1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The inline spiller modifies the machine function directly instead of 11 // inserting spills and restores in VirtRegMap. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "LiveRangeCalc.h" 16 #include "Spiller.h" 17 #include "SplitKit.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/CodeGen/LiveInterval.h" 29 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 30 #include "llvm/CodeGen/LiveRangeEdit.h" 31 #include "llvm/CodeGen/LiveStackAnalysis.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 34 #include "llvm/CodeGen/MachineDominators.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineFunctionPass.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineInstrBundle.h" 40 #include "llvm/CodeGen/MachineLoopInfo.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/CodeGen/SlotIndexes.h" 44 #include "llvm/CodeGen/VirtRegMap.h" 45 #include "llvm/Support/BlockFrequency.h" 46 #include "llvm/Support/BranchProbability.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Target/TargetInstrInfo.h" 53 #include "llvm/Target/TargetOpcodes.h" 54 #include "llvm/Target/TargetRegisterInfo.h" 55 #include "llvm/Target/TargetSubtargetInfo.h" 56 #include <cassert> 57 #include <iterator> 58 #include <tuple> 59 #include <utility> 60 #include <vector> 61 62 using namespace llvm; 63 64 #define DEBUG_TYPE "regalloc" 65 66 STATISTIC(NumSpilledRanges, "Number of spilled live ranges"); 67 STATISTIC(NumSnippets, "Number of spilled snippets"); 68 STATISTIC(NumSpills, "Number of spills inserted"); 69 STATISTIC(NumSpillsRemoved, "Number of spills removed"); 70 STATISTIC(NumReloads, "Number of reloads inserted"); 71 STATISTIC(NumReloadsRemoved, "Number of reloads removed"); 72 STATISTIC(NumFolded, "Number of folded stack accesses"); 73 STATISTIC(NumFoldedLoads, "Number of folded loads"); 74 STATISTIC(NumRemats, "Number of rematerialized defs for spilling"); 75 76 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden, 77 cl::desc("Disable inline spill hoisting")); 78 79 namespace { 80 81 class HoistSpillHelper : private LiveRangeEdit::Delegate { 82 MachineFunction &MF; 83 LiveIntervals &LIS; 84 LiveStacks &LSS; 85 AliasAnalysis *AA; 86 MachineDominatorTree &MDT; 87 MachineLoopInfo &Loops; 88 VirtRegMap &VRM; 89 MachineRegisterInfo &MRI; 90 const TargetInstrInfo &TII; 91 const TargetRegisterInfo &TRI; 92 const MachineBlockFrequencyInfo &MBFI; 93 94 InsertPointAnalysis IPA; 95 96 // Map from StackSlot to its original register. 97 DenseMap<int, unsigned> StackSlotToReg; 98 99 // Map from pair of (StackSlot and Original VNI) to a set of spills which 100 // have the same stackslot and have equal values defined by Original VNI. 101 // These spills are mergeable and are hoist candiates. 102 using MergeableSpillsMap = 103 MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>; 104 MergeableSpillsMap MergeableSpills; 105 106 /// This is the map from original register to a set containing all its 107 /// siblings. To hoist a spill to another BB, we need to find out a live 108 /// sibling there and use it as the source of the new spill. 109 DenseMap<unsigned, SmallSetVector<unsigned, 16>> Virt2SiblingsMap; 110 111 bool isSpillCandBB(unsigned OrigReg, VNInfo &OrigVNI, MachineBasicBlock &BB, 112 unsigned &LiveReg); 113 114 void rmRedundantSpills( 115 SmallPtrSet<MachineInstr *, 16> &Spills, 116 SmallVectorImpl<MachineInstr *> &SpillsToRm, 117 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 118 119 void getVisitOrders( 120 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 121 SmallVectorImpl<MachineDomTreeNode *> &Orders, 122 SmallVectorImpl<MachineInstr *> &SpillsToRm, 123 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 124 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); 125 126 void runHoistSpills(unsigned OrigReg, VNInfo &OrigVNI, 127 SmallPtrSet<MachineInstr *, 16> &Spills, 128 SmallVectorImpl<MachineInstr *> &SpillsToRm, 129 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns); 130 131 public: 132 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf, 133 VirtRegMap &vrm) 134 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 135 LSS(pass.getAnalysis<LiveStacks>()), 136 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 137 MDT(pass.getAnalysis<MachineDominatorTree>()), 138 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 139 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 140 TRI(*mf.getSubtarget().getRegisterInfo()), 141 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 142 IPA(LIS, mf.getNumBlockIDs()) {} 143 144 void addToMergeableSpills(MachineInstr &Spill, int StackSlot, 145 unsigned Original); 146 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot); 147 void hoistAllSpills(); 148 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 149 }; 150 151 class InlineSpiller : public Spiller { 152 MachineFunction &MF; 153 LiveIntervals &LIS; 154 LiveStacks &LSS; 155 AliasAnalysis *AA; 156 MachineDominatorTree &MDT; 157 MachineLoopInfo &Loops; 158 VirtRegMap &VRM; 159 MachineRegisterInfo &MRI; 160 const TargetInstrInfo &TII; 161 const TargetRegisterInfo &TRI; 162 const MachineBlockFrequencyInfo &MBFI; 163 164 // Variables that are valid during spill(), but used by multiple methods. 165 LiveRangeEdit *Edit; 166 LiveInterval *StackInt; 167 int StackSlot; 168 unsigned Original; 169 170 // All registers to spill to StackSlot, including the main register. 171 SmallVector<unsigned, 8> RegsToSpill; 172 173 // All COPY instructions to/from snippets. 174 // They are ignored since both operands refer to the same stack slot. 175 SmallPtrSet<MachineInstr*, 8> SnippetCopies; 176 177 // Values that failed to remat at some point. 178 SmallPtrSet<VNInfo*, 8> UsedValues; 179 180 // Dead defs generated during spilling. 181 SmallVector<MachineInstr*, 8> DeadDefs; 182 183 // Object records spills information and does the hoisting. 184 HoistSpillHelper HSpiller; 185 186 ~InlineSpiller() override = default; 187 188 public: 189 InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm) 190 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), 191 LSS(pass.getAnalysis<LiveStacks>()), 192 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), 193 MDT(pass.getAnalysis<MachineDominatorTree>()), 194 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), 195 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), 196 TRI(*mf.getSubtarget().getRegisterInfo()), 197 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), 198 HSpiller(pass, mf, vrm) {} 199 200 void spill(LiveRangeEdit &) override; 201 void postOptimization() override; 202 203 private: 204 bool isSnippet(const LiveInterval &SnipLI); 205 void collectRegsToSpill(); 206 207 bool isRegToSpill(unsigned Reg) { return is_contained(RegsToSpill, Reg); } 208 209 bool isSibling(unsigned Reg); 210 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI); 211 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); 212 213 void markValueUsed(LiveInterval*, VNInfo*); 214 bool reMaterializeFor(LiveInterval &, MachineInstr &MI); 215 void reMaterializeAll(); 216 217 bool coalesceStackAccess(MachineInstr *MI, unsigned Reg); 218 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>, 219 MachineInstr *LoadMI = nullptr); 220 void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI); 221 void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI); 222 223 void spillAroundUses(unsigned Reg); 224 void spillAll(); 225 }; 226 227 } // end anonymous namespace 228 229 Spiller::~Spiller() = default; 230 231 void Spiller::anchor() {} 232 233 Spiller *llvm::createInlineSpiller(MachineFunctionPass &pass, 234 MachineFunction &mf, 235 VirtRegMap &vrm) { 236 return new InlineSpiller(pass, mf, vrm); 237 } 238 239 //===----------------------------------------------------------------------===// 240 // Snippets 241 //===----------------------------------------------------------------------===// 242 243 // When spilling a virtual register, we also spill any snippets it is connected 244 // to. The snippets are small live ranges that only have a single real use, 245 // leftovers from live range splitting. Spilling them enables memory operand 246 // folding or tightens the live range around the single use. 247 // 248 // This minimizes register pressure and maximizes the store-to-load distance for 249 // spill slots which can be important in tight loops. 250 251 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, 252 /// otherwise return 0. 253 static unsigned isFullCopyOf(const MachineInstr &MI, unsigned Reg) { 254 if (!MI.isFullCopy()) 255 return 0; 256 if (MI.getOperand(0).getReg() == Reg) 257 return MI.getOperand(1).getReg(); 258 if (MI.getOperand(1).getReg() == Reg) 259 return MI.getOperand(0).getReg(); 260 return 0; 261 } 262 263 /// isSnippet - Identify if a live interval is a snippet that should be spilled. 264 /// It is assumed that SnipLI is a virtual register with the same original as 265 /// Edit->getReg(). 266 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { 267 unsigned Reg = Edit->getReg(); 268 269 // A snippet is a tiny live range with only a single instruction using it 270 // besides copies to/from Reg or spills/fills. We accept: 271 // 272 // %snip = COPY %Reg / FILL fi# 273 // %snip = USE %snip 274 // %Reg = COPY %snip / SPILL %snip, fi# 275 // 276 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) 277 return false; 278 279 MachineInstr *UseMI = nullptr; 280 281 // Check that all uses satisfy our criteria. 282 for (MachineRegisterInfo::reg_instr_nodbg_iterator 283 RI = MRI.reg_instr_nodbg_begin(SnipLI.reg), 284 E = MRI.reg_instr_nodbg_end(); RI != E; ) { 285 MachineInstr &MI = *RI++; 286 287 // Allow copies to/from Reg. 288 if (isFullCopyOf(MI, Reg)) 289 continue; 290 291 // Allow stack slot loads. 292 int FI; 293 if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) 294 continue; 295 296 // Allow stack slot stores. 297 if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) 298 continue; 299 300 // Allow a single additional instruction. 301 if (UseMI && &MI != UseMI) 302 return false; 303 UseMI = &MI; 304 } 305 return true; 306 } 307 308 /// collectRegsToSpill - Collect live range snippets that only have a single 309 /// real use. 310 void InlineSpiller::collectRegsToSpill() { 311 unsigned Reg = Edit->getReg(); 312 313 // Main register always spills. 314 RegsToSpill.assign(1, Reg); 315 SnippetCopies.clear(); 316 317 // Snippets all have the same original, so there can't be any for an original 318 // register. 319 if (Original == Reg) 320 return; 321 322 for (MachineRegisterInfo::reg_instr_iterator 323 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) { 324 MachineInstr &MI = *RI++; 325 unsigned SnipReg = isFullCopyOf(MI, Reg); 326 if (!isSibling(SnipReg)) 327 continue; 328 LiveInterval &SnipLI = LIS.getInterval(SnipReg); 329 if (!isSnippet(SnipLI)) 330 continue; 331 SnippetCopies.insert(&MI); 332 if (isRegToSpill(SnipReg)) 333 continue; 334 RegsToSpill.push_back(SnipReg); 335 DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n'); 336 ++NumSnippets; 337 } 338 } 339 340 bool InlineSpiller::isSibling(unsigned Reg) { 341 return TargetRegisterInfo::isVirtualRegister(Reg) && 342 VRM.getOriginal(Reg) == Original; 343 } 344 345 /// It is beneficial to spill to earlier place in the same BB in case 346 /// as follows: 347 /// There is an alternative def earlier in the same MBB. 348 /// Hoist the spill as far as possible in SpillMBB. This can ease 349 /// register pressure: 350 /// 351 /// x = def 352 /// y = use x 353 /// s = copy x 354 /// 355 /// Hoisting the spill of s to immediately after the def removes the 356 /// interference between x and y: 357 /// 358 /// x = def 359 /// spill x 360 /// y = use x<kill> 361 /// 362 /// This hoist only helps when the copy kills its source. 363 /// 364 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI, 365 MachineInstr &CopyMI) { 366 SlotIndex Idx = LIS.getInstructionIndex(CopyMI); 367 #ifndef NDEBUG 368 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); 369 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy"); 370 #endif 371 372 unsigned SrcReg = CopyMI.getOperand(1).getReg(); 373 LiveInterval &SrcLI = LIS.getInterval(SrcReg); 374 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx); 375 LiveQueryResult SrcQ = SrcLI.Query(Idx); 376 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def); 377 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill()) 378 return false; 379 380 // Conservatively extend the stack slot range to the range of the original 381 // value. We may be able to do better with stack slot coloring by being more 382 // careful here. 383 assert(StackInt && "No stack slot assigned yet."); 384 LiveInterval &OrigLI = LIS.getInterval(Original); 385 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 386 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); 387 DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": " 388 << *StackInt << '\n'); 389 390 // We are going to spill SrcVNI immediately after its def, so clear out 391 // any later spills of the same value. 392 eliminateRedundantSpills(SrcLI, SrcVNI); 393 394 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def); 395 MachineBasicBlock::iterator MII; 396 if (SrcVNI->isPHIDef()) 397 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 398 else { 399 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def); 400 assert(DefMI && "Defining instruction disappeared"); 401 MII = DefMI; 402 ++MII; 403 } 404 // Insert spill without kill flag immediately after def. 405 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot, 406 MRI.getRegClass(SrcReg), &TRI); 407 --MII; // Point to store instruction. 408 LIS.InsertMachineInstrInMaps(*MII); 409 DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII); 410 411 HSpiller.addToMergeableSpills(*MII, StackSlot, Original); 412 ++NumSpills; 413 return true; 414 } 415 416 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any 417 /// redundant spills of this value in SLI.reg and sibling copies. 418 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { 419 assert(VNI && "Missing value"); 420 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 421 WorkList.push_back(std::make_pair(&SLI, VNI)); 422 assert(StackInt && "No stack slot assigned yet."); 423 424 do { 425 LiveInterval *LI; 426 std::tie(LI, VNI) = WorkList.pop_back_val(); 427 unsigned Reg = LI->reg; 428 DEBUG(dbgs() << "Checking redundant spills for " 429 << VNI->id << '@' << VNI->def << " in " << *LI << '\n'); 430 431 // Regs to spill are taken care of. 432 if (isRegToSpill(Reg)) 433 continue; 434 435 // Add all of VNI's live range to StackInt. 436 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); 437 DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n'); 438 439 // Find all spills and copies of VNI. 440 for (MachineRegisterInfo::use_instr_nodbg_iterator 441 UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); 442 UI != E; ) { 443 MachineInstr &MI = *UI++; 444 if (!MI.isCopy() && !MI.mayStore()) 445 continue; 446 SlotIndex Idx = LIS.getInstructionIndex(MI); 447 if (LI->getVNInfoAt(Idx) != VNI) 448 continue; 449 450 // Follow sibling copies down the dominator tree. 451 if (unsigned DstReg = isFullCopyOf(MI, Reg)) { 452 if (isSibling(DstReg)) { 453 LiveInterval &DstLI = LIS.getInterval(DstReg); 454 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); 455 assert(DstVNI && "Missing defined value"); 456 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot"); 457 WorkList.push_back(std::make_pair(&DstLI, DstVNI)); 458 } 459 continue; 460 } 461 462 // Erase spills. 463 int FI; 464 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { 465 DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI); 466 // eliminateDeadDefs won't normally remove stores, so switch opcode. 467 MI.setDesc(TII.get(TargetOpcode::KILL)); 468 DeadDefs.push_back(&MI); 469 ++NumSpillsRemoved; 470 if (HSpiller.rmFromMergeableSpills(MI, StackSlot)) 471 --NumSpills; 472 } 473 } 474 } while (!WorkList.empty()); 475 } 476 477 //===----------------------------------------------------------------------===// 478 // Rematerialization 479 //===----------------------------------------------------------------------===// 480 481 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining 482 /// instruction cannot be eliminated. See through snippet copies 483 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { 484 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; 485 WorkList.push_back(std::make_pair(LI, VNI)); 486 do { 487 std::tie(LI, VNI) = WorkList.pop_back_val(); 488 if (!UsedValues.insert(VNI).second) 489 continue; 490 491 if (VNI->isPHIDef()) { 492 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 493 for (MachineBasicBlock *P : MBB->predecessors()) { 494 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P)); 495 if (PVNI) 496 WorkList.push_back(std::make_pair(LI, PVNI)); 497 } 498 continue; 499 } 500 501 // Follow snippet copies. 502 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 503 if (!SnippetCopies.count(MI)) 504 continue; 505 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); 506 assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy"); 507 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); 508 assert(SnipVNI && "Snippet undefined before copy"); 509 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); 510 } while (!WorkList.empty()); 511 } 512 513 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. 514 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) { 515 // Analyze instruction 516 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; 517 MIBundleOperands::VirtRegInfo RI = 518 MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops); 519 520 if (!RI.Reads) 521 return false; 522 523 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); 524 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); 525 526 if (!ParentVNI) { 527 DEBUG(dbgs() << "\tadding <undef> flags: "); 528 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 529 MachineOperand &MO = MI.getOperand(i); 530 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) 531 MO.setIsUndef(); 532 } 533 DEBUG(dbgs() << UseIdx << '\t' << MI); 534 return true; 535 } 536 537 if (SnippetCopies.count(&MI)) 538 return false; 539 540 LiveInterval &OrigLI = LIS.getInterval(Original); 541 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 542 LiveRangeEdit::Remat RM(ParentVNI); 543 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 544 545 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) { 546 markValueUsed(&VirtReg, ParentVNI); 547 DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI); 548 return false; 549 } 550 551 // If the instruction also writes VirtReg.reg, it had better not require the 552 // same register for uses and defs. 553 if (RI.Tied) { 554 markValueUsed(&VirtReg, ParentVNI); 555 DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI); 556 return false; 557 } 558 559 // Before rematerializing into a register for a single instruction, try to 560 // fold a load into the instruction. That avoids allocating a new register. 561 if (RM.OrigMI->canFoldAsLoad() && 562 foldMemoryOperand(Ops, RM.OrigMI)) { 563 Edit->markRematerialized(RM.ParentVNI); 564 ++NumFoldedLoads; 565 return true; 566 } 567 568 // Allocate a new register for the remat. 569 unsigned NewVReg = Edit->createFrom(Original); 570 571 // Finally we can rematerialize OrigMI before MI. 572 SlotIndex DefIdx = 573 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI); 574 575 // We take the DebugLoc from MI, since OrigMI may be attributed to a 576 // different source location. 577 auto *NewMI = LIS.getInstructionFromIndex(DefIdx); 578 NewMI->setDebugLoc(MI.getDebugLoc()); 579 580 (void)DefIdx; 581 DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' 582 << *LIS.getInstructionFromIndex(DefIdx)); 583 584 // Replace operands 585 for (const auto &OpPair : Ops) { 586 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 587 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) { 588 MO.setReg(NewVReg); 589 MO.setIsKill(); 590 } 591 } 592 DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n'); 593 594 ++NumRemats; 595 return true; 596 } 597 598 /// reMaterializeAll - Try to rematerialize as many uses as possible, 599 /// and trim the live ranges after. 600 void InlineSpiller::reMaterializeAll() { 601 if (!Edit->anyRematerializable(AA)) 602 return; 603 604 UsedValues.clear(); 605 606 // Try to remat before all uses of snippets. 607 bool anyRemat = false; 608 for (unsigned Reg : RegsToSpill) { 609 LiveInterval &LI = LIS.getInterval(Reg); 610 for (MachineRegisterInfo::reg_bundle_iterator 611 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 612 RegI != E; ) { 613 MachineInstr &MI = *RegI++; 614 615 // Debug values are not allowed to affect codegen. 616 if (MI.isDebugValue()) 617 continue; 618 619 anyRemat |= reMaterializeFor(LI, MI); 620 } 621 } 622 if (!anyRemat) 623 return; 624 625 // Remove any values that were completely rematted. 626 for (unsigned Reg : RegsToSpill) { 627 LiveInterval &LI = LIS.getInterval(Reg); 628 for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end(); 629 I != E; ++I) { 630 VNInfo *VNI = *I; 631 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) 632 continue; 633 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); 634 MI->addRegisterDead(Reg, &TRI); 635 if (!MI->allDefsAreDead()) 636 continue; 637 DEBUG(dbgs() << "All defs dead: " << *MI); 638 DeadDefs.push_back(MI); 639 } 640 } 641 642 // Eliminate dead code after remat. Note that some snippet copies may be 643 // deleted here. 644 if (DeadDefs.empty()) 645 return; 646 DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n"); 647 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 648 649 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions 650 // after rematerialization. To remove a VNI for a vreg from its LiveInterval, 651 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all 652 // removed, PHI VNI are still left in the LiveInterval. 653 // So to get rid of unused reg, we need to check whether it has non-dbg 654 // reference instead of whether it has non-empty interval. 655 unsigned ResultPos = 0; 656 for (unsigned Reg : RegsToSpill) { 657 if (MRI.reg_nodbg_empty(Reg)) { 658 Edit->eraseVirtReg(Reg); 659 continue; 660 } 661 662 assert(LIS.hasInterval(Reg) && 663 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && 664 "Empty and not used live-range?!"); 665 666 RegsToSpill[ResultPos++] = Reg; 667 } 668 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); 669 DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n"); 670 } 671 672 //===----------------------------------------------------------------------===// 673 // Spilling 674 //===----------------------------------------------------------------------===// 675 676 /// If MI is a load or store of StackSlot, it can be removed. 677 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) { 678 int FI = 0; 679 unsigned InstrReg = TII.isLoadFromStackSlot(*MI, FI); 680 bool IsLoad = InstrReg; 681 if (!IsLoad) 682 InstrReg = TII.isStoreToStackSlot(*MI, FI); 683 684 // We have a stack access. Is it the right register and slot? 685 if (InstrReg != Reg || FI != StackSlot) 686 return false; 687 688 if (!IsLoad) 689 HSpiller.rmFromMergeableSpills(*MI, StackSlot); 690 691 DEBUG(dbgs() << "Coalescing stack access: " << *MI); 692 LIS.RemoveMachineInstrFromMaps(*MI); 693 MI->eraseFromParent(); 694 695 if (IsLoad) { 696 ++NumReloadsRemoved; 697 --NumReloads; 698 } else { 699 ++NumSpillsRemoved; 700 --NumSpills; 701 } 702 703 return true; 704 } 705 706 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 707 LLVM_DUMP_METHOD 708 // Dump the range of instructions from B to E with their slot indexes. 709 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, 710 MachineBasicBlock::iterator E, 711 LiveIntervals const &LIS, 712 const char *const header, 713 unsigned VReg =0) { 714 char NextLine = '\n'; 715 char SlotIndent = '\t'; 716 717 if (std::next(B) == E) { 718 NextLine = ' '; 719 SlotIndent = ' '; 720 } 721 722 dbgs() << '\t' << header << ": " << NextLine; 723 724 for (MachineBasicBlock::iterator I = B; I != E; ++I) { 725 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot(); 726 727 // If a register was passed in and this instruction has it as a 728 // destination that is marked as an early clobber, print the 729 // early-clobber slot index. 730 if (VReg) { 731 MachineOperand *MO = I->findRegisterDefOperand(VReg); 732 if (MO && MO->isEarlyClobber()) 733 Idx = Idx.getRegSlot(true); 734 } 735 736 dbgs() << SlotIndent << Idx << '\t' << *I; 737 } 738 } 739 #endif 740 741 /// foldMemoryOperand - Try folding stack slot references in Ops into their 742 /// instructions. 743 /// 744 /// @param Ops Operand indices from analyzeVirtReg(). 745 /// @param LoadMI Load instruction to use instead of stack slot when non-null. 746 /// @return True on success. 747 bool InlineSpiller:: 748 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops, 749 MachineInstr *LoadMI) { 750 if (Ops.empty()) 751 return false; 752 // Don't attempt folding in bundles. 753 MachineInstr *MI = Ops.front().first; 754 if (Ops.back().first != MI || MI->isBundled()) 755 return false; 756 757 bool WasCopy = MI->isCopy(); 758 unsigned ImpReg = 0; 759 760 // Spill subregs if the target allows it. 761 // We always want to spill subregs for stackmap/patchpoint pseudos. 762 bool SpillSubRegs = TII.isSubregFoldable() || 763 MI->getOpcode() == TargetOpcode::STATEPOINT || 764 MI->getOpcode() == TargetOpcode::PATCHPOINT || 765 MI->getOpcode() == TargetOpcode::STACKMAP; 766 767 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied 768 // operands. 769 SmallVector<unsigned, 8> FoldOps; 770 for (const auto &OpPair : Ops) { 771 unsigned Idx = OpPair.second; 772 assert(MI == OpPair.first && "Instruction conflict during operand folding"); 773 MachineOperand &MO = MI->getOperand(Idx); 774 if (MO.isImplicit()) { 775 ImpReg = MO.getReg(); 776 continue; 777 } 778 779 if (!SpillSubRegs && MO.getSubReg()) 780 return false; 781 // We cannot fold a load instruction into a def. 782 if (LoadMI && MO.isDef()) 783 return false; 784 // Tied use operands should not be passed to foldMemoryOperand. 785 if (!MI->isRegTiedToDefOperand(Idx)) 786 FoldOps.push_back(Idx); 787 } 788 789 // If we only have implicit uses, we won't be able to fold that. 790 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try! 791 if (FoldOps.empty()) 792 return false; 793 794 MachineInstrSpan MIS(MI); 795 796 MachineInstr *FoldMI = 797 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS) 798 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS); 799 if (!FoldMI) 800 return false; 801 802 // Remove LIS for any dead defs in the original MI not in FoldMI. 803 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) { 804 if (!MO->isReg()) 805 continue; 806 unsigned Reg = MO->getReg(); 807 if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg) || 808 MRI.isReserved(Reg)) { 809 continue; 810 } 811 // Skip non-Defs, including undef uses and internal reads. 812 if (MO->isUse()) 813 continue; 814 MIBundleOperands::PhysRegInfo RI = 815 MIBundleOperands(*FoldMI).analyzePhysReg(Reg, &TRI); 816 if (RI.FullyDefined) 817 continue; 818 // FoldMI does not define this physreg. Remove the LI segment. 819 assert(MO->isDead() && "Cannot fold physreg def"); 820 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 821 LIS.removePhysRegDefAt(Reg, Idx); 822 } 823 824 int FI; 825 if (TII.isStoreToStackSlot(*MI, FI) && 826 HSpiller.rmFromMergeableSpills(*MI, FI)) 827 --NumSpills; 828 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI); 829 MI->eraseFromParent(); 830 831 // Insert any new instructions other than FoldMI into the LIS maps. 832 assert(!MIS.empty() && "Unexpected empty span of instructions!"); 833 for (MachineInstr &MI : MIS) 834 if (&MI != FoldMI) 835 LIS.InsertMachineInstrInMaps(MI); 836 837 // TII.foldMemoryOperand may have left some implicit operands on the 838 // instruction. Strip them. 839 if (ImpReg) 840 for (unsigned i = FoldMI->getNumOperands(); i; --i) { 841 MachineOperand &MO = FoldMI->getOperand(i - 1); 842 if (!MO.isReg() || !MO.isImplicit()) 843 break; 844 if (MO.getReg() == ImpReg) 845 FoldMI->RemoveOperand(i - 1); 846 } 847 848 DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS, 849 "folded")); 850 851 if (!WasCopy) 852 ++NumFolded; 853 else if (Ops.front().second == 0) { 854 ++NumSpills; 855 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original); 856 } else 857 ++NumReloads; 858 return true; 859 } 860 861 void InlineSpiller::insertReload(unsigned NewVReg, 862 SlotIndex Idx, 863 MachineBasicBlock::iterator MI) { 864 MachineBasicBlock &MBB = *MI->getParent(); 865 866 MachineInstrSpan MIS(MI); 867 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, 868 MRI.getRegClass(NewVReg), &TRI); 869 870 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); 871 872 DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload", 873 NewVReg)); 874 ++NumReloads; 875 } 876 877 /// Check if \p Def fully defines a VReg with an undefined value. 878 /// If that's the case, that means the value of VReg is actually 879 /// not relevant. 880 static bool isFullUndefDef(const MachineInstr &Def) { 881 if (!Def.isImplicitDef()) 882 return false; 883 assert(Def.getNumOperands() == 1 && 884 "Implicit def with more than one definition"); 885 // We can say that the VReg defined by Def is undef, only if it is 886 // fully defined by Def. Otherwise, some of the lanes may not be 887 // undef and the value of the VReg matters. 888 return !Def.getOperand(0).getSubReg(); 889 } 890 891 /// insertSpill - Insert a spill of NewVReg after MI. 892 void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill, 893 MachineBasicBlock::iterator MI) { 894 MachineBasicBlock &MBB = *MI->getParent(); 895 896 MachineInstrSpan MIS(MI); 897 bool IsRealSpill = true; 898 if (isFullUndefDef(*MI)) { 899 // Don't spill undef value. 900 // Anything works for undef, in particular keeping the memory 901 // uninitialized is a viable option and it saves code size and 902 // run time. 903 BuildMI(MBB, std::next(MI), MI->getDebugLoc(), TII.get(TargetOpcode::KILL)) 904 .addReg(NewVReg, getKillRegState(isKill)); 905 IsRealSpill = false; 906 } else 907 TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot, 908 MRI.getRegClass(NewVReg), &TRI); 909 910 LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end()); 911 912 DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS, 913 "spill")); 914 ++NumSpills; 915 if (IsRealSpill) 916 HSpiller.addToMergeableSpills(*std::next(MI), StackSlot, Original); 917 } 918 919 /// spillAroundUses - insert spill code around each use of Reg. 920 void InlineSpiller::spillAroundUses(unsigned Reg) { 921 DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n'); 922 LiveInterval &OldLI = LIS.getInterval(Reg); 923 924 // Iterate over instructions using Reg. 925 for (MachineRegisterInfo::reg_bundle_iterator 926 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); 927 RegI != E; ) { 928 MachineInstr *MI = &*(RegI++); 929 930 // Debug values are not allowed to affect codegen. 931 if (MI->isDebugValue()) { 932 // Modify DBG_VALUE now that the value is in a spill slot. 933 MachineBasicBlock *MBB = MI->getParent(); 934 DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI); 935 buildDbgValueForSpill(*MBB, MI, *MI, StackSlot); 936 MBB->erase(MI); 937 continue; 938 } 939 940 // Ignore copies to/from snippets. We'll delete them. 941 if (SnippetCopies.count(MI)) 942 continue; 943 944 // Stack slot accesses may coalesce away. 945 if (coalesceStackAccess(MI, Reg)) 946 continue; 947 948 // Analyze instruction. 949 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; 950 MIBundleOperands::VirtRegInfo RI = 951 MIBundleOperands(*MI).analyzeVirtReg(Reg, &Ops); 952 953 // Find the slot index where this instruction reads and writes OldLI. 954 // This is usually the def slot, except for tied early clobbers. 955 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 956 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) 957 if (SlotIndex::isSameInstr(Idx, VNI->def)) 958 Idx = VNI->def; 959 960 // Check for a sibling copy. 961 unsigned SibReg = isFullCopyOf(*MI, Reg); 962 if (SibReg && isSibling(SibReg)) { 963 // This may actually be a copy between snippets. 964 if (isRegToSpill(SibReg)) { 965 DEBUG(dbgs() << "Found new snippet copy: " << *MI); 966 SnippetCopies.insert(MI); 967 continue; 968 } 969 if (RI.Writes) { 970 if (hoistSpillInsideBB(OldLI, *MI)) { 971 // This COPY is now dead, the value is already in the stack slot. 972 MI->getOperand(0).setIsDead(); 973 DeadDefs.push_back(MI); 974 continue; 975 } 976 } else { 977 // This is a reload for a sib-reg copy. Drop spills downstream. 978 LiveInterval &SibLI = LIS.getInterval(SibReg); 979 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); 980 // The COPY will fold to a reload below. 981 } 982 } 983 984 // Attempt to fold memory ops. 985 if (foldMemoryOperand(Ops)) 986 continue; 987 988 // Create a new virtual register for spill/fill. 989 // FIXME: Infer regclass from instruction alone. 990 unsigned NewVReg = Edit->createFrom(Reg); 991 992 if (RI.Reads) 993 insertReload(NewVReg, Idx, MI); 994 995 // Rewrite instruction operands. 996 bool hasLiveDef = false; 997 for (const auto &OpPair : Ops) { 998 MachineOperand &MO = OpPair.first->getOperand(OpPair.second); 999 MO.setReg(NewVReg); 1000 if (MO.isUse()) { 1001 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second)) 1002 MO.setIsKill(); 1003 } else { 1004 if (!MO.isDead()) 1005 hasLiveDef = true; 1006 } 1007 } 1008 DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n'); 1009 1010 // FIXME: Use a second vreg if instruction has no tied ops. 1011 if (RI.Writes) 1012 if (hasLiveDef) 1013 insertSpill(NewVReg, true, MI); 1014 } 1015 } 1016 1017 /// spillAll - Spill all registers remaining after rematerialization. 1018 void InlineSpiller::spillAll() { 1019 // Update LiveStacks now that we are committed to spilling. 1020 if (StackSlot == VirtRegMap::NO_STACK_SLOT) { 1021 StackSlot = VRM.assignVirt2StackSlot(Original); 1022 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); 1023 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); 1024 } else 1025 StackInt = &LSS.getInterval(StackSlot); 1026 1027 if (Original != Edit->getReg()) 1028 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); 1029 1030 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values"); 1031 for (unsigned Reg : RegsToSpill) 1032 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg), 1033 StackInt->getValNumInfo(0)); 1034 DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n'); 1035 1036 // Spill around uses of all RegsToSpill. 1037 for (unsigned Reg : RegsToSpill) 1038 spillAroundUses(Reg); 1039 1040 // Hoisted spills may cause dead code. 1041 if (!DeadDefs.empty()) { 1042 DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n"); 1043 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); 1044 } 1045 1046 // Finally delete the SnippetCopies. 1047 for (unsigned Reg : RegsToSpill) { 1048 for (MachineRegisterInfo::reg_instr_iterator 1049 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); 1050 RI != E; ) { 1051 MachineInstr &MI = *(RI++); 1052 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy"); 1053 // FIXME: Do this with a LiveRangeEdit callback. 1054 LIS.RemoveMachineInstrFromMaps(MI); 1055 MI.eraseFromParent(); 1056 } 1057 } 1058 1059 // Delete all spilled registers. 1060 for (unsigned Reg : RegsToSpill) 1061 Edit->eraseVirtReg(Reg); 1062 } 1063 1064 void InlineSpiller::spill(LiveRangeEdit &edit) { 1065 ++NumSpilledRanges; 1066 Edit = &edit; 1067 assert(!TargetRegisterInfo::isStackSlot(edit.getReg()) 1068 && "Trying to spill a stack slot."); 1069 // Share a stack slot among all descendants of Original. 1070 Original = VRM.getOriginal(edit.getReg()); 1071 StackSlot = VRM.getStackSlot(Original); 1072 StackInt = nullptr; 1073 1074 DEBUG(dbgs() << "Inline spilling " 1075 << TRI.getRegClassName(MRI.getRegClass(edit.getReg())) 1076 << ':' << edit.getParent() 1077 << "\nFrom original " << PrintReg(Original) << '\n'); 1078 assert(edit.getParent().isSpillable() && 1079 "Attempting to spill already spilled value."); 1080 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs"); 1081 1082 collectRegsToSpill(); 1083 reMaterializeAll(); 1084 1085 // Remat may handle everything. 1086 if (!RegsToSpill.empty()) 1087 spillAll(); 1088 1089 Edit->calculateRegClassAndHint(MF, Loops, MBFI); 1090 } 1091 1092 /// Optimizations after all the reg selections and spills are done. 1093 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); } 1094 1095 /// When a spill is inserted, add the spill to MergeableSpills map. 1096 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot, 1097 unsigned Original) { 1098 StackSlotToReg[StackSlot] = Original; 1099 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1100 VNInfo *OrigVNI = LIS.getInterval(Original).getVNInfoAt(Idx.getRegSlot()); 1101 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1102 MergeableSpills[MIdx].insert(&Spill); 1103 } 1104 1105 /// When a spill is removed, remove the spill from MergeableSpills map. 1106 /// Return true if the spill is removed successfully. 1107 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill, 1108 int StackSlot) { 1109 int Original = StackSlotToReg[StackSlot]; 1110 if (!Original) 1111 return false; 1112 SlotIndex Idx = LIS.getInstructionIndex(Spill); 1113 VNInfo *OrigVNI = LIS.getInterval(Original).getVNInfoAt(Idx.getRegSlot()); 1114 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); 1115 return MergeableSpills[MIdx].erase(&Spill); 1116 } 1117 1118 /// Check BB to see if it is a possible target BB to place a hoisted spill, 1119 /// i.e., there should be a living sibling of OrigReg at the insert point. 1120 bool HoistSpillHelper::isSpillCandBB(unsigned OrigReg, VNInfo &OrigVNI, 1121 MachineBasicBlock &BB, unsigned &LiveReg) { 1122 SlotIndex Idx; 1123 LiveInterval &OrigLI = LIS.getInterval(OrigReg); 1124 MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, BB); 1125 if (MI != BB.end()) 1126 Idx = LIS.getInstructionIndex(*MI); 1127 else 1128 Idx = LIS.getMBBEndIdx(&BB).getPrevSlot(); 1129 SmallSetVector<unsigned, 16> &Siblings = Virt2SiblingsMap[OrigReg]; 1130 assert((LIS.getInterval(OrigReg)).getVNInfoAt(Idx) == &OrigVNI && 1131 "Unexpected VNI"); 1132 1133 for (auto const SibReg : Siblings) { 1134 LiveInterval &LI = LIS.getInterval(SibReg); 1135 VNInfo *VNI = LI.getVNInfoAt(Idx); 1136 if (VNI) { 1137 LiveReg = SibReg; 1138 return true; 1139 } 1140 } 1141 return false; 1142 } 1143 1144 /// Remove redundant spills in the same BB. Save those redundant spills in 1145 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map. 1146 void HoistSpillHelper::rmRedundantSpills( 1147 SmallPtrSet<MachineInstr *, 16> &Spills, 1148 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1149 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1150 // For each spill saw, check SpillBBToSpill[] and see if its BB already has 1151 // another spill inside. If a BB contains more than one spill, only keep the 1152 // earlier spill with smaller SlotIndex. 1153 for (const auto CurrentSpill : Spills) { 1154 MachineBasicBlock *Block = CurrentSpill->getParent(); 1155 MachineDomTreeNode *Node = MDT.getBase().getNode(Block); 1156 MachineInstr *PrevSpill = SpillBBToSpill[Node]; 1157 if (PrevSpill) { 1158 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill); 1159 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill); 1160 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill; 1161 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill; 1162 SpillsToRm.push_back(SpillToRm); 1163 SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep; 1164 } else { 1165 SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill; 1166 } 1167 } 1168 for (const auto SpillToRm : SpillsToRm) 1169 Spills.erase(SpillToRm); 1170 } 1171 1172 /// Starting from \p Root find a top-down traversal order of the dominator 1173 /// tree to visit all basic blocks containing the elements of \p Spills. 1174 /// Redundant spills will be found and put into \p SpillsToRm at the same 1175 /// time. \p SpillBBToSpill will be populated as part of the process and 1176 /// maps a basic block to the first store occurring in the basic block. 1177 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre 1178 void HoistSpillHelper::getVisitOrders( 1179 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, 1180 SmallVectorImpl<MachineDomTreeNode *> &Orders, 1181 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1182 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, 1183 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { 1184 // The set contains all the possible BB nodes to which we may hoist 1185 // original spills. 1186 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet; 1187 // Save the BB nodes on the path from the first BB node containing 1188 // non-redundant spill to the Root node. 1189 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath; 1190 // All the spills to be hoisted must originate from a single def instruction 1191 // to the OrigReg. It means the def instruction should dominate all the spills 1192 // to be hoisted. We choose the BB where the def instruction is located as 1193 // the Root. 1194 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom(); 1195 // For every node on the dominator tree with spill, walk up on the dominator 1196 // tree towards the Root node until it is reached. If there is other node 1197 // containing spill in the middle of the path, the previous spill saw will 1198 // be redundant and the node containing it will be removed. All the nodes on 1199 // the path starting from the first node with non-redundant spill to the Root 1200 // node will be added to the WorkSet, which will contain all the possible 1201 // locations where spills may be hoisted to after the loop below is done. 1202 for (const auto Spill : Spills) { 1203 MachineBasicBlock *Block = Spill->getParent(); 1204 MachineDomTreeNode *Node = MDT[Block]; 1205 MachineInstr *SpillToRm = nullptr; 1206 while (Node != RootIDomNode) { 1207 // If Node dominates Block, and it already contains a spill, the spill in 1208 // Block will be redundant. 1209 if (Node != MDT[Block] && SpillBBToSpill[Node]) { 1210 SpillToRm = SpillBBToSpill[MDT[Block]]; 1211 break; 1212 /// If we see the Node already in WorkSet, the path from the Node to 1213 /// the Root node must already be traversed by another spill. 1214 /// Then no need to repeat. 1215 } else if (WorkSet.count(Node)) { 1216 break; 1217 } else { 1218 NodesOnPath.insert(Node); 1219 } 1220 Node = Node->getIDom(); 1221 } 1222 if (SpillToRm) { 1223 SpillsToRm.push_back(SpillToRm); 1224 } else { 1225 // Add a BB containing the original spills to SpillsToKeep -- i.e., 1226 // set the initial status before hoisting start. The value of BBs 1227 // containing original spills is set to 0, in order to descriminate 1228 // with BBs containing hoisted spills which will be inserted to 1229 // SpillsToKeep later during hoisting. 1230 SpillsToKeep[MDT[Block]] = 0; 1231 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end()); 1232 } 1233 NodesOnPath.clear(); 1234 } 1235 1236 // Sort the nodes in WorkSet in top-down order and save the nodes 1237 // in Orders. Orders will be used for hoisting in runHoistSpills. 1238 unsigned idx = 0; 1239 Orders.push_back(MDT.getBase().getNode(Root)); 1240 do { 1241 MachineDomTreeNode *Node = Orders[idx++]; 1242 const std::vector<MachineDomTreeNode *> &Children = Node->getChildren(); 1243 unsigned NumChildren = Children.size(); 1244 for (unsigned i = 0; i != NumChildren; ++i) { 1245 MachineDomTreeNode *Child = Children[i]; 1246 if (WorkSet.count(Child)) 1247 Orders.push_back(Child); 1248 } 1249 } while (idx != Orders.size()); 1250 assert(Orders.size() == WorkSet.size() && 1251 "Orders have different size with WorkSet"); 1252 1253 #ifndef NDEBUG 1254 DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n"); 1255 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1256 for (; RIt != Orders.rend(); RIt++) 1257 DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ","); 1258 DEBUG(dbgs() << "\n"); 1259 #endif 1260 } 1261 1262 /// Try to hoist spills according to BB hotness. The spills to removed will 1263 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in 1264 /// \p SpillsToIns. 1265 void HoistSpillHelper::runHoistSpills( 1266 unsigned OrigReg, VNInfo &OrigVNI, SmallPtrSet<MachineInstr *, 16> &Spills, 1267 SmallVectorImpl<MachineInstr *> &SpillsToRm, 1268 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) { 1269 // Visit order of dominator tree nodes. 1270 SmallVector<MachineDomTreeNode *, 32> Orders; 1271 // SpillsToKeep contains all the nodes where spills are to be inserted 1272 // during hoisting. If the spill to be inserted is an original spill 1273 // (not a hoisted one), the value of the map entry is 0. If the spill 1274 // is a hoisted spill, the value of the map entry is the VReg to be used 1275 // as the source of the spill. 1276 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep; 1277 // Map from BB to the first spill inside of it. 1278 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill; 1279 1280 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill); 1281 1282 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def); 1283 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep, 1284 SpillBBToSpill); 1285 1286 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of 1287 // nodes set and the cost of all the spills inside those nodes. 1288 // The nodes set are the locations where spills are to be inserted 1289 // in the subtree of current node. 1290 using NodesCostPair = 1291 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>; 1292 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap; 1293 1294 // Iterate Orders set in reverse order, which will be a bottom-up order 1295 // in the dominator tree. Once we visit a dom tree node, we know its 1296 // children have already been visited and the spill locations in the 1297 // subtrees of all the children have been determined. 1298 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); 1299 for (; RIt != Orders.rend(); RIt++) { 1300 MachineBasicBlock *Block = (*RIt)->getBlock(); 1301 1302 // If Block contains an original spill, simply continue. 1303 if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) { 1304 SpillsInSubTreeMap[*RIt].first.insert(*RIt); 1305 // SpillsInSubTreeMap[*RIt].second contains the cost of spill. 1306 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block); 1307 continue; 1308 } 1309 1310 // Collect spills in subtree of current node (*RIt) to 1311 // SpillsInSubTreeMap[*RIt].first. 1312 const std::vector<MachineDomTreeNode *> &Children = (*RIt)->getChildren(); 1313 unsigned NumChildren = Children.size(); 1314 for (unsigned i = 0; i != NumChildren; ++i) { 1315 MachineDomTreeNode *Child = Children[i]; 1316 if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end()) 1317 continue; 1318 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below 1319 // should be placed before getting the begin and end iterators of 1320 // SpillsInSubTreeMap[Child].first, or else the iterators may be 1321 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time 1322 // and the map grows and then the original buckets in the map are moved. 1323 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1324 SpillsInSubTreeMap[*RIt].first; 1325 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1326 SubTreeCost += SpillsInSubTreeMap[Child].second; 1327 auto BI = SpillsInSubTreeMap[Child].first.begin(); 1328 auto EI = SpillsInSubTreeMap[Child].first.end(); 1329 SpillsInSubTree.insert(BI, EI); 1330 SpillsInSubTreeMap.erase(Child); 1331 } 1332 1333 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = 1334 SpillsInSubTreeMap[*RIt].first; 1335 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; 1336 // No spills in subtree, simply continue. 1337 if (SpillsInSubTree.empty()) 1338 continue; 1339 1340 // Check whether Block is a possible candidate to insert spill. 1341 unsigned LiveReg = 0; 1342 if (!isSpillCandBB(OrigReg, OrigVNI, *Block, LiveReg)) 1343 continue; 1344 1345 // If there are multiple spills that could be merged, bias a little 1346 // to hoist the spill. 1347 BranchProbability MarginProb = (SpillsInSubTree.size() > 1) 1348 ? BranchProbability(9, 10) 1349 : BranchProbability(1, 1); 1350 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) { 1351 // Hoist: Move spills to current Block. 1352 for (const auto SpillBB : SpillsInSubTree) { 1353 // When SpillBB is a BB contains original spill, insert the spill 1354 // to SpillsToRm. 1355 if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() && 1356 !SpillsToKeep[SpillBB]) { 1357 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB]; 1358 SpillsToRm.push_back(SpillToRm); 1359 } 1360 // SpillBB will not contain spill anymore, remove it from SpillsToKeep. 1361 SpillsToKeep.erase(SpillBB); 1362 } 1363 // Current Block is the BB containing the new hoisted spill. Add it to 1364 // SpillsToKeep. LiveReg is the source of the new spill. 1365 SpillsToKeep[*RIt] = LiveReg; 1366 DEBUG({ 1367 dbgs() << "spills in BB: "; 1368 for (const auto Rspill : SpillsInSubTree) 1369 dbgs() << Rspill->getBlock()->getNumber() << " "; 1370 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber() 1371 << "\n"; 1372 }); 1373 SpillsInSubTree.clear(); 1374 SpillsInSubTree.insert(*RIt); 1375 SubTreeCost = MBFI.getBlockFreq(Block); 1376 } 1377 } 1378 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill), 1379 // save them to SpillsToIns. 1380 for (const auto Ent : SpillsToKeep) { 1381 if (Ent.second) 1382 SpillsToIns[Ent.first->getBlock()] = Ent.second; 1383 } 1384 } 1385 1386 /// For spills with equal values, remove redundant spills and hoist those left 1387 /// to less hot spots. 1388 /// 1389 /// Spills with equal values will be collected into the same set in 1390 /// MergeableSpills when spill is inserted. These equal spills are originated 1391 /// from the same defining instruction and are dominated by the instruction. 1392 /// Before hoisting all the equal spills, redundant spills inside in the same 1393 /// BB are first marked to be deleted. Then starting from the spills left, walk 1394 /// up on the dominator tree towards the Root node where the define instruction 1395 /// is located, mark the dominated spills to be deleted along the way and 1396 /// collect the BB nodes on the path from non-dominated spills to the define 1397 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places 1398 /// where we are considering to hoist the spills. We iterate the WorkSet in 1399 /// bottom-up order, and for each node, we will decide whether to hoist spills 1400 /// inside its subtree to that node. In this way, we can get benefit locally 1401 /// even if hoisting all the equal spills to one cold place is impossible. 1402 void HoistSpillHelper::hoistAllSpills() { 1403 SmallVector<unsigned, 4> NewVRegs; 1404 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this); 1405 1406 // Save the mapping between stackslot and its original reg. 1407 DenseMap<int, unsigned> SlotToOrigReg; 1408 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { 1409 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1410 int Slot = VRM.getStackSlot(Reg); 1411 if (Slot != VirtRegMap::NO_STACK_SLOT) 1412 SlotToOrigReg[Slot] = VRM.getOriginal(Reg); 1413 unsigned Original = VRM.getPreSplitReg(Reg); 1414 if (!MRI.def_empty(Reg)) 1415 Virt2SiblingsMap[Original].insert(Reg); 1416 } 1417 1418 // Each entry in MergeableSpills contains a spill set with equal values. 1419 for (auto &Ent : MergeableSpills) { 1420 int Slot = Ent.first.first; 1421 unsigned OrigReg = SlotToOrigReg[Slot]; 1422 LiveInterval &OrigLI = LIS.getInterval(OrigReg); 1423 VNInfo *OrigVNI = Ent.first.second; 1424 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second; 1425 if (Ent.second.empty()) 1426 continue; 1427 1428 DEBUG({ 1429 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n" 1430 << "Equal spills in BB: "; 1431 for (const auto spill : EqValSpills) 1432 dbgs() << spill->getParent()->getNumber() << " "; 1433 dbgs() << "\n"; 1434 }); 1435 1436 // SpillsToRm is the spill set to be removed from EqValSpills. 1437 SmallVector<MachineInstr *, 16> SpillsToRm; 1438 // SpillsToIns is the spill set to be newly inserted after hoisting. 1439 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns; 1440 1441 runHoistSpills(OrigReg, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns); 1442 1443 DEBUG({ 1444 dbgs() << "Finally inserted spills in BB: "; 1445 for (const auto Ispill : SpillsToIns) 1446 dbgs() << Ispill.first->getNumber() << " "; 1447 dbgs() << "\nFinally removed spills in BB: "; 1448 for (const auto Rspill : SpillsToRm) 1449 dbgs() << Rspill->getParent()->getNumber() << " "; 1450 dbgs() << "\n"; 1451 }); 1452 1453 // Stack live range update. 1454 LiveInterval &StackIntvl = LSS.getInterval(Slot); 1455 if (!SpillsToIns.empty() || !SpillsToRm.empty()) 1456 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI, 1457 StackIntvl.getValNumInfo(0)); 1458 1459 // Insert hoisted spills. 1460 for (auto const Insert : SpillsToIns) { 1461 MachineBasicBlock *BB = Insert.first; 1462 unsigned LiveReg = Insert.second; 1463 MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, *BB); 1464 TII.storeRegToStackSlot(*BB, MI, LiveReg, false, Slot, 1465 MRI.getRegClass(LiveReg), &TRI); 1466 LIS.InsertMachineInstrRangeInMaps(std::prev(MI), MI); 1467 ++NumSpills; 1468 } 1469 1470 // Remove redundant spills or change them to dead instructions. 1471 NumSpills -= SpillsToRm.size(); 1472 for (auto const RMEnt : SpillsToRm) { 1473 RMEnt->setDesc(TII.get(TargetOpcode::KILL)); 1474 for (unsigned i = RMEnt->getNumOperands(); i; --i) { 1475 MachineOperand &MO = RMEnt->getOperand(i - 1); 1476 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead()) 1477 RMEnt->RemoveOperand(i - 1); 1478 } 1479 } 1480 Edit.eliminateDeadDefs(SpillsToRm, None, AA); 1481 } 1482 } 1483 1484 /// For VirtReg clone, the \p New register should have the same physreg or 1485 /// stackslot as the \p old register. 1486 void HoistSpillHelper::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 1487 if (VRM.hasPhys(Old)) 1488 VRM.assignVirt2Phys(New, VRM.getPhys(Old)); 1489 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT) 1490 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old)); 1491 else 1492 llvm_unreachable("VReg should be assigned either physreg or stackslot"); 1493 } 1494