1 //===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The inline spiller modifies the machine function directly instead of
11 // inserting spills and restores in VirtRegMap.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "Spiller.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/TinyPtrVector.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
22 #include "llvm/CodeGen/LiveRangeEdit.h"
23 #include "llvm/CodeGen/LiveStackAnalysis.h"
24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineInstrBundle.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/VirtRegMap.h"
34 #include "llvm/IR/DebugInfo.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetInstrInfo.h"
39 
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "regalloc"
43 
44 STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
45 STATISTIC(NumSnippets,        "Number of spilled snippets");
46 STATISTIC(NumSpills,          "Number of spills inserted");
47 STATISTIC(NumSpillsRemoved,   "Number of spills removed");
48 STATISTIC(NumReloads,         "Number of reloads inserted");
49 STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
50 STATISTIC(NumFolded,          "Number of folded stack accesses");
51 STATISTIC(NumFoldedLoads,     "Number of folded loads");
52 STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
53 
54 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
55                                      cl::desc("Disable inline spill hoisting"));
56 
57 namespace {
58 class HoistSpillHelper : private LiveRangeEdit::Delegate {
59   MachineFunction &MF;
60   LiveIntervals &LIS;
61   LiveStacks &LSS;
62   AliasAnalysis *AA;
63   MachineDominatorTree &MDT;
64   MachineLoopInfo &Loops;
65   VirtRegMap &VRM;
66   MachineFrameInfo &MFI;
67   MachineRegisterInfo &MRI;
68   const TargetInstrInfo &TII;
69   const TargetRegisterInfo &TRI;
70   const MachineBlockFrequencyInfo &MBFI;
71 
72   // Map from StackSlot to its original register.
73   DenseMap<int, unsigned> StackSlotToReg;
74   // Map from pair of (StackSlot and Original VNI) to a set of spills which
75   // have the same stackslot and have equal values defined by Original VNI.
76   // These spills are mergeable and are hoist candiates.
77   typedef MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>
78       MergeableSpillsMap;
79   MergeableSpillsMap MergeableSpills;
80 
81   /// This is the map from original register to a set containing all its
82   /// siblings. To hoist a spill to another BB, we need to find out a live
83   /// sibling there and use it as the source of the new spill.
84   DenseMap<unsigned, SmallSetVector<unsigned, 16>> Virt2SiblingsMap;
85 
86   bool isSpillCandBB(unsigned OrigReg, VNInfo &OrigVNI, MachineBasicBlock &BB,
87                      unsigned &LiveReg);
88 
89   void rmRedundantSpills(
90       SmallPtrSet<MachineInstr *, 16> &Spills,
91       SmallVectorImpl<MachineInstr *> &SpillsToRm,
92       DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
93 
94   void getVisitOrders(
95       MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
96       SmallVectorImpl<MachineDomTreeNode *> &Orders,
97       SmallVectorImpl<MachineInstr *> &SpillsToRm,
98       DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
99       DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
100 
101   void runHoistSpills(unsigned OrigReg, VNInfo &OrigVNI,
102                       SmallPtrSet<MachineInstr *, 16> &Spills,
103                       SmallVectorImpl<MachineInstr *> &SpillsToRm,
104                       DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns);
105 
106 public:
107   HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf,
108                    VirtRegMap &vrm)
109       : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
110         LSS(pass.getAnalysis<LiveStacks>()),
111         AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
112         MDT(pass.getAnalysis<MachineDominatorTree>()),
113         Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
114         MFI(*mf.getFrameInfo()), MRI(mf.getRegInfo()),
115         TII(*mf.getSubtarget().getInstrInfo()),
116         TRI(*mf.getSubtarget().getRegisterInfo()),
117         MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()) {}
118 
119   void addToMergeableSpills(MachineInstr *Spill, int StackSlot,
120                             unsigned Original);
121   bool rmFromMergeableSpills(MachineInstr *Spill, int StackSlot);
122   void hoistAllSpills();
123   void LRE_DidCloneVirtReg(unsigned, unsigned) override;
124 };
125 
126 class InlineSpiller : public Spiller {
127   MachineFunction &MF;
128   LiveIntervals &LIS;
129   LiveStacks &LSS;
130   AliasAnalysis *AA;
131   MachineDominatorTree &MDT;
132   MachineLoopInfo &Loops;
133   VirtRegMap &VRM;
134   MachineFrameInfo &MFI;
135   MachineRegisterInfo &MRI;
136   const TargetInstrInfo &TII;
137   const TargetRegisterInfo &TRI;
138   const MachineBlockFrequencyInfo &MBFI;
139 
140   // Variables that are valid during spill(), but used by multiple methods.
141   LiveRangeEdit *Edit;
142   LiveInterval *StackInt;
143   int StackSlot;
144   unsigned Original;
145 
146   // All registers to spill to StackSlot, including the main register.
147   SmallVector<unsigned, 8> RegsToSpill;
148 
149   // All COPY instructions to/from snippets.
150   // They are ignored since both operands refer to the same stack slot.
151   SmallPtrSet<MachineInstr*, 8> SnippetCopies;
152 
153   // Values that failed to remat at some point.
154   SmallPtrSet<VNInfo*, 8> UsedValues;
155 
156   // Dead defs generated during spilling.
157   SmallVector<MachineInstr*, 8> DeadDefs;
158 
159   // Object records spills information and does the hoisting.
160   HoistSpillHelper HSpiller;
161 
162   ~InlineSpiller() override {}
163 
164 public:
165   InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm)
166       : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
167         LSS(pass.getAnalysis<LiveStacks>()),
168         AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
169         MDT(pass.getAnalysis<MachineDominatorTree>()),
170         Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
171         MFI(*mf.getFrameInfo()), MRI(mf.getRegInfo()),
172         TII(*mf.getSubtarget().getInstrInfo()),
173         TRI(*mf.getSubtarget().getRegisterInfo()),
174         MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
175         HSpiller(pass, mf, vrm) {}
176 
177   void spill(LiveRangeEdit &) override;
178   void postOptimization() override;
179 
180 private:
181   bool isSnippet(const LiveInterval &SnipLI);
182   void collectRegsToSpill();
183 
184   bool isRegToSpill(unsigned Reg) {
185     return std::find(RegsToSpill.begin(),
186                      RegsToSpill.end(), Reg) != RegsToSpill.end();
187   }
188 
189   bool isSibling(unsigned Reg);
190   bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
191   void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
192 
193   void markValueUsed(LiveInterval*, VNInfo*);
194   bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
195   void reMaterializeAll();
196 
197   bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
198   bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> >,
199                          MachineInstr *LoadMI = nullptr);
200   void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI);
201   void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI);
202 
203   void spillAroundUses(unsigned Reg);
204   void spillAll();
205 };
206 }
207 
208 namespace llvm {
209 
210 Spiller::~Spiller() { }
211 void Spiller::anchor() { }
212 
213 Spiller *createInlineSpiller(MachineFunctionPass &pass,
214                              MachineFunction &mf,
215                              VirtRegMap &vrm) {
216   return new InlineSpiller(pass, mf, vrm);
217 }
218 
219 }
220 
221 //===----------------------------------------------------------------------===//
222 //                                Snippets
223 //===----------------------------------------------------------------------===//
224 
225 // When spilling a virtual register, we also spill any snippets it is connected
226 // to. The snippets are small live ranges that only have a single real use,
227 // leftovers from live range splitting. Spilling them enables memory operand
228 // folding or tightens the live range around the single use.
229 //
230 // This minimizes register pressure and maximizes the store-to-load distance for
231 // spill slots which can be important in tight loops.
232 
233 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
234 /// otherwise return 0.
235 static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) {
236   if (!MI->isFullCopy())
237     return 0;
238   if (MI->getOperand(0).getReg() == Reg)
239       return MI->getOperand(1).getReg();
240   if (MI->getOperand(1).getReg() == Reg)
241       return MI->getOperand(0).getReg();
242   return 0;
243 }
244 
245 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
246 /// It is assumed that SnipLI is a virtual register with the same original as
247 /// Edit->getReg().
248 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
249   unsigned Reg = Edit->getReg();
250 
251   // A snippet is a tiny live range with only a single instruction using it
252   // besides copies to/from Reg or spills/fills. We accept:
253   //
254   //   %snip = COPY %Reg / FILL fi#
255   //   %snip = USE %snip
256   //   %Reg = COPY %snip / SPILL %snip, fi#
257   //
258   if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
259     return false;
260 
261   MachineInstr *UseMI = nullptr;
262 
263   // Check that all uses satisfy our criteria.
264   for (MachineRegisterInfo::reg_instr_nodbg_iterator
265        RI = MRI.reg_instr_nodbg_begin(SnipLI.reg),
266        E = MRI.reg_instr_nodbg_end(); RI != E; ) {
267     MachineInstr *MI = &*(RI++);
268 
269     // Allow copies to/from Reg.
270     if (isFullCopyOf(MI, Reg))
271       continue;
272 
273     // Allow stack slot loads.
274     int FI;
275     if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
276       continue;
277 
278     // Allow stack slot stores.
279     if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
280       continue;
281 
282     // Allow a single additional instruction.
283     if (UseMI && MI != UseMI)
284       return false;
285     UseMI = MI;
286   }
287   return true;
288 }
289 
290 /// collectRegsToSpill - Collect live range snippets that only have a single
291 /// real use.
292 void InlineSpiller::collectRegsToSpill() {
293   unsigned Reg = Edit->getReg();
294 
295   // Main register always spills.
296   RegsToSpill.assign(1, Reg);
297   SnippetCopies.clear();
298 
299   // Snippets all have the same original, so there can't be any for an original
300   // register.
301   if (Original == Reg)
302     return;
303 
304   for (MachineRegisterInfo::reg_instr_iterator
305        RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) {
306     MachineInstr *MI = &*(RI++);
307     unsigned SnipReg = isFullCopyOf(MI, Reg);
308     if (!isSibling(SnipReg))
309       continue;
310     LiveInterval &SnipLI = LIS.getInterval(SnipReg);
311     if (!isSnippet(SnipLI))
312       continue;
313     SnippetCopies.insert(MI);
314     if (isRegToSpill(SnipReg))
315       continue;
316     RegsToSpill.push_back(SnipReg);
317     DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
318     ++NumSnippets;
319   }
320 }
321 
322 bool InlineSpiller::isSibling(unsigned Reg) {
323   return TargetRegisterInfo::isVirtualRegister(Reg) &&
324            VRM.getOriginal(Reg) == Original;
325 }
326 
327 /// It is beneficial to spill to earlier place in the same BB in case
328 /// as follows:
329 /// There is an alternative def earlier in the same MBB.
330 /// Hoist the spill as far as possible in SpillMBB. This can ease
331 /// register pressure:
332 ///
333 ///   x = def
334 ///   y = use x
335 ///   s = copy x
336 ///
337 /// Hoisting the spill of s to immediately after the def removes the
338 /// interference between x and y:
339 ///
340 ///   x = def
341 ///   spill x
342 ///   y = use x<kill>
343 ///
344 /// This hoist only helps when the copy kills its source.
345 ///
346 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
347                                        MachineInstr &CopyMI) {
348   SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
349 #ifndef NDEBUG
350   VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
351   assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
352 #endif
353 
354   unsigned SrcReg = CopyMI.getOperand(1).getReg();
355   LiveInterval &SrcLI = LIS.getInterval(SrcReg);
356   VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx);
357   LiveQueryResult SrcQ = SrcLI.Query(Idx);
358   MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def);
359   if (DefMBB != CopyMI.getParent() || !SrcQ.isKill())
360     return false;
361 
362   // Conservatively extend the stack slot range to the range of the original
363   // value. We may be able to do better with stack slot coloring by being more
364   // careful here.
365   assert(StackInt && "No stack slot assigned yet.");
366   LiveInterval &OrigLI = LIS.getInterval(Original);
367   VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
368   StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
369   DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
370                << *StackInt << '\n');
371 
372   // We are going to spill SrcVNI immediately after its def, so clear out
373   // any later spills of the same value.
374   eliminateRedundantSpills(SrcLI, SrcVNI);
375 
376   MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
377   MachineBasicBlock::iterator MII;
378   if (SrcVNI->isPHIDef())
379     MII = MBB->SkipPHIsAndLabels(MBB->begin());
380   else {
381     MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
382     assert(DefMI && "Defining instruction disappeared");
383     MII = DefMI;
384     ++MII;
385   }
386   // Insert spill without kill flag immediately after def.
387   TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot,
388                           MRI.getRegClass(SrcReg), &TRI);
389   --MII; // Point to store instruction.
390   LIS.InsertMachineInstrInMaps(*MII);
391   DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII);
392 
393   HSpiller.addToMergeableSpills(&(*MII), StackSlot, Original);
394   ++NumSpills;
395   return true;
396 }
397 
398 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
399 /// redundant spills of this value in SLI.reg and sibling copies.
400 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
401   assert(VNI && "Missing value");
402   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
403   WorkList.push_back(std::make_pair(&SLI, VNI));
404   assert(StackInt && "No stack slot assigned yet.");
405 
406   do {
407     LiveInterval *LI;
408     std::tie(LI, VNI) = WorkList.pop_back_val();
409     unsigned Reg = LI->reg;
410     DEBUG(dbgs() << "Checking redundant spills for "
411                  << VNI->id << '@' << VNI->def << " in " << *LI << '\n');
412 
413     // Regs to spill are taken care of.
414     if (isRegToSpill(Reg))
415       continue;
416 
417     // Add all of VNI's live range to StackInt.
418     StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
419     DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
420 
421     // Find all spills and copies of VNI.
422     for (MachineRegisterInfo::use_instr_nodbg_iterator
423          UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
424          UI != E; ) {
425       MachineInstr *MI = &*(UI++);
426       if (!MI->isCopy() && !MI->mayStore())
427         continue;
428       SlotIndex Idx = LIS.getInstructionIndex(*MI);
429       if (LI->getVNInfoAt(Idx) != VNI)
430         continue;
431 
432       // Follow sibling copies down the dominator tree.
433       if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
434         if (isSibling(DstReg)) {
435            LiveInterval &DstLI = LIS.getInterval(DstReg);
436            VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
437            assert(DstVNI && "Missing defined value");
438            assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
439            WorkList.push_back(std::make_pair(&DstLI, DstVNI));
440         }
441         continue;
442       }
443 
444       // Erase spills.
445       int FI;
446       if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
447         DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI);
448         // eliminateDeadDefs won't normally remove stores, so switch opcode.
449         MI->setDesc(TII.get(TargetOpcode::KILL));
450         DeadDefs.push_back(MI);
451         ++NumSpillsRemoved;
452         if (HSpiller.rmFromMergeableSpills(MI, StackSlot))
453           --NumSpills;
454       }
455     }
456   } while (!WorkList.empty());
457 }
458 
459 
460 //===----------------------------------------------------------------------===//
461 //                            Rematerialization
462 //===----------------------------------------------------------------------===//
463 
464 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
465 /// instruction cannot be eliminated. See through snippet copies
466 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
467   SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
468   WorkList.push_back(std::make_pair(LI, VNI));
469   do {
470     std::tie(LI, VNI) = WorkList.pop_back_val();
471     if (!UsedValues.insert(VNI).second)
472       continue;
473 
474     if (VNI->isPHIDef()) {
475       MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
476       for (MachineBasicBlock *P : MBB->predecessors()) {
477         VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
478         if (PVNI)
479           WorkList.push_back(std::make_pair(LI, PVNI));
480       }
481       continue;
482     }
483 
484     // Follow snippet copies.
485     MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
486     if (!SnippetCopies.count(MI))
487       continue;
488     LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
489     assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
490     VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
491     assert(SnipVNI && "Snippet undefined before copy");
492     WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
493   } while (!WorkList.empty());
494 }
495 
496 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
497 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
498 
499   // Analyze instruction
500   SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
501   MIBundleOperands::VirtRegInfo RI =
502       MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops);
503 
504   if (!RI.Reads)
505     return false;
506 
507   SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
508   VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
509 
510   if (!ParentVNI) {
511     DEBUG(dbgs() << "\tadding <undef> flags: ");
512     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
513       MachineOperand &MO = MI.getOperand(i);
514       if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
515         MO.setIsUndef();
516     }
517     DEBUG(dbgs() << UseIdx << '\t' << MI);
518     return true;
519   }
520 
521   if (SnippetCopies.count(&MI))
522     return false;
523 
524   LiveInterval &OrigLI = LIS.getInterval(Original);
525   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
526   LiveRangeEdit::Remat RM(ParentVNI);
527   RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
528 
529   if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) {
530     markValueUsed(&VirtReg, ParentVNI);
531     DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
532     return false;
533   }
534 
535   // If the instruction also writes VirtReg.reg, it had better not require the
536   // same register for uses and defs.
537   if (RI.Tied) {
538     markValueUsed(&VirtReg, ParentVNI);
539     DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI);
540     return false;
541   }
542 
543   // Before rematerializing into a register for a single instruction, try to
544   // fold a load into the instruction. That avoids allocating a new register.
545   if (RM.OrigMI->canFoldAsLoad() &&
546       foldMemoryOperand(Ops, RM.OrigMI)) {
547     Edit->markRematerialized(RM.ParentVNI);
548     ++NumFoldedLoads;
549     return true;
550   }
551 
552   // Alocate a new register for the remat.
553   unsigned NewVReg = Edit->createFrom(Original);
554 
555   // Finally we can rematerialize OrigMI before MI.
556   SlotIndex DefIdx =
557       Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);
558   (void)DefIdx;
559   DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
560                << *LIS.getInstructionFromIndex(DefIdx));
561 
562   // Replace operands
563   for (const auto &OpPair : Ops) {
564     MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
565     if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
566       MO.setReg(NewVReg);
567       MO.setIsKill();
568     }
569   }
570   DEBUG(dbgs() << "\t        " << UseIdx << '\t' << MI << '\n');
571 
572   ++NumRemats;
573   return true;
574 }
575 
576 /// reMaterializeAll - Try to rematerialize as many uses as possible,
577 /// and trim the live ranges after.
578 void InlineSpiller::reMaterializeAll() {
579   if (!Edit->anyRematerializable(AA))
580     return;
581 
582   UsedValues.clear();
583 
584   // Try to remat before all uses of snippets.
585   bool anyRemat = false;
586   for (unsigned Reg : RegsToSpill) {
587     LiveInterval &LI = LIS.getInterval(Reg);
588     for (MachineRegisterInfo::reg_bundle_iterator
589            RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
590          RegI != E; ) {
591       MachineInstr &MI = *RegI++;
592 
593       // Debug values are not allowed to affect codegen.
594       if (MI.isDebugValue())
595         continue;
596 
597       anyRemat |= reMaterializeFor(LI, MI);
598     }
599   }
600   if (!anyRemat)
601     return;
602 
603   // Remove any values that were completely rematted.
604   for (unsigned Reg : RegsToSpill) {
605     LiveInterval &LI = LIS.getInterval(Reg);
606     for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
607          I != E; ++I) {
608       VNInfo *VNI = *I;
609       if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
610         continue;
611       MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
612       MI->addRegisterDead(Reg, &TRI);
613       if (!MI->allDefsAreDead())
614         continue;
615       DEBUG(dbgs() << "All defs dead: " << *MI);
616       DeadDefs.push_back(MI);
617     }
618   }
619 
620   // Eliminate dead code after remat. Note that some snippet copies may be
621   // deleted here.
622   if (DeadDefs.empty())
623     return;
624   DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
625   Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
626 
627   // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
628   // after rematerialization.  To remove a VNI for a vreg from its LiveInterval,
629   // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
630   // removed, PHI VNI are still left in the LiveInterval.
631   // So to get rid of unused reg, we need to check whether it has non-dbg
632   // reference instead of whether it has non-empty interval.
633   unsigned ResultPos = 0;
634   for (unsigned Reg : RegsToSpill) {
635     if (MRI.reg_nodbg_empty(Reg)) {
636       Edit->eraseVirtReg(Reg);
637       continue;
638     }
639     assert((LIS.hasInterval(Reg) && !LIS.getInterval(Reg).empty()) &&
640            "Reg with empty interval has reference");
641     RegsToSpill[ResultPos++] = Reg;
642   }
643   RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
644   DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n");
645 }
646 
647 
648 //===----------------------------------------------------------------------===//
649 //                                 Spilling
650 //===----------------------------------------------------------------------===//
651 
652 /// If MI is a load or store of StackSlot, it can be removed.
653 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
654   int FI = 0;
655   unsigned InstrReg = TII.isLoadFromStackSlot(MI, FI);
656   bool IsLoad = InstrReg;
657   if (!IsLoad)
658     InstrReg = TII.isStoreToStackSlot(MI, FI);
659 
660   // We have a stack access. Is it the right register and slot?
661   if (InstrReg != Reg || FI != StackSlot)
662     return false;
663 
664   if (!IsLoad)
665     HSpiller.rmFromMergeableSpills(MI, StackSlot);
666 
667   DEBUG(dbgs() << "Coalescing stack access: " << *MI);
668   LIS.RemoveMachineInstrFromMaps(*MI);
669   MI->eraseFromParent();
670 
671   if (IsLoad) {
672     ++NumReloadsRemoved;
673     --NumReloads;
674   } else {
675     ++NumSpillsRemoved;
676     --NumSpills;
677   }
678 
679   return true;
680 }
681 
682 #if !defined(NDEBUG)
683 // Dump the range of instructions from B to E with their slot indexes.
684 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
685                                                MachineBasicBlock::iterator E,
686                                                LiveIntervals const &LIS,
687                                                const char *const header,
688                                                unsigned VReg =0) {
689   char NextLine = '\n';
690   char SlotIndent = '\t';
691 
692   if (std::next(B) == E) {
693     NextLine = ' ';
694     SlotIndent = ' ';
695   }
696 
697   dbgs() << '\t' << header << ": " << NextLine;
698 
699   for (MachineBasicBlock::iterator I = B; I != E; ++I) {
700     SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();
701 
702     // If a register was passed in and this instruction has it as a
703     // destination that is marked as an early clobber, print the
704     // early-clobber slot index.
705     if (VReg) {
706       MachineOperand *MO = I->findRegisterDefOperand(VReg);
707       if (MO && MO->isEarlyClobber())
708         Idx = Idx.getRegSlot(true);
709     }
710 
711     dbgs() << SlotIndent << Idx << '\t' << *I;
712   }
713 }
714 #endif
715 
716 /// foldMemoryOperand - Try folding stack slot references in Ops into their
717 /// instructions.
718 ///
719 /// @param Ops    Operand indices from analyzeVirtReg().
720 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
721 /// @return       True on success.
722 bool InlineSpiller::
723 foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops,
724                   MachineInstr *LoadMI) {
725   if (Ops.empty())
726     return false;
727   // Don't attempt folding in bundles.
728   MachineInstr *MI = Ops.front().first;
729   if (Ops.back().first != MI || MI->isBundled())
730     return false;
731 
732   bool WasCopy = MI->isCopy();
733   unsigned ImpReg = 0;
734 
735   bool SpillSubRegs = (MI->getOpcode() == TargetOpcode::STATEPOINT ||
736                        MI->getOpcode() == TargetOpcode::PATCHPOINT ||
737                        MI->getOpcode() == TargetOpcode::STACKMAP);
738 
739   // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
740   // operands.
741   SmallVector<unsigned, 8> FoldOps;
742   for (const auto &OpPair : Ops) {
743     unsigned Idx = OpPair.second;
744     assert(MI == OpPair.first && "Instruction conflict during operand folding");
745     MachineOperand &MO = MI->getOperand(Idx);
746     if (MO.isImplicit()) {
747       ImpReg = MO.getReg();
748       continue;
749     }
750     // FIXME: Teach targets to deal with subregs.
751     if (!SpillSubRegs && MO.getSubReg())
752       return false;
753     // We cannot fold a load instruction into a def.
754     if (LoadMI && MO.isDef())
755       return false;
756     // Tied use operands should not be passed to foldMemoryOperand.
757     if (!MI->isRegTiedToDefOperand(Idx))
758       FoldOps.push_back(Idx);
759   }
760 
761   MachineInstrSpan MIS(MI);
762 
763   MachineInstr *FoldMI =
764                 LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI)
765                        : TII.foldMemoryOperand(MI, FoldOps, StackSlot);
766   if (!FoldMI)
767     return false;
768 
769   // Remove LIS for any dead defs in the original MI not in FoldMI.
770   for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
771     if (!MO->isReg())
772       continue;
773     unsigned Reg = MO->getReg();
774     if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) ||
775         MRI.isReserved(Reg)) {
776       continue;
777     }
778     // Skip non-Defs, including undef uses and internal reads.
779     if (MO->isUse())
780       continue;
781     MIBundleOperands::PhysRegInfo RI =
782         MIBundleOperands(*FoldMI).analyzePhysReg(Reg, &TRI);
783     if (RI.FullyDefined)
784       continue;
785     // FoldMI does not define this physreg. Remove the LI segment.
786     assert(MO->isDead() && "Cannot fold physreg def");
787     SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
788     LIS.removePhysRegDefAt(Reg, Idx);
789   }
790 
791   int FI;
792   if (TII.isStoreToStackSlot(MI, FI) && HSpiller.rmFromMergeableSpills(MI, FI))
793     --NumSpills;
794   LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
795   MI->eraseFromParent();
796 
797   // Insert any new instructions other than FoldMI into the LIS maps.
798   assert(!MIS.empty() && "Unexpected empty span of instructions!");
799   for (MachineInstr &MI : MIS)
800     if (&MI != FoldMI)
801       LIS.InsertMachineInstrInMaps(MI);
802 
803   // TII.foldMemoryOperand may have left some implicit operands on the
804   // instruction.  Strip them.
805   if (ImpReg)
806     for (unsigned i = FoldMI->getNumOperands(); i; --i) {
807       MachineOperand &MO = FoldMI->getOperand(i - 1);
808       if (!MO.isReg() || !MO.isImplicit())
809         break;
810       if (MO.getReg() == ImpReg)
811         FoldMI->RemoveOperand(i - 1);
812     }
813 
814   DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
815                                            "folded"));
816 
817   if (!WasCopy)
818     ++NumFolded;
819   else if (Ops.front().second == 0) {
820     ++NumSpills;
821     HSpiller.addToMergeableSpills(FoldMI, StackSlot, Original);
822   } else
823     ++NumReloads;
824   return true;
825 }
826 
827 void InlineSpiller::insertReload(unsigned NewVReg,
828                                  SlotIndex Idx,
829                                  MachineBasicBlock::iterator MI) {
830   MachineBasicBlock &MBB = *MI->getParent();
831 
832   MachineInstrSpan MIS(MI);
833   TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
834                            MRI.getRegClass(NewVReg), &TRI);
835 
836   LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
837 
838   DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
839                                            NewVReg));
840   ++NumReloads;
841 }
842 
843 /// insertSpill - Insert a spill of NewVReg after MI.
844 void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill,
845                                  MachineBasicBlock::iterator MI) {
846   MachineBasicBlock &MBB = *MI->getParent();
847 
848   MachineInstrSpan MIS(MI);
849   TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot,
850                           MRI.getRegClass(NewVReg), &TRI);
851 
852   LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end());
853 
854   DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS,
855                                            "spill"));
856   ++NumSpills;
857   HSpiller.addToMergeableSpills(std::next(MI), StackSlot, Original);
858 }
859 
860 /// spillAroundUses - insert spill code around each use of Reg.
861 void InlineSpiller::spillAroundUses(unsigned Reg) {
862   DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n');
863   LiveInterval &OldLI = LIS.getInterval(Reg);
864 
865   // Iterate over instructions using Reg.
866   for (MachineRegisterInfo::reg_bundle_iterator
867        RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
868        RegI != E; ) {
869     MachineInstr *MI = &*(RegI++);
870 
871     // Debug values are not allowed to affect codegen.
872     if (MI->isDebugValue()) {
873       // Modify DBG_VALUE now that the value is in a spill slot.
874       bool IsIndirect = MI->isIndirectDebugValue();
875       uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
876       const MDNode *Var = MI->getDebugVariable();
877       const MDNode *Expr = MI->getDebugExpression();
878       DebugLoc DL = MI->getDebugLoc();
879       DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
880       MachineBasicBlock *MBB = MI->getParent();
881       assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
882              "Expected inlined-at fields to agree");
883       BuildMI(*MBB, MBB->erase(MI), DL, TII.get(TargetOpcode::DBG_VALUE))
884           .addFrameIndex(StackSlot)
885           .addImm(Offset)
886           .addMetadata(Var)
887           .addMetadata(Expr);
888       continue;
889     }
890 
891     // Ignore copies to/from snippets. We'll delete them.
892     if (SnippetCopies.count(MI))
893       continue;
894 
895     // Stack slot accesses may coalesce away.
896     if (coalesceStackAccess(MI, Reg))
897       continue;
898 
899     // Analyze instruction.
900     SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
901     MIBundleOperands::VirtRegInfo RI =
902         MIBundleOperands(*MI).analyzeVirtReg(Reg, &Ops);
903 
904     // Find the slot index where this instruction reads and writes OldLI.
905     // This is usually the def slot, except for tied early clobbers.
906     SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
907     if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
908       if (SlotIndex::isSameInstr(Idx, VNI->def))
909         Idx = VNI->def;
910 
911     // Check for a sibling copy.
912     unsigned SibReg = isFullCopyOf(MI, Reg);
913     if (SibReg && isSibling(SibReg)) {
914       // This may actually be a copy between snippets.
915       if (isRegToSpill(SibReg)) {
916         DEBUG(dbgs() << "Found new snippet copy: " << *MI);
917         SnippetCopies.insert(MI);
918         continue;
919       }
920       if (RI.Writes) {
921         if (hoistSpillInsideBB(OldLI, *MI)) {
922           // This COPY is now dead, the value is already in the stack slot.
923           MI->getOperand(0).setIsDead();
924           DeadDefs.push_back(MI);
925           continue;
926         }
927       } else {
928         // This is a reload for a sib-reg copy. Drop spills downstream.
929         LiveInterval &SibLI = LIS.getInterval(SibReg);
930         eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
931         // The COPY will fold to a reload below.
932       }
933     }
934 
935     // Attempt to fold memory ops.
936     if (foldMemoryOperand(Ops))
937       continue;
938 
939     // Create a new virtual register for spill/fill.
940     // FIXME: Infer regclass from instruction alone.
941     unsigned NewVReg = Edit->createFrom(Reg);
942 
943     if (RI.Reads)
944       insertReload(NewVReg, Idx, MI);
945 
946     // Rewrite instruction operands.
947     bool hasLiveDef = false;
948     for (const auto &OpPair : Ops) {
949       MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
950       MO.setReg(NewVReg);
951       if (MO.isUse()) {
952         if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
953           MO.setIsKill();
954       } else {
955         if (!MO.isDead())
956           hasLiveDef = true;
957       }
958     }
959     DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n');
960 
961     // FIXME: Use a second vreg if instruction has no tied ops.
962     if (RI.Writes)
963       if (hasLiveDef)
964         insertSpill(NewVReg, true, MI);
965   }
966 }
967 
968 /// spillAll - Spill all registers remaining after rematerialization.
969 void InlineSpiller::spillAll() {
970   // Update LiveStacks now that we are committed to spilling.
971   if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
972     StackSlot = VRM.assignVirt2StackSlot(Original);
973     StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
974     StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
975   } else
976     StackInt = &LSS.getInterval(StackSlot);
977 
978   if (Original != Edit->getReg())
979     VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
980 
981   assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
982   for (unsigned Reg : RegsToSpill)
983     StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
984                                      StackInt->getValNumInfo(0));
985   DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
986 
987   // Spill around uses of all RegsToSpill.
988   for (unsigned Reg : RegsToSpill)
989     spillAroundUses(Reg);
990 
991   // Hoisted spills may cause dead code.
992   if (!DeadDefs.empty()) {
993     DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
994     Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
995   }
996 
997   // Finally delete the SnippetCopies.
998   for (unsigned Reg : RegsToSpill) {
999     for (MachineRegisterInfo::reg_instr_iterator
1000          RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end();
1001          RI != E; ) {
1002       MachineInstr &MI = *(RI++);
1003       assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy");
1004       // FIXME: Do this with a LiveRangeEdit callback.
1005       LIS.RemoveMachineInstrFromMaps(MI);
1006       MI.eraseFromParent();
1007     }
1008   }
1009 
1010   // Delete all spilled registers.
1011   for (unsigned Reg : RegsToSpill)
1012     Edit->eraseVirtReg(Reg);
1013 }
1014 
1015 void InlineSpiller::spill(LiveRangeEdit &edit) {
1016   ++NumSpilledRanges;
1017   Edit = &edit;
1018   assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
1019          && "Trying to spill a stack slot.");
1020   // Share a stack slot among all descendants of Original.
1021   Original = VRM.getOriginal(edit.getReg());
1022   StackSlot = VRM.getStackSlot(Original);
1023   StackInt = nullptr;
1024 
1025   DEBUG(dbgs() << "Inline spilling "
1026                << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
1027                << ':' << edit.getParent()
1028                << "\nFrom original " << PrintReg(Original) << '\n');
1029   assert(edit.getParent().isSpillable() &&
1030          "Attempting to spill already spilled value.");
1031   assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1032 
1033   collectRegsToSpill();
1034   reMaterializeAll();
1035 
1036   // Remat may handle everything.
1037   if (!RegsToSpill.empty())
1038     spillAll();
1039 
1040   Edit->calculateRegClassAndHint(MF, Loops, MBFI);
1041 }
1042 
1043 /// Optimizations after all the reg selections and spills are done.
1044 ///
1045 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); }
1046 
1047 /// When a spill is inserted, add the spill to MergeableSpills map.
1048 ///
1049 void HoistSpillHelper::addToMergeableSpills(MachineInstr *Spill, int StackSlot,
1050                                             unsigned Original) {
1051   StackSlotToReg[StackSlot] = Original;
1052   SlotIndex Idx = LIS.getInstructionIndex(*Spill);
1053   VNInfo *OrigVNI = LIS.getInterval(Original).getVNInfoAt(Idx.getRegSlot());
1054   std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1055   MergeableSpills[MIdx].insert(Spill);
1056 }
1057 
1058 /// When a spill is removed, remove the spill from MergeableSpills map.
1059 /// Return true if the spill is removed successfully.
1060 ///
1061 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr *Spill,
1062                                              int StackSlot) {
1063   int Original = StackSlotToReg[StackSlot];
1064   if (!Original)
1065     return false;
1066   SlotIndex Idx = LIS.getInstructionIndex(*Spill);
1067   VNInfo *OrigVNI = LIS.getInterval(Original).getVNInfoAt(Idx.getRegSlot());
1068   std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1069   return MergeableSpills[MIdx].erase(Spill);
1070 }
1071 
1072 /// Check BB to see if it is a possible target BB to place a hoisted spill,
1073 /// i.e., there should be a living sibling of OrigReg at the insert point.
1074 ///
1075 bool HoistSpillHelper::isSpillCandBB(unsigned OrigReg, VNInfo &OrigVNI,
1076                                      MachineBasicBlock &BB, unsigned &LiveReg) {
1077   SlotIndex Idx;
1078   MachineBasicBlock::iterator MI = BB.getFirstTerminator();
1079   if (MI != BB.end())
1080     Idx = LIS.getInstructionIndex(*MI);
1081   else
1082     Idx = LIS.getMBBEndIdx(&BB).getPrevSlot();
1083   SmallSetVector<unsigned, 16> &Siblings = Virt2SiblingsMap[OrigReg];
1084   assert((LIS.getInterval(OrigReg)).getVNInfoAt(Idx) == &OrigVNI &&
1085          "Unexpected VNI");
1086 
1087   for (auto const SibReg : Siblings) {
1088     LiveInterval &LI = LIS.getInterval(SibReg);
1089     VNInfo *VNI = LI.getVNInfoAt(Idx);
1090     if (VNI) {
1091       LiveReg = SibReg;
1092       return true;
1093     }
1094   }
1095   return false;
1096 }
1097 
1098 /// Remove redundent spills in the same BB. Save those redundent spills in
1099 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
1100 ///
1101 void HoistSpillHelper::rmRedundantSpills(
1102     SmallPtrSet<MachineInstr *, 16> &Spills,
1103     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1104     DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1105   // For each spill saw, check SpillBBToSpill[] and see if its BB already has
1106   // another spill inside. If a BB contains more than one spill, only keep the
1107   // earlier spill with smaller SlotIndex.
1108   for (const auto CurrentSpill : Spills) {
1109     MachineBasicBlock *Block = CurrentSpill->getParent();
1110     MachineDomTreeNode *Node = MDT.DT->getNode(Block);
1111     MachineInstr *PrevSpill = SpillBBToSpill[Node];
1112     if (PrevSpill) {
1113       SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
1114       SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill);
1115       MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
1116       MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
1117       SpillsToRm.push_back(SpillToRm);
1118       SpillBBToSpill[MDT.DT->getNode(Block)] = SpillToKeep;
1119     } else {
1120       SpillBBToSpill[MDT.DT->getNode(Block)] = CurrentSpill;
1121     }
1122   }
1123   for (const auto SpillToRm : SpillsToRm)
1124     Spills.erase(SpillToRm);
1125 }
1126 
1127 /// Starting from \p Root find a top-down traversal order of the dominator
1128 /// tree to visit all basic blocks containing the elements of \p Spills.
1129 /// Redundant spills will be found and put into \p SpillsToRm at the same
1130 /// time. \p SpillBBToSpill will be populated as part of the process and
1131 /// maps a basic block to the first store occurring in the basic block.
1132 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre
1133 ///
1134 void HoistSpillHelper::getVisitOrders(
1135     MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
1136     SmallVectorImpl<MachineDomTreeNode *> &Orders,
1137     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1138     DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
1139     DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1140   // The set contains all the possible BB nodes to which we may hoist
1141   // original spills.
1142   SmallPtrSet<MachineDomTreeNode *, 8> WorkSet;
1143   // Save the BB nodes on the path from the first BB node containing
1144   // non-redundent spill to the Root node.
1145   SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath;
1146   // All the spills to be hoisted must originate from a single def instruction
1147   // to the OrigReg. It means the def instruction should dominate all the spills
1148   // to be hoisted. We choose the BB where the def instruction is located as
1149   // the Root.
1150   MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom();
1151   // For every node on the dominator tree with spill, walk up on the dominator
1152   // tree towards the Root node until it is reached. If there is other node
1153   // containing spill in the middle of the path, the previous spill saw will
1154   // be redundent and the node containing it will be removed. All the nodes on
1155   // the path starting from the first node with non-redundent spill to the Root
1156   // node will be added to the WorkSet, which will contain all the possible
1157   // locations where spills may be hoisted to after the loop below is done.
1158   for (const auto Spill : Spills) {
1159     MachineBasicBlock *Block = Spill->getParent();
1160     MachineDomTreeNode *Node = MDT[Block];
1161     MachineInstr *SpillToRm = nullptr;
1162     while (Node != RootIDomNode) {
1163       // If Node dominates Block, and it already contains a spill, the spill in
1164       // Block will be redundent.
1165       if (Node != MDT[Block] && SpillBBToSpill[Node]) {
1166         SpillToRm = SpillBBToSpill[MDT[Block]];
1167         break;
1168         /// If we see the Node already in WorkSet, the path from the Node to
1169         /// the Root node must already be traversed by another spill.
1170         /// Then no need to repeat.
1171       } else if (WorkSet.count(Node)) {
1172         break;
1173       } else {
1174         NodesOnPath.insert(Node);
1175       }
1176       Node = Node->getIDom();
1177     }
1178     if (SpillToRm) {
1179       SpillsToRm.push_back(SpillToRm);
1180     } else {
1181       // Add a BB containing the original spills to SpillsToKeep -- i.e.,
1182       // set the initial status before hoisting start. The value of BBs
1183       // containing original spills is set to 0, in order to descriminate
1184       // with BBs containing hoisted spills which will be inserted to
1185       // SpillsToKeep later during hoisting.
1186       SpillsToKeep[MDT[Block]] = 0;
1187       WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end());
1188     }
1189     NodesOnPath.clear();
1190   }
1191 
1192   // Sort the nodes in WorkSet in top-down order and save the nodes
1193   // in Orders. Orders will be used for hoisting in runHoistSpills.
1194   unsigned idx = 0;
1195   Orders.push_back(MDT.DT->getNode(Root));
1196   do {
1197     MachineDomTreeNode *Node = Orders[idx++];
1198     const std::vector<MachineDomTreeNode *> &Children = Node->getChildren();
1199     unsigned NumChildren = Children.size();
1200     for (unsigned i = 0; i != NumChildren; ++i) {
1201       MachineDomTreeNode *Child = Children[i];
1202       if (WorkSet.count(Child))
1203         Orders.push_back(Child);
1204     }
1205   } while (idx != Orders.size());
1206   assert(Orders.size() == WorkSet.size() &&
1207          "Orders have different size with WorkSet");
1208 
1209 #ifndef NDEBUG
1210   DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n");
1211   SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1212   for (; RIt != Orders.rend(); RIt++)
1213     DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",");
1214   DEBUG(dbgs() << "\n");
1215 #endif
1216 }
1217 
1218 /// Try to hoist spills according to BB hotness. The spills to removed will
1219 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in
1220 /// \p SpillsToIns.
1221 ///
1222 void HoistSpillHelper::runHoistSpills(
1223     unsigned OrigReg, VNInfo &OrigVNI, SmallPtrSet<MachineInstr *, 16> &Spills,
1224     SmallVectorImpl<MachineInstr *> &SpillsToRm,
1225     DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) {
1226   // Visit order of dominator tree nodes.
1227   SmallVector<MachineDomTreeNode *, 32> Orders;
1228   // SpillsToKeep contains all the nodes where spills are to be inserted
1229   // during hoisting. If the spill to be inserted is an original spill
1230   // (not a hoisted one), the value of the map entry is 0. If the spill
1231   // is a hoisted spill, the value of the map entry is the VReg to be used
1232   // as the source of the spill.
1233   DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep;
1234   // Map from BB to the first spill inside of it.
1235   DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill;
1236 
1237   rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill);
1238 
1239   MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def);
1240   getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep,
1241                  SpillBBToSpill);
1242 
1243   // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
1244   // nodes set and the cost of all the spills inside those nodes.
1245   // The nodes set are the locations where spills are to be inserted
1246   // in the subtree of current node.
1247   typedef std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>
1248       NodesCostPair;
1249   DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap;
1250   // Iterate Orders set in reverse order, which will be a bottom-up order
1251   // in the dominator tree. Once we visit a dom tree node, we know its
1252   // children have already been visited and the spill locations in the
1253   // subtrees of all the children have been determined.
1254   SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1255   for (; RIt != Orders.rend(); RIt++) {
1256     MachineBasicBlock *Block = (*RIt)->getBlock();
1257 
1258     // If Block contains an original spill, simply continue.
1259     if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) {
1260       SpillsInSubTreeMap[*RIt].first.insert(*RIt);
1261       // SpillsInSubTreeMap[*RIt].second contains the cost of spill.
1262       SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block);
1263       continue;
1264     }
1265 
1266     // Collect spills in subtree of current node (*RIt) to
1267     // SpillsInSubTreeMap[*RIt].first.
1268     const std::vector<MachineDomTreeNode *> &Children = (*RIt)->getChildren();
1269     unsigned NumChildren = Children.size();
1270     for (unsigned i = 0; i != NumChildren; ++i) {
1271       MachineDomTreeNode *Child = Children[i];
1272       if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end())
1273         continue;
1274       // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below
1275       // should be placed before getting the begin and end iterators of
1276       // SpillsInSubTreeMap[Child].first, or else the iterators may be
1277       // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
1278       // and the map grows and then the original buckets in the map are moved.
1279       SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1280           SpillsInSubTreeMap[*RIt].first;
1281       BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1282       SubTreeCost += SpillsInSubTreeMap[Child].second;
1283       auto BI = SpillsInSubTreeMap[Child].first.begin();
1284       auto EI = SpillsInSubTreeMap[Child].first.end();
1285       SpillsInSubTree.insert(BI, EI);
1286       SpillsInSubTreeMap.erase(Child);
1287     }
1288 
1289     SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1290           SpillsInSubTreeMap[*RIt].first;
1291     BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1292     // No spills in subtree, simply continue.
1293     if (SpillsInSubTree.empty())
1294       continue;
1295 
1296     // Check whether Block is a possible candidate to insert spill.
1297     unsigned LiveReg = 0;
1298     if (!isSpillCandBB(OrigReg, OrigVNI, *Block, LiveReg))
1299       continue;
1300 
1301     // If there are multiple spills that could be merged, bias a little
1302     // to hoist the spill.
1303     BranchProbability MarginProb = (SpillsInSubTree.size() > 1)
1304                                        ? BranchProbability(9, 10)
1305                                        : BranchProbability(1, 1);
1306     if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) {
1307       // Hoist: Move spills to current Block.
1308       for (const auto SpillBB : SpillsInSubTree) {
1309         // When SpillBB is a BB contains original spill, insert the spill
1310         // to SpillsToRm.
1311         if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() &&
1312             !SpillsToKeep[SpillBB]) {
1313           MachineInstr *SpillToRm = SpillBBToSpill[SpillBB];
1314           SpillsToRm.push_back(SpillToRm);
1315         }
1316         // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
1317         SpillsToKeep.erase(SpillBB);
1318       }
1319       // Current Block is the BB containing the new hoisted spill. Add it to
1320       // SpillsToKeep. LiveReg is the source of the new spill.
1321       SpillsToKeep[*RIt] = LiveReg;
1322       DEBUG({
1323         dbgs() << "spills in BB: ";
1324         for (const auto Rspill : SpillsInSubTree)
1325           dbgs() << Rspill->getBlock()->getNumber() << " ";
1326         dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()
1327                << "\n";
1328       });
1329       SpillsInSubTree.clear();
1330       SpillsInSubTree.insert(*RIt);
1331       SubTreeCost = MBFI.getBlockFreq(Block);
1332     }
1333   }
1334   // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
1335   // save them to SpillsToIns.
1336   for (const auto Ent : SpillsToKeep) {
1337     if (Ent.second)
1338       SpillsToIns[Ent.first->getBlock()] = Ent.second;
1339   }
1340 }
1341 
1342 /// For spills with equal values, remove redundent spills and hoist the left
1343 /// to less hot spots.
1344 ///
1345 /// Spills with equal values will be collected into the same set in
1346 /// MergeableSpills when spill is inserted. These equal spills are originated
1347 /// from the same define instruction and are dominated by the instruction.
1348 /// Before hoisting all the equal spills, redundent spills inside in the same
1349 /// BB is first marked to be deleted. Then starting from spills left, walk up
1350 /// on the dominator tree towards the Root node where the define instruction
1351 /// is located, mark the dominated spills to be deleted along the way and
1352 /// collect the BB nodes on the path from non-dominated spills to the define
1353 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places
1354 /// where we consider to hoist the spills. We iterate the WorkSet in bottom-up
1355 /// order, and for each node, we will decide whether to hoist spills inside
1356 /// its subtree to that node. In this way, we can get benefit locally even if
1357 /// hoisting all the equal spills to one cold place is impossible.
1358 ///
1359 void HoistSpillHelper::hoistAllSpills() {
1360   SmallVector<unsigned, 4> NewVRegs;
1361   LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this);
1362 
1363   // Save the mapping between stackslot and its original reg.
1364   DenseMap<int, unsigned> SlotToOrigReg;
1365   for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
1366     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1367     int Slot = VRM.getStackSlot(Reg);
1368     if (Slot != VirtRegMap::NO_STACK_SLOT)
1369       SlotToOrigReg[Slot] = VRM.getOriginal(Reg);
1370     unsigned Original = VRM.getPreSplitReg(Reg);
1371     if (!MRI.def_empty(Reg))
1372       Virt2SiblingsMap[Original].insert(Reg);
1373   }
1374 
1375   // Each entry in MergeableSpills contains a spill set with equal values.
1376   for (auto &Ent : MergeableSpills) {
1377     int Slot = Ent.first.first;
1378     unsigned OrigReg = SlotToOrigReg[Slot];
1379     VNInfo *OrigVNI = Ent.first.second;
1380     SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second;
1381     if (Ent.second.empty())
1382       continue;
1383 
1384     DEBUG({
1385       dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"
1386              << "Equal spills in BB: ";
1387       for (const auto spill : EqValSpills)
1388         dbgs() << spill->getParent()->getNumber() << " ";
1389       dbgs() << "\n";
1390     });
1391 
1392     // SpillsToRm is the spill set to be removed from EqValSpills.
1393     SmallVector<MachineInstr *, 16> SpillsToRm;
1394     // SpillsToIns is the spill set to be newly inserted after hoisting.
1395     DenseMap<MachineBasicBlock *, unsigned> SpillsToIns;
1396 
1397     runHoistSpills(OrigReg, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns);
1398 
1399     DEBUG({
1400       dbgs() << "Finally inserted spills in BB: ";
1401       for (const auto Ispill : SpillsToIns)
1402         dbgs() << Ispill.first->getNumber() << " ";
1403       dbgs() << "\nFinally removed spills in BB: ";
1404       for (const auto Rspill : SpillsToRm)
1405         dbgs() << Rspill->getParent()->getNumber() << " ";
1406       dbgs() << "\n";
1407     });
1408 
1409     // Stack live range update.
1410     LiveInterval &StackIntvl = LSS.getInterval(Slot);
1411     if (!SpillsToIns.empty() || !SpillsToRm.empty()) {
1412       LiveInterval &OrigLI = LIS.getInterval(OrigReg);
1413       StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI,
1414                                      StackIntvl.getValNumInfo(0));
1415     }
1416 
1417     // Insert hoisted spills.
1418     for (auto const Insert : SpillsToIns) {
1419       MachineBasicBlock *BB = Insert.first;
1420       unsigned LiveReg = Insert.second;
1421       MachineBasicBlock::iterator MI = BB->getFirstTerminator();
1422       TII.storeRegToStackSlot(*BB, MI, LiveReg, false, Slot,
1423                               MRI.getRegClass(LiveReg), &TRI);
1424       LIS.InsertMachineInstrRangeInMaps(std::prev(MI), MI);
1425       ++NumSpills;
1426     }
1427 
1428     // Remove redundent spills or change them to dead instructions.
1429     NumSpills -= SpillsToRm.size();
1430     for (auto const RMEnt : SpillsToRm) {
1431       RMEnt->setDesc(TII.get(TargetOpcode::KILL));
1432       for (unsigned i = RMEnt->getNumOperands(); i; --i) {
1433         MachineOperand &MO = RMEnt->getOperand(i - 1);
1434         if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead())
1435           RMEnt->RemoveOperand(i - 1);
1436       }
1437     }
1438     Edit.eliminateDeadDefs(SpillsToRm, None);
1439   }
1440 }
1441 
1442 /// For VirtReg clone, the \p New register should have the same physreg or
1443 /// stackslot as the \p old register.
1444 void HoistSpillHelper::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
1445   if (VRM.hasPhys(Old))
1446     VRM.assignVirt2Phys(New, VRM.getPhys(Old));
1447   else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT)
1448     VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old));
1449   else
1450     llvm_unreachable("VReg should be assigned either physreg or stackslot");
1451 }
1452