1 //===- lib/CodeGen/GlobalISel/GISelKnownBits.cpp --------------*- C++ *-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// Provides analysis for querying information about KnownBits during GISel
10 /// passes.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/CodeGen/GlobalISel/Utils.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/TargetLowering.h"
19 #include "llvm/CodeGen/TargetOpcodes.h"
20 #include "llvm/IR/Module.h"
21
22 #define DEBUG_TYPE "gisel-known-bits"
23
24 using namespace llvm;
25
26 char llvm::GISelKnownBitsAnalysis::ID = 0;
27
28 INITIALIZE_PASS(GISelKnownBitsAnalysis, DEBUG_TYPE,
29 "Analysis for ComputingKnownBits", false, true)
30
GISelKnownBits(MachineFunction & MF,unsigned MaxDepth)31 GISelKnownBits::GISelKnownBits(MachineFunction &MF, unsigned MaxDepth)
32 : MF(MF), MRI(MF.getRegInfo()), TL(*MF.getSubtarget().getTargetLowering()),
33 DL(MF.getFunction().getParent()->getDataLayout()), MaxDepth(MaxDepth) {}
34
computeKnownAlignment(Register R,unsigned Depth)35 Align GISelKnownBits::computeKnownAlignment(Register R, unsigned Depth) {
36 const MachineInstr *MI = MRI.getVRegDef(R);
37 switch (MI->getOpcode()) {
38 case TargetOpcode::COPY:
39 return computeKnownAlignment(MI->getOperand(1).getReg(), Depth);
40 case TargetOpcode::G_ASSERT_ALIGN: {
41 // TODO: Min with source
42 int64_t LogAlign = MI->getOperand(2).getImm();
43 return Align(1ull << LogAlign);
44 }
45 case TargetOpcode::G_FRAME_INDEX: {
46 int FrameIdx = MI->getOperand(1).getIndex();
47 return MF.getFrameInfo().getObjectAlign(FrameIdx);
48 }
49 case TargetOpcode::G_INTRINSIC:
50 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
51 default:
52 return TL.computeKnownAlignForTargetInstr(*this, R, MRI, Depth + 1);
53 }
54 }
55
getKnownBits(MachineInstr & MI)56 KnownBits GISelKnownBits::getKnownBits(MachineInstr &MI) {
57 assert(MI.getNumExplicitDefs() == 1 &&
58 "expected single return generic instruction");
59 return getKnownBits(MI.getOperand(0).getReg());
60 }
61
getKnownBits(Register R)62 KnownBits GISelKnownBits::getKnownBits(Register R) {
63 const LLT Ty = MRI.getType(R);
64 APInt DemandedElts =
65 Ty.isVector() ? APInt::getAllOnes(Ty.getNumElements()) : APInt(1, 1);
66 return getKnownBits(R, DemandedElts);
67 }
68
getKnownBits(Register R,const APInt & DemandedElts,unsigned Depth)69 KnownBits GISelKnownBits::getKnownBits(Register R, const APInt &DemandedElts,
70 unsigned Depth) {
71 // For now, we only maintain the cache during one request.
72 assert(ComputeKnownBitsCache.empty() && "Cache should have been cleared");
73
74 KnownBits Known;
75 computeKnownBitsImpl(R, Known, DemandedElts);
76 ComputeKnownBitsCache.clear();
77 return Known;
78 }
79
signBitIsZero(Register R)80 bool GISelKnownBits::signBitIsZero(Register R) {
81 LLT Ty = MRI.getType(R);
82 unsigned BitWidth = Ty.getScalarSizeInBits();
83 return maskedValueIsZero(R, APInt::getSignMask(BitWidth));
84 }
85
getKnownZeroes(Register R)86 APInt GISelKnownBits::getKnownZeroes(Register R) {
87 return getKnownBits(R).Zero;
88 }
89
getKnownOnes(Register R)90 APInt GISelKnownBits::getKnownOnes(Register R) { return getKnownBits(R).One; }
91
92 LLVM_ATTRIBUTE_UNUSED static void
dumpResult(const MachineInstr & MI,const KnownBits & Known,unsigned Depth)93 dumpResult(const MachineInstr &MI, const KnownBits &Known, unsigned Depth) {
94 dbgs() << "[" << Depth << "] Compute known bits: " << MI << "[" << Depth
95 << "] Computed for: " << MI << "[" << Depth << "] Known: 0x"
96 << toString(Known.Zero | Known.One, 16, false) << "\n"
97 << "[" << Depth << "] Zero: 0x" << toString(Known.Zero, 16, false)
98 << "\n"
99 << "[" << Depth << "] One: 0x" << toString(Known.One, 16, false)
100 << "\n";
101 }
102
103 /// Compute known bits for the intersection of \p Src0 and \p Src1
computeKnownBitsMin(Register Src0,Register Src1,KnownBits & Known,const APInt & DemandedElts,unsigned Depth)104 void GISelKnownBits::computeKnownBitsMin(Register Src0, Register Src1,
105 KnownBits &Known,
106 const APInt &DemandedElts,
107 unsigned Depth) {
108 // Test src1 first, since we canonicalize simpler expressions to the RHS.
109 computeKnownBitsImpl(Src1, Known, DemandedElts, Depth);
110
111 // If we don't know any bits, early out.
112 if (Known.isUnknown())
113 return;
114
115 KnownBits Known2;
116 computeKnownBitsImpl(Src0, Known2, DemandedElts, Depth);
117
118 // Only known if known in both the LHS and RHS.
119 Known = KnownBits::commonBits(Known, Known2);
120 }
121
122 // Bitfield extract is computed as (Src >> Offset) & Mask, where Mask is
123 // created using Width. Use this function when the inputs are KnownBits
124 // objects. TODO: Move this KnownBits.h if this is usable in more cases.
extractBits(unsigned BitWidth,const KnownBits & SrcOpKnown,const KnownBits & OffsetKnown,const KnownBits & WidthKnown)125 static KnownBits extractBits(unsigned BitWidth, const KnownBits &SrcOpKnown,
126 const KnownBits &OffsetKnown,
127 const KnownBits &WidthKnown) {
128 KnownBits Mask(BitWidth);
129 Mask.Zero = APInt::getBitsSetFrom(
130 BitWidth, WidthKnown.getMaxValue().getLimitedValue(BitWidth));
131 Mask.One = APInt::getLowBitsSet(
132 BitWidth, WidthKnown.getMinValue().getLimitedValue(BitWidth));
133 return KnownBits::lshr(SrcOpKnown, OffsetKnown) & Mask;
134 }
135
computeKnownBitsImpl(Register R,KnownBits & Known,const APInt & DemandedElts,unsigned Depth)136 void GISelKnownBits::computeKnownBitsImpl(Register R, KnownBits &Known,
137 const APInt &DemandedElts,
138 unsigned Depth) {
139 MachineInstr &MI = *MRI.getVRegDef(R);
140 unsigned Opcode = MI.getOpcode();
141 LLT DstTy = MRI.getType(R);
142
143 // Handle the case where this is called on a register that does not have a
144 // type constraint (i.e. it has a register class constraint instead). This is
145 // unlikely to occur except by looking through copies but it is possible for
146 // the initial register being queried to be in this state.
147 if (!DstTy.isValid()) {
148 Known = KnownBits();
149 return;
150 }
151
152 unsigned BitWidth = DstTy.getScalarSizeInBits();
153 auto CacheEntry = ComputeKnownBitsCache.find(R);
154 if (CacheEntry != ComputeKnownBitsCache.end()) {
155 Known = CacheEntry->second;
156 LLVM_DEBUG(dbgs() << "Cache hit at ");
157 LLVM_DEBUG(dumpResult(MI, Known, Depth));
158 assert(Known.getBitWidth() == BitWidth && "Cache entry size doesn't match");
159 return;
160 }
161 Known = KnownBits(BitWidth); // Don't know anything
162
163 // Depth may get bigger than max depth if it gets passed to a different
164 // GISelKnownBits object.
165 // This may happen when say a generic part uses a GISelKnownBits object
166 // with some max depth, but then we hit TL.computeKnownBitsForTargetInstr
167 // which creates a new GISelKnownBits object with a different and smaller
168 // depth. If we just check for equality, we would never exit if the depth
169 // that is passed down to the target specific GISelKnownBits object is
170 // already bigger than its max depth.
171 if (Depth >= getMaxDepth())
172 return;
173
174 if (!DemandedElts)
175 return; // No demanded elts, better to assume we don't know anything.
176
177 KnownBits Known2;
178
179 switch (Opcode) {
180 default:
181 TL.computeKnownBitsForTargetInstr(*this, R, Known, DemandedElts, MRI,
182 Depth);
183 break;
184 case TargetOpcode::G_BUILD_VECTOR: {
185 // Collect the known bits that are shared by every demanded vector element.
186 Known.Zero.setAllBits(); Known.One.setAllBits();
187 for (unsigned i = 0, e = MI.getNumOperands() - 1; i < e; ++i) {
188 if (!DemandedElts[i])
189 continue;
190
191 computeKnownBitsImpl(MI.getOperand(i + 1).getReg(), Known2, DemandedElts,
192 Depth + 1);
193
194 // Known bits are the values that are shared by every demanded element.
195 Known = KnownBits::commonBits(Known, Known2);
196
197 // If we don't know any bits, early out.
198 if (Known.isUnknown())
199 break;
200 }
201 break;
202 }
203 case TargetOpcode::COPY:
204 case TargetOpcode::G_PHI:
205 case TargetOpcode::PHI: {
206 Known.One = APInt::getAllOnes(BitWidth);
207 Known.Zero = APInt::getAllOnes(BitWidth);
208 // Destination registers should not have subregisters at this
209 // point of the pipeline, otherwise the main live-range will be
210 // defined more than once, which is against SSA.
211 assert(MI.getOperand(0).getSubReg() == 0 && "Is this code in SSA?");
212 // Record in the cache that we know nothing for MI.
213 // This will get updated later and in the meantime, if we reach that
214 // phi again, because of a loop, we will cut the search thanks to this
215 // cache entry.
216 // We could actually build up more information on the phi by not cutting
217 // the search, but that additional information is more a side effect
218 // than an intended choice.
219 // Therefore, for now, save on compile time until we derive a proper way
220 // to derive known bits for PHIs within loops.
221 ComputeKnownBitsCache[R] = KnownBits(BitWidth);
222 // PHI's operand are a mix of registers and basic blocks interleaved.
223 // We only care about the register ones.
224 for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) {
225 const MachineOperand &Src = MI.getOperand(Idx);
226 Register SrcReg = Src.getReg();
227 // Look through trivial copies and phis but don't look through trivial
228 // copies or phis of the form `%1:(s32) = OP %0:gpr32`, known-bits
229 // analysis is currently unable to determine the bit width of a
230 // register class.
231 //
232 // We can't use NoSubRegister by name as it's defined by each target but
233 // it's always defined to be 0 by tablegen.
234 if (SrcReg.isVirtual() && Src.getSubReg() == 0 /*NoSubRegister*/ &&
235 MRI.getType(SrcReg).isValid()) {
236 // For COPYs we don't do anything, don't increase the depth.
237 computeKnownBitsImpl(SrcReg, Known2, DemandedElts,
238 Depth + (Opcode != TargetOpcode::COPY));
239 Known = KnownBits::commonBits(Known, Known2);
240 // If we reach a point where we don't know anything
241 // just stop looking through the operands.
242 if (Known.One == 0 && Known.Zero == 0)
243 break;
244 } else {
245 // We know nothing.
246 Known = KnownBits(BitWidth);
247 break;
248 }
249 }
250 break;
251 }
252 case TargetOpcode::G_CONSTANT: {
253 auto CstVal = getIConstantVRegVal(R, MRI);
254 if (!CstVal)
255 break;
256 Known = KnownBits::makeConstant(*CstVal);
257 break;
258 }
259 case TargetOpcode::G_FRAME_INDEX: {
260 int FrameIdx = MI.getOperand(1).getIndex();
261 TL.computeKnownBitsForFrameIndex(FrameIdx, Known, MF);
262 break;
263 }
264 case TargetOpcode::G_SUB: {
265 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
266 Depth + 1);
267 computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
268 Depth + 1);
269 Known = KnownBits::computeForAddSub(/*Add*/ false, /*NSW*/ false, Known,
270 Known2);
271 break;
272 }
273 case TargetOpcode::G_XOR: {
274 computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
275 Depth + 1);
276 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
277 Depth + 1);
278
279 Known ^= Known2;
280 break;
281 }
282 case TargetOpcode::G_PTR_ADD: {
283 if (DstTy.isVector())
284 break;
285 // G_PTR_ADD is like G_ADD. FIXME: Is this true for all targets?
286 LLT Ty = MRI.getType(MI.getOperand(1).getReg());
287 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
288 break;
289 LLVM_FALLTHROUGH;
290 }
291 case TargetOpcode::G_ADD: {
292 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
293 Depth + 1);
294 computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
295 Depth + 1);
296 Known =
297 KnownBits::computeForAddSub(/*Add*/ true, /*NSW*/ false, Known, Known2);
298 break;
299 }
300 case TargetOpcode::G_AND: {
301 // If either the LHS or the RHS are Zero, the result is zero.
302 computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
303 Depth + 1);
304 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
305 Depth + 1);
306
307 Known &= Known2;
308 break;
309 }
310 case TargetOpcode::G_OR: {
311 // If either the LHS or the RHS are Zero, the result is zero.
312 computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
313 Depth + 1);
314 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
315 Depth + 1);
316
317 Known |= Known2;
318 break;
319 }
320 case TargetOpcode::G_MUL: {
321 computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
322 Depth + 1);
323 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
324 Depth + 1);
325 Known = KnownBits::mul(Known, Known2);
326 break;
327 }
328 case TargetOpcode::G_SELECT: {
329 computeKnownBitsMin(MI.getOperand(2).getReg(), MI.getOperand(3).getReg(),
330 Known, DemandedElts, Depth + 1);
331 break;
332 }
333 case TargetOpcode::G_SMIN: {
334 // TODO: Handle clamp pattern with number of sign bits
335 KnownBits KnownRHS;
336 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
337 Depth + 1);
338 computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS, DemandedElts,
339 Depth + 1);
340 Known = KnownBits::smin(Known, KnownRHS);
341 break;
342 }
343 case TargetOpcode::G_SMAX: {
344 // TODO: Handle clamp pattern with number of sign bits
345 KnownBits KnownRHS;
346 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
347 Depth + 1);
348 computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS, DemandedElts,
349 Depth + 1);
350 Known = KnownBits::smax(Known, KnownRHS);
351 break;
352 }
353 case TargetOpcode::G_UMIN: {
354 KnownBits KnownRHS;
355 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known,
356 DemandedElts, Depth + 1);
357 computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS,
358 DemandedElts, Depth + 1);
359 Known = KnownBits::umin(Known, KnownRHS);
360 break;
361 }
362 case TargetOpcode::G_UMAX: {
363 KnownBits KnownRHS;
364 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known,
365 DemandedElts, Depth + 1);
366 computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS,
367 DemandedElts, Depth + 1);
368 Known = KnownBits::umax(Known, KnownRHS);
369 break;
370 }
371 case TargetOpcode::G_FCMP:
372 case TargetOpcode::G_ICMP: {
373 if (DstTy.isVector())
374 break;
375 if (TL.getBooleanContents(DstTy.isVector(),
376 Opcode == TargetOpcode::G_FCMP) ==
377 TargetLowering::ZeroOrOneBooleanContent &&
378 BitWidth > 1)
379 Known.Zero.setBitsFrom(1);
380 break;
381 }
382 case TargetOpcode::G_SEXT: {
383 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
384 Depth + 1);
385 // If the sign bit is known to be zero or one, then sext will extend
386 // it to the top bits, else it will just zext.
387 Known = Known.sext(BitWidth);
388 break;
389 }
390 case TargetOpcode::G_ASSERT_SEXT:
391 case TargetOpcode::G_SEXT_INREG: {
392 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
393 Depth + 1);
394 Known = Known.sextInReg(MI.getOperand(2).getImm());
395 break;
396 }
397 case TargetOpcode::G_ANYEXT: {
398 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
399 Depth + 1);
400 Known = Known.anyext(BitWidth);
401 break;
402 }
403 case TargetOpcode::G_LOAD: {
404 const MachineMemOperand *MMO = *MI.memoperands_begin();
405 if (const MDNode *Ranges = MMO->getRanges()) {
406 computeKnownBitsFromRangeMetadata(*Ranges, Known);
407 }
408
409 break;
410 }
411 case TargetOpcode::G_ZEXTLOAD: {
412 if (DstTy.isVector())
413 break;
414 // Everything above the retrieved bits is zero
415 Known.Zero.setBitsFrom((*MI.memoperands_begin())->getSizeInBits());
416 break;
417 }
418 case TargetOpcode::G_ASHR: {
419 KnownBits LHSKnown, RHSKnown;
420 computeKnownBitsImpl(MI.getOperand(1).getReg(), LHSKnown, DemandedElts,
421 Depth + 1);
422 computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts,
423 Depth + 1);
424 Known = KnownBits::ashr(LHSKnown, RHSKnown);
425 break;
426 }
427 case TargetOpcode::G_LSHR: {
428 KnownBits LHSKnown, RHSKnown;
429 computeKnownBitsImpl(MI.getOperand(1).getReg(), LHSKnown, DemandedElts,
430 Depth + 1);
431 computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts,
432 Depth + 1);
433 Known = KnownBits::lshr(LHSKnown, RHSKnown);
434 break;
435 }
436 case TargetOpcode::G_SHL: {
437 KnownBits LHSKnown, RHSKnown;
438 computeKnownBitsImpl(MI.getOperand(1).getReg(), LHSKnown, DemandedElts,
439 Depth + 1);
440 computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts,
441 Depth + 1);
442 Known = KnownBits::shl(LHSKnown, RHSKnown);
443 break;
444 }
445 case TargetOpcode::G_INTTOPTR:
446 case TargetOpcode::G_PTRTOINT:
447 if (DstTy.isVector())
448 break;
449 // Fall through and handle them the same as zext/trunc.
450 LLVM_FALLTHROUGH;
451 case TargetOpcode::G_ASSERT_ZEXT:
452 case TargetOpcode::G_ZEXT:
453 case TargetOpcode::G_TRUNC: {
454 Register SrcReg = MI.getOperand(1).getReg();
455 LLT SrcTy = MRI.getType(SrcReg);
456 unsigned SrcBitWidth;
457
458 // G_ASSERT_ZEXT stores the original bitwidth in the immediate operand.
459 if (Opcode == TargetOpcode::G_ASSERT_ZEXT)
460 SrcBitWidth = MI.getOperand(2).getImm();
461 else {
462 SrcBitWidth = SrcTy.isPointer()
463 ? DL.getIndexSizeInBits(SrcTy.getAddressSpace())
464 : SrcTy.getSizeInBits();
465 }
466 assert(SrcBitWidth && "SrcBitWidth can't be zero");
467 Known = Known.zextOrTrunc(SrcBitWidth);
468 computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1);
469 Known = Known.zextOrTrunc(BitWidth);
470 if (BitWidth > SrcBitWidth)
471 Known.Zero.setBitsFrom(SrcBitWidth);
472 break;
473 }
474 case TargetOpcode::G_ASSERT_ALIGN: {
475 int64_t LogOfAlign = MI.getOperand(2).getImm();
476 if (LogOfAlign == 0)
477 break;
478
479 // TODO: Should use maximum with source
480 // If a node is guaranteed to be aligned, set low zero bits accordingly as
481 // well as clearing one bits.
482 Known.Zero.setLowBits(LogOfAlign);
483 Known.One.clearLowBits(LogOfAlign);
484 break;
485 }
486 case TargetOpcode::G_MERGE_VALUES: {
487 unsigned NumOps = MI.getNumOperands();
488 unsigned OpSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
489
490 for (unsigned I = 0; I != NumOps - 1; ++I) {
491 KnownBits SrcOpKnown;
492 computeKnownBitsImpl(MI.getOperand(I + 1).getReg(), SrcOpKnown,
493 DemandedElts, Depth + 1);
494 Known.insertBits(SrcOpKnown, I * OpSize);
495 }
496 break;
497 }
498 case TargetOpcode::G_UNMERGE_VALUES: {
499 if (DstTy.isVector())
500 break;
501 unsigned NumOps = MI.getNumOperands();
502 Register SrcReg = MI.getOperand(NumOps - 1).getReg();
503 if (MRI.getType(SrcReg).isVector())
504 return; // TODO: Handle vectors.
505
506 KnownBits SrcOpKnown;
507 computeKnownBitsImpl(SrcReg, SrcOpKnown, DemandedElts, Depth + 1);
508
509 // Figure out the result operand index
510 unsigned DstIdx = 0;
511 for (; DstIdx != NumOps - 1 && MI.getOperand(DstIdx).getReg() != R;
512 ++DstIdx)
513 ;
514
515 Known = SrcOpKnown.extractBits(BitWidth, BitWidth * DstIdx);
516 break;
517 }
518 case TargetOpcode::G_BSWAP: {
519 Register SrcReg = MI.getOperand(1).getReg();
520 computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1);
521 Known = Known.byteSwap();
522 break;
523 }
524 case TargetOpcode::G_BITREVERSE: {
525 Register SrcReg = MI.getOperand(1).getReg();
526 computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1);
527 Known = Known.reverseBits();
528 break;
529 }
530 case TargetOpcode::G_CTPOP: {
531 computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
532 Depth + 1);
533 // We can bound the space the count needs. Also, bits known to be zero can't
534 // contribute to the population.
535 unsigned BitsPossiblySet = Known2.countMaxPopulation();
536 unsigned LowBits = Log2_32(BitsPossiblySet)+1;
537 Known.Zero.setBitsFrom(LowBits);
538 // TODO: we could bound Known.One using the lower bound on the number of
539 // bits which might be set provided by popcnt KnownOne2.
540 break;
541 }
542 case TargetOpcode::G_UBFX: {
543 KnownBits SrcOpKnown, OffsetKnown, WidthKnown;
544 computeKnownBitsImpl(MI.getOperand(1).getReg(), SrcOpKnown, DemandedElts,
545 Depth + 1);
546 computeKnownBitsImpl(MI.getOperand(2).getReg(), OffsetKnown, DemandedElts,
547 Depth + 1);
548 computeKnownBitsImpl(MI.getOperand(3).getReg(), WidthKnown, DemandedElts,
549 Depth + 1);
550 Known = extractBits(BitWidth, SrcOpKnown, OffsetKnown, WidthKnown);
551 break;
552 }
553 case TargetOpcode::G_SBFX: {
554 KnownBits SrcOpKnown, OffsetKnown, WidthKnown;
555 computeKnownBitsImpl(MI.getOperand(1).getReg(), SrcOpKnown, DemandedElts,
556 Depth + 1);
557 computeKnownBitsImpl(MI.getOperand(2).getReg(), OffsetKnown, DemandedElts,
558 Depth + 1);
559 computeKnownBitsImpl(MI.getOperand(3).getReg(), WidthKnown, DemandedElts,
560 Depth + 1);
561 Known = extractBits(BitWidth, SrcOpKnown, OffsetKnown, WidthKnown);
562 // Sign extend the extracted value using shift left and arithmetic shift
563 // right.
564 KnownBits ExtKnown = KnownBits::makeConstant(APInt(BitWidth, BitWidth));
565 KnownBits ShiftKnown = KnownBits::computeForAddSub(
566 /*Add*/ false, /*NSW*/ false, ExtKnown, WidthKnown);
567 Known = KnownBits::ashr(KnownBits::shl(Known, ShiftKnown), ShiftKnown);
568 break;
569 }
570 case TargetOpcode::G_UADDO:
571 case TargetOpcode::G_UADDE:
572 case TargetOpcode::G_SADDO:
573 case TargetOpcode::G_SADDE:
574 case TargetOpcode::G_USUBO:
575 case TargetOpcode::G_USUBE:
576 case TargetOpcode::G_SSUBO:
577 case TargetOpcode::G_SSUBE:
578 case TargetOpcode::G_UMULO:
579 case TargetOpcode::G_SMULO: {
580 if (MI.getOperand(1).getReg() == R) {
581 // If we know the result of a compare has the top bits zero, use this
582 // info.
583 if (TL.getBooleanContents(DstTy.isVector(), false) ==
584 TargetLowering::ZeroOrOneBooleanContent &&
585 BitWidth > 1)
586 Known.Zero.setBitsFrom(1);
587 }
588 break;
589 }
590 }
591
592 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
593 LLVM_DEBUG(dumpResult(MI, Known, Depth));
594
595 // Update the cache.
596 ComputeKnownBitsCache[R] = Known;
597 }
598
599 /// Compute number of sign bits for the intersection of \p Src0 and \p Src1
computeNumSignBitsMin(Register Src0,Register Src1,const APInt & DemandedElts,unsigned Depth)600 unsigned GISelKnownBits::computeNumSignBitsMin(Register Src0, Register Src1,
601 const APInt &DemandedElts,
602 unsigned Depth) {
603 // Test src1 first, since we canonicalize simpler expressions to the RHS.
604 unsigned Src1SignBits = computeNumSignBits(Src1, DemandedElts, Depth);
605 if (Src1SignBits == 1)
606 return 1;
607 return std::min(computeNumSignBits(Src0, DemandedElts, Depth), Src1SignBits);
608 }
609
computeNumSignBits(Register R,const APInt & DemandedElts,unsigned Depth)610 unsigned GISelKnownBits::computeNumSignBits(Register R,
611 const APInt &DemandedElts,
612 unsigned Depth) {
613 MachineInstr &MI = *MRI.getVRegDef(R);
614 unsigned Opcode = MI.getOpcode();
615
616 if (Opcode == TargetOpcode::G_CONSTANT)
617 return MI.getOperand(1).getCImm()->getValue().getNumSignBits();
618
619 if (Depth == getMaxDepth())
620 return 1;
621
622 if (!DemandedElts)
623 return 1; // No demanded elts, better to assume we don't know anything.
624
625 LLT DstTy = MRI.getType(R);
626 const unsigned TyBits = DstTy.getScalarSizeInBits();
627
628 // Handle the case where this is called on a register that does not have a
629 // type constraint. This is unlikely to occur except by looking through copies
630 // but it is possible for the initial register being queried to be in this
631 // state.
632 if (!DstTy.isValid())
633 return 1;
634
635 unsigned FirstAnswer = 1;
636 switch (Opcode) {
637 case TargetOpcode::COPY: {
638 MachineOperand &Src = MI.getOperand(1);
639 if (Src.getReg().isVirtual() && Src.getSubReg() == 0 &&
640 MRI.getType(Src.getReg()).isValid()) {
641 // Don't increment Depth for this one since we didn't do any work.
642 return computeNumSignBits(Src.getReg(), DemandedElts, Depth);
643 }
644
645 return 1;
646 }
647 case TargetOpcode::G_SEXT: {
648 Register Src = MI.getOperand(1).getReg();
649 LLT SrcTy = MRI.getType(Src);
650 unsigned Tmp = DstTy.getScalarSizeInBits() - SrcTy.getScalarSizeInBits();
651 return computeNumSignBits(Src, DemandedElts, Depth + 1) + Tmp;
652 }
653 case TargetOpcode::G_ASSERT_SEXT:
654 case TargetOpcode::G_SEXT_INREG: {
655 // Max of the input and what this extends.
656 Register Src = MI.getOperand(1).getReg();
657 unsigned SrcBits = MI.getOperand(2).getImm();
658 unsigned InRegBits = TyBits - SrcBits + 1;
659 return std::max(computeNumSignBits(Src, DemandedElts, Depth + 1), InRegBits);
660 }
661 case TargetOpcode::G_SEXTLOAD: {
662 // FIXME: We need an in-memory type representation.
663 if (DstTy.isVector())
664 return 1;
665
666 // e.g. i16->i32 = '17' bits known.
667 const MachineMemOperand *MMO = *MI.memoperands_begin();
668 return TyBits - MMO->getSizeInBits() + 1;
669 }
670 case TargetOpcode::G_ZEXTLOAD: {
671 // FIXME: We need an in-memory type representation.
672 if (DstTy.isVector())
673 return 1;
674
675 // e.g. i16->i32 = '16' bits known.
676 const MachineMemOperand *MMO = *MI.memoperands_begin();
677 return TyBits - MMO->getSizeInBits();
678 }
679 case TargetOpcode::G_TRUNC: {
680 Register Src = MI.getOperand(1).getReg();
681 LLT SrcTy = MRI.getType(Src);
682
683 // Check if the sign bits of source go down as far as the truncated value.
684 unsigned DstTyBits = DstTy.getScalarSizeInBits();
685 unsigned NumSrcBits = SrcTy.getScalarSizeInBits();
686 unsigned NumSrcSignBits = computeNumSignBits(Src, DemandedElts, Depth + 1);
687 if (NumSrcSignBits > (NumSrcBits - DstTyBits))
688 return NumSrcSignBits - (NumSrcBits - DstTyBits);
689 break;
690 }
691 case TargetOpcode::G_SELECT: {
692 return computeNumSignBitsMin(MI.getOperand(2).getReg(),
693 MI.getOperand(3).getReg(), DemandedElts,
694 Depth + 1);
695 }
696 case TargetOpcode::G_SADDO:
697 case TargetOpcode::G_SADDE:
698 case TargetOpcode::G_UADDO:
699 case TargetOpcode::G_UADDE:
700 case TargetOpcode::G_SSUBO:
701 case TargetOpcode::G_SSUBE:
702 case TargetOpcode::G_USUBO:
703 case TargetOpcode::G_USUBE:
704 case TargetOpcode::G_SMULO:
705 case TargetOpcode::G_UMULO: {
706 // If compares returns 0/-1, all bits are sign bits.
707 // We know that we have an integer-based boolean since these operations
708 // are only available for integer.
709 if (MI.getOperand(1).getReg() == R) {
710 if (TL.getBooleanContents(DstTy.isVector(), false) ==
711 TargetLowering::ZeroOrNegativeOneBooleanContent)
712 return TyBits;
713 }
714
715 break;
716 }
717 case TargetOpcode::G_INTRINSIC:
718 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
719 default: {
720 unsigned NumBits =
721 TL.computeNumSignBitsForTargetInstr(*this, R, DemandedElts, MRI, Depth);
722 if (NumBits > 1)
723 FirstAnswer = std::max(FirstAnswer, NumBits);
724 break;
725 }
726 }
727
728 // Finally, if we can prove that the top bits of the result are 0's or 1's,
729 // use this information.
730 KnownBits Known = getKnownBits(R, DemandedElts, Depth);
731 APInt Mask;
732 if (Known.isNonNegative()) { // sign bit is 0
733 Mask = Known.Zero;
734 } else if (Known.isNegative()) { // sign bit is 1;
735 Mask = Known.One;
736 } else {
737 // Nothing known.
738 return FirstAnswer;
739 }
740
741 // Okay, we know that the sign bit in Mask is set. Use CLO to determine
742 // the number of identical bits in the top of the input value.
743 Mask <<= Mask.getBitWidth() - TyBits;
744 return std::max(FirstAnswer, Mask.countLeadingOnes());
745 }
746
computeNumSignBits(Register R,unsigned Depth)747 unsigned GISelKnownBits::computeNumSignBits(Register R, unsigned Depth) {
748 LLT Ty = MRI.getType(R);
749 APInt DemandedElts =
750 Ty.isVector() ? APInt::getAllOnes(Ty.getNumElements()) : APInt(1, 1);
751 return computeNumSignBits(R, DemandedElts, Depth);
752 }
753
getAnalysisUsage(AnalysisUsage & AU) const754 void GISelKnownBitsAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
755 AU.setPreservesAll();
756 MachineFunctionPass::getAnalysisUsage(AU);
757 }
758
runOnMachineFunction(MachineFunction & MF)759 bool GISelKnownBitsAnalysis::runOnMachineFunction(MachineFunction &MF) {
760 return false;
761 }
762