1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
15 #include "llvm/CodeGen/Analysis.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/GlobalISel/Utils.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineOperand.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Target/TargetMachine.h"
27
28 #define DEBUG_TYPE "call-lowering"
29
30 using namespace llvm;
31
anchor()32 void CallLowering::anchor() {}
33
34 /// Helper function which updates \p Flags when \p AttrFn returns true.
35 static void
addFlagsUsingAttrFn(ISD::ArgFlagsTy & Flags,const std::function<bool (Attribute::AttrKind)> & AttrFn)36 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
37 const std::function<bool(Attribute::AttrKind)> &AttrFn) {
38 if (AttrFn(Attribute::SExt))
39 Flags.setSExt();
40 if (AttrFn(Attribute::ZExt))
41 Flags.setZExt();
42 if (AttrFn(Attribute::InReg))
43 Flags.setInReg();
44 if (AttrFn(Attribute::StructRet))
45 Flags.setSRet();
46 if (AttrFn(Attribute::Nest))
47 Flags.setNest();
48 if (AttrFn(Attribute::ByVal))
49 Flags.setByVal();
50 if (AttrFn(Attribute::Preallocated))
51 Flags.setPreallocated();
52 if (AttrFn(Attribute::InAlloca))
53 Flags.setInAlloca();
54 if (AttrFn(Attribute::Returned))
55 Flags.setReturned();
56 if (AttrFn(Attribute::SwiftSelf))
57 Flags.setSwiftSelf();
58 if (AttrFn(Attribute::SwiftAsync))
59 Flags.setSwiftAsync();
60 if (AttrFn(Attribute::SwiftError))
61 Flags.setSwiftError();
62 }
63
getAttributesForArgIdx(const CallBase & Call,unsigned ArgIdx) const64 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
65 unsigned ArgIdx) const {
66 ISD::ArgFlagsTy Flags;
67 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
68 return Call.paramHasAttr(ArgIdx, Attr);
69 });
70 return Flags;
71 }
72
addArgFlagsFromAttributes(ISD::ArgFlagsTy & Flags,const AttributeList & Attrs,unsigned OpIdx) const73 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
74 const AttributeList &Attrs,
75 unsigned OpIdx) const {
76 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
77 return Attrs.hasAttributeAtIndex(OpIdx, Attr);
78 });
79 }
80
lowerCall(MachineIRBuilder & MIRBuilder,const CallBase & CB,ArrayRef<Register> ResRegs,ArrayRef<ArrayRef<Register>> ArgRegs,Register SwiftErrorVReg,std::function<unsigned ()> GetCalleeReg) const81 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
82 ArrayRef<Register> ResRegs,
83 ArrayRef<ArrayRef<Register>> ArgRegs,
84 Register SwiftErrorVReg,
85 std::function<unsigned()> GetCalleeReg) const {
86 CallLoweringInfo Info;
87 const DataLayout &DL = MIRBuilder.getDataLayout();
88 MachineFunction &MF = MIRBuilder.getMF();
89 MachineRegisterInfo &MRI = MF.getRegInfo();
90 bool CanBeTailCalled = CB.isTailCall() &&
91 isInTailCallPosition(CB, MF.getTarget()) &&
92 (MF.getFunction()
93 .getFnAttribute("disable-tail-calls")
94 .getValueAsString() != "true");
95
96 CallingConv::ID CallConv = CB.getCallingConv();
97 Type *RetTy = CB.getType();
98 bool IsVarArg = CB.getFunctionType()->isVarArg();
99
100 SmallVector<BaseArgInfo, 4> SplitArgs;
101 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
102 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
103
104 if (!Info.CanLowerReturn) {
105 // Callee requires sret demotion.
106 insertSRetOutgoingArgument(MIRBuilder, CB, Info);
107
108 // The sret demotion isn't compatible with tail-calls, since the sret
109 // argument points into the caller's stack frame.
110 CanBeTailCalled = false;
111 }
112
113
114 // First step is to marshall all the function's parameters into the correct
115 // physregs and memory locations. Gather the sequence of argument types that
116 // we'll pass to the assigner function.
117 unsigned i = 0;
118 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
119 for (const auto &Arg : CB.args()) {
120 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
121 i < NumFixedArgs};
122 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
123
124 // If we have an explicit sret argument that is an Instruction, (i.e., it
125 // might point to function-local memory), we can't meaningfully tail-call.
126 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
127 CanBeTailCalled = false;
128
129 Info.OrigArgs.push_back(OrigArg);
130 ++i;
131 }
132
133 // Try looking through a bitcast from one function type to another.
134 // Commonly happens with calls to objc_msgSend().
135 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
136 if (const Function *F = dyn_cast<Function>(CalleeV))
137 Info.Callee = MachineOperand::CreateGA(F, 0);
138 else
139 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
140
141 Register ReturnHintAlignReg;
142 Align ReturnHintAlign;
143
144 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}};
145
146 if (!Info.OrigRet.Ty->isVoidTy()) {
147 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
148
149 if (MaybeAlign Alignment = CB.getRetAlign()) {
150 if (*Alignment > Align(1)) {
151 ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]);
152 Info.OrigRet.Regs[0] = ReturnHintAlignReg;
153 ReturnHintAlign = *Alignment;
154 }
155 }
156 }
157
158 Info.CB = &CB;
159 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
160 Info.CallConv = CallConv;
161 Info.SwiftErrorVReg = SwiftErrorVReg;
162 Info.IsMustTailCall = CB.isMustTailCall();
163 Info.IsTailCall = CanBeTailCalled;
164 Info.IsVarArg = IsVarArg;
165 if (!lowerCall(MIRBuilder, Info))
166 return false;
167
168 if (ReturnHintAlignReg && !Info.IsTailCall) {
169 MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg,
170 ReturnHintAlign);
171 }
172
173 return true;
174 }
175
176 template <typename FuncInfoTy>
setArgFlags(CallLowering::ArgInfo & Arg,unsigned OpIdx,const DataLayout & DL,const FuncInfoTy & FuncInfo) const177 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
178 const DataLayout &DL,
179 const FuncInfoTy &FuncInfo) const {
180 auto &Flags = Arg.Flags[0];
181 const AttributeList &Attrs = FuncInfo.getAttributes();
182 addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
183
184 PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
185 if (PtrTy) {
186 Flags.setPointer();
187 Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
188 }
189
190 Align MemAlign = DL.getABITypeAlign(Arg.Ty);
191 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
192 assert(OpIdx >= AttributeList::FirstArgIndex);
193 unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
194
195 Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
196 if (!ElementTy)
197 ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
198 if (!ElementTy)
199 ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
200 assert(ElementTy && "Must have byval, inalloca or preallocated type");
201 Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
202
203 // For ByVal, alignment should be passed from FE. BE will guess if
204 // this info is not there but there are cases it cannot get right.
205 if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
206 MemAlign = *ParamAlign;
207 else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
208 MemAlign = *ParamAlign;
209 else
210 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
211 } else if (OpIdx >= AttributeList::FirstArgIndex) {
212 if (auto ParamAlign =
213 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
214 MemAlign = *ParamAlign;
215 }
216 Flags.setMemAlign(MemAlign);
217 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
218
219 // Don't try to use the returned attribute if the argument is marked as
220 // swiftself, since it won't be passed in x0.
221 if (Flags.isSwiftSelf())
222 Flags.setReturned(false);
223 }
224
225 template void
226 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
227 const DataLayout &DL,
228 const Function &FuncInfo) const;
229
230 template void
231 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
232 const DataLayout &DL,
233 const CallBase &FuncInfo) const;
234
splitToValueTypes(const ArgInfo & OrigArg,SmallVectorImpl<ArgInfo> & SplitArgs,const DataLayout & DL,CallingConv::ID CallConv,SmallVectorImpl<uint64_t> * Offsets) const235 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
236 SmallVectorImpl<ArgInfo> &SplitArgs,
237 const DataLayout &DL,
238 CallingConv::ID CallConv,
239 SmallVectorImpl<uint64_t> *Offsets) const {
240 LLVMContext &Ctx = OrigArg.Ty->getContext();
241
242 SmallVector<EVT, 4> SplitVTs;
243 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
244
245 if (SplitVTs.size() == 0)
246 return;
247
248 if (SplitVTs.size() == 1) {
249 // No splitting to do, but we want to replace the original type (e.g. [1 x
250 // double] -> double).
251 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
252 OrigArg.OrigArgIndex, OrigArg.Flags[0],
253 OrigArg.IsFixed, OrigArg.OrigValue);
254 return;
255 }
256
257 // Create one ArgInfo for each virtual register in the original ArgInfo.
258 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
259
260 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
261 OrigArg.Ty, CallConv, false, DL);
262 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
263 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
264 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
265 OrigArg.Flags[0], OrigArg.IsFixed);
266 if (NeedsRegBlock)
267 SplitArgs.back().Flags[0].setInConsecutiveRegs();
268 }
269
270 SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
271 }
272
273 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
274 static MachineInstrBuilder
mergeVectorRegsToResultRegs(MachineIRBuilder & B,ArrayRef<Register> DstRegs,ArrayRef<Register> SrcRegs)275 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
276 ArrayRef<Register> SrcRegs) {
277 MachineRegisterInfo &MRI = *B.getMRI();
278 LLT LLTy = MRI.getType(DstRegs[0]);
279 LLT PartLLT = MRI.getType(SrcRegs[0]);
280
281 // Deal with v3s16 split into v2s16
282 LLT LCMTy = getCoverTy(LLTy, PartLLT);
283 if (LCMTy == LLTy) {
284 // Common case where no padding is needed.
285 assert(DstRegs.size() == 1);
286 return B.buildConcatVectors(DstRegs[0], SrcRegs);
287 }
288
289 // We need to create an unmerge to the result registers, which may require
290 // widening the original value.
291 Register UnmergeSrcReg;
292 if (LCMTy != PartLLT) {
293 assert(DstRegs.size() == 1);
294 return B.buildDeleteTrailingVectorElements(DstRegs[0],
295 B.buildMerge(LCMTy, SrcRegs));
296 } else {
297 // We don't need to widen anything if we're extracting a scalar which was
298 // promoted to a vector e.g. s8 -> v4s8 -> s8
299 assert(SrcRegs.size() == 1);
300 UnmergeSrcReg = SrcRegs[0];
301 }
302
303 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
304
305 SmallVector<Register, 8> PadDstRegs(NumDst);
306 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
307
308 // Create the excess dead defs for the unmerge.
309 for (int I = DstRegs.size(); I != NumDst; ++I)
310 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
311
312 if (PadDstRegs.size() == 1)
313 return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
314 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
315 }
316
317 /// Create a sequence of instructions to combine pieces split into register
318 /// typed values to the original IR value. \p OrigRegs contains the destination
319 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
320 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
buildCopyFromRegs(MachineIRBuilder & B,ArrayRef<Register> OrigRegs,ArrayRef<Register> Regs,LLT LLTy,LLT PartLLT,const ISD::ArgFlagsTy Flags)321 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
322 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
323 const ISD::ArgFlagsTy Flags) {
324 MachineRegisterInfo &MRI = *B.getMRI();
325
326 if (PartLLT == LLTy) {
327 // We should have avoided introducing a new virtual register, and just
328 // directly assigned here.
329 assert(OrigRegs[0] == Regs[0]);
330 return;
331 }
332
333 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
334 Regs.size() == 1) {
335 B.buildBitcast(OrigRegs[0], Regs[0]);
336 return;
337 }
338
339 // A vector PartLLT needs extending to LLTy's element size.
340 // E.g. <2 x s64> = G_SEXT <2 x s32>.
341 if (PartLLT.isVector() == LLTy.isVector() &&
342 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
343 (!PartLLT.isVector() ||
344 PartLLT.getNumElements() == LLTy.getNumElements()) &&
345 OrigRegs.size() == 1 && Regs.size() == 1) {
346 Register SrcReg = Regs[0];
347
348 LLT LocTy = MRI.getType(SrcReg);
349
350 if (Flags.isSExt()) {
351 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
352 .getReg(0);
353 } else if (Flags.isZExt()) {
354 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
355 .getReg(0);
356 }
357
358 // Sometimes pointers are passed zero extended.
359 LLT OrigTy = MRI.getType(OrigRegs[0]);
360 if (OrigTy.isPointer()) {
361 LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
362 B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
363 return;
364 }
365
366 B.buildTrunc(OrigRegs[0], SrcReg);
367 return;
368 }
369
370 if (!LLTy.isVector() && !PartLLT.isVector()) {
371 assert(OrigRegs.size() == 1);
372 LLT OrigTy = MRI.getType(OrigRegs[0]);
373
374 unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size();
375 if (SrcSize == OrigTy.getSizeInBits())
376 B.buildMerge(OrigRegs[0], Regs);
377 else {
378 auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
379 B.buildTrunc(OrigRegs[0], Widened);
380 }
381
382 return;
383 }
384
385 if (PartLLT.isVector()) {
386 assert(OrigRegs.size() == 1);
387 SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
388
389 // If PartLLT is a mismatched vector in both number of elements and element
390 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
391 // have the same elt type, i.e. v4s32.
392 if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() &&
393 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
394 Regs.size() == 1) {
395 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
396 .changeElementCount(PartLLT.getElementCount() * 2);
397 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
398 PartLLT = NewTy;
399 }
400
401 if (LLTy.getScalarType() == PartLLT.getElementType()) {
402 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
403 } else {
404 unsigned I = 0;
405 LLT GCDTy = getGCDType(LLTy, PartLLT);
406
407 // We are both splitting a vector, and bitcasting its element types. Cast
408 // the source pieces into the appropriate number of pieces with the result
409 // element type.
410 for (Register SrcReg : CastRegs)
411 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
412 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
413 }
414
415 return;
416 }
417
418 assert(LLTy.isVector() && !PartLLT.isVector());
419
420 LLT DstEltTy = LLTy.getElementType();
421
422 // Pointer information was discarded. We'll need to coerce some register types
423 // to avoid violating type constraints.
424 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
425
426 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
427
428 if (DstEltTy == PartLLT) {
429 // Vector was trivially scalarized.
430
431 if (RealDstEltTy.isPointer()) {
432 for (Register Reg : Regs)
433 MRI.setType(Reg, RealDstEltTy);
434 }
435
436 B.buildBuildVector(OrigRegs[0], Regs);
437 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
438 // Deal with vector with 64-bit elements decomposed to 32-bit
439 // registers. Need to create intermediate 64-bit elements.
440 SmallVector<Register, 8> EltMerges;
441 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
442
443 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
444
445 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
446 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
447 // Fix the type in case this is really a vector of pointers.
448 MRI.setType(Merge.getReg(0), RealDstEltTy);
449 EltMerges.push_back(Merge.getReg(0));
450 Regs = Regs.drop_front(PartsPerElt);
451 }
452
453 B.buildBuildVector(OrigRegs[0], EltMerges);
454 } else {
455 // Vector was split, and elements promoted to a wider type.
456 // FIXME: Should handle floating point promotions.
457 LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT);
458 auto BV = B.buildBuildVector(BVType, Regs);
459 B.buildTrunc(OrigRegs[0], BV);
460 }
461 }
462
463 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
464 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
465 /// contain the type of scalar value extension if necessary.
466 ///
467 /// This is used for outgoing values (vregs to physregs)
buildCopyToRegs(MachineIRBuilder & B,ArrayRef<Register> DstRegs,Register SrcReg,LLT SrcTy,LLT PartTy,unsigned ExtendOp=TargetOpcode::G_ANYEXT)468 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
469 Register SrcReg, LLT SrcTy, LLT PartTy,
470 unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
471 // We could just insert a regular copy, but this is unreachable at the moment.
472 assert(SrcTy != PartTy && "identical part types shouldn't reach here");
473
474 const unsigned PartSize = PartTy.getSizeInBits();
475
476 if (PartTy.isVector() == SrcTy.isVector() &&
477 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
478 assert(DstRegs.size() == 1);
479 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
480 return;
481 }
482
483 if (SrcTy.isVector() && !PartTy.isVector() &&
484 PartSize > SrcTy.getElementType().getSizeInBits()) {
485 // Vector was scalarized, and the elements extended.
486 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
487 for (int i = 0, e = DstRegs.size(); i != e; ++i)
488 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
489 return;
490 }
491
492 LLT GCDTy = getGCDType(SrcTy, PartTy);
493 if (GCDTy == PartTy) {
494 // If this already evenly divisible, we can create a simple unmerge.
495 B.buildUnmerge(DstRegs, SrcReg);
496 return;
497 }
498
499 MachineRegisterInfo &MRI = *B.getMRI();
500 LLT DstTy = MRI.getType(DstRegs[0]);
501 LLT LCMTy = getCoverTy(SrcTy, PartTy);
502
503 if (PartTy.isVector() && LCMTy == PartTy) {
504 assert(DstRegs.size() == 1);
505 B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg);
506 return;
507 }
508
509 const unsigned DstSize = DstTy.getSizeInBits();
510 const unsigned SrcSize = SrcTy.getSizeInBits();
511 unsigned CoveringSize = LCMTy.getSizeInBits();
512
513 Register UnmergeSrc = SrcReg;
514
515 if (!LCMTy.isVector() && CoveringSize != SrcSize) {
516 // For scalars, it's common to be able to use a simple extension.
517 if (SrcTy.isScalar() && DstTy.isScalar()) {
518 CoveringSize = alignTo(SrcSize, DstSize);
519 LLT CoverTy = LLT::scalar(CoveringSize);
520 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
521 } else {
522 // Widen to the common type.
523 // FIXME: This should respect the extend type
524 Register Undef = B.buildUndef(SrcTy).getReg(0);
525 SmallVector<Register, 8> MergeParts(1, SrcReg);
526 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
527 MergeParts.push_back(Undef);
528 UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
529 }
530 }
531
532 if (LCMTy.isVector() && CoveringSize != SrcSize)
533 UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
534
535 B.buildUnmerge(DstRegs, UnmergeSrc);
536 }
537
determineAndHandleAssignments(ValueHandler & Handler,ValueAssigner & Assigner,SmallVectorImpl<ArgInfo> & Args,MachineIRBuilder & MIRBuilder,CallingConv::ID CallConv,bool IsVarArg,ArrayRef<Register> ThisReturnRegs) const538 bool CallLowering::determineAndHandleAssignments(
539 ValueHandler &Handler, ValueAssigner &Assigner,
540 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
541 CallingConv::ID CallConv, bool IsVarArg,
542 ArrayRef<Register> ThisReturnRegs) const {
543 MachineFunction &MF = MIRBuilder.getMF();
544 const Function &F = MF.getFunction();
545 SmallVector<CCValAssign, 16> ArgLocs;
546
547 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
548 if (!determineAssignments(Assigner, Args, CCInfo))
549 return false;
550
551 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
552 ThisReturnRegs);
553 }
554
extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags)555 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
556 if (Flags.isSExt())
557 return TargetOpcode::G_SEXT;
558 if (Flags.isZExt())
559 return TargetOpcode::G_ZEXT;
560 return TargetOpcode::G_ANYEXT;
561 }
562
determineAssignments(ValueAssigner & Assigner,SmallVectorImpl<ArgInfo> & Args,CCState & CCInfo) const563 bool CallLowering::determineAssignments(ValueAssigner &Assigner,
564 SmallVectorImpl<ArgInfo> &Args,
565 CCState &CCInfo) const {
566 LLVMContext &Ctx = CCInfo.getContext();
567 const CallingConv::ID CallConv = CCInfo.getCallingConv();
568
569 unsigned NumArgs = Args.size();
570 for (unsigned i = 0; i != NumArgs; ++i) {
571 EVT CurVT = EVT::getEVT(Args[i].Ty);
572
573 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
574
575 // If we need to split the type over multiple regs, check it's a scenario
576 // we currently support.
577 unsigned NumParts =
578 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
579
580 if (NumParts == 1) {
581 // Try to use the register type if we couldn't assign the VT.
582 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
583 Args[i].Flags[0], CCInfo))
584 return false;
585 continue;
586 }
587
588 // For incoming arguments (physregs to vregs), we could have values in
589 // physregs (or memlocs) which we want to extract and copy to vregs.
590 // During this, we might have to deal with the LLT being split across
591 // multiple regs, so we have to record this information for later.
592 //
593 // If we have outgoing args, then we have the opposite case. We have a
594 // vreg with an LLT which we want to assign to a physical location, and
595 // we might have to record that the value has to be split later.
596
597 // We're handling an incoming arg which is split over multiple regs.
598 // E.g. passing an s128 on AArch64.
599 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
600 Args[i].Flags.clear();
601
602 for (unsigned Part = 0; Part < NumParts; ++Part) {
603 ISD::ArgFlagsTy Flags = OrigFlags;
604 if (Part == 0) {
605 Flags.setSplit();
606 } else {
607 Flags.setOrigAlign(Align(1));
608 if (Part == NumParts - 1)
609 Flags.setSplitEnd();
610 }
611
612 Args[i].Flags.push_back(Flags);
613 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
614 Args[i].Flags[Part], CCInfo)) {
615 // Still couldn't assign this smaller part type for some reason.
616 return false;
617 }
618 }
619 }
620
621 return true;
622 }
623
handleAssignments(ValueHandler & Handler,SmallVectorImpl<ArgInfo> & Args,CCState & CCInfo,SmallVectorImpl<CCValAssign> & ArgLocs,MachineIRBuilder & MIRBuilder,ArrayRef<Register> ThisReturnRegs) const624 bool CallLowering::handleAssignments(ValueHandler &Handler,
625 SmallVectorImpl<ArgInfo> &Args,
626 CCState &CCInfo,
627 SmallVectorImpl<CCValAssign> &ArgLocs,
628 MachineIRBuilder &MIRBuilder,
629 ArrayRef<Register> ThisReturnRegs) const {
630 MachineFunction &MF = MIRBuilder.getMF();
631 MachineRegisterInfo &MRI = MF.getRegInfo();
632 const Function &F = MF.getFunction();
633 const DataLayout &DL = F.getParent()->getDataLayout();
634
635 const unsigned NumArgs = Args.size();
636
637 // Stores thunks for outgoing register assignments. This is used so we delay
638 // generating register copies until mem loc assignments are done. We do this
639 // so that if the target is using the delayed stack protector feature, we can
640 // find the split point of the block accurately. E.g. if we have:
641 // G_STORE %val, %memloc
642 // $x0 = COPY %foo
643 // $x1 = COPY %bar
644 // CALL func
645 // ... then the split point for the block will correctly be at, and including,
646 // the copy to $x0. If instead the G_STORE instruction immediately precedes
647 // the CALL, then we'd prematurely choose the CALL as the split point, thus
648 // generating a split block with a CALL that uses undefined physregs.
649 SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
650
651 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
652 assert(j < ArgLocs.size() && "Skipped too many arg locs");
653 CCValAssign &VA = ArgLocs[j];
654 assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
655
656 if (VA.needsCustom()) {
657 std::function<void()> Thunk;
658 unsigned NumArgRegs = Handler.assignCustomValue(
659 Args[i], makeArrayRef(ArgLocs).slice(j), &Thunk);
660 if (Thunk)
661 DelayedOutgoingRegAssignments.emplace_back(Thunk);
662 if (!NumArgRegs)
663 return false;
664 j += NumArgRegs;
665 continue;
666 }
667
668 const MVT ValVT = VA.getValVT();
669 const MVT LocVT = VA.getLocVT();
670
671 const LLT LocTy(LocVT);
672 const LLT ValTy(ValVT);
673 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
674 const EVT OrigVT = EVT::getEVT(Args[i].Ty);
675 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
676
677 // Expected to be multiple regs for a single incoming arg.
678 // There should be Regs.size() ArgLocs per argument.
679 // This should be the same as getNumRegistersForCallingConv
680 const unsigned NumParts = Args[i].Flags.size();
681
682 // Now split the registers into the assigned types.
683 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
684
685 if (NumParts != 1 || NewLLT != OrigTy) {
686 // If we can't directly assign the register, we need one or more
687 // intermediate values.
688 Args[i].Regs.resize(NumParts);
689
690 // For each split register, create and assign a vreg that will store
691 // the incoming component of the larger value. These will later be
692 // merged to form the final vreg.
693 for (unsigned Part = 0; Part < NumParts; ++Part)
694 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
695 }
696
697 assert((j + (NumParts - 1)) < ArgLocs.size() &&
698 "Too many regs for number of args");
699
700 // Coerce into outgoing value types before register assignment.
701 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
702 assert(Args[i].OrigRegs.size() == 1);
703 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
704 ValTy, extendOpFromFlags(Args[i].Flags[0]));
705 }
706
707 bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL);
708 for (unsigned Part = 0; Part < NumParts; ++Part) {
709 Register ArgReg = Args[i].Regs[Part];
710 // There should be Regs.size() ArgLocs per argument.
711 unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part;
712 CCValAssign &VA = ArgLocs[j + Idx];
713 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
714
715 if (VA.isMemLoc() && !Flags.isByVal()) {
716 // Individual pieces may have been spilled to the stack and others
717 // passed in registers.
718
719 // TODO: The memory size may be larger than the value we need to
720 // store. We may need to adjust the offset for big endian targets.
721 LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
722
723 MachinePointerInfo MPO;
724 Register StackAddr = Handler.getStackAddress(
725 MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags);
726
727 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
728 continue;
729 }
730
731 if (VA.isMemLoc() && Flags.isByVal()) {
732 assert(Args[i].Regs.size() == 1 &&
733 "didn't expect split byval pointer");
734
735 if (Handler.isIncomingArgumentHandler()) {
736 // We just need to copy the frame index value to the pointer.
737 MachinePointerInfo MPO;
738 Register StackAddr = Handler.getStackAddress(
739 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
740 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
741 } else {
742 // For outgoing byval arguments, insert the implicit copy byval
743 // implies, such that writes in the callee do not modify the caller's
744 // value.
745 uint64_t MemSize = Flags.getByValSize();
746 int64_t Offset = VA.getLocMemOffset();
747
748 MachinePointerInfo DstMPO;
749 Register StackAddr =
750 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
751
752 MachinePointerInfo SrcMPO(Args[i].OrigValue);
753 if (!Args[i].OrigValue) {
754 // We still need to accurately track the stack address space if we
755 // don't know the underlying value.
756 const LLT PtrTy = MRI.getType(StackAddr);
757 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
758 }
759
760 Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
761 inferAlignFromPtrInfo(MF, DstMPO));
762
763 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
764 inferAlignFromPtrInfo(MF, SrcMPO));
765
766 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
767 DstMPO, DstAlign, SrcMPO, SrcAlign,
768 MemSize, VA);
769 }
770 continue;
771 }
772
773 assert(!VA.needsCustom() && "custom loc should have been handled already");
774
775 if (i == 0 && !ThisReturnRegs.empty() &&
776 Handler.isIncomingArgumentHandler() &&
777 isTypeIsValidForThisReturn(ValVT)) {
778 Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA);
779 continue;
780 }
781
782 if (Handler.isIncomingArgumentHandler())
783 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
784 else {
785 DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
786 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
787 });
788 }
789 }
790
791 // Now that all pieces have been assigned, re-pack the register typed values
792 // into the original value typed registers.
793 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
794 // Merge the split registers into the expected larger result vregs of
795 // the original call.
796 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
797 LocTy, Args[i].Flags[0]);
798 }
799
800 j += NumParts - 1;
801 }
802 for (auto &Fn : DelayedOutgoingRegAssignments)
803 Fn();
804
805 return true;
806 }
807
insertSRetLoads(MachineIRBuilder & MIRBuilder,Type * RetTy,ArrayRef<Register> VRegs,Register DemoteReg,int FI) const808 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
809 ArrayRef<Register> VRegs, Register DemoteReg,
810 int FI) const {
811 MachineFunction &MF = MIRBuilder.getMF();
812 MachineRegisterInfo &MRI = MF.getRegInfo();
813 const DataLayout &DL = MF.getDataLayout();
814
815 SmallVector<EVT, 4> SplitVTs;
816 SmallVector<uint64_t, 4> Offsets;
817 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
818
819 assert(VRegs.size() == SplitVTs.size());
820
821 unsigned NumValues = SplitVTs.size();
822 Align BaseAlign = DL.getPrefTypeAlign(RetTy);
823 Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
824 LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
825
826 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
827
828 for (unsigned I = 0; I < NumValues; ++I) {
829 Register Addr;
830 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
831 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
832 MRI.getType(VRegs[I]),
833 commonAlignment(BaseAlign, Offsets[I]));
834 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
835 }
836 }
837
insertSRetStores(MachineIRBuilder & MIRBuilder,Type * RetTy,ArrayRef<Register> VRegs,Register DemoteReg) const838 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
839 ArrayRef<Register> VRegs,
840 Register DemoteReg) const {
841 MachineFunction &MF = MIRBuilder.getMF();
842 MachineRegisterInfo &MRI = MF.getRegInfo();
843 const DataLayout &DL = MF.getDataLayout();
844
845 SmallVector<EVT, 4> SplitVTs;
846 SmallVector<uint64_t, 4> Offsets;
847 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
848
849 assert(VRegs.size() == SplitVTs.size());
850
851 unsigned NumValues = SplitVTs.size();
852 Align BaseAlign = DL.getPrefTypeAlign(RetTy);
853 unsigned AS = DL.getAllocaAddrSpace();
854 LLT OffsetLLTy =
855 getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
856
857 MachinePointerInfo PtrInfo(AS);
858
859 for (unsigned I = 0; I < NumValues; ++I) {
860 Register Addr;
861 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
862 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
863 MRI.getType(VRegs[I]),
864 commonAlignment(BaseAlign, Offsets[I]));
865 MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
866 }
867 }
868
insertSRetIncomingArgument(const Function & F,SmallVectorImpl<ArgInfo> & SplitArgs,Register & DemoteReg,MachineRegisterInfo & MRI,const DataLayout & DL) const869 void CallLowering::insertSRetIncomingArgument(
870 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
871 MachineRegisterInfo &MRI, const DataLayout &DL) const {
872 unsigned AS = DL.getAllocaAddrSpace();
873 DemoteReg = MRI.createGenericVirtualRegister(
874 LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
875
876 Type *PtrTy = PointerType::get(F.getReturnType(), AS);
877
878 SmallVector<EVT, 1> ValueVTs;
879 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
880
881 // NOTE: Assume that a pointer won't get split into more than one VT.
882 assert(ValueVTs.size() == 1);
883
884 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
885 ArgInfo::NoArgIndex);
886 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
887 DemoteArg.Flags[0].setSRet();
888 SplitArgs.insert(SplitArgs.begin(), DemoteArg);
889 }
890
insertSRetOutgoingArgument(MachineIRBuilder & MIRBuilder,const CallBase & CB,CallLoweringInfo & Info) const891 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
892 const CallBase &CB,
893 CallLoweringInfo &Info) const {
894 const DataLayout &DL = MIRBuilder.getDataLayout();
895 Type *RetTy = CB.getType();
896 unsigned AS = DL.getAllocaAddrSpace();
897 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
898
899 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
900 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
901
902 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
903 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
904 ArgInfo::NoArgIndex);
905 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
906 DemoteArg.Flags[0].setSRet();
907
908 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
909 Info.DemoteStackIndex = FI;
910 Info.DemoteRegister = DemoteReg;
911 }
912
checkReturn(CCState & CCInfo,SmallVectorImpl<BaseArgInfo> & Outs,CCAssignFn * Fn) const913 bool CallLowering::checkReturn(CCState &CCInfo,
914 SmallVectorImpl<BaseArgInfo> &Outs,
915 CCAssignFn *Fn) const {
916 for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
917 MVT VT = MVT::getVT(Outs[I].Ty);
918 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
919 return false;
920 }
921 return true;
922 }
923
getReturnInfo(CallingConv::ID CallConv,Type * RetTy,AttributeList Attrs,SmallVectorImpl<BaseArgInfo> & Outs,const DataLayout & DL) const924 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
925 AttributeList Attrs,
926 SmallVectorImpl<BaseArgInfo> &Outs,
927 const DataLayout &DL) const {
928 LLVMContext &Context = RetTy->getContext();
929 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
930
931 SmallVector<EVT, 4> SplitVTs;
932 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
933 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
934
935 for (EVT VT : SplitVTs) {
936 unsigned NumParts =
937 TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
938 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
939 Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
940
941 for (unsigned I = 0; I < NumParts; ++I) {
942 Outs.emplace_back(PartTy, Flags);
943 }
944 }
945 }
946
checkReturnTypeForCallConv(MachineFunction & MF) const947 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
948 const auto &F = MF.getFunction();
949 Type *ReturnType = F.getReturnType();
950 CallingConv::ID CallConv = F.getCallingConv();
951
952 SmallVector<BaseArgInfo, 4> SplitArgs;
953 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
954 MF.getDataLayout());
955 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
956 }
957
parametersInCSRMatch(const MachineRegisterInfo & MRI,const uint32_t * CallerPreservedMask,const SmallVectorImpl<CCValAssign> & OutLocs,const SmallVectorImpl<ArgInfo> & OutArgs) const958 bool CallLowering::parametersInCSRMatch(
959 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
960 const SmallVectorImpl<CCValAssign> &OutLocs,
961 const SmallVectorImpl<ArgInfo> &OutArgs) const {
962 for (unsigned i = 0; i < OutLocs.size(); ++i) {
963 const auto &ArgLoc = OutLocs[i];
964 // If it's not a register, it's fine.
965 if (!ArgLoc.isRegLoc())
966 continue;
967
968 MCRegister PhysReg = ArgLoc.getLocReg();
969
970 // Only look at callee-saved registers.
971 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
972 continue;
973
974 LLVM_DEBUG(
975 dbgs()
976 << "... Call has an argument passed in a callee-saved register.\n");
977
978 // Check if it was copied from.
979 const ArgInfo &OutInfo = OutArgs[i];
980
981 if (OutInfo.Regs.size() > 1) {
982 LLVM_DEBUG(
983 dbgs() << "... Cannot handle arguments in multiple registers.\n");
984 return false;
985 }
986
987 // Check if we copy the register, walking through copies from virtual
988 // registers. Note that getDefIgnoringCopies does not ignore copies from
989 // physical registers.
990 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
991 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
992 LLVM_DEBUG(
993 dbgs()
994 << "... Parameter was not copied into a VReg, cannot tail call.\n");
995 return false;
996 }
997
998 // Got a copy. Verify that it's the same as the register we want.
999 Register CopyRHS = RegDef->getOperand(1).getReg();
1000 if (CopyRHS != PhysReg) {
1001 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
1002 "VReg, cannot tail call.\n");
1003 return false;
1004 }
1005 }
1006
1007 return true;
1008 }
1009
resultsCompatible(CallLoweringInfo & Info,MachineFunction & MF,SmallVectorImpl<ArgInfo> & InArgs,ValueAssigner & CalleeAssigner,ValueAssigner & CallerAssigner) const1010 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
1011 MachineFunction &MF,
1012 SmallVectorImpl<ArgInfo> &InArgs,
1013 ValueAssigner &CalleeAssigner,
1014 ValueAssigner &CallerAssigner) const {
1015 const Function &F = MF.getFunction();
1016 CallingConv::ID CalleeCC = Info.CallConv;
1017 CallingConv::ID CallerCC = F.getCallingConv();
1018
1019 if (CallerCC == CalleeCC)
1020 return true;
1021
1022 SmallVector<CCValAssign, 16> ArgLocs1;
1023 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
1024 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
1025 return false;
1026
1027 SmallVector<CCValAssign, 16> ArgLocs2;
1028 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
1029 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
1030 return false;
1031
1032 // We need the argument locations to match up exactly. If there's more in
1033 // one than the other, then we are done.
1034 if (ArgLocs1.size() != ArgLocs2.size())
1035 return false;
1036
1037 // Make sure that each location is passed in exactly the same way.
1038 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
1039 const CCValAssign &Loc1 = ArgLocs1[i];
1040 const CCValAssign &Loc2 = ArgLocs2[i];
1041
1042 // We need both of them to be the same. So if one is a register and one
1043 // isn't, we're done.
1044 if (Loc1.isRegLoc() != Loc2.isRegLoc())
1045 return false;
1046
1047 if (Loc1.isRegLoc()) {
1048 // If they don't have the same register location, we're done.
1049 if (Loc1.getLocReg() != Loc2.getLocReg())
1050 return false;
1051
1052 // They matched, so we can move to the next ArgLoc.
1053 continue;
1054 }
1055
1056 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1057 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1058 return false;
1059 }
1060
1061 return true;
1062 }
1063
getStackValueStoreType(const DataLayout & DL,const CCValAssign & VA,ISD::ArgFlagsTy Flags) const1064 LLT CallLowering::ValueHandler::getStackValueStoreType(
1065 const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1066 const MVT ValVT = VA.getValVT();
1067 if (ValVT != MVT::iPTR) {
1068 LLT ValTy(ValVT);
1069
1070 // We lost the pointeriness going through CCValAssign, so try to restore it
1071 // based on the flags.
1072 if (Flags.isPointer()) {
1073 LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1074 ValTy.getScalarSizeInBits());
1075 if (ValVT.isVector())
1076 return LLT::vector(ValTy.getElementCount(), PtrTy);
1077 return PtrTy;
1078 }
1079
1080 return ValTy;
1081 }
1082
1083 unsigned AddrSpace = Flags.getPointerAddrSpace();
1084 return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1085 }
1086
copyArgumentMemory(const ArgInfo & Arg,Register DstPtr,Register SrcPtr,const MachinePointerInfo & DstPtrInfo,Align DstAlign,const MachinePointerInfo & SrcPtrInfo,Align SrcAlign,uint64_t MemSize,CCValAssign & VA) const1087 void CallLowering::ValueHandler::copyArgumentMemory(
1088 const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1089 const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1090 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1091 CCValAssign &VA) const {
1092 MachineFunction &MF = MIRBuilder.getMF();
1093 MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1094 SrcPtrInfo,
1095 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1096 SrcAlign);
1097
1098 MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1099 DstPtrInfo,
1100 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1101 MemSize, DstAlign);
1102
1103 const LLT PtrTy = MRI.getType(DstPtr);
1104 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1105
1106 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1107 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1108 }
1109
extendRegister(Register ValReg,CCValAssign & VA,unsigned MaxSizeBits)1110 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1111 CCValAssign &VA,
1112 unsigned MaxSizeBits) {
1113 LLT LocTy{VA.getLocVT()};
1114 LLT ValTy{VA.getValVT()};
1115
1116 if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1117 return ValReg;
1118
1119 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1120 if (MaxSizeBits <= ValTy.getSizeInBits())
1121 return ValReg;
1122 LocTy = LLT::scalar(MaxSizeBits);
1123 }
1124
1125 const LLT ValRegTy = MRI.getType(ValReg);
1126 if (ValRegTy.isPointer()) {
1127 // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1128 // we have to cast to do the extension.
1129 LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1130 ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1131 }
1132
1133 switch (VA.getLocInfo()) {
1134 default: break;
1135 case CCValAssign::Full:
1136 case CCValAssign::BCvt:
1137 // FIXME: bitconverting between vector types may or may not be a
1138 // nop in big-endian situations.
1139 return ValReg;
1140 case CCValAssign::AExt: {
1141 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1142 return MIB.getReg(0);
1143 }
1144 case CCValAssign::SExt: {
1145 Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1146 MIRBuilder.buildSExt(NewReg, ValReg);
1147 return NewReg;
1148 }
1149 case CCValAssign::ZExt: {
1150 Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1151 MIRBuilder.buildZExt(NewReg, ValReg);
1152 return NewReg;
1153 }
1154 }
1155 llvm_unreachable("unable to extend register");
1156 }
1157
anchor()1158 void CallLowering::ValueAssigner::anchor() {}
1159
buildExtensionHint(CCValAssign & VA,Register SrcReg,LLT NarrowTy)1160 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA,
1161 Register SrcReg,
1162 LLT NarrowTy) {
1163 switch (VA.getLocInfo()) {
1164 case CCValAssign::LocInfo::ZExt: {
1165 return MIRBuilder
1166 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1167 NarrowTy.getScalarSizeInBits())
1168 .getReg(0);
1169 }
1170 case CCValAssign::LocInfo::SExt: {
1171 return MIRBuilder
1172 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1173 NarrowTy.getScalarSizeInBits())
1174 .getReg(0);
1175 break;
1176 }
1177 default:
1178 return SrcReg;
1179 }
1180 }
1181
1182 /// Check if we can use a basic COPY instruction between the two types.
1183 ///
1184 /// We're currently building on top of the infrastructure using MVT, which loses
1185 /// pointer information in the CCValAssign. We accept copies from physical
1186 /// registers that have been reported as integers if it's to an equivalent sized
1187 /// pointer LLT.
isCopyCompatibleType(LLT SrcTy,LLT DstTy)1188 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1189 if (SrcTy == DstTy)
1190 return true;
1191
1192 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1193 return false;
1194
1195 SrcTy = SrcTy.getScalarType();
1196 DstTy = DstTy.getScalarType();
1197
1198 return (SrcTy.isPointer() && DstTy.isScalar()) ||
1199 (DstTy.isScalar() && SrcTy.isPointer());
1200 }
1201
assignValueToReg(Register ValVReg,Register PhysReg,CCValAssign VA)1202 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg,
1203 Register PhysReg,
1204 CCValAssign VA) {
1205 const MVT LocVT = VA.getLocVT();
1206 const LLT LocTy(LocVT);
1207 const LLT RegTy = MRI.getType(ValVReg);
1208
1209 if (isCopyCompatibleType(RegTy, LocTy)) {
1210 MIRBuilder.buildCopy(ValVReg, PhysReg);
1211 return;
1212 }
1213
1214 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1215 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1216 MIRBuilder.buildTrunc(ValVReg, Hint);
1217 }
1218