1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 16 #include "llvm/CodeGen/GlobalISel/Utils.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/MachineOperand.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Target/TargetMachine.h" 26 27 #define DEBUG_TYPE "call-lowering" 28 29 using namespace llvm; 30 31 void CallLowering::anchor() {} 32 33 /// Helper function which updates \p Flags when \p AttrFn returns true. 34 static void 35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 36 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 37 if (AttrFn(Attribute::SExt)) 38 Flags.setSExt(); 39 if (AttrFn(Attribute::ZExt)) 40 Flags.setZExt(); 41 if (AttrFn(Attribute::InReg)) 42 Flags.setInReg(); 43 if (AttrFn(Attribute::StructRet)) 44 Flags.setSRet(); 45 if (AttrFn(Attribute::Nest)) 46 Flags.setNest(); 47 if (AttrFn(Attribute::ByVal)) 48 Flags.setByVal(); 49 if (AttrFn(Attribute::Preallocated)) 50 Flags.setPreallocated(); 51 if (AttrFn(Attribute::InAlloca)) 52 Flags.setInAlloca(); 53 if (AttrFn(Attribute::Returned)) 54 Flags.setReturned(); 55 if (AttrFn(Attribute::SwiftSelf)) 56 Flags.setSwiftSelf(); 57 if (AttrFn(Attribute::SwiftError)) 58 Flags.setSwiftError(); 59 } 60 61 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 62 unsigned ArgIdx) const { 63 ISD::ArgFlagsTy Flags; 64 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 65 return Call.paramHasAttr(ArgIdx, Attr); 66 }); 67 return Flags; 68 } 69 70 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 71 const AttributeList &Attrs, 72 unsigned OpIdx) const { 73 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 74 return Attrs.hasAttribute(OpIdx, Attr); 75 }); 76 } 77 78 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 79 ArrayRef<Register> ResRegs, 80 ArrayRef<ArrayRef<Register>> ArgRegs, 81 Register SwiftErrorVReg, 82 std::function<unsigned()> GetCalleeReg) const { 83 CallLoweringInfo Info; 84 const DataLayout &DL = MIRBuilder.getDataLayout(); 85 MachineFunction &MF = MIRBuilder.getMF(); 86 bool CanBeTailCalled = CB.isTailCall() && 87 isInTailCallPosition(CB, MF.getTarget()) && 88 (MF.getFunction() 89 .getFnAttribute("disable-tail-calls") 90 .getValueAsString() != "true"); 91 92 CallingConv::ID CallConv = CB.getCallingConv(); 93 Type *RetTy = CB.getType(); 94 bool IsVarArg = CB.getFunctionType()->isVarArg(); 95 96 SmallVector<BaseArgInfo, 4> SplitArgs; 97 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 98 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 99 100 if (!Info.CanLowerReturn) { 101 // Callee requires sret demotion. 102 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 103 104 // The sret demotion isn't compatible with tail-calls, since the sret 105 // argument points into the caller's stack frame. 106 CanBeTailCalled = false; 107 } 108 109 // First step is to marshall all the function's parameters into the correct 110 // physregs and memory locations. Gather the sequence of argument types that 111 // we'll pass to the assigner function. 112 unsigned i = 0; 113 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 114 for (auto &Arg : CB.args()) { 115 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), getAttributesForArgIdx(CB, i), 116 i < NumFixedArgs}; 117 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 118 119 // If we have an explicit sret argument that is an Instruction, (i.e., it 120 // might point to function-local memory), we can't meaningfully tail-call. 121 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 122 CanBeTailCalled = false; 123 124 Info.OrigArgs.push_back(OrigArg); 125 ++i; 126 } 127 128 // Try looking through a bitcast from one function type to another. 129 // Commonly happens with calls to objc_msgSend(). 130 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 131 if (const Function *F = dyn_cast<Function>(CalleeV)) 132 Info.Callee = MachineOperand::CreateGA(F, 0); 133 else 134 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 135 136 Info.OrigRet = ArgInfo{ResRegs, RetTy, ISD::ArgFlagsTy{}}; 137 if (!Info.OrigRet.Ty->isVoidTy()) 138 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 139 140 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 141 Info.CallConv = CallConv; 142 Info.SwiftErrorVReg = SwiftErrorVReg; 143 Info.IsMustTailCall = CB.isMustTailCall(); 144 Info.IsTailCall = CanBeTailCalled; 145 Info.IsVarArg = IsVarArg; 146 return lowerCall(MIRBuilder, Info); 147 } 148 149 template <typename FuncInfoTy> 150 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 151 const DataLayout &DL, 152 const FuncInfoTy &FuncInfo) const { 153 auto &Flags = Arg.Flags[0]; 154 const AttributeList &Attrs = FuncInfo.getAttributes(); 155 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 156 157 Align MemAlign; 158 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 159 Type *ElementTy = cast<PointerType>(Arg.Ty)->getElementType(); 160 161 auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType(); 162 Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy)); 163 164 // For ByVal, alignment should be passed from FE. BE will guess if 165 // this info is not there but there are cases it cannot get right. 166 if (auto ParamAlign = FuncInfo.getParamStackAlign(OpIdx - 1)) 167 MemAlign = *ParamAlign; 168 else if ((ParamAlign = FuncInfo.getParamAlign(OpIdx - 1))) 169 MemAlign = *ParamAlign; 170 else 171 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 172 } else if (auto ParamAlign = FuncInfo.getParamStackAlign(OpIdx - 1)) { 173 MemAlign = *ParamAlign; 174 } else { 175 MemAlign = Align(DL.getABITypeAlign(Arg.Ty)); 176 } 177 Flags.setMemAlign(MemAlign); 178 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 179 180 // Don't try to use the returned attribute if the argument is marked as 181 // swiftself, since it won't be passed in x0. 182 if (Flags.isSwiftSelf()) 183 Flags.setReturned(false); 184 } 185 186 template void 187 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 188 const DataLayout &DL, 189 const Function &FuncInfo) const; 190 191 template void 192 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 193 const DataLayout &DL, 194 const CallBase &FuncInfo) const; 195 196 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 197 SmallVectorImpl<ArgInfo> &SplitArgs, 198 const DataLayout &DL, 199 CallingConv::ID CallConv) const { 200 LLVMContext &Ctx = OrigArg.Ty->getContext(); 201 202 SmallVector<EVT, 4> SplitVTs; 203 SmallVector<uint64_t, 4> Offsets; 204 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0); 205 206 if (SplitVTs.size() == 0) 207 return; 208 209 if (SplitVTs.size() == 1) { 210 // No splitting to do, but we want to replace the original type (e.g. [1 x 211 // double] -> double). 212 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 213 OrigArg.Flags[0], OrigArg.IsFixed, 214 OrigArg.OrigValue); 215 return; 216 } 217 218 // Create one ArgInfo for each virtual register in the original ArgInfo. 219 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 220 221 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 222 OrigArg.Ty, CallConv, false); 223 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 224 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 225 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0], 226 OrigArg.IsFixed); 227 if (NeedsRegBlock) 228 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 229 } 230 231 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 232 } 233 234 void CallLowering::unpackRegs(ArrayRef<Register> DstRegs, Register SrcReg, 235 Type *PackedTy, 236 MachineIRBuilder &MIRBuilder) const { 237 assert(DstRegs.size() > 1 && "Nothing to unpack"); 238 239 const DataLayout &DL = MIRBuilder.getDataLayout(); 240 241 SmallVector<LLT, 8> LLTs; 242 SmallVector<uint64_t, 8> Offsets; 243 computeValueLLTs(DL, *PackedTy, LLTs, &Offsets); 244 assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch"); 245 246 for (unsigned i = 0; i < DstRegs.size(); ++i) 247 MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]); 248 } 249 250 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 251 static MachineInstrBuilder 252 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 253 ArrayRef<Register> SrcRegs) { 254 MachineRegisterInfo &MRI = *B.getMRI(); 255 LLT LLTy = MRI.getType(DstRegs[0]); 256 LLT PartLLT = MRI.getType(SrcRegs[0]); 257 258 // Deal with v3s16 split into v2s16 259 LLT LCMTy = getLCMType(LLTy, PartLLT); 260 if (LCMTy == LLTy) { 261 // Common case where no padding is needed. 262 assert(DstRegs.size() == 1); 263 return B.buildConcatVectors(DstRegs[0], SrcRegs); 264 } 265 266 // We need to create an unmerge to the result registers, which may require 267 // widening the original value. 268 Register UnmergeSrcReg; 269 if (LCMTy != PartLLT) { 270 // e.g. A <3 x s16> value was split to <2 x s16> 271 // %register_value0:_(<2 x s16>) 272 // %register_value1:_(<2 x s16>) 273 // %undef:_(<2 x s16>) = G_IMPLICIT_DEF 274 // %concat:_<6 x s16>) = G_CONCAT_VECTORS %reg_value0, %reg_value1, %undef 275 // %dst_reg:_(<3 x s16>), %dead:_(<3 x s16>) = G_UNMERGE_VALUES %concat 276 const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits(); 277 Register Undef = B.buildUndef(PartLLT).getReg(0); 278 279 // Build vector of undefs. 280 SmallVector<Register, 8> WidenedSrcs(NumWide, Undef); 281 282 // Replace the first sources with the real registers. 283 std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin()); 284 UnmergeSrcReg = B.buildConcatVectors(LCMTy, WidenedSrcs).getReg(0); 285 } else { 286 // We don't need to widen anything if we're extracting a scalar which was 287 // promoted to a vector e.g. s8 -> v4s8 -> s8 288 assert(SrcRegs.size() == 1); 289 UnmergeSrcReg = SrcRegs[0]; 290 } 291 292 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 293 294 SmallVector<Register, 8> PadDstRegs(NumDst); 295 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 296 297 // Create the excess dead defs for the unmerge. 298 for (int I = DstRegs.size(); I != NumDst; ++I) 299 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 300 301 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); 302 } 303 304 /// Create a sequence of instructions to combine pieces split into register 305 /// typed values to the original IR value. \p OrigRegs contains the destination 306 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 307 /// with type \p PartLLT. This is used for incoming values (physregs to vregs). 308 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 309 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT) { 310 MachineRegisterInfo &MRI = *B.getMRI(); 311 312 // We could just insert a regular copy, but this is unreachable at the moment. 313 assert(LLTy != PartLLT && "identical part types shouldn't reach here"); 314 315 if (PartLLT.isVector() == LLTy.isVector() && 316 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits()) { 317 assert(OrigRegs.size() == 1 && Regs.size() == 1); 318 B.buildTrunc(OrigRegs[0], Regs[0]); 319 return; 320 } 321 322 if (!LLTy.isVector() && !PartLLT.isVector()) { 323 assert(OrigRegs.size() == 1); 324 LLT OrigTy = MRI.getType(OrigRegs[0]); 325 326 unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size(); 327 if (SrcSize == OrigTy.getSizeInBits()) 328 B.buildMerge(OrigRegs[0], Regs); 329 else { 330 auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs); 331 B.buildTrunc(OrigRegs[0], Widened); 332 } 333 334 return; 335 } 336 337 if (PartLLT.isVector()) { 338 assert(OrigRegs.size() == 1 && 339 LLTy.getScalarType() == PartLLT.getElementType()); 340 mergeVectorRegsToResultRegs(B, OrigRegs, Regs); 341 return; 342 } 343 344 assert(LLTy.isVector() && !PartLLT.isVector()); 345 346 LLT DstEltTy = LLTy.getElementType(); 347 348 // Pointer information was discarded. We'll need to coerce some register types 349 // to avoid violating type constraints. 350 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 351 352 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 353 354 if (DstEltTy == PartLLT) { 355 // Vector was trivially scalarized. 356 357 if (RealDstEltTy.isPointer()) { 358 for (Register Reg : Regs) 359 MRI.setType(Reg, RealDstEltTy); 360 } 361 362 B.buildBuildVector(OrigRegs[0], Regs); 363 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 364 // Deal with vector with 64-bit elements decomposed to 32-bit 365 // registers. Need to create intermediate 64-bit elements. 366 SmallVector<Register, 8> EltMerges; 367 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 368 369 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 370 371 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 372 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt)); 373 // Fix the type in case this is really a vector of pointers. 374 MRI.setType(Merge.getReg(0), RealDstEltTy); 375 EltMerges.push_back(Merge.getReg(0)); 376 Regs = Regs.drop_front(PartsPerElt); 377 } 378 379 B.buildBuildVector(OrigRegs[0], EltMerges); 380 } else { 381 // Vector was split, and elements promoted to a wider type. 382 // FIXME: Should handle floating point promotions. 383 LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT); 384 auto BV = B.buildBuildVector(BVType, Regs); 385 B.buildTrunc(OrigRegs[0], BV); 386 } 387 } 388 389 /// Create a sequence of instructions to expand the value in \p SrcReg (of type 390 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should 391 /// contain the type of scalar value extension if necessary. 392 /// 393 /// This is used for outgoing values (vregs to physregs) 394 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 395 Register SrcReg, LLT SrcTy, LLT PartTy, 396 unsigned ExtendOp = TargetOpcode::G_ANYEXT) { 397 // We could just insert a regular copy, but this is unreachable at the moment. 398 assert(SrcTy != PartTy && "identical part types shouldn't reach here"); 399 400 const unsigned PartSize = PartTy.getSizeInBits(); 401 402 if (PartTy.isVector() == SrcTy.isVector() && 403 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { 404 assert(DstRegs.size() == 1); 405 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); 406 return; 407 } 408 409 if (SrcTy.isVector() && !PartTy.isVector() && 410 PartSize > SrcTy.getElementType().getSizeInBits()) { 411 // Vector was scalarized, and the elements extended. 412 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 413 for (int i = 0, e = DstRegs.size(); i != e; ++i) 414 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 415 return; 416 } 417 418 LLT GCDTy = getGCDType(SrcTy, PartTy); 419 if (GCDTy == PartTy) { 420 // If this already evenly divisible, we can create a simple unmerge. 421 B.buildUnmerge(DstRegs, SrcReg); 422 return; 423 } 424 425 MachineRegisterInfo &MRI = *B.getMRI(); 426 LLT DstTy = MRI.getType(DstRegs[0]); 427 LLT LCMTy = getLCMType(SrcTy, PartTy); 428 429 const unsigned LCMSize = LCMTy.getSizeInBits(); 430 const unsigned DstSize = DstTy.getSizeInBits(); 431 const unsigned SrcSize = SrcTy.getSizeInBits(); 432 433 Register UnmergeSrc = SrcReg; 434 if (LCMSize != SrcSize) { 435 // Widen to the common type. 436 Register Undef = B.buildUndef(SrcTy).getReg(0); 437 SmallVector<Register, 8> MergeParts(1, SrcReg); 438 for (unsigned Size = SrcSize; Size != LCMSize; Size += SrcSize) 439 MergeParts.push_back(Undef); 440 441 UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0); 442 } 443 444 // Unmerge to the original registers and pad with dead defs. 445 SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end()); 446 for (unsigned Size = DstSize * DstRegs.size(); Size != LCMSize; 447 Size += DstSize) { 448 UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy)); 449 } 450 451 B.buildUnmerge(UnmergeResults, UnmergeSrc); 452 } 453 454 bool CallLowering::handleAssignments(MachineIRBuilder &MIRBuilder, 455 SmallVectorImpl<ArgInfo> &Args, 456 ValueHandler &Handler, 457 CallingConv::ID CallConv, bool IsVarArg, 458 Register ThisReturnReg) const { 459 MachineFunction &MF = MIRBuilder.getMF(); 460 const Function &F = MF.getFunction(); 461 SmallVector<CCValAssign, 16> ArgLocs; 462 463 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 464 return handleAssignments(CCInfo, ArgLocs, MIRBuilder, Args, Handler, 465 ThisReturnReg); 466 } 467 468 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { 469 if (Flags.isSExt()) 470 return TargetOpcode::G_SEXT; 471 if (Flags.isZExt()) 472 return TargetOpcode::G_ZEXT; 473 return TargetOpcode::G_ANYEXT; 474 } 475 476 bool CallLowering::handleAssignments(CCState &CCInfo, 477 SmallVectorImpl<CCValAssign> &ArgLocs, 478 MachineIRBuilder &MIRBuilder, 479 SmallVectorImpl<ArgInfo> &Args, 480 ValueHandler &Handler, 481 Register ThisReturnReg) const { 482 MachineFunction &MF = MIRBuilder.getMF(); 483 MachineRegisterInfo &MRI = MF.getRegInfo(); 484 const Function &F = MF.getFunction(); 485 const DataLayout &DL = F.getParent()->getDataLayout(); 486 487 unsigned NumArgs = Args.size(); 488 for (unsigned i = 0; i != NumArgs; ++i) { 489 EVT CurVT = EVT::getEVT(Args[i].Ty); 490 if (CurVT.isSimple() && 491 !Handler.assignArg(i, CurVT.getSimpleVT(), CurVT.getSimpleVT(), 492 CCValAssign::Full, Args[i], Args[i].Flags[0], 493 CCInfo)) 494 continue; 495 496 MVT NewVT = TLI->getRegisterTypeForCallingConv( 497 F.getContext(), CCInfo.getCallingConv(), EVT(CurVT)); 498 499 // If we need to split the type over multiple regs, check it's a scenario 500 // we currently support. 501 unsigned NumParts = TLI->getNumRegistersForCallingConv( 502 F.getContext(), CCInfo.getCallingConv(), CurVT); 503 504 if (NumParts == 1) { 505 // Try to use the register type if we couldn't assign the VT. 506 if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i], 507 Args[i].Flags[0], CCInfo)) 508 return false; 509 continue; 510 } 511 512 // For incoming arguments (physregs to vregs), we could have values in 513 // physregs (or memlocs) which we want to extract and copy to vregs. 514 // During this, we might have to deal with the LLT being split across 515 // multiple regs, so we have to record this information for later. 516 // 517 // If we have outgoing args, then we have the opposite case. We have a 518 // vreg with an LLT which we want to assign to a physical location, and 519 // we might have to record that the value has to be split later. 520 521 // We're handling an incoming arg which is split over multiple regs. 522 // E.g. passing an s128 on AArch64. 523 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 524 Args[i].Flags.clear(); 525 526 for (unsigned Part = 0; Part < NumParts; ++Part) { 527 ISD::ArgFlagsTy Flags = OrigFlags; 528 if (Part == 0) { 529 Flags.setSplit(); 530 } else { 531 Flags.setOrigAlign(Align(1)); 532 if (Part == NumParts - 1) 533 Flags.setSplitEnd(); 534 } 535 536 if (!Handler.isIncomingArgumentHandler()) { 537 // TODO: Also check if there is a valid extension that preserves the 538 // bits. However currently this call lowering doesn't support non-exact 539 // split parts, so that can't be tested. 540 if (OrigFlags.isReturned() && 541 (NumParts * NewVT.getSizeInBits() != CurVT.getSizeInBits())) { 542 Flags.setReturned(false); 543 } 544 } 545 546 Args[i].Flags.push_back(Flags); 547 if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i], 548 Args[i].Flags[Part], CCInfo)) { 549 // Still couldn't assign this smaller part type for some reason. 550 return false; 551 } 552 } 553 } 554 555 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { 556 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 557 CCValAssign &VA = ArgLocs[j]; 558 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 559 560 if (VA.needsCustom()) { 561 unsigned NumArgRegs = 562 Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j)); 563 if (!NumArgRegs) 564 return false; 565 j += NumArgRegs; 566 continue; 567 } 568 569 const EVT VAVT = VA.getValVT(); 570 const LLT NewLLT(VAVT.getSimpleVT()); 571 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 572 573 // Expected to be multiple regs for a single incoming arg. 574 // There should be Regs.size() ArgLocs per argument. 575 // This should be the same as getNumRegistersForCallingConv 576 const unsigned NumParts = Args[i].Flags.size(); 577 578 // Now split the registers into the assigned types. 579 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); 580 581 if (NumParts != 1 || NewLLT != OrigTy) { 582 // If we can't directly assign the register, we need one or more 583 // intermediate values. 584 Args[i].Regs.resize(NumParts); 585 586 // For each split register, create and assign a vreg that will store 587 // the incoming component of the larger value. These will later be 588 // merged to form the final vreg. 589 for (unsigned Part = 0; Part < NumParts; ++Part) 590 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); 591 } 592 593 const LLT VATy(VAVT.getSimpleVT()); 594 595 assert((j + (NumParts - 1)) < ArgLocs.size() && 596 "Too many regs for number of args"); 597 598 // Coerce into outgoing value types before register assignment. 599 if (!Handler.isIncomingArgumentHandler() && OrigTy != VATy) { 600 assert(Args[i].OrigRegs.size() == 1); 601 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, 602 VATy, extendOpFromFlags(Args[i].Flags[0])); 603 } 604 605 for (unsigned Part = 0; Part < NumParts; ++Part) { 606 Register ArgReg = Args[i].Regs[Part]; 607 // There should be Regs.size() ArgLocs per argument. 608 VA = ArgLocs[j + Part]; 609 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; 610 611 if (VA.isMemLoc() && !Flags.isByVal()) { 612 // Individual pieces may have been spilled to the stack and others 613 // passed in registers. 614 615 // FIXME: Use correct address space for pointer size 616 EVT LocVT = VA.getValVT(); 617 unsigned MemSize = LocVT == MVT::iPTR ? DL.getPointerSize() 618 : LocVT.getStoreSize(); 619 unsigned Offset = VA.getLocMemOffset(); 620 MachinePointerInfo MPO; 621 Register StackAddr = 622 Handler.getStackAddress(MemSize, Offset, MPO, Flags); 623 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemSize, MPO, 624 VA); 625 continue; 626 } 627 628 if (VA.isMemLoc() && Flags.isByVal()) { 629 assert(Args[i].Regs.size() == 1 && 630 "didn't expect split byval pointer"); 631 632 if (Handler.isIncomingArgumentHandler()) { 633 // We just need to copy the frame index value to the pointer. 634 MachinePointerInfo MPO; 635 Register StackAddr = Handler.getStackAddress( 636 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); 637 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); 638 } else { 639 // For outgoing byval arguments, insert the implicit copy byval 640 // implies, such that writes in the callee do not modify the caller's 641 // value. 642 uint64_t MemSize = Flags.getByValSize(); 643 int64_t Offset = VA.getLocMemOffset(); 644 645 MachinePointerInfo DstMPO; 646 Register StackAddr = 647 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); 648 649 MachinePointerInfo SrcMPO(Args[i].OrigValue); 650 if (!Args[i].OrigValue) { 651 // We still need to accurately track the stack address space if we 652 // don't know the underlying value. 653 const LLT PtrTy = MRI.getType(StackAddr); 654 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); 655 } 656 657 Align DstAlign = std::max(Flags.getNonZeroByValAlign(), 658 inferAlignFromPtrInfo(MF, DstMPO)); 659 660 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), 661 inferAlignFromPtrInfo(MF, SrcMPO)); 662 663 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], 664 DstMPO, DstAlign, SrcMPO, SrcAlign, 665 MemSize, VA); 666 } 667 continue; 668 } 669 670 assert(!VA.needsCustom() && "custom loc should have been handled already"); 671 672 if (i == 0 && ThisReturnReg.isValid() && 673 Handler.isIncomingArgumentHandler() && 674 isTypeIsValidForThisReturn(VAVT)) { 675 Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA); 676 continue; 677 } 678 679 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 680 } 681 682 // Now that all pieces have been assigned, re-pack the register typed values 683 // into the original value typed registers. 684 if (Handler.isIncomingArgumentHandler() && OrigTy != VATy) { 685 // Merge the split registers into the expected larger result vregs of 686 // the original call. 687 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 688 VATy); 689 } 690 691 j += NumParts - 1; 692 } 693 694 return true; 695 } 696 697 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 698 ArrayRef<Register> VRegs, Register DemoteReg, 699 int FI) const { 700 MachineFunction &MF = MIRBuilder.getMF(); 701 MachineRegisterInfo &MRI = MF.getRegInfo(); 702 const DataLayout &DL = MF.getDataLayout(); 703 704 SmallVector<EVT, 4> SplitVTs; 705 SmallVector<uint64_t, 4> Offsets; 706 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 707 708 assert(VRegs.size() == SplitVTs.size()); 709 710 unsigned NumValues = SplitVTs.size(); 711 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 712 Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace()); 713 LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL); 714 715 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 716 717 for (unsigned I = 0; I < NumValues; ++I) { 718 Register Addr; 719 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 720 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 721 MRI.getType(VRegs[I]).getSizeInBytes(), 722 commonAlignment(BaseAlign, Offsets[I])); 723 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 724 } 725 } 726 727 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 728 ArrayRef<Register> VRegs, 729 Register DemoteReg) const { 730 MachineFunction &MF = MIRBuilder.getMF(); 731 MachineRegisterInfo &MRI = MF.getRegInfo(); 732 const DataLayout &DL = MF.getDataLayout(); 733 734 SmallVector<EVT, 4> SplitVTs; 735 SmallVector<uint64_t, 4> Offsets; 736 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 737 738 assert(VRegs.size() == SplitVTs.size()); 739 740 unsigned NumValues = SplitVTs.size(); 741 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 742 unsigned AS = DL.getAllocaAddrSpace(); 743 LLT OffsetLLTy = 744 getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL); 745 746 MachinePointerInfo PtrInfo(AS); 747 748 for (unsigned I = 0; I < NumValues; ++I) { 749 Register Addr; 750 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 751 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 752 MRI.getType(VRegs[I]).getSizeInBytes(), 753 commonAlignment(BaseAlign, Offsets[I])); 754 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 755 } 756 } 757 758 void CallLowering::insertSRetIncomingArgument( 759 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 760 MachineRegisterInfo &MRI, const DataLayout &DL) const { 761 unsigned AS = DL.getAllocaAddrSpace(); 762 DemoteReg = MRI.createGenericVirtualRegister( 763 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 764 765 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 766 767 SmallVector<EVT, 1> ValueVTs; 768 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 769 770 // NOTE: Assume that a pointer won't get split into more than one VT. 771 assert(ValueVTs.size() == 1); 772 773 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext())); 774 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 775 DemoteArg.Flags[0].setSRet(); 776 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 777 } 778 779 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 780 const CallBase &CB, 781 CallLoweringInfo &Info) const { 782 const DataLayout &DL = MIRBuilder.getDataLayout(); 783 Type *RetTy = CB.getType(); 784 unsigned AS = DL.getAllocaAddrSpace(); 785 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 786 787 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 788 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 789 790 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 791 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS)); 792 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 793 DemoteArg.Flags[0].setSRet(); 794 795 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 796 Info.DemoteStackIndex = FI; 797 Info.DemoteRegister = DemoteReg; 798 } 799 800 bool CallLowering::checkReturn(CCState &CCInfo, 801 SmallVectorImpl<BaseArgInfo> &Outs, 802 CCAssignFn *Fn) const { 803 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 804 MVT VT = MVT::getVT(Outs[I].Ty); 805 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 806 return false; 807 } 808 return true; 809 } 810 811 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 812 AttributeList Attrs, 813 SmallVectorImpl<BaseArgInfo> &Outs, 814 const DataLayout &DL) const { 815 LLVMContext &Context = RetTy->getContext(); 816 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 817 818 SmallVector<EVT, 4> SplitVTs; 819 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 820 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 821 822 for (EVT VT : SplitVTs) { 823 unsigned NumParts = 824 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 825 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 826 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 827 828 for (unsigned I = 0; I < NumParts; ++I) { 829 Outs.emplace_back(PartTy, Flags); 830 } 831 } 832 } 833 834 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 835 const auto &F = MF.getFunction(); 836 Type *ReturnType = F.getReturnType(); 837 CallingConv::ID CallConv = F.getCallingConv(); 838 839 SmallVector<BaseArgInfo, 4> SplitArgs; 840 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 841 MF.getDataLayout()); 842 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 843 } 844 845 bool CallLowering::analyzeArgInfo(CCState &CCState, 846 SmallVectorImpl<ArgInfo> &Args, 847 CCAssignFn &AssignFnFixed, 848 CCAssignFn &AssignFnVarArg) const { 849 for (unsigned i = 0, e = Args.size(); i < e; ++i) { 850 MVT VT = MVT::getVT(Args[i].Ty); 851 CCAssignFn &Fn = Args[i].IsFixed ? AssignFnFixed : AssignFnVarArg; 852 if (Fn(i, VT, VT, CCValAssign::Full, Args[i].Flags[0], CCState)) { 853 // Bail out on anything we can't handle. 854 LLVM_DEBUG(dbgs() << "Cannot analyze " << EVT(VT).getEVTString() 855 << " (arg number = " << i << "\n"); 856 return false; 857 } 858 } 859 return true; 860 } 861 862 bool CallLowering::parametersInCSRMatch( 863 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 864 const SmallVectorImpl<CCValAssign> &OutLocs, 865 const SmallVectorImpl<ArgInfo> &OutArgs) const { 866 for (unsigned i = 0; i < OutLocs.size(); ++i) { 867 auto &ArgLoc = OutLocs[i]; 868 // If it's not a register, it's fine. 869 if (!ArgLoc.isRegLoc()) 870 continue; 871 872 MCRegister PhysReg = ArgLoc.getLocReg(); 873 874 // Only look at callee-saved registers. 875 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 876 continue; 877 878 LLVM_DEBUG( 879 dbgs() 880 << "... Call has an argument passed in a callee-saved register.\n"); 881 882 // Check if it was copied from. 883 const ArgInfo &OutInfo = OutArgs[i]; 884 885 if (OutInfo.Regs.size() > 1) { 886 LLVM_DEBUG( 887 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 888 return false; 889 } 890 891 // Check if we copy the register, walking through copies from virtual 892 // registers. Note that getDefIgnoringCopies does not ignore copies from 893 // physical registers. 894 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 895 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 896 LLVM_DEBUG( 897 dbgs() 898 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 899 return false; 900 } 901 902 // Got a copy. Verify that it's the same as the register we want. 903 Register CopyRHS = RegDef->getOperand(1).getReg(); 904 if (CopyRHS != PhysReg) { 905 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 906 "VReg, cannot tail call.\n"); 907 return false; 908 } 909 } 910 911 return true; 912 } 913 914 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 915 MachineFunction &MF, 916 SmallVectorImpl<ArgInfo> &InArgs, 917 CCAssignFn &CalleeAssignFnFixed, 918 CCAssignFn &CalleeAssignFnVarArg, 919 CCAssignFn &CallerAssignFnFixed, 920 CCAssignFn &CallerAssignFnVarArg) const { 921 const Function &F = MF.getFunction(); 922 CallingConv::ID CalleeCC = Info.CallConv; 923 CallingConv::ID CallerCC = F.getCallingConv(); 924 925 if (CallerCC == CalleeCC) 926 return true; 927 928 SmallVector<CCValAssign, 16> ArgLocs1; 929 CCState CCInfo1(CalleeCC, false, MF, ArgLocs1, F.getContext()); 930 if (!analyzeArgInfo(CCInfo1, InArgs, CalleeAssignFnFixed, 931 CalleeAssignFnVarArg)) 932 return false; 933 934 SmallVector<CCValAssign, 16> ArgLocs2; 935 CCState CCInfo2(CallerCC, false, MF, ArgLocs2, F.getContext()); 936 if (!analyzeArgInfo(CCInfo2, InArgs, CallerAssignFnFixed, 937 CalleeAssignFnVarArg)) 938 return false; 939 940 // We need the argument locations to match up exactly. If there's more in 941 // one than the other, then we are done. 942 if (ArgLocs1.size() != ArgLocs2.size()) 943 return false; 944 945 // Make sure that each location is passed in exactly the same way. 946 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 947 const CCValAssign &Loc1 = ArgLocs1[i]; 948 const CCValAssign &Loc2 = ArgLocs2[i]; 949 950 // We need both of them to be the same. So if one is a register and one 951 // isn't, we're done. 952 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 953 return false; 954 955 if (Loc1.isRegLoc()) { 956 // If they don't have the same register location, we're done. 957 if (Loc1.getLocReg() != Loc2.getLocReg()) 958 return false; 959 960 // They matched, so we can move to the next ArgLoc. 961 continue; 962 } 963 964 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 965 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 966 return false; 967 } 968 969 return true; 970 } 971 972 void CallLowering::ValueHandler::copyArgumentMemory( 973 const ArgInfo &Arg, Register DstPtr, Register SrcPtr, 974 const MachinePointerInfo &DstPtrInfo, Align DstAlign, 975 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, 976 CCValAssign &VA) const { 977 MachineFunction &MF = MIRBuilder.getMF(); 978 MachineMemOperand *SrcMMO = MF.getMachineMemOperand( 979 SrcPtrInfo, 980 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, 981 SrcAlign); 982 983 MachineMemOperand *DstMMO = MF.getMachineMemOperand( 984 DstPtrInfo, 985 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, 986 MemSize, DstAlign); 987 988 const LLT PtrTy = MRI.getType(DstPtr); 989 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); 990 991 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); 992 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); 993 } 994 995 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 996 CCValAssign &VA, 997 unsigned MaxSizeBits) { 998 LLT LocTy{VA.getLocVT()}; 999 LLT ValTy = MRI.getType(ValReg); 1000 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 1001 return ValReg; 1002 1003 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 1004 if (MaxSizeBits <= ValTy.getSizeInBits()) 1005 return ValReg; 1006 LocTy = LLT::scalar(MaxSizeBits); 1007 } 1008 1009 switch (VA.getLocInfo()) { 1010 default: break; 1011 case CCValAssign::Full: 1012 case CCValAssign::BCvt: 1013 // FIXME: bitconverting between vector types may or may not be a 1014 // nop in big-endian situations. 1015 return ValReg; 1016 case CCValAssign::AExt: { 1017 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 1018 return MIB.getReg(0); 1019 } 1020 case CCValAssign::SExt: { 1021 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1022 MIRBuilder.buildSExt(NewReg, ValReg); 1023 return NewReg; 1024 } 1025 case CCValAssign::ZExt: { 1026 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1027 MIRBuilder.buildZExt(NewReg, ValReg); 1028 return NewReg; 1029 } 1030 } 1031 llvm_unreachable("unable to extend register"); 1032 } 1033 1034 void CallLowering::ValueHandler::anchor() {} 1035 1036 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA, 1037 Register SrcReg, 1038 LLT NarrowTy) { 1039 switch (VA.getLocInfo()) { 1040 case CCValAssign::LocInfo::ZExt: { 1041 return MIRBuilder 1042 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1043 NarrowTy.getScalarSizeInBits()) 1044 .getReg(0); 1045 } 1046 case CCValAssign::LocInfo::SExt: { 1047 return MIRBuilder 1048 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1049 NarrowTy.getScalarSizeInBits()) 1050 .getReg(0); 1051 break; 1052 } 1053 default: 1054 return SrcReg; 1055 } 1056 } 1057 1058 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg, 1059 Register PhysReg, 1060 CCValAssign &VA) { 1061 const LLT LocTy(VA.getLocVT()); 1062 const LLT ValTy = MRI.getType(ValVReg); 1063 1064 if (ValTy.getSizeInBits() == LocTy.getSizeInBits()) { 1065 MIRBuilder.buildCopy(ValVReg, PhysReg); 1066 return; 1067 } 1068 1069 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); 1070 auto Hint = buildExtensionHint(VA, Copy.getReg(0), ValTy); 1071 MIRBuilder.buildTrunc(ValVReg, Hint); 1072 } 1073