1 //===-------- InlineSpiller.cpp - Insert spills and restores inline -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The inline spiller modifies the machine function directly instead of 11 // inserting spills and restores in VirtRegMap. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "Spiller.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/TinyPtrVector.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/LiveRangeEdit.h" 23 #include "llvm/CodeGen/LiveStackAnalysis.h" 24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 25 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 26 #include "llvm/CodeGen/MachineDominators.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineInstrBundle.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/VirtRegMap.h" 34 #include "llvm/IR/DebugInfo.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetInstrInfo.h" 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "regalloc" 43 44 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 45 STATISTIC(NumSnippets, "Number of spilled snippets"); 46 STATISTIC(NumSpills, "Number of spills inserted"); 47 STATISTIC(NumSpillsRemoved, "Number of spills removed"); 48 STATISTIC(NumReloads, "Number of reloads inserted"); 49 STATISTIC(NumReloadsRemoved, "Number of reloads removed"); 50 STATISTIC(NumFolded, "Number of folded stack accesses"); 51 STATISTIC(NumFoldedLoads, "Number of folded loads"); 52 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 53 54 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden, 55 cl::desc("Disable inline spill hoisting")); 56 57 namespace { 58 class HoistSpillHelper : private LiveRangeEdit::Delegate { 59 MachineFunction &MF; 60 LiveIntervals &LIS; 61 LiveStacks &LSS; 62 AliasAnalysis *AA; 63 MachineDominatorTree &MDT; 64 MachineLoopInfo &Loops; 65 VirtRegMap &VRM; 66 MachineFrameInfo &MFI; 67 MachineRegisterInfo &MRI; 68 const TargetInstrInfo &TII; 69 const TargetRegisterInfo &TRI; 70 const MachineBlockFrequencyInfo &MBFI; 71 72 // Map from StackSlot to its original register. 73 DenseMap<int, unsigned> StackSlotToReg; 74 // Map from pair of (StackSlot and Original VNI) to a set of spills which 75 // have the same stackslot and have equal values defined by Original VNI. 76 // These spills are mergeable and are hoist candiates. 77 typedef MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>> 78 MergeableSpillsMap; 79 MergeableSpillsMap MergeableSpills; 80 81 /// This is the map from original register to a set containing all its 82 /// siblings. To hoist a spill to another BB, we need to find out a live 83 /// sibling there and use it as the source of the new spill. 84 DenseMap<unsigned, SmallSetVector<unsigned, 16>> Virt2SiblingsMap; 85 86 bool isSpillCandBB(unsigned OrigReg, VNInfo &OrigVNI, MachineBasicBlock &BB, 87 unsigned &LiveReg); 88 89 void rmRedundantSpills( 90 SmallPtrSet<MachineInstr *, 16> &Spills, 91 SmallVectorImpl<MachineInstr *> &SpillsToRm, 92 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 93 94 void getVisitOrders( 95 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 96 SmallVectorImpl<MachineDomTreeNode *> &Orders, 97 SmallVectorImpl<MachineInstr *> &SpillsToRm, 98 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 99 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 100 101 void runHoistSpills(unsigned OrigReg, VNInfo &OrigVNI, 102 SmallPtrSet<MachineInstr *, 16> &Spills, 103 SmallVectorImpl<MachineInstr *> &SpillsToRm, 104 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns); 105 106 public: 107 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf, 108 VirtRegMap &vrm) 109 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 110 LSS(pass.getAnalysis<LiveStacks>()), 111 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 112 MDT(pass.getAnalysis<MachineDominatorTree>()), 113 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 114 MFI(*mf.getFrameInfo()), MRI(mf.getRegInfo()), 115 TII(*mf.getSubtarget().getInstrInfo()), 116 TRI(*mf.getSubtarget().getRegisterInfo()), 117 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()) {} 118 119 void addToMergeableSpills(MachineInstr *Spill, int StackSlot, 120 unsigned Original); 121 bool rmFromMergeableSpills(MachineInstr *Spill, int StackSlot); 122 void hoistAllSpills(); 123 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 124 }; 125 126 class InlineSpiller : public Spiller { 127 MachineFunction &MF; 128 LiveIntervals &LIS; 129 LiveStacks &LSS; 130 AliasAnalysis *AA; 131 MachineDominatorTree &MDT; 132 MachineLoopInfo &Loops; 133 VirtRegMap &VRM; 134 MachineFrameInfo &MFI; 135 MachineRegisterInfo &MRI; 136 const TargetInstrInfo &TII; 137 const TargetRegisterInfo &TRI; 138 const MachineBlockFrequencyInfo &MBFI; 139 140 // Variables that are valid during spill(), but used by multiple methods. 141 LiveRangeEdit *Edit; 142 LiveInterval *StackInt; 143 int StackSlot; 144 unsigned Original; 145 146 // All registers to spill to StackSlot, including the main register. 147 SmallVector<unsigned, 8> RegsToSpill; 148 149 // All COPY instructions to/from snippets. 150 // They are ignored since both operands refer to the same stack slot. 151 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 152 153 // Values that failed to remat at some point. 154 SmallPtrSet<VNInfo*, 8> UsedValues; 155 156 // Dead defs generated during spilling. 157 SmallVector<MachineInstr*, 8> DeadDefs; 158 159 // Object records spills information and does the hoisting. 160 HoistSpillHelper HSpiller; 161 162 ~InlineSpiller() override {} 163 164 public: 165 InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm) 166 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 167 LSS(pass.getAnalysis<LiveStacks>()), 168 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 169 MDT(pass.getAnalysis<MachineDominatorTree>()), 170 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 171 MFI(*mf.getFrameInfo()), MRI(mf.getRegInfo()), 172 TII(*mf.getSubtarget().getInstrInfo()), 173 TRI(*mf.getSubtarget().getRegisterInfo()), 174 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 175 HSpiller(pass, mf, vrm) {} 176 177 void spill(LiveRangeEdit &) override; 178 void postOptimization() override; 179 180 private: 181 bool isSnippet(const LiveInterval &SnipLI); 182 void collectRegsToSpill(); 183 184 bool isRegToSpill(unsigned Reg) { 185 return std::find(RegsToSpill.begin(), 186 RegsToSpill.end(), Reg) != RegsToSpill.end(); 187 } 188 189 bool isSibling(unsigned Reg); 190 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI); 191 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 192 193 void markValueUsed(LiveInterval*, VNInfo*); 194 bool reMaterializeFor(LiveInterval &, MachineInstr &MI); 195 void reMaterializeAll(); 196 197 bool coalesceStackAccess(MachineInstr *MI, unsigned Reg); 198 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> >, 199 MachineInstr *LoadMI = nullptr); 200 void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI); 201 void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI); 202 203 void spillAroundUses(unsigned Reg); 204 void spillAll(); 205 }; 206 } 207 208 namespace llvm { 209 210 Spiller::~Spiller() { } 211 void Spiller::anchor() { } 212 213 Spiller *createInlineSpiller(MachineFunctionPass &pass, 214 MachineFunction &mf, 215 VirtRegMap &vrm) { 216 return new InlineSpiller(pass, mf, vrm); 217 } 218 219 } 220 221 //===----------------------------------------------------------------------===// 222 // Snippets 223 //===----------------------------------------------------------------------===// 224 225 // When spilling a virtual register, we also spill any snippets it is connected 226 // to. The snippets are small live ranges that only have a single real use, 227 // leftovers from live range splitting. Spilling them enables memory operand 228 // folding or tightens the live range around the single use. 229 // 230 // This minimizes register pressure and maximizes the store-to-load distance for 231 // spill slots which can be important in tight loops. 232 233 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 234 /// otherwise return 0. 235 static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) { 236 if (!MI->isFullCopy()) 237 return 0; 238 if (MI->getOperand(0).getReg() == Reg) 239 return MI->getOperand(1).getReg(); 240 if (MI->getOperand(1).getReg() == Reg) 241 return MI->getOperand(0).getReg(); 242 return 0; 243 } 244 245 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 246 /// It is assumed that SnipLI is a virtual register with the same original as 247 /// Edit->getReg(). 248 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 249 unsigned Reg = Edit->getReg(); 250 251 // A snippet is a tiny live range with only a single instruction using it 252 // besides copies to/from Reg or spills/fills. We accept: 253 // 254 // %snip = COPY %Reg / FILL fi# 255 // %snip = USE %snip 256 // %Reg = COPY %snip / SPILL %snip, fi# 257 // 258 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) 259 return false; 260 261 MachineInstr *UseMI = nullptr; 262 263 // Check that all uses satisfy our criteria. 264 for (MachineRegisterInfo::reg_instr_nodbg_iterator 265 RI = MRI.reg_instr_nodbg_begin(SnipLI.reg), 266 E = MRI.reg_instr_nodbg_end(); RI != E; ) { 267 MachineInstr *MI = &*(RI++); 268 269 // Allow copies to/from Reg. 270 if (isFullCopyOf(MI, Reg)) 271 continue; 272 273 // Allow stack slot loads. 274 int FI; 275 if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 276 continue; 277 278 // Allow stack slot stores. 279 if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 280 continue; 281 282 // Allow a single additional instruction. 283 if (UseMI && MI != UseMI) 284 return false; 285 UseMI = MI; 286 } 287 return true; 288 } 289 290 /// collectRegsToSpill - Collect live range snippets that only have a single 291 /// real use. 292 void InlineSpiller::collectRegsToSpill() { 293 unsigned Reg = Edit->getReg(); 294 295 // Main register always spills. 296 RegsToSpill.assign(1, Reg); 297 SnippetCopies.clear(); 298 299 // Snippets all have the same original, so there can't be any for an original 300 // register. 301 if (Original == Reg) 302 return; 303 304 for (MachineRegisterInfo::reg_instr_iterator 305 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) { 306 MachineInstr *MI = &*(RI++); 307 unsigned SnipReg = isFullCopyOf(MI, Reg); 308 if (!isSibling(SnipReg)) 309 continue; 310 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 311 if (!isSnippet(SnipLI)) 312 continue; 313 SnippetCopies.insert(MI); 314 if (isRegToSpill(SnipReg)) 315 continue; 316 RegsToSpill.push_back(SnipReg); 317 DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 318 ++NumSnippets; 319 } 320 } 321 322 bool InlineSpiller::isSibling(unsigned Reg) { 323 return TargetRegisterInfo::isVirtualRegister(Reg) && 324 VRM.getOriginal(Reg) == Original; 325 } 326 327 /// It is beneficial to spill to earlier place in the same BB in case 328 /// as follows: 329 /// There is an alternative def earlier in the same MBB. 330 /// Hoist the spill as far as possible in SpillMBB. This can ease 331 /// register pressure: 332 /// 333 /// x = def 334 /// y = use x 335 /// s = copy x 336 /// 337 /// Hoisting the spill of s to immediately after the def removes the 338 /// interference between x and y: 339 /// 340 /// x = def 341 /// spill x 342 /// y = use x<kill> 343 /// 344 /// This hoist only helps when the copy kills its source. 345 /// 346 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI, 347 MachineInstr &CopyMI) { 348 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 349 #ifndef NDEBUG 350 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); 351 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); 352 #endif 353 354 unsigned SrcReg = CopyMI.getOperand(1).getReg(); 355 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 356 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx); 357 LiveQueryResult SrcQ = SrcLI.Query(Idx); 358 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def); 359 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill()) 360 return false; 361 362 // Conservatively extend the stack slot range to the range of the original 363 // value. We may be able to do better with stack slot coloring by being more 364 // careful here. 365 assert(StackInt && "No stack slot assigned yet."); 366 LiveInterval &OrigLI = LIS.getInterval(Original); 367 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 368 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 369 DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 370 << *StackInt << '\n'); 371 372 // We are going to spill SrcVNI immediately after its def, so clear out 373 // any later spills of the same value. 374 eliminateRedundantSpills(SrcLI, SrcVNI); 375 376 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def); 377 MachineBasicBlock::iterator MII; 378 if (SrcVNI->isPHIDef()) 379 MII = MBB->SkipPHIsAndLabels(MBB->begin()); 380 else { 381 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def); 382 assert(DefMI && "Defining instruction disappeared"); 383 MII = DefMI; 384 ++MII; 385 } 386 // Insert spill without kill flag immediately after def. 387 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot, 388 MRI.getRegClass(SrcReg), &TRI); 389 --MII; // Point to store instruction. 390 LIS.InsertMachineInstrInMaps(*MII); 391 DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII); 392 393 HSpiller.addToMergeableSpills(&(*MII), StackSlot, Original); 394 ++NumSpills; 395 return true; 396 } 397 398 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 399 /// redundant spills of this value in SLI.reg and sibling copies. 400 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 401 assert(VNI && "Missing value"); 402 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 403 WorkList.push_back(std::make_pair(&SLI, VNI)); 404 assert(StackInt && "No stack slot assigned yet."); 405 406 do { 407 LiveInterval *LI; 408 std::tie(LI, VNI) = WorkList.pop_back_val(); 409 unsigned Reg = LI->reg; 410 DEBUG(dbgs() << "Checking redundant spills for " 411 << VNI->id << '@' << VNI->def << " in " << *LI << '\n'); 412 413 // Regs to spill are taken care of. 414 if (isRegToSpill(Reg)) 415 continue; 416 417 // Add all of VNI's live range to StackInt. 418 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 419 DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 420 421 // Find all spills and copies of VNI. 422 for (MachineRegisterInfo::use_instr_nodbg_iterator 423 UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 424 UI != E; ) { 425 MachineInstr *MI = &*(UI++); 426 if (!MI->isCopy() && !MI->mayStore()) 427 continue; 428 SlotIndex Idx = LIS.getInstructionIndex(*MI); 429 if (LI->getVNInfoAt(Idx) != VNI) 430 continue; 431 432 // Follow sibling copies down the dominator tree. 433 if (unsigned DstReg = isFullCopyOf(MI, Reg)) { 434 if (isSibling(DstReg)) { 435 LiveInterval &DstLI = LIS.getInterval(DstReg); 436 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); 437 assert(DstVNI && "Missing defined value"); 438 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); 439 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 440 } 441 continue; 442 } 443 444 // Erase spills. 445 int FI; 446 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 447 DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI); 448 // eliminateDeadDefs won't normally remove stores, so switch opcode. 449 MI->setDesc(TII.get(TargetOpcode::KILL)); 450 DeadDefs.push_back(MI); 451 ++NumSpillsRemoved; 452 if (HSpiller.rmFromMergeableSpills(MI, StackSlot)) 453 --NumSpills; 454 } 455 } 456 } while (!WorkList.empty()); 457 } 458 459 460 //===----------------------------------------------------------------------===// 461 // Rematerialization 462 //===----------------------------------------------------------------------===// 463 464 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 465 /// instruction cannot be eliminated. See through snippet copies 466 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 467 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 468 WorkList.push_back(std::make_pair(LI, VNI)); 469 do { 470 std::tie(LI, VNI) = WorkList.pop_back_val(); 471 if (!UsedValues.insert(VNI).second) 472 continue; 473 474 if (VNI->isPHIDef()) { 475 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 476 for (MachineBasicBlock *P : MBB->predecessors()) { 477 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P)); 478 if (PVNI) 479 WorkList.push_back(std::make_pair(LI, PVNI)); 480 } 481 continue; 482 } 483 484 // Follow snippet copies. 485 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 486 if (!SnippetCopies.count(MI)) 487 continue; 488 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 489 assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy"); 490 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); 491 assert(SnipVNI && "Snippet undefined before copy"); 492 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 493 } while (!WorkList.empty()); 494 } 495 496 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 497 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) { 498 499 // Analyze instruction 500 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 501 MIBundleOperands::VirtRegInfo RI = 502 MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops); 503 504 if (!RI.Reads) 505 return false; 506 507 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); 508 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 509 510 if (!ParentVNI) { 511 DEBUG(dbgs() << "\tadding <undef> flags: "); 512 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 513 MachineOperand &MO = MI.getOperand(i); 514 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) 515 MO.setIsUndef(); 516 } 517 DEBUG(dbgs() << UseIdx << '\t' << MI); 518 return true; 519 } 520 521 if (SnippetCopies.count(&MI)) 522 return false; 523 524 LiveInterval &OrigLI = LIS.getInterval(Original); 525 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 526 LiveRangeEdit::Remat RM(ParentVNI); 527 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 528 529 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) { 530 markValueUsed(&VirtReg, ParentVNI); 531 DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 532 return false; 533 } 534 535 // If the instruction also writes VirtReg.reg, it had better not require the 536 // same register for uses and defs. 537 if (RI.Tied) { 538 markValueUsed(&VirtReg, ParentVNI); 539 DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI); 540 return false; 541 } 542 543 // Before rematerializing into a register for a single instruction, try to 544 // fold a load into the instruction. That avoids allocating a new register. 545 if (RM.OrigMI->canFoldAsLoad() && 546 foldMemoryOperand(Ops, RM.OrigMI)) { 547 Edit->markRematerialized(RM.ParentVNI); 548 ++NumFoldedLoads; 549 return true; 550 } 551 552 // Alocate a new register for the remat. 553 unsigned NewVReg = Edit->createFrom(Original); 554 555 // Finally we can rematerialize OrigMI before MI. 556 SlotIndex DefIdx = 557 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI); 558 (void)DefIdx; 559 DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 560 << *LIS.getInstructionFromIndex(DefIdx)); 561 562 // Replace operands 563 for (const auto &OpPair : Ops) { 564 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 565 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) { 566 MO.setReg(NewVReg); 567 MO.setIsKill(); 568 } 569 } 570 DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n'); 571 572 ++NumRemats; 573 return true; 574 } 575 576 /// reMaterializeAll - Try to rematerialize as many uses as possible, 577 /// and trim the live ranges after. 578 void InlineSpiller::reMaterializeAll() { 579 if (!Edit->anyRematerializable(AA)) 580 return; 581 582 UsedValues.clear(); 583 584 // Try to remat before all uses of snippets. 585 bool anyRemat = false; 586 for (unsigned Reg : RegsToSpill) { 587 LiveInterval &LI = LIS.getInterval(Reg); 588 for (MachineRegisterInfo::reg_bundle_iterator 589 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 590 RegI != E; ) { 591 MachineInstr &MI = *RegI++; 592 593 // Debug values are not allowed to affect codegen. 594 if (MI.isDebugValue()) 595 continue; 596 597 anyRemat |= reMaterializeFor(LI, MI); 598 } 599 } 600 if (!anyRemat) 601 return; 602 603 // Remove any values that were completely rematted. 604 for (unsigned Reg : RegsToSpill) { 605 LiveInterval &LI = LIS.getInterval(Reg); 606 for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 607 I != E; ++I) { 608 VNInfo *VNI = *I; 609 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 610 continue; 611 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 612 MI->addRegisterDead(Reg, &TRI); 613 if (!MI->allDefsAreDead()) 614 continue; 615 DEBUG(dbgs() << "All defs dead: " << *MI); 616 DeadDefs.push_back(MI); 617 } 618 } 619 620 // Eliminate dead code after remat. Note that some snippet copies may be 621 // deleted here. 622 if (DeadDefs.empty()) 623 return; 624 DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 625 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill); 626 627 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions 628 // after rematerialization. To remove a VNI for a vreg from its LiveInterval, 629 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all 630 // removed, PHI VNI are still left in the LiveInterval. 631 // So to get rid of unused reg, we need to check whether it has non-dbg 632 // reference instead of whether it has non-empty interval. 633 unsigned ResultPos = 0; 634 for (unsigned Reg : RegsToSpill) { 635 if (MRI.reg_nodbg_empty(Reg)) { 636 Edit->eraseVirtReg(Reg); 637 continue; 638 } 639 assert((LIS.hasInterval(Reg) && !LIS.getInterval(Reg).empty()) && 640 "Reg with empty interval has reference"); 641 RegsToSpill[ResultPos++] = Reg; 642 } 643 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); 644 DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n"); 645 } 646 647 648 //===----------------------------------------------------------------------===// 649 // Spilling 650 //===----------------------------------------------------------------------===// 651 652 /// If MI is a load or store of StackSlot, it can be removed. 653 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) { 654 int FI = 0; 655 unsigned InstrReg = TII.isLoadFromStackSlot(MI, FI); 656 bool IsLoad = InstrReg; 657 if (!IsLoad) 658 InstrReg = TII.isStoreToStackSlot(MI, FI); 659 660 // We have a stack access. Is it the right register and slot? 661 if (InstrReg != Reg || FI != StackSlot) 662 return false; 663 664 if (!IsLoad) 665 HSpiller.rmFromMergeableSpills(MI, StackSlot); 666 667 DEBUG(dbgs() << "Coalescing stack access: " << *MI); 668 LIS.RemoveMachineInstrFromMaps(*MI); 669 MI->eraseFromParent(); 670 671 if (IsLoad) { 672 ++NumReloadsRemoved; 673 --NumReloads; 674 } else { 675 ++NumSpillsRemoved; 676 --NumSpills; 677 } 678 679 return true; 680 } 681 682 #if !defined(NDEBUG) 683 // Dump the range of instructions from B to E with their slot indexes. 684 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, 685 MachineBasicBlock::iterator E, 686 LiveIntervals const &LIS, 687 const char *const header, 688 unsigned VReg =0) { 689 char NextLine = '\n'; 690 char SlotIndent = '\t'; 691 692 if (std::next(B) == E) { 693 NextLine = ' '; 694 SlotIndent = ' '; 695 } 696 697 dbgs() << '\t' << header << ": " << NextLine; 698 699 for (MachineBasicBlock::iterator I = B; I != E; ++I) { 700 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot(); 701 702 // If a register was passed in and this instruction has it as a 703 // destination that is marked as an early clobber, print the 704 // early-clobber slot index. 705 if (VReg) { 706 MachineOperand *MO = I->findRegisterDefOperand(VReg); 707 if (MO && MO->isEarlyClobber()) 708 Idx = Idx.getRegSlot(true); 709 } 710 711 dbgs() << SlotIndent << Idx << '\t' << *I; 712 } 713 } 714 #endif 715 716 /// foldMemoryOperand - Try folding stack slot references in Ops into their 717 /// instructions. 718 /// 719 /// @param Ops Operand indices from analyzeVirtReg(). 720 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 721 /// @return True on success. 722 bool InlineSpiller:: 723 foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops, 724 MachineInstr *LoadMI) { 725 if (Ops.empty()) 726 return false; 727 // Don't attempt folding in bundles. 728 MachineInstr *MI = Ops.front().first; 729 if (Ops.back().first != MI || MI->isBundled()) 730 return false; 731 732 bool WasCopy = MI->isCopy(); 733 unsigned ImpReg = 0; 734 735 bool SpillSubRegs = (MI->getOpcode() == TargetOpcode::STATEPOINT || 736 MI->getOpcode() == TargetOpcode::PATCHPOINT || 737 MI->getOpcode() == TargetOpcode::STACKMAP); 738 739 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 740 // operands. 741 SmallVector<unsigned, 8> FoldOps; 742 for (const auto &OpPair : Ops) { 743 unsigned Idx = OpPair.second; 744 assert(MI == OpPair.first && "Instruction conflict during operand folding"); 745 MachineOperand &MO = MI->getOperand(Idx); 746 if (MO.isImplicit()) { 747 ImpReg = MO.getReg(); 748 continue; 749 } 750 // FIXME: Teach targets to deal with subregs. 751 if (!SpillSubRegs && MO.getSubReg()) 752 return false; 753 // We cannot fold a load instruction into a def. 754 if (LoadMI && MO.isDef()) 755 return false; 756 // Tied use operands should not be passed to foldMemoryOperand. 757 if (!MI->isRegTiedToDefOperand(Idx)) 758 FoldOps.push_back(Idx); 759 } 760 761 MachineInstrSpan MIS(MI); 762 763 MachineInstr *FoldMI = 764 LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI) 765 : TII.foldMemoryOperand(MI, FoldOps, StackSlot); 766 if (!FoldMI) 767 return false; 768 769 // Remove LIS for any dead defs in the original MI not in FoldMI. 770 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) { 771 if (!MO->isReg()) 772 continue; 773 unsigned Reg = MO->getReg(); 774 if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) || 775 MRI.isReserved(Reg)) { 776 continue; 777 } 778 // Skip non-Defs, including undef uses and internal reads. 779 if (MO->isUse()) 780 continue; 781 MIBundleOperands::PhysRegInfo RI = 782 MIBundleOperands(*FoldMI).analyzePhysReg(Reg, &TRI); 783 if (RI.FullyDefined) 784 continue; 785 // FoldMI does not define this physreg. Remove the LI segment. 786 assert(MO->isDead() && "Cannot fold physreg def"); 787 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 788 LIS.removePhysRegDefAt(Reg, Idx); 789 } 790 791 int FI; 792 if (TII.isStoreToStackSlot(MI, FI) && HSpiller.rmFromMergeableSpills(MI, FI)) 793 --NumSpills; 794 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI); 795 MI->eraseFromParent(); 796 797 // Insert any new instructions other than FoldMI into the LIS maps. 798 assert(!MIS.empty() && "Unexpected empty span of instructions!"); 799 for (MachineInstr &MI : MIS) 800 if (&MI != FoldMI) 801 LIS.InsertMachineInstrInMaps(MI); 802 803 // TII.foldMemoryOperand may have left some implicit operands on the 804 // instruction. Strip them. 805 if (ImpReg) 806 for (unsigned i = FoldMI->getNumOperands(); i; --i) { 807 MachineOperand &MO = FoldMI->getOperand(i - 1); 808 if (!MO.isReg() || !MO.isImplicit()) 809 break; 810 if (MO.getReg() == ImpReg) 811 FoldMI->RemoveOperand(i - 1); 812 } 813 814 DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, 815 "folded")); 816 817 if (!WasCopy) 818 ++NumFolded; 819 else if (Ops.front().second == 0) { 820 ++NumSpills; 821 HSpiller.addToMergeableSpills(FoldMI, StackSlot, Original); 822 } else 823 ++NumReloads; 824 return true; 825 } 826 827 void InlineSpiller::insertReload(unsigned NewVReg, 828 SlotIndex Idx, 829 MachineBasicBlock::iterator MI) { 830 MachineBasicBlock &MBB = *MI->getParent(); 831 832 MachineInstrSpan MIS(MI); 833 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, 834 MRI.getRegClass(NewVReg), &TRI); 835 836 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); 837 838 DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload", 839 NewVReg)); 840 ++NumReloads; 841 } 842 843 /// insertSpill - Insert a spill of NewVReg after MI. 844 void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill, 845 MachineBasicBlock::iterator MI) { 846 MachineBasicBlock &MBB = *MI->getParent(); 847 848 MachineInstrSpan MIS(MI); 849 TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot, 850 MRI.getRegClass(NewVReg), &TRI); 851 852 LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end()); 853 854 DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS, 855 "spill")); 856 ++NumSpills; 857 HSpiller.addToMergeableSpills(std::next(MI), StackSlot, Original); 858 } 859 860 /// spillAroundUses - insert spill code around each use of Reg. 861 void InlineSpiller::spillAroundUses(unsigned Reg) { 862 DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n'); 863 LiveInterval &OldLI = LIS.getInterval(Reg); 864 865 // Iterate over instructions using Reg. 866 for (MachineRegisterInfo::reg_bundle_iterator 867 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 868 RegI != E; ) { 869 MachineInstr *MI = &*(RegI++); 870 871 // Debug values are not allowed to affect codegen. 872 if (MI->isDebugValue()) { 873 // Modify DBG_VALUE now that the value is in a spill slot. 874 bool IsIndirect = MI->isIndirectDebugValue(); 875 uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0; 876 const MDNode *Var = MI->getDebugVariable(); 877 const MDNode *Expr = MI->getDebugExpression(); 878 DebugLoc DL = MI->getDebugLoc(); 879 DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI); 880 MachineBasicBlock *MBB = MI->getParent(); 881 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 882 "Expected inlined-at fields to agree"); 883 BuildMI(*MBB, MBB->erase(MI), DL, TII.get(TargetOpcode::DBG_VALUE)) 884 .addFrameIndex(StackSlot) 885 .addImm(Offset) 886 .addMetadata(Var) 887 .addMetadata(Expr); 888 continue; 889 } 890 891 // Ignore copies to/from snippets. We'll delete them. 892 if (SnippetCopies.count(MI)) 893 continue; 894 895 // Stack slot accesses may coalesce away. 896 if (coalesceStackAccess(MI, Reg)) 897 continue; 898 899 // Analyze instruction. 900 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; 901 MIBundleOperands::VirtRegInfo RI = 902 MIBundleOperands(*MI).analyzeVirtReg(Reg, &Ops); 903 904 // Find the slot index where this instruction reads and writes OldLI. 905 // This is usually the def slot, except for tied early clobbers. 906 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 907 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) 908 if (SlotIndex::isSameInstr(Idx, VNI->def)) 909 Idx = VNI->def; 910 911 // Check for a sibling copy. 912 unsigned SibReg = isFullCopyOf(MI, Reg); 913 if (SibReg && isSibling(SibReg)) { 914 // This may actually be a copy between snippets. 915 if (isRegToSpill(SibReg)) { 916 DEBUG(dbgs() << "Found new snippet copy: " << *MI); 917 SnippetCopies.insert(MI); 918 continue; 919 } 920 if (RI.Writes) { 921 if (hoistSpillInsideBB(OldLI, *MI)) { 922 // This COPY is now dead, the value is already in the stack slot. 923 MI->getOperand(0).setIsDead(); 924 DeadDefs.push_back(MI); 925 continue; 926 } 927 } else { 928 // This is a reload for a sib-reg copy. Drop spills downstream. 929 LiveInterval &SibLI = LIS.getInterval(SibReg); 930 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 931 // The COPY will fold to a reload below. 932 } 933 } 934 935 // Attempt to fold memory ops. 936 if (foldMemoryOperand(Ops)) 937 continue; 938 939 // Create a new virtual register for spill/fill. 940 // FIXME: Infer regclass from instruction alone. 941 unsigned NewVReg = Edit->createFrom(Reg); 942 943 if (RI.Reads) 944 insertReload(NewVReg, Idx, MI); 945 946 // Rewrite instruction operands. 947 bool hasLiveDef = false; 948 for (const auto &OpPair : Ops) { 949 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 950 MO.setReg(NewVReg); 951 if (MO.isUse()) { 952 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second)) 953 MO.setIsKill(); 954 } else { 955 if (!MO.isDead()) 956 hasLiveDef = true; 957 } 958 } 959 DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n'); 960 961 // FIXME: Use a second vreg if instruction has no tied ops. 962 if (RI.Writes) 963 if (hasLiveDef) 964 insertSpill(NewVReg, true, MI); 965 } 966 } 967 968 /// spillAll - Spill all registers remaining after rematerialization. 969 void InlineSpiller::spillAll() { 970 // Update LiveStacks now that we are committed to spilling. 971 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 972 StackSlot = VRM.assignVirt2StackSlot(Original); 973 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 974 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); 975 } else 976 StackInt = &LSS.getInterval(StackSlot); 977 978 if (Original != Edit->getReg()) 979 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 980 981 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 982 for (unsigned Reg : RegsToSpill) 983 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg), 984 StackInt->getValNumInfo(0)); 985 DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 986 987 // Spill around uses of all RegsToSpill. 988 for (unsigned Reg : RegsToSpill) 989 spillAroundUses(Reg); 990 991 // Hoisted spills may cause dead code. 992 if (!DeadDefs.empty()) { 993 DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 994 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill); 995 } 996 997 // Finally delete the SnippetCopies. 998 for (unsigned Reg : RegsToSpill) { 999 for (MachineRegisterInfo::reg_instr_iterator 1000 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); 1001 RI != E; ) { 1002 MachineInstr &MI = *(RI++); 1003 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy"); 1004 // FIXME: Do this with a LiveRangeEdit callback. 1005 LIS.RemoveMachineInstrFromMaps(MI); 1006 MI.eraseFromParent(); 1007 } 1008 } 1009 1010 // Delete all spilled registers. 1011 for (unsigned Reg : RegsToSpill) 1012 Edit->eraseVirtReg(Reg); 1013 } 1014 1015 void InlineSpiller::spill(LiveRangeEdit &edit) { 1016 ++NumSpilledRanges; 1017 Edit = &edit; 1018 assert(!TargetRegisterInfo::isStackSlot(edit.getReg()) 1019 && "Trying to spill a stack slot."); 1020 // Share a stack slot among all descendants of Original. 1021 Original = VRM.getOriginal(edit.getReg()); 1022 StackSlot = VRM.getStackSlot(Original); 1023 StackInt = nullptr; 1024 1025 DEBUG(dbgs() << "Inline spilling " 1026 << TRI.getRegClassName(MRI.getRegClass(edit.getReg())) 1027 << ':' << edit.getParent() 1028 << "\nFrom original " << PrintReg(Original) << '\n'); 1029 assert(edit.getParent().isSpillable() && 1030 "Attempting to spill already spilled value."); 1031 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1032 1033 collectRegsToSpill(); 1034 reMaterializeAll(); 1035 1036 // Remat may handle everything. 1037 if (!RegsToSpill.empty()) 1038 spillAll(); 1039 1040 Edit->calculateRegClassAndHint(MF, Loops, MBFI); 1041 } 1042 1043 /// Optimizations after all the reg selections and spills are done. 1044 /// 1045 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); } 1046 1047 /// When a spill is inserted, add the spill to MergeableSpills map. 1048 /// 1049 void HoistSpillHelper::addToMergeableSpills(MachineInstr *Spill, int StackSlot, 1050 unsigned Original) { 1051 StackSlotToReg[StackSlot] = Original; 1052 SlotIndex Idx = LIS.getInstructionIndex(*Spill); 1053 VNInfo *OrigVNI = LIS.getInterval(Original).getVNInfoAt(Idx.getRegSlot()); 1054 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1055 MergeableSpills[MIdx].insert(Spill); 1056 } 1057 1058 /// When a spill is removed, remove the spill from MergeableSpills map. 1059 /// Return true if the spill is removed successfully. 1060 /// 1061 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr *Spill, 1062 int StackSlot) { 1063 int Original = StackSlotToReg[StackSlot]; 1064 if (!Original) 1065 return false; 1066 SlotIndex Idx = LIS.getInstructionIndex(*Spill); 1067 VNInfo *OrigVNI = LIS.getInterval(Original).getVNInfoAt(Idx.getRegSlot()); 1068 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1069 return MergeableSpills[MIdx].erase(Spill); 1070 } 1071 1072 /// Check BB to see if it is a possible target BB to place a hoisted spill, 1073 /// i.e., there should be a living sibling of OrigReg at the insert point. 1074 /// 1075 bool HoistSpillHelper::isSpillCandBB(unsigned OrigReg, VNInfo &OrigVNI, 1076 MachineBasicBlock &BB, unsigned &LiveReg) { 1077 SlotIndex Idx; 1078 MachineBasicBlock::iterator MI = BB.getFirstTerminator(); 1079 if (MI != BB.end()) 1080 Idx = LIS.getInstructionIndex(*MI); 1081 else 1082 Idx = LIS.getMBBEndIdx(&BB).getPrevSlot(); 1083 SmallSetVector<unsigned, 16> &Siblings = Virt2SiblingsMap[OrigReg]; 1084 assert((LIS.getInterval(OrigReg)).getVNInfoAt(Idx) == &OrigVNI && 1085 "Unexpected VNI"); 1086 1087 for (auto const SibReg : Siblings) { 1088 LiveInterval &LI = LIS.getInterval(SibReg); 1089 VNInfo *VNI = LI.getVNInfoAt(Idx); 1090 if (VNI) { 1091 LiveReg = SibReg; 1092 return true; 1093 } 1094 } 1095 return false; 1096 } 1097 1098 /// Remove redundent spills in the same BB. Save those redundent spills in 1099 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map. 1100 /// 1101 void HoistSpillHelper::rmRedundantSpills( 1102 SmallPtrSet<MachineInstr *, 16> &Spills, 1103 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1104 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1105 // For each spill saw, check SpillBBToSpill[] and see if its BB already has 1106 // another spill inside. If a BB contains more than one spill, only keep the 1107 // earlier spill with smaller SlotIndex. 1108 for (const auto CurrentSpill : Spills) { 1109 MachineBasicBlock *Block = CurrentSpill->getParent(); 1110 MachineDomTreeNode *Node = MDT.DT->getNode(Block); 1111 MachineInstr *PrevSpill = SpillBBToSpill[Node]; 1112 if (PrevSpill) { 1113 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill); 1114 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill); 1115 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill; 1116 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill; 1117 SpillsToRm.push_back(SpillToRm); 1118 SpillBBToSpill[MDT.DT->getNode(Block)] = SpillToKeep; 1119 } else { 1120 SpillBBToSpill[MDT.DT->getNode(Block)] = CurrentSpill; 1121 } 1122 } 1123 for (const auto SpillToRm : SpillsToRm) 1124 Spills.erase(SpillToRm); 1125 } 1126 1127 /// Starting from \p Root find a top-down traversal order of the dominator 1128 /// tree to visit all basic blocks containing the elements of \p Spills. 1129 /// Redundant spills will be found and put into \p SpillsToRm at the same 1130 /// time. \p SpillBBToSpill will be populated as part of the process and 1131 /// maps a basic block to the first store occurring in the basic block. 1132 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre 1133 /// 1134 void HoistSpillHelper::getVisitOrders( 1135 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 1136 SmallVectorImpl<MachineDomTreeNode *> &Orders, 1137 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1138 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 1139 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1140 // The set contains all the possible BB nodes to which we may hoist 1141 // original spills. 1142 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet; 1143 // Save the BB nodes on the path from the first BB node containing 1144 // non-redundent spill to the Root node. 1145 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath; 1146 // All the spills to be hoisted must originate from a single def instruction 1147 // to the OrigReg. It means the def instruction should dominate all the spills 1148 // to be hoisted. We choose the BB where the def instruction is located as 1149 // the Root. 1150 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom(); 1151 // For every node on the dominator tree with spill, walk up on the dominator 1152 // tree towards the Root node until it is reached. If there is other node 1153 // containing spill in the middle of the path, the previous spill saw will 1154 // be redundent and the node containing it will be removed. All the nodes on 1155 // the path starting from the first node with non-redundent spill to the Root 1156 // node will be added to the WorkSet, which will contain all the possible 1157 // locations where spills may be hoisted to after the loop below is done. 1158 for (const auto Spill : Spills) { 1159 MachineBasicBlock *Block = Spill->getParent(); 1160 MachineDomTreeNode *Node = MDT[Block]; 1161 MachineInstr *SpillToRm = nullptr; 1162 while (Node != RootIDomNode) { 1163 // If Node dominates Block, and it already contains a spill, the spill in 1164 // Block will be redundent. 1165 if (Node != MDT[Block] && SpillBBToSpill[Node]) { 1166 SpillToRm = SpillBBToSpill[MDT[Block]]; 1167 break; 1168 /// If we see the Node already in WorkSet, the path from the Node to 1169 /// the Root node must already be traversed by another spill. 1170 /// Then no need to repeat. 1171 } else if (WorkSet.count(Node)) { 1172 break; 1173 } else { 1174 NodesOnPath.insert(Node); 1175 } 1176 Node = Node->getIDom(); 1177 } 1178 if (SpillToRm) { 1179 SpillsToRm.push_back(SpillToRm); 1180 } else { 1181 // Add a BB containing the original spills to SpillsToKeep -- i.e., 1182 // set the initial status before hoisting start. The value of BBs 1183 // containing original spills is set to 0, in order to descriminate 1184 // with BBs containing hoisted spills which will be inserted to 1185 // SpillsToKeep later during hoisting. 1186 SpillsToKeep[MDT[Block]] = 0; 1187 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end()); 1188 } 1189 NodesOnPath.clear(); 1190 } 1191 1192 // Sort the nodes in WorkSet in top-down order and save the nodes 1193 // in Orders. Orders will be used for hoisting in runHoistSpills. 1194 unsigned idx = 0; 1195 Orders.push_back(MDT.DT->getNode(Root)); 1196 do { 1197 MachineDomTreeNode *Node = Orders[idx++]; 1198 const std::vector<MachineDomTreeNode *> &Children = Node->getChildren(); 1199 unsigned NumChildren = Children.size(); 1200 for (unsigned i = 0; i != NumChildren; ++i) { 1201 MachineDomTreeNode *Child = Children[i]; 1202 if (WorkSet.count(Child)) 1203 Orders.push_back(Child); 1204 } 1205 } while (idx != Orders.size()); 1206 assert(Orders.size() == WorkSet.size() && 1207 "Orders have different size with WorkSet"); 1208 1209 #ifndef NDEBUG 1210 DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n"); 1211 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1212 for (; RIt != Orders.rend(); RIt++) 1213 DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ","); 1214 DEBUG(dbgs() << "\n"); 1215 #endif 1216 } 1217 1218 /// Try to hoist spills according to BB hotness. The spills to removed will 1219 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in 1220 /// \p SpillsToIns. 1221 /// 1222 void HoistSpillHelper::runHoistSpills( 1223 unsigned OrigReg, VNInfo &OrigVNI, SmallPtrSet<MachineInstr *, 16> &Spills, 1224 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1225 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) { 1226 // Visit order of dominator tree nodes. 1227 SmallVector<MachineDomTreeNode *, 32> Orders; 1228 // SpillsToKeep contains all the nodes where spills are to be inserted 1229 // during hoisting. If the spill to be inserted is an original spill 1230 // (not a hoisted one), the value of the map entry is 0. If the spill 1231 // is a hoisted spill, the value of the map entry is the VReg to be used 1232 // as the source of the spill. 1233 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep; 1234 // Map from BB to the first spill inside of it. 1235 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill; 1236 1237 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill); 1238 1239 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def); 1240 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep, 1241 SpillBBToSpill); 1242 1243 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of 1244 // nodes set and the cost of all the spills inside those nodes. 1245 // The nodes set are the locations where spills are to be inserted 1246 // in the subtree of current node. 1247 typedef std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency> 1248 NodesCostPair; 1249 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap; 1250 // Iterate Orders set in reverse order, which will be a bottom-up order 1251 // in the dominator tree. Once we visit a dom tree node, we know its 1252 // children have already been visited and the spill locations in the 1253 // subtrees of all the children have been determined. 1254 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1255 for (; RIt != Orders.rend(); RIt++) { 1256 MachineBasicBlock *Block = (*RIt)->getBlock(); 1257 1258 // If Block contains an original spill, simply continue. 1259 if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) { 1260 SpillsInSubTreeMap[*RIt].first.insert(*RIt); 1261 // SpillsInSubTreeMap[*RIt].second contains the cost of spill. 1262 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block); 1263 continue; 1264 } 1265 1266 // Collect spills in subtree of current node (*RIt) to 1267 // SpillsInSubTreeMap[*RIt].first. 1268 const std::vector<MachineDomTreeNode *> &Children = (*RIt)->getChildren(); 1269 unsigned NumChildren = Children.size(); 1270 for (unsigned i = 0; i != NumChildren; ++i) { 1271 MachineDomTreeNode *Child = Children[i]; 1272 if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end()) 1273 continue; 1274 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below 1275 // should be placed before getting the begin and end iterators of 1276 // SpillsInSubTreeMap[Child].first, or else the iterators may be 1277 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time 1278 // and the map grows and then the original buckets in the map are moved. 1279 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1280 SpillsInSubTreeMap[*RIt].first; 1281 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1282 SubTreeCost += SpillsInSubTreeMap[Child].second; 1283 auto BI = SpillsInSubTreeMap[Child].first.begin(); 1284 auto EI = SpillsInSubTreeMap[Child].first.end(); 1285 SpillsInSubTree.insert(BI, EI); 1286 SpillsInSubTreeMap.erase(Child); 1287 } 1288 1289 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1290 SpillsInSubTreeMap[*RIt].first; 1291 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1292 // No spills in subtree, simply continue. 1293 if (SpillsInSubTree.empty()) 1294 continue; 1295 1296 // Check whether Block is a possible candidate to insert spill. 1297 unsigned LiveReg = 0; 1298 if (!isSpillCandBB(OrigReg, OrigVNI, *Block, LiveReg)) 1299 continue; 1300 1301 // If there are multiple spills that could be merged, bias a little 1302 // to hoist the spill. 1303 BranchProbability MarginProb = (SpillsInSubTree.size() > 1) 1304 ? BranchProbability(9, 10) 1305 : BranchProbability(1, 1); 1306 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) { 1307 // Hoist: Move spills to current Block. 1308 for (const auto SpillBB : SpillsInSubTree) { 1309 // When SpillBB is a BB contains original spill, insert the spill 1310 // to SpillsToRm. 1311 if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() && 1312 !SpillsToKeep[SpillBB]) { 1313 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB]; 1314 SpillsToRm.push_back(SpillToRm); 1315 } 1316 // SpillBB will not contain spill anymore, remove it from SpillsToKeep. 1317 SpillsToKeep.erase(SpillBB); 1318 } 1319 // Current Block is the BB containing the new hoisted spill. Add it to 1320 // SpillsToKeep. LiveReg is the source of the new spill. 1321 SpillsToKeep[*RIt] = LiveReg; 1322 DEBUG({ 1323 dbgs() << "spills in BB: "; 1324 for (const auto Rspill : SpillsInSubTree) 1325 dbgs() << Rspill->getBlock()->getNumber() << " "; 1326 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber() 1327 << "\n"; 1328 }); 1329 SpillsInSubTree.clear(); 1330 SpillsInSubTree.insert(*RIt); 1331 SubTreeCost = MBFI.getBlockFreq(Block); 1332 } 1333 } 1334 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill), 1335 // save them to SpillsToIns. 1336 for (const auto Ent : SpillsToKeep) { 1337 if (Ent.second) 1338 SpillsToIns[Ent.first->getBlock()] = Ent.second; 1339 } 1340 } 1341 1342 /// For spills with equal values, remove redundent spills and hoist the left 1343 /// to less hot spots. 1344 /// 1345 /// Spills with equal values will be collected into the same set in 1346 /// MergeableSpills when spill is inserted. These equal spills are originated 1347 /// from the same define instruction and are dominated by the instruction. 1348 /// Before hoisting all the equal spills, redundent spills inside in the same 1349 /// BB is first marked to be deleted. Then starting from spills left, walk up 1350 /// on the dominator tree towards the Root node where the define instruction 1351 /// is located, mark the dominated spills to be deleted along the way and 1352 /// collect the BB nodes on the path from non-dominated spills to the define 1353 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places 1354 /// where we consider to hoist the spills. We iterate the WorkSet in bottom-up 1355 /// order, and for each node, we will decide whether to hoist spills inside 1356 /// its subtree to that node. In this way, we can get benefit locally even if 1357 /// hoisting all the equal spills to one cold place is impossible. 1358 /// 1359 void HoistSpillHelper::hoistAllSpills() { 1360 SmallVector<unsigned, 4> NewVRegs; 1361 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this); 1362 1363 // Save the mapping between stackslot and its original reg. 1364 DenseMap<int, unsigned> SlotToOrigReg; 1365 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { 1366 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1367 int Slot = VRM.getStackSlot(Reg); 1368 if (Slot != VirtRegMap::NO_STACK_SLOT) 1369 SlotToOrigReg[Slot] = VRM.getOriginal(Reg); 1370 unsigned Original = VRM.getPreSplitReg(Reg); 1371 if (!MRI.def_empty(Reg)) 1372 Virt2SiblingsMap[Original].insert(Reg); 1373 } 1374 1375 // Each entry in MergeableSpills contains a spill set with equal values. 1376 for (auto &Ent : MergeableSpills) { 1377 int Slot = Ent.first.first; 1378 unsigned OrigReg = SlotToOrigReg[Slot]; 1379 VNInfo *OrigVNI = Ent.first.second; 1380 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second; 1381 if (Ent.second.empty()) 1382 continue; 1383 1384 DEBUG({ 1385 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n" 1386 << "Equal spills in BB: "; 1387 for (const auto spill : EqValSpills) 1388 dbgs() << spill->getParent()->getNumber() << " "; 1389 dbgs() << "\n"; 1390 }); 1391 1392 // SpillsToRm is the spill set to be removed from EqValSpills. 1393 SmallVector<MachineInstr *, 16> SpillsToRm; 1394 // SpillsToIns is the spill set to be newly inserted after hoisting. 1395 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns; 1396 1397 runHoistSpills(OrigReg, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns); 1398 1399 DEBUG({ 1400 dbgs() << "Finally inserted spills in BB: "; 1401 for (const auto Ispill : SpillsToIns) 1402 dbgs() << Ispill.first->getNumber() << " "; 1403 dbgs() << "\nFinally removed spills in BB: "; 1404 for (const auto Rspill : SpillsToRm) 1405 dbgs() << Rspill->getParent()->getNumber() << " "; 1406 dbgs() << "\n"; 1407 }); 1408 1409 // Stack live range update. 1410 LiveInterval &StackIntvl = LSS.getInterval(Slot); 1411 if (!SpillsToIns.empty() || !SpillsToRm.empty()) { 1412 LiveInterval &OrigLI = LIS.getInterval(OrigReg); 1413 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI, 1414 StackIntvl.getValNumInfo(0)); 1415 } 1416 1417 // Insert hoisted spills. 1418 for (auto const Insert : SpillsToIns) { 1419 MachineBasicBlock *BB = Insert.first; 1420 unsigned LiveReg = Insert.second; 1421 MachineBasicBlock::iterator MI = BB->getFirstTerminator(); 1422 TII.storeRegToStackSlot(*BB, MI, LiveReg, false, Slot, 1423 MRI.getRegClass(LiveReg), &TRI); 1424 LIS.InsertMachineInstrRangeInMaps(std::prev(MI), MI); 1425 ++NumSpills; 1426 } 1427 1428 // Remove redundent spills or change them to dead instructions. 1429 NumSpills -= SpillsToRm.size(); 1430 for (auto const RMEnt : SpillsToRm) { 1431 RMEnt->setDesc(TII.get(TargetOpcode::KILL)); 1432 for (unsigned i = RMEnt->getNumOperands(); i; --i) { 1433 MachineOperand &MO = RMEnt->getOperand(i - 1); 1434 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead()) 1435 RMEnt->RemoveOperand(i - 1); 1436 } 1437 } 1438 Edit.eliminateDeadDefs(SpillsToRm, None); 1439 } 1440 } 1441 1442 /// For VirtReg clone, the \p New register should have the same physreg or 1443 /// stackslot as the \p old register. 1444 void HoistSpillHelper::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 1445 if (VRM.hasPhys(Old)) 1446 VRM.assignVirt2Phys(New, VRM.getPhys(Old)); 1447 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT) 1448 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old)); 1449 else 1450 llvm_unreachable("VReg should be assigned either physreg or stackslot"); 1451 } 1452