1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The inline spiller modifies the machine function directly instead of
10 // inserting spills and restores in VirtRegMap.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LiveRangeCalc.h"
15 #include "Spiller.h"
16 #include "SplitKit.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/CodeGen/LiveInterval.h"
28 #include "llvm/CodeGen/LiveIntervals.h"
29 #include "llvm/CodeGen/LiveRangeEdit.h"
30 #include "llvm/CodeGen/LiveStacks.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
33 #include "llvm/CodeGen/MachineDominators.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineInstrBuilder.h"
38 #include "llvm/CodeGen/MachineInstrBundle.h"
39 #include "llvm/CodeGen/MachineLoopInfo.h"
40 #include "llvm/CodeGen/MachineOperand.h"
41 #include "llvm/CodeGen/MachineRegisterInfo.h"
42 #include "llvm/CodeGen/SlotIndexes.h"
43 #include "llvm/CodeGen/TargetInstrInfo.h"
44 #include "llvm/CodeGen/TargetOpcodes.h"
45 #include "llvm/CodeGen/TargetRegisterInfo.h"
46 #include "llvm/CodeGen/TargetSubtargetInfo.h"
47 #include "llvm/CodeGen/VirtRegMap.h"
48 #include "llvm/Config/llvm-config.h"
49 #include "llvm/Support/BlockFrequency.h"
50 #include "llvm/Support/BranchProbability.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Compiler.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include <cassert>
57 #include <iterator>
58 #include <tuple>
59 #include <utility>
60 #include <vector>
61 
62 using namespace llvm;
63 
64 #define DEBUG_TYPE "regalloc"
65 
66 STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
67 STATISTIC(NumSnippets,        "Number of spilled snippets");
68 STATISTIC(NumSpills,          "Number of spills inserted");
69 STATISTIC(NumSpillsRemoved,   "Number of spills removed");
70 STATISTIC(NumReloads,         "Number of reloads inserted");
71 STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
72 STATISTIC(NumFolded,          "Number of folded stack accesses");
73 STATISTIC(NumFoldedLoads,     "Number of folded loads");
74 STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
75 
76 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
77                                      cl::desc("Disable inline spill hoisting"));
78 
79 namespace {
80 
81 class HoistSpillHelper : private LiveRangeEdit::Delegate {
82   MachineFunction &MF;
83   LiveIntervals &LIS;
84   LiveStacks &LSS;
85   AliasAnalysis *AA;
86   MachineDominatorTree &MDT;
87   MachineLoopInfo &Loops;
88   VirtRegMap &VRM;
89   MachineRegisterInfo &MRI;
90   const TargetInstrInfo &TII;
91   const TargetRegisterInfo &TRI;
92   const MachineBlockFrequencyInfo &MBFI;
93 
94   InsertPointAnalysis IPA;
95 
96   // Map from StackSlot to the LiveInterval of the original register.
97   // Note the LiveInterval of the original register may have been deleted
98   // after it is spilled. We keep a copy here to track the range where
99   // spills can be moved.
100   DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI;
101 
102   // Map from pair of (StackSlot and Original VNI) to a set of spills which
103   // have the same stackslot and have equal values defined by Original VNI.
104   // These spills are mergeable and are hoist candiates.
105   using MergeableSpillsMap =
106       MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>;
107   MergeableSpillsMap MergeableSpills;
108 
109   /// This is the map from original register to a set containing all its
110   /// siblings. To hoist a spill to another BB, we need to find out a live
111   /// sibling there and use it as the source of the new spill.
112   DenseMap<unsigned, SmallSetVector<unsigned, 16>> Virt2SiblingsMap;
113 
114   bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
115                      MachineBasicBlock &BB, unsigned &LiveReg);
116 
117   void rmRedundantSpills(
118       SmallPtrSet<MachineInstr *, 16> &Spills,
119       SmallVectorImpl<MachineInstr *> &SpillsToRm,
120       DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
121 
122   void getVisitOrders(
123       MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
124       SmallVectorImpl<MachineDomTreeNode *> &Orders,
125       SmallVectorImpl<MachineInstr *> &SpillsToRm,
126       DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
127       DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
128 
129   void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI,
130                       SmallPtrSet<MachineInstr *, 16> &Spills,
131                       SmallVectorImpl<MachineInstr *> &SpillsToRm,
132                       DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns);
133 
134 public:
135   HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf,
136                    VirtRegMap &vrm)
137       : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
138         LSS(pass.getAnalysis<LiveStacks>()),
139         AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
140         MDT(pass.getAnalysis<MachineDominatorTree>()),
141         Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
142         MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
143         TRI(*mf.getSubtarget().getRegisterInfo()),
144         MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
145         IPA(LIS, mf.getNumBlockIDs()) {}
146 
147   void addToMergeableSpills(MachineInstr &Spill, int StackSlot,
148                             unsigned Original);
149   bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot);
150   void hoistAllSpills();
151   void LRE_DidCloneVirtReg(unsigned, unsigned) override;
152 };
153 
154 class InlineSpiller : public Spiller {
155   MachineFunction &MF;
156   LiveIntervals &LIS;
157   LiveStacks &LSS;
158   AliasAnalysis *AA;
159   MachineDominatorTree &MDT;
160   MachineLoopInfo &Loops;
161   VirtRegMap &VRM;
162   MachineRegisterInfo &MRI;
163   const TargetInstrInfo &TII;
164   const TargetRegisterInfo &TRI;
165   const MachineBlockFrequencyInfo &MBFI;
166 
167   // Variables that are valid during spill(), but used by multiple methods.
168   LiveRangeEdit *Edit;
169   LiveInterval *StackInt;
170   int StackSlot;
171   unsigned Original;
172 
173   // All registers to spill to StackSlot, including the main register.
174   SmallVector<unsigned, 8> RegsToSpill;
175 
176   // All COPY instructions to/from snippets.
177   // They are ignored since both operands refer to the same stack slot.
178   SmallPtrSet<MachineInstr*, 8> SnippetCopies;
179 
180   // Values that failed to remat at some point.
181   SmallPtrSet<VNInfo*, 8> UsedValues;
182 
183   // Dead defs generated during spilling.
184   SmallVector<MachineInstr*, 8> DeadDefs;
185 
186   // Object records spills information and does the hoisting.
187   HoistSpillHelper HSpiller;
188 
189   ~InlineSpiller() override = default;
190 
191 public:
192   InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm)
193       : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
194         LSS(pass.getAnalysis<LiveStacks>()),
195         AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
196         MDT(pass.getAnalysis<MachineDominatorTree>()),
197         Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
198         MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
199         TRI(*mf.getSubtarget().getRegisterInfo()),
200         MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
201         HSpiller(pass, mf, vrm) {}
202 
203   void spill(LiveRangeEdit &) override;
204   void postOptimization() override;
205 
206 private:
207   bool isSnippet(const LiveInterval &SnipLI);
208   void collectRegsToSpill();
209 
210   bool isRegToSpill(unsigned Reg) { return is_contained(RegsToSpill, Reg); }
211 
212   bool isSibling(unsigned Reg);
213   bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
214   void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
215 
216   void markValueUsed(LiveInterval*, VNInfo*);
217   bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
218   void reMaterializeAll();
219 
220   bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
221   bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>,
222                          MachineInstr *LoadMI = nullptr);
223   void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI);
224   void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI);
225 
226   void spillAroundUses(unsigned Reg);
227   void spillAll();
228 };
229 
230 } // end anonymous namespace
231 
232 Spiller::~Spiller() = default;
233 
234 void Spiller::anchor() {}
235 
236 Spiller *llvm::createInlineSpiller(MachineFunctionPass &pass,
237                                    MachineFunction &mf,
238                                    VirtRegMap &vrm) {
239   return new InlineSpiller(pass, mf, vrm);
240 }
241 
242 //===----------------------------------------------------------------------===//
243 //                                Snippets
244 //===----------------------------------------------------------------------===//
245 
246 // When spilling a virtual register, we also spill any snippets it is connected
247 // to. The snippets are small live ranges that only have a single real use,
248 // leftovers from live range splitting. Spilling them enables memory operand
249 // folding or tightens the live range around the single use.
250 //
251 // This minimizes register pressure and maximizes the store-to-load distance for
252 // spill slots which can be important in tight loops.
253 
254 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
255 /// otherwise return 0.
256 static unsigned isFullCopyOf(const MachineInstr &MI, unsigned Reg) {
257   if (!MI.isFullCopy())
258     return 0;
259   if (MI.getOperand(0).getReg() == Reg)
260     return MI.getOperand(1).getReg();
261   if (MI.getOperand(1).getReg() == Reg)
262     return MI.getOperand(0).getReg();
263   return 0;
264 }
265 
266 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
267 /// It is assumed that SnipLI is a virtual register with the same original as
268 /// Edit->getReg().
269 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
270   unsigned Reg = Edit->getReg();
271 
272   // A snippet is a tiny live range with only a single instruction using it
273   // besides copies to/from Reg or spills/fills. We accept:
274   //
275   //   %snip = COPY %Reg / FILL fi#
276   //   %snip = USE %snip
277   //   %Reg = COPY %snip / SPILL %snip, fi#
278   //
279   if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
280     return false;
281 
282   MachineInstr *UseMI = nullptr;
283 
284   // Check that all uses satisfy our criteria.
285   for (MachineRegisterInfo::reg_instr_nodbg_iterator
286        RI = MRI.reg_instr_nodbg_begin(SnipLI.reg),
287        E = MRI.reg_instr_nodbg_end(); RI != E; ) {
288     MachineInstr &MI = *RI++;
289 
290     // Allow copies to/from Reg.
291     if (isFullCopyOf(MI, Reg))
292       continue;
293 
294     // Allow stack slot loads.
295     int FI;
296     if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
297       continue;
298 
299     // Allow stack slot stores.
300     if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
301       continue;
302 
303     // Allow a single additional instruction.
304     if (UseMI && &MI != UseMI)
305       return false;
306     UseMI = &MI;
307   }
308   return true;
309 }
310 
311 /// collectRegsToSpill - Collect live range snippets that only have a single
312 /// real use.
313 void InlineSpiller::collectRegsToSpill() {
314   unsigned Reg = Edit->getReg();
315 
316   // Main register always spills.
317   RegsToSpill.assign(1, Reg);
318   SnippetCopies.clear();
319 
320   // Snippets all have the same original, so there can't be any for an original
321   // register.
322   if (Original == Reg)
323     return;
324 
325   for (MachineRegisterInfo::reg_instr_iterator
326        RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) {
327     MachineInstr &MI = *RI++;
328     unsigned SnipReg = isFullCopyOf(MI, Reg);
329     if (!isSibling(SnipReg))
330       continue;
331     LiveInterval &SnipLI = LIS.getInterval(SnipReg);
332     if (!isSnippet(SnipLI))
333       continue;
334     SnippetCopies.insert(&MI);
335     if (isRegToSpill(SnipReg))
336       continue;
337     RegsToSpill.push_back(SnipReg);
338     LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
339     ++NumSnippets;
340   }
341 }
342 
343 bool InlineSpiller::isSibling(unsigned Reg) {
344   return TargetRegisterInfo::isVirtualRegister(Reg) &&
345            VRM.getOriginal(Reg) == Original;
346 }
347 
348 /// It is beneficial to spill to earlier place in the same BB in case
349 /// as follows:
350 /// There is an alternative def earlier in the same MBB.
351 /// Hoist the spill as far as possible in SpillMBB. This can ease
352 /// register pressure:
353 ///
354 ///   x = def
355 ///   y = use x
356 ///   s = copy x
357 ///
358 /// Hoisting the spill of s to immediately after the def removes the
359 /// interference between x and y:
360 ///
361 ///   x = def
362 ///   spill x
363 ///   y = use killed x
364 ///
365 /// This hoist only helps when the copy kills its source.
366 ///
367 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
368                                        MachineInstr &CopyMI) {
369   SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
370 #ifndef NDEBUG
371   VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
372   assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
373 #endif
374 
375   unsigned SrcReg = CopyMI.getOperand(1).getReg();
376   LiveInterval &SrcLI = LIS.getInterval(SrcReg);
377   VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx);
378   LiveQueryResult SrcQ = SrcLI.Query(Idx);
379   MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def);
380   if (DefMBB != CopyMI.getParent() || !SrcQ.isKill())
381     return false;
382 
383   // Conservatively extend the stack slot range to the range of the original
384   // value. We may be able to do better with stack slot coloring by being more
385   // careful here.
386   assert(StackInt && "No stack slot assigned yet.");
387   LiveInterval &OrigLI = LIS.getInterval(Original);
388   VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
389   StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
390   LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
391                     << *StackInt << '\n');
392 
393   // We are going to spill SrcVNI immediately after its def, so clear out
394   // any later spills of the same value.
395   eliminateRedundantSpills(SrcLI, SrcVNI);
396 
397   MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
398   MachineBasicBlock::iterator MII;
399   if (SrcVNI->isPHIDef())
400     MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
401   else {
402     MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
403     assert(DefMI && "Defining instruction disappeared");
404     MII = DefMI;
405     ++MII;
406   }
407   // Insert spill without kill flag immediately after def.
408   TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot,
409                           MRI.getRegClass(SrcReg), &TRI);
410   --MII; // Point to store instruction.
411   LIS.InsertMachineInstrInMaps(*MII);
412   LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII);
413 
414   HSpiller.addToMergeableSpills(*MII, StackSlot, Original);
415   ++NumSpills;
416   return true;
417 }
418 
419 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
420 /// redundant spills of this value in SLI.reg and sibling copies.
421 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
422   assert(VNI && "Missing value");
423   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
424   WorkList.push_back(std::make_pair(&SLI, VNI));
425   assert(StackInt && "No stack slot assigned yet.");
426 
427   do {
428     LiveInterval *LI;
429     std::tie(LI, VNI) = WorkList.pop_back_val();
430     unsigned Reg = LI->reg;
431     LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@'
432                       << VNI->def << " in " << *LI << '\n');
433 
434     // Regs to spill are taken care of.
435     if (isRegToSpill(Reg))
436       continue;
437 
438     // Add all of VNI's live range to StackInt.
439     StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
440     LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
441 
442     // Find all spills and copies of VNI.
443     for (MachineRegisterInfo::use_instr_nodbg_iterator
444          UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
445          UI != E; ) {
446       MachineInstr &MI = *UI++;
447       if (!MI.isCopy() && !MI.mayStore())
448         continue;
449       SlotIndex Idx = LIS.getInstructionIndex(MI);
450       if (LI->getVNInfoAt(Idx) != VNI)
451         continue;
452 
453       // Follow sibling copies down the dominator tree.
454       if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
455         if (isSibling(DstReg)) {
456            LiveInterval &DstLI = LIS.getInterval(DstReg);
457            VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
458            assert(DstVNI && "Missing defined value");
459            assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
460            WorkList.push_back(std::make_pair(&DstLI, DstVNI));
461         }
462         continue;
463       }
464 
465       // Erase spills.
466       int FI;
467       if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
468         LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI);
469         // eliminateDeadDefs won't normally remove stores, so switch opcode.
470         MI.setDesc(TII.get(TargetOpcode::KILL));
471         DeadDefs.push_back(&MI);
472         ++NumSpillsRemoved;
473         if (HSpiller.rmFromMergeableSpills(MI, StackSlot))
474           --NumSpills;
475       }
476     }
477   } while (!WorkList.empty());
478 }
479 
480 //===----------------------------------------------------------------------===//
481 //                            Rematerialization
482 //===----------------------------------------------------------------------===//
483 
484 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
485 /// instruction cannot be eliminated. See through snippet copies
486 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
487   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
488   WorkList.push_back(std::make_pair(LI, VNI));
489   do {
490     std::tie(LI, VNI) = WorkList.pop_back_val();
491     if (!UsedValues.insert(VNI).second)
492       continue;
493 
494     if (VNI->isPHIDef()) {
495       MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
496       for (MachineBasicBlock *P : MBB->predecessors()) {
497         VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
498         if (PVNI)
499           WorkList.push_back(std::make_pair(LI, PVNI));
500       }
501       continue;
502     }
503 
504     // Follow snippet copies.
505     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
506     if (!SnippetCopies.count(MI))
507       continue;
508     LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
509     assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
510     VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
511     assert(SnipVNI && "Snippet undefined before copy");
512     WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
513   } while (!WorkList.empty());
514 }
515 
516 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
517 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
518   // Analyze instruction
519   SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
520   MIBundleOperands::VirtRegInfo RI =
521       MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops);
522 
523   if (!RI.Reads)
524     return false;
525 
526   SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
527   VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
528 
529   if (!ParentVNI) {
530     LLVM_DEBUG(dbgs() << "\tadding <undef> flags: ");
531     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
532       MachineOperand &MO = MI.getOperand(i);
533       if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
534         MO.setIsUndef();
535     }
536     LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI);
537     return true;
538   }
539 
540   if (SnippetCopies.count(&MI))
541     return false;
542 
543   LiveInterval &OrigLI = LIS.getInterval(Original);
544   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
545   LiveRangeEdit::Remat RM(ParentVNI);
546   RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
547 
548   if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) {
549     markValueUsed(&VirtReg, ParentVNI);
550     LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
551     return false;
552   }
553 
554   // If the instruction also writes VirtReg.reg, it had better not require the
555   // same register for uses and defs.
556   if (RI.Tied) {
557     markValueUsed(&VirtReg, ParentVNI);
558     LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI);
559     return false;
560   }
561 
562   // Before rematerializing into a register for a single instruction, try to
563   // fold a load into the instruction. That avoids allocating a new register.
564   if (RM.OrigMI->canFoldAsLoad() &&
565       foldMemoryOperand(Ops, RM.OrigMI)) {
566     Edit->markRematerialized(RM.ParentVNI);
567     ++NumFoldedLoads;
568     return true;
569   }
570 
571   // Allocate a new register for the remat.
572   unsigned NewVReg = Edit->createFrom(Original);
573 
574   // Finally we can rematerialize OrigMI before MI.
575   SlotIndex DefIdx =
576       Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);
577 
578   // We take the DebugLoc from MI, since OrigMI may be attributed to a
579   // different source location.
580   auto *NewMI = LIS.getInstructionFromIndex(DefIdx);
581   NewMI->setDebugLoc(MI.getDebugLoc());
582 
583   (void)DefIdx;
584   LLVM_DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
585                     << *LIS.getInstructionFromIndex(DefIdx));
586 
587   // Replace operands
588   for (const auto &OpPair : Ops) {
589     MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
590     if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
591       MO.setReg(NewVReg);
592       MO.setIsKill();
593     }
594   }
595   LLVM_DEBUG(dbgs() << "\t        " << UseIdx << '\t' << MI << '\n');
596 
597   ++NumRemats;
598   return true;
599 }
600 
601 /// reMaterializeAll - Try to rematerialize as many uses as possible,
602 /// and trim the live ranges after.
603 void InlineSpiller::reMaterializeAll() {
604   if (!Edit->anyRematerializable(AA))
605     return;
606 
607   UsedValues.clear();
608 
609   // Try to remat before all uses of snippets.
610   bool anyRemat = false;
611   for (unsigned Reg : RegsToSpill) {
612     LiveInterval &LI = LIS.getInterval(Reg);
613     for (MachineRegisterInfo::reg_bundle_iterator
614            RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
615          RegI != E; ) {
616       MachineInstr &MI = *RegI++;
617 
618       // Debug values are not allowed to affect codegen.
619       if (MI.isDebugValue())
620         continue;
621 
622       assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
623              "instruction that isn't a DBG_VALUE");
624 
625       anyRemat |= reMaterializeFor(LI, MI);
626     }
627   }
628   if (!anyRemat)
629     return;
630 
631   // Remove any values that were completely rematted.
632   for (unsigned Reg : RegsToSpill) {
633     LiveInterval &LI = LIS.getInterval(Reg);
634     for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
635          I != E; ++I) {
636       VNInfo *VNI = *I;
637       if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
638         continue;
639       MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
640       MI->addRegisterDead(Reg, &TRI);
641       if (!MI->allDefsAreDead())
642         continue;
643       LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
644       DeadDefs.push_back(MI);
645     }
646   }
647 
648   // Eliminate dead code after remat. Note that some snippet copies may be
649   // deleted here.
650   if (DeadDefs.empty())
651     return;
652   LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
653   Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
654 
655   // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
656   // after rematerialization.  To remove a VNI for a vreg from its LiveInterval,
657   // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
658   // removed, PHI VNI are still left in the LiveInterval.
659   // So to get rid of unused reg, we need to check whether it has non-dbg
660   // reference instead of whether it has non-empty interval.
661   unsigned ResultPos = 0;
662   for (unsigned Reg : RegsToSpill) {
663     if (MRI.reg_nodbg_empty(Reg)) {
664       Edit->eraseVirtReg(Reg);
665       continue;
666     }
667 
668     assert(LIS.hasInterval(Reg) &&
669            (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
670            "Empty and not used live-range?!");
671 
672     RegsToSpill[ResultPos++] = Reg;
673   }
674   RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
675   LLVM_DEBUG(dbgs() << RegsToSpill.size()
676                     << " registers to spill after remat.\n");
677 }
678 
679 //===----------------------------------------------------------------------===//
680 //                                 Spilling
681 //===----------------------------------------------------------------------===//
682 
683 /// If MI is a load or store of StackSlot, it can be removed.
684 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
685   int FI = 0;
686   unsigned InstrReg = TII.isLoadFromStackSlot(*MI, FI);
687   bool IsLoad = InstrReg;
688   if (!IsLoad)
689     InstrReg = TII.isStoreToStackSlot(*MI, FI);
690 
691   // We have a stack access. Is it the right register and slot?
692   if (InstrReg != Reg || FI != StackSlot)
693     return false;
694 
695   if (!IsLoad)
696     HSpiller.rmFromMergeableSpills(*MI, StackSlot);
697 
698   LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI);
699   LIS.RemoveMachineInstrFromMaps(*MI);
700   MI->eraseFromParent();
701 
702   if (IsLoad) {
703     ++NumReloadsRemoved;
704     --NumReloads;
705   } else {
706     ++NumSpillsRemoved;
707     --NumSpills;
708   }
709 
710   return true;
711 }
712 
713 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
714 LLVM_DUMP_METHOD
715 // Dump the range of instructions from B to E with their slot indexes.
716 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
717                                                MachineBasicBlock::iterator E,
718                                                LiveIntervals const &LIS,
719                                                const char *const header,
720                                                unsigned VReg =0) {
721   char NextLine = '\n';
722   char SlotIndent = '\t';
723 
724   if (std::next(B) == E) {
725     NextLine = ' ';
726     SlotIndent = ' ';
727   }
728 
729   dbgs() << '\t' << header << ": " << NextLine;
730 
731   for (MachineBasicBlock::iterator I = B; I != E; ++I) {
732     SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();
733 
734     // If a register was passed in and this instruction has it as a
735     // destination that is marked as an early clobber, print the
736     // early-clobber slot index.
737     if (VReg) {
738       MachineOperand *MO = I->findRegisterDefOperand(VReg);
739       if (MO && MO->isEarlyClobber())
740         Idx = Idx.getRegSlot(true);
741     }
742 
743     dbgs() << SlotIndent << Idx << '\t' << *I;
744   }
745 }
746 #endif
747 
748 /// foldMemoryOperand - Try folding stack slot references in Ops into their
749 /// instructions.
750 ///
751 /// @param Ops    Operand indices from analyzeVirtReg().
752 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
753 /// @return       True on success.
754 bool InlineSpiller::
755 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops,
756                   MachineInstr *LoadMI) {
757   if (Ops.empty())
758     return false;
759   // Don't attempt folding in bundles.
760   MachineInstr *MI = Ops.front().first;
761   if (Ops.back().first != MI || MI->isBundled())
762     return false;
763 
764   bool WasCopy = MI->isCopy();
765   unsigned ImpReg = 0;
766 
767   // Spill subregs if the target allows it.
768   // We always want to spill subregs for stackmap/patchpoint pseudos.
769   bool SpillSubRegs = TII.isSubregFoldable() ||
770                       MI->getOpcode() == TargetOpcode::STATEPOINT ||
771                       MI->getOpcode() == TargetOpcode::PATCHPOINT ||
772                       MI->getOpcode() == TargetOpcode::STACKMAP;
773 
774   // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
775   // operands.
776   SmallVector<unsigned, 8> FoldOps;
777   for (const auto &OpPair : Ops) {
778     unsigned Idx = OpPair.second;
779     assert(MI == OpPair.first && "Instruction conflict during operand folding");
780     MachineOperand &MO = MI->getOperand(Idx);
781     if (MO.isImplicit()) {
782       ImpReg = MO.getReg();
783       continue;
784     }
785 
786     if (!SpillSubRegs && MO.getSubReg())
787       return false;
788     // We cannot fold a load instruction into a def.
789     if (LoadMI && MO.isDef())
790       return false;
791     // Tied use operands should not be passed to foldMemoryOperand.
792     if (!MI->isRegTiedToDefOperand(Idx))
793       FoldOps.push_back(Idx);
794   }
795 
796   // If we only have implicit uses, we won't be able to fold that.
797   // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try!
798   if (FoldOps.empty())
799     return false;
800 
801   MachineInstrSpan MIS(MI);
802 
803   MachineInstr *FoldMI =
804       LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS)
805              : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS);
806   if (!FoldMI)
807     return false;
808 
809   // Remove LIS for any dead defs in the original MI not in FoldMI.
810   for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
811     if (!MO->isReg())
812       continue;
813     unsigned Reg = MO->getReg();
814     if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) ||
815         MRI.isReserved(Reg)) {
816       continue;
817     }
818     // Skip non-Defs, including undef uses and internal reads.
819     if (MO->isUse())
820       continue;
821     MIBundleOperands::PhysRegInfo RI =
822         MIBundleOperands(*FoldMI).analyzePhysReg(Reg, &TRI);
823     if (RI.FullyDefined)
824       continue;
825     // FoldMI does not define this physreg. Remove the LI segment.
826     assert(MO->isDead() && "Cannot fold physreg def");
827     SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
828     LIS.removePhysRegDefAt(Reg, Idx);
829   }
830 
831   int FI;
832   if (TII.isStoreToStackSlot(*MI, FI) &&
833       HSpiller.rmFromMergeableSpills(*MI, FI))
834     --NumSpills;
835   LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
836   MI->eraseFromParent();
837 
838   // Insert any new instructions other than FoldMI into the LIS maps.
839   assert(!MIS.empty() && "Unexpected empty span of instructions!");
840   for (MachineInstr &MI : MIS)
841     if (&MI != FoldMI)
842       LIS.InsertMachineInstrInMaps(MI);
843 
844   // TII.foldMemoryOperand may have left some implicit operands on the
845   // instruction.  Strip them.
846   if (ImpReg)
847     for (unsigned i = FoldMI->getNumOperands(); i; --i) {
848       MachineOperand &MO = FoldMI->getOperand(i - 1);
849       if (!MO.isReg() || !MO.isImplicit())
850         break;
851       if (MO.getReg() == ImpReg)
852         FoldMI->RemoveOperand(i - 1);
853     }
854 
855   LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
856                                                 "folded"));
857 
858   if (!WasCopy)
859     ++NumFolded;
860   else if (Ops.front().second == 0) {
861     ++NumSpills;
862     HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original);
863   } else
864     ++NumReloads;
865   return true;
866 }
867 
868 void InlineSpiller::insertReload(unsigned NewVReg,
869                                  SlotIndex Idx,
870                                  MachineBasicBlock::iterator MI) {
871   MachineBasicBlock &MBB = *MI->getParent();
872 
873   MachineInstrSpan MIS(MI);
874   TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
875                            MRI.getRegClass(NewVReg), &TRI);
876 
877   LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
878 
879   LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
880                                                 NewVReg));
881   ++NumReloads;
882 }
883 
884 /// Check if \p Def fully defines a VReg with an undefined value.
885 /// If that's the case, that means the value of VReg is actually
886 /// not relevant.
887 static bool isFullUndefDef(const MachineInstr &Def) {
888   if (!Def.isImplicitDef())
889     return false;
890   assert(Def.getNumOperands() == 1 &&
891          "Implicit def with more than one definition");
892   // We can say that the VReg defined by Def is undef, only if it is
893   // fully defined by Def. Otherwise, some of the lanes may not be
894   // undef and the value of the VReg matters.
895   return !Def.getOperand(0).getSubReg();
896 }
897 
898 /// insertSpill - Insert a spill of NewVReg after MI.
899 void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill,
900                                  MachineBasicBlock::iterator MI) {
901   MachineBasicBlock &MBB = *MI->getParent();
902 
903   MachineInstrSpan MIS(MI);
904   bool IsRealSpill = true;
905   if (isFullUndefDef(*MI)) {
906     // Don't spill undef value.
907     // Anything works for undef, in particular keeping the memory
908     // uninitialized is a viable option and it saves code size and
909     // run time.
910     BuildMI(MBB, std::next(MI), MI->getDebugLoc(), TII.get(TargetOpcode::KILL))
911         .addReg(NewVReg, getKillRegState(isKill));
912     IsRealSpill = false;
913   } else
914     TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot,
915                             MRI.getRegClass(NewVReg), &TRI);
916 
917   LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end());
918 
919   LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS,
920                                                 "spill"));
921   ++NumSpills;
922   if (IsRealSpill)
923     HSpiller.addToMergeableSpills(*std::next(MI), StackSlot, Original);
924 }
925 
926 /// spillAroundUses - insert spill code around each use of Reg.
927 void InlineSpiller::spillAroundUses(unsigned Reg) {
928   LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n');
929   LiveInterval &OldLI = LIS.getInterval(Reg);
930 
931   // Iterate over instructions using Reg.
932   for (MachineRegisterInfo::reg_bundle_iterator
933        RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
934        RegI != E; ) {
935     MachineInstr *MI = &*(RegI++);
936 
937     // Debug values are not allowed to affect codegen.
938     if (MI->isDebugValue()) {
939       // Modify DBG_VALUE now that the value is in a spill slot.
940       MachineBasicBlock *MBB = MI->getParent();
941       LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI);
942       buildDbgValueForSpill(*MBB, MI, *MI, StackSlot);
943       MBB->erase(MI);
944       continue;
945     }
946 
947     assert(!MI->isDebugInstr() && "Did not expect to find a use in debug "
948            "instruction that isn't a DBG_VALUE");
949 
950     // Ignore copies to/from snippets. We'll delete them.
951     if (SnippetCopies.count(MI))
952       continue;
953 
954     // Stack slot accesses may coalesce away.
955     if (coalesceStackAccess(MI, Reg))
956       continue;
957 
958     // Analyze instruction.
959     SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
960     MIBundleOperands::VirtRegInfo RI =
961         MIBundleOperands(*MI).analyzeVirtReg(Reg, &Ops);
962 
963     // Find the slot index where this instruction reads and writes OldLI.
964     // This is usually the def slot, except for tied early clobbers.
965     SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
966     if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
967       if (SlotIndex::isSameInstr(Idx, VNI->def))
968         Idx = VNI->def;
969 
970     // Check for a sibling copy.
971     unsigned SibReg = isFullCopyOf(*MI, Reg);
972     if (SibReg && isSibling(SibReg)) {
973       // This may actually be a copy between snippets.
974       if (isRegToSpill(SibReg)) {
975         LLVM_DEBUG(dbgs() << "Found new snippet copy: " << *MI);
976         SnippetCopies.insert(MI);
977         continue;
978       }
979       if (RI.Writes) {
980         if (hoistSpillInsideBB(OldLI, *MI)) {
981           // This COPY is now dead, the value is already in the stack slot.
982           MI->getOperand(0).setIsDead();
983           DeadDefs.push_back(MI);
984           continue;
985         }
986       } else {
987         // This is a reload for a sib-reg copy. Drop spills downstream.
988         LiveInterval &SibLI = LIS.getInterval(SibReg);
989         eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
990         // The COPY will fold to a reload below.
991       }
992     }
993 
994     // Attempt to fold memory ops.
995     if (foldMemoryOperand(Ops))
996       continue;
997 
998     // Create a new virtual register for spill/fill.
999     // FIXME: Infer regclass from instruction alone.
1000     unsigned NewVReg = Edit->createFrom(Reg);
1001 
1002     if (RI.Reads)
1003       insertReload(NewVReg, Idx, MI);
1004 
1005     // Rewrite instruction operands.
1006     bool hasLiveDef = false;
1007     for (const auto &OpPair : Ops) {
1008       MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
1009       MO.setReg(NewVReg);
1010       if (MO.isUse()) {
1011         if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
1012           MO.setIsKill();
1013       } else {
1014         if (!MO.isDead())
1015           hasLiveDef = true;
1016       }
1017     }
1018     LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n');
1019 
1020     // FIXME: Use a second vreg if instruction has no tied ops.
1021     if (RI.Writes)
1022       if (hasLiveDef)
1023         insertSpill(NewVReg, true, MI);
1024   }
1025 }
1026 
1027 /// spillAll - Spill all registers remaining after rematerialization.
1028 void InlineSpiller::spillAll() {
1029   // Update LiveStacks now that we are committed to spilling.
1030   if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1031     StackSlot = VRM.assignVirt2StackSlot(Original);
1032     StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1033     StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1034   } else
1035     StackInt = &LSS.getInterval(StackSlot);
1036 
1037   if (Original != Edit->getReg())
1038     VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1039 
1040   assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1041   for (unsigned Reg : RegsToSpill)
1042     StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
1043                                      StackInt->getValNumInfo(0));
1044   LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1045 
1046   // Spill around uses of all RegsToSpill.
1047   for (unsigned Reg : RegsToSpill)
1048     spillAroundUses(Reg);
1049 
1050   // Hoisted spills may cause dead code.
1051   if (!DeadDefs.empty()) {
1052     LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1053     Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
1054   }
1055 
1056   // Finally delete the SnippetCopies.
1057   for (unsigned Reg : RegsToSpill) {
1058     for (MachineRegisterInfo::reg_instr_iterator
1059          RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end();
1060          RI != E; ) {
1061       MachineInstr &MI = *(RI++);
1062       assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy");
1063       // FIXME: Do this with a LiveRangeEdit callback.
1064       LIS.RemoveMachineInstrFromMaps(MI);
1065       MI.eraseFromParent();
1066     }
1067   }
1068 
1069   // Delete all spilled registers.
1070   for (unsigned Reg : RegsToSpill)
1071     Edit->eraseVirtReg(Reg);
1072 }
1073 
1074 void InlineSpiller::spill(LiveRangeEdit &edit) {
1075   ++NumSpilledRanges;
1076   Edit = &edit;
1077   assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
1078          && "Trying to spill a stack slot.");
1079   // Share a stack slot among all descendants of Original.
1080   Original = VRM.getOriginal(edit.getReg());
1081   StackSlot = VRM.getStackSlot(Original);
1082   StackInt = nullptr;
1083 
1084   LLVM_DEBUG(dbgs() << "Inline spilling "
1085                     << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
1086                     << ':' << edit.getParent() << "\nFrom original "
1087                     << printReg(Original) << '\n');
1088   assert(edit.getParent().isSpillable() &&
1089          "Attempting to spill already spilled value.");
1090   assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1091 
1092   collectRegsToSpill();
1093   reMaterializeAll();
1094 
1095   // Remat may handle everything.
1096   if (!RegsToSpill.empty())
1097     spillAll();
1098 
1099   Edit->calculateRegClassAndHint(MF, Loops, MBFI);
1100 }
1101 
1102 /// Optimizations after all the reg selections and spills are done.
1103 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); }
1104 
1105 /// When a spill is inserted, add the spill to MergeableSpills map.
1106 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot,
1107                                             unsigned Original) {
1108   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1109   LiveInterval &OrigLI = LIS.getInterval(Original);
1110   // save a copy of LiveInterval in StackSlotToOrigLI because the original
1111   // LiveInterval may be cleared after all its references are spilled.
1112   if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) {
1113     auto LI = llvm::make_unique<LiveInterval>(OrigLI.reg, OrigLI.weight);
1114     LI->assign(OrigLI, Allocator);
1115     StackSlotToOrigLI[StackSlot] = std::move(LI);
1116   }
1117   SlotIndex Idx = LIS.getInstructionIndex(Spill);
1118   VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot());
1119   std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1120   MergeableSpills[MIdx].insert(&Spill);
1121 }
1122 
1123 /// When a spill is removed, remove the spill from MergeableSpills map.
1124 /// Return true if the spill is removed successfully.
1125 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill,
1126                                              int StackSlot) {
1127   auto It = StackSlotToOrigLI.find(StackSlot);
1128   if (It == StackSlotToOrigLI.end())
1129     return false;
1130   SlotIndex Idx = LIS.getInstructionIndex(Spill);
1131   VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot());
1132   std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1133   return MergeableSpills[MIdx].erase(&Spill);
1134 }
1135 
1136 /// Check BB to see if it is a possible target BB to place a hoisted spill,
1137 /// i.e., there should be a living sibling of OrigReg at the insert point.
1138 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
1139                                      MachineBasicBlock &BB, unsigned &LiveReg) {
1140   SlotIndex Idx;
1141   unsigned OrigReg = OrigLI.reg;
1142   MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, BB);
1143   if (MI != BB.end())
1144     Idx = LIS.getInstructionIndex(*MI);
1145   else
1146     Idx = LIS.getMBBEndIdx(&BB).getPrevSlot();
1147   SmallSetVector<unsigned, 16> &Siblings = Virt2SiblingsMap[OrigReg];
1148   assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI");
1149 
1150   for (auto const SibReg : Siblings) {
1151     LiveInterval &LI = LIS.getInterval(SibReg);
1152     VNInfo *VNI = LI.getVNInfoAt(Idx);
1153     if (VNI) {
1154       LiveReg = SibReg;
1155       return true;
1156     }
1157   }
1158   return false;
1159 }
1160 
1161 /// Remove redundant spills in the same BB. Save those redundant spills in
1162 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
1163 void HoistSpillHelper::rmRedundantSpills(
1164     SmallPtrSet<MachineInstr *, 16> &Spills,
1165     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1166     DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1167   // For each spill saw, check SpillBBToSpill[] and see if its BB already has
1168   // another spill inside. If a BB contains more than one spill, only keep the
1169   // earlier spill with smaller SlotIndex.
1170   for (const auto CurrentSpill : Spills) {
1171     MachineBasicBlock *Block = CurrentSpill->getParent();
1172     MachineDomTreeNode *Node = MDT.getBase().getNode(Block);
1173     MachineInstr *PrevSpill = SpillBBToSpill[Node];
1174     if (PrevSpill) {
1175       SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
1176       SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill);
1177       MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
1178       MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
1179       SpillsToRm.push_back(SpillToRm);
1180       SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep;
1181     } else {
1182       SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill;
1183     }
1184   }
1185   for (const auto SpillToRm : SpillsToRm)
1186     Spills.erase(SpillToRm);
1187 }
1188 
1189 /// Starting from \p Root find a top-down traversal order of the dominator
1190 /// tree to visit all basic blocks containing the elements of \p Spills.
1191 /// Redundant spills will be found and put into \p SpillsToRm at the same
1192 /// time. \p SpillBBToSpill will be populated as part of the process and
1193 /// maps a basic block to the first store occurring in the basic block.
1194 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre
1195 void HoistSpillHelper::getVisitOrders(
1196     MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
1197     SmallVectorImpl<MachineDomTreeNode *> &Orders,
1198     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1199     DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
1200     DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1201   // The set contains all the possible BB nodes to which we may hoist
1202   // original spills.
1203   SmallPtrSet<MachineDomTreeNode *, 8> WorkSet;
1204   // Save the BB nodes on the path from the first BB node containing
1205   // non-redundant spill to the Root node.
1206   SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath;
1207   // All the spills to be hoisted must originate from a single def instruction
1208   // to the OrigReg. It means the def instruction should dominate all the spills
1209   // to be hoisted. We choose the BB where the def instruction is located as
1210   // the Root.
1211   MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom();
1212   // For every node on the dominator tree with spill, walk up on the dominator
1213   // tree towards the Root node until it is reached. If there is other node
1214   // containing spill in the middle of the path, the previous spill saw will
1215   // be redundant and the node containing it will be removed. All the nodes on
1216   // the path starting from the first node with non-redundant spill to the Root
1217   // node will be added to the WorkSet, which will contain all the possible
1218   // locations where spills may be hoisted to after the loop below is done.
1219   for (const auto Spill : Spills) {
1220     MachineBasicBlock *Block = Spill->getParent();
1221     MachineDomTreeNode *Node = MDT[Block];
1222     MachineInstr *SpillToRm = nullptr;
1223     while (Node != RootIDomNode) {
1224       // If Node dominates Block, and it already contains a spill, the spill in
1225       // Block will be redundant.
1226       if (Node != MDT[Block] && SpillBBToSpill[Node]) {
1227         SpillToRm = SpillBBToSpill[MDT[Block]];
1228         break;
1229         /// If we see the Node already in WorkSet, the path from the Node to
1230         /// the Root node must already be traversed by another spill.
1231         /// Then no need to repeat.
1232       } else if (WorkSet.count(Node)) {
1233         break;
1234       } else {
1235         NodesOnPath.insert(Node);
1236       }
1237       Node = Node->getIDom();
1238     }
1239     if (SpillToRm) {
1240       SpillsToRm.push_back(SpillToRm);
1241     } else {
1242       // Add a BB containing the original spills to SpillsToKeep -- i.e.,
1243       // set the initial status before hoisting start. The value of BBs
1244       // containing original spills is set to 0, in order to descriminate
1245       // with BBs containing hoisted spills which will be inserted to
1246       // SpillsToKeep later during hoisting.
1247       SpillsToKeep[MDT[Block]] = 0;
1248       WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end());
1249     }
1250     NodesOnPath.clear();
1251   }
1252 
1253   // Sort the nodes in WorkSet in top-down order and save the nodes
1254   // in Orders. Orders will be used for hoisting in runHoistSpills.
1255   unsigned idx = 0;
1256   Orders.push_back(MDT.getBase().getNode(Root));
1257   do {
1258     MachineDomTreeNode *Node = Orders[idx++];
1259     const std::vector<MachineDomTreeNode *> &Children = Node->getChildren();
1260     unsigned NumChildren = Children.size();
1261     for (unsigned i = 0; i != NumChildren; ++i) {
1262       MachineDomTreeNode *Child = Children[i];
1263       if (WorkSet.count(Child))
1264         Orders.push_back(Child);
1265     }
1266   } while (idx != Orders.size());
1267   assert(Orders.size() == WorkSet.size() &&
1268          "Orders have different size with WorkSet");
1269 
1270 #ifndef NDEBUG
1271   LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n");
1272   SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1273   for (; RIt != Orders.rend(); RIt++)
1274     LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",");
1275   LLVM_DEBUG(dbgs() << "\n");
1276 #endif
1277 }
1278 
1279 /// Try to hoist spills according to BB hotness. The spills to removed will
1280 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in
1281 /// \p SpillsToIns.
1282 void HoistSpillHelper::runHoistSpills(
1283     LiveInterval &OrigLI, VNInfo &OrigVNI,
1284     SmallPtrSet<MachineInstr *, 16> &Spills,
1285     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1286     DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) {
1287   // Visit order of dominator tree nodes.
1288   SmallVector<MachineDomTreeNode *, 32> Orders;
1289   // SpillsToKeep contains all the nodes where spills are to be inserted
1290   // during hoisting. If the spill to be inserted is an original spill
1291   // (not a hoisted one), the value of the map entry is 0. If the spill
1292   // is a hoisted spill, the value of the map entry is the VReg to be used
1293   // as the source of the spill.
1294   DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep;
1295   // Map from BB to the first spill inside of it.
1296   DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill;
1297 
1298   rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill);
1299 
1300   MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def);
1301   getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep,
1302                  SpillBBToSpill);
1303 
1304   // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
1305   // nodes set and the cost of all the spills inside those nodes.
1306   // The nodes set are the locations where spills are to be inserted
1307   // in the subtree of current node.
1308   using NodesCostPair =
1309       std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>;
1310   DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap;
1311 
1312   // Iterate Orders set in reverse order, which will be a bottom-up order
1313   // in the dominator tree. Once we visit a dom tree node, we know its
1314   // children have already been visited and the spill locations in the
1315   // subtrees of all the children have been determined.
1316   SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1317   for (; RIt != Orders.rend(); RIt++) {
1318     MachineBasicBlock *Block = (*RIt)->getBlock();
1319 
1320     // If Block contains an original spill, simply continue.
1321     if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) {
1322       SpillsInSubTreeMap[*RIt].first.insert(*RIt);
1323       // SpillsInSubTreeMap[*RIt].second contains the cost of spill.
1324       SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block);
1325       continue;
1326     }
1327 
1328     // Collect spills in subtree of current node (*RIt) to
1329     // SpillsInSubTreeMap[*RIt].first.
1330     const std::vector<MachineDomTreeNode *> &Children = (*RIt)->getChildren();
1331     unsigned NumChildren = Children.size();
1332     for (unsigned i = 0; i != NumChildren; ++i) {
1333       MachineDomTreeNode *Child = Children[i];
1334       if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end())
1335         continue;
1336       // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below
1337       // should be placed before getting the begin and end iterators of
1338       // SpillsInSubTreeMap[Child].first, or else the iterators may be
1339       // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
1340       // and the map grows and then the original buckets in the map are moved.
1341       SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1342           SpillsInSubTreeMap[*RIt].first;
1343       BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1344       SubTreeCost += SpillsInSubTreeMap[Child].second;
1345       auto BI = SpillsInSubTreeMap[Child].first.begin();
1346       auto EI = SpillsInSubTreeMap[Child].first.end();
1347       SpillsInSubTree.insert(BI, EI);
1348       SpillsInSubTreeMap.erase(Child);
1349     }
1350 
1351     SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1352           SpillsInSubTreeMap[*RIt].first;
1353     BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1354     // No spills in subtree, simply continue.
1355     if (SpillsInSubTree.empty())
1356       continue;
1357 
1358     // Check whether Block is a possible candidate to insert spill.
1359     unsigned LiveReg = 0;
1360     if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg))
1361       continue;
1362 
1363     // If there are multiple spills that could be merged, bias a little
1364     // to hoist the spill.
1365     BranchProbability MarginProb = (SpillsInSubTree.size() > 1)
1366                                        ? BranchProbability(9, 10)
1367                                        : BranchProbability(1, 1);
1368     if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) {
1369       // Hoist: Move spills to current Block.
1370       for (const auto SpillBB : SpillsInSubTree) {
1371         // When SpillBB is a BB contains original spill, insert the spill
1372         // to SpillsToRm.
1373         if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() &&
1374             !SpillsToKeep[SpillBB]) {
1375           MachineInstr *SpillToRm = SpillBBToSpill[SpillBB];
1376           SpillsToRm.push_back(SpillToRm);
1377         }
1378         // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
1379         SpillsToKeep.erase(SpillBB);
1380       }
1381       // Current Block is the BB containing the new hoisted spill. Add it to
1382       // SpillsToKeep. LiveReg is the source of the new spill.
1383       SpillsToKeep[*RIt] = LiveReg;
1384       LLVM_DEBUG({
1385         dbgs() << "spills in BB: ";
1386         for (const auto Rspill : SpillsInSubTree)
1387           dbgs() << Rspill->getBlock()->getNumber() << " ";
1388         dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()
1389                << "\n";
1390       });
1391       SpillsInSubTree.clear();
1392       SpillsInSubTree.insert(*RIt);
1393       SubTreeCost = MBFI.getBlockFreq(Block);
1394     }
1395   }
1396   // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
1397   // save them to SpillsToIns.
1398   for (const auto Ent : SpillsToKeep) {
1399     if (Ent.second)
1400       SpillsToIns[Ent.first->getBlock()] = Ent.second;
1401   }
1402 }
1403 
1404 /// For spills with equal values, remove redundant spills and hoist those left
1405 /// to less hot spots.
1406 ///
1407 /// Spills with equal values will be collected into the same set in
1408 /// MergeableSpills when spill is inserted. These equal spills are originated
1409 /// from the same defining instruction and are dominated by the instruction.
1410 /// Before hoisting all the equal spills, redundant spills inside in the same
1411 /// BB are first marked to be deleted. Then starting from the spills left, walk
1412 /// up on the dominator tree towards the Root node where the define instruction
1413 /// is located, mark the dominated spills to be deleted along the way and
1414 /// collect the BB nodes on the path from non-dominated spills to the define
1415 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places
1416 /// where we are considering to hoist the spills. We iterate the WorkSet in
1417 /// bottom-up order, and for each node, we will decide whether to hoist spills
1418 /// inside its subtree to that node. In this way, we can get benefit locally
1419 /// even if hoisting all the equal spills to one cold place is impossible.
1420 void HoistSpillHelper::hoistAllSpills() {
1421   SmallVector<unsigned, 4> NewVRegs;
1422   LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this);
1423 
1424   for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
1425     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1426     unsigned Original = VRM.getPreSplitReg(Reg);
1427     if (!MRI.def_empty(Reg))
1428       Virt2SiblingsMap[Original].insert(Reg);
1429   }
1430 
1431   // Each entry in MergeableSpills contains a spill set with equal values.
1432   for (auto &Ent : MergeableSpills) {
1433     int Slot = Ent.first.first;
1434     LiveInterval &OrigLI = *StackSlotToOrigLI[Slot];
1435     VNInfo *OrigVNI = Ent.first.second;
1436     SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second;
1437     if (Ent.second.empty())
1438       continue;
1439 
1440     LLVM_DEBUG({
1441       dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"
1442              << "Equal spills in BB: ";
1443       for (const auto spill : EqValSpills)
1444         dbgs() << spill->getParent()->getNumber() << " ";
1445       dbgs() << "\n";
1446     });
1447 
1448     // SpillsToRm is the spill set to be removed from EqValSpills.
1449     SmallVector<MachineInstr *, 16> SpillsToRm;
1450     // SpillsToIns is the spill set to be newly inserted after hoisting.
1451     DenseMap<MachineBasicBlock *, unsigned> SpillsToIns;
1452 
1453     runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns);
1454 
1455     LLVM_DEBUG({
1456       dbgs() << "Finally inserted spills in BB: ";
1457       for (const auto Ispill : SpillsToIns)
1458         dbgs() << Ispill.first->getNumber() << " ";
1459       dbgs() << "\nFinally removed spills in BB: ";
1460       for (const auto Rspill : SpillsToRm)
1461         dbgs() << Rspill->getParent()->getNumber() << " ";
1462       dbgs() << "\n";
1463     });
1464 
1465     // Stack live range update.
1466     LiveInterval &StackIntvl = LSS.getInterval(Slot);
1467     if (!SpillsToIns.empty() || !SpillsToRm.empty())
1468       StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI,
1469                                      StackIntvl.getValNumInfo(0));
1470 
1471     // Insert hoisted spills.
1472     for (auto const Insert : SpillsToIns) {
1473       MachineBasicBlock *BB = Insert.first;
1474       unsigned LiveReg = Insert.second;
1475       MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, *BB);
1476       TII.storeRegToStackSlot(*BB, MI, LiveReg, false, Slot,
1477                               MRI.getRegClass(LiveReg), &TRI);
1478       LIS.InsertMachineInstrRangeInMaps(std::prev(MI), MI);
1479       ++NumSpills;
1480     }
1481 
1482     // Remove redundant spills or change them to dead instructions.
1483     NumSpills -= SpillsToRm.size();
1484     for (auto const RMEnt : SpillsToRm) {
1485       RMEnt->setDesc(TII.get(TargetOpcode::KILL));
1486       for (unsigned i = RMEnt->getNumOperands(); i; --i) {
1487         MachineOperand &MO = RMEnt->getOperand(i - 1);
1488         if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead())
1489           RMEnt->RemoveOperand(i - 1);
1490       }
1491     }
1492     Edit.eliminateDeadDefs(SpillsToRm, None, AA);
1493   }
1494 }
1495 
1496 /// For VirtReg clone, the \p New register should have the same physreg or
1497 /// stackslot as the \p old register.
1498 void HoistSpillHelper::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
1499   if (VRM.hasPhys(Old))
1500     VRM.assignVirt2Phys(New, VRM.getPhys(Old));
1501   else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT)
1502     VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old));
1503   else
1504     llvm_unreachable("VReg should be assigned either physreg or stackslot");
1505 }
1506