1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The inline spiller modifies the machine function directly instead of 10 // inserting spills and restores in VirtRegMap. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LiveRangeCalc.h" 15 #include "Spiller.h" 16 #include "SplitKit.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/CodeGen/LiveInterval.h" 28 #include "llvm/CodeGen/LiveIntervals.h" 29 #include "llvm/CodeGen/LiveRangeEdit.h" 30 #include "llvm/CodeGen/LiveStacks.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineInstrBuilder.h" 38 #include "llvm/CodeGen/MachineInstrBundle.h" 39 #include "llvm/CodeGen/MachineLoopInfo.h" 40 #include "llvm/CodeGen/MachineOperand.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/SlotIndexes.h" 43 #include "llvm/CodeGen/TargetInstrInfo.h" 44 #include "llvm/CodeGen/TargetOpcodes.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/CodeGen/VirtRegMap.h" 48 #include "llvm/Config/llvm-config.h" 49 #include "llvm/Support/BlockFrequency.h" 50 #include "llvm/Support/BranchProbability.h" 51 #include "llvm/Support/CommandLine.h" 52 #include "llvm/Support/Compiler.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include <cassert> 57 #include <iterator> 58 #include <tuple> 59 #include <utility> 60 #include <vector> 61 62 using namespace llvm; 63 64 #define DEBUG_TYPE "regalloc" 65 66 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 67 STATISTIC(NumSnippets, "Number of spilled snippets"); 68 STATISTIC(NumSpills, "Number of spills inserted"); 69 STATISTIC(NumSpillsRemoved, "Number of spills removed"); 70 STATISTIC(NumReloads, "Number of reloads inserted"); 71 STATISTIC(NumReloadsRemoved, "Number of reloads removed"); 72 STATISTIC(NumFolded, "Number of folded stack accesses"); 73 STATISTIC(NumFoldedLoads, "Number of folded loads"); 74 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 75 76 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden, 77 cl::desc("Disable inline spill hoisting")); 78 79 namespace { 80 81 class HoistSpillHelper : private LiveRangeEdit::Delegate { 82 MachineFunction &MF; 83 LiveIntervals &LIS; 84 LiveStacks &LSS; 85 AliasAnalysis *AA; 86 MachineDominatorTree &MDT; 87 MachineLoopInfo &Loops; 88 VirtRegMap &VRM; 89 MachineRegisterInfo &MRI; 90 const TargetInstrInfo &TII; 91 const TargetRegisterInfo &TRI; 92 const MachineBlockFrequencyInfo &MBFI; 93 94 InsertPointAnalysis IPA; 95 96 // Map from StackSlot to the LiveInterval of the original register. 97 // Note the LiveInterval of the original register may have been deleted 98 // after it is spilled. We keep a copy here to track the range where 99 // spills can be moved. 100 DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI; 101 102 // Map from pair of (StackSlot and Original VNI) to a set of spills which 103 // have the same stackslot and have equal values defined by Original VNI. 104 // These spills are mergeable and are hoist candiates. 105 using MergeableSpillsMap = 106 MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>; 107 MergeableSpillsMap MergeableSpills; 108 109 /// This is the map from original register to a set containing all its 110 /// siblings. To hoist a spill to another BB, we need to find out a live 111 /// sibling there and use it as the source of the new spill. 112 DenseMap<unsigned, SmallSetVector<unsigned, 16>> Virt2SiblingsMap; 113 114 bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 115 MachineBasicBlock &BB, unsigned &LiveReg); 116 117 void rmRedundantSpills( 118 SmallPtrSet<MachineInstr *, 16> &Spills, 119 SmallVectorImpl<MachineInstr *> &SpillsToRm, 120 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 121 122 void getVisitOrders( 123 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 124 SmallVectorImpl<MachineDomTreeNode *> &Orders, 125 SmallVectorImpl<MachineInstr *> &SpillsToRm, 126 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 127 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 128 129 void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI, 130 SmallPtrSet<MachineInstr *, 16> &Spills, 131 SmallVectorImpl<MachineInstr *> &SpillsToRm, 132 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns); 133 134 public: 135 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf, 136 VirtRegMap &vrm) 137 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 138 LSS(pass.getAnalysis<LiveStacks>()), 139 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 140 MDT(pass.getAnalysis<MachineDominatorTree>()), 141 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 142 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 143 TRI(*mf.getSubtarget().getRegisterInfo()), 144 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 145 IPA(LIS, mf.getNumBlockIDs()) {} 146 147 void addToMergeableSpills(MachineInstr &Spill, int StackSlot, 148 unsigned Original); 149 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot); 150 void hoistAllSpills(); 151 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 152 }; 153 154 class InlineSpiller : public Spiller { 155 MachineFunction &MF; 156 LiveIntervals &LIS; 157 LiveStacks &LSS; 158 AliasAnalysis *AA; 159 MachineDominatorTree &MDT; 160 MachineLoopInfo &Loops; 161 VirtRegMap &VRM; 162 MachineRegisterInfo &MRI; 163 const TargetInstrInfo &TII; 164 const TargetRegisterInfo &TRI; 165 const MachineBlockFrequencyInfo &MBFI; 166 167 // Variables that are valid during spill(), but used by multiple methods. 168 LiveRangeEdit *Edit; 169 LiveInterval *StackInt; 170 int StackSlot; 171 unsigned Original; 172 173 // All registers to spill to StackSlot, including the main register. 174 SmallVector<unsigned, 8> RegsToSpill; 175 176 // All COPY instructions to/from snippets. 177 // They are ignored since both operands refer to the same stack slot. 178 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 179 180 // Values that failed to remat at some point. 181 SmallPtrSet<VNInfo*, 8> UsedValues; 182 183 // Dead defs generated during spilling. 184 SmallVector<MachineInstr*, 8> DeadDefs; 185 186 // Object records spills information and does the hoisting. 187 HoistSpillHelper HSpiller; 188 189 ~InlineSpiller() override = default; 190 191 public: 192 InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm) 193 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 194 LSS(pass.getAnalysis<LiveStacks>()), 195 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 196 MDT(pass.getAnalysis<MachineDominatorTree>()), 197 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 198 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 199 TRI(*mf.getSubtarget().getRegisterInfo()), 200 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 201 HSpiller(pass, mf, vrm) {} 202 203 void spill(LiveRangeEdit &) override; 204 void postOptimization() override; 205 206 private: 207 bool isSnippet(const LiveInterval &SnipLI); 208 void collectRegsToSpill(); 209 210 bool isRegToSpill(unsigned Reg) { return is_contained(RegsToSpill, Reg); } 211 212 bool isSibling(unsigned Reg); 213 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI); 214 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 215 216 void markValueUsed(LiveInterval*, VNInfo*); 217 bool reMaterializeFor(LiveInterval &, MachineInstr &MI); 218 void reMaterializeAll(); 219 220 bool coalesceStackAccess(MachineInstr *MI, unsigned Reg); 221 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>, 222 MachineInstr *LoadMI = nullptr); 223 void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI); 224 void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI); 225 226 void spillAroundUses(unsigned Reg); 227 void spillAll(); 228 }; 229 230 } // end anonymous namespace 231 232 Spiller::~Spiller() = default; 233 234 void Spiller::anchor() {} 235 236 Spiller *llvm::createInlineSpiller(MachineFunctionPass &pass, 237 MachineFunction &mf, 238 VirtRegMap &vrm) { 239 return new InlineSpiller(pass, mf, vrm); 240 } 241 242 //===----------------------------------------------------------------------===// 243 // Snippets 244 //===----------------------------------------------------------------------===// 245 246 // When spilling a virtual register, we also spill any snippets it is connected 247 // to. The snippets are small live ranges that only have a single real use, 248 // leftovers from live range splitting. Spilling them enables memory operand 249 // folding or tightens the live range around the single use. 250 // 251 // This minimizes register pressure and maximizes the store-to-load distance for 252 // spill slots which can be important in tight loops. 253 254 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 255 /// otherwise return 0. 256 static unsigned isFullCopyOf(const MachineInstr &MI, unsigned Reg) { 257 if (!MI.isFullCopy()) 258 return 0; 259 if (MI.getOperand(0).getReg() == Reg) 260 return MI.getOperand(1).getReg(); 261 if (MI.getOperand(1).getReg() == Reg) 262 return MI.getOperand(0).getReg(); 263 return 0; 264 } 265 266 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 267 /// It is assumed that SnipLI is a virtual register with the same original as 268 /// Edit->getReg(). 269 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 270 unsigned Reg = Edit->getReg(); 271 272 // A snippet is a tiny live range with only a single instruction using it 273 // besides copies to/from Reg or spills/fills. We accept: 274 // 275 // %snip = COPY %Reg / FILL fi# 276 // %snip = USE %snip 277 // %Reg = COPY %snip / SPILL %snip, fi# 278 // 279 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) 280 return false; 281 282 MachineInstr *UseMI = nullptr; 283 284 // Check that all uses satisfy our criteria. 285 for (MachineRegisterInfo::reg_instr_nodbg_iterator 286 RI = MRI.reg_instr_nodbg_begin(SnipLI.reg), 287 E = MRI.reg_instr_nodbg_end(); RI != E; ) { 288 MachineInstr &MI = *RI++; 289 290 // Allow copies to/from Reg. 291 if (isFullCopyOf(MI, Reg)) 292 continue; 293 294 // Allow stack slot loads. 295 int FI; 296 if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 297 continue; 298 299 // Allow stack slot stores. 300 if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 301 continue; 302 303 // Allow a single additional instruction. 304 if (UseMI && &MI != UseMI) 305 return false; 306 UseMI = &MI; 307 } 308 return true; 309 } 310 311 /// collectRegsToSpill - Collect live range snippets that only have a single 312 /// real use. 313 void InlineSpiller::collectRegsToSpill() { 314 unsigned Reg = Edit->getReg(); 315 316 // Main register always spills. 317 RegsToSpill.assign(1, Reg); 318 SnippetCopies.clear(); 319 320 // Snippets all have the same original, so there can't be any for an original 321 // register. 322 if (Original == Reg) 323 return; 324 325 for (MachineRegisterInfo::reg_instr_iterator 326 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) { 327 MachineInstr &MI = *RI++; 328 unsigned SnipReg = isFullCopyOf(MI, Reg); 329 if (!isSibling(SnipReg)) 330 continue; 331 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 332 if (!isSnippet(SnipLI)) 333 continue; 334 SnippetCopies.insert(&MI); 335 if (isRegToSpill(SnipReg)) 336 continue; 337 RegsToSpill.push_back(SnipReg); 338 LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 339 ++NumSnippets; 340 } 341 } 342 343 bool InlineSpiller::isSibling(unsigned Reg) { 344 return TargetRegisterInfo::isVirtualRegister(Reg) && 345 VRM.getOriginal(Reg) == Original; 346 } 347 348 /// It is beneficial to spill to earlier place in the same BB in case 349 /// as follows: 350 /// There is an alternative def earlier in the same MBB. 351 /// Hoist the spill as far as possible in SpillMBB. This can ease 352 /// register pressure: 353 /// 354 /// x = def 355 /// y = use x 356 /// s = copy x 357 /// 358 /// Hoisting the spill of s to immediately after the def removes the 359 /// interference between x and y: 360 /// 361 /// x = def 362 /// spill x 363 /// y = use killed x 364 /// 365 /// This hoist only helps when the copy kills its source. 366 /// 367 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI, 368 MachineInstr &CopyMI) { 369 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 370 #ifndef NDEBUG 371 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); 372 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); 373 #endif 374 375 unsigned SrcReg = CopyMI.getOperand(1).getReg(); 376 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 377 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx); 378 LiveQueryResult SrcQ = SrcLI.Query(Idx); 379 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def); 380 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill()) 381 return false; 382 383 // Conservatively extend the stack slot range to the range of the original 384 // value. We may be able to do better with stack slot coloring by being more 385 // careful here. 386 assert(StackInt && "No stack slot assigned yet."); 387 LiveInterval &OrigLI = LIS.getInterval(Original); 388 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 389 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 390 LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 391 << *StackInt << '\n'); 392 393 // We are going to spill SrcVNI immediately after its def, so clear out 394 // any later spills of the same value. 395 eliminateRedundantSpills(SrcLI, SrcVNI); 396 397 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def); 398 MachineBasicBlock::iterator MII; 399 if (SrcVNI->isPHIDef()) 400 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 401 else { 402 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def); 403 assert(DefMI && "Defining instruction disappeared"); 404 MII = DefMI; 405 ++MII; 406 } 407 // Insert spill without kill flag immediately after def. 408 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot, 409 MRI.getRegClass(SrcReg), &TRI); 410 --MII; // Point to store instruction. 411 LIS.InsertMachineInstrInMaps(*MII); 412 LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII); 413 414 HSpiller.addToMergeableSpills(*MII, StackSlot, Original); 415 ++NumSpills; 416 return true; 417 } 418 419 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 420 /// redundant spills of this value in SLI.reg and sibling copies. 421 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 422 assert(VNI && "Missing value"); 423 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 424 WorkList.push_back(std::make_pair(&SLI, VNI)); 425 assert(StackInt && "No stack slot assigned yet."); 426 427 do { 428 LiveInterval *LI; 429 std::tie(LI, VNI) = WorkList.pop_back_val(); 430 unsigned Reg = LI->reg; 431 LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@' 432 << VNI->def << " in " << *LI << '\n'); 433 434 // Regs to spill are taken care of. 435 if (isRegToSpill(Reg)) 436 continue; 437 438 // Add all of VNI's live range to StackInt. 439 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 440 LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 441 442 // Find all spills and copies of VNI. 443 for (MachineRegisterInfo::use_instr_nodbg_iterator 444 UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 445 UI != E; ) { 446 MachineInstr &MI = *UI++; 447 if (!MI.isCopy() && !MI.mayStore()) 448 continue; 449 SlotIndex Idx = LIS.getInstructionIndex(MI); 450 if (LI->getVNInfoAt(Idx) != VNI) 451 continue; 452 453 // Follow sibling copies down the dominator tree. 454 if (unsigned DstReg = isFullCopyOf(MI, Reg)) { 455 if (isSibling(DstReg)) { 456 LiveInterval &DstLI = LIS.getInterval(DstReg); 457 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); 458 assert(DstVNI && "Missing defined value"); 459 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); 460 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 461 } 462 continue; 463 } 464 465 // Erase spills. 466 int FI; 467 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 468 LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI); 469 // eliminateDeadDefs won't normally remove stores, so switch opcode. 470 MI.setDesc(TII.get(TargetOpcode::KILL)); 471 DeadDefs.push_back(&MI); 472 ++NumSpillsRemoved; 473 if (HSpiller.rmFromMergeableSpills(MI, StackSlot)) 474 --NumSpills; 475 } 476 } 477 } while (!WorkList.empty()); 478 } 479 480 //===----------------------------------------------------------------------===// 481 // Rematerialization 482 //===----------------------------------------------------------------------===// 483 484 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 485 /// instruction cannot be eliminated. See through snippet copies 486 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 487 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 488 WorkList.push_back(std::make_pair(LI, VNI)); 489 do { 490 std::tie(LI, VNI) = WorkList.pop_back_val(); 491 if (!UsedValues.insert(VNI).second) 492 continue; 493 494 if (VNI->isPHIDef()) { 495 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 496 for (MachineBasicBlock *P : MBB->predecessors()) { 497 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P)); 498 if (PVNI) 499 WorkList.push_back(std::make_pair(LI, PVNI)); 500 } 501 continue; 502 } 503 504 // Follow snippet copies. 505 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 506 if (!SnippetCopies.count(MI)) 507 continue; 508 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 509 assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy"); 510 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); 511 assert(SnipVNI && "Snippet undefined before copy"); 512 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 513 } while (!WorkList.empty()); 514 } 515 516 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 517 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) { 518 // Analyze instruction 519 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 520 MIBundleOperands::VirtRegInfo RI = 521 MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops); 522 523 if (!RI.Reads) 524 return false; 525 526 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); 527 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 528 529 if (!ParentVNI) { 530 LLVM_DEBUG(dbgs() << "\tadding <undef> flags: "); 531 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 532 MachineOperand &MO = MI.getOperand(i); 533 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) 534 MO.setIsUndef(); 535 } 536 LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI); 537 return true; 538 } 539 540 if (SnippetCopies.count(&MI)) 541 return false; 542 543 LiveInterval &OrigLI = LIS.getInterval(Original); 544 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 545 LiveRangeEdit::Remat RM(ParentVNI); 546 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 547 548 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) { 549 markValueUsed(&VirtReg, ParentVNI); 550 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 551 return false; 552 } 553 554 // If the instruction also writes VirtReg.reg, it had better not require the 555 // same register for uses and defs. 556 if (RI.Tied) { 557 markValueUsed(&VirtReg, ParentVNI); 558 LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI); 559 return false; 560 } 561 562 // Before rematerializing into a register for a single instruction, try to 563 // fold a load into the instruction. That avoids allocating a new register. 564 if (RM.OrigMI->canFoldAsLoad() && 565 foldMemoryOperand(Ops, RM.OrigMI)) { 566 Edit->markRematerialized(RM.ParentVNI); 567 ++NumFoldedLoads; 568 return true; 569 } 570 571 // Allocate a new register for the remat. 572 unsigned NewVReg = Edit->createFrom(Original); 573 574 // Finally we can rematerialize OrigMI before MI. 575 SlotIndex DefIdx = 576 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI); 577 578 // We take the DebugLoc from MI, since OrigMI may be attributed to a 579 // different source location. 580 auto *NewMI = LIS.getInstructionFromIndex(DefIdx); 581 NewMI->setDebugLoc(MI.getDebugLoc()); 582 583 (void)DefIdx; 584 LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 585 << *LIS.getInstructionFromIndex(DefIdx)); 586 587 // Replace operands 588 for (const auto &OpPair : Ops) { 589 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 590 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) { 591 MO.setReg(NewVReg); 592 MO.setIsKill(); 593 } 594 } 595 LLVM_DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n'); 596 597 ++NumRemats; 598 return true; 599 } 600 601 /// reMaterializeAll - Try to rematerialize as many uses as possible, 602 /// and trim the live ranges after. 603 void InlineSpiller::reMaterializeAll() { 604 if (!Edit->anyRematerializable(AA)) 605 return; 606 607 UsedValues.clear(); 608 609 // Try to remat before all uses of snippets. 610 bool anyRemat = false; 611 for (unsigned Reg : RegsToSpill) { 612 LiveInterval &LI = LIS.getInterval(Reg); 613 for (MachineRegisterInfo::reg_bundle_iterator 614 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 615 RegI != E; ) { 616 MachineInstr &MI = *RegI++; 617 618 // Debug values are not allowed to affect codegen. 619 if (MI.isDebugValue()) 620 continue; 621 622 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug " 623 "instruction that isn't a DBG_VALUE"); 624 625 anyRemat |= reMaterializeFor(LI, MI); 626 } 627 } 628 if (!anyRemat) 629 return; 630 631 // Remove any values that were completely rematted. 632 for (unsigned Reg : RegsToSpill) { 633 LiveInterval &LI = LIS.getInterval(Reg); 634 for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 635 I != E; ++I) { 636 VNInfo *VNI = *I; 637 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 638 continue; 639 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 640 MI->addRegisterDead(Reg, &TRI); 641 if (!MI->allDefsAreDead()) 642 continue; 643 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); 644 DeadDefs.push_back(MI); 645 } 646 } 647 648 // Eliminate dead code after remat. Note that some snippet copies may be 649 // deleted here. 650 if (DeadDefs.empty()) 651 return; 652 LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 653 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 654 655 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions 656 // after rematerialization. To remove a VNI for a vreg from its LiveInterval, 657 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all 658 // removed, PHI VNI are still left in the LiveInterval. 659 // So to get rid of unused reg, we need to check whether it has non-dbg 660 // reference instead of whether it has non-empty interval. 661 unsigned ResultPos = 0; 662 for (unsigned Reg : RegsToSpill) { 663 if (MRI.reg_nodbg_empty(Reg)) { 664 Edit->eraseVirtReg(Reg); 665 continue; 666 } 667 668 assert(LIS.hasInterval(Reg) && 669 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && 670 "Empty and not used live-range?!"); 671 672 RegsToSpill[ResultPos++] = Reg; 673 } 674 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); 675 LLVM_DEBUG(dbgs() << RegsToSpill.size() 676 << " registers to spill after remat.\n"); 677 } 678 679 //===----------------------------------------------------------------------===// 680 // Spilling 681 //===----------------------------------------------------------------------===// 682 683 /// If MI is a load or store of StackSlot, it can be removed. 684 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) { 685 int FI = 0; 686 unsigned InstrReg = TII.isLoadFromStackSlot(*MI, FI); 687 bool IsLoad = InstrReg; 688 if (!IsLoad) 689 InstrReg = TII.isStoreToStackSlot(*MI, FI); 690 691 // We have a stack access. Is it the right register and slot? 692 if (InstrReg != Reg || FI != StackSlot) 693 return false; 694 695 if (!IsLoad) 696 HSpiller.rmFromMergeableSpills(*MI, StackSlot); 697 698 LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI); 699 LIS.RemoveMachineInstrFromMaps(*MI); 700 MI->eraseFromParent(); 701 702 if (IsLoad) { 703 ++NumReloadsRemoved; 704 --NumReloads; 705 } else { 706 ++NumSpillsRemoved; 707 --NumSpills; 708 } 709 710 return true; 711 } 712 713 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 714 LLVM_DUMP_METHOD 715 // Dump the range of instructions from B to E with their slot indexes. 716 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, 717 MachineBasicBlock::iterator E, 718 LiveIntervals const &LIS, 719 const char *const header, 720 unsigned VReg =0) { 721 char NextLine = '\n'; 722 char SlotIndent = '\t'; 723 724 if (std::next(B) == E) { 725 NextLine = ' '; 726 SlotIndent = ' '; 727 } 728 729 dbgs() << '\t' << header << ": " << NextLine; 730 731 for (MachineBasicBlock::iterator I = B; I != E; ++I) { 732 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot(); 733 734 // If a register was passed in and this instruction has it as a 735 // destination that is marked as an early clobber, print the 736 // early-clobber slot index. 737 if (VReg) { 738 MachineOperand *MO = I->findRegisterDefOperand(VReg); 739 if (MO && MO->isEarlyClobber()) 740 Idx = Idx.getRegSlot(true); 741 } 742 743 dbgs() << SlotIndent << Idx << '\t' << *I; 744 } 745 } 746 #endif 747 748 /// foldMemoryOperand - Try folding stack slot references in Ops into their 749 /// instructions. 750 /// 751 /// @param Ops Operand indices from analyzeVirtReg(). 752 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 753 /// @return True on success. 754 bool InlineSpiller:: 755 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops, 756 MachineInstr *LoadMI) { 757 if (Ops.empty()) 758 return false; 759 // Don't attempt folding in bundles. 760 MachineInstr *MI = Ops.front().first; 761 if (Ops.back().first != MI || MI->isBundled()) 762 return false; 763 764 bool WasCopy = MI->isCopy(); 765 unsigned ImpReg = 0; 766 767 // Spill subregs if the target allows it. 768 // We always want to spill subregs for stackmap/patchpoint pseudos. 769 bool SpillSubRegs = TII.isSubregFoldable() || 770 MI->getOpcode() == TargetOpcode::STATEPOINT || 771 MI->getOpcode() == TargetOpcode::PATCHPOINT || 772 MI->getOpcode() == TargetOpcode::STACKMAP; 773 774 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 775 // operands. 776 SmallVector<unsigned, 8> FoldOps; 777 for (const auto &OpPair : Ops) { 778 unsigned Idx = OpPair.second; 779 assert(MI == OpPair.first && "Instruction conflict during operand folding"); 780 MachineOperand &MO = MI->getOperand(Idx); 781 if (MO.isImplicit()) { 782 ImpReg = MO.getReg(); 783 continue; 784 } 785 786 if (!SpillSubRegs && MO.getSubReg()) 787 return false; 788 // We cannot fold a load instruction into a def. 789 if (LoadMI && MO.isDef()) 790 return false; 791 // Tied use operands should not be passed to foldMemoryOperand. 792 if (!MI->isRegTiedToDefOperand(Idx)) 793 FoldOps.push_back(Idx); 794 } 795 796 // If we only have implicit uses, we won't be able to fold that. 797 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try! 798 if (FoldOps.empty()) 799 return false; 800 801 MachineInstrSpan MIS(MI); 802 803 MachineInstr *FoldMI = 804 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS) 805 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS); 806 if (!FoldMI) 807 return false; 808 809 // Remove LIS for any dead defs in the original MI not in FoldMI. 810 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) { 811 if (!MO->isReg()) 812 continue; 813 unsigned Reg = MO->getReg(); 814 if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) || 815 MRI.isReserved(Reg)) { 816 continue; 817 } 818 // Skip non-Defs, including undef uses and internal reads. 819 if (MO->isUse()) 820 continue; 821 MIBundleOperands::PhysRegInfo RI = 822 MIBundleOperands(*FoldMI).analyzePhysReg(Reg, &TRI); 823 if (RI.FullyDefined) 824 continue; 825 // FoldMI does not define this physreg. Remove the LI segment. 826 assert(MO->isDead() && "Cannot fold physreg def"); 827 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 828 LIS.removePhysRegDefAt(Reg, Idx); 829 } 830 831 int FI; 832 if (TII.isStoreToStackSlot(*MI, FI) && 833 HSpiller.rmFromMergeableSpills(*MI, FI)) 834 --NumSpills; 835 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI); 836 MI->eraseFromParent(); 837 838 // Insert any new instructions other than FoldMI into the LIS maps. 839 assert(!MIS.empty() && "Unexpected empty span of instructions!"); 840 for (MachineInstr &MI : MIS) 841 if (&MI != FoldMI) 842 LIS.InsertMachineInstrInMaps(MI); 843 844 // TII.foldMemoryOperand may have left some implicit operands on the 845 // instruction. Strip them. 846 if (ImpReg) 847 for (unsigned i = FoldMI->getNumOperands(); i; --i) { 848 MachineOperand &MO = FoldMI->getOperand(i - 1); 849 if (!MO.isReg() || !MO.isImplicit()) 850 break; 851 if (MO.getReg() == ImpReg) 852 FoldMI->RemoveOperand(i - 1); 853 } 854 855 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, 856 "folded")); 857 858 if (!WasCopy) 859 ++NumFolded; 860 else if (Ops.front().second == 0) { 861 ++NumSpills; 862 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original); 863 } else 864 ++NumReloads; 865 return true; 866 } 867 868 void InlineSpiller::insertReload(unsigned NewVReg, 869 SlotIndex Idx, 870 MachineBasicBlock::iterator MI) { 871 MachineBasicBlock &MBB = *MI->getParent(); 872 873 MachineInstrSpan MIS(MI); 874 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, 875 MRI.getRegClass(NewVReg), &TRI); 876 877 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); 878 879 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload", 880 NewVReg)); 881 ++NumReloads; 882 } 883 884 /// Check if \p Def fully defines a VReg with an undefined value. 885 /// If that's the case, that means the value of VReg is actually 886 /// not relevant. 887 static bool isFullUndefDef(const MachineInstr &Def) { 888 if (!Def.isImplicitDef()) 889 return false; 890 assert(Def.getNumOperands() == 1 && 891 "Implicit def with more than one definition"); 892 // We can say that the VReg defined by Def is undef, only if it is 893 // fully defined by Def. Otherwise, some of the lanes may not be 894 // undef and the value of the VReg matters. 895 return !Def.getOperand(0).getSubReg(); 896 } 897 898 /// insertSpill - Insert a spill of NewVReg after MI. 899 void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill, 900 MachineBasicBlock::iterator MI) { 901 MachineBasicBlock &MBB = *MI->getParent(); 902 903 MachineInstrSpan MIS(MI); 904 bool IsRealSpill = true; 905 if (isFullUndefDef(*MI)) { 906 // Don't spill undef value. 907 // Anything works for undef, in particular keeping the memory 908 // uninitialized is a viable option and it saves code size and 909 // run time. 910 BuildMI(MBB, std::next(MI), MI->getDebugLoc(), TII.get(TargetOpcode::KILL)) 911 .addReg(NewVReg, getKillRegState(isKill)); 912 IsRealSpill = false; 913 } else 914 TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot, 915 MRI.getRegClass(NewVReg), &TRI); 916 917 LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end()); 918 919 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS, 920 "spill")); 921 ++NumSpills; 922 if (IsRealSpill) 923 HSpiller.addToMergeableSpills(*std::next(MI), StackSlot, Original); 924 } 925 926 /// spillAroundUses - insert spill code around each use of Reg. 927 void InlineSpiller::spillAroundUses(unsigned Reg) { 928 LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n'); 929 LiveInterval &OldLI = LIS.getInterval(Reg); 930 931 // Iterate over instructions using Reg. 932 for (MachineRegisterInfo::reg_bundle_iterator 933 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 934 RegI != E; ) { 935 MachineInstr *MI = &*(RegI++); 936 937 // Debug values are not allowed to affect codegen. 938 if (MI->isDebugValue()) { 939 // Modify DBG_VALUE now that the value is in a spill slot. 940 MachineBasicBlock *MBB = MI->getParent(); 941 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI); 942 buildDbgValueForSpill(*MBB, MI, *MI, StackSlot); 943 MBB->erase(MI); 944 continue; 945 } 946 947 assert(!MI->isDebugInstr() && "Did not expect to find a use in debug " 948 "instruction that isn't a DBG_VALUE"); 949 950 // Ignore copies to/from snippets. We'll delete them. 951 if (SnippetCopies.count(MI)) 952 continue; 953 954 // Stack slot accesses may coalesce away. 955 if (coalesceStackAccess(MI, Reg)) 956 continue; 957 958 // Analyze instruction. 959 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; 960 MIBundleOperands::VirtRegInfo RI = 961 MIBundleOperands(*MI).analyzeVirtReg(Reg, &Ops); 962 963 // Find the slot index where this instruction reads and writes OldLI. 964 // This is usually the def slot, except for tied early clobbers. 965 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 966 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) 967 if (SlotIndex::isSameInstr(Idx, VNI->def)) 968 Idx = VNI->def; 969 970 // Check for a sibling copy. 971 unsigned SibReg = isFullCopyOf(*MI, Reg); 972 if (SibReg && isSibling(SibReg)) { 973 // This may actually be a copy between snippets. 974 if (isRegToSpill(SibReg)) { 975 LLVM_DEBUG(dbgs() << "Found new snippet copy: " << *MI); 976 SnippetCopies.insert(MI); 977 continue; 978 } 979 if (RI.Writes) { 980 if (hoistSpillInsideBB(OldLI, *MI)) { 981 // This COPY is now dead, the value is already in the stack slot. 982 MI->getOperand(0).setIsDead(); 983 DeadDefs.push_back(MI); 984 continue; 985 } 986 } else { 987 // This is a reload for a sib-reg copy. Drop spills downstream. 988 LiveInterval &SibLI = LIS.getInterval(SibReg); 989 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 990 // The COPY will fold to a reload below. 991 } 992 } 993 994 // Attempt to fold memory ops. 995 if (foldMemoryOperand(Ops)) 996 continue; 997 998 // Create a new virtual register for spill/fill. 999 // FIXME: Infer regclass from instruction alone. 1000 unsigned NewVReg = Edit->createFrom(Reg); 1001 1002 if (RI.Reads) 1003 insertReload(NewVReg, Idx, MI); 1004 1005 // Rewrite instruction operands. 1006 bool hasLiveDef = false; 1007 for (const auto &OpPair : Ops) { 1008 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 1009 MO.setReg(NewVReg); 1010 if (MO.isUse()) { 1011 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second)) 1012 MO.setIsKill(); 1013 } else { 1014 if (!MO.isDead()) 1015 hasLiveDef = true; 1016 } 1017 } 1018 LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n'); 1019 1020 // FIXME: Use a second vreg if instruction has no tied ops. 1021 if (RI.Writes) 1022 if (hasLiveDef) 1023 insertSpill(NewVReg, true, MI); 1024 } 1025 } 1026 1027 /// spillAll - Spill all registers remaining after rematerialization. 1028 void InlineSpiller::spillAll() { 1029 // Update LiveStacks now that we are committed to spilling. 1030 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 1031 StackSlot = VRM.assignVirt2StackSlot(Original); 1032 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 1033 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); 1034 } else 1035 StackInt = &LSS.getInterval(StackSlot); 1036 1037 if (Original != Edit->getReg()) 1038 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 1039 1040 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 1041 for (unsigned Reg : RegsToSpill) 1042 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg), 1043 StackInt->getValNumInfo(0)); 1044 LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 1045 1046 // Spill around uses of all RegsToSpill. 1047 for (unsigned Reg : RegsToSpill) 1048 spillAroundUses(Reg); 1049 1050 // Hoisted spills may cause dead code. 1051 if (!DeadDefs.empty()) { 1052 LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 1053 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 1054 } 1055 1056 // Finally delete the SnippetCopies. 1057 for (unsigned Reg : RegsToSpill) { 1058 for (MachineRegisterInfo::reg_instr_iterator 1059 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); 1060 RI != E; ) { 1061 MachineInstr &MI = *(RI++); 1062 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy"); 1063 // FIXME: Do this with a LiveRangeEdit callback. 1064 LIS.RemoveMachineInstrFromMaps(MI); 1065 MI.eraseFromParent(); 1066 } 1067 } 1068 1069 // Delete all spilled registers. 1070 for (unsigned Reg : RegsToSpill) 1071 Edit->eraseVirtReg(Reg); 1072 } 1073 1074 void InlineSpiller::spill(LiveRangeEdit &edit) { 1075 ++NumSpilledRanges; 1076 Edit = &edit; 1077 assert(!TargetRegisterInfo::isStackSlot(edit.getReg()) 1078 && "Trying to spill a stack slot."); 1079 // Share a stack slot among all descendants of Original. 1080 Original = VRM.getOriginal(edit.getReg()); 1081 StackSlot = VRM.getStackSlot(Original); 1082 StackInt = nullptr; 1083 1084 LLVM_DEBUG(dbgs() << "Inline spilling " 1085 << TRI.getRegClassName(MRI.getRegClass(edit.getReg())) 1086 << ':' << edit.getParent() << "\nFrom original " 1087 << printReg(Original) << '\n'); 1088 assert(edit.getParent().isSpillable() && 1089 "Attempting to spill already spilled value."); 1090 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1091 1092 collectRegsToSpill(); 1093 reMaterializeAll(); 1094 1095 // Remat may handle everything. 1096 if (!RegsToSpill.empty()) 1097 spillAll(); 1098 1099 Edit->calculateRegClassAndHint(MF, Loops, MBFI); 1100 } 1101 1102 /// Optimizations after all the reg selections and spills are done. 1103 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); } 1104 1105 /// When a spill is inserted, add the spill to MergeableSpills map. 1106 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot, 1107 unsigned Original) { 1108 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1109 LiveInterval &OrigLI = LIS.getInterval(Original); 1110 // save a copy of LiveInterval in StackSlotToOrigLI because the original 1111 // LiveInterval may be cleared after all its references are spilled. 1112 if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) { 1113 auto LI = llvm::make_unique<LiveInterval>(OrigLI.reg, OrigLI.weight); 1114 LI->assign(OrigLI, Allocator); 1115 StackSlotToOrigLI[StackSlot] = std::move(LI); 1116 } 1117 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1118 VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot()); 1119 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1120 MergeableSpills[MIdx].insert(&Spill); 1121 } 1122 1123 /// When a spill is removed, remove the spill from MergeableSpills map. 1124 /// Return true if the spill is removed successfully. 1125 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill, 1126 int StackSlot) { 1127 auto It = StackSlotToOrigLI.find(StackSlot); 1128 if (It == StackSlotToOrigLI.end()) 1129 return false; 1130 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1131 VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot()); 1132 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1133 return MergeableSpills[MIdx].erase(&Spill); 1134 } 1135 1136 /// Check BB to see if it is a possible target BB to place a hoisted spill, 1137 /// i.e., there should be a living sibling of OrigReg at the insert point. 1138 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, 1139 MachineBasicBlock &BB, unsigned &LiveReg) { 1140 SlotIndex Idx; 1141 unsigned OrigReg = OrigLI.reg; 1142 MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, BB); 1143 if (MI != BB.end()) 1144 Idx = LIS.getInstructionIndex(*MI); 1145 else 1146 Idx = LIS.getMBBEndIdx(&BB).getPrevSlot(); 1147 SmallSetVector<unsigned, 16> &Siblings = Virt2SiblingsMap[OrigReg]; 1148 assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI"); 1149 1150 for (auto const SibReg : Siblings) { 1151 LiveInterval &LI = LIS.getInterval(SibReg); 1152 VNInfo *VNI = LI.getVNInfoAt(Idx); 1153 if (VNI) { 1154 LiveReg = SibReg; 1155 return true; 1156 } 1157 } 1158 return false; 1159 } 1160 1161 /// Remove redundant spills in the same BB. Save those redundant spills in 1162 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map. 1163 void HoistSpillHelper::rmRedundantSpills( 1164 SmallPtrSet<MachineInstr *, 16> &Spills, 1165 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1166 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1167 // For each spill saw, check SpillBBToSpill[] and see if its BB already has 1168 // another spill inside. If a BB contains more than one spill, only keep the 1169 // earlier spill with smaller SlotIndex. 1170 for (const auto CurrentSpill : Spills) { 1171 MachineBasicBlock *Block = CurrentSpill->getParent(); 1172 MachineDomTreeNode *Node = MDT.getBase().getNode(Block); 1173 MachineInstr *PrevSpill = SpillBBToSpill[Node]; 1174 if (PrevSpill) { 1175 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill); 1176 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill); 1177 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill; 1178 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill; 1179 SpillsToRm.push_back(SpillToRm); 1180 SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep; 1181 } else { 1182 SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill; 1183 } 1184 } 1185 for (const auto SpillToRm : SpillsToRm) 1186 Spills.erase(SpillToRm); 1187 } 1188 1189 /// Starting from \p Root find a top-down traversal order of the dominator 1190 /// tree to visit all basic blocks containing the elements of \p Spills. 1191 /// Redundant spills will be found and put into \p SpillsToRm at the same 1192 /// time. \p SpillBBToSpill will be populated as part of the process and 1193 /// maps a basic block to the first store occurring in the basic block. 1194 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre 1195 void HoistSpillHelper::getVisitOrders( 1196 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 1197 SmallVectorImpl<MachineDomTreeNode *> &Orders, 1198 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1199 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 1200 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1201 // The set contains all the possible BB nodes to which we may hoist 1202 // original spills. 1203 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet; 1204 // Save the BB nodes on the path from the first BB node containing 1205 // non-redundant spill to the Root node. 1206 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath; 1207 // All the spills to be hoisted must originate from a single def instruction 1208 // to the OrigReg. It means the def instruction should dominate all the spills 1209 // to be hoisted. We choose the BB where the def instruction is located as 1210 // the Root. 1211 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom(); 1212 // For every node on the dominator tree with spill, walk up on the dominator 1213 // tree towards the Root node until it is reached. If there is other node 1214 // containing spill in the middle of the path, the previous spill saw will 1215 // be redundant and the node containing it will be removed. All the nodes on 1216 // the path starting from the first node with non-redundant spill to the Root 1217 // node will be added to the WorkSet, which will contain all the possible 1218 // locations where spills may be hoisted to after the loop below is done. 1219 for (const auto Spill : Spills) { 1220 MachineBasicBlock *Block = Spill->getParent(); 1221 MachineDomTreeNode *Node = MDT[Block]; 1222 MachineInstr *SpillToRm = nullptr; 1223 while (Node != RootIDomNode) { 1224 // If Node dominates Block, and it already contains a spill, the spill in 1225 // Block will be redundant. 1226 if (Node != MDT[Block] && SpillBBToSpill[Node]) { 1227 SpillToRm = SpillBBToSpill[MDT[Block]]; 1228 break; 1229 /// If we see the Node already in WorkSet, the path from the Node to 1230 /// the Root node must already be traversed by another spill. 1231 /// Then no need to repeat. 1232 } else if (WorkSet.count(Node)) { 1233 break; 1234 } else { 1235 NodesOnPath.insert(Node); 1236 } 1237 Node = Node->getIDom(); 1238 } 1239 if (SpillToRm) { 1240 SpillsToRm.push_back(SpillToRm); 1241 } else { 1242 // Add a BB containing the original spills to SpillsToKeep -- i.e., 1243 // set the initial status before hoisting start. The value of BBs 1244 // containing original spills is set to 0, in order to descriminate 1245 // with BBs containing hoisted spills which will be inserted to 1246 // SpillsToKeep later during hoisting. 1247 SpillsToKeep[MDT[Block]] = 0; 1248 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end()); 1249 } 1250 NodesOnPath.clear(); 1251 } 1252 1253 // Sort the nodes in WorkSet in top-down order and save the nodes 1254 // in Orders. Orders will be used for hoisting in runHoistSpills. 1255 unsigned idx = 0; 1256 Orders.push_back(MDT.getBase().getNode(Root)); 1257 do { 1258 MachineDomTreeNode *Node = Orders[idx++]; 1259 const std::vector<MachineDomTreeNode *> &Children = Node->getChildren(); 1260 unsigned NumChildren = Children.size(); 1261 for (unsigned i = 0; i != NumChildren; ++i) { 1262 MachineDomTreeNode *Child = Children[i]; 1263 if (WorkSet.count(Child)) 1264 Orders.push_back(Child); 1265 } 1266 } while (idx != Orders.size()); 1267 assert(Orders.size() == WorkSet.size() && 1268 "Orders have different size with WorkSet"); 1269 1270 #ifndef NDEBUG 1271 LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n"); 1272 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1273 for (; RIt != Orders.rend(); RIt++) 1274 LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ","); 1275 LLVM_DEBUG(dbgs() << "\n"); 1276 #endif 1277 } 1278 1279 /// Try to hoist spills according to BB hotness. The spills to removed will 1280 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in 1281 /// \p SpillsToIns. 1282 void HoistSpillHelper::runHoistSpills( 1283 LiveInterval &OrigLI, VNInfo &OrigVNI, 1284 SmallPtrSet<MachineInstr *, 16> &Spills, 1285 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1286 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) { 1287 // Visit order of dominator tree nodes. 1288 SmallVector<MachineDomTreeNode *, 32> Orders; 1289 // SpillsToKeep contains all the nodes where spills are to be inserted 1290 // during hoisting. If the spill to be inserted is an original spill 1291 // (not a hoisted one), the value of the map entry is 0. If the spill 1292 // is a hoisted spill, the value of the map entry is the VReg to be used 1293 // as the source of the spill. 1294 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep; 1295 // Map from BB to the first spill inside of it. 1296 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill; 1297 1298 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill); 1299 1300 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def); 1301 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep, 1302 SpillBBToSpill); 1303 1304 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of 1305 // nodes set and the cost of all the spills inside those nodes. 1306 // The nodes set are the locations where spills are to be inserted 1307 // in the subtree of current node. 1308 using NodesCostPair = 1309 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>; 1310 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap; 1311 1312 // Iterate Orders set in reverse order, which will be a bottom-up order 1313 // in the dominator tree. Once we visit a dom tree node, we know its 1314 // children have already been visited and the spill locations in the 1315 // subtrees of all the children have been determined. 1316 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1317 for (; RIt != Orders.rend(); RIt++) { 1318 MachineBasicBlock *Block = (*RIt)->getBlock(); 1319 1320 // If Block contains an original spill, simply continue. 1321 if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) { 1322 SpillsInSubTreeMap[*RIt].first.insert(*RIt); 1323 // SpillsInSubTreeMap[*RIt].second contains the cost of spill. 1324 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block); 1325 continue; 1326 } 1327 1328 // Collect spills in subtree of current node (*RIt) to 1329 // SpillsInSubTreeMap[*RIt].first. 1330 const std::vector<MachineDomTreeNode *> &Children = (*RIt)->getChildren(); 1331 unsigned NumChildren = Children.size(); 1332 for (unsigned i = 0; i != NumChildren; ++i) { 1333 MachineDomTreeNode *Child = Children[i]; 1334 if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end()) 1335 continue; 1336 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below 1337 // should be placed before getting the begin and end iterators of 1338 // SpillsInSubTreeMap[Child].first, or else the iterators may be 1339 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time 1340 // and the map grows and then the original buckets in the map are moved. 1341 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1342 SpillsInSubTreeMap[*RIt].first; 1343 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1344 SubTreeCost += SpillsInSubTreeMap[Child].second; 1345 auto BI = SpillsInSubTreeMap[Child].first.begin(); 1346 auto EI = SpillsInSubTreeMap[Child].first.end(); 1347 SpillsInSubTree.insert(BI, EI); 1348 SpillsInSubTreeMap.erase(Child); 1349 } 1350 1351 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1352 SpillsInSubTreeMap[*RIt].first; 1353 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1354 // No spills in subtree, simply continue. 1355 if (SpillsInSubTree.empty()) 1356 continue; 1357 1358 // Check whether Block is a possible candidate to insert spill. 1359 unsigned LiveReg = 0; 1360 if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg)) 1361 continue; 1362 1363 // If there are multiple spills that could be merged, bias a little 1364 // to hoist the spill. 1365 BranchProbability MarginProb = (SpillsInSubTree.size() > 1) 1366 ? BranchProbability(9, 10) 1367 : BranchProbability(1, 1); 1368 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) { 1369 // Hoist: Move spills to current Block. 1370 for (const auto SpillBB : SpillsInSubTree) { 1371 // When SpillBB is a BB contains original spill, insert the spill 1372 // to SpillsToRm. 1373 if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() && 1374 !SpillsToKeep[SpillBB]) { 1375 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB]; 1376 SpillsToRm.push_back(SpillToRm); 1377 } 1378 // SpillBB will not contain spill anymore, remove it from SpillsToKeep. 1379 SpillsToKeep.erase(SpillBB); 1380 } 1381 // Current Block is the BB containing the new hoisted spill. Add it to 1382 // SpillsToKeep. LiveReg is the source of the new spill. 1383 SpillsToKeep[*RIt] = LiveReg; 1384 LLVM_DEBUG({ 1385 dbgs() << "spills in BB: "; 1386 for (const auto Rspill : SpillsInSubTree) 1387 dbgs() << Rspill->getBlock()->getNumber() << " "; 1388 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber() 1389 << "\n"; 1390 }); 1391 SpillsInSubTree.clear(); 1392 SpillsInSubTree.insert(*RIt); 1393 SubTreeCost = MBFI.getBlockFreq(Block); 1394 } 1395 } 1396 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill), 1397 // save them to SpillsToIns. 1398 for (const auto Ent : SpillsToKeep) { 1399 if (Ent.second) 1400 SpillsToIns[Ent.first->getBlock()] = Ent.second; 1401 } 1402 } 1403 1404 /// For spills with equal values, remove redundant spills and hoist those left 1405 /// to less hot spots. 1406 /// 1407 /// Spills with equal values will be collected into the same set in 1408 /// MergeableSpills when spill is inserted. These equal spills are originated 1409 /// from the same defining instruction and are dominated by the instruction. 1410 /// Before hoisting all the equal spills, redundant spills inside in the same 1411 /// BB are first marked to be deleted. Then starting from the spills left, walk 1412 /// up on the dominator tree towards the Root node where the define instruction 1413 /// is located, mark the dominated spills to be deleted along the way and 1414 /// collect the BB nodes on the path from non-dominated spills to the define 1415 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places 1416 /// where we are considering to hoist the spills. We iterate the WorkSet in 1417 /// bottom-up order, and for each node, we will decide whether to hoist spills 1418 /// inside its subtree to that node. In this way, we can get benefit locally 1419 /// even if hoisting all the equal spills to one cold place is impossible. 1420 void HoistSpillHelper::hoistAllSpills() { 1421 SmallVector<unsigned, 4> NewVRegs; 1422 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this); 1423 1424 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { 1425 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1426 unsigned Original = VRM.getPreSplitReg(Reg); 1427 if (!MRI.def_empty(Reg)) 1428 Virt2SiblingsMap[Original].insert(Reg); 1429 } 1430 1431 // Each entry in MergeableSpills contains a spill set with equal values. 1432 for (auto &Ent : MergeableSpills) { 1433 int Slot = Ent.first.first; 1434 LiveInterval &OrigLI = *StackSlotToOrigLI[Slot]; 1435 VNInfo *OrigVNI = Ent.first.second; 1436 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second; 1437 if (Ent.second.empty()) 1438 continue; 1439 1440 LLVM_DEBUG({ 1441 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n" 1442 << "Equal spills in BB: "; 1443 for (const auto spill : EqValSpills) 1444 dbgs() << spill->getParent()->getNumber() << " "; 1445 dbgs() << "\n"; 1446 }); 1447 1448 // SpillsToRm is the spill set to be removed from EqValSpills. 1449 SmallVector<MachineInstr *, 16> SpillsToRm; 1450 // SpillsToIns is the spill set to be newly inserted after hoisting. 1451 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns; 1452 1453 runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns); 1454 1455 LLVM_DEBUG({ 1456 dbgs() << "Finally inserted spills in BB: "; 1457 for (const auto Ispill : SpillsToIns) 1458 dbgs() << Ispill.first->getNumber() << " "; 1459 dbgs() << "\nFinally removed spills in BB: "; 1460 for (const auto Rspill : SpillsToRm) 1461 dbgs() << Rspill->getParent()->getNumber() << " "; 1462 dbgs() << "\n"; 1463 }); 1464 1465 // Stack live range update. 1466 LiveInterval &StackIntvl = LSS.getInterval(Slot); 1467 if (!SpillsToIns.empty() || !SpillsToRm.empty()) 1468 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI, 1469 StackIntvl.getValNumInfo(0)); 1470 1471 // Insert hoisted spills. 1472 for (auto const Insert : SpillsToIns) { 1473 MachineBasicBlock *BB = Insert.first; 1474 unsigned LiveReg = Insert.second; 1475 MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, *BB); 1476 TII.storeRegToStackSlot(*BB, MI, LiveReg, false, Slot, 1477 MRI.getRegClass(LiveReg), &TRI); 1478 LIS.InsertMachineInstrRangeInMaps(std::prev(MI), MI); 1479 ++NumSpills; 1480 } 1481 1482 // Remove redundant spills or change them to dead instructions. 1483 NumSpills -= SpillsToRm.size(); 1484 for (auto const RMEnt : SpillsToRm) { 1485 RMEnt->setDesc(TII.get(TargetOpcode::KILL)); 1486 for (unsigned i = RMEnt->getNumOperands(); i; --i) { 1487 MachineOperand &MO = RMEnt->getOperand(i - 1); 1488 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead()) 1489 RMEnt->RemoveOperand(i - 1); 1490 } 1491 } 1492 Edit.eliminateDeadDefs(SpillsToRm, None, AA); 1493 } 1494 } 1495 1496 /// For VirtReg clone, the \p New register should have the same physreg or 1497 /// stackslot as the \p old register. 1498 void HoistSpillHelper::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 1499 if (VRM.hasPhys(Old)) 1500 VRM.assignVirt2Phys(New, VRM.getPhys(Old)); 1501 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT) 1502 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old)); 1503 else 1504 llvm_unreachable("VReg should be assigned either physreg or stackslot"); 1505 } 1506