
440     for (MachineRegisterInfo::use_instr_nodbg_iterator
441          UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
442          UI != E; ) {
443       MachineInstr &MI = *UI++;
444       if (!MI.isCopy() && !MI.mayStore())
445         continue;
446       SlotIndex Idx = LIS.getInstructionIndex(MI);
447       if (LI->getVNInfoAt(Idx) != VNI)
448         continue;
449 
450       // Follow sibling copies down the dominator tree.
451       if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
452         if (isSibling(DstReg)) {
453            LiveInterval &DstLI = LIS.getInterval(DstReg);
454            VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
455            assert(DstVNI && "Missing defined value");
456            assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
457            WorkList.push_back(std::make_pair(&DstLI, DstVNI));
458         }
459         continue;
460       }
461 
462       // Erase spills.
463       int FI;
464       if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
465         DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI);
466         // eliminateDeadDefs won't normally remove stores, so switch opcode.
467         MI.setDesc(TII.get(TargetOpcode::KILL));
468         DeadDefs.push_back(&MI);
469         ++NumSpillsRemoved;
470         if (HSpiller.rmFromMergeableSpills(MI, StackSlot))
471           --NumSpills;
472       }
473     }
474   } while (!WorkList.empty());
475 }
476 
477 //===----------------------------------------------------------------------===//
478 //                            Rematerialization
479 //===----------------------------------------------------------------------===//
480 
481 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
482 /// instruction cannot be eliminated. See through snippet copies
483 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
484   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
485   WorkList.push_back(std::make_pair(LI, VNI));
486   do {
487     std::tie(LI, VNI) = WorkList.pop_back_val();
488     if (!UsedValues.insert(VNI).second)
489       continue;
490 
491     if (VNI->isPHIDef()) {
492       MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
493       for (MachineBasicBlock *P : MBB->predecessors()) {
494         VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
495         if (PVNI)
496           WorkList.push_back(std::make_pair(LI, PVNI));
497       }
498       continue;
499     }
500 
501     // Follow snippet copies.
502     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
503     if (!SnippetCopies.count(MI))
504       continue;
505     LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
506     assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
507     VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
508     assert(SnipVNI && "Snippet undefined before copy");
509     WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
510   } while (!WorkList.empty());
511 }
512 
513 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
514 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
515   // Analyze instruction
516   SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
517   MIBundleOperands::VirtRegInfo RI =
518       MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops);
519 
520   if (!RI.Reads)
521     return false;
522 
523   SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
524   VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
525 
526   if (!ParentVNI) {
527     DEBUG(dbgs() << "\tadding <undef> flags: ");
528     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
529       MachineOperand &MO = MI.getOperand(i);
530       if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
531         MO.setIsUndef();
532     }
533     DEBUG(dbgs() << UseIdx << '\t' << MI);
534     return true;
535   }
536 
537   if (SnippetCopies.count(&MI))
538     return false;
539 
540   LiveInterval &OrigLI = LIS.getInterval(Original);
541   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
542   LiveRangeEdit::Remat RM(ParentVNI);
543   RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
544 
545   if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) {
546     markValueUsed(&VirtReg, ParentVNI);
547     DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
548     return false;
549   }
550 
551   // If the instruction also writes VirtReg.reg, it had better not require the
552   // same register for uses and defs.
553   if (RI.Tied) {
554     markValueUsed(&VirtReg, ParentVNI);
555     DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI);
556     return false;
557   }
558 
559   // Before rematerializing into a register for a single instruction, try to
560   // fold a load into the instruction. That avoids allocating a new register.
561   if (RM.OrigMI->canFoldAsLoad() &&
562       foldMemoryOperand(Ops, RM.OrigMI)) {
563     Edit->markRematerialized(RM.ParentVNI);
564     ++NumFoldedLoads;
565     return true;
566   }
567 
568   // Allocate a new register for the remat.
569   unsigned NewVReg = Edit->createFrom(Original);
570 
571   // Finally we can rematerialize OrigMI before MI.
572   SlotIndex DefIdx =
573       Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);
574 
575   // We take the DebugLoc from MI, since OrigMI may be attributed to a
576   // different source location.
577   auto *NewMI = LIS.getInstructionFromIndex(DefIdx);
578   NewMI->setDebugLoc(MI.getDebugLoc());
579 
580   (void)DefIdx;
581   DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
582                << *LIS.getInstructionFromIndex(DefIdx));
583 
584   // Replace operands
585   for (const auto &OpPair : Ops) {
586     MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
587     if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
588       MO.setReg(NewVReg);
589       MO.setIsKill();
590     }
591   }
592   DEBUG(dbgs() << "\t        " << UseIdx << '\t' << MI << '\n');
593 
594   ++NumRemats;
595   return true;
596 }
597 
598 /// reMaterializeAll - Try to rematerialize as many uses as possible,
599 /// and trim the live ranges after.
600 void InlineSpiller::reMaterializeAll() {
601   if (!Edit->anyRematerializable(AA))
602     return;
603 
604   UsedValues.clear();
605 
606   // Try to remat before all uses of snippets.
607   bool anyRemat = false;
608   for (unsigned Reg : RegsToSpill) {
609     LiveInterval &LI = LIS.getInterval(Reg);
610     for (MachineRegisterInfo::reg_bundle_iterator
611            RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
612          RegI != E; ) {
613       MachineInstr &MI = *RegI++;
614 
615       // Debug values are not allowed to affect codegen.
616       if (MI.isDebugValue())
617         continue;
618 
619       anyRemat |= reMaterializeFor(LI, MI);
620     }
621   }
622   if (!anyRemat)
623     return;
624 
625   // Remove any values that were completely rematted.
626   for (unsigned Reg : RegsToSpill) {
627     LiveInterval &LI = LIS.getInterval(Reg);
628     for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
629          I != E; ++I) {
630       VNInfo *VNI = *I;
631       if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
632         continue;
633       MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
634       MI->addRegisterDead(Reg, &TRI);
635       if (!MI->allDefsAreDead())
636         continue;
637       DEBUG(dbgs() << "All defs dead: " << *MI);
638       DeadDefs.push_back(MI);
639     }
640   }
641 
642   // Eliminate dead code after remat. Note that some snippet copies may be
643   // deleted here.
644   if (DeadDefs.empty())
645     return;
646   DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
647   Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
648 
649   // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
650   // after rematerialization.  To remove a VNI for a vreg from its LiveInterval,
651   // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
652   // removed, PHI VNI are still left in the LiveInterval.
653   // So to get rid of unused reg, we need to check whether it has non-dbg
654   // reference instead of whether it has non-empty interval.
655   unsigned ResultPos = 0;
656   for (unsigned Reg : RegsToSpill) {
657     if (MRI.reg_nodbg_empty(Reg)) {
658       Edit->eraseVirtReg(Reg);
659       continue;
660     }
661 
662     assert(LIS.hasInterval(Reg) &&
663            (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
664            "Empty and not used live-range?!");
665 
666     RegsToSpill[ResultPos++] = Reg;
667   }
668   RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
669   DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n");
670 }
671 
672 //===----------------------------------------------------------------------===//
673 //                                 Spilling
674 //===----------------------------------------------------------------------===//
675 
676 /// If MI is a load or store of StackSlot, it can be removed.
677 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
678   int FI = 0;
679   unsigned InstrReg = TII.isLoadFromStackSlot(*MI, FI);
680   bool IsLoad = InstrReg;
681   if (!IsLoad)
682     InstrReg = TII.isStoreToStackSlot(*MI, FI);
683 
684   // We have a stack access. Is it the right register and slot?
685   if (InstrReg != Reg || FI != StackSlot)
686     return false;
687 
688   if (!IsLoad)
689     HSpiller.rmFromMergeableSpills(*MI, StackSlot);
690 
691   DEBUG(dbgs() << "Coalescing stack access: " << *MI);
692   LIS.RemoveMachineInstrFromMaps(*MI);
693   MI->eraseFromParent();
694 
695   if (IsLoad) {
696     ++NumReloadsRemoved;
697     --NumReloads;
698   } else {
699     ++NumSpillsRemoved;
700     --NumSpills;
701   }
702 
703   return true;
704 }
705 
706 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
707 LLVM_DUMP_METHOD
708 // Dump the range of instructions from B to E with their slot indexes.
709 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
710                                                MachineBasicBlock::iterator E,
711                                                LiveIntervals const &LIS,
712                                                const char *const header,
713                                                unsigned VReg =0) {
714   char NextLine = '\n';
715   char SlotIndent = '\t';
716 
717   if (std::next(B) == E) {
718     NextLine = ' ';
719     SlotIndent = ' ';
720   }
721 
722   dbgs() << '\t' << header << ": " << NextLine;
723 
724   for (MachineBasicBlock::iterator I = B; I != E; ++I) {
725     SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();
726 
727     // If a register was passed in and this instruction has it as a
728     // destination that is marked as an early clobber, print the
729     // early-clobber slot index.
730     if (VReg) {
731       MachineOperand *MO = I->findRegisterDefOperand(VReg);
732       if (MO && MO->isEarlyClobber())
733         Idx = Idx.getRegSlot(true);
734     }
735 
736     dbgs() << SlotIndent << Idx << '\t' << *I;
737   }
738 }
739 #endif
740 
741 /// foldMemoryOperand - Try folding stack slot references in Ops into their
742 /// instructions.
743 ///
744 /// @param Ops    Operand indices from analyzeVirtReg().
745 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
746 /// @return       True on success.
747 bool InlineSpiller::
748 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops,
749                   MachineInstr *LoadMI) {
750   if (Ops.empty())
751     return false;
752   // Don't attempt folding in bundles.
753   MachineInstr *MI = Ops.front().first;
754   if (Ops.back().first != MI || MI->isBundled())
755     return false;
756 
757   bool WasCopy = MI->isCopy();
758   unsigned ImpReg = 0;
759 
760   // Spill subregs if the target allows it.
761   // We always want to spill subregs for stackmap/patchpoint pseudos.
762   bool SpillSubRegs = TII.isSubregFoldable() ||
763                       MI->getOpcode() == TargetOpcode::STATEPOINT ||
764                       MI->getOpcode() == TargetOpcode::PATCHPOINT ||
765                       MI->getOpcode() == TargetOpcode::STACKMAP;
766 
767   // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
768   // operands.
769   SmallVector<unsigned, 8> FoldOps;
770   for (const auto &OpPair : Ops) {
771     unsigned Idx = OpPair.second;
772     assert(MI == OpPair.first && "Instruction conflict during operand folding");
773     MachineOperand &MO = MI->getOperand(Idx);
774     if (MO.isImplicit()) {
775       ImpReg = MO.getReg();
776       continue;
777     }
778 
779     if (!SpillSubRegs && MO.getSubReg())
780       return false;
781     // We cannot fold a load instruction into a def.
782     if (LoadMI && MO.isDef())
783       return false;
784     // Tied use operands should not be passed to foldMemoryOperand.
785     if (!MI->isRegTiedToDefOperand(Idx))
786       FoldOps.push_back(Idx);
787   }
788 
789   // If we only have implicit uses, we won't be able to fold that.
790   // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try!
791   if (FoldOps.empty())
792     return false;
793 
794   MachineInstrSpan MIS(MI);
795 
796   MachineInstr *FoldMI =
797       LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS)
798              : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS);
799   if (!FoldMI)
800     return false;
801 
802   // Remove LIS for any dead defs in the original MI not in FoldMI.
803   for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
804     if (!MO->isReg())
805       continue;
806     unsigned Reg = MO->getReg();
807     if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) ||
808         MRI.isReserved(Reg)) {
809       continue;
810     }
811     // Skip non-Defs, including undef uses and internal reads.
812     if (MO->isUse())
813       continue;
814     MIBundleOperands::PhysRegInfo RI =
815         MIBundleOperands(*FoldMI).analyzePhysReg(Reg, &TRI);
816     if (RI.FullyDefined)
817       continue;
818     // FoldMI does not define this physreg. Remove the LI segment.
819     assert(MO->isDead() && "Cannot fold physreg def");
820     SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
821     LIS.removePhysRegDefAt(Reg, Idx);
822   }
823 
824   int FI;
825   if (TII.isStoreToStackSlot(*MI, FI) &&
826       HSpiller.rmFromMergeableSpills(*MI, FI))
827     --NumSpills;
828   LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
829   MI->eraseFromParent();
830 
831   // Insert any new instructions other than FoldMI into the LIS maps.
832   assert(!MIS.empty() && "Unexpected empty span of instructions!");
833   for (MachineInstr &MI : MIS)
834     if (&MI != FoldMI)
835       LIS.InsertMachineInstrInMaps(MI);
836 
837   // TII.foldMemoryOperand may have left some implicit operands on the
838   // instruction.  Strip them.
839   if (ImpReg)
840     for (unsigned i = FoldMI->getNumOperands(); i; --i) {
841       MachineOperand &MO = FoldMI->getOperand(i - 1);
842       if (!MO.isReg() || !MO.isImplicit())
843         break;
844       if (MO.getReg() == ImpReg)
845         FoldMI->RemoveOperand(i - 1);
846     }
847 
848   DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
849                                            "folded"));
850 
851   if (!WasCopy)
852     ++NumFolded;
853   else if (Ops.front().second == 0) {
854     ++NumSpills;
855     HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original);
856   } else
857     ++NumReloads;
858   return true;
859 }
860 
861 void InlineSpiller::insertReload(unsigned NewVReg,
862                                  SlotIndex Idx,
863                                  MachineBasicBlock::iterator MI) {
864   MachineBasicBlock &MBB = *MI->getParent();
865 
866   MachineInstrSpan MIS(MI);
867   TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
868                            MRI.getRegClass(NewVReg), &TRI);
869 
870   LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
871 
872   DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
873                                            NewVReg));
874   ++NumReloads;
875 }
876 
877 /// Check if \p Def fully defines a VReg with an undefined value.
878 /// If that's the case, that means the value of VReg is actually
879 /// not relevant.
880 static bool isFullUndefDef(const MachineInstr &Def) {
881   if (!Def.isImplicitDef())
882     return false;
883   assert(Def.getNumOperands() == 1 &&
884          "Implicit def with more than one definition");
885   // We can say that the VReg defined by Def is undef, only if it is
886   // fully defined by Def. Otherwise, some of the lanes may not be
887   // undef and the value of the VReg matters.
888   return !Def.getOperand(0).getSubReg();
889 }
890 
891 /// insertSpill - Insert a spill of NewVReg after MI.
892 void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill,
893                                  MachineBasicBlock::iterator MI) {
894   MachineBasicBlock &MBB = *MI->getParent();
895 
896   MachineInstrSpan MIS(MI);
897   bool IsRealSpill = true;
898   if (isFullUndefDef(*MI)) {
899     // Don't spill undef value.
900     // Anything works for undef, in particular keeping the memory
901     // uninitialized is a viable option and it saves code size and
902     // run time.
903     BuildMI(MBB, std::next(MI), MI->getDebugLoc(), TII.get(TargetOpcode::KILL))
904         .addReg(NewVReg, getKillRegState(isKill));
905     IsRealSpill = false;
906   } else
907     TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot,
908                             MRI.getRegClass(NewVReg), &TRI);
909 
910   LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end());
911 
912   DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS,
913                                            "spill"));
914   ++NumSpills;
915   if (IsRealSpill)
916     HSpiller.addToMergeableSpills(*std::next(MI), StackSlot, Original);
917 }
918 
919 /// spillAroundUses - insert spill code around each use of Reg.
920 void InlineSpiller::spillAroundUses(unsigned Reg) {
921   DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n');
922   LiveInterval &OldLI = LIS.getInterval(Reg);
923 
924   // Iterate over instructions using Reg.
925   for (MachineRegisterInfo::reg_bundle_iterator
926        RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
927        RegI != E; ) {
928     MachineInstr *MI = &*(RegI++);
929 
930     // Debug values are not allowed to affect codegen.
931     if (MI->isDebugValue()) {
932       // Modify DBG_VALUE now that the value is in a spill slot.
933       MachineBasicBlock *MBB = MI->getParent();
934       DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI);
935       buildDbgValueForSpill(*MBB, MI, *MI, StackSlot);
936       MBB->erase(MI);
937       continue;
938     }
939 
940     // Ignore copies to/from snippets. We'll delete them.
941     if (SnippetCopies.count(MI))
942       continue;
943 
944     // Stack slot accesses may coalesce away.
945     if (coalesceStackAccess(MI, Reg))
946       continue;
947 
948     // Analyze instruction.
949     SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
950     MIBundleOperands::VirtRegInfo RI =
951         MIBundleOperands(*MI).analyzeVirtReg(Reg, &Ops);
952 
953     // Find the slot index where this instruction reads and writes OldLI.
954     // This is usually the def slot, except for tied early clobbers.
955     SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
956     if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
957       if (SlotIndex::isSameInstr(Idx, VNI->def))
958         Idx = VNI->def;
959 
960     // Check for a sibling copy.
961     unsigned SibReg = isFullCopyOf(*MI, Reg);
962     if (SibReg && isSibling(SibReg)) {
963       // This may actually be a copy between snippets.
964       if (isRegToSpill(SibReg)) {
965         DEBUG(dbgs() << "Found new snippet copy: " << *MI);
966         SnippetCopies.insert(MI);
967         continue;
968       }
969       if (RI.Writes) {
970         if (hoistSpillInsideBB(OldLI, *MI)) {
971           // This COPY is now dead, the value is already in the stack slot.
972           MI->getOperand(0).setIsDead();
973           DeadDefs.push_back(MI);
974           continue;
975         }
976       } else {
977         // This is a reload for a sib-reg copy. Drop spills downstream.
978         LiveInterval &SibLI = LIS.getInterval(SibReg);
979         eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
980         // The COPY will fold to a reload below.
981       }
982     }
983 
984     // Attempt to fold memory ops.
985     if (foldMemoryOperand(Ops))
986       continue;
987 
988     // Create a new virtual register for spill/fill.
989     // FIXME: Infer regclass from instruction alone.
990     unsigned NewVReg = Edit->createFrom(Reg);
991 
992     if (RI.Reads)
993       insertReload(NewVReg, Idx, MI);
994 
995     // Rewrite instruction operands.
996     bool hasLiveDef = false;
997     for (const auto &OpPair : Ops) {
998       MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
999       MO.setReg(NewVReg);
1000       if (MO.isUse()) {
1001         if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
1002           MO.setIsKill();
1003       } else {
1004         if (!MO.isDead())
1005           hasLiveDef = true;
1006       }
1007     }
1008     DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n');
1009 
1010     // FIXME: Use a second vreg if instruction has no tied ops.
1011     if (RI.Writes)
1012       if (hasLiveDef)
1013         insertSpill(NewVReg, true, MI);
1014   }
1015 }
1016 
1017 /// spillAll - Spill all registers remaining after rematerialization.
1018 void InlineSpiller::spillAll() {
1019   // Update LiveStacks now that we are committed to spilling.
1020   if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1021     StackSlot = VRM.assignVirt2StackSlot(Original);
1022     StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1023     StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1024   } else
1025     StackInt = &LSS.getInterval(StackSlot);
1026 
1027   if (Original != Edit->getReg())
1028     VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1029 
1030   assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1031   for (unsigned Reg : RegsToSpill)
1032     StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
1033                                      StackInt->getValNumInfo(0));
1034   DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1035 
1036   // Spill around uses of all RegsToSpill.
1037   for (unsigned Reg : RegsToSpill)
1038     spillAroundUses(Reg);
1039 
1040   // Hoisted spills may cause dead code.
1041   if (!DeadDefs.empty()) {
1042     DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1043     Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
1044   }
1045 
1046   // Finally delete the SnippetCopies.
1047   for (unsigned Reg : RegsToSpill) {
1048     for (MachineRegisterInfo::reg_instr_iterator
1049          RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end();
1050          RI != E; ) {
1051       MachineInstr &MI = *(RI++);
1052       assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy");
1053       // FIXME: Do this with a LiveRangeEdit callback.
1054       LIS.RemoveMachineInstrFromMaps(MI);
1055       MI.eraseFromParent();
1056     }
1057   }
1058 
1059   // Delete all spilled registers.
1060   for (unsigned Reg : RegsToSpill)
1061     Edit->eraseVirtReg(Reg);
1062 }
1063 
1064 void InlineSpiller::spill(LiveRangeEdit &edit) {
1065   ++NumSpilledRanges;
1066   Edit = &edit;
1067   assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
1068          && "Trying to spill a stack slot.");
1069   // Share a stack slot among all descendants of Original.
1070   Original = VRM.getOriginal(edit.getReg());
1071   StackSlot = VRM.getStackSlot(Original);
1072   StackInt = nullptr;
1073 
1074   DEBUG(dbgs() << "Inline spilling "
1075                << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
1076                << ':' << edit.getParent()
1077                << "\nFrom original " << PrintReg(Original) << '\n');
1078   assert(edit.getParent().isSpillable() &&
1079          "Attempting to spill already spilled value.");
1080   assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1081 
1082   collectRegsToSpill();
1083   reMaterializeAll();
1084 
1085   // Remat may handle everything.
1086   if (!RegsToSpill.empty())
1087     spillAll();
1088 
1089   Edit->calculateRegClassAndHint(MF, Loops, MBFI);
1090 }
1091 
1092 /// Optimizations after all the reg selections and spills are done.
1093 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); }
1094 
1095 /// When a spill is inserted, add the spill to MergeableSpills map.
1096 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot,
1097                                             unsigned Original) {
1098   StackSlotToReg[StackSlot] = Original;
1099   SlotIndex Idx = LIS.getInstructionIndex(Spill);
1100   VNInfo *OrigVNI = LIS.getInterval(Original).getVNInfoAt(Idx.getRegSlot());
1101   std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1102   MergeableSpills[MIdx].insert(&Spill);
1103 }
1104 
1105 /// When a spill is removed, remove the spill from MergeableSpills map.
1106 /// Return true if the spill is removed successfully.
1107 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill,
1108                                              int StackSlot) {
1109   int Original = StackSlotToReg[StackSlot];
1110   if (!Original)
1111     return false;
1112   SlotIndex Idx = LIS.getInstructionIndex(Spill);
1113   VNInfo *OrigVNI = LIS.getInterval(Original).getVNInfoAt(Idx.getRegSlot());
1114   std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1115   return MergeableSpills[MIdx].erase(&Spill);
1116 }
1117 
1118 /// Check BB to see if it is a possible target BB to place a hoisted spill,
1119 /// i.e., there should be a living sibling of OrigReg at the insert point.
1120 bool HoistSpillHelper::isSpillCandBB(unsigned OrigReg, VNInfo &OrigVNI,
1121                                      MachineBasicBlock &BB, unsigned &LiveReg) {
1122   SlotIndex Idx;
1123   LiveInterval &OrigLI = LIS.getInterval(OrigReg);
1124   MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, BB);
1125   if (MI != BB.end())
1126     Idx = LIS.getInstructionIndex(*MI);
1127   else
1128     Idx = LIS.getMBBEndIdx(&BB).getPrevSlot();
1129   SmallSetVector<unsigned, 16> &Siblings = Virt2SiblingsMap[OrigReg];
1130   assert((LIS.getInterval(OrigReg)).getVNInfoAt(Idx) == &OrigVNI &&
1131          "Unexpected VNI");
1132 
1133   for (auto const SibReg : Siblings) {
1134     LiveInterval &LI = LIS.getInterval(SibReg);
1135     VNInfo *VNI = LI.getVNInfoAt(Idx);
1136     if (VNI) {
1137       LiveReg = SibReg;
1138       return true;
1139     }
1140   }
1141   return false;
1142 }
1143 
1144 /// Remove redundant spills in the same BB. Save those redundant spills in
1145 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
1146 void HoistSpillHelper::rmRedundantSpills(
1147     SmallPtrSet<MachineInstr *, 16> &Spills,
1148     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1149     DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1150   // For each spill saw, check SpillBBToSpill[] and see if its BB already has
1151   // another spill inside. If a BB contains more than one spill, only keep the
1152   // earlier spill with smaller SlotIndex.
1153   for (const auto CurrentSpill : Spills) {
1154     MachineBasicBlock *Block = CurrentSpill->getParent();
1155     MachineDomTreeNode *Node = MDT.getBase().getNode(Block);
1156     MachineInstr *PrevSpill = SpillBBToSpill[Node];
1157     if (PrevSpill) {
1158       SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
1159       SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill);
1160       MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
1161       MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
1162       SpillsToRm.push_back(SpillToRm);
1163       SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep;
1164     } else {
1165       SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill;
1166     }
1167   }
1168   for (const auto SpillToRm : SpillsToRm)
1169     Spills.erase(SpillToRm);
1170 }
1171 
1172 /// Starting from \p Root find a top-down traversal order of the dominator
1173 /// tree to visit all basic blocks containing the elements of \p Spills.
1174 /// Redundant spills will be found and put into \p SpillsToRm at the same
1175 /// time. \p SpillBBToSpill will be populated as part of the process and
1176 /// maps a basic block to the first store occurring in the basic block.
1177 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre
1178 void HoistSpillHelper::getVisitOrders(
1179     MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
1180     SmallVectorImpl<MachineDomTreeNode *> &Orders,
1181     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1182     DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
1183     DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1184   // The set contains all the possible BB nodes to which we may hoist
1185   // original spills.
1186   SmallPtrSet<MachineDomTreeNode *, 8> WorkSet;
1187   // Save the BB nodes on the path from the first BB node containing
1188   // non-redundant spill to the Root node.
1189   SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath;
1190   // All the spills to be hoisted must originate from a single def instruction
1191   // to the OrigReg. It means the def instruction should dominate all the spills
1192   // to be hoisted. We choose the BB where the def instruction is located as
1193   // the Root.
1194   MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom();
1195   // For every node on the dominator tree with spill, walk up on the dominator
1196   // tree towards the Root node until it is reached. If there is other node
1197   // containing spill in the middle of the path, the previous spill saw will
1198   // be redundant and the node containing it will be removed. All the nodes on
1199   // the path starting from the first node with non-redundant spill to the Root
1200   // node will be added to the WorkSet, which will contain all the possible
1201   // locations where spills may be hoisted to after the loop below is done.
1202   for (const auto Spill : Spills) {
1203     MachineBasicBlock *Block = Spill->getParent();
1204     MachineDomTreeNode *Node = MDT[Block];
1205     MachineInstr *SpillToRm = nullptr;
1206     while (Node != RootIDomNode) {
1207       // If Node dominates Block, and it already contains a spill, the spill in
1208       // Block will be redundant.
1209       if (Node != MDT[Block] && SpillBBToSpill[Node]) {
1210         SpillToRm = SpillBBToSpill[MDT[Block]];
1211         break;
1212         /// If we see the Node already in WorkSet, the path from the Node to
1213         /// the Root node must already be traversed by another spill.
1214         /// Then no need to repeat.
1215       } else if (WorkSet.count(Node)) {
1216         break;
1217       } else {
1218         NodesOnPath.insert(Node);
1219       }
1220       Node = Node->getIDom();
1221     }
1222     if (SpillToRm) {
1223       SpillsToRm.push_back(SpillToRm);
1224     } else {
1225       // Add a BB containing the original spills to SpillsToKeep -- i.e.,
1226       // set the initial status before hoisting start. The value of BBs
1227       // containing original spills is set to 0, in order to descriminate
1228       // with BBs containing hoisted spills which will be inserted to
1229       // SpillsToKeep later during hoisting.
1230       SpillsToKeep[MDT[Block]] = 0;
1231       WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end());
1232     }
1233     NodesOnPath.clear();
1234   }
1235 
1236   // Sort the nodes in WorkSet in top-down order and save the nodes
1237   // in Orders. Orders will be used for hoisting in runHoistSpills.
1238   unsigned idx = 0;
1239   Orders.push_back(MDT.getBase().getNode(Root));
1240   do {
1241     MachineDomTreeNode *Node = Orders[idx++];
1242     const std::vector<MachineDomTreeNode *> &Children = Node->getChildren();
1243     unsigned NumChildren = Children.size();
1244     for (unsigned i = 0; i != NumChildren; ++i) {
1245       MachineDomTreeNode *Child = Children[i];
1246       if (WorkSet.count(Child))
1247         Orders.push_back(Child);
1248     }
1249   } while (idx != Orders.size());
1250   assert(Orders.size() == WorkSet.size() &&
1251          "Orders have different size with WorkSet");
1252 
1253 #ifndef NDEBUG
1254   DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n");
1255   SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1256   for (; RIt != Orders.rend(); RIt++)
1257     DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",");
1258   DEBUG(dbgs() << "\n");
1259 #endif
1260 }
1261 
1262 /// Try to hoist spills according to BB hotness. The spills to removed will
1263 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in
1264 /// \p SpillsToIns.
1265 void HoistSpillHelper::runHoistSpills(
1266     unsigned OrigReg, VNInfo &OrigVNI, SmallPtrSet<MachineInstr *, 16> &Spills,
1267     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1268     DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) {
1269   // Visit order of dominator tree nodes.
1270   SmallVector<MachineDomTreeNode *, 32> Orders;
1271   // SpillsToKeep contains all the nodes where spills are to be inserted
1272   // during hoisting. If the spill to be inserted is an original spill
1273   // (not a hoisted one), the value of the map entry is 0. If the spill
1274   // is a hoisted spill, the value of the map entry is the VReg to be used
1275   // as the source of the spill.
1276   DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep;
1277   // Map from BB to the first spill inside of it.
1278   DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill;
1279 
1280   rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill);
1281 
1282   MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def);
1283   getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep,
1284                  SpillBBToSpill);
1285 
1286   // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
1287   // nodes set and the cost of all the spills inside those nodes.
1288   // The nodes set are the locations where spills are to be inserted
1289   // in the subtree of current node.
1290   using NodesCostPair =
1291       std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>;
1292   DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap;
1293 
1294   // Iterate Orders set in reverse order, which will be a bottom-up order
1295   // in the dominator tree. Once we visit a dom tree node, we know its
1296   // children have already been visited and the spill locations in the
1297   // subtrees of all the children have been determined.
1298   SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1299   for (; RIt != Orders.rend(); RIt++) {
1300     MachineBasicBlock *Block = (*RIt)->getBlock();
1301 
1302     // If Block contains an original spill, simply continue.
1303     if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) {
1304       SpillsInSubTreeMap[*RIt].first.insert(*RIt);
1305       // SpillsInSubTreeMap[*RIt].second contains the cost of spill.
1306       SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block);
1307       continue;
1308     }
1309 
1310     // Collect spills in subtree of current node (*RIt) to
1311     // SpillsInSubTreeMap[*RIt].first.
1312     const std::vector<MachineDomTreeNode *> &Children = (*RIt)->getChildren();
1313     unsigned NumChildren = Children.size();
1314     for (unsigned i = 0; i != NumChildren; ++i) {
1315       MachineDomTreeNode *Child = Children[i];
1316       if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end())
1317         continue;
1318       // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below
1319       // should be placed before getting the begin and end iterators of
1320       // SpillsInSubTreeMap[Child].first, or else the iterators may be
1321       // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
1322       // and the map grows and then the original buckets in the map are moved.
1323       SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1324           SpillsInSubTreeMap[*RIt].first;
1325       BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1326       SubTreeCost += SpillsInSubTreeMap[Child].second;
1327       auto BI = SpillsInSubTreeMap[Child].first.begin();
1328       auto EI = SpillsInSubTreeMap[Child].first.end();
1329       SpillsInSubTree.insert(BI, EI);
1330       SpillsInSubTreeMap.erase(Child);
1331     }
1332 
1333     SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1334           SpillsInSubTreeMap[*RIt].first;
1335     BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1336     // No spills in subtree, simply continue.
1337     if (SpillsInSubTree.empty())
1338       continue;
1339 
1340     // Check whether Block is a possible candidate to insert spill.
1341     unsigned LiveReg = 0;
1342     if (!isSpillCandBB(OrigReg, OrigVNI, *Block, LiveReg))
1343       continue;
1344 
1345     // If there are multiple spills that could be merged, bias a little
1346     // to hoist the spill.
1347     BranchProbability MarginProb = (SpillsInSubTree.size() > 1)
1348                                        ? BranchProbability(9, 10)
1349                                        : BranchProbability(1, 1);
1350     if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) {
1351       // Hoist: Move spills to current Block.
1352       for (const auto SpillBB : SpillsInSubTree) {
1353         // When SpillBB is a BB contains original spill, insert the spill
1354         // to SpillsToRm.
1355         if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() &&
1356             !SpillsToKeep[SpillBB]) {
1357           MachineInstr *SpillToRm = SpillBBToSpill[SpillBB];
1358           SpillsToRm.push_back(SpillToRm);
1359         }
1360         // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
1361         SpillsToKeep.erase(SpillBB);
1362       }
1363       // Current Block is the BB containing the new hoisted spill. Add it to
1364       // SpillsToKeep. LiveReg is the source of the new spill.
1365       SpillsToKeep[*RIt] = LiveReg;
1366       DEBUG({
1367         dbgs() << "spills in BB: ";
1368         for (const auto Rspill : SpillsInSubTree)
1369           dbgs() << Rspill->getBlock()->getNumber() << " ";
1370         dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()
1371                << "\n";
1372       });
1373       SpillsInSubTree.clear();
1374       SpillsInSubTree.insert(*RIt);
1375       SubTreeCost = MBFI.getBlockFreq(Block);
1376     }
1377   }
1378   // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
1379   // save them to SpillsToIns.
1380   for (const auto Ent : SpillsToKeep) {
1381     if (Ent.second)
1382       SpillsToIns[Ent.first->getBlock()] = Ent.second;
1383   }
1384 }
1385 
1386 /// For spills with equal values, remove redundant spills and hoist those left
1387 /// to less hot spots.
1388 ///
1389 /// Spills with equal values will be collected into the same set in
1390 /// MergeableSpills when spill is inserted. These equal spills are originated
1391 /// from the same defining instruction and are dominated by the instruction.
1392 /// Before hoisting all the equal spills, redundant spills inside in the same
1393 /// BB are first marked to be deleted. Then starting from the spills left, walk
1394 /// up on the dominator tree towards the Root node where the define instruction
1395 /// is located, mark the dominated spills to be deleted along the way and
1396 /// collect the BB nodes on the path from non-dominated spills to the define
1397 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places
1398 /// where we are considering to hoist the spills. We iterate the WorkSet in
1399 /// bottom-up order, and for each node, we will decide whether to hoist spills
1400 /// inside its subtree to that node. In this way, we can get benefit locally
1401 /// even if hoisting all the equal spills to one cold place is impossible.
1402 void HoistSpillHelper::hoistAllSpills() {
1403   SmallVector<unsigned, 4> NewVRegs;
1404   LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this);
1405 
1406   // Save the mapping between stackslot and its original reg.
1407   DenseMap<int, unsigned> SlotToOrigReg;
1408   for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
1409     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1410     int Slot = VRM.getStackSlot(Reg);
1411     if (Slot != VirtRegMap::NO_STACK_SLOT)
1412       SlotToOrigReg[Slot] = VRM.getOriginal(Reg);
1413     unsigned Original = VRM.getPreSplitReg(Reg);
1414     if (!MRI.def_empty(Reg))
1415       Virt2SiblingsMap[Original].insert(Reg);
1416   }
1417 
1418   // Each entry in MergeableSpills contains a spill set with equal values.
1419   for (auto &Ent : MergeableSpills) {
1420     int Slot = Ent.first.first;
1421     unsigned OrigReg = SlotToOrigReg[Slot];
1422     LiveInterval &OrigLI = LIS.getInterval(OrigReg);
1423     VNInfo *OrigVNI = Ent.first.second;
1424     SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second;
1425     if (Ent.second.empty())
1426       continue;
1427 
1428     DEBUG({
1429       dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"
1430              << "Equal spills in BB: ";
1431       for (const auto spill : EqValSpills)
1432         dbgs() << spill->getParent()->getNumber() << " ";
1433       dbgs() << "\n";
1434     });
1435 
1436     // SpillsToRm is the spill set to be removed from EqValSpills.
1437     SmallVector<MachineInstr *, 16> SpillsToRm;
1438     // SpillsToIns is the spill set to be newly inserted after hoisting.
1439     DenseMap<MachineBasicBlock *, unsigned> SpillsToIns;
1440 
1441     runHoistSpills(OrigReg, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns);
1442 
1443     DEBUG({
1444       dbgs() << "Finally inserted spills in BB: ";
1445       for (const auto Ispill : SpillsToIns)
1446         dbgs() << Ispill.first->getNumber() << " ";
1447       dbgs() << "\nFinally removed spills in BB: ";
1448       for (const auto Rspill : SpillsToRm)
1449         dbgs() << Rspill->getParent()->getNumber() << " ";
1450       dbgs() << "\n";
1451     });
1452 
1453     // Stack live range update.
1454     LiveInterval &StackIntvl = LSS.getInterval(Slot);
1455     if (!SpillsToIns.empty() || !SpillsToRm.empty())
1456       StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI,
1457                                      StackIntvl.getValNumInfo(0));
1458 
1459     // Insert hoisted spills.
1460     for (auto const Insert : SpillsToIns) {
1461       MachineBasicBlock *BB = Insert.first;
1462       unsigned LiveReg = Insert.second;
1463       MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, *BB);
1464       TII.storeRegToStackSlot(*BB, MI, LiveReg, false, Slot,
1465                               MRI.getRegClass(LiveReg), &TRI);
1466       LIS.InsertMachineInstrRangeInMaps(std::prev(MI), MI);
1467       ++NumSpills;
1468     }
1469 
1470     // Remove redundant spills or change them to dead instructions.
1471     NumSpills -= SpillsToRm.size();
1472     for (auto const RMEnt : SpillsToRm) {
1473       RMEnt->setDesc(TII.get(TargetOpcode::KILL));
1474       for (unsigned i = RMEnt->getNumOperands(); i; --i) {
1475         MachineOperand &MO = RMEnt->getOperand(i - 1);
1476         if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead())
1477           RMEnt->RemoveOperand(i - 1);
1478       }
1479     }
1480     Edit.eliminateDeadDefs(SpillsToRm, None, AA);
1481   }
1482 }
1483 
1484 /// For VirtReg clone, the \p New register should have the same physreg or
1485 /// stackslot as the \p old register.
1486 void HoistSpillHelper::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
1487   if (VRM.hasPhys(Old))
1488     VRM.assignVirt2Phys(New, VRM.getPhys(Old));
1489   else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT)
1490     VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old));
1491   else
1492     llvm_unreachable("VReg should be assigned either physreg or stackslot");
1493 }
1494