1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
16 #include "llvm/CodeGen/GlobalISel/Utils.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/MachineOperand.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Target/TargetMachine.h"
26 
27 #define DEBUG_TYPE "call-lowering"
28 
29 using namespace llvm;
30 
31 void CallLowering::anchor() {}
32 
33 /// Helper function which updates \p Flags when \p AttrFn returns true.
34 static void
35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
36                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
37   if (AttrFn(Attribute::SExt))
38     Flags.setSExt();
39   if (AttrFn(Attribute::ZExt))
40     Flags.setZExt();
41   if (AttrFn(Attribute::InReg))
42     Flags.setInReg();
43   if (AttrFn(Attribute::StructRet))
44     Flags.setSRet();
45   if (AttrFn(Attribute::Nest))
46     Flags.setNest();
47   if (AttrFn(Attribute::ByVal))
48     Flags.setByVal();
49   if (AttrFn(Attribute::Preallocated))
50     Flags.setPreallocated();
51   if (AttrFn(Attribute::InAlloca))
52     Flags.setInAlloca();
53   if (AttrFn(Attribute::Returned))
54     Flags.setReturned();
55   if (AttrFn(Attribute::SwiftSelf))
56     Flags.setSwiftSelf();
57   if (AttrFn(Attribute::SwiftError))
58     Flags.setSwiftError();
59 }
60 
61 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
62                                                      unsigned ArgIdx) const {
63   ISD::ArgFlagsTy Flags;
64   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
65     return Call.paramHasAttr(ArgIdx, Attr);
66   });
67   return Flags;
68 }
69 
70 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
71                                              const AttributeList &Attrs,
72                                              unsigned OpIdx) const {
73   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
74     return Attrs.hasAttribute(OpIdx, Attr);
75   });
76 }
77 
78 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
79                              ArrayRef<Register> ResRegs,
80                              ArrayRef<ArrayRef<Register>> ArgRegs,
81                              Register SwiftErrorVReg,
82                              std::function<unsigned()> GetCalleeReg) const {
83   CallLoweringInfo Info;
84   const DataLayout &DL = MIRBuilder.getDataLayout();
85   MachineFunction &MF = MIRBuilder.getMF();
86   bool CanBeTailCalled = CB.isTailCall() &&
87                          isInTailCallPosition(CB, MF.getTarget()) &&
88                          (MF.getFunction()
89                               .getFnAttribute("disable-tail-calls")
90                               .getValueAsString() != "true");
91 
92   CallingConv::ID CallConv = CB.getCallingConv();
93   Type *RetTy = CB.getType();
94   bool IsVarArg = CB.getFunctionType()->isVarArg();
95 
96   SmallVector<BaseArgInfo, 4> SplitArgs;
97   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
98   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
99 
100   if (!Info.CanLowerReturn) {
101     // Callee requires sret demotion.
102     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
103 
104     // The sret demotion isn't compatible with tail-calls, since the sret
105     // argument points into the caller's stack frame.
106     CanBeTailCalled = false;
107   }
108 
109   // First step is to marshall all the function's parameters into the correct
110   // physregs and memory locations. Gather the sequence of argument types that
111   // we'll pass to the assigner function.
112   unsigned i = 0;
113   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
114   for (auto &Arg : CB.args()) {
115     ArgInfo OrigArg{ArgRegs[i], *Arg.get(), getAttributesForArgIdx(CB, i),
116                     i < NumFixedArgs};
117     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
118 
119     // If we have an explicit sret argument that is an Instruction, (i.e., it
120     // might point to function-local memory), we can't meaningfully tail-call.
121     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
122       CanBeTailCalled = false;
123 
124     Info.OrigArgs.push_back(OrigArg);
125     ++i;
126   }
127 
128   // Try looking through a bitcast from one function type to another.
129   // Commonly happens with calls to objc_msgSend().
130   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
131   if (const Function *F = dyn_cast<Function>(CalleeV))
132     Info.Callee = MachineOperand::CreateGA(F, 0);
133   else
134     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
135 
136   Info.OrigRet = ArgInfo{ResRegs, RetTy, ISD::ArgFlagsTy{}};
137   if (!Info.OrigRet.Ty->isVoidTy())
138     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
139 
140   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
141   Info.CallConv = CallConv;
142   Info.SwiftErrorVReg = SwiftErrorVReg;
143   Info.IsMustTailCall = CB.isMustTailCall();
144   Info.IsTailCall = CanBeTailCalled;
145   Info.IsVarArg = IsVarArg;
146   return lowerCall(MIRBuilder, Info);
147 }
148 
149 template <typename FuncInfoTy>
150 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
151                                const DataLayout &DL,
152                                const FuncInfoTy &FuncInfo) const {
153   auto &Flags = Arg.Flags[0];
154   const AttributeList &Attrs = FuncInfo.getAttributes();
155   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
156 
157   Align MemAlign;
158   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
159     Type *ElementTy = cast<PointerType>(Arg.Ty)->getElementType();
160 
161     auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType();
162     Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy));
163 
164     // For ByVal, alignment should be passed from FE.  BE will guess if
165     // this info is not there but there are cases it cannot get right.
166     if (auto ParamAlign = FuncInfo.getParamStackAlign(OpIdx - 1))
167       MemAlign = *ParamAlign;
168     else if ((ParamAlign = FuncInfo.getParamAlign(OpIdx - 1)))
169       MemAlign = *ParamAlign;
170     else
171       MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
172   } else if (auto ParamAlign = FuncInfo.getParamStackAlign(OpIdx - 1)) {
173     MemAlign = *ParamAlign;
174   } else {
175     MemAlign = Align(DL.getABITypeAlign(Arg.Ty));
176   }
177   Flags.setMemAlign(MemAlign);
178   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
179 
180   // Don't try to use the returned attribute if the argument is marked as
181   // swiftself, since it won't be passed in x0.
182   if (Flags.isSwiftSelf())
183     Flags.setReturned(false);
184 }
185 
186 template void
187 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
188                                     const DataLayout &DL,
189                                     const Function &FuncInfo) const;
190 
191 template void
192 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
193                                     const DataLayout &DL,
194                                     const CallBase &FuncInfo) const;
195 
196 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
197                                      SmallVectorImpl<ArgInfo> &SplitArgs,
198                                      const DataLayout &DL,
199                                      CallingConv::ID CallConv) const {
200   LLVMContext &Ctx = OrigArg.Ty->getContext();
201 
202   SmallVector<EVT, 4> SplitVTs;
203   SmallVector<uint64_t, 4> Offsets;
204   ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0);
205 
206   if (SplitVTs.size() == 0)
207     return;
208 
209   if (SplitVTs.size() == 1) {
210     // No splitting to do, but we want to replace the original type (e.g. [1 x
211     // double] -> double).
212     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
213                            OrigArg.Flags[0], OrigArg.IsFixed,
214                            OrigArg.OrigValue);
215     return;
216   }
217 
218   // Create one ArgInfo for each virtual register in the original ArgInfo.
219   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
220 
221   bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
222       OrigArg.Ty, CallConv, false);
223   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
224     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
225     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0],
226                            OrigArg.IsFixed);
227     if (NeedsRegBlock)
228       SplitArgs.back().Flags[0].setInConsecutiveRegs();
229   }
230 
231   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
232 }
233 
234 void CallLowering::unpackRegs(ArrayRef<Register> DstRegs, Register SrcReg,
235                               Type *PackedTy,
236                               MachineIRBuilder &MIRBuilder) const {
237   assert(DstRegs.size() > 1 && "Nothing to unpack");
238 
239   const DataLayout &DL = MIRBuilder.getDataLayout();
240 
241   SmallVector<LLT, 8> LLTs;
242   SmallVector<uint64_t, 8> Offsets;
243   computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
244   assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch");
245 
246   for (unsigned i = 0; i < DstRegs.size(); ++i)
247     MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]);
248 }
249 
250 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
251 static MachineInstrBuilder
252 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
253                             ArrayRef<Register> SrcRegs) {
254   MachineRegisterInfo &MRI = *B.getMRI();
255   LLT LLTy = MRI.getType(DstRegs[0]);
256   LLT PartLLT = MRI.getType(SrcRegs[0]);
257 
258   // Deal with v3s16 split into v2s16
259   LLT LCMTy = getLCMType(LLTy, PartLLT);
260   if (LCMTy == LLTy) {
261     // Common case where no padding is needed.
262     assert(DstRegs.size() == 1);
263     return B.buildConcatVectors(DstRegs[0], SrcRegs);
264   }
265 
266   // We need to create an unmerge to the result registers, which may require
267   // widening the original value.
268   Register UnmergeSrcReg;
269   if (LCMTy != PartLLT) {
270     // e.g. A <3 x s16> value was split to <2 x s16>
271     // %register_value0:_(<2 x s16>)
272     // %register_value1:_(<2 x s16>)
273     // %undef:_(<2 x s16>) = G_IMPLICIT_DEF
274     // %concat:_<6 x s16>) = G_CONCAT_VECTORS %reg_value0, %reg_value1, %undef
275     // %dst_reg:_(<3 x s16>), %dead:_(<3 x s16>) = G_UNMERGE_VALUES %concat
276     const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
277     Register Undef = B.buildUndef(PartLLT).getReg(0);
278 
279     // Build vector of undefs.
280     SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);
281 
282     // Replace the first sources with the real registers.
283     std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());
284     UnmergeSrcReg = B.buildConcatVectors(LCMTy, WidenedSrcs).getReg(0);
285   } else {
286     // We don't need to widen anything if we're extracting a scalar which was
287     // promoted to a vector e.g. s8 -> v4s8 -> s8
288     assert(SrcRegs.size() == 1);
289     UnmergeSrcReg = SrcRegs[0];
290   }
291 
292   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
293 
294   SmallVector<Register, 8> PadDstRegs(NumDst);
295   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
296 
297   // Create the excess dead defs for the unmerge.
298   for (int I = DstRegs.size(); I != NumDst; ++I)
299     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
300 
301   return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
302 }
303 
304 /// Create a sequence of instructions to combine pieces split into register
305 /// typed values to the original IR value. \p OrigRegs contains the destination
306 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
307 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
308 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
309                               ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
310                               const ISD::ArgFlagsTy Flags) {
311   MachineRegisterInfo &MRI = *B.getMRI();
312 
313   if (PartLLT == LLTy) {
314     // We should have avoided introducing a new virtual register, and just
315     // directly assigned here.
316     assert(OrigRegs[0] == Regs[0]);
317     return;
318   }
319 
320   if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
321       Regs.size() == 1) {
322     B.buildBitcast(OrigRegs[0], Regs[0]);
323     return;
324   }
325 
326   if (PartLLT.isVector() == LLTy.isVector() &&
327       PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
328       OrigRegs.size() == 1 && Regs.size() == 1) {
329     Register SrcReg = Regs[0];
330 
331     LLT LocTy = MRI.getType(SrcReg);
332 
333     if (Flags.isSExt()) {
334       SrcReg = B.buildAssertSExt(LocTy, SrcReg,
335                                  LLTy.getScalarSizeInBits()).getReg(0);
336     } else if (Flags.isZExt()) {
337       SrcReg = B.buildAssertZExt(LocTy, SrcReg,
338                                  LLTy.getScalarSizeInBits()).getReg(0);
339     }
340 
341     B.buildTrunc(OrigRegs[0], SrcReg);
342     return;
343   }
344 
345   if (!LLTy.isVector() && !PartLLT.isVector()) {
346     assert(OrigRegs.size() == 1);
347     LLT OrigTy = MRI.getType(OrigRegs[0]);
348 
349     unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size();
350     if (SrcSize == OrigTy.getSizeInBits())
351       B.buildMerge(OrigRegs[0], Regs);
352     else {
353       auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
354       B.buildTrunc(OrigRegs[0], Widened);
355     }
356 
357     return;
358   }
359 
360   if (PartLLT.isVector()) {
361     assert(OrigRegs.size() == 1);
362 
363     if (LLTy.getScalarType() == PartLLT.getElementType()) {
364       mergeVectorRegsToResultRegs(B, OrigRegs, Regs);
365     } else {
366       SmallVector<Register> CastRegs(Regs.size());
367       unsigned I = 0;
368       LLT GCDTy = getGCDType(LLTy, PartLLT);
369 
370       // We are both splitting a vector, and bitcasting its element types. Cast
371       // the source pieces into the appropriate number of pieces with the result
372       // element type.
373       for (Register SrcReg : Regs)
374         CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
375       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
376     }
377 
378     return;
379   }
380 
381   assert(LLTy.isVector() && !PartLLT.isVector());
382 
383   LLT DstEltTy = LLTy.getElementType();
384 
385   // Pointer information was discarded. We'll need to coerce some register types
386   // to avoid violating type constraints.
387   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
388 
389   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
390 
391   if (DstEltTy == PartLLT) {
392     // Vector was trivially scalarized.
393 
394     if (RealDstEltTy.isPointer()) {
395       for (Register Reg : Regs)
396         MRI.setType(Reg, RealDstEltTy);
397     }
398 
399     B.buildBuildVector(OrigRegs[0], Regs);
400   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
401     // Deal with vector with 64-bit elements decomposed to 32-bit
402     // registers. Need to create intermediate 64-bit elements.
403     SmallVector<Register, 8> EltMerges;
404     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
405 
406     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
407 
408     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
409       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
410       // Fix the type in case this is really a vector of pointers.
411       MRI.setType(Merge.getReg(0), RealDstEltTy);
412       EltMerges.push_back(Merge.getReg(0));
413       Regs = Regs.drop_front(PartsPerElt);
414     }
415 
416     B.buildBuildVector(OrigRegs[0], EltMerges);
417   } else {
418     // Vector was split, and elements promoted to a wider type.
419     // FIXME: Should handle floating point promotions.
420     LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
421     auto BV = B.buildBuildVector(BVType, Regs);
422     B.buildTrunc(OrigRegs[0], BV);
423   }
424 }
425 
426 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
427 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
428 /// contain the type of scalar value extension if necessary.
429 ///
430 /// This is used for outgoing values (vregs to physregs)
431 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
432                             Register SrcReg, LLT SrcTy, LLT PartTy,
433                             unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
434   // We could just insert a regular copy, but this is unreachable at the moment.
435   assert(SrcTy != PartTy && "identical part types shouldn't reach here");
436 
437   const unsigned PartSize = PartTy.getSizeInBits();
438 
439   if (PartTy.isVector() == SrcTy.isVector() &&
440       PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
441     assert(DstRegs.size() == 1);
442     B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
443     return;
444   }
445 
446   if (SrcTy.isVector() && !PartTy.isVector() &&
447       PartSize > SrcTy.getElementType().getSizeInBits()) {
448     // Vector was scalarized, and the elements extended.
449     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
450     for (int i = 0, e = DstRegs.size(); i != e; ++i)
451       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
452     return;
453   }
454 
455   LLT GCDTy = getGCDType(SrcTy, PartTy);
456   if (GCDTy == PartTy) {
457     // If this already evenly divisible, we can create a simple unmerge.
458     B.buildUnmerge(DstRegs, SrcReg);
459     return;
460   }
461 
462   MachineRegisterInfo &MRI = *B.getMRI();
463   LLT DstTy = MRI.getType(DstRegs[0]);
464   LLT LCMTy = getLCMType(SrcTy, PartTy);
465 
466   const unsigned LCMSize = LCMTy.getSizeInBits();
467   const unsigned DstSize = DstTy.getSizeInBits();
468   const unsigned SrcSize = SrcTy.getSizeInBits();
469 
470   Register UnmergeSrc = SrcReg;
471   if (LCMSize != SrcSize) {
472     // Widen to the common type.
473     Register Undef = B.buildUndef(SrcTy).getReg(0);
474     SmallVector<Register, 8> MergeParts(1, SrcReg);
475     for (unsigned Size = SrcSize; Size != LCMSize; Size += SrcSize)
476       MergeParts.push_back(Undef);
477 
478     UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
479   }
480 
481   // Unmerge to the original registers and pad with dead defs.
482   SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end());
483   for (unsigned Size = DstSize * DstRegs.size(); Size != LCMSize;
484        Size += DstSize) {
485     UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy));
486   }
487 
488   B.buildUnmerge(UnmergeResults, UnmergeSrc);
489 }
490 
491 bool CallLowering::handleAssignments(MachineIRBuilder &MIRBuilder,
492                                      SmallVectorImpl<ArgInfo> &Args,
493                                      ValueHandler &Handler,
494                                      CallingConv::ID CallConv, bool IsVarArg,
495                                      Register ThisReturnReg) const {
496   MachineFunction &MF = MIRBuilder.getMF();
497   const Function &F = MF.getFunction();
498   SmallVector<CCValAssign, 16> ArgLocs;
499 
500   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
501   return handleAssignments(CCInfo, ArgLocs, MIRBuilder, Args, Handler,
502                            ThisReturnReg);
503 }
504 
505 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
506   if (Flags.isSExt())
507     return TargetOpcode::G_SEXT;
508   if (Flags.isZExt())
509     return TargetOpcode::G_ZEXT;
510   return TargetOpcode::G_ANYEXT;
511 }
512 
513 bool CallLowering::handleAssignments(CCState &CCInfo,
514                                      SmallVectorImpl<CCValAssign> &ArgLocs,
515                                      MachineIRBuilder &MIRBuilder,
516                                      SmallVectorImpl<ArgInfo> &Args,
517                                      ValueHandler &Handler,
518                                      Register ThisReturnReg) const {
519   MachineFunction &MF = MIRBuilder.getMF();
520   MachineRegisterInfo &MRI = MF.getRegInfo();
521   const Function &F = MF.getFunction();
522   const DataLayout &DL = F.getParent()->getDataLayout();
523 
524   unsigned NumArgs = Args.size();
525   for (unsigned i = 0; i != NumArgs; ++i) {
526     EVT CurVT = EVT::getEVT(Args[i].Ty);
527 
528     MVT NewVT = TLI->getRegisterTypeForCallingConv(
529         F.getContext(), CCInfo.getCallingConv(), CurVT);
530 
531     // If we need to split the type over multiple regs, check it's a scenario
532     // we currently support.
533     unsigned NumParts = TLI->getNumRegistersForCallingConv(
534         F.getContext(), CCInfo.getCallingConv(), CurVT);
535 
536     if (NumParts == 1) {
537       // Try to use the register type if we couldn't assign the VT.
538       if (Handler.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
539                             Args[i].Flags[0], CCInfo))
540         return false;
541       continue;
542     }
543 
544     // For incoming arguments (physregs to vregs), we could have values in
545     // physregs (or memlocs) which we want to extract and copy to vregs.
546     // During this, we might have to deal with the LLT being split across
547     // multiple regs, so we have to record this information for later.
548     //
549     // If we have outgoing args, then we have the opposite case. We have a
550     // vreg with an LLT which we want to assign to a physical location, and
551     // we might have to record that the value has to be split later.
552 
553     // We're handling an incoming arg which is split over multiple regs.
554     // E.g. passing an s128 on AArch64.
555     ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
556     Args[i].Flags.clear();
557 
558     for (unsigned Part = 0; Part < NumParts; ++Part) {
559       ISD::ArgFlagsTy Flags = OrigFlags;
560       if (Part == 0) {
561         Flags.setSplit();
562       } else {
563         Flags.setOrigAlign(Align(1));
564         if (Part == NumParts - 1)
565           Flags.setSplitEnd();
566       }
567 
568       if (!Handler.isIncomingArgumentHandler()) {
569         // TODO: Also check if there is a valid extension that preserves the
570         // bits. However currently this call lowering doesn't support non-exact
571         // split parts, so that can't be tested.
572         if (OrigFlags.isReturned() &&
573             (NumParts * NewVT.getSizeInBits() != CurVT.getSizeInBits())) {
574           Flags.setReturned(false);
575         }
576       }
577 
578       Args[i].Flags.push_back(Flags);
579       if (Handler.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
580                             Args[i].Flags[Part], CCInfo)) {
581         // Still couldn't assign this smaller part type for some reason.
582         return false;
583       }
584     }
585   }
586 
587   for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
588     assert(j < ArgLocs.size() && "Skipped too many arg locs");
589     CCValAssign &VA = ArgLocs[j];
590     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
591 
592     if (VA.needsCustom()) {
593       unsigned NumArgRegs =
594           Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j));
595       if (!NumArgRegs)
596         return false;
597       j += NumArgRegs;
598       continue;
599     }
600 
601     const MVT ValVT = VA.getValVT();
602     const MVT LocVT = VA.getLocVT();
603 
604     const LLT LocTy(LocVT);
605     const LLT ValTy(ValVT);
606     const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
607     const EVT OrigVT = EVT::getEVT(Args[i].Ty);
608     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
609 
610     // Expected to be multiple regs for a single incoming arg.
611     // There should be Regs.size() ArgLocs per argument.
612     // This should be the same as getNumRegistersForCallingConv
613     const unsigned NumParts = Args[i].Flags.size();
614 
615     // Now split the registers into the assigned types.
616     Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
617 
618     if (NumParts != 1 || NewLLT != OrigTy) {
619       // If we can't directly assign the register, we need one or more
620       // intermediate values.
621       Args[i].Regs.resize(NumParts);
622 
623       // For each split register, create and assign a vreg that will store
624       // the incoming component of the larger value. These will later be
625       // merged to form the final vreg.
626       for (unsigned Part = 0; Part < NumParts; ++Part)
627         Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
628     }
629 
630     assert((j + (NumParts - 1)) < ArgLocs.size() &&
631            "Too many regs for number of args");
632 
633     // Coerce into outgoing value types before register assignment.
634     if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
635       assert(Args[i].OrigRegs.size() == 1);
636       buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
637                       ValTy, extendOpFromFlags(Args[i].Flags[0]));
638     }
639 
640     for (unsigned Part = 0; Part < NumParts; ++Part) {
641       Register ArgReg = Args[i].Regs[Part];
642       // There should be Regs.size() ArgLocs per argument.
643       VA = ArgLocs[j + Part];
644       const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
645 
646       if (VA.isMemLoc() && !Flags.isByVal()) {
647         // Individual pieces may have been spilled to the stack and others
648         // passed in registers.
649 
650         // TODO: The memory size may be larger than the value we need to
651         // store. We may need to adjust the offset for big endian targets.
652         uint64_t MemSize = Handler.getStackValueStoreSize(VA);
653 
654         MachinePointerInfo MPO;
655         Register StackAddr =
656             Handler.getStackAddress(MemSize, VA.getLocMemOffset(), MPO, Flags);
657 
658         Handler.assignValueToAddress(Args[i], Part, StackAddr, MemSize, MPO,
659                                      VA);
660         continue;
661       }
662 
663       if (VA.isMemLoc() && Flags.isByVal()) {
664         assert(Args[i].Regs.size() == 1 &&
665                "didn't expect split byval pointer");
666 
667         if (Handler.isIncomingArgumentHandler()) {
668           // We just need to copy the frame index value to the pointer.
669           MachinePointerInfo MPO;
670           Register StackAddr = Handler.getStackAddress(
671               Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
672           MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
673         } else {
674           // For outgoing byval arguments, insert the implicit copy byval
675           // implies, such that writes in the callee do not modify the caller's
676           // value.
677           uint64_t MemSize = Flags.getByValSize();
678           int64_t Offset = VA.getLocMemOffset();
679 
680           MachinePointerInfo DstMPO;
681           Register StackAddr =
682               Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
683 
684           MachinePointerInfo SrcMPO(Args[i].OrigValue);
685           if (!Args[i].OrigValue) {
686             // We still need to accurately track the stack address space if we
687             // don't know the underlying value.
688             const LLT PtrTy = MRI.getType(StackAddr);
689             SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
690           }
691 
692           Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
693                                     inferAlignFromPtrInfo(MF, DstMPO));
694 
695           Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
696                                     inferAlignFromPtrInfo(MF, SrcMPO));
697 
698           Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
699                                      DstMPO, DstAlign, SrcMPO, SrcAlign,
700                                      MemSize, VA);
701         }
702         continue;
703       }
704 
705       assert(!VA.needsCustom() && "custom loc should have been handled already");
706 
707       if (i == 0 && ThisReturnReg.isValid() &&
708           Handler.isIncomingArgumentHandler() &&
709           isTypeIsValidForThisReturn(ValVT)) {
710         Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA);
711         continue;
712       }
713 
714       Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
715     }
716 
717     // Now that all pieces have been assigned, re-pack the register typed values
718     // into the original value typed registers.
719     if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
720       // Merge the split registers into the expected larger result vregs of
721       // the original call.
722       buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
723                         LocTy, Args[i].Flags[0]);
724     }
725 
726     j += NumParts - 1;
727   }
728 
729   return true;
730 }
731 
732 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
733                                    ArrayRef<Register> VRegs, Register DemoteReg,
734                                    int FI) const {
735   MachineFunction &MF = MIRBuilder.getMF();
736   MachineRegisterInfo &MRI = MF.getRegInfo();
737   const DataLayout &DL = MF.getDataLayout();
738 
739   SmallVector<EVT, 4> SplitVTs;
740   SmallVector<uint64_t, 4> Offsets;
741   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
742 
743   assert(VRegs.size() == SplitVTs.size());
744 
745   unsigned NumValues = SplitVTs.size();
746   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
747   Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
748   LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
749 
750   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
751 
752   for (unsigned I = 0; I < NumValues; ++I) {
753     Register Addr;
754     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
755     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
756                                         MRI.getType(VRegs[I]).getSizeInBytes(),
757                                         commonAlignment(BaseAlign, Offsets[I]));
758     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
759   }
760 }
761 
762 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
763                                     ArrayRef<Register> VRegs,
764                                     Register DemoteReg) const {
765   MachineFunction &MF = MIRBuilder.getMF();
766   MachineRegisterInfo &MRI = MF.getRegInfo();
767   const DataLayout &DL = MF.getDataLayout();
768 
769   SmallVector<EVT, 4> SplitVTs;
770   SmallVector<uint64_t, 4> Offsets;
771   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
772 
773   assert(VRegs.size() == SplitVTs.size());
774 
775   unsigned NumValues = SplitVTs.size();
776   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
777   unsigned AS = DL.getAllocaAddrSpace();
778   LLT OffsetLLTy =
779       getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
780 
781   MachinePointerInfo PtrInfo(AS);
782 
783   for (unsigned I = 0; I < NumValues; ++I) {
784     Register Addr;
785     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
786     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
787                                         MRI.getType(VRegs[I]).getSizeInBytes(),
788                                         commonAlignment(BaseAlign, Offsets[I]));
789     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
790   }
791 }
792 
793 void CallLowering::insertSRetIncomingArgument(
794     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
795     MachineRegisterInfo &MRI, const DataLayout &DL) const {
796   unsigned AS = DL.getAllocaAddrSpace();
797   DemoteReg = MRI.createGenericVirtualRegister(
798       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
799 
800   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
801 
802   SmallVector<EVT, 1> ValueVTs;
803   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
804 
805   // NOTE: Assume that a pointer won't get split into more than one VT.
806   assert(ValueVTs.size() == 1);
807 
808   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()));
809   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
810   DemoteArg.Flags[0].setSRet();
811   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
812 }
813 
814 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
815                                               const CallBase &CB,
816                                               CallLoweringInfo &Info) const {
817   const DataLayout &DL = MIRBuilder.getDataLayout();
818   Type *RetTy = CB.getType();
819   unsigned AS = DL.getAllocaAddrSpace();
820   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
821 
822   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
823       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
824 
825   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
826   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS));
827   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
828   DemoteArg.Flags[0].setSRet();
829 
830   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
831   Info.DemoteStackIndex = FI;
832   Info.DemoteRegister = DemoteReg;
833 }
834 
835 bool CallLowering::checkReturn(CCState &CCInfo,
836                                SmallVectorImpl<BaseArgInfo> &Outs,
837                                CCAssignFn *Fn) const {
838   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
839     MVT VT = MVT::getVT(Outs[I].Ty);
840     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
841       return false;
842   }
843   return true;
844 }
845 
846 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
847                                  AttributeList Attrs,
848                                  SmallVectorImpl<BaseArgInfo> &Outs,
849                                  const DataLayout &DL) const {
850   LLVMContext &Context = RetTy->getContext();
851   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
852 
853   SmallVector<EVT, 4> SplitVTs;
854   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
855   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
856 
857   for (EVT VT : SplitVTs) {
858     unsigned NumParts =
859         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
860     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
861     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
862 
863     for (unsigned I = 0; I < NumParts; ++I) {
864       Outs.emplace_back(PartTy, Flags);
865     }
866   }
867 }
868 
869 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
870   const auto &F = MF.getFunction();
871   Type *ReturnType = F.getReturnType();
872   CallingConv::ID CallConv = F.getCallingConv();
873 
874   SmallVector<BaseArgInfo, 4> SplitArgs;
875   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
876                 MF.getDataLayout());
877   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
878 }
879 
880 bool CallLowering::analyzeArgInfo(CCState &CCState,
881                                   SmallVectorImpl<ArgInfo> &Args,
882                                   CCAssignFn &AssignFnFixed,
883                                   CCAssignFn &AssignFnVarArg) const {
884   for (unsigned i = 0, e = Args.size(); i < e; ++i) {
885     MVT VT = MVT::getVT(Args[i].Ty);
886     CCAssignFn &Fn = Args[i].IsFixed ? AssignFnFixed : AssignFnVarArg;
887     if (Fn(i, VT, VT, CCValAssign::Full, Args[i].Flags[0], CCState)) {
888       // Bail out on anything we can't handle.
889       LLVM_DEBUG(dbgs() << "Cannot analyze " << EVT(VT).getEVTString()
890                         << " (arg number = " << i << "\n");
891       return false;
892     }
893   }
894   return true;
895 }
896 
897 bool CallLowering::parametersInCSRMatch(
898     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
899     const SmallVectorImpl<CCValAssign> &OutLocs,
900     const SmallVectorImpl<ArgInfo> &OutArgs) const {
901   for (unsigned i = 0; i < OutLocs.size(); ++i) {
902     auto &ArgLoc = OutLocs[i];
903     // If it's not a register, it's fine.
904     if (!ArgLoc.isRegLoc())
905       continue;
906 
907     MCRegister PhysReg = ArgLoc.getLocReg();
908 
909     // Only look at callee-saved registers.
910     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
911       continue;
912 
913     LLVM_DEBUG(
914         dbgs()
915         << "... Call has an argument passed in a callee-saved register.\n");
916 
917     // Check if it was copied from.
918     const ArgInfo &OutInfo = OutArgs[i];
919 
920     if (OutInfo.Regs.size() > 1) {
921       LLVM_DEBUG(
922           dbgs() << "... Cannot handle arguments in multiple registers.\n");
923       return false;
924     }
925 
926     // Check if we copy the register, walking through copies from virtual
927     // registers. Note that getDefIgnoringCopies does not ignore copies from
928     // physical registers.
929     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
930     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
931       LLVM_DEBUG(
932           dbgs()
933           << "... Parameter was not copied into a VReg, cannot tail call.\n");
934       return false;
935     }
936 
937     // Got a copy. Verify that it's the same as the register we want.
938     Register CopyRHS = RegDef->getOperand(1).getReg();
939     if (CopyRHS != PhysReg) {
940       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
941                            "VReg, cannot tail call.\n");
942       return false;
943     }
944   }
945 
946   return true;
947 }
948 
949 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
950                                      MachineFunction &MF,
951                                      SmallVectorImpl<ArgInfo> &InArgs,
952                                      CCAssignFn &CalleeAssignFnFixed,
953                                      CCAssignFn &CalleeAssignFnVarArg,
954                                      CCAssignFn &CallerAssignFnFixed,
955                                      CCAssignFn &CallerAssignFnVarArg) const {
956   const Function &F = MF.getFunction();
957   CallingConv::ID CalleeCC = Info.CallConv;
958   CallingConv::ID CallerCC = F.getCallingConv();
959 
960   if (CallerCC == CalleeCC)
961     return true;
962 
963   SmallVector<CCValAssign, 16> ArgLocs1;
964   CCState CCInfo1(CalleeCC, false, MF, ArgLocs1, F.getContext());
965   if (!analyzeArgInfo(CCInfo1, InArgs, CalleeAssignFnFixed,
966                       CalleeAssignFnVarArg))
967     return false;
968 
969   SmallVector<CCValAssign, 16> ArgLocs2;
970   CCState CCInfo2(CallerCC, false, MF, ArgLocs2, F.getContext());
971   if (!analyzeArgInfo(CCInfo2, InArgs, CallerAssignFnFixed,
972                       CalleeAssignFnVarArg))
973     return false;
974 
975   // We need the argument locations to match up exactly. If there's more in
976   // one than the other, then we are done.
977   if (ArgLocs1.size() != ArgLocs2.size())
978     return false;
979 
980   // Make sure that each location is passed in exactly the same way.
981   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
982     const CCValAssign &Loc1 = ArgLocs1[i];
983     const CCValAssign &Loc2 = ArgLocs2[i];
984 
985     // We need both of them to be the same. So if one is a register and one
986     // isn't, we're done.
987     if (Loc1.isRegLoc() != Loc2.isRegLoc())
988       return false;
989 
990     if (Loc1.isRegLoc()) {
991       // If they don't have the same register location, we're done.
992       if (Loc1.getLocReg() != Loc2.getLocReg())
993         return false;
994 
995       // They matched, so we can move to the next ArgLoc.
996       continue;
997     }
998 
999     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1000     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1001       return false;
1002   }
1003 
1004   return true;
1005 }
1006 
1007 uint64_t CallLowering::ValueHandler::getStackValueStoreSize(
1008     const CCValAssign &VA) const {
1009   const EVT ValVT = VA.getValVT();
1010   if (ValVT != MVT::iPTR)
1011     return ValVT.getStoreSize();
1012 
1013   const DataLayout &DL = MIRBuilder.getDataLayout();
1014 
1015   /// FIXME: We need to get the correct pointer address space.
1016   return DL.getPointerSize();
1017 }
1018 
1019 void CallLowering::ValueHandler::copyArgumentMemory(
1020     const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1021     const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1022     const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1023     CCValAssign &VA) const {
1024   MachineFunction &MF = MIRBuilder.getMF();
1025   MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1026       SrcPtrInfo,
1027       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1028       SrcAlign);
1029 
1030   MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1031       DstPtrInfo,
1032       MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1033       MemSize, DstAlign);
1034 
1035   const LLT PtrTy = MRI.getType(DstPtr);
1036   const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1037 
1038   auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1039   MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1040 }
1041 
1042 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1043                                                     CCValAssign &VA,
1044                                                     unsigned MaxSizeBits) {
1045   LLT LocTy{VA.getLocVT()};
1046   LLT ValTy{VA.getValVT()};
1047 
1048   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1049     return ValReg;
1050 
1051   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1052     if (MaxSizeBits <= ValTy.getSizeInBits())
1053       return ValReg;
1054     LocTy = LLT::scalar(MaxSizeBits);
1055   }
1056 
1057   switch (VA.getLocInfo()) {
1058   default: break;
1059   case CCValAssign::Full:
1060   case CCValAssign::BCvt:
1061     // FIXME: bitconverting between vector types may or may not be a
1062     // nop in big-endian situations.
1063     return ValReg;
1064   case CCValAssign::AExt: {
1065     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1066     return MIB.getReg(0);
1067   }
1068   case CCValAssign::SExt: {
1069     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1070     MIRBuilder.buildSExt(NewReg, ValReg);
1071     return NewReg;
1072   }
1073   case CCValAssign::ZExt: {
1074     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1075     MIRBuilder.buildZExt(NewReg, ValReg);
1076     return NewReg;
1077   }
1078   }
1079   llvm_unreachable("unable to extend register");
1080 }
1081 
1082 void CallLowering::ValueHandler::anchor() {}
1083 
1084 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA,
1085                                                                 Register SrcReg,
1086                                                                 LLT NarrowTy) {
1087   switch (VA.getLocInfo()) {
1088   case CCValAssign::LocInfo::ZExt: {
1089     return MIRBuilder
1090         .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1091                          NarrowTy.getScalarSizeInBits())
1092         .getReg(0);
1093   }
1094   case CCValAssign::LocInfo::SExt: {
1095     return MIRBuilder
1096         .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1097                          NarrowTy.getScalarSizeInBits())
1098         .getReg(0);
1099     break;
1100   }
1101   default:
1102     return SrcReg;
1103   }
1104 }
1105 
1106 /// Check if we can use a basic COPY instruction between the two types.
1107 ///
1108 /// We're currently building on top of the infrastructure using MVT, which loses
1109 /// pointer information in the CCValAssign. We accept copies from physical
1110 /// registers that have been reported as integers if it's to an equivalent sized
1111 /// pointer LLT.
1112 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1113   if (SrcTy == DstTy)
1114     return true;
1115 
1116   if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1117     return false;
1118 
1119   SrcTy = SrcTy.getScalarType();
1120   DstTy = DstTy.getScalarType();
1121 
1122   return (SrcTy.isPointer() && DstTy.isScalar()) ||
1123          (DstTy.isScalar() && SrcTy.isPointer());
1124 }
1125 
1126 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg,
1127                                                           Register PhysReg,
1128                                                           CCValAssign &VA) {
1129   const MVT LocVT = VA.getLocVT();
1130   const LLT LocTy(LocVT);
1131   const LLT RegTy = MRI.getType(ValVReg);
1132 
1133   if (isCopyCompatibleType(RegTy, LocTy)) {
1134     MIRBuilder.buildCopy(ValVReg, PhysReg);
1135     return;
1136   }
1137 
1138   auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1139   auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1140   MIRBuilder.buildTrunc(ValVReg, Hint);
1141 }
1142