1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 16 #include "llvm/CodeGen/GlobalISel/Utils.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/MachineOperand.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Target/TargetMachine.h" 26 27 #define DEBUG_TYPE "call-lowering" 28 29 using namespace llvm; 30 31 void CallLowering::anchor() {} 32 33 /// Helper function which updates \p Flags when \p AttrFn returns true. 34 static void 35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 36 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 37 if (AttrFn(Attribute::SExt)) 38 Flags.setSExt(); 39 if (AttrFn(Attribute::ZExt)) 40 Flags.setZExt(); 41 if (AttrFn(Attribute::InReg)) 42 Flags.setInReg(); 43 if (AttrFn(Attribute::StructRet)) 44 Flags.setSRet(); 45 if (AttrFn(Attribute::Nest)) 46 Flags.setNest(); 47 if (AttrFn(Attribute::ByVal)) 48 Flags.setByVal(); 49 if (AttrFn(Attribute::Preallocated)) 50 Flags.setPreallocated(); 51 if (AttrFn(Attribute::InAlloca)) 52 Flags.setInAlloca(); 53 if (AttrFn(Attribute::Returned)) 54 Flags.setReturned(); 55 if (AttrFn(Attribute::SwiftSelf)) 56 Flags.setSwiftSelf(); 57 if (AttrFn(Attribute::SwiftError)) 58 Flags.setSwiftError(); 59 } 60 61 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 62 unsigned ArgIdx) const { 63 ISD::ArgFlagsTy Flags; 64 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 65 return Call.paramHasAttr(ArgIdx, Attr); 66 }); 67 return Flags; 68 } 69 70 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 71 const AttributeList &Attrs, 72 unsigned OpIdx) const { 73 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 74 return Attrs.hasAttribute(OpIdx, Attr); 75 }); 76 } 77 78 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 79 ArrayRef<Register> ResRegs, 80 ArrayRef<ArrayRef<Register>> ArgRegs, 81 Register SwiftErrorVReg, 82 std::function<unsigned()> GetCalleeReg) const { 83 CallLoweringInfo Info; 84 const DataLayout &DL = MIRBuilder.getDataLayout(); 85 MachineFunction &MF = MIRBuilder.getMF(); 86 bool CanBeTailCalled = CB.isTailCall() && 87 isInTailCallPosition(CB, MF.getTarget()) && 88 (MF.getFunction() 89 .getFnAttribute("disable-tail-calls") 90 .getValueAsString() != "true"); 91 92 CallingConv::ID CallConv = CB.getCallingConv(); 93 Type *RetTy = CB.getType(); 94 bool IsVarArg = CB.getFunctionType()->isVarArg(); 95 96 SmallVector<BaseArgInfo, 4> SplitArgs; 97 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 98 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 99 100 if (!Info.CanLowerReturn) { 101 // Callee requires sret demotion. 102 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 103 104 // The sret demotion isn't compatible with tail-calls, since the sret 105 // argument points into the caller's stack frame. 106 CanBeTailCalled = false; 107 } 108 109 // First step is to marshall all the function's parameters into the correct 110 // physregs and memory locations. Gather the sequence of argument types that 111 // we'll pass to the assigner function. 112 unsigned i = 0; 113 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 114 for (auto &Arg : CB.args()) { 115 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), getAttributesForArgIdx(CB, i), 116 i < NumFixedArgs}; 117 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 118 119 // If we have an explicit sret argument that is an Instruction, (i.e., it 120 // might point to function-local memory), we can't meaningfully tail-call. 121 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 122 CanBeTailCalled = false; 123 124 Info.OrigArgs.push_back(OrigArg); 125 ++i; 126 } 127 128 // Try looking through a bitcast from one function type to another. 129 // Commonly happens with calls to objc_msgSend(). 130 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 131 if (const Function *F = dyn_cast<Function>(CalleeV)) 132 Info.Callee = MachineOperand::CreateGA(F, 0); 133 else 134 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 135 136 Info.OrigRet = ArgInfo{ResRegs, RetTy, ISD::ArgFlagsTy{}}; 137 if (!Info.OrigRet.Ty->isVoidTy()) 138 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 139 140 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 141 Info.CallConv = CallConv; 142 Info.SwiftErrorVReg = SwiftErrorVReg; 143 Info.IsMustTailCall = CB.isMustTailCall(); 144 Info.IsTailCall = CanBeTailCalled; 145 Info.IsVarArg = IsVarArg; 146 return lowerCall(MIRBuilder, Info); 147 } 148 149 template <typename FuncInfoTy> 150 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 151 const DataLayout &DL, 152 const FuncInfoTy &FuncInfo) const { 153 auto &Flags = Arg.Flags[0]; 154 const AttributeList &Attrs = FuncInfo.getAttributes(); 155 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 156 157 Align MemAlign; 158 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 159 Type *ElementTy = cast<PointerType>(Arg.Ty)->getElementType(); 160 161 auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType(); 162 Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy)); 163 164 // For ByVal, alignment should be passed from FE. BE will guess if 165 // this info is not there but there are cases it cannot get right. 166 if (auto ParamAlign = FuncInfo.getParamStackAlign(OpIdx - 1)) 167 MemAlign = *ParamAlign; 168 else if ((ParamAlign = FuncInfo.getParamAlign(OpIdx - 1))) 169 MemAlign = *ParamAlign; 170 else 171 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 172 } else if (auto ParamAlign = FuncInfo.getParamStackAlign(OpIdx - 1)) { 173 MemAlign = *ParamAlign; 174 } else { 175 MemAlign = Align(DL.getABITypeAlign(Arg.Ty)); 176 } 177 Flags.setMemAlign(MemAlign); 178 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 179 180 // Don't try to use the returned attribute if the argument is marked as 181 // swiftself, since it won't be passed in x0. 182 if (Flags.isSwiftSelf()) 183 Flags.setReturned(false); 184 } 185 186 template void 187 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 188 const DataLayout &DL, 189 const Function &FuncInfo) const; 190 191 template void 192 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 193 const DataLayout &DL, 194 const CallBase &FuncInfo) const; 195 196 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 197 SmallVectorImpl<ArgInfo> &SplitArgs, 198 const DataLayout &DL, 199 CallingConv::ID CallConv) const { 200 LLVMContext &Ctx = OrigArg.Ty->getContext(); 201 202 SmallVector<EVT, 4> SplitVTs; 203 SmallVector<uint64_t, 4> Offsets; 204 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0); 205 206 if (SplitVTs.size() == 0) 207 return; 208 209 if (SplitVTs.size() == 1) { 210 // No splitting to do, but we want to replace the original type (e.g. [1 x 211 // double] -> double). 212 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 213 OrigArg.Flags[0], OrigArg.IsFixed, 214 OrigArg.OrigValue); 215 return; 216 } 217 218 // Create one ArgInfo for each virtual register in the original ArgInfo. 219 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 220 221 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 222 OrigArg.Ty, CallConv, false); 223 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 224 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 225 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0], 226 OrigArg.IsFixed); 227 if (NeedsRegBlock) 228 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 229 } 230 231 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 232 } 233 234 void CallLowering::unpackRegs(ArrayRef<Register> DstRegs, Register SrcReg, 235 Type *PackedTy, 236 MachineIRBuilder &MIRBuilder) const { 237 assert(DstRegs.size() > 1 && "Nothing to unpack"); 238 239 const DataLayout &DL = MIRBuilder.getDataLayout(); 240 241 SmallVector<LLT, 8> LLTs; 242 SmallVector<uint64_t, 8> Offsets; 243 computeValueLLTs(DL, *PackedTy, LLTs, &Offsets); 244 assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch"); 245 246 for (unsigned i = 0; i < DstRegs.size(); ++i) 247 MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]); 248 } 249 250 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 251 static MachineInstrBuilder 252 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 253 ArrayRef<Register> SrcRegs) { 254 MachineRegisterInfo &MRI = *B.getMRI(); 255 LLT LLTy = MRI.getType(DstRegs[0]); 256 LLT PartLLT = MRI.getType(SrcRegs[0]); 257 258 // Deal with v3s16 split into v2s16 259 LLT LCMTy = getLCMType(LLTy, PartLLT); 260 if (LCMTy == LLTy) { 261 // Common case where no padding is needed. 262 assert(DstRegs.size() == 1); 263 return B.buildConcatVectors(DstRegs[0], SrcRegs); 264 } 265 266 // We need to create an unmerge to the result registers, which may require 267 // widening the original value. 268 Register UnmergeSrcReg; 269 if (LCMTy != PartLLT) { 270 // e.g. A <3 x s16> value was split to <2 x s16> 271 // %register_value0:_(<2 x s16>) 272 // %register_value1:_(<2 x s16>) 273 // %undef:_(<2 x s16>) = G_IMPLICIT_DEF 274 // %concat:_<6 x s16>) = G_CONCAT_VECTORS %reg_value0, %reg_value1, %undef 275 // %dst_reg:_(<3 x s16>), %dead:_(<3 x s16>) = G_UNMERGE_VALUES %concat 276 const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits(); 277 Register Undef = B.buildUndef(PartLLT).getReg(0); 278 279 // Build vector of undefs. 280 SmallVector<Register, 8> WidenedSrcs(NumWide, Undef); 281 282 // Replace the first sources with the real registers. 283 std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin()); 284 UnmergeSrcReg = B.buildConcatVectors(LCMTy, WidenedSrcs).getReg(0); 285 } else { 286 // We don't need to widen anything if we're extracting a scalar which was 287 // promoted to a vector e.g. s8 -> v4s8 -> s8 288 assert(SrcRegs.size() == 1); 289 UnmergeSrcReg = SrcRegs[0]; 290 } 291 292 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 293 294 SmallVector<Register, 8> PadDstRegs(NumDst); 295 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 296 297 // Create the excess dead defs for the unmerge. 298 for (int I = DstRegs.size(); I != NumDst; ++I) 299 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 300 301 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); 302 } 303 304 /// Create a sequence of instructions to combine pieces split into register 305 /// typed values to the original IR value. \p OrigRegs contains the destination 306 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 307 /// with type \p PartLLT. This is used for incoming values (physregs to vregs). 308 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 309 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, 310 const ISD::ArgFlagsTy Flags) { 311 MachineRegisterInfo &MRI = *B.getMRI(); 312 313 if (PartLLT == LLTy) { 314 // We should have avoided introducing a new virtual register, and just 315 // directly assigned here. 316 assert(OrigRegs[0] == Regs[0]); 317 return; 318 } 319 320 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 && 321 Regs.size() == 1) { 322 B.buildBitcast(OrigRegs[0], Regs[0]); 323 return; 324 } 325 326 if (PartLLT.isVector() == LLTy.isVector() && 327 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() && 328 OrigRegs.size() == 1 && Regs.size() == 1) { 329 Register SrcReg = Regs[0]; 330 331 LLT LocTy = MRI.getType(SrcReg); 332 333 if (Flags.isSExt()) { 334 SrcReg = B.buildAssertSExt(LocTy, SrcReg, 335 LLTy.getScalarSizeInBits()).getReg(0); 336 } else if (Flags.isZExt()) { 337 SrcReg = B.buildAssertZExt(LocTy, SrcReg, 338 LLTy.getScalarSizeInBits()).getReg(0); 339 } 340 341 B.buildTrunc(OrigRegs[0], SrcReg); 342 return; 343 } 344 345 if (!LLTy.isVector() && !PartLLT.isVector()) { 346 assert(OrigRegs.size() == 1); 347 LLT OrigTy = MRI.getType(OrigRegs[0]); 348 349 unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size(); 350 if (SrcSize == OrigTy.getSizeInBits()) 351 B.buildMerge(OrigRegs[0], Regs); 352 else { 353 auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs); 354 B.buildTrunc(OrigRegs[0], Widened); 355 } 356 357 return; 358 } 359 360 if (PartLLT.isVector()) { 361 assert(OrigRegs.size() == 1); 362 363 if (LLTy.getScalarType() == PartLLT.getElementType()) { 364 mergeVectorRegsToResultRegs(B, OrigRegs, Regs); 365 } else { 366 SmallVector<Register> CastRegs(Regs.size()); 367 unsigned I = 0; 368 LLT GCDTy = getGCDType(LLTy, PartLLT); 369 370 // We are both splitting a vector, and bitcasting its element types. Cast 371 // the source pieces into the appropriate number of pieces with the result 372 // element type. 373 for (Register SrcReg : Regs) 374 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0); 375 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 376 } 377 378 return; 379 } 380 381 assert(LLTy.isVector() && !PartLLT.isVector()); 382 383 LLT DstEltTy = LLTy.getElementType(); 384 385 // Pointer information was discarded. We'll need to coerce some register types 386 // to avoid violating type constraints. 387 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 388 389 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 390 391 if (DstEltTy == PartLLT) { 392 // Vector was trivially scalarized. 393 394 if (RealDstEltTy.isPointer()) { 395 for (Register Reg : Regs) 396 MRI.setType(Reg, RealDstEltTy); 397 } 398 399 B.buildBuildVector(OrigRegs[0], Regs); 400 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 401 // Deal with vector with 64-bit elements decomposed to 32-bit 402 // registers. Need to create intermediate 64-bit elements. 403 SmallVector<Register, 8> EltMerges; 404 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 405 406 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 407 408 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 409 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt)); 410 // Fix the type in case this is really a vector of pointers. 411 MRI.setType(Merge.getReg(0), RealDstEltTy); 412 EltMerges.push_back(Merge.getReg(0)); 413 Regs = Regs.drop_front(PartsPerElt); 414 } 415 416 B.buildBuildVector(OrigRegs[0], EltMerges); 417 } else { 418 // Vector was split, and elements promoted to a wider type. 419 // FIXME: Should handle floating point promotions. 420 LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT); 421 auto BV = B.buildBuildVector(BVType, Regs); 422 B.buildTrunc(OrigRegs[0], BV); 423 } 424 } 425 426 /// Create a sequence of instructions to expand the value in \p SrcReg (of type 427 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should 428 /// contain the type of scalar value extension if necessary. 429 /// 430 /// This is used for outgoing values (vregs to physregs) 431 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 432 Register SrcReg, LLT SrcTy, LLT PartTy, 433 unsigned ExtendOp = TargetOpcode::G_ANYEXT) { 434 // We could just insert a regular copy, but this is unreachable at the moment. 435 assert(SrcTy != PartTy && "identical part types shouldn't reach here"); 436 437 const unsigned PartSize = PartTy.getSizeInBits(); 438 439 if (PartTy.isVector() == SrcTy.isVector() && 440 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { 441 assert(DstRegs.size() == 1); 442 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); 443 return; 444 } 445 446 if (SrcTy.isVector() && !PartTy.isVector() && 447 PartSize > SrcTy.getElementType().getSizeInBits()) { 448 // Vector was scalarized, and the elements extended. 449 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 450 for (int i = 0, e = DstRegs.size(); i != e; ++i) 451 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 452 return; 453 } 454 455 LLT GCDTy = getGCDType(SrcTy, PartTy); 456 if (GCDTy == PartTy) { 457 // If this already evenly divisible, we can create a simple unmerge. 458 B.buildUnmerge(DstRegs, SrcReg); 459 return; 460 } 461 462 MachineRegisterInfo &MRI = *B.getMRI(); 463 LLT DstTy = MRI.getType(DstRegs[0]); 464 LLT LCMTy = getLCMType(SrcTy, PartTy); 465 466 const unsigned LCMSize = LCMTy.getSizeInBits(); 467 const unsigned DstSize = DstTy.getSizeInBits(); 468 const unsigned SrcSize = SrcTy.getSizeInBits(); 469 470 Register UnmergeSrc = SrcReg; 471 if (LCMSize != SrcSize) { 472 // Widen to the common type. 473 Register Undef = B.buildUndef(SrcTy).getReg(0); 474 SmallVector<Register, 8> MergeParts(1, SrcReg); 475 for (unsigned Size = SrcSize; Size != LCMSize; Size += SrcSize) 476 MergeParts.push_back(Undef); 477 478 UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0); 479 } 480 481 // Unmerge to the original registers and pad with dead defs. 482 SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end()); 483 for (unsigned Size = DstSize * DstRegs.size(); Size != LCMSize; 484 Size += DstSize) { 485 UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy)); 486 } 487 488 B.buildUnmerge(UnmergeResults, UnmergeSrc); 489 } 490 491 bool CallLowering::handleAssignments(MachineIRBuilder &MIRBuilder, 492 SmallVectorImpl<ArgInfo> &Args, 493 ValueHandler &Handler, 494 CallingConv::ID CallConv, bool IsVarArg, 495 Register ThisReturnReg) const { 496 MachineFunction &MF = MIRBuilder.getMF(); 497 const Function &F = MF.getFunction(); 498 SmallVector<CCValAssign, 16> ArgLocs; 499 500 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 501 return handleAssignments(CCInfo, ArgLocs, MIRBuilder, Args, Handler, 502 ThisReturnReg); 503 } 504 505 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { 506 if (Flags.isSExt()) 507 return TargetOpcode::G_SEXT; 508 if (Flags.isZExt()) 509 return TargetOpcode::G_ZEXT; 510 return TargetOpcode::G_ANYEXT; 511 } 512 513 bool CallLowering::handleAssignments(CCState &CCInfo, 514 SmallVectorImpl<CCValAssign> &ArgLocs, 515 MachineIRBuilder &MIRBuilder, 516 SmallVectorImpl<ArgInfo> &Args, 517 ValueHandler &Handler, 518 Register ThisReturnReg) const { 519 MachineFunction &MF = MIRBuilder.getMF(); 520 MachineRegisterInfo &MRI = MF.getRegInfo(); 521 const Function &F = MF.getFunction(); 522 const DataLayout &DL = F.getParent()->getDataLayout(); 523 524 unsigned NumArgs = Args.size(); 525 for (unsigned i = 0; i != NumArgs; ++i) { 526 EVT CurVT = EVT::getEVT(Args[i].Ty); 527 528 MVT NewVT = TLI->getRegisterTypeForCallingConv( 529 F.getContext(), CCInfo.getCallingConv(), CurVT); 530 531 // If we need to split the type over multiple regs, check it's a scenario 532 // we currently support. 533 unsigned NumParts = TLI->getNumRegistersForCallingConv( 534 F.getContext(), CCInfo.getCallingConv(), CurVT); 535 536 if (NumParts == 1) { 537 // Try to use the register type if we couldn't assign the VT. 538 if (Handler.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 539 Args[i].Flags[0], CCInfo)) 540 return false; 541 continue; 542 } 543 544 // For incoming arguments (physregs to vregs), we could have values in 545 // physregs (or memlocs) which we want to extract and copy to vregs. 546 // During this, we might have to deal with the LLT being split across 547 // multiple regs, so we have to record this information for later. 548 // 549 // If we have outgoing args, then we have the opposite case. We have a 550 // vreg with an LLT which we want to assign to a physical location, and 551 // we might have to record that the value has to be split later. 552 553 // We're handling an incoming arg which is split over multiple regs. 554 // E.g. passing an s128 on AArch64. 555 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 556 Args[i].Flags.clear(); 557 558 for (unsigned Part = 0; Part < NumParts; ++Part) { 559 ISD::ArgFlagsTy Flags = OrigFlags; 560 if (Part == 0) { 561 Flags.setSplit(); 562 } else { 563 Flags.setOrigAlign(Align(1)); 564 if (Part == NumParts - 1) 565 Flags.setSplitEnd(); 566 } 567 568 if (!Handler.isIncomingArgumentHandler()) { 569 // TODO: Also check if there is a valid extension that preserves the 570 // bits. However currently this call lowering doesn't support non-exact 571 // split parts, so that can't be tested. 572 if (OrigFlags.isReturned() && 573 (NumParts * NewVT.getSizeInBits() != CurVT.getSizeInBits())) { 574 Flags.setReturned(false); 575 } 576 } 577 578 Args[i].Flags.push_back(Flags); 579 if (Handler.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 580 Args[i].Flags[Part], CCInfo)) { 581 // Still couldn't assign this smaller part type for some reason. 582 return false; 583 } 584 } 585 } 586 587 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { 588 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 589 CCValAssign &VA = ArgLocs[j]; 590 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 591 592 if (VA.needsCustom()) { 593 unsigned NumArgRegs = 594 Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j)); 595 if (!NumArgRegs) 596 return false; 597 j += NumArgRegs; 598 continue; 599 } 600 601 const MVT ValVT = VA.getValVT(); 602 const MVT LocVT = VA.getLocVT(); 603 604 const LLT LocTy(LocVT); 605 const LLT ValTy(ValVT); 606 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy; 607 const EVT OrigVT = EVT::getEVT(Args[i].Ty); 608 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 609 610 // Expected to be multiple regs for a single incoming arg. 611 // There should be Regs.size() ArgLocs per argument. 612 // This should be the same as getNumRegistersForCallingConv 613 const unsigned NumParts = Args[i].Flags.size(); 614 615 // Now split the registers into the assigned types. 616 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); 617 618 if (NumParts != 1 || NewLLT != OrigTy) { 619 // If we can't directly assign the register, we need one or more 620 // intermediate values. 621 Args[i].Regs.resize(NumParts); 622 623 // For each split register, create and assign a vreg that will store 624 // the incoming component of the larger value. These will later be 625 // merged to form the final vreg. 626 for (unsigned Part = 0; Part < NumParts; ++Part) 627 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); 628 } 629 630 assert((j + (NumParts - 1)) < ArgLocs.size() && 631 "Too many regs for number of args"); 632 633 // Coerce into outgoing value types before register assignment. 634 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) { 635 assert(Args[i].OrigRegs.size() == 1); 636 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, 637 ValTy, extendOpFromFlags(Args[i].Flags[0])); 638 } 639 640 for (unsigned Part = 0; Part < NumParts; ++Part) { 641 Register ArgReg = Args[i].Regs[Part]; 642 // There should be Regs.size() ArgLocs per argument. 643 VA = ArgLocs[j + Part]; 644 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; 645 646 if (VA.isMemLoc() && !Flags.isByVal()) { 647 // Individual pieces may have been spilled to the stack and others 648 // passed in registers. 649 650 // TODO: The memory size may be larger than the value we need to 651 // store. We may need to adjust the offset for big endian targets. 652 uint64_t MemSize = Handler.getStackValueStoreSize(VA); 653 654 MachinePointerInfo MPO; 655 Register StackAddr = 656 Handler.getStackAddress(MemSize, VA.getLocMemOffset(), MPO, Flags); 657 658 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemSize, MPO, 659 VA); 660 continue; 661 } 662 663 if (VA.isMemLoc() && Flags.isByVal()) { 664 assert(Args[i].Regs.size() == 1 && 665 "didn't expect split byval pointer"); 666 667 if (Handler.isIncomingArgumentHandler()) { 668 // We just need to copy the frame index value to the pointer. 669 MachinePointerInfo MPO; 670 Register StackAddr = Handler.getStackAddress( 671 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); 672 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); 673 } else { 674 // For outgoing byval arguments, insert the implicit copy byval 675 // implies, such that writes in the callee do not modify the caller's 676 // value. 677 uint64_t MemSize = Flags.getByValSize(); 678 int64_t Offset = VA.getLocMemOffset(); 679 680 MachinePointerInfo DstMPO; 681 Register StackAddr = 682 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); 683 684 MachinePointerInfo SrcMPO(Args[i].OrigValue); 685 if (!Args[i].OrigValue) { 686 // We still need to accurately track the stack address space if we 687 // don't know the underlying value. 688 const LLT PtrTy = MRI.getType(StackAddr); 689 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); 690 } 691 692 Align DstAlign = std::max(Flags.getNonZeroByValAlign(), 693 inferAlignFromPtrInfo(MF, DstMPO)); 694 695 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), 696 inferAlignFromPtrInfo(MF, SrcMPO)); 697 698 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], 699 DstMPO, DstAlign, SrcMPO, SrcAlign, 700 MemSize, VA); 701 } 702 continue; 703 } 704 705 assert(!VA.needsCustom() && "custom loc should have been handled already"); 706 707 if (i == 0 && ThisReturnReg.isValid() && 708 Handler.isIncomingArgumentHandler() && 709 isTypeIsValidForThisReturn(ValVT)) { 710 Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA); 711 continue; 712 } 713 714 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 715 } 716 717 // Now that all pieces have been assigned, re-pack the register typed values 718 // into the original value typed registers. 719 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) { 720 // Merge the split registers into the expected larger result vregs of 721 // the original call. 722 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 723 LocTy, Args[i].Flags[0]); 724 } 725 726 j += NumParts - 1; 727 } 728 729 return true; 730 } 731 732 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 733 ArrayRef<Register> VRegs, Register DemoteReg, 734 int FI) const { 735 MachineFunction &MF = MIRBuilder.getMF(); 736 MachineRegisterInfo &MRI = MF.getRegInfo(); 737 const DataLayout &DL = MF.getDataLayout(); 738 739 SmallVector<EVT, 4> SplitVTs; 740 SmallVector<uint64_t, 4> Offsets; 741 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 742 743 assert(VRegs.size() == SplitVTs.size()); 744 745 unsigned NumValues = SplitVTs.size(); 746 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 747 Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace()); 748 LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL); 749 750 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 751 752 for (unsigned I = 0; I < NumValues; ++I) { 753 Register Addr; 754 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 755 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 756 MRI.getType(VRegs[I]).getSizeInBytes(), 757 commonAlignment(BaseAlign, Offsets[I])); 758 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 759 } 760 } 761 762 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 763 ArrayRef<Register> VRegs, 764 Register DemoteReg) const { 765 MachineFunction &MF = MIRBuilder.getMF(); 766 MachineRegisterInfo &MRI = MF.getRegInfo(); 767 const DataLayout &DL = MF.getDataLayout(); 768 769 SmallVector<EVT, 4> SplitVTs; 770 SmallVector<uint64_t, 4> Offsets; 771 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 772 773 assert(VRegs.size() == SplitVTs.size()); 774 775 unsigned NumValues = SplitVTs.size(); 776 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 777 unsigned AS = DL.getAllocaAddrSpace(); 778 LLT OffsetLLTy = 779 getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL); 780 781 MachinePointerInfo PtrInfo(AS); 782 783 for (unsigned I = 0; I < NumValues; ++I) { 784 Register Addr; 785 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 786 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 787 MRI.getType(VRegs[I]).getSizeInBytes(), 788 commonAlignment(BaseAlign, Offsets[I])); 789 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 790 } 791 } 792 793 void CallLowering::insertSRetIncomingArgument( 794 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 795 MachineRegisterInfo &MRI, const DataLayout &DL) const { 796 unsigned AS = DL.getAllocaAddrSpace(); 797 DemoteReg = MRI.createGenericVirtualRegister( 798 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 799 800 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 801 802 SmallVector<EVT, 1> ValueVTs; 803 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 804 805 // NOTE: Assume that a pointer won't get split into more than one VT. 806 assert(ValueVTs.size() == 1); 807 808 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext())); 809 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 810 DemoteArg.Flags[0].setSRet(); 811 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 812 } 813 814 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 815 const CallBase &CB, 816 CallLoweringInfo &Info) const { 817 const DataLayout &DL = MIRBuilder.getDataLayout(); 818 Type *RetTy = CB.getType(); 819 unsigned AS = DL.getAllocaAddrSpace(); 820 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 821 822 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 823 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 824 825 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 826 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS)); 827 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 828 DemoteArg.Flags[0].setSRet(); 829 830 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 831 Info.DemoteStackIndex = FI; 832 Info.DemoteRegister = DemoteReg; 833 } 834 835 bool CallLowering::checkReturn(CCState &CCInfo, 836 SmallVectorImpl<BaseArgInfo> &Outs, 837 CCAssignFn *Fn) const { 838 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 839 MVT VT = MVT::getVT(Outs[I].Ty); 840 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 841 return false; 842 } 843 return true; 844 } 845 846 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 847 AttributeList Attrs, 848 SmallVectorImpl<BaseArgInfo> &Outs, 849 const DataLayout &DL) const { 850 LLVMContext &Context = RetTy->getContext(); 851 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 852 853 SmallVector<EVT, 4> SplitVTs; 854 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 855 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 856 857 for (EVT VT : SplitVTs) { 858 unsigned NumParts = 859 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 860 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 861 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 862 863 for (unsigned I = 0; I < NumParts; ++I) { 864 Outs.emplace_back(PartTy, Flags); 865 } 866 } 867 } 868 869 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 870 const auto &F = MF.getFunction(); 871 Type *ReturnType = F.getReturnType(); 872 CallingConv::ID CallConv = F.getCallingConv(); 873 874 SmallVector<BaseArgInfo, 4> SplitArgs; 875 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 876 MF.getDataLayout()); 877 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 878 } 879 880 bool CallLowering::analyzeArgInfo(CCState &CCState, 881 SmallVectorImpl<ArgInfo> &Args, 882 CCAssignFn &AssignFnFixed, 883 CCAssignFn &AssignFnVarArg) const { 884 for (unsigned i = 0, e = Args.size(); i < e; ++i) { 885 MVT VT = MVT::getVT(Args[i].Ty); 886 CCAssignFn &Fn = Args[i].IsFixed ? AssignFnFixed : AssignFnVarArg; 887 if (Fn(i, VT, VT, CCValAssign::Full, Args[i].Flags[0], CCState)) { 888 // Bail out on anything we can't handle. 889 LLVM_DEBUG(dbgs() << "Cannot analyze " << EVT(VT).getEVTString() 890 << " (arg number = " << i << "\n"); 891 return false; 892 } 893 } 894 return true; 895 } 896 897 bool CallLowering::parametersInCSRMatch( 898 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 899 const SmallVectorImpl<CCValAssign> &OutLocs, 900 const SmallVectorImpl<ArgInfo> &OutArgs) const { 901 for (unsigned i = 0; i < OutLocs.size(); ++i) { 902 auto &ArgLoc = OutLocs[i]; 903 // If it's not a register, it's fine. 904 if (!ArgLoc.isRegLoc()) 905 continue; 906 907 MCRegister PhysReg = ArgLoc.getLocReg(); 908 909 // Only look at callee-saved registers. 910 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 911 continue; 912 913 LLVM_DEBUG( 914 dbgs() 915 << "... Call has an argument passed in a callee-saved register.\n"); 916 917 // Check if it was copied from. 918 const ArgInfo &OutInfo = OutArgs[i]; 919 920 if (OutInfo.Regs.size() > 1) { 921 LLVM_DEBUG( 922 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 923 return false; 924 } 925 926 // Check if we copy the register, walking through copies from virtual 927 // registers. Note that getDefIgnoringCopies does not ignore copies from 928 // physical registers. 929 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 930 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 931 LLVM_DEBUG( 932 dbgs() 933 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 934 return false; 935 } 936 937 // Got a copy. Verify that it's the same as the register we want. 938 Register CopyRHS = RegDef->getOperand(1).getReg(); 939 if (CopyRHS != PhysReg) { 940 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 941 "VReg, cannot tail call.\n"); 942 return false; 943 } 944 } 945 946 return true; 947 } 948 949 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 950 MachineFunction &MF, 951 SmallVectorImpl<ArgInfo> &InArgs, 952 CCAssignFn &CalleeAssignFnFixed, 953 CCAssignFn &CalleeAssignFnVarArg, 954 CCAssignFn &CallerAssignFnFixed, 955 CCAssignFn &CallerAssignFnVarArg) const { 956 const Function &F = MF.getFunction(); 957 CallingConv::ID CalleeCC = Info.CallConv; 958 CallingConv::ID CallerCC = F.getCallingConv(); 959 960 if (CallerCC == CalleeCC) 961 return true; 962 963 SmallVector<CCValAssign, 16> ArgLocs1; 964 CCState CCInfo1(CalleeCC, false, MF, ArgLocs1, F.getContext()); 965 if (!analyzeArgInfo(CCInfo1, InArgs, CalleeAssignFnFixed, 966 CalleeAssignFnVarArg)) 967 return false; 968 969 SmallVector<CCValAssign, 16> ArgLocs2; 970 CCState CCInfo2(CallerCC, false, MF, ArgLocs2, F.getContext()); 971 if (!analyzeArgInfo(CCInfo2, InArgs, CallerAssignFnFixed, 972 CalleeAssignFnVarArg)) 973 return false; 974 975 // We need the argument locations to match up exactly. If there's more in 976 // one than the other, then we are done. 977 if (ArgLocs1.size() != ArgLocs2.size()) 978 return false; 979 980 // Make sure that each location is passed in exactly the same way. 981 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 982 const CCValAssign &Loc1 = ArgLocs1[i]; 983 const CCValAssign &Loc2 = ArgLocs2[i]; 984 985 // We need both of them to be the same. So if one is a register and one 986 // isn't, we're done. 987 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 988 return false; 989 990 if (Loc1.isRegLoc()) { 991 // If they don't have the same register location, we're done. 992 if (Loc1.getLocReg() != Loc2.getLocReg()) 993 return false; 994 995 // They matched, so we can move to the next ArgLoc. 996 continue; 997 } 998 999 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 1000 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 1001 return false; 1002 } 1003 1004 return true; 1005 } 1006 1007 uint64_t CallLowering::ValueHandler::getStackValueStoreSize( 1008 const CCValAssign &VA) const { 1009 const EVT ValVT = VA.getValVT(); 1010 if (ValVT != MVT::iPTR) 1011 return ValVT.getStoreSize(); 1012 1013 const DataLayout &DL = MIRBuilder.getDataLayout(); 1014 1015 /// FIXME: We need to get the correct pointer address space. 1016 return DL.getPointerSize(); 1017 } 1018 1019 void CallLowering::ValueHandler::copyArgumentMemory( 1020 const ArgInfo &Arg, Register DstPtr, Register SrcPtr, 1021 const MachinePointerInfo &DstPtrInfo, Align DstAlign, 1022 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, 1023 CCValAssign &VA) const { 1024 MachineFunction &MF = MIRBuilder.getMF(); 1025 MachineMemOperand *SrcMMO = MF.getMachineMemOperand( 1026 SrcPtrInfo, 1027 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, 1028 SrcAlign); 1029 1030 MachineMemOperand *DstMMO = MF.getMachineMemOperand( 1031 DstPtrInfo, 1032 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, 1033 MemSize, DstAlign); 1034 1035 const LLT PtrTy = MRI.getType(DstPtr); 1036 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); 1037 1038 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); 1039 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); 1040 } 1041 1042 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 1043 CCValAssign &VA, 1044 unsigned MaxSizeBits) { 1045 LLT LocTy{VA.getLocVT()}; 1046 LLT ValTy{VA.getValVT()}; 1047 1048 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 1049 return ValReg; 1050 1051 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 1052 if (MaxSizeBits <= ValTy.getSizeInBits()) 1053 return ValReg; 1054 LocTy = LLT::scalar(MaxSizeBits); 1055 } 1056 1057 switch (VA.getLocInfo()) { 1058 default: break; 1059 case CCValAssign::Full: 1060 case CCValAssign::BCvt: 1061 // FIXME: bitconverting between vector types may or may not be a 1062 // nop in big-endian situations. 1063 return ValReg; 1064 case CCValAssign::AExt: { 1065 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 1066 return MIB.getReg(0); 1067 } 1068 case CCValAssign::SExt: { 1069 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1070 MIRBuilder.buildSExt(NewReg, ValReg); 1071 return NewReg; 1072 } 1073 case CCValAssign::ZExt: { 1074 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1075 MIRBuilder.buildZExt(NewReg, ValReg); 1076 return NewReg; 1077 } 1078 } 1079 llvm_unreachable("unable to extend register"); 1080 } 1081 1082 void CallLowering::ValueHandler::anchor() {} 1083 1084 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA, 1085 Register SrcReg, 1086 LLT NarrowTy) { 1087 switch (VA.getLocInfo()) { 1088 case CCValAssign::LocInfo::ZExt: { 1089 return MIRBuilder 1090 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1091 NarrowTy.getScalarSizeInBits()) 1092 .getReg(0); 1093 } 1094 case CCValAssign::LocInfo::SExt: { 1095 return MIRBuilder 1096 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1097 NarrowTy.getScalarSizeInBits()) 1098 .getReg(0); 1099 break; 1100 } 1101 default: 1102 return SrcReg; 1103 } 1104 } 1105 1106 /// Check if we can use a basic COPY instruction between the two types. 1107 /// 1108 /// We're currently building on top of the infrastructure using MVT, which loses 1109 /// pointer information in the CCValAssign. We accept copies from physical 1110 /// registers that have been reported as integers if it's to an equivalent sized 1111 /// pointer LLT. 1112 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) { 1113 if (SrcTy == DstTy) 1114 return true; 1115 1116 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1117 return false; 1118 1119 SrcTy = SrcTy.getScalarType(); 1120 DstTy = DstTy.getScalarType(); 1121 1122 return (SrcTy.isPointer() && DstTy.isScalar()) || 1123 (DstTy.isScalar() && SrcTy.isPointer()); 1124 } 1125 1126 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg, 1127 Register PhysReg, 1128 CCValAssign &VA) { 1129 const MVT LocVT = VA.getLocVT(); 1130 const LLT LocTy(LocVT); 1131 const LLT RegTy = MRI.getType(ValVReg); 1132 1133 if (isCopyCompatibleType(RegTy, LocTy)) { 1134 MIRBuilder.buildCopy(ValVReg, PhysReg); 1135 return; 1136 } 1137 1138 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); 1139 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy); 1140 MIRBuilder.buildTrunc(ValVReg, Hint); 1141 } 1142