1 //===-------- InlineSpiller.cpp - Insert spills and restores inline -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The inline spiller modifies the machine function directly instead of 11 // inserting spills and restores in VirtRegMap. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "Spiller.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/SetVector.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/ADT/TinyPtrVector.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 22 #include "llvm/CodeGen/LiveRangeEdit.h" 23 #include "llvm/CodeGen/LiveStackAnalysis.h" 24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 25 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 26 #include "llvm/CodeGen/MachineDominators.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineInstrBundle.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/VirtRegMap.h" 34 #include "llvm/IR/DebugInfo.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetInstrInfo.h" 39 40 using namespace llvm; 41 42 #define DEBUG_TYPE "regalloc" 43 44 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 45 STATISTIC(NumSnippets, "Number of spilled snippets"); 46 STATISTIC(NumSpills, "Number of spills inserted"); 47 STATISTIC(NumSpillsRemoved, "Number of spills removed"); 48 STATISTIC(NumReloads, "Number of reloads inserted"); 49 STATISTIC(NumReloadsRemoved, "Number of reloads removed"); 50 STATISTIC(NumFolded, "Number of folded stack accesses"); 51 STATISTIC(NumFoldedLoads, "Number of folded loads"); 52 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 53 54 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden, 55 cl::desc("Disable inline spill hoisting")); 56 57 namespace { 58 class HoistSpillHelper { 59 LiveIntervals &LIS; 60 LiveStacks &LSS; 61 AliasAnalysis *AA; 62 MachineDominatorTree &MDT; 63 MachineLoopInfo &Loops; 64 VirtRegMap &VRM; 65 MachineFrameInfo &MFI; 66 MachineRegisterInfo &MRI; 67 const TargetInstrInfo &TII; 68 const TargetRegisterInfo &TRI; 69 const MachineBlockFrequencyInfo &MBFI; 70 71 // Map from StackSlot to its original register. 72 DenseMap<int, unsigned> StackSlotToReg; 73 // Map from pair of (StackSlot and Original VNI) to a set of spills which 74 // have the same stackslot and have equal values defined by Original VNI. 75 // These spills are mergeable and are hoist candiates. 76 typedef MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>> 77 MergeableSpillsMap; 78 MergeableSpillsMap MergeableSpills; 79 80 /// This is the map from original register to a set containing all its 81 /// siblings. To hoist a spill to another BB, we need to find out a live 82 /// sibling there and use it as the source of the new spill. 83 DenseMap<unsigned, SmallSetVector<unsigned, 16>> Virt2SiblingsMap; 84 85 bool isSpillCandBB(unsigned OrigReg, VNInfo &OrigVNI, MachineBasicBlock &BB, 86 unsigned &LiveReg); 87 88 void rmRedundantSpills( 89 SmallPtrSet<MachineInstr *, 16> &Spills, 90 SmallVectorImpl<MachineInstr *> &SpillsToRm, 91 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 92 93 void getVisitOrders( 94 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 95 SmallVectorImpl<MachineDomTreeNode *> &Orders, 96 SmallVectorImpl<MachineInstr *> &SpillsToRm, 97 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 98 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 99 100 void runHoistSpills(unsigned OrigReg, VNInfo &OrigVNI, 101 SmallPtrSet<MachineInstr *, 16> &Spills, 102 SmallVectorImpl<MachineInstr *> &SpillsToRm, 103 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns); 104 105 public: 106 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf, 107 VirtRegMap &vrm) 108 : LIS(pass.getAnalysis<LiveIntervals>()), 109 LSS(pass.getAnalysis<LiveStacks>()), 110 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 111 MDT(pass.getAnalysis<MachineDominatorTree>()), 112 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 113 MFI(*mf.getFrameInfo()), MRI(mf.getRegInfo()), 114 TII(*mf.getSubtarget().getInstrInfo()), 115 TRI(*mf.getSubtarget().getRegisterInfo()), 116 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()) {} 117 118 void addToMergeableSpills(MachineInstr *Spill, int StackSlot, 119 unsigned Original); 120 bool rmFromMergeableSpills(MachineInstr *Spill, int StackSlot); 121 void hoistAllSpills(LiveRangeEdit &Edit); 122 }; 123 124 class InlineSpiller : public Spiller { 125 MachineFunction &MF; 126 LiveIntervals &LIS; 127 LiveStacks &LSS; 128 AliasAnalysis *AA; 129 MachineDominatorTree &MDT; 130 MachineLoopInfo &Loops; 131 VirtRegMap &VRM; 132 MachineFrameInfo &MFI; 133 MachineRegisterInfo &MRI; 134 const TargetInstrInfo &TII; 135 const TargetRegisterInfo &TRI; 136 const MachineBlockFrequencyInfo &MBFI; 137 138 // Variables that are valid during spill(), but used by multiple methods. 139 LiveRangeEdit *Edit; 140 LiveInterval *StackInt; 141 int StackSlot; 142 unsigned Original; 143 144 // All registers to spill to StackSlot, including the main register. 145 SmallVector<unsigned, 8> RegsToSpill; 146 147 // All COPY instructions to/from snippets. 148 // They are ignored since both operands refer to the same stack slot. 149 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 150 151 // Values that failed to remat at some point. 152 SmallPtrSet<VNInfo*, 8> UsedValues; 153 154 // Dead defs generated during spilling. 155 SmallVector<MachineInstr*, 8> DeadDefs; 156 157 // Object records spills information and does the hoisting. 158 HoistSpillHelper HSpiller; 159 160 ~InlineSpiller() override {} 161 162 public: 163 InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm) 164 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 165 LSS(pass.getAnalysis<LiveStacks>()), 166 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 167 MDT(pass.getAnalysis<MachineDominatorTree>()), 168 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 169 MFI(*mf.getFrameInfo()), MRI(mf.getRegInfo()), 170 TII(*mf.getSubtarget().getInstrInfo()), 171 TRI(*mf.getSubtarget().getRegisterInfo()), 172 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 173 HSpiller(pass, mf, vrm) {} 174 175 void spill(LiveRangeEdit &) override; 176 void postOptimization() override; 177 178 private: 179 bool isSnippet(const LiveInterval &SnipLI); 180 void collectRegsToSpill(); 181 182 bool isRegToSpill(unsigned Reg) { 183 return std::find(RegsToSpill.begin(), 184 RegsToSpill.end(), Reg) != RegsToSpill.end(); 185 } 186 187 bool isSibling(unsigned Reg); 188 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI); 189 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 190 191 void markValueUsed(LiveInterval*, VNInfo*); 192 bool reMaterializeFor(LiveInterval &, MachineInstr &MI); 193 void reMaterializeAll(); 194 195 bool coalesceStackAccess(MachineInstr *MI, unsigned Reg); 196 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> >, 197 MachineInstr *LoadMI = nullptr); 198 void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI); 199 void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI); 200 201 void spillAroundUses(unsigned Reg); 202 void spillAll(); 203 }; 204 } 205 206 namespace llvm { 207 208 Spiller::~Spiller() { } 209 void Spiller::anchor() { } 210 211 Spiller *createInlineSpiller(MachineFunctionPass &pass, 212 MachineFunction &mf, 213 VirtRegMap &vrm) { 214 return new InlineSpiller(pass, mf, vrm); 215 } 216 217 } 218 219 //===----------------------------------------------------------------------===// 220 // Snippets 221 //===----------------------------------------------------------------------===// 222 223 // When spilling a virtual register, we also spill any snippets it is connected 224 // to. The snippets are small live ranges that only have a single real use, 225 // leftovers from live range splitting. Spilling them enables memory operand 226 // folding or tightens the live range around the single use. 227 // 228 // This minimizes register pressure and maximizes the store-to-load distance for 229 // spill slots which can be important in tight loops. 230 231 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 232 /// otherwise return 0. 233 static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) { 234 if (!MI->isFullCopy()) 235 return 0; 236 if (MI->getOperand(0).getReg() == Reg) 237 return MI->getOperand(1).getReg(); 238 if (MI->getOperand(1).getReg() == Reg) 239 return MI->getOperand(0).getReg(); 240 return 0; 241 } 242 243 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 244 /// It is assumed that SnipLI is a virtual register with the same original as 245 /// Edit->getReg(). 246 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 247 unsigned Reg = Edit->getReg(); 248 249 // A snippet is a tiny live range with only a single instruction using it 250 // besides copies to/from Reg or spills/fills. We accept: 251 // 252 // %snip = COPY %Reg / FILL fi# 253 // %snip = USE %snip 254 // %Reg = COPY %snip / SPILL %snip, fi# 255 // 256 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) 257 return false; 258 259 MachineInstr *UseMI = nullptr; 260 261 // Check that all uses satisfy our criteria. 262 for (MachineRegisterInfo::reg_instr_nodbg_iterator 263 RI = MRI.reg_instr_nodbg_begin(SnipLI.reg), 264 E = MRI.reg_instr_nodbg_end(); RI != E; ) { 265 MachineInstr *MI = &*(RI++); 266 267 // Allow copies to/from Reg. 268 if (isFullCopyOf(MI, Reg)) 269 continue; 270 271 // Allow stack slot loads. 272 int FI; 273 if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 274 continue; 275 276 // Allow stack slot stores. 277 if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 278 continue; 279 280 // Allow a single additional instruction. 281 if (UseMI && MI != UseMI) 282 return false; 283 UseMI = MI; 284 } 285 return true; 286 } 287 288 /// collectRegsToSpill - Collect live range snippets that only have a single 289 /// real use. 290 void InlineSpiller::collectRegsToSpill() { 291 unsigned Reg = Edit->getReg(); 292 293 // Main register always spills. 294 RegsToSpill.assign(1, Reg); 295 SnippetCopies.clear(); 296 297 // Snippets all have the same original, so there can't be any for an original 298 // register. 299 if (Original == Reg) 300 return; 301 302 for (MachineRegisterInfo::reg_instr_iterator 303 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) { 304 MachineInstr *MI = &*(RI++); 305 unsigned SnipReg = isFullCopyOf(MI, Reg); 306 if (!isSibling(SnipReg)) 307 continue; 308 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 309 if (!isSnippet(SnipLI)) 310 continue; 311 SnippetCopies.insert(MI); 312 if (isRegToSpill(SnipReg)) 313 continue; 314 RegsToSpill.push_back(SnipReg); 315 DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 316 ++NumSnippets; 317 } 318 } 319 320 bool InlineSpiller::isSibling(unsigned Reg) { 321 return TargetRegisterInfo::isVirtualRegister(Reg) && 322 VRM.getOriginal(Reg) == Original; 323 } 324 325 /// It is beneficial to spill to earlier place in the same BB in case 326 /// as follows: 327 /// There is an alternative def earlier in the same MBB. 328 /// Hoist the spill as far as possible in SpillMBB. This can ease 329 /// register pressure: 330 /// 331 /// x = def 332 /// y = use x 333 /// s = copy x 334 /// 335 /// Hoisting the spill of s to immediately after the def removes the 336 /// interference between x and y: 337 /// 338 /// x = def 339 /// spill x 340 /// y = use x<kill> 341 /// 342 /// This hoist only helps when the copy kills its source. 343 /// 344 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI, 345 MachineInstr &CopyMI) { 346 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 347 #ifndef NDEBUG 348 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); 349 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); 350 #endif 351 352 unsigned SrcReg = CopyMI.getOperand(1).getReg(); 353 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 354 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx); 355 LiveQueryResult SrcQ = SrcLI.Query(Idx); 356 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def); 357 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill()) 358 return false; 359 360 // Conservatively extend the stack slot range to the range of the original 361 // value. We may be able to do better with stack slot coloring by being more 362 // careful here. 363 assert(StackInt && "No stack slot assigned yet."); 364 LiveInterval &OrigLI = LIS.getInterval(Original); 365 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 366 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 367 DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 368 << *StackInt << '\n'); 369 370 // We are going to spill SrcVNI immediately after its def, so clear out 371 // any later spills of the same value. 372 eliminateRedundantSpills(SrcLI, SrcVNI); 373 374 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def); 375 MachineBasicBlock::iterator MII; 376 if (SrcVNI->isPHIDef()) 377 MII = MBB->SkipPHIsAndLabels(MBB->begin()); 378 else { 379 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def); 380 assert(DefMI && "Defining instruction disappeared"); 381 MII = DefMI; 382 ++MII; 383 } 384 // Insert spill without kill flag immediately after def. 385 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot, 386 MRI.getRegClass(SrcReg), &TRI); 387 --MII; // Point to store instruction. 388 LIS.InsertMachineInstrInMaps(*MII); 389 DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII); 390 391 HSpiller.addToMergeableSpills(&(*MII), StackSlot, Original); 392 ++NumSpills; 393 return true; 394 } 395 396 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 397 /// redundant spills of this value in SLI.reg and sibling copies. 398 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 399 assert(VNI && "Missing value"); 400 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 401 WorkList.push_back(std::make_pair(&SLI, VNI)); 402 assert(StackInt && "No stack slot assigned yet."); 403 404 do { 405 LiveInterval *LI; 406 std::tie(LI, VNI) = WorkList.pop_back_val(); 407 unsigned Reg = LI->reg; 408 DEBUG(dbgs() << "Checking redundant spills for " 409 << VNI->id << '@' << VNI->def << " in " << *LI << '\n'); 410 411 // Regs to spill are taken care of. 412 if (isRegToSpill(Reg)) 413 continue; 414 415 // Add all of VNI's live range to StackInt. 416 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 417 DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 418 419 // Find all spills and copies of VNI. 420 for (MachineRegisterInfo::use_instr_nodbg_iterator 421 UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 422 UI != E; ) { 423 MachineInstr *MI = &*(UI++); 424 if (!MI->isCopy() && !MI->mayStore()) 425 continue; 426 SlotIndex Idx = LIS.getInstructionIndex(*MI); 427 if (LI->getVNInfoAt(Idx) != VNI) 428 continue; 429 430 // Follow sibling copies down the dominator tree. 431 if (unsigned DstReg = isFullCopyOf(MI, Reg)) { 432 if (isSibling(DstReg)) { 433 LiveInterval &DstLI = LIS.getInterval(DstReg); 434 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); 435 assert(DstVNI && "Missing defined value"); 436 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); 437 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 438 } 439 continue; 440 } 441 442 // Erase spills. 443 int FI; 444 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 445 DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI); 446 // eliminateDeadDefs won't normally remove stores, so switch opcode. 447 MI->setDesc(TII.get(TargetOpcode::KILL)); 448 DeadDefs.push_back(MI); 449 ++NumSpillsRemoved; 450 if (HSpiller.rmFromMergeableSpills(MI, StackSlot)) 451 --NumSpills; 452 } 453 } 454 } while (!WorkList.empty()); 455 } 456 457 458 //===----------------------------------------------------------------------===// 459 // Rematerialization 460 //===----------------------------------------------------------------------===// 461 462 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 463 /// instruction cannot be eliminated. See through snippet copies 464 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 465 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 466 WorkList.push_back(std::make_pair(LI, VNI)); 467 do { 468 std::tie(LI, VNI) = WorkList.pop_back_val(); 469 if (!UsedValues.insert(VNI).second) 470 continue; 471 472 if (VNI->isPHIDef()) { 473 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 474 for (MachineBasicBlock *P : MBB->predecessors()) { 475 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P)); 476 if (PVNI) 477 WorkList.push_back(std::make_pair(LI, PVNI)); 478 } 479 continue; 480 } 481 482 // Follow snippet copies. 483 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 484 if (!SnippetCopies.count(MI)) 485 continue; 486 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 487 assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy"); 488 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); 489 assert(SnipVNI && "Snippet undefined before copy"); 490 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 491 } while (!WorkList.empty()); 492 } 493 494 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 495 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) { 496 497 // Analyze instruction 498 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 499 MIBundleOperands::VirtRegInfo RI = 500 MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops); 501 502 if (!RI.Reads) 503 return false; 504 505 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); 506 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 507 508 if (!ParentVNI) { 509 DEBUG(dbgs() << "\tadding <undef> flags: "); 510 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 511 MachineOperand &MO = MI.getOperand(i); 512 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) 513 MO.setIsUndef(); 514 } 515 DEBUG(dbgs() << UseIdx << '\t' << MI); 516 return true; 517 } 518 519 if (SnippetCopies.count(&MI)) 520 return false; 521 522 LiveInterval &OrigLI = LIS.getInterval(Original); 523 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 524 LiveRangeEdit::Remat RM(ParentVNI); 525 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 526 527 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) { 528 markValueUsed(&VirtReg, ParentVNI); 529 DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 530 return false; 531 } 532 533 // If the instruction also writes VirtReg.reg, it had better not require the 534 // same register for uses and defs. 535 if (RI.Tied) { 536 markValueUsed(&VirtReg, ParentVNI); 537 DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI); 538 return false; 539 } 540 541 // Before rematerializing into a register for a single instruction, try to 542 // fold a load into the instruction. That avoids allocating a new register. 543 if (RM.OrigMI->canFoldAsLoad() && 544 foldMemoryOperand(Ops, RM.OrigMI)) { 545 Edit->markRematerialized(RM.ParentVNI); 546 ++NumFoldedLoads; 547 return true; 548 } 549 550 // Alocate a new register for the remat. 551 unsigned NewVReg = Edit->createFrom(Original); 552 553 // Finally we can rematerialize OrigMI before MI. 554 SlotIndex DefIdx = 555 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI); 556 (void)DefIdx; 557 DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 558 << *LIS.getInstructionFromIndex(DefIdx)); 559 560 // Replace operands 561 for (const auto &OpPair : Ops) { 562 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 563 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) { 564 MO.setReg(NewVReg); 565 MO.setIsKill(); 566 } 567 } 568 DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n'); 569 570 ++NumRemats; 571 return true; 572 } 573 574 /// reMaterializeAll - Try to rematerialize as many uses as possible, 575 /// and trim the live ranges after. 576 void InlineSpiller::reMaterializeAll() { 577 if (!Edit->anyRematerializable(AA)) 578 return; 579 580 UsedValues.clear(); 581 582 // Try to remat before all uses of snippets. 583 bool anyRemat = false; 584 for (unsigned Reg : RegsToSpill) { 585 LiveInterval &LI = LIS.getInterval(Reg); 586 for (MachineRegisterInfo::reg_bundle_iterator 587 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 588 RegI != E; ) { 589 MachineInstr &MI = *RegI++; 590 591 // Debug values are not allowed to affect codegen. 592 if (MI.isDebugValue()) 593 continue; 594 595 anyRemat |= reMaterializeFor(LI, MI); 596 } 597 } 598 if (!anyRemat) 599 return; 600 601 // Remove any values that were completely rematted. 602 for (unsigned Reg : RegsToSpill) { 603 LiveInterval &LI = LIS.getInterval(Reg); 604 for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 605 I != E; ++I) { 606 VNInfo *VNI = *I; 607 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 608 continue; 609 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 610 MI->addRegisterDead(Reg, &TRI); 611 if (!MI->allDefsAreDead()) 612 continue; 613 DEBUG(dbgs() << "All defs dead: " << *MI); 614 DeadDefs.push_back(MI); 615 } 616 } 617 618 // Eliminate dead code after remat. Note that some snippet copies may be 619 // deleted here. 620 if (DeadDefs.empty()) 621 return; 622 DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 623 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill); 624 625 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions 626 // after rematerialization. To remove a VNI for a vreg from its LiveInterval, 627 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all 628 // removed, PHI VNI are still left in the LiveInterval. 629 // So to get rid of unused reg, we need to check whether it has non-dbg 630 // reference instead of whether it has non-empty interval. 631 unsigned ResultPos = 0; 632 for (unsigned Reg : RegsToSpill) { 633 if (MRI.reg_nodbg_empty(Reg)) { 634 Edit->eraseVirtReg(Reg); 635 continue; 636 } 637 assert((LIS.hasInterval(Reg) && !LIS.getInterval(Reg).empty()) && 638 "Reg with empty interval has reference"); 639 RegsToSpill[ResultPos++] = Reg; 640 } 641 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); 642 DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n"); 643 } 644 645 646 //===----------------------------------------------------------------------===// 647 // Spilling 648 //===----------------------------------------------------------------------===// 649 650 /// If MI is a load or store of StackSlot, it can be removed. 651 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) { 652 int FI = 0; 653 unsigned InstrReg = TII.isLoadFromStackSlot(MI, FI); 654 bool IsLoad = InstrReg; 655 if (!IsLoad) 656 InstrReg = TII.isStoreToStackSlot(MI, FI); 657 658 // We have a stack access. Is it the right register and slot? 659 if (InstrReg != Reg || FI != StackSlot) 660 return false; 661 662 if (!IsLoad) 663 HSpiller.rmFromMergeableSpills(MI, StackSlot); 664 665 DEBUG(dbgs() << "Coalescing stack access: " << *MI); 666 LIS.RemoveMachineInstrFromMaps(*MI); 667 MI->eraseFromParent(); 668 669 if (IsLoad) { 670 ++NumReloadsRemoved; 671 --NumReloads; 672 } else { 673 ++NumSpillsRemoved; 674 --NumSpills; 675 } 676 677 return true; 678 } 679 680 #if !defined(NDEBUG) 681 // Dump the range of instructions from B to E with their slot indexes. 682 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, 683 MachineBasicBlock::iterator E, 684 LiveIntervals const &LIS, 685 const char *const header, 686 unsigned VReg =0) { 687 char NextLine = '\n'; 688 char SlotIndent = '\t'; 689 690 if (std::next(B) == E) { 691 NextLine = ' '; 692 SlotIndent = ' '; 693 } 694 695 dbgs() << '\t' << header << ": " << NextLine; 696 697 for (MachineBasicBlock::iterator I = B; I != E; ++I) { 698 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot(); 699 700 // If a register was passed in and this instruction has it as a 701 // destination that is marked as an early clobber, print the 702 // early-clobber slot index. 703 if (VReg) { 704 MachineOperand *MO = I->findRegisterDefOperand(VReg); 705 if (MO && MO->isEarlyClobber()) 706 Idx = Idx.getRegSlot(true); 707 } 708 709 dbgs() << SlotIndent << Idx << '\t' << *I; 710 } 711 } 712 #endif 713 714 /// foldMemoryOperand - Try folding stack slot references in Ops into their 715 /// instructions. 716 /// 717 /// @param Ops Operand indices from analyzeVirtReg(). 718 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 719 /// @return True on success. 720 bool InlineSpiller:: 721 foldMemoryOperand(ArrayRef<std::pair<MachineInstr*, unsigned> > Ops, 722 MachineInstr *LoadMI) { 723 if (Ops.empty()) 724 return false; 725 // Don't attempt folding in bundles. 726 MachineInstr *MI = Ops.front().first; 727 if (Ops.back().first != MI || MI->isBundled()) 728 return false; 729 730 bool WasCopy = MI->isCopy(); 731 unsigned ImpReg = 0; 732 733 bool SpillSubRegs = (MI->getOpcode() == TargetOpcode::STATEPOINT || 734 MI->getOpcode() == TargetOpcode::PATCHPOINT || 735 MI->getOpcode() == TargetOpcode::STACKMAP); 736 737 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 738 // operands. 739 SmallVector<unsigned, 8> FoldOps; 740 for (const auto &OpPair : Ops) { 741 unsigned Idx = OpPair.second; 742 assert(MI == OpPair.first && "Instruction conflict during operand folding"); 743 MachineOperand &MO = MI->getOperand(Idx); 744 if (MO.isImplicit()) { 745 ImpReg = MO.getReg(); 746 continue; 747 } 748 // FIXME: Teach targets to deal with subregs. 749 if (!SpillSubRegs && MO.getSubReg()) 750 return false; 751 // We cannot fold a load instruction into a def. 752 if (LoadMI && MO.isDef()) 753 return false; 754 // Tied use operands should not be passed to foldMemoryOperand. 755 if (!MI->isRegTiedToDefOperand(Idx)) 756 FoldOps.push_back(Idx); 757 } 758 759 MachineInstrSpan MIS(MI); 760 761 MachineInstr *FoldMI = 762 LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI) 763 : TII.foldMemoryOperand(MI, FoldOps, StackSlot); 764 if (!FoldMI) 765 return false; 766 767 // Remove LIS for any dead defs in the original MI not in FoldMI. 768 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) { 769 if (!MO->isReg()) 770 continue; 771 unsigned Reg = MO->getReg(); 772 if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) || 773 MRI.isReserved(Reg)) { 774 continue; 775 } 776 // Skip non-Defs, including undef uses and internal reads. 777 if (MO->isUse()) 778 continue; 779 MIBundleOperands::PhysRegInfo RI = 780 MIBundleOperands(*FoldMI).analyzePhysReg(Reg, &TRI); 781 if (RI.FullyDefined) 782 continue; 783 // FoldMI does not define this physreg. Remove the LI segment. 784 assert(MO->isDead() && "Cannot fold physreg def"); 785 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 786 LIS.removePhysRegDefAt(Reg, Idx); 787 } 788 789 int FI; 790 if (TII.isStoreToStackSlot(MI, FI) && HSpiller.rmFromMergeableSpills(MI, FI)) 791 --NumSpills; 792 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI); 793 MI->eraseFromParent(); 794 795 // Insert any new instructions other than FoldMI into the LIS maps. 796 assert(!MIS.empty() && "Unexpected empty span of instructions!"); 797 for (MachineInstr &MI : MIS) 798 if (&MI != FoldMI) 799 LIS.InsertMachineInstrInMaps(MI); 800 801 // TII.foldMemoryOperand may have left some implicit operands on the 802 // instruction. Strip them. 803 if (ImpReg) 804 for (unsigned i = FoldMI->getNumOperands(); i; --i) { 805 MachineOperand &MO = FoldMI->getOperand(i - 1); 806 if (!MO.isReg() || !MO.isImplicit()) 807 break; 808 if (MO.getReg() == ImpReg) 809 FoldMI->RemoveOperand(i - 1); 810 } 811 812 DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, 813 "folded")); 814 815 if (!WasCopy) 816 ++NumFolded; 817 else if (Ops.front().second == 0) { 818 ++NumSpills; 819 HSpiller.addToMergeableSpills(FoldMI, StackSlot, Original); 820 } else 821 ++NumReloads; 822 return true; 823 } 824 825 void InlineSpiller::insertReload(unsigned NewVReg, 826 SlotIndex Idx, 827 MachineBasicBlock::iterator MI) { 828 MachineBasicBlock &MBB = *MI->getParent(); 829 830 MachineInstrSpan MIS(MI); 831 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, 832 MRI.getRegClass(NewVReg), &TRI); 833 834 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); 835 836 DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload", 837 NewVReg)); 838 ++NumReloads; 839 } 840 841 /// insertSpill - Insert a spill of NewVReg after MI. 842 void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill, 843 MachineBasicBlock::iterator MI) { 844 MachineBasicBlock &MBB = *MI->getParent(); 845 846 MachineInstrSpan MIS(MI); 847 TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot, 848 MRI.getRegClass(NewVReg), &TRI); 849 850 LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end()); 851 852 DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS, 853 "spill")); 854 ++NumSpills; 855 HSpiller.addToMergeableSpills(std::next(MI), StackSlot, Original); 856 } 857 858 /// spillAroundUses - insert spill code around each use of Reg. 859 void InlineSpiller::spillAroundUses(unsigned Reg) { 860 DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n'); 861 LiveInterval &OldLI = LIS.getInterval(Reg); 862 863 // Iterate over instructions using Reg. 864 for (MachineRegisterInfo::reg_bundle_iterator 865 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 866 RegI != E; ) { 867 MachineInstr *MI = &*(RegI++); 868 869 // Debug values are not allowed to affect codegen. 870 if (MI->isDebugValue()) { 871 // Modify DBG_VALUE now that the value is in a spill slot. 872 bool IsIndirect = MI->isIndirectDebugValue(); 873 uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0; 874 const MDNode *Var = MI->getDebugVariable(); 875 const MDNode *Expr = MI->getDebugExpression(); 876 DebugLoc DL = MI->getDebugLoc(); 877 DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI); 878 MachineBasicBlock *MBB = MI->getParent(); 879 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) && 880 "Expected inlined-at fields to agree"); 881 BuildMI(*MBB, MBB->erase(MI), DL, TII.get(TargetOpcode::DBG_VALUE)) 882 .addFrameIndex(StackSlot) 883 .addImm(Offset) 884 .addMetadata(Var) 885 .addMetadata(Expr); 886 continue; 887 } 888 889 // Ignore copies to/from snippets. We'll delete them. 890 if (SnippetCopies.count(MI)) 891 continue; 892 893 // Stack slot accesses may coalesce away. 894 if (coalesceStackAccess(MI, Reg)) 895 continue; 896 897 // Analyze instruction. 898 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; 899 MIBundleOperands::VirtRegInfo RI = 900 MIBundleOperands(*MI).analyzeVirtReg(Reg, &Ops); 901 902 // Find the slot index where this instruction reads and writes OldLI. 903 // This is usually the def slot, except for tied early clobbers. 904 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 905 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) 906 if (SlotIndex::isSameInstr(Idx, VNI->def)) 907 Idx = VNI->def; 908 909 // Check for a sibling copy. 910 unsigned SibReg = isFullCopyOf(MI, Reg); 911 if (SibReg && isSibling(SibReg)) { 912 // This may actually be a copy between snippets. 913 if (isRegToSpill(SibReg)) { 914 DEBUG(dbgs() << "Found new snippet copy: " << *MI); 915 SnippetCopies.insert(MI); 916 continue; 917 } 918 if (RI.Writes) { 919 if (hoistSpillInsideBB(OldLI, *MI)) { 920 // This COPY is now dead, the value is already in the stack slot. 921 MI->getOperand(0).setIsDead(); 922 DeadDefs.push_back(MI); 923 continue; 924 } 925 } else { 926 // This is a reload for a sib-reg copy. Drop spills downstream. 927 LiveInterval &SibLI = LIS.getInterval(SibReg); 928 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 929 // The COPY will fold to a reload below. 930 } 931 } 932 933 // Attempt to fold memory ops. 934 if (foldMemoryOperand(Ops)) 935 continue; 936 937 // Create a new virtual register for spill/fill. 938 // FIXME: Infer regclass from instruction alone. 939 unsigned NewVReg = Edit->createFrom(Reg); 940 941 if (RI.Reads) 942 insertReload(NewVReg, Idx, MI); 943 944 // Rewrite instruction operands. 945 bool hasLiveDef = false; 946 for (const auto &OpPair : Ops) { 947 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 948 MO.setReg(NewVReg); 949 if (MO.isUse()) { 950 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second)) 951 MO.setIsKill(); 952 } else { 953 if (!MO.isDead()) 954 hasLiveDef = true; 955 } 956 } 957 DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n'); 958 959 // FIXME: Use a second vreg if instruction has no tied ops. 960 if (RI.Writes) 961 if (hasLiveDef) 962 insertSpill(NewVReg, true, MI); 963 } 964 } 965 966 /// spillAll - Spill all registers remaining after rematerialization. 967 void InlineSpiller::spillAll() { 968 // Update LiveStacks now that we are committed to spilling. 969 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 970 StackSlot = VRM.assignVirt2StackSlot(Original); 971 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 972 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); 973 } else 974 StackInt = &LSS.getInterval(StackSlot); 975 976 if (Original != Edit->getReg()) 977 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 978 979 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 980 for (unsigned Reg : RegsToSpill) 981 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg), 982 StackInt->getValNumInfo(0)); 983 DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 984 985 // Spill around uses of all RegsToSpill. 986 for (unsigned Reg : RegsToSpill) 987 spillAroundUses(Reg); 988 989 // Hoisted spills may cause dead code. 990 if (!DeadDefs.empty()) { 991 DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 992 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill); 993 } 994 995 // Finally delete the SnippetCopies. 996 for (unsigned Reg : RegsToSpill) { 997 for (MachineRegisterInfo::reg_instr_iterator 998 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); 999 RI != E; ) { 1000 MachineInstr &MI = *(RI++); 1001 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy"); 1002 // FIXME: Do this with a LiveRangeEdit callback. 1003 LIS.RemoveMachineInstrFromMaps(MI); 1004 MI.eraseFromParent(); 1005 } 1006 } 1007 1008 // Delete all spilled registers. 1009 for (unsigned Reg : RegsToSpill) 1010 Edit->eraseVirtReg(Reg); 1011 } 1012 1013 void InlineSpiller::spill(LiveRangeEdit &edit) { 1014 ++NumSpilledRanges; 1015 Edit = &edit; 1016 assert(!TargetRegisterInfo::isStackSlot(edit.getReg()) 1017 && "Trying to spill a stack slot."); 1018 // Share a stack slot among all descendants of Original. 1019 Original = VRM.getOriginal(edit.getReg()); 1020 StackSlot = VRM.getStackSlot(Original); 1021 StackInt = nullptr; 1022 1023 DEBUG(dbgs() << "Inline spilling " 1024 << TRI.getRegClassName(MRI.getRegClass(edit.getReg())) 1025 << ':' << edit.getParent() 1026 << "\nFrom original " << PrintReg(Original) << '\n'); 1027 assert(edit.getParent().isSpillable() && 1028 "Attempting to spill already spilled value."); 1029 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1030 1031 collectRegsToSpill(); 1032 reMaterializeAll(); 1033 1034 // Remat may handle everything. 1035 if (!RegsToSpill.empty()) 1036 spillAll(); 1037 1038 Edit->calculateRegClassAndHint(MF, Loops, MBFI); 1039 } 1040 1041 /// Optimizations after all the reg selections and spills are done. 1042 /// 1043 void InlineSpiller::postOptimization() { 1044 SmallVector<unsigned, 4> NewVRegs; 1045 LiveRangeEdit LRE(nullptr, NewVRegs, MF, LIS, &VRM, nullptr); 1046 HSpiller.hoistAllSpills(LRE); 1047 assert(NewVRegs.size() == 0 && 1048 "No new vregs should be generated in hoistAllSpills"); 1049 } 1050 1051 /// When a spill is inserted, add the spill to MergeableSpills map. 1052 /// 1053 void HoistSpillHelper::addToMergeableSpills(MachineInstr *Spill, int StackSlot, 1054 unsigned Original) { 1055 StackSlotToReg[StackSlot] = Original; 1056 SlotIndex Idx = LIS.getInstructionIndex(*Spill); 1057 VNInfo *OrigVNI = LIS.getInterval(Original).getVNInfoAt(Idx.getRegSlot()); 1058 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1059 MergeableSpills[MIdx].insert(Spill); 1060 } 1061 1062 /// When a spill is removed, remove the spill from MergeableSpills map. 1063 /// Return true if the spill is removed successfully. 1064 /// 1065 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr *Spill, 1066 int StackSlot) { 1067 int Original = StackSlotToReg[StackSlot]; 1068 if (!Original) 1069 return false; 1070 SlotIndex Idx = LIS.getInstructionIndex(*Spill); 1071 VNInfo *OrigVNI = LIS.getInterval(Original).getVNInfoAt(Idx.getRegSlot()); 1072 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1073 return MergeableSpills[MIdx].erase(Spill); 1074 } 1075 1076 /// Check BB to see if it is a possible target BB to place a hoisted spill, 1077 /// i.e., there should be a living sibling of OrigReg at the insert point. 1078 /// 1079 bool HoistSpillHelper::isSpillCandBB(unsigned OrigReg, VNInfo &OrigVNI, 1080 MachineBasicBlock &BB, unsigned &LiveReg) { 1081 SlotIndex Idx; 1082 MachineBasicBlock::iterator MI = BB.getFirstTerminator(); 1083 if (MI != BB.end()) 1084 Idx = LIS.getInstructionIndex(*MI); 1085 else 1086 Idx = LIS.getMBBEndIdx(&BB).getPrevSlot(); 1087 SmallSetVector<unsigned, 16> &Siblings = Virt2SiblingsMap[OrigReg]; 1088 assert((LIS.getInterval(OrigReg)).getVNInfoAt(Idx) == &OrigVNI && 1089 "Unexpected VNI"); 1090 1091 for (auto const SibReg : Siblings) { 1092 LiveInterval &LI = LIS.getInterval(SibReg); 1093 VNInfo *VNI = LI.getVNInfoAt(Idx); 1094 if (VNI) { 1095 LiveReg = SibReg; 1096 return true; 1097 } 1098 } 1099 return false; 1100 } 1101 1102 /// Remove redundent spills in the same BB. Save those redundent spills in 1103 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map. 1104 /// 1105 void HoistSpillHelper::rmRedundantSpills( 1106 SmallPtrSet<MachineInstr *, 16> &Spills, 1107 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1108 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1109 // For each spill saw, check SpillBBToSpill[] and see if its BB already has 1110 // another spill inside. If a BB contains more than one spill, only keep the 1111 // earlier spill with smaller SlotIndex. 1112 for (const auto CurrentSpill : Spills) { 1113 MachineBasicBlock *Block = CurrentSpill->getParent(); 1114 MachineDomTreeNode *Node = MDT.DT->getNode(Block); 1115 MachineInstr *PrevSpill = SpillBBToSpill[Node]; 1116 if (PrevSpill) { 1117 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill); 1118 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill); 1119 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill; 1120 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill; 1121 SpillsToRm.push_back(SpillToRm); 1122 SpillBBToSpill[MDT.DT->getNode(Block)] = SpillToKeep; 1123 } else { 1124 SpillBBToSpill[MDT.DT->getNode(Block)] = CurrentSpill; 1125 } 1126 } 1127 for (const auto SpillToRm : SpillsToRm) 1128 Spills.erase(SpillToRm); 1129 } 1130 1131 /// Starting from \p Root find a top-down traversal order of the dominator 1132 /// tree to visit all basic blocks containing the elements of \p Spills. 1133 /// Redundant spills will be found and put into \p SpillsToRm at the same 1134 /// time. \p SpillBBToSpill will be populated as part of the process and 1135 /// maps a basic block to the first store occurring in the basic block. 1136 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre 1137 /// 1138 void HoistSpillHelper::getVisitOrders( 1139 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 1140 SmallVectorImpl<MachineDomTreeNode *> &Orders, 1141 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1142 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 1143 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1144 // The set contains all the possible BB nodes to which we may hoist 1145 // original spills. 1146 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet; 1147 // Save the BB nodes on the path from the first BB node containing 1148 // non-redundent spill to the Root node. 1149 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath; 1150 // All the spills to be hoisted must originate from a single def instruction 1151 // to the OrigReg. It means the def instruction should dominate all the spills 1152 // to be hoisted. We choose the BB where the def instruction is located as 1153 // the Root. 1154 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom(); 1155 // For every node on the dominator tree with spill, walk up on the dominator 1156 // tree towards the Root node until it is reached. If there is other node 1157 // containing spill in the middle of the path, the previous spill saw will 1158 // be redundent and the node containing it will be removed. All the nodes on 1159 // the path starting from the first node with non-redundent spill to the Root 1160 // node will be added to the WorkSet, which will contain all the possible 1161 // locations where spills may be hoisted to after the loop below is done. 1162 for (const auto Spill : Spills) { 1163 MachineBasicBlock *Block = Spill->getParent(); 1164 MachineDomTreeNode *Node = MDT[Block]; 1165 MachineInstr *SpillToRm = nullptr; 1166 while (Node != RootIDomNode) { 1167 // If Node dominates Block, and it already contains a spill, the spill in 1168 // Block will be redundent. 1169 if (Node != MDT[Block] && SpillBBToSpill[Node]) { 1170 SpillToRm = SpillBBToSpill[MDT[Block]]; 1171 break; 1172 /// If we see the Node already in WorkSet, the path from the Node to 1173 /// the Root node must already be traversed by another spill. 1174 /// Then no need to repeat. 1175 } else if (WorkSet.count(Node)) { 1176 break; 1177 } else { 1178 NodesOnPath.insert(Node); 1179 } 1180 Node = Node->getIDom(); 1181 } 1182 if (SpillToRm) { 1183 SpillsToRm.push_back(SpillToRm); 1184 } else { 1185 // Add a BB containing the original spills to SpillsToKeep -- i.e., 1186 // set the initial status before hoisting start. The value of BBs 1187 // containing original spills is set to 0, in order to descriminate 1188 // with BBs containing hoisted spills which will be inserted to 1189 // SpillsToKeep later during hoisting. 1190 SpillsToKeep[MDT[Block]] = 0; 1191 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end()); 1192 } 1193 NodesOnPath.clear(); 1194 } 1195 1196 // Sort the nodes in WorkSet in top-down order and save the nodes 1197 // in Orders. Orders will be used for hoisting in runHoistSpills. 1198 unsigned idx = 0; 1199 Orders.push_back(MDT.DT->getNode(Root)); 1200 do { 1201 MachineDomTreeNode *Node = Orders[idx++]; 1202 const std::vector<MachineDomTreeNode *> &Children = Node->getChildren(); 1203 unsigned NumChildren = Children.size(); 1204 for (unsigned i = 0; i != NumChildren; ++i) { 1205 MachineDomTreeNode *Child = Children[i]; 1206 if (WorkSet.count(Child)) 1207 Orders.push_back(Child); 1208 } 1209 } while (idx != Orders.size()); 1210 assert(Orders.size() == WorkSet.size() && 1211 "Orders have different size with WorkSet"); 1212 1213 #ifndef NDEBUG 1214 DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n"); 1215 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1216 for (; RIt != Orders.rend(); RIt++) 1217 DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ","); 1218 DEBUG(dbgs() << "\n"); 1219 #endif 1220 } 1221 1222 /// Try to hoist spills according to BB hotness. The spills to removed will 1223 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in 1224 /// \p SpillsToIns. 1225 /// 1226 void HoistSpillHelper::runHoistSpills( 1227 unsigned OrigReg, VNInfo &OrigVNI, SmallPtrSet<MachineInstr *, 16> &Spills, 1228 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1229 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) { 1230 // Visit order of dominator tree nodes. 1231 SmallVector<MachineDomTreeNode *, 32> Orders; 1232 // SpillsToKeep contains all the nodes where spills are to be inserted 1233 // during hoisting. If the spill to be inserted is an original spill 1234 // (not a hoisted one), the value of the map entry is 0. If the spill 1235 // is a hoisted spill, the value of the map entry is the VReg to be used 1236 // as the source of the spill. 1237 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep; 1238 // Map from BB to the first spill inside of it. 1239 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill; 1240 1241 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill); 1242 1243 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def); 1244 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep, 1245 SpillBBToSpill); 1246 1247 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of 1248 // nodes set and the cost of all the spills inside those nodes. 1249 // The nodes set are the locations where spills are to be inserted 1250 // in the subtree of current node. 1251 typedef std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency> 1252 NodesCostPair; 1253 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap; 1254 // Iterate Orders set in reverse order, which will be a bottom-up order 1255 // in the dominator tree. Once we visit a dom tree node, we know its 1256 // children have already been visited and the spill locations in the 1257 // subtrees of all the children have been determined. 1258 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1259 for (; RIt != Orders.rend(); RIt++) { 1260 MachineBasicBlock *Block = (*RIt)->getBlock(); 1261 1262 // If Block contains an original spill, simply continue. 1263 if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) { 1264 SpillsInSubTreeMap[*RIt].first.insert(*RIt); 1265 // SpillsInSubTreeMap[*RIt].second contains the cost of spill. 1266 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block); 1267 continue; 1268 } 1269 1270 // Collect spills in subtree of current node (*RIt) to 1271 // SpillsInSubTreeMap[*RIt].first. 1272 const std::vector<MachineDomTreeNode *> &Children = (*RIt)->getChildren(); 1273 unsigned NumChildren = Children.size(); 1274 for (unsigned i = 0; i != NumChildren; ++i) { 1275 MachineDomTreeNode *Child = Children[i]; 1276 if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end()) 1277 continue; 1278 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below 1279 // should be placed before getting the begin and end iterators of 1280 // SpillsInSubTreeMap[Child].first, or else the iterators may be 1281 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time 1282 // and the map grows and then the original buckets in the map are moved. 1283 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1284 SpillsInSubTreeMap[*RIt].first; 1285 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1286 SubTreeCost += SpillsInSubTreeMap[Child].second; 1287 auto BI = SpillsInSubTreeMap[Child].first.begin(); 1288 auto EI = SpillsInSubTreeMap[Child].first.end(); 1289 SpillsInSubTree.insert(BI, EI); 1290 SpillsInSubTreeMap.erase(Child); 1291 } 1292 1293 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1294 SpillsInSubTreeMap[*RIt].first; 1295 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1296 // No spills in subtree, simply continue. 1297 if (SpillsInSubTree.empty()) 1298 continue; 1299 1300 // Check whether Block is a possible candidate to insert spill. 1301 unsigned LiveReg = 0; 1302 if (!isSpillCandBB(OrigReg, OrigVNI, *Block, LiveReg)) 1303 continue; 1304 1305 // If there are multiple spills that could be merged, bias a little 1306 // to hoist the spill. 1307 BranchProbability MarginProb = (SpillsInSubTree.size() > 1) 1308 ? BranchProbability(9, 10) 1309 : BranchProbability(1, 1); 1310 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) { 1311 // Hoist: Move spills to current Block. 1312 for (const auto SpillBB : SpillsInSubTree) { 1313 // When SpillBB is a BB contains original spill, insert the spill 1314 // to SpillsToRm. 1315 if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() && 1316 !SpillsToKeep[SpillBB]) { 1317 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB]; 1318 SpillsToRm.push_back(SpillToRm); 1319 } 1320 // SpillBB will not contain spill anymore, remove it from SpillsToKeep. 1321 SpillsToKeep.erase(SpillBB); 1322 } 1323 // Current Block is the BB containing the new hoisted spill. Add it to 1324 // SpillsToKeep. LiveReg is the source of the new spill. 1325 SpillsToKeep[*RIt] = LiveReg; 1326 DEBUG({ 1327 dbgs() << "spills in BB: "; 1328 for (const auto Rspill : SpillsInSubTree) 1329 dbgs() << Rspill->getBlock()->getNumber() << " "; 1330 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber() 1331 << "\n"; 1332 }); 1333 SpillsInSubTree.clear(); 1334 SpillsInSubTree.insert(*RIt); 1335 SubTreeCost = MBFI.getBlockFreq(Block); 1336 } 1337 } 1338 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill), 1339 // save them to SpillsToIns. 1340 for (const auto Ent : SpillsToKeep) { 1341 if (Ent.second) 1342 SpillsToIns[Ent.first->getBlock()] = Ent.second; 1343 } 1344 } 1345 1346 /// For spills with equal values, remove redundent spills and hoist the left 1347 /// to less hot spots. 1348 /// 1349 /// Spills with equal values will be collected into the same set in 1350 /// MergeableSpills when spill is inserted. These equal spills are originated 1351 /// from the same define instruction and are dominated by the instruction. 1352 /// Before hoisting all the equal spills, redundent spills inside in the same 1353 /// BB is first marked to be deleted. Then starting from spills left, walk up 1354 /// on the dominator tree towards the Root node where the define instruction 1355 /// is located, mark the dominated spills to be deleted along the way and 1356 /// collect the BB nodes on the path from non-dominated spills to the define 1357 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places 1358 /// where we consider to hoist the spills. We iterate the WorkSet in bottom-up 1359 /// order, and for each node, we will decide whether to hoist spills inside 1360 /// its subtree to that node. In this way, we can get benefit locally even if 1361 /// hoisting all the equal spills to one cold place is impossible. 1362 /// 1363 void HoistSpillHelper::hoistAllSpills(LiveRangeEdit &Edit) { 1364 // Save the mapping between stackslot and its original reg. 1365 DenseMap<int, unsigned> SlotToOrigReg; 1366 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { 1367 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1368 int Slot = VRM.getStackSlot(Reg); 1369 if (Slot != VirtRegMap::NO_STACK_SLOT) 1370 SlotToOrigReg[Slot] = VRM.getOriginal(Reg); 1371 unsigned Original = VRM.getPreSplitReg(Reg); 1372 if (!MRI.def_empty(Reg)) 1373 Virt2SiblingsMap[Original].insert(Reg); 1374 } 1375 1376 // Each entry in MergeableSpills contains a spill set with equal values. 1377 for (auto &Ent : MergeableSpills) { 1378 int Slot = Ent.first.first; 1379 unsigned OrigReg = SlotToOrigReg[Slot]; 1380 VNInfo *OrigVNI = Ent.first.second; 1381 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second; 1382 if (Ent.second.empty()) 1383 continue; 1384 1385 DEBUG({ 1386 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n" 1387 << "Equal spills in BB: "; 1388 for (const auto spill : EqValSpills) 1389 dbgs() << spill->getParent()->getNumber() << " "; 1390 dbgs() << "\n"; 1391 }); 1392 1393 // SpillsToRm is the spill set to be removed from EqValSpills. 1394 SmallVector<MachineInstr *, 16> SpillsToRm; 1395 // SpillsToIns is the spill set to be newly inserted after hoisting. 1396 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns; 1397 1398 runHoistSpills(OrigReg, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns); 1399 1400 DEBUG({ 1401 dbgs() << "Finally inserted spills in BB: "; 1402 for (const auto Ispill : SpillsToIns) 1403 dbgs() << Ispill.first->getNumber() << " "; 1404 dbgs() << "\nFinally removed spills in BB: "; 1405 for (const auto Rspill : SpillsToRm) 1406 dbgs() << Rspill->getParent()->getNumber() << " "; 1407 dbgs() << "\n"; 1408 }); 1409 1410 // Stack live range update. 1411 LiveInterval &StackIntvl = LSS.getInterval(Slot); 1412 if (!SpillsToIns.empty() || !SpillsToRm.empty()) { 1413 LiveInterval &OrigLI = LIS.getInterval(OrigReg); 1414 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI, 1415 StackIntvl.getValNumInfo(0)); 1416 } 1417 1418 // Insert hoisted spills. 1419 for (auto const Insert : SpillsToIns) { 1420 MachineBasicBlock *BB = Insert.first; 1421 unsigned LiveReg = Insert.second; 1422 MachineBasicBlock::iterator MI = BB->getFirstTerminator(); 1423 TII.storeRegToStackSlot(*BB, MI, LiveReg, false, Slot, 1424 MRI.getRegClass(LiveReg), &TRI); 1425 LIS.InsertMachineInstrRangeInMaps(std::prev(MI), MI); 1426 ++NumSpills; 1427 } 1428 1429 // Remove redundent spills or change them to dead instructions. 1430 NumSpills -= SpillsToRm.size(); 1431 for (auto const RMEnt : SpillsToRm) { 1432 RMEnt->setDesc(TII.get(TargetOpcode::KILL)); 1433 for (unsigned i = RMEnt->getNumOperands(); i; --i) { 1434 MachineOperand &MO = RMEnt->getOperand(i - 1); 1435 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead()) 1436 RMEnt->RemoveOperand(i - 1); 1437 } 1438 } 1439 Edit.eliminateDeadDefs(SpillsToRm, None, true); 1440 } 1441 } 1442