1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 16 #include "llvm/CodeGen/GlobalISel/Utils.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/MachineOperand.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Target/TargetMachine.h" 26 27 #define DEBUG_TYPE "call-lowering" 28 29 using namespace llvm; 30 31 void CallLowering::anchor() {} 32 33 /// Helper function which updates \p Flags when \p AttrFn returns true. 34 static void 35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 36 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 37 if (AttrFn(Attribute::SExt)) 38 Flags.setSExt(); 39 if (AttrFn(Attribute::ZExt)) 40 Flags.setZExt(); 41 if (AttrFn(Attribute::InReg)) 42 Flags.setInReg(); 43 if (AttrFn(Attribute::StructRet)) 44 Flags.setSRet(); 45 if (AttrFn(Attribute::Nest)) 46 Flags.setNest(); 47 if (AttrFn(Attribute::ByVal)) 48 Flags.setByVal(); 49 if (AttrFn(Attribute::Preallocated)) 50 Flags.setPreallocated(); 51 if (AttrFn(Attribute::InAlloca)) 52 Flags.setInAlloca(); 53 if (AttrFn(Attribute::Returned)) 54 Flags.setReturned(); 55 if (AttrFn(Attribute::SwiftSelf)) 56 Flags.setSwiftSelf(); 57 if (AttrFn(Attribute::SwiftAsync)) 58 Flags.setSwiftAsync(); 59 if (AttrFn(Attribute::SwiftError)) 60 Flags.setSwiftError(); 61 } 62 63 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 64 unsigned ArgIdx) const { 65 ISD::ArgFlagsTy Flags; 66 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 67 return Call.paramHasAttr(ArgIdx, Attr); 68 }); 69 return Flags; 70 } 71 72 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 73 const AttributeList &Attrs, 74 unsigned OpIdx) const { 75 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 76 return Attrs.hasAttribute(OpIdx, Attr); 77 }); 78 } 79 80 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 81 ArrayRef<Register> ResRegs, 82 ArrayRef<ArrayRef<Register>> ArgRegs, 83 Register SwiftErrorVReg, 84 std::function<unsigned()> GetCalleeReg) const { 85 CallLoweringInfo Info; 86 const DataLayout &DL = MIRBuilder.getDataLayout(); 87 MachineFunction &MF = MIRBuilder.getMF(); 88 bool CanBeTailCalled = CB.isTailCall() && 89 isInTailCallPosition(CB, MF.getTarget()) && 90 (MF.getFunction() 91 .getFnAttribute("disable-tail-calls") 92 .getValueAsString() != "true"); 93 94 CallingConv::ID CallConv = CB.getCallingConv(); 95 Type *RetTy = CB.getType(); 96 bool IsVarArg = CB.getFunctionType()->isVarArg(); 97 98 SmallVector<BaseArgInfo, 4> SplitArgs; 99 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 100 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 101 102 if (!Info.CanLowerReturn) { 103 // Callee requires sret demotion. 104 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 105 106 // The sret demotion isn't compatible with tail-calls, since the sret 107 // argument points into the caller's stack frame. 108 CanBeTailCalled = false; 109 } 110 111 // First step is to marshall all the function's parameters into the correct 112 // physregs and memory locations. Gather the sequence of argument types that 113 // we'll pass to the assigner function. 114 unsigned i = 0; 115 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 116 for (auto &Arg : CB.args()) { 117 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i), 118 i < NumFixedArgs}; 119 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 120 121 // If we have an explicit sret argument that is an Instruction, (i.e., it 122 // might point to function-local memory), we can't meaningfully tail-call. 123 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 124 CanBeTailCalled = false; 125 126 Info.OrigArgs.push_back(OrigArg); 127 ++i; 128 } 129 130 // Try looking through a bitcast from one function type to another. 131 // Commonly happens with calls to objc_msgSend(). 132 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 133 if (const Function *F = dyn_cast<Function>(CalleeV)) 134 Info.Callee = MachineOperand::CreateGA(F, 0); 135 else 136 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 137 138 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}}; 139 if (!Info.OrigRet.Ty->isVoidTy()) 140 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 141 142 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 143 Info.CallConv = CallConv; 144 Info.SwiftErrorVReg = SwiftErrorVReg; 145 Info.IsMustTailCall = CB.isMustTailCall(); 146 Info.IsTailCall = CanBeTailCalled; 147 Info.IsVarArg = IsVarArg; 148 return lowerCall(MIRBuilder, Info); 149 } 150 151 template <typename FuncInfoTy> 152 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 153 const DataLayout &DL, 154 const FuncInfoTy &FuncInfo) const { 155 auto &Flags = Arg.Flags[0]; 156 const AttributeList &Attrs = FuncInfo.getAttributes(); 157 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 158 159 PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType()); 160 if (PtrTy) { 161 Flags.setPointer(); 162 Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace()); 163 } 164 165 Align MemAlign = DL.getABITypeAlign(Arg.Ty); 166 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 167 assert(OpIdx >= AttributeList::FirstArgIndex); 168 Type *ElementTy = PtrTy->getElementType(); 169 170 auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType(); 171 Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy)); 172 173 // For ByVal, alignment should be passed from FE. BE will guess if 174 // this info is not there but there are cases it cannot get right. 175 if (auto ParamAlign = 176 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 177 MemAlign = *ParamAlign; 178 else if ((ParamAlign = 179 FuncInfo.getParamAlign(OpIdx - AttributeList::FirstArgIndex))) 180 MemAlign = *ParamAlign; 181 else 182 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 183 } else if (OpIdx >= AttributeList::FirstArgIndex) { 184 if (auto ParamAlign = 185 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 186 MemAlign = *ParamAlign; 187 } 188 Flags.setMemAlign(MemAlign); 189 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 190 191 // Don't try to use the returned attribute if the argument is marked as 192 // swiftself, since it won't be passed in x0. 193 if (Flags.isSwiftSelf()) 194 Flags.setReturned(false); 195 } 196 197 template void 198 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 199 const DataLayout &DL, 200 const Function &FuncInfo) const; 201 202 template void 203 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 204 const DataLayout &DL, 205 const CallBase &FuncInfo) const; 206 207 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 208 SmallVectorImpl<ArgInfo> &SplitArgs, 209 const DataLayout &DL, 210 CallingConv::ID CallConv) const { 211 LLVMContext &Ctx = OrigArg.Ty->getContext(); 212 213 SmallVector<EVT, 4> SplitVTs; 214 SmallVector<uint64_t, 4> Offsets; 215 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0); 216 217 if (SplitVTs.size() == 0) 218 return; 219 220 if (SplitVTs.size() == 1) { 221 // No splitting to do, but we want to replace the original type (e.g. [1 x 222 // double] -> double). 223 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 224 OrigArg.OrigArgIndex, OrigArg.Flags[0], 225 OrigArg.IsFixed, OrigArg.OrigValue); 226 return; 227 } 228 229 // Create one ArgInfo for each virtual register in the original ArgInfo. 230 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 231 232 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 233 OrigArg.Ty, CallConv, false, DL); 234 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 235 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 236 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex, 237 OrigArg.Flags[0], OrigArg.IsFixed); 238 if (NeedsRegBlock) 239 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 240 } 241 242 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 243 } 244 245 void CallLowering::unpackRegs(ArrayRef<Register> DstRegs, Register SrcReg, 246 Type *PackedTy, 247 MachineIRBuilder &MIRBuilder) const { 248 assert(DstRegs.size() > 1 && "Nothing to unpack"); 249 250 const DataLayout &DL = MIRBuilder.getDataLayout(); 251 252 SmallVector<LLT, 8> LLTs; 253 SmallVector<uint64_t, 8> Offsets; 254 computeValueLLTs(DL, *PackedTy, LLTs, &Offsets); 255 assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch"); 256 257 for (unsigned i = 0; i < DstRegs.size(); ++i) 258 MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]); 259 } 260 261 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 262 static MachineInstrBuilder 263 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 264 ArrayRef<Register> SrcRegs) { 265 MachineRegisterInfo &MRI = *B.getMRI(); 266 LLT LLTy = MRI.getType(DstRegs[0]); 267 LLT PartLLT = MRI.getType(SrcRegs[0]); 268 269 // Deal with v3s16 split into v2s16 270 LLT LCMTy = getLCMType(LLTy, PartLLT); 271 if (LCMTy == LLTy) { 272 // Common case where no padding is needed. 273 assert(DstRegs.size() == 1); 274 return B.buildConcatVectors(DstRegs[0], SrcRegs); 275 } 276 277 // We need to create an unmerge to the result registers, which may require 278 // widening the original value. 279 Register UnmergeSrcReg; 280 if (LCMTy != PartLLT) { 281 // e.g. A <3 x s16> value was split to <2 x s16> 282 // %register_value0:_(<2 x s16>) 283 // %register_value1:_(<2 x s16>) 284 // %undef:_(<2 x s16>) = G_IMPLICIT_DEF 285 // %concat:_<6 x s16>) = G_CONCAT_VECTORS %reg_value0, %reg_value1, %undef 286 // %dst_reg:_(<3 x s16>), %dead:_(<3 x s16>) = G_UNMERGE_VALUES %concat 287 const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits(); 288 Register Undef = B.buildUndef(PartLLT).getReg(0); 289 290 // Build vector of undefs. 291 SmallVector<Register, 8> WidenedSrcs(NumWide, Undef); 292 293 // Replace the first sources with the real registers. 294 std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin()); 295 UnmergeSrcReg = B.buildConcatVectors(LCMTy, WidenedSrcs).getReg(0); 296 } else { 297 // We don't need to widen anything if we're extracting a scalar which was 298 // promoted to a vector e.g. s8 -> v4s8 -> s8 299 assert(SrcRegs.size() == 1); 300 UnmergeSrcReg = SrcRegs[0]; 301 } 302 303 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 304 305 SmallVector<Register, 8> PadDstRegs(NumDst); 306 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 307 308 // Create the excess dead defs for the unmerge. 309 for (int I = DstRegs.size(); I != NumDst; ++I) 310 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 311 312 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); 313 } 314 315 /// Create a sequence of instructions to combine pieces split into register 316 /// typed values to the original IR value. \p OrigRegs contains the destination 317 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 318 /// with type \p PartLLT. This is used for incoming values (physregs to vregs). 319 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 320 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, 321 const ISD::ArgFlagsTy Flags) { 322 MachineRegisterInfo &MRI = *B.getMRI(); 323 324 if (PartLLT == LLTy) { 325 // We should have avoided introducing a new virtual register, and just 326 // directly assigned here. 327 assert(OrigRegs[0] == Regs[0]); 328 return; 329 } 330 331 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 && 332 Regs.size() == 1) { 333 B.buildBitcast(OrigRegs[0], Regs[0]); 334 return; 335 } 336 337 // A vector PartLLT needs extending to LLTy's element size. 338 // E.g. <2 x s64> = G_SEXT <2 x s32>. 339 if (PartLLT.isVector() == LLTy.isVector() && 340 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() && 341 (!PartLLT.isVector() || 342 PartLLT.getNumElements() == LLTy.getNumElements()) && 343 OrigRegs.size() == 1 && Regs.size() == 1) { 344 Register SrcReg = Regs[0]; 345 346 LLT LocTy = MRI.getType(SrcReg); 347 348 if (Flags.isSExt()) { 349 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 350 .getReg(0); 351 } else if (Flags.isZExt()) { 352 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 353 .getReg(0); 354 } 355 356 // Sometimes pointers are passed zero extended. 357 LLT OrigTy = MRI.getType(OrigRegs[0]); 358 if (OrigTy.isPointer()) { 359 LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits()); 360 B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg)); 361 return; 362 } 363 364 B.buildTrunc(OrigRegs[0], SrcReg); 365 return; 366 } 367 368 if (!LLTy.isVector() && !PartLLT.isVector()) { 369 assert(OrigRegs.size() == 1); 370 LLT OrigTy = MRI.getType(OrigRegs[0]); 371 372 unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size(); 373 if (SrcSize == OrigTy.getSizeInBits()) 374 B.buildMerge(OrigRegs[0], Regs); 375 else { 376 auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs); 377 B.buildTrunc(OrigRegs[0], Widened); 378 } 379 380 return; 381 } 382 383 if (PartLLT.isVector()) { 384 assert(OrigRegs.size() == 1); 385 SmallVector<Register> CastRegs(Regs.begin(), Regs.end()); 386 387 // If PartLLT is a mismatched vector in both number of elements and element 388 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to 389 // have the same elt type, i.e. v4s32. 390 if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() && 391 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 && 392 Regs.size() == 1) { 393 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType()) 394 .changeElementCount(PartLLT.getElementCount() * 2); 395 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0); 396 PartLLT = NewTy; 397 } 398 399 if (LLTy.getScalarType() == PartLLT.getElementType()) { 400 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 401 } else { 402 unsigned I = 0; 403 LLT GCDTy = getGCDType(LLTy, PartLLT); 404 405 // We are both splitting a vector, and bitcasting its element types. Cast 406 // the source pieces into the appropriate number of pieces with the result 407 // element type. 408 for (Register SrcReg : CastRegs) 409 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0); 410 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 411 } 412 413 return; 414 } 415 416 assert(LLTy.isVector() && !PartLLT.isVector()); 417 418 LLT DstEltTy = LLTy.getElementType(); 419 420 // Pointer information was discarded. We'll need to coerce some register types 421 // to avoid violating type constraints. 422 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 423 424 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 425 426 if (DstEltTy == PartLLT) { 427 // Vector was trivially scalarized. 428 429 if (RealDstEltTy.isPointer()) { 430 for (Register Reg : Regs) 431 MRI.setType(Reg, RealDstEltTy); 432 } 433 434 B.buildBuildVector(OrigRegs[0], Regs); 435 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 436 // Deal with vector with 64-bit elements decomposed to 32-bit 437 // registers. Need to create intermediate 64-bit elements. 438 SmallVector<Register, 8> EltMerges; 439 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 440 441 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 442 443 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 444 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt)); 445 // Fix the type in case this is really a vector of pointers. 446 MRI.setType(Merge.getReg(0), RealDstEltTy); 447 EltMerges.push_back(Merge.getReg(0)); 448 Regs = Regs.drop_front(PartsPerElt); 449 } 450 451 B.buildBuildVector(OrigRegs[0], EltMerges); 452 } else { 453 // Vector was split, and elements promoted to a wider type. 454 // FIXME: Should handle floating point promotions. 455 LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT); 456 auto BV = B.buildBuildVector(BVType, Regs); 457 B.buildTrunc(OrigRegs[0], BV); 458 } 459 } 460 461 /// Create a sequence of instructions to expand the value in \p SrcReg (of type 462 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should 463 /// contain the type of scalar value extension if necessary. 464 /// 465 /// This is used for outgoing values (vregs to physregs) 466 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 467 Register SrcReg, LLT SrcTy, LLT PartTy, 468 unsigned ExtendOp = TargetOpcode::G_ANYEXT) { 469 // We could just insert a regular copy, but this is unreachable at the moment. 470 assert(SrcTy != PartTy && "identical part types shouldn't reach here"); 471 472 const unsigned PartSize = PartTy.getSizeInBits(); 473 474 if (PartTy.isVector() == SrcTy.isVector() && 475 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { 476 assert(DstRegs.size() == 1); 477 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); 478 return; 479 } 480 481 if (SrcTy.isVector() && !PartTy.isVector() && 482 PartSize > SrcTy.getElementType().getSizeInBits()) { 483 // Vector was scalarized, and the elements extended. 484 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 485 for (int i = 0, e = DstRegs.size(); i != e; ++i) 486 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 487 return; 488 } 489 490 LLT GCDTy = getGCDType(SrcTy, PartTy); 491 if (GCDTy == PartTy) { 492 // If this already evenly divisible, we can create a simple unmerge. 493 B.buildUnmerge(DstRegs, SrcReg); 494 return; 495 } 496 497 MachineRegisterInfo &MRI = *B.getMRI(); 498 LLT DstTy = MRI.getType(DstRegs[0]); 499 LLT LCMTy = getLCMType(SrcTy, PartTy); 500 501 const unsigned DstSize = DstTy.getSizeInBits(); 502 const unsigned SrcSize = SrcTy.getSizeInBits(); 503 unsigned CoveringSize = LCMTy.getSizeInBits(); 504 505 Register UnmergeSrc = SrcReg; 506 507 if (CoveringSize != SrcSize) { 508 // For scalars, it's common to be able to use a simple extension. 509 if (SrcTy.isScalar() && DstTy.isScalar()) { 510 CoveringSize = alignTo(SrcSize, DstSize); 511 LLT CoverTy = LLT::scalar(CoveringSize); 512 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0); 513 } else { 514 // Widen to the common type. 515 // FIXME: This should respect the extend type 516 Register Undef = B.buildUndef(SrcTy).getReg(0); 517 SmallVector<Register, 8> MergeParts(1, SrcReg); 518 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize) 519 MergeParts.push_back(Undef); 520 UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0); 521 } 522 } 523 524 // Unmerge to the original registers and pad with dead defs. 525 SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end()); 526 for (unsigned Size = DstSize * DstRegs.size(); Size != CoveringSize; 527 Size += DstSize) { 528 UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy)); 529 } 530 531 B.buildUnmerge(UnmergeResults, UnmergeSrc); 532 } 533 534 bool CallLowering::determineAndHandleAssignments( 535 ValueHandler &Handler, ValueAssigner &Assigner, 536 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder, 537 CallingConv::ID CallConv, bool IsVarArg, Register ThisReturnReg) const { 538 MachineFunction &MF = MIRBuilder.getMF(); 539 const Function &F = MF.getFunction(); 540 SmallVector<CCValAssign, 16> ArgLocs; 541 542 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 543 if (!determineAssignments(Assigner, Args, CCInfo)) 544 return false; 545 546 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder, 547 ThisReturnReg); 548 } 549 550 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { 551 if (Flags.isSExt()) 552 return TargetOpcode::G_SEXT; 553 if (Flags.isZExt()) 554 return TargetOpcode::G_ZEXT; 555 return TargetOpcode::G_ANYEXT; 556 } 557 558 bool CallLowering::determineAssignments(ValueAssigner &Assigner, 559 SmallVectorImpl<ArgInfo> &Args, 560 CCState &CCInfo) const { 561 LLVMContext &Ctx = CCInfo.getContext(); 562 const CallingConv::ID CallConv = CCInfo.getCallingConv(); 563 564 unsigned NumArgs = Args.size(); 565 for (unsigned i = 0; i != NumArgs; ++i) { 566 EVT CurVT = EVT::getEVT(Args[i].Ty); 567 568 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT); 569 570 // If we need to split the type over multiple regs, check it's a scenario 571 // we currently support. 572 unsigned NumParts = 573 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT); 574 575 if (NumParts == 1) { 576 // Try to use the register type if we couldn't assign the VT. 577 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 578 Args[i].Flags[0], CCInfo)) 579 return false; 580 continue; 581 } 582 583 // For incoming arguments (physregs to vregs), we could have values in 584 // physregs (or memlocs) which we want to extract and copy to vregs. 585 // During this, we might have to deal with the LLT being split across 586 // multiple regs, so we have to record this information for later. 587 // 588 // If we have outgoing args, then we have the opposite case. We have a 589 // vreg with an LLT which we want to assign to a physical location, and 590 // we might have to record that the value has to be split later. 591 592 // We're handling an incoming arg which is split over multiple regs. 593 // E.g. passing an s128 on AArch64. 594 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 595 Args[i].Flags.clear(); 596 597 for (unsigned Part = 0; Part < NumParts; ++Part) { 598 ISD::ArgFlagsTy Flags = OrigFlags; 599 if (Part == 0) { 600 Flags.setSplit(); 601 } else { 602 Flags.setOrigAlign(Align(1)); 603 if (Part == NumParts - 1) 604 Flags.setSplitEnd(); 605 } 606 607 if (!Assigner.isIncomingArgumentHandler()) { 608 // TODO: Also check if there is a valid extension that preserves the 609 // bits. However currently this call lowering doesn't support non-exact 610 // split parts, so that can't be tested. 611 if (OrigFlags.isReturned() && 612 (NumParts * NewVT.getSizeInBits() != CurVT.getSizeInBits())) { 613 Flags.setReturned(false); 614 } 615 } 616 617 Args[i].Flags.push_back(Flags); 618 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 619 Args[i].Flags[Part], CCInfo)) { 620 // Still couldn't assign this smaller part type for some reason. 621 return false; 622 } 623 } 624 } 625 626 return true; 627 } 628 629 bool CallLowering::handleAssignments(ValueHandler &Handler, 630 SmallVectorImpl<ArgInfo> &Args, 631 CCState &CCInfo, 632 SmallVectorImpl<CCValAssign> &ArgLocs, 633 MachineIRBuilder &MIRBuilder, 634 Register ThisReturnReg) const { 635 MachineFunction &MF = MIRBuilder.getMF(); 636 MachineRegisterInfo &MRI = MF.getRegInfo(); 637 const Function &F = MF.getFunction(); 638 const DataLayout &DL = F.getParent()->getDataLayout(); 639 640 const unsigned NumArgs = Args.size(); 641 642 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { 643 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 644 CCValAssign &VA = ArgLocs[j]; 645 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 646 647 if (VA.needsCustom()) { 648 unsigned NumArgRegs = 649 Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j)); 650 if (!NumArgRegs) 651 return false; 652 j += NumArgRegs; 653 continue; 654 } 655 656 const MVT ValVT = VA.getValVT(); 657 const MVT LocVT = VA.getLocVT(); 658 659 const LLT LocTy(LocVT); 660 const LLT ValTy(ValVT); 661 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy; 662 const EVT OrigVT = EVT::getEVT(Args[i].Ty); 663 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 664 665 // Expected to be multiple regs for a single incoming arg. 666 // There should be Regs.size() ArgLocs per argument. 667 // This should be the same as getNumRegistersForCallingConv 668 const unsigned NumParts = Args[i].Flags.size(); 669 670 // Now split the registers into the assigned types. 671 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); 672 673 if (NumParts != 1 || NewLLT != OrigTy) { 674 // If we can't directly assign the register, we need one or more 675 // intermediate values. 676 Args[i].Regs.resize(NumParts); 677 678 // For each split register, create and assign a vreg that will store 679 // the incoming component of the larger value. These will later be 680 // merged to form the final vreg. 681 for (unsigned Part = 0; Part < NumParts; ++Part) 682 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); 683 } 684 685 assert((j + (NumParts - 1)) < ArgLocs.size() && 686 "Too many regs for number of args"); 687 688 // Coerce into outgoing value types before register assignment. 689 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) { 690 assert(Args[i].OrigRegs.size() == 1); 691 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, 692 ValTy, extendOpFromFlags(Args[i].Flags[0])); 693 } 694 695 for (unsigned Part = 0; Part < NumParts; ++Part) { 696 Register ArgReg = Args[i].Regs[Part]; 697 // There should be Regs.size() ArgLocs per argument. 698 VA = ArgLocs[j + Part]; 699 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; 700 701 if (VA.isMemLoc() && !Flags.isByVal()) { 702 // Individual pieces may have been spilled to the stack and others 703 // passed in registers. 704 705 // TODO: The memory size may be larger than the value we need to 706 // store. We may need to adjust the offset for big endian targets. 707 LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags); 708 709 MachinePointerInfo MPO; 710 Register StackAddr = Handler.getStackAddress( 711 MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags); 712 713 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA); 714 continue; 715 } 716 717 if (VA.isMemLoc() && Flags.isByVal()) { 718 assert(Args[i].Regs.size() == 1 && 719 "didn't expect split byval pointer"); 720 721 if (Handler.isIncomingArgumentHandler()) { 722 // We just need to copy the frame index value to the pointer. 723 MachinePointerInfo MPO; 724 Register StackAddr = Handler.getStackAddress( 725 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); 726 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); 727 } else { 728 // For outgoing byval arguments, insert the implicit copy byval 729 // implies, such that writes in the callee do not modify the caller's 730 // value. 731 uint64_t MemSize = Flags.getByValSize(); 732 int64_t Offset = VA.getLocMemOffset(); 733 734 MachinePointerInfo DstMPO; 735 Register StackAddr = 736 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); 737 738 MachinePointerInfo SrcMPO(Args[i].OrigValue); 739 if (!Args[i].OrigValue) { 740 // We still need to accurately track the stack address space if we 741 // don't know the underlying value. 742 const LLT PtrTy = MRI.getType(StackAddr); 743 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); 744 } 745 746 Align DstAlign = std::max(Flags.getNonZeroByValAlign(), 747 inferAlignFromPtrInfo(MF, DstMPO)); 748 749 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), 750 inferAlignFromPtrInfo(MF, SrcMPO)); 751 752 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], 753 DstMPO, DstAlign, SrcMPO, SrcAlign, 754 MemSize, VA); 755 } 756 continue; 757 } 758 759 assert(!VA.needsCustom() && "custom loc should have been handled already"); 760 761 if (i == 0 && ThisReturnReg.isValid() && 762 Handler.isIncomingArgumentHandler() && 763 isTypeIsValidForThisReturn(ValVT)) { 764 Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA); 765 continue; 766 } 767 768 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 769 } 770 771 // Now that all pieces have been assigned, re-pack the register typed values 772 // into the original value typed registers. 773 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) { 774 // Merge the split registers into the expected larger result vregs of 775 // the original call. 776 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 777 LocTy, Args[i].Flags[0]); 778 } 779 780 j += NumParts - 1; 781 } 782 783 return true; 784 } 785 786 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 787 ArrayRef<Register> VRegs, Register DemoteReg, 788 int FI) const { 789 MachineFunction &MF = MIRBuilder.getMF(); 790 MachineRegisterInfo &MRI = MF.getRegInfo(); 791 const DataLayout &DL = MF.getDataLayout(); 792 793 SmallVector<EVT, 4> SplitVTs; 794 SmallVector<uint64_t, 4> Offsets; 795 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 796 797 assert(VRegs.size() == SplitVTs.size()); 798 799 unsigned NumValues = SplitVTs.size(); 800 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 801 Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace()); 802 LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL); 803 804 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 805 806 for (unsigned I = 0; I < NumValues; ++I) { 807 Register Addr; 808 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 809 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 810 MRI.getType(VRegs[I]).getSizeInBytes(), 811 commonAlignment(BaseAlign, Offsets[I])); 812 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 813 } 814 } 815 816 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 817 ArrayRef<Register> VRegs, 818 Register DemoteReg) const { 819 MachineFunction &MF = MIRBuilder.getMF(); 820 MachineRegisterInfo &MRI = MF.getRegInfo(); 821 const DataLayout &DL = MF.getDataLayout(); 822 823 SmallVector<EVT, 4> SplitVTs; 824 SmallVector<uint64_t, 4> Offsets; 825 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 826 827 assert(VRegs.size() == SplitVTs.size()); 828 829 unsigned NumValues = SplitVTs.size(); 830 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 831 unsigned AS = DL.getAllocaAddrSpace(); 832 LLT OffsetLLTy = 833 getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL); 834 835 MachinePointerInfo PtrInfo(AS); 836 837 for (unsigned I = 0; I < NumValues; ++I) { 838 Register Addr; 839 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 840 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 841 MRI.getType(VRegs[I]).getSizeInBytes(), 842 commonAlignment(BaseAlign, Offsets[I])); 843 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 844 } 845 } 846 847 void CallLowering::insertSRetIncomingArgument( 848 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 849 MachineRegisterInfo &MRI, const DataLayout &DL) const { 850 unsigned AS = DL.getAllocaAddrSpace(); 851 DemoteReg = MRI.createGenericVirtualRegister( 852 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 853 854 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 855 856 SmallVector<EVT, 1> ValueVTs; 857 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 858 859 // NOTE: Assume that a pointer won't get split into more than one VT. 860 assert(ValueVTs.size() == 1); 861 862 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()), 863 ArgInfo::NoArgIndex); 864 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 865 DemoteArg.Flags[0].setSRet(); 866 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 867 } 868 869 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 870 const CallBase &CB, 871 CallLoweringInfo &Info) const { 872 const DataLayout &DL = MIRBuilder.getDataLayout(); 873 Type *RetTy = CB.getType(); 874 unsigned AS = DL.getAllocaAddrSpace(); 875 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 876 877 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 878 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 879 880 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 881 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS), 882 ArgInfo::NoArgIndex); 883 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 884 DemoteArg.Flags[0].setSRet(); 885 886 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 887 Info.DemoteStackIndex = FI; 888 Info.DemoteRegister = DemoteReg; 889 } 890 891 bool CallLowering::checkReturn(CCState &CCInfo, 892 SmallVectorImpl<BaseArgInfo> &Outs, 893 CCAssignFn *Fn) const { 894 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 895 MVT VT = MVT::getVT(Outs[I].Ty); 896 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 897 return false; 898 } 899 return true; 900 } 901 902 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 903 AttributeList Attrs, 904 SmallVectorImpl<BaseArgInfo> &Outs, 905 const DataLayout &DL) const { 906 LLVMContext &Context = RetTy->getContext(); 907 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 908 909 SmallVector<EVT, 4> SplitVTs; 910 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 911 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 912 913 for (EVT VT : SplitVTs) { 914 unsigned NumParts = 915 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 916 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 917 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 918 919 for (unsigned I = 0; I < NumParts; ++I) { 920 Outs.emplace_back(PartTy, Flags); 921 } 922 } 923 } 924 925 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 926 const auto &F = MF.getFunction(); 927 Type *ReturnType = F.getReturnType(); 928 CallingConv::ID CallConv = F.getCallingConv(); 929 930 SmallVector<BaseArgInfo, 4> SplitArgs; 931 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 932 MF.getDataLayout()); 933 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 934 } 935 936 bool CallLowering::parametersInCSRMatch( 937 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 938 const SmallVectorImpl<CCValAssign> &OutLocs, 939 const SmallVectorImpl<ArgInfo> &OutArgs) const { 940 for (unsigned i = 0; i < OutLocs.size(); ++i) { 941 auto &ArgLoc = OutLocs[i]; 942 // If it's not a register, it's fine. 943 if (!ArgLoc.isRegLoc()) 944 continue; 945 946 MCRegister PhysReg = ArgLoc.getLocReg(); 947 948 // Only look at callee-saved registers. 949 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 950 continue; 951 952 LLVM_DEBUG( 953 dbgs() 954 << "... Call has an argument passed in a callee-saved register.\n"); 955 956 // Check if it was copied from. 957 const ArgInfo &OutInfo = OutArgs[i]; 958 959 if (OutInfo.Regs.size() > 1) { 960 LLVM_DEBUG( 961 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 962 return false; 963 } 964 965 // Check if we copy the register, walking through copies from virtual 966 // registers. Note that getDefIgnoringCopies does not ignore copies from 967 // physical registers. 968 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 969 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 970 LLVM_DEBUG( 971 dbgs() 972 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 973 return false; 974 } 975 976 // Got a copy. Verify that it's the same as the register we want. 977 Register CopyRHS = RegDef->getOperand(1).getReg(); 978 if (CopyRHS != PhysReg) { 979 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 980 "VReg, cannot tail call.\n"); 981 return false; 982 } 983 } 984 985 return true; 986 } 987 988 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 989 MachineFunction &MF, 990 SmallVectorImpl<ArgInfo> &InArgs, 991 ValueAssigner &CalleeAssigner, 992 ValueAssigner &CallerAssigner) const { 993 const Function &F = MF.getFunction(); 994 CallingConv::ID CalleeCC = Info.CallConv; 995 CallingConv::ID CallerCC = F.getCallingConv(); 996 997 if (CallerCC == CalleeCC) 998 return true; 999 1000 SmallVector<CCValAssign, 16> ArgLocs1; 1001 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext()); 1002 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1)) 1003 return false; 1004 1005 SmallVector<CCValAssign, 16> ArgLocs2; 1006 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext()); 1007 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2)) 1008 return false; 1009 1010 // We need the argument locations to match up exactly. If there's more in 1011 // one than the other, then we are done. 1012 if (ArgLocs1.size() != ArgLocs2.size()) 1013 return false; 1014 1015 // Make sure that each location is passed in exactly the same way. 1016 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 1017 const CCValAssign &Loc1 = ArgLocs1[i]; 1018 const CCValAssign &Loc2 = ArgLocs2[i]; 1019 1020 // We need both of them to be the same. So if one is a register and one 1021 // isn't, we're done. 1022 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 1023 return false; 1024 1025 if (Loc1.isRegLoc()) { 1026 // If they don't have the same register location, we're done. 1027 if (Loc1.getLocReg() != Loc2.getLocReg()) 1028 return false; 1029 1030 // They matched, so we can move to the next ArgLoc. 1031 continue; 1032 } 1033 1034 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 1035 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 1036 return false; 1037 } 1038 1039 return true; 1040 } 1041 1042 LLT CallLowering::ValueHandler::getStackValueStoreType( 1043 const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { 1044 const MVT ValVT = VA.getValVT(); 1045 if (ValVT != MVT::iPTR) { 1046 LLT ValTy(ValVT); 1047 1048 // We lost the pointeriness going through CCValAssign, so try to restore it 1049 // based on the flags. 1050 if (Flags.isPointer()) { 1051 LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(), 1052 ValTy.getScalarSizeInBits()); 1053 if (ValVT.isVector()) 1054 return LLT::vector(ValTy.getElementCount(), PtrTy); 1055 return PtrTy; 1056 } 1057 1058 return ValTy; 1059 } 1060 1061 unsigned AddrSpace = Flags.getPointerAddrSpace(); 1062 return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace)); 1063 } 1064 1065 void CallLowering::ValueHandler::copyArgumentMemory( 1066 const ArgInfo &Arg, Register DstPtr, Register SrcPtr, 1067 const MachinePointerInfo &DstPtrInfo, Align DstAlign, 1068 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, 1069 CCValAssign &VA) const { 1070 MachineFunction &MF = MIRBuilder.getMF(); 1071 MachineMemOperand *SrcMMO = MF.getMachineMemOperand( 1072 SrcPtrInfo, 1073 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, 1074 SrcAlign); 1075 1076 MachineMemOperand *DstMMO = MF.getMachineMemOperand( 1077 DstPtrInfo, 1078 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, 1079 MemSize, DstAlign); 1080 1081 const LLT PtrTy = MRI.getType(DstPtr); 1082 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); 1083 1084 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); 1085 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); 1086 } 1087 1088 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 1089 CCValAssign &VA, 1090 unsigned MaxSizeBits) { 1091 LLT LocTy{VA.getLocVT()}; 1092 LLT ValTy{VA.getValVT()}; 1093 1094 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 1095 return ValReg; 1096 1097 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 1098 if (MaxSizeBits <= ValTy.getSizeInBits()) 1099 return ValReg; 1100 LocTy = LLT::scalar(MaxSizeBits); 1101 } 1102 1103 const LLT ValRegTy = MRI.getType(ValReg); 1104 if (ValRegTy.isPointer()) { 1105 // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so 1106 // we have to cast to do the extension. 1107 LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits()); 1108 ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0); 1109 } 1110 1111 switch (VA.getLocInfo()) { 1112 default: break; 1113 case CCValAssign::Full: 1114 case CCValAssign::BCvt: 1115 // FIXME: bitconverting between vector types may or may not be a 1116 // nop in big-endian situations. 1117 return ValReg; 1118 case CCValAssign::AExt: { 1119 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 1120 return MIB.getReg(0); 1121 } 1122 case CCValAssign::SExt: { 1123 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1124 MIRBuilder.buildSExt(NewReg, ValReg); 1125 return NewReg; 1126 } 1127 case CCValAssign::ZExt: { 1128 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1129 MIRBuilder.buildZExt(NewReg, ValReg); 1130 return NewReg; 1131 } 1132 } 1133 llvm_unreachable("unable to extend register"); 1134 } 1135 1136 void CallLowering::ValueAssigner::anchor() {} 1137 1138 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA, 1139 Register SrcReg, 1140 LLT NarrowTy) { 1141 switch (VA.getLocInfo()) { 1142 case CCValAssign::LocInfo::ZExt: { 1143 return MIRBuilder 1144 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1145 NarrowTy.getScalarSizeInBits()) 1146 .getReg(0); 1147 } 1148 case CCValAssign::LocInfo::SExt: { 1149 return MIRBuilder 1150 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1151 NarrowTy.getScalarSizeInBits()) 1152 .getReg(0); 1153 break; 1154 } 1155 default: 1156 return SrcReg; 1157 } 1158 } 1159 1160 /// Check if we can use a basic COPY instruction between the two types. 1161 /// 1162 /// We're currently building on top of the infrastructure using MVT, which loses 1163 /// pointer information in the CCValAssign. We accept copies from physical 1164 /// registers that have been reported as integers if it's to an equivalent sized 1165 /// pointer LLT. 1166 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) { 1167 if (SrcTy == DstTy) 1168 return true; 1169 1170 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1171 return false; 1172 1173 SrcTy = SrcTy.getScalarType(); 1174 DstTy = DstTy.getScalarType(); 1175 1176 return (SrcTy.isPointer() && DstTy.isScalar()) || 1177 (DstTy.isScalar() && SrcTy.isPointer()); 1178 } 1179 1180 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg, 1181 Register PhysReg, 1182 CCValAssign &VA) { 1183 const MVT LocVT = VA.getLocVT(); 1184 const LLT LocTy(LocVT); 1185 const LLT RegTy = MRI.getType(ValVReg); 1186 1187 if (isCopyCompatibleType(RegTy, LocTy)) { 1188 MIRBuilder.buildCopy(ValVReg, PhysReg); 1189 return; 1190 } 1191 1192 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); 1193 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy); 1194 MIRBuilder.buildTrunc(ValVReg, Hint); 1195 } 1196