1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
16 #include "llvm/CodeGen/GlobalISel/Utils.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/MachineOperand.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Target/TargetMachine.h"
26 
27 #define DEBUG_TYPE "call-lowering"
28 
29 using namespace llvm;
30 
31 void CallLowering::anchor() {}
32 
33 /// Helper function which updates \p Flags when \p AttrFn returns true.
34 static void
35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
36                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
37   if (AttrFn(Attribute::SExt))
38     Flags.setSExt();
39   if (AttrFn(Attribute::ZExt))
40     Flags.setZExt();
41   if (AttrFn(Attribute::InReg))
42     Flags.setInReg();
43   if (AttrFn(Attribute::StructRet))
44     Flags.setSRet();
45   if (AttrFn(Attribute::Nest))
46     Flags.setNest();
47   if (AttrFn(Attribute::ByVal))
48     Flags.setByVal();
49   if (AttrFn(Attribute::Preallocated))
50     Flags.setPreallocated();
51   if (AttrFn(Attribute::InAlloca))
52     Flags.setInAlloca();
53   if (AttrFn(Attribute::Returned))
54     Flags.setReturned();
55   if (AttrFn(Attribute::SwiftSelf))
56     Flags.setSwiftSelf();
57   if (AttrFn(Attribute::SwiftAsync))
58     Flags.setSwiftAsync();
59   if (AttrFn(Attribute::SwiftError))
60     Flags.setSwiftError();
61 }
62 
63 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
64                                                      unsigned ArgIdx) const {
65   ISD::ArgFlagsTy Flags;
66   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
67     return Call.paramHasAttr(ArgIdx, Attr);
68   });
69   return Flags;
70 }
71 
72 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
73                                              const AttributeList &Attrs,
74                                              unsigned OpIdx) const {
75   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
76     return Attrs.hasAttribute(OpIdx, Attr);
77   });
78 }
79 
80 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
81                              ArrayRef<Register> ResRegs,
82                              ArrayRef<ArrayRef<Register>> ArgRegs,
83                              Register SwiftErrorVReg,
84                              std::function<unsigned()> GetCalleeReg) const {
85   CallLoweringInfo Info;
86   const DataLayout &DL = MIRBuilder.getDataLayout();
87   MachineFunction &MF = MIRBuilder.getMF();
88   bool CanBeTailCalled = CB.isTailCall() &&
89                          isInTailCallPosition(CB, MF.getTarget()) &&
90                          (MF.getFunction()
91                               .getFnAttribute("disable-tail-calls")
92                               .getValueAsString() != "true");
93 
94   CallingConv::ID CallConv = CB.getCallingConv();
95   Type *RetTy = CB.getType();
96   bool IsVarArg = CB.getFunctionType()->isVarArg();
97 
98   SmallVector<BaseArgInfo, 4> SplitArgs;
99   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
100   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
101 
102   if (!Info.CanLowerReturn) {
103     // Callee requires sret demotion.
104     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
105 
106     // The sret demotion isn't compatible with tail-calls, since the sret
107     // argument points into the caller's stack frame.
108     CanBeTailCalled = false;
109   }
110 
111   // First step is to marshall all the function's parameters into the correct
112   // physregs and memory locations. Gather the sequence of argument types that
113   // we'll pass to the assigner function.
114   unsigned i = 0;
115   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
116   for (auto &Arg : CB.args()) {
117     ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
118                     i < NumFixedArgs};
119     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
120 
121     // If we have an explicit sret argument that is an Instruction, (i.e., it
122     // might point to function-local memory), we can't meaningfully tail-call.
123     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
124       CanBeTailCalled = false;
125 
126     Info.OrigArgs.push_back(OrigArg);
127     ++i;
128   }
129 
130   // Try looking through a bitcast from one function type to another.
131   // Commonly happens with calls to objc_msgSend().
132   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
133   if (const Function *F = dyn_cast<Function>(CalleeV))
134     Info.Callee = MachineOperand::CreateGA(F, 0);
135   else
136     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
137 
138   Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}};
139   if (!Info.OrigRet.Ty->isVoidTy())
140     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
141 
142   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
143   Info.CallConv = CallConv;
144   Info.SwiftErrorVReg = SwiftErrorVReg;
145   Info.IsMustTailCall = CB.isMustTailCall();
146   Info.IsTailCall = CanBeTailCalled;
147   Info.IsVarArg = IsVarArg;
148   return lowerCall(MIRBuilder, Info);
149 }
150 
151 template <typename FuncInfoTy>
152 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
153                                const DataLayout &DL,
154                                const FuncInfoTy &FuncInfo) const {
155   auto &Flags = Arg.Flags[0];
156   const AttributeList &Attrs = FuncInfo.getAttributes();
157   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
158 
159   PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
160   if (PtrTy) {
161     Flags.setPointer();
162     Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
163   }
164 
165   Align MemAlign = DL.getABITypeAlign(Arg.Ty);
166   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
167     assert(OpIdx >= AttributeList::FirstArgIndex);
168     Type *ElementTy = PtrTy->getElementType();
169 
170     auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType();
171     Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy));
172 
173     // For ByVal, alignment should be passed from FE.  BE will guess if
174     // this info is not there but there are cases it cannot get right.
175     if (auto ParamAlign =
176             FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
177       MemAlign = *ParamAlign;
178     else if ((ParamAlign =
179                   FuncInfo.getParamAlign(OpIdx - AttributeList::FirstArgIndex)))
180       MemAlign = *ParamAlign;
181     else
182       MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
183   } else if (OpIdx >= AttributeList::FirstArgIndex) {
184     if (auto ParamAlign =
185             FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
186       MemAlign = *ParamAlign;
187   }
188   Flags.setMemAlign(MemAlign);
189   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
190 
191   // Don't try to use the returned attribute if the argument is marked as
192   // swiftself, since it won't be passed in x0.
193   if (Flags.isSwiftSelf())
194     Flags.setReturned(false);
195 }
196 
197 template void
198 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
199                                     const DataLayout &DL,
200                                     const Function &FuncInfo) const;
201 
202 template void
203 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
204                                     const DataLayout &DL,
205                                     const CallBase &FuncInfo) const;
206 
207 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
208                                      SmallVectorImpl<ArgInfo> &SplitArgs,
209                                      const DataLayout &DL,
210                                      CallingConv::ID CallConv) const {
211   LLVMContext &Ctx = OrigArg.Ty->getContext();
212 
213   SmallVector<EVT, 4> SplitVTs;
214   SmallVector<uint64_t, 4> Offsets;
215   ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0);
216 
217   if (SplitVTs.size() == 0)
218     return;
219 
220   if (SplitVTs.size() == 1) {
221     // No splitting to do, but we want to replace the original type (e.g. [1 x
222     // double] -> double).
223     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
224                            OrigArg.OrigArgIndex, OrigArg.Flags[0],
225                            OrigArg.IsFixed, OrigArg.OrigValue);
226     return;
227   }
228 
229   // Create one ArgInfo for each virtual register in the original ArgInfo.
230   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
231 
232   bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
233       OrigArg.Ty, CallConv, false, DL);
234   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
235     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
236     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
237                            OrigArg.Flags[0], OrigArg.IsFixed);
238     if (NeedsRegBlock)
239       SplitArgs.back().Flags[0].setInConsecutiveRegs();
240   }
241 
242   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
243 }
244 
245 void CallLowering::unpackRegs(ArrayRef<Register> DstRegs, Register SrcReg,
246                               Type *PackedTy,
247                               MachineIRBuilder &MIRBuilder) const {
248   assert(DstRegs.size() > 1 && "Nothing to unpack");
249 
250   const DataLayout &DL = MIRBuilder.getDataLayout();
251 
252   SmallVector<LLT, 8> LLTs;
253   SmallVector<uint64_t, 8> Offsets;
254   computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
255   assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch");
256 
257   for (unsigned i = 0; i < DstRegs.size(); ++i)
258     MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]);
259 }
260 
261 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
262 static MachineInstrBuilder
263 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
264                             ArrayRef<Register> SrcRegs) {
265   MachineRegisterInfo &MRI = *B.getMRI();
266   LLT LLTy = MRI.getType(DstRegs[0]);
267   LLT PartLLT = MRI.getType(SrcRegs[0]);
268 
269   // Deal with v3s16 split into v2s16
270   LLT LCMTy = getLCMType(LLTy, PartLLT);
271   if (LCMTy == LLTy) {
272     // Common case where no padding is needed.
273     assert(DstRegs.size() == 1);
274     return B.buildConcatVectors(DstRegs[0], SrcRegs);
275   }
276 
277   // We need to create an unmerge to the result registers, which may require
278   // widening the original value.
279   Register UnmergeSrcReg;
280   if (LCMTy != PartLLT) {
281     // e.g. A <3 x s16> value was split to <2 x s16>
282     // %register_value0:_(<2 x s16>)
283     // %register_value1:_(<2 x s16>)
284     // %undef:_(<2 x s16>) = G_IMPLICIT_DEF
285     // %concat:_<6 x s16>) = G_CONCAT_VECTORS %reg_value0, %reg_value1, %undef
286     // %dst_reg:_(<3 x s16>), %dead:_(<3 x s16>) = G_UNMERGE_VALUES %concat
287     const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
288     Register Undef = B.buildUndef(PartLLT).getReg(0);
289 
290     // Build vector of undefs.
291     SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);
292 
293     // Replace the first sources with the real registers.
294     std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());
295     UnmergeSrcReg = B.buildConcatVectors(LCMTy, WidenedSrcs).getReg(0);
296   } else {
297     // We don't need to widen anything if we're extracting a scalar which was
298     // promoted to a vector e.g. s8 -> v4s8 -> s8
299     assert(SrcRegs.size() == 1);
300     UnmergeSrcReg = SrcRegs[0];
301   }
302 
303   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
304 
305   SmallVector<Register, 8> PadDstRegs(NumDst);
306   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
307 
308   // Create the excess dead defs for the unmerge.
309   for (int I = DstRegs.size(); I != NumDst; ++I)
310     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
311 
312   return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
313 }
314 
315 /// Create a sequence of instructions to combine pieces split into register
316 /// typed values to the original IR value. \p OrigRegs contains the destination
317 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
318 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
319 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
320                               ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
321                               const ISD::ArgFlagsTy Flags) {
322   MachineRegisterInfo &MRI = *B.getMRI();
323 
324   if (PartLLT == LLTy) {
325     // We should have avoided introducing a new virtual register, and just
326     // directly assigned here.
327     assert(OrigRegs[0] == Regs[0]);
328     return;
329   }
330 
331   if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
332       Regs.size() == 1) {
333     B.buildBitcast(OrigRegs[0], Regs[0]);
334     return;
335   }
336 
337   // A vector PartLLT needs extending to LLTy's element size.
338   // E.g. <2 x s64> = G_SEXT <2 x s32>.
339   if (PartLLT.isVector() == LLTy.isVector() &&
340       PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
341       (!PartLLT.isVector() ||
342        PartLLT.getNumElements() == LLTy.getNumElements()) &&
343       OrigRegs.size() == 1 && Regs.size() == 1) {
344     Register SrcReg = Regs[0];
345 
346     LLT LocTy = MRI.getType(SrcReg);
347 
348     if (Flags.isSExt()) {
349       SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
350                    .getReg(0);
351     } else if (Flags.isZExt()) {
352       SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
353                    .getReg(0);
354     }
355 
356     // Sometimes pointers are passed zero extended.
357     LLT OrigTy = MRI.getType(OrigRegs[0]);
358     if (OrigTy.isPointer()) {
359       LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
360       B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
361       return;
362     }
363 
364     B.buildTrunc(OrigRegs[0], SrcReg);
365     return;
366   }
367 
368   if (!LLTy.isVector() && !PartLLT.isVector()) {
369     assert(OrigRegs.size() == 1);
370     LLT OrigTy = MRI.getType(OrigRegs[0]);
371 
372     unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size();
373     if (SrcSize == OrigTy.getSizeInBits())
374       B.buildMerge(OrigRegs[0], Regs);
375     else {
376       auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
377       B.buildTrunc(OrigRegs[0], Widened);
378     }
379 
380     return;
381   }
382 
383   if (PartLLT.isVector()) {
384     assert(OrigRegs.size() == 1);
385     SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
386 
387     // If PartLLT is a mismatched vector in both number of elements and element
388     // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
389     // have the same elt type, i.e. v4s32.
390     if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() &&
391         PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
392         Regs.size() == 1) {
393       LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
394                       .changeElementCount(PartLLT.getElementCount() * 2);
395       CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
396       PartLLT = NewTy;
397     }
398 
399     if (LLTy.getScalarType() == PartLLT.getElementType()) {
400       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
401     } else {
402       unsigned I = 0;
403       LLT GCDTy = getGCDType(LLTy, PartLLT);
404 
405       // We are both splitting a vector, and bitcasting its element types. Cast
406       // the source pieces into the appropriate number of pieces with the result
407       // element type.
408       for (Register SrcReg : CastRegs)
409         CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
410       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
411     }
412 
413     return;
414   }
415 
416   assert(LLTy.isVector() && !PartLLT.isVector());
417 
418   LLT DstEltTy = LLTy.getElementType();
419 
420   // Pointer information was discarded. We'll need to coerce some register types
421   // to avoid violating type constraints.
422   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
423 
424   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
425 
426   if (DstEltTy == PartLLT) {
427     // Vector was trivially scalarized.
428 
429     if (RealDstEltTy.isPointer()) {
430       for (Register Reg : Regs)
431         MRI.setType(Reg, RealDstEltTy);
432     }
433 
434     B.buildBuildVector(OrigRegs[0], Regs);
435   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
436     // Deal with vector with 64-bit elements decomposed to 32-bit
437     // registers. Need to create intermediate 64-bit elements.
438     SmallVector<Register, 8> EltMerges;
439     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
440 
441     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
442 
443     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
444       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
445       // Fix the type in case this is really a vector of pointers.
446       MRI.setType(Merge.getReg(0), RealDstEltTy);
447       EltMerges.push_back(Merge.getReg(0));
448       Regs = Regs.drop_front(PartsPerElt);
449     }
450 
451     B.buildBuildVector(OrigRegs[0], EltMerges);
452   } else {
453     // Vector was split, and elements promoted to a wider type.
454     // FIXME: Should handle floating point promotions.
455     LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT);
456     auto BV = B.buildBuildVector(BVType, Regs);
457     B.buildTrunc(OrigRegs[0], BV);
458   }
459 }
460 
461 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
462 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
463 /// contain the type of scalar value extension if necessary.
464 ///
465 /// This is used for outgoing values (vregs to physregs)
466 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
467                             Register SrcReg, LLT SrcTy, LLT PartTy,
468                             unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
469   // We could just insert a regular copy, but this is unreachable at the moment.
470   assert(SrcTy != PartTy && "identical part types shouldn't reach here");
471 
472   const unsigned PartSize = PartTy.getSizeInBits();
473 
474   if (PartTy.isVector() == SrcTy.isVector() &&
475       PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
476     assert(DstRegs.size() == 1);
477     B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
478     return;
479   }
480 
481   if (SrcTy.isVector() && !PartTy.isVector() &&
482       PartSize > SrcTy.getElementType().getSizeInBits()) {
483     // Vector was scalarized, and the elements extended.
484     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
485     for (int i = 0, e = DstRegs.size(); i != e; ++i)
486       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
487     return;
488   }
489 
490   LLT GCDTy = getGCDType(SrcTy, PartTy);
491   if (GCDTy == PartTy) {
492     // If this already evenly divisible, we can create a simple unmerge.
493     B.buildUnmerge(DstRegs, SrcReg);
494     return;
495   }
496 
497   MachineRegisterInfo &MRI = *B.getMRI();
498   LLT DstTy = MRI.getType(DstRegs[0]);
499   LLT LCMTy = getLCMType(SrcTy, PartTy);
500 
501   const unsigned DstSize = DstTy.getSizeInBits();
502   const unsigned SrcSize = SrcTy.getSizeInBits();
503   unsigned CoveringSize = LCMTy.getSizeInBits();
504 
505   Register UnmergeSrc = SrcReg;
506 
507   if (CoveringSize != SrcSize) {
508     // For scalars, it's common to be able to use a simple extension.
509     if (SrcTy.isScalar() && DstTy.isScalar()) {
510       CoveringSize = alignTo(SrcSize, DstSize);
511       LLT CoverTy = LLT::scalar(CoveringSize);
512       UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
513     } else {
514       // Widen to the common type.
515       // FIXME: This should respect the extend type
516       Register Undef = B.buildUndef(SrcTy).getReg(0);
517       SmallVector<Register, 8> MergeParts(1, SrcReg);
518       for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
519         MergeParts.push_back(Undef);
520       UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
521     }
522   }
523 
524   // Unmerge to the original registers and pad with dead defs.
525   SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end());
526   for (unsigned Size = DstSize * DstRegs.size(); Size != CoveringSize;
527        Size += DstSize) {
528     UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy));
529   }
530 
531   B.buildUnmerge(UnmergeResults, UnmergeSrc);
532 }
533 
534 bool CallLowering::determineAndHandleAssignments(
535     ValueHandler &Handler, ValueAssigner &Assigner,
536     SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
537     CallingConv::ID CallConv, bool IsVarArg, Register ThisReturnReg) const {
538   MachineFunction &MF = MIRBuilder.getMF();
539   const Function &F = MF.getFunction();
540   SmallVector<CCValAssign, 16> ArgLocs;
541 
542   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
543   if (!determineAssignments(Assigner, Args, CCInfo))
544     return false;
545 
546   return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
547                            ThisReturnReg);
548 }
549 
550 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
551   if (Flags.isSExt())
552     return TargetOpcode::G_SEXT;
553   if (Flags.isZExt())
554     return TargetOpcode::G_ZEXT;
555   return TargetOpcode::G_ANYEXT;
556 }
557 
558 bool CallLowering::determineAssignments(ValueAssigner &Assigner,
559                                         SmallVectorImpl<ArgInfo> &Args,
560                                         CCState &CCInfo) const {
561   LLVMContext &Ctx = CCInfo.getContext();
562   const CallingConv::ID CallConv = CCInfo.getCallingConv();
563 
564   unsigned NumArgs = Args.size();
565   for (unsigned i = 0; i != NumArgs; ++i) {
566     EVT CurVT = EVT::getEVT(Args[i].Ty);
567 
568     MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
569 
570     // If we need to split the type over multiple regs, check it's a scenario
571     // we currently support.
572     unsigned NumParts =
573         TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
574 
575     if (NumParts == 1) {
576       // Try to use the register type if we couldn't assign the VT.
577       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
578                              Args[i].Flags[0], CCInfo))
579         return false;
580       continue;
581     }
582 
583     // For incoming arguments (physregs to vregs), we could have values in
584     // physregs (or memlocs) which we want to extract and copy to vregs.
585     // During this, we might have to deal with the LLT being split across
586     // multiple regs, so we have to record this information for later.
587     //
588     // If we have outgoing args, then we have the opposite case. We have a
589     // vreg with an LLT which we want to assign to a physical location, and
590     // we might have to record that the value has to be split later.
591 
592     // We're handling an incoming arg which is split over multiple regs.
593     // E.g. passing an s128 on AArch64.
594     ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
595     Args[i].Flags.clear();
596 
597     for (unsigned Part = 0; Part < NumParts; ++Part) {
598       ISD::ArgFlagsTy Flags = OrigFlags;
599       if (Part == 0) {
600         Flags.setSplit();
601       } else {
602         Flags.setOrigAlign(Align(1));
603         if (Part == NumParts - 1)
604           Flags.setSplitEnd();
605       }
606 
607       if (!Assigner.isIncomingArgumentHandler()) {
608         // TODO: Also check if there is a valid extension that preserves the
609         // bits. However currently this call lowering doesn't support non-exact
610         // split parts, so that can't be tested.
611         if (OrigFlags.isReturned() &&
612             (NumParts * NewVT.getSizeInBits() != CurVT.getSizeInBits())) {
613           Flags.setReturned(false);
614         }
615       }
616 
617       Args[i].Flags.push_back(Flags);
618       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
619                              Args[i].Flags[Part], CCInfo)) {
620         // Still couldn't assign this smaller part type for some reason.
621         return false;
622       }
623     }
624   }
625 
626   return true;
627 }
628 
629 bool CallLowering::handleAssignments(ValueHandler &Handler,
630                                      SmallVectorImpl<ArgInfo> &Args,
631                                      CCState &CCInfo,
632                                      SmallVectorImpl<CCValAssign> &ArgLocs,
633                                      MachineIRBuilder &MIRBuilder,
634                                      Register ThisReturnReg) const {
635   MachineFunction &MF = MIRBuilder.getMF();
636   MachineRegisterInfo &MRI = MF.getRegInfo();
637   const Function &F = MF.getFunction();
638   const DataLayout &DL = F.getParent()->getDataLayout();
639 
640   const unsigned NumArgs = Args.size();
641 
642   for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
643     assert(j < ArgLocs.size() && "Skipped too many arg locs");
644     CCValAssign &VA = ArgLocs[j];
645     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
646 
647     if (VA.needsCustom()) {
648       unsigned NumArgRegs =
649           Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j));
650       if (!NumArgRegs)
651         return false;
652       j += NumArgRegs;
653       continue;
654     }
655 
656     const MVT ValVT = VA.getValVT();
657     const MVT LocVT = VA.getLocVT();
658 
659     const LLT LocTy(LocVT);
660     const LLT ValTy(ValVT);
661     const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
662     const EVT OrigVT = EVT::getEVT(Args[i].Ty);
663     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
664 
665     // Expected to be multiple regs for a single incoming arg.
666     // There should be Regs.size() ArgLocs per argument.
667     // This should be the same as getNumRegistersForCallingConv
668     const unsigned NumParts = Args[i].Flags.size();
669 
670     // Now split the registers into the assigned types.
671     Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
672 
673     if (NumParts != 1 || NewLLT != OrigTy) {
674       // If we can't directly assign the register, we need one or more
675       // intermediate values.
676       Args[i].Regs.resize(NumParts);
677 
678       // For each split register, create and assign a vreg that will store
679       // the incoming component of the larger value. These will later be
680       // merged to form the final vreg.
681       for (unsigned Part = 0; Part < NumParts; ++Part)
682         Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
683     }
684 
685     assert((j + (NumParts - 1)) < ArgLocs.size() &&
686            "Too many regs for number of args");
687 
688     // Coerce into outgoing value types before register assignment.
689     if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
690       assert(Args[i].OrigRegs.size() == 1);
691       buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
692                       ValTy, extendOpFromFlags(Args[i].Flags[0]));
693     }
694 
695     for (unsigned Part = 0; Part < NumParts; ++Part) {
696       Register ArgReg = Args[i].Regs[Part];
697       // There should be Regs.size() ArgLocs per argument.
698       VA = ArgLocs[j + Part];
699       const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
700 
701       if (VA.isMemLoc() && !Flags.isByVal()) {
702         // Individual pieces may have been spilled to the stack and others
703         // passed in registers.
704 
705         // TODO: The memory size may be larger than the value we need to
706         // store. We may need to adjust the offset for big endian targets.
707         LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
708 
709         MachinePointerInfo MPO;
710         Register StackAddr = Handler.getStackAddress(
711             MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags);
712 
713         Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
714         continue;
715       }
716 
717       if (VA.isMemLoc() && Flags.isByVal()) {
718         assert(Args[i].Regs.size() == 1 &&
719                "didn't expect split byval pointer");
720 
721         if (Handler.isIncomingArgumentHandler()) {
722           // We just need to copy the frame index value to the pointer.
723           MachinePointerInfo MPO;
724           Register StackAddr = Handler.getStackAddress(
725               Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
726           MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
727         } else {
728           // For outgoing byval arguments, insert the implicit copy byval
729           // implies, such that writes in the callee do not modify the caller's
730           // value.
731           uint64_t MemSize = Flags.getByValSize();
732           int64_t Offset = VA.getLocMemOffset();
733 
734           MachinePointerInfo DstMPO;
735           Register StackAddr =
736               Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
737 
738           MachinePointerInfo SrcMPO(Args[i].OrigValue);
739           if (!Args[i].OrigValue) {
740             // We still need to accurately track the stack address space if we
741             // don't know the underlying value.
742             const LLT PtrTy = MRI.getType(StackAddr);
743             SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
744           }
745 
746           Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
747                                     inferAlignFromPtrInfo(MF, DstMPO));
748 
749           Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
750                                     inferAlignFromPtrInfo(MF, SrcMPO));
751 
752           Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
753                                      DstMPO, DstAlign, SrcMPO, SrcAlign,
754                                      MemSize, VA);
755         }
756         continue;
757       }
758 
759       assert(!VA.needsCustom() && "custom loc should have been handled already");
760 
761       if (i == 0 && ThisReturnReg.isValid() &&
762           Handler.isIncomingArgumentHandler() &&
763           isTypeIsValidForThisReturn(ValVT)) {
764         Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA);
765         continue;
766       }
767 
768       Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
769     }
770 
771     // Now that all pieces have been assigned, re-pack the register typed values
772     // into the original value typed registers.
773     if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
774       // Merge the split registers into the expected larger result vregs of
775       // the original call.
776       buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
777                         LocTy, Args[i].Flags[0]);
778     }
779 
780     j += NumParts - 1;
781   }
782 
783   return true;
784 }
785 
786 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
787                                    ArrayRef<Register> VRegs, Register DemoteReg,
788                                    int FI) const {
789   MachineFunction &MF = MIRBuilder.getMF();
790   MachineRegisterInfo &MRI = MF.getRegInfo();
791   const DataLayout &DL = MF.getDataLayout();
792 
793   SmallVector<EVT, 4> SplitVTs;
794   SmallVector<uint64_t, 4> Offsets;
795   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
796 
797   assert(VRegs.size() == SplitVTs.size());
798 
799   unsigned NumValues = SplitVTs.size();
800   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
801   Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
802   LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
803 
804   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
805 
806   for (unsigned I = 0; I < NumValues; ++I) {
807     Register Addr;
808     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
809     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
810                                         MRI.getType(VRegs[I]).getSizeInBytes(),
811                                         commonAlignment(BaseAlign, Offsets[I]));
812     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
813   }
814 }
815 
816 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
817                                     ArrayRef<Register> VRegs,
818                                     Register DemoteReg) const {
819   MachineFunction &MF = MIRBuilder.getMF();
820   MachineRegisterInfo &MRI = MF.getRegInfo();
821   const DataLayout &DL = MF.getDataLayout();
822 
823   SmallVector<EVT, 4> SplitVTs;
824   SmallVector<uint64_t, 4> Offsets;
825   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
826 
827   assert(VRegs.size() == SplitVTs.size());
828 
829   unsigned NumValues = SplitVTs.size();
830   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
831   unsigned AS = DL.getAllocaAddrSpace();
832   LLT OffsetLLTy =
833       getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
834 
835   MachinePointerInfo PtrInfo(AS);
836 
837   for (unsigned I = 0; I < NumValues; ++I) {
838     Register Addr;
839     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
840     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
841                                         MRI.getType(VRegs[I]).getSizeInBytes(),
842                                         commonAlignment(BaseAlign, Offsets[I]));
843     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
844   }
845 }
846 
847 void CallLowering::insertSRetIncomingArgument(
848     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
849     MachineRegisterInfo &MRI, const DataLayout &DL) const {
850   unsigned AS = DL.getAllocaAddrSpace();
851   DemoteReg = MRI.createGenericVirtualRegister(
852       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
853 
854   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
855 
856   SmallVector<EVT, 1> ValueVTs;
857   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
858 
859   // NOTE: Assume that a pointer won't get split into more than one VT.
860   assert(ValueVTs.size() == 1);
861 
862   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
863                     ArgInfo::NoArgIndex);
864   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
865   DemoteArg.Flags[0].setSRet();
866   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
867 }
868 
869 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
870                                               const CallBase &CB,
871                                               CallLoweringInfo &Info) const {
872   const DataLayout &DL = MIRBuilder.getDataLayout();
873   Type *RetTy = CB.getType();
874   unsigned AS = DL.getAllocaAddrSpace();
875   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
876 
877   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
878       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
879 
880   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
881   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
882                     ArgInfo::NoArgIndex);
883   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
884   DemoteArg.Flags[0].setSRet();
885 
886   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
887   Info.DemoteStackIndex = FI;
888   Info.DemoteRegister = DemoteReg;
889 }
890 
891 bool CallLowering::checkReturn(CCState &CCInfo,
892                                SmallVectorImpl<BaseArgInfo> &Outs,
893                                CCAssignFn *Fn) const {
894   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
895     MVT VT = MVT::getVT(Outs[I].Ty);
896     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
897       return false;
898   }
899   return true;
900 }
901 
902 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
903                                  AttributeList Attrs,
904                                  SmallVectorImpl<BaseArgInfo> &Outs,
905                                  const DataLayout &DL) const {
906   LLVMContext &Context = RetTy->getContext();
907   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
908 
909   SmallVector<EVT, 4> SplitVTs;
910   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
911   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
912 
913   for (EVT VT : SplitVTs) {
914     unsigned NumParts =
915         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
916     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
917     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
918 
919     for (unsigned I = 0; I < NumParts; ++I) {
920       Outs.emplace_back(PartTy, Flags);
921     }
922   }
923 }
924 
925 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
926   const auto &F = MF.getFunction();
927   Type *ReturnType = F.getReturnType();
928   CallingConv::ID CallConv = F.getCallingConv();
929 
930   SmallVector<BaseArgInfo, 4> SplitArgs;
931   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
932                 MF.getDataLayout());
933   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
934 }
935 
936 bool CallLowering::parametersInCSRMatch(
937     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
938     const SmallVectorImpl<CCValAssign> &OutLocs,
939     const SmallVectorImpl<ArgInfo> &OutArgs) const {
940   for (unsigned i = 0; i < OutLocs.size(); ++i) {
941     auto &ArgLoc = OutLocs[i];
942     // If it's not a register, it's fine.
943     if (!ArgLoc.isRegLoc())
944       continue;
945 
946     MCRegister PhysReg = ArgLoc.getLocReg();
947 
948     // Only look at callee-saved registers.
949     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
950       continue;
951 
952     LLVM_DEBUG(
953         dbgs()
954         << "... Call has an argument passed in a callee-saved register.\n");
955 
956     // Check if it was copied from.
957     const ArgInfo &OutInfo = OutArgs[i];
958 
959     if (OutInfo.Regs.size() > 1) {
960       LLVM_DEBUG(
961           dbgs() << "... Cannot handle arguments in multiple registers.\n");
962       return false;
963     }
964 
965     // Check if we copy the register, walking through copies from virtual
966     // registers. Note that getDefIgnoringCopies does not ignore copies from
967     // physical registers.
968     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
969     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
970       LLVM_DEBUG(
971           dbgs()
972           << "... Parameter was not copied into a VReg, cannot tail call.\n");
973       return false;
974     }
975 
976     // Got a copy. Verify that it's the same as the register we want.
977     Register CopyRHS = RegDef->getOperand(1).getReg();
978     if (CopyRHS != PhysReg) {
979       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
980                            "VReg, cannot tail call.\n");
981       return false;
982     }
983   }
984 
985   return true;
986 }
987 
988 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
989                                      MachineFunction &MF,
990                                      SmallVectorImpl<ArgInfo> &InArgs,
991                                      ValueAssigner &CalleeAssigner,
992                                      ValueAssigner &CallerAssigner) const {
993   const Function &F = MF.getFunction();
994   CallingConv::ID CalleeCC = Info.CallConv;
995   CallingConv::ID CallerCC = F.getCallingConv();
996 
997   if (CallerCC == CalleeCC)
998     return true;
999 
1000   SmallVector<CCValAssign, 16> ArgLocs1;
1001   CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
1002   if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
1003     return false;
1004 
1005   SmallVector<CCValAssign, 16> ArgLocs2;
1006   CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
1007   if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
1008     return false;
1009 
1010   // We need the argument locations to match up exactly. If there's more in
1011   // one than the other, then we are done.
1012   if (ArgLocs1.size() != ArgLocs2.size())
1013     return false;
1014 
1015   // Make sure that each location is passed in exactly the same way.
1016   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
1017     const CCValAssign &Loc1 = ArgLocs1[i];
1018     const CCValAssign &Loc2 = ArgLocs2[i];
1019 
1020     // We need both of them to be the same. So if one is a register and one
1021     // isn't, we're done.
1022     if (Loc1.isRegLoc() != Loc2.isRegLoc())
1023       return false;
1024 
1025     if (Loc1.isRegLoc()) {
1026       // If they don't have the same register location, we're done.
1027       if (Loc1.getLocReg() != Loc2.getLocReg())
1028         return false;
1029 
1030       // They matched, so we can move to the next ArgLoc.
1031       continue;
1032     }
1033 
1034     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1035     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1036       return false;
1037   }
1038 
1039   return true;
1040 }
1041 
1042 LLT CallLowering::ValueHandler::getStackValueStoreType(
1043     const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1044   const MVT ValVT = VA.getValVT();
1045   if (ValVT != MVT::iPTR) {
1046     LLT ValTy(ValVT);
1047 
1048     // We lost the pointeriness going through CCValAssign, so try to restore it
1049     // based on the flags.
1050     if (Flags.isPointer()) {
1051       LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1052                                ValTy.getScalarSizeInBits());
1053       if (ValVT.isVector())
1054         return LLT::vector(ValTy.getElementCount(), PtrTy);
1055       return PtrTy;
1056     }
1057 
1058     return ValTy;
1059   }
1060 
1061   unsigned AddrSpace = Flags.getPointerAddrSpace();
1062   return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1063 }
1064 
1065 void CallLowering::ValueHandler::copyArgumentMemory(
1066     const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1067     const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1068     const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1069     CCValAssign &VA) const {
1070   MachineFunction &MF = MIRBuilder.getMF();
1071   MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1072       SrcPtrInfo,
1073       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1074       SrcAlign);
1075 
1076   MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1077       DstPtrInfo,
1078       MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1079       MemSize, DstAlign);
1080 
1081   const LLT PtrTy = MRI.getType(DstPtr);
1082   const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1083 
1084   auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1085   MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1086 }
1087 
1088 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1089                                                     CCValAssign &VA,
1090                                                     unsigned MaxSizeBits) {
1091   LLT LocTy{VA.getLocVT()};
1092   LLT ValTy{VA.getValVT()};
1093 
1094   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1095     return ValReg;
1096 
1097   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1098     if (MaxSizeBits <= ValTy.getSizeInBits())
1099       return ValReg;
1100     LocTy = LLT::scalar(MaxSizeBits);
1101   }
1102 
1103   const LLT ValRegTy = MRI.getType(ValReg);
1104   if (ValRegTy.isPointer()) {
1105     // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1106     // we have to cast to do the extension.
1107     LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1108     ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1109   }
1110 
1111   switch (VA.getLocInfo()) {
1112   default: break;
1113   case CCValAssign::Full:
1114   case CCValAssign::BCvt:
1115     // FIXME: bitconverting between vector types may or may not be a
1116     // nop in big-endian situations.
1117     return ValReg;
1118   case CCValAssign::AExt: {
1119     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1120     return MIB.getReg(0);
1121   }
1122   case CCValAssign::SExt: {
1123     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1124     MIRBuilder.buildSExt(NewReg, ValReg);
1125     return NewReg;
1126   }
1127   case CCValAssign::ZExt: {
1128     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1129     MIRBuilder.buildZExt(NewReg, ValReg);
1130     return NewReg;
1131   }
1132   }
1133   llvm_unreachable("unable to extend register");
1134 }
1135 
1136 void CallLowering::ValueAssigner::anchor() {}
1137 
1138 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA,
1139                                                                 Register SrcReg,
1140                                                                 LLT NarrowTy) {
1141   switch (VA.getLocInfo()) {
1142   case CCValAssign::LocInfo::ZExt: {
1143     return MIRBuilder
1144         .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1145                          NarrowTy.getScalarSizeInBits())
1146         .getReg(0);
1147   }
1148   case CCValAssign::LocInfo::SExt: {
1149     return MIRBuilder
1150         .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1151                          NarrowTy.getScalarSizeInBits())
1152         .getReg(0);
1153     break;
1154   }
1155   default:
1156     return SrcReg;
1157   }
1158 }
1159 
1160 /// Check if we can use a basic COPY instruction between the two types.
1161 ///
1162 /// We're currently building on top of the infrastructure using MVT, which loses
1163 /// pointer information in the CCValAssign. We accept copies from physical
1164 /// registers that have been reported as integers if it's to an equivalent sized
1165 /// pointer LLT.
1166 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1167   if (SrcTy == DstTy)
1168     return true;
1169 
1170   if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1171     return false;
1172 
1173   SrcTy = SrcTy.getScalarType();
1174   DstTy = DstTy.getScalarType();
1175 
1176   return (SrcTy.isPointer() && DstTy.isScalar()) ||
1177          (DstTy.isScalar() && SrcTy.isPointer());
1178 }
1179 
1180 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg,
1181                                                           Register PhysReg,
1182                                                           CCValAssign &VA) {
1183   const MVT LocVT = VA.getLocVT();
1184   const LLT LocTy(LocVT);
1185   const LLT RegTy = MRI.getType(ValVReg);
1186 
1187   if (isCopyCompatibleType(RegTy, LocTy)) {
1188     MIRBuilder.buildCopy(ValVReg, PhysReg);
1189     return;
1190   }
1191 
1192   auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1193   auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1194   MIRBuilder.buildTrunc(ValVReg, Hint);
1195 }
1196