1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
16 #include "llvm/CodeGen/GlobalISel/Utils.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/MachineOperand.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Target/TargetMachine.h"
26 
27 #define DEBUG_TYPE "call-lowering"
28 
29 using namespace llvm;
30 
31 void CallLowering::anchor() {}
32 
33 /// Helper function which updates \p Flags when \p AttrFn returns true.
34 static void
35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
36                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
37   if (AttrFn(Attribute::SExt))
38     Flags.setSExt();
39   if (AttrFn(Attribute::ZExt))
40     Flags.setZExt();
41   if (AttrFn(Attribute::InReg))
42     Flags.setInReg();
43   if (AttrFn(Attribute::StructRet))
44     Flags.setSRet();
45   if (AttrFn(Attribute::Nest))
46     Flags.setNest();
47   if (AttrFn(Attribute::ByVal))
48     Flags.setByVal();
49   if (AttrFn(Attribute::Preallocated))
50     Flags.setPreallocated();
51   if (AttrFn(Attribute::InAlloca))
52     Flags.setInAlloca();
53   if (AttrFn(Attribute::Returned))
54     Flags.setReturned();
55   if (AttrFn(Attribute::SwiftSelf))
56     Flags.setSwiftSelf();
57   if (AttrFn(Attribute::SwiftAsync))
58     Flags.setSwiftAsync();
59   if (AttrFn(Attribute::SwiftError))
60     Flags.setSwiftError();
61 }
62 
63 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
64                                                      unsigned ArgIdx) const {
65   ISD::ArgFlagsTy Flags;
66   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
67     return Call.paramHasAttr(ArgIdx, Attr);
68   });
69   return Flags;
70 }
71 
72 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
73                                              const AttributeList &Attrs,
74                                              unsigned OpIdx) const {
75   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
76     return Attrs.hasAttribute(OpIdx, Attr);
77   });
78 }
79 
80 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
81                              ArrayRef<Register> ResRegs,
82                              ArrayRef<ArrayRef<Register>> ArgRegs,
83                              Register SwiftErrorVReg,
84                              std::function<unsigned()> GetCalleeReg) const {
85   CallLoweringInfo Info;
86   const DataLayout &DL = MIRBuilder.getDataLayout();
87   MachineFunction &MF = MIRBuilder.getMF();
88   bool CanBeTailCalled = CB.isTailCall() &&
89                          isInTailCallPosition(CB, MF.getTarget()) &&
90                          (MF.getFunction()
91                               .getFnAttribute("disable-tail-calls")
92                               .getValueAsString() != "true");
93 
94   CallingConv::ID CallConv = CB.getCallingConv();
95   Type *RetTy = CB.getType();
96   bool IsVarArg = CB.getFunctionType()->isVarArg();
97 
98   SmallVector<BaseArgInfo, 4> SplitArgs;
99   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
100   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
101 
102   if (!Info.CanLowerReturn) {
103     // Callee requires sret demotion.
104     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
105 
106     // The sret demotion isn't compatible with tail-calls, since the sret
107     // argument points into the caller's stack frame.
108     CanBeTailCalled = false;
109   }
110 
111   // First step is to marshall all the function's parameters into the correct
112   // physregs and memory locations. Gather the sequence of argument types that
113   // we'll pass to the assigner function.
114   unsigned i = 0;
115   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
116   for (auto &Arg : CB.args()) {
117     ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
118                     i < NumFixedArgs};
119     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
120 
121     // If we have an explicit sret argument that is an Instruction, (i.e., it
122     // might point to function-local memory), we can't meaningfully tail-call.
123     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
124       CanBeTailCalled = false;
125 
126     Info.OrigArgs.push_back(OrigArg);
127     ++i;
128   }
129 
130   // Try looking through a bitcast from one function type to another.
131   // Commonly happens with calls to objc_msgSend().
132   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
133   if (const Function *F = dyn_cast<Function>(CalleeV))
134     Info.Callee = MachineOperand::CreateGA(F, 0);
135   else
136     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
137 
138   Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}};
139   if (!Info.OrigRet.Ty->isVoidTy())
140     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
141 
142   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
143   Info.CallConv = CallConv;
144   Info.SwiftErrorVReg = SwiftErrorVReg;
145   Info.IsMustTailCall = CB.isMustTailCall();
146   Info.IsTailCall = CanBeTailCalled;
147   Info.IsVarArg = IsVarArg;
148   return lowerCall(MIRBuilder, Info);
149 }
150 
151 template <typename FuncInfoTy>
152 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
153                                const DataLayout &DL,
154                                const FuncInfoTy &FuncInfo) const {
155   auto &Flags = Arg.Flags[0];
156   const AttributeList &Attrs = FuncInfo.getAttributes();
157   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
158 
159   PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
160   if (PtrTy) {
161     Flags.setPointer();
162     Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
163   }
164 
165   Align MemAlign = DL.getABITypeAlign(Arg.Ty);
166   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
167     assert(OpIdx >= AttributeList::FirstArgIndex);
168     Type *ElementTy = PtrTy->getElementType();
169 
170     auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType();
171     Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy));
172 
173     // For ByVal, alignment should be passed from FE.  BE will guess if
174     // this info is not there but there are cases it cannot get right.
175     if (auto ParamAlign =
176             FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
177       MemAlign = *ParamAlign;
178     else if ((ParamAlign =
179                   FuncInfo.getParamAlign(OpIdx - AttributeList::FirstArgIndex)))
180       MemAlign = *ParamAlign;
181     else
182       MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
183   } else if (OpIdx >= AttributeList::FirstArgIndex) {
184     if (auto ParamAlign =
185             FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
186       MemAlign = *ParamAlign;
187   }
188   Flags.setMemAlign(MemAlign);
189   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
190 
191   // Don't try to use the returned attribute if the argument is marked as
192   // swiftself, since it won't be passed in x0.
193   if (Flags.isSwiftSelf())
194     Flags.setReturned(false);
195 }
196 
197 template void
198 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
199                                     const DataLayout &DL,
200                                     const Function &FuncInfo) const;
201 
202 template void
203 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
204                                     const DataLayout &DL,
205                                     const CallBase &FuncInfo) const;
206 
207 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
208                                      SmallVectorImpl<ArgInfo> &SplitArgs,
209                                      const DataLayout &DL,
210                                      CallingConv::ID CallConv,
211                                      SmallVectorImpl<uint64_t> *Offsets) const {
212   LLVMContext &Ctx = OrigArg.Ty->getContext();
213 
214   SmallVector<EVT, 4> SplitVTs;
215   ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
216 
217   if (SplitVTs.size() == 0)
218     return;
219 
220   if (SplitVTs.size() == 1) {
221     // No splitting to do, but we want to replace the original type (e.g. [1 x
222     // double] -> double).
223     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
224                            OrigArg.OrigArgIndex, OrigArg.Flags[0],
225                            OrigArg.IsFixed, OrigArg.OrigValue);
226     return;
227   }
228 
229   // Create one ArgInfo for each virtual register in the original ArgInfo.
230   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
231 
232   bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
233       OrigArg.Ty, CallConv, false, DL);
234   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
235     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
236     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
237                            OrigArg.Flags[0], OrigArg.IsFixed);
238     if (NeedsRegBlock)
239       SplitArgs.back().Flags[0].setInConsecutiveRegs();
240   }
241 
242   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
243 }
244 
245 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
246 static MachineInstrBuilder
247 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
248                             ArrayRef<Register> SrcRegs) {
249   MachineRegisterInfo &MRI = *B.getMRI();
250   LLT LLTy = MRI.getType(DstRegs[0]);
251   LLT PartLLT = MRI.getType(SrcRegs[0]);
252 
253   // Deal with v3s16 split into v2s16
254   LLT LCMTy = getLCMType(LLTy, PartLLT);
255   if (LCMTy == LLTy) {
256     // Common case where no padding is needed.
257     assert(DstRegs.size() == 1);
258     return B.buildConcatVectors(DstRegs[0], SrcRegs);
259   }
260 
261   // We need to create an unmerge to the result registers, which may require
262   // widening the original value.
263   Register UnmergeSrcReg;
264   if (LCMTy != PartLLT) {
265     // e.g. A <3 x s16> value was split to <2 x s16>
266     // %register_value0:_(<2 x s16>)
267     // %register_value1:_(<2 x s16>)
268     // %undef:_(<2 x s16>) = G_IMPLICIT_DEF
269     // %concat:_<6 x s16>) = G_CONCAT_VECTORS %reg_value0, %reg_value1, %undef
270     // %dst_reg:_(<3 x s16>), %dead:_(<3 x s16>) = G_UNMERGE_VALUES %concat
271     const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
272     Register Undef = B.buildUndef(PartLLT).getReg(0);
273 
274     // Build vector of undefs.
275     SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);
276 
277     // Replace the first sources with the real registers.
278     std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());
279     UnmergeSrcReg = B.buildConcatVectors(LCMTy, WidenedSrcs).getReg(0);
280   } else {
281     // We don't need to widen anything if we're extracting a scalar which was
282     // promoted to a vector e.g. s8 -> v4s8 -> s8
283     assert(SrcRegs.size() == 1);
284     UnmergeSrcReg = SrcRegs[0];
285   }
286 
287   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
288 
289   SmallVector<Register, 8> PadDstRegs(NumDst);
290   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
291 
292   // Create the excess dead defs for the unmerge.
293   for (int I = DstRegs.size(); I != NumDst; ++I)
294     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
295 
296   return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
297 }
298 
299 /// Create a sequence of instructions to combine pieces split into register
300 /// typed values to the original IR value. \p OrigRegs contains the destination
301 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
302 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
303 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
304                               ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
305                               const ISD::ArgFlagsTy Flags) {
306   MachineRegisterInfo &MRI = *B.getMRI();
307 
308   if (PartLLT == LLTy) {
309     // We should have avoided introducing a new virtual register, and just
310     // directly assigned here.
311     assert(OrigRegs[0] == Regs[0]);
312     return;
313   }
314 
315   if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
316       Regs.size() == 1) {
317     B.buildBitcast(OrigRegs[0], Regs[0]);
318     return;
319   }
320 
321   // A vector PartLLT needs extending to LLTy's element size.
322   // E.g. <2 x s64> = G_SEXT <2 x s32>.
323   if (PartLLT.isVector() == LLTy.isVector() &&
324       PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
325       (!PartLLT.isVector() ||
326        PartLLT.getNumElements() == LLTy.getNumElements()) &&
327       OrigRegs.size() == 1 && Regs.size() == 1) {
328     Register SrcReg = Regs[0];
329 
330     LLT LocTy = MRI.getType(SrcReg);
331 
332     if (Flags.isSExt()) {
333       SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
334                    .getReg(0);
335     } else if (Flags.isZExt()) {
336       SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
337                    .getReg(0);
338     }
339 
340     // Sometimes pointers are passed zero extended.
341     LLT OrigTy = MRI.getType(OrigRegs[0]);
342     if (OrigTy.isPointer()) {
343       LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
344       B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
345       return;
346     }
347 
348     B.buildTrunc(OrigRegs[0], SrcReg);
349     return;
350   }
351 
352   if (!LLTy.isVector() && !PartLLT.isVector()) {
353     assert(OrigRegs.size() == 1);
354     LLT OrigTy = MRI.getType(OrigRegs[0]);
355 
356     unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size();
357     if (SrcSize == OrigTy.getSizeInBits())
358       B.buildMerge(OrigRegs[0], Regs);
359     else {
360       auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
361       B.buildTrunc(OrigRegs[0], Widened);
362     }
363 
364     return;
365   }
366 
367   if (PartLLT.isVector()) {
368     assert(OrigRegs.size() == 1);
369     SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
370 
371     // If PartLLT is a mismatched vector in both number of elements and element
372     // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
373     // have the same elt type, i.e. v4s32.
374     if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() &&
375         PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
376         Regs.size() == 1) {
377       LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
378                       .changeElementCount(PartLLT.getElementCount() * 2);
379       CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
380       PartLLT = NewTy;
381     }
382 
383     if (LLTy.getScalarType() == PartLLT.getElementType()) {
384       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
385     } else {
386       unsigned I = 0;
387       LLT GCDTy = getGCDType(LLTy, PartLLT);
388 
389       // We are both splitting a vector, and bitcasting its element types. Cast
390       // the source pieces into the appropriate number of pieces with the result
391       // element type.
392       for (Register SrcReg : CastRegs)
393         CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
394       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
395     }
396 
397     return;
398   }
399 
400   assert(LLTy.isVector() && !PartLLT.isVector());
401 
402   LLT DstEltTy = LLTy.getElementType();
403 
404   // Pointer information was discarded. We'll need to coerce some register types
405   // to avoid violating type constraints.
406   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
407 
408   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
409 
410   if (DstEltTy == PartLLT) {
411     // Vector was trivially scalarized.
412 
413     if (RealDstEltTy.isPointer()) {
414       for (Register Reg : Regs)
415         MRI.setType(Reg, RealDstEltTy);
416     }
417 
418     B.buildBuildVector(OrigRegs[0], Regs);
419   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
420     // Deal with vector with 64-bit elements decomposed to 32-bit
421     // registers. Need to create intermediate 64-bit elements.
422     SmallVector<Register, 8> EltMerges;
423     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
424 
425     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
426 
427     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
428       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
429       // Fix the type in case this is really a vector of pointers.
430       MRI.setType(Merge.getReg(0), RealDstEltTy);
431       EltMerges.push_back(Merge.getReg(0));
432       Regs = Regs.drop_front(PartsPerElt);
433     }
434 
435     B.buildBuildVector(OrigRegs[0], EltMerges);
436   } else {
437     // Vector was split, and elements promoted to a wider type.
438     // FIXME: Should handle floating point promotions.
439     LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT);
440     auto BV = B.buildBuildVector(BVType, Regs);
441     B.buildTrunc(OrigRegs[0], BV);
442   }
443 }
444 
445 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
446 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
447 /// contain the type of scalar value extension if necessary.
448 ///
449 /// This is used for outgoing values (vregs to physregs)
450 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
451                             Register SrcReg, LLT SrcTy, LLT PartTy,
452                             unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
453   // We could just insert a regular copy, but this is unreachable at the moment.
454   assert(SrcTy != PartTy && "identical part types shouldn't reach here");
455 
456   const unsigned PartSize = PartTy.getSizeInBits();
457 
458   if (PartTy.isVector() == SrcTy.isVector() &&
459       PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
460     assert(DstRegs.size() == 1);
461     B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
462     return;
463   }
464 
465   if (SrcTy.isVector() && !PartTy.isVector() &&
466       PartSize > SrcTy.getElementType().getSizeInBits()) {
467     // Vector was scalarized, and the elements extended.
468     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
469     for (int i = 0, e = DstRegs.size(); i != e; ++i)
470       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
471     return;
472   }
473 
474   LLT GCDTy = getGCDType(SrcTy, PartTy);
475   if (GCDTy == PartTy) {
476     // If this already evenly divisible, we can create a simple unmerge.
477     B.buildUnmerge(DstRegs, SrcReg);
478     return;
479   }
480 
481   MachineRegisterInfo &MRI = *B.getMRI();
482   LLT DstTy = MRI.getType(DstRegs[0]);
483   LLT LCMTy = getLCMType(SrcTy, PartTy);
484 
485   const unsigned DstSize = DstTy.getSizeInBits();
486   const unsigned SrcSize = SrcTy.getSizeInBits();
487   unsigned CoveringSize = LCMTy.getSizeInBits();
488 
489   Register UnmergeSrc = SrcReg;
490 
491   if (CoveringSize != SrcSize) {
492     // For scalars, it's common to be able to use a simple extension.
493     if (SrcTy.isScalar() && DstTy.isScalar()) {
494       CoveringSize = alignTo(SrcSize, DstSize);
495       LLT CoverTy = LLT::scalar(CoveringSize);
496       UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
497     } else {
498       // Widen to the common type.
499       // FIXME: This should respect the extend type
500       Register Undef = B.buildUndef(SrcTy).getReg(0);
501       SmallVector<Register, 8> MergeParts(1, SrcReg);
502       for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
503         MergeParts.push_back(Undef);
504       UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
505     }
506   }
507 
508   // Unmerge to the original registers and pad with dead defs.
509   SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end());
510   for (unsigned Size = DstSize * DstRegs.size(); Size != CoveringSize;
511        Size += DstSize) {
512     UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy));
513   }
514 
515   B.buildUnmerge(UnmergeResults, UnmergeSrc);
516 }
517 
518 bool CallLowering::determineAndHandleAssignments(
519     ValueHandler &Handler, ValueAssigner &Assigner,
520     SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
521     CallingConv::ID CallConv, bool IsVarArg, Register ThisReturnReg) const {
522   MachineFunction &MF = MIRBuilder.getMF();
523   const Function &F = MF.getFunction();
524   SmallVector<CCValAssign, 16> ArgLocs;
525 
526   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
527   if (!determineAssignments(Assigner, Args, CCInfo))
528     return false;
529 
530   return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
531                            ThisReturnReg);
532 }
533 
534 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
535   if (Flags.isSExt())
536     return TargetOpcode::G_SEXT;
537   if (Flags.isZExt())
538     return TargetOpcode::G_ZEXT;
539   return TargetOpcode::G_ANYEXT;
540 }
541 
542 bool CallLowering::determineAssignments(ValueAssigner &Assigner,
543                                         SmallVectorImpl<ArgInfo> &Args,
544                                         CCState &CCInfo) const {
545   LLVMContext &Ctx = CCInfo.getContext();
546   const CallingConv::ID CallConv = CCInfo.getCallingConv();
547 
548   unsigned NumArgs = Args.size();
549   for (unsigned i = 0; i != NumArgs; ++i) {
550     EVT CurVT = EVT::getEVT(Args[i].Ty);
551 
552     MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
553 
554     // If we need to split the type over multiple regs, check it's a scenario
555     // we currently support.
556     unsigned NumParts =
557         TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
558 
559     if (NumParts == 1) {
560       // Try to use the register type if we couldn't assign the VT.
561       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
562                              Args[i].Flags[0], CCInfo))
563         return false;
564       continue;
565     }
566 
567     // For incoming arguments (physregs to vregs), we could have values in
568     // physregs (or memlocs) which we want to extract and copy to vregs.
569     // During this, we might have to deal with the LLT being split across
570     // multiple regs, so we have to record this information for later.
571     //
572     // If we have outgoing args, then we have the opposite case. We have a
573     // vreg with an LLT which we want to assign to a physical location, and
574     // we might have to record that the value has to be split later.
575 
576     // We're handling an incoming arg which is split over multiple regs.
577     // E.g. passing an s128 on AArch64.
578     ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
579     Args[i].Flags.clear();
580 
581     for (unsigned Part = 0; Part < NumParts; ++Part) {
582       ISD::ArgFlagsTy Flags = OrigFlags;
583       if (Part == 0) {
584         Flags.setSplit();
585       } else {
586         Flags.setOrigAlign(Align(1));
587         if (Part == NumParts - 1)
588           Flags.setSplitEnd();
589       }
590 
591       if (!Assigner.isIncomingArgumentHandler()) {
592         // TODO: Also check if there is a valid extension that preserves the
593         // bits. However currently this call lowering doesn't support non-exact
594         // split parts, so that can't be tested.
595         if (OrigFlags.isReturned() &&
596             (NumParts * NewVT.getSizeInBits() != CurVT.getSizeInBits())) {
597           Flags.setReturned(false);
598         }
599       }
600 
601       Args[i].Flags.push_back(Flags);
602       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
603                              Args[i].Flags[Part], CCInfo)) {
604         // Still couldn't assign this smaller part type for some reason.
605         return false;
606       }
607     }
608   }
609 
610   return true;
611 }
612 
613 bool CallLowering::handleAssignments(ValueHandler &Handler,
614                                      SmallVectorImpl<ArgInfo> &Args,
615                                      CCState &CCInfo,
616                                      SmallVectorImpl<CCValAssign> &ArgLocs,
617                                      MachineIRBuilder &MIRBuilder,
618                                      Register ThisReturnReg) const {
619   MachineFunction &MF = MIRBuilder.getMF();
620   MachineRegisterInfo &MRI = MF.getRegInfo();
621   const Function &F = MF.getFunction();
622   const DataLayout &DL = F.getParent()->getDataLayout();
623 
624   const unsigned NumArgs = Args.size();
625 
626   for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
627     assert(j < ArgLocs.size() && "Skipped too many arg locs");
628     CCValAssign &VA = ArgLocs[j];
629     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
630 
631     if (VA.needsCustom()) {
632       unsigned NumArgRegs =
633           Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j));
634       if (!NumArgRegs)
635         return false;
636       j += NumArgRegs;
637       continue;
638     }
639 
640     const MVT ValVT = VA.getValVT();
641     const MVT LocVT = VA.getLocVT();
642 
643     const LLT LocTy(LocVT);
644     const LLT ValTy(ValVT);
645     const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
646     const EVT OrigVT = EVT::getEVT(Args[i].Ty);
647     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
648 
649     // Expected to be multiple regs for a single incoming arg.
650     // There should be Regs.size() ArgLocs per argument.
651     // This should be the same as getNumRegistersForCallingConv
652     const unsigned NumParts = Args[i].Flags.size();
653 
654     // Now split the registers into the assigned types.
655     Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
656 
657     if (NumParts != 1 || NewLLT != OrigTy) {
658       // If we can't directly assign the register, we need one or more
659       // intermediate values.
660       Args[i].Regs.resize(NumParts);
661 
662       // For each split register, create and assign a vreg that will store
663       // the incoming component of the larger value. These will later be
664       // merged to form the final vreg.
665       for (unsigned Part = 0; Part < NumParts; ++Part)
666         Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
667     }
668 
669     assert((j + (NumParts - 1)) < ArgLocs.size() &&
670            "Too many regs for number of args");
671 
672     // Coerce into outgoing value types before register assignment.
673     if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
674       assert(Args[i].OrigRegs.size() == 1);
675       buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
676                       ValTy, extendOpFromFlags(Args[i].Flags[0]));
677     }
678 
679     for (unsigned Part = 0; Part < NumParts; ++Part) {
680       Register ArgReg = Args[i].Regs[Part];
681       // There should be Regs.size() ArgLocs per argument.
682       VA = ArgLocs[j + Part];
683       const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
684 
685       if (VA.isMemLoc() && !Flags.isByVal()) {
686         // Individual pieces may have been spilled to the stack and others
687         // passed in registers.
688 
689         // TODO: The memory size may be larger than the value we need to
690         // store. We may need to adjust the offset for big endian targets.
691         LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
692 
693         MachinePointerInfo MPO;
694         Register StackAddr = Handler.getStackAddress(
695             MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags);
696 
697         Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
698         continue;
699       }
700 
701       if (VA.isMemLoc() && Flags.isByVal()) {
702         assert(Args[i].Regs.size() == 1 &&
703                "didn't expect split byval pointer");
704 
705         if (Handler.isIncomingArgumentHandler()) {
706           // We just need to copy the frame index value to the pointer.
707           MachinePointerInfo MPO;
708           Register StackAddr = Handler.getStackAddress(
709               Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
710           MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
711         } else {
712           // For outgoing byval arguments, insert the implicit copy byval
713           // implies, such that writes in the callee do not modify the caller's
714           // value.
715           uint64_t MemSize = Flags.getByValSize();
716           int64_t Offset = VA.getLocMemOffset();
717 
718           MachinePointerInfo DstMPO;
719           Register StackAddr =
720               Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
721 
722           MachinePointerInfo SrcMPO(Args[i].OrigValue);
723           if (!Args[i].OrigValue) {
724             // We still need to accurately track the stack address space if we
725             // don't know the underlying value.
726             const LLT PtrTy = MRI.getType(StackAddr);
727             SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
728           }
729 
730           Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
731                                     inferAlignFromPtrInfo(MF, DstMPO));
732 
733           Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
734                                     inferAlignFromPtrInfo(MF, SrcMPO));
735 
736           Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
737                                      DstMPO, DstAlign, SrcMPO, SrcAlign,
738                                      MemSize, VA);
739         }
740         continue;
741       }
742 
743       assert(!VA.needsCustom() && "custom loc should have been handled already");
744 
745       if (i == 0 && ThisReturnReg.isValid() &&
746           Handler.isIncomingArgumentHandler() &&
747           isTypeIsValidForThisReturn(ValVT)) {
748         Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA);
749         continue;
750       }
751 
752       Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
753     }
754 
755     // Now that all pieces have been assigned, re-pack the register typed values
756     // into the original value typed registers.
757     if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
758       // Merge the split registers into the expected larger result vregs of
759       // the original call.
760       buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
761                         LocTy, Args[i].Flags[0]);
762     }
763 
764     j += NumParts - 1;
765   }
766 
767   return true;
768 }
769 
770 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
771                                    ArrayRef<Register> VRegs, Register DemoteReg,
772                                    int FI) const {
773   MachineFunction &MF = MIRBuilder.getMF();
774   MachineRegisterInfo &MRI = MF.getRegInfo();
775   const DataLayout &DL = MF.getDataLayout();
776 
777   SmallVector<EVT, 4> SplitVTs;
778   SmallVector<uint64_t, 4> Offsets;
779   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
780 
781   assert(VRegs.size() == SplitVTs.size());
782 
783   unsigned NumValues = SplitVTs.size();
784   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
785   Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
786   LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
787 
788   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
789 
790   for (unsigned I = 0; I < NumValues; ++I) {
791     Register Addr;
792     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
793     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
794                                         MRI.getType(VRegs[I]).getSizeInBytes(),
795                                         commonAlignment(BaseAlign, Offsets[I]));
796     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
797   }
798 }
799 
800 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
801                                     ArrayRef<Register> VRegs,
802                                     Register DemoteReg) const {
803   MachineFunction &MF = MIRBuilder.getMF();
804   MachineRegisterInfo &MRI = MF.getRegInfo();
805   const DataLayout &DL = MF.getDataLayout();
806 
807   SmallVector<EVT, 4> SplitVTs;
808   SmallVector<uint64_t, 4> Offsets;
809   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
810 
811   assert(VRegs.size() == SplitVTs.size());
812 
813   unsigned NumValues = SplitVTs.size();
814   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
815   unsigned AS = DL.getAllocaAddrSpace();
816   LLT OffsetLLTy =
817       getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
818 
819   MachinePointerInfo PtrInfo(AS);
820 
821   for (unsigned I = 0; I < NumValues; ++I) {
822     Register Addr;
823     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
824     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
825                                         MRI.getType(VRegs[I]).getSizeInBytes(),
826                                         commonAlignment(BaseAlign, Offsets[I]));
827     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
828   }
829 }
830 
831 void CallLowering::insertSRetIncomingArgument(
832     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
833     MachineRegisterInfo &MRI, const DataLayout &DL) const {
834   unsigned AS = DL.getAllocaAddrSpace();
835   DemoteReg = MRI.createGenericVirtualRegister(
836       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
837 
838   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
839 
840   SmallVector<EVT, 1> ValueVTs;
841   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
842 
843   // NOTE: Assume that a pointer won't get split into more than one VT.
844   assert(ValueVTs.size() == 1);
845 
846   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
847                     ArgInfo::NoArgIndex);
848   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
849   DemoteArg.Flags[0].setSRet();
850   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
851 }
852 
853 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
854                                               const CallBase &CB,
855                                               CallLoweringInfo &Info) const {
856   const DataLayout &DL = MIRBuilder.getDataLayout();
857   Type *RetTy = CB.getType();
858   unsigned AS = DL.getAllocaAddrSpace();
859   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
860 
861   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
862       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
863 
864   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
865   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
866                     ArgInfo::NoArgIndex);
867   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
868   DemoteArg.Flags[0].setSRet();
869 
870   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
871   Info.DemoteStackIndex = FI;
872   Info.DemoteRegister = DemoteReg;
873 }
874 
875 bool CallLowering::checkReturn(CCState &CCInfo,
876                                SmallVectorImpl<BaseArgInfo> &Outs,
877                                CCAssignFn *Fn) const {
878   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
879     MVT VT = MVT::getVT(Outs[I].Ty);
880     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
881       return false;
882   }
883   return true;
884 }
885 
886 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
887                                  AttributeList Attrs,
888                                  SmallVectorImpl<BaseArgInfo> &Outs,
889                                  const DataLayout &DL) const {
890   LLVMContext &Context = RetTy->getContext();
891   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
892 
893   SmallVector<EVT, 4> SplitVTs;
894   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
895   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
896 
897   for (EVT VT : SplitVTs) {
898     unsigned NumParts =
899         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
900     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
901     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
902 
903     for (unsigned I = 0; I < NumParts; ++I) {
904       Outs.emplace_back(PartTy, Flags);
905     }
906   }
907 }
908 
909 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
910   const auto &F = MF.getFunction();
911   Type *ReturnType = F.getReturnType();
912   CallingConv::ID CallConv = F.getCallingConv();
913 
914   SmallVector<BaseArgInfo, 4> SplitArgs;
915   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
916                 MF.getDataLayout());
917   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
918 }
919 
920 bool CallLowering::parametersInCSRMatch(
921     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
922     const SmallVectorImpl<CCValAssign> &OutLocs,
923     const SmallVectorImpl<ArgInfo> &OutArgs) const {
924   for (unsigned i = 0; i < OutLocs.size(); ++i) {
925     auto &ArgLoc = OutLocs[i];
926     // If it's not a register, it's fine.
927     if (!ArgLoc.isRegLoc())
928       continue;
929 
930     MCRegister PhysReg = ArgLoc.getLocReg();
931 
932     // Only look at callee-saved registers.
933     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
934       continue;
935 
936     LLVM_DEBUG(
937         dbgs()
938         << "... Call has an argument passed in a callee-saved register.\n");
939 
940     // Check if it was copied from.
941     const ArgInfo &OutInfo = OutArgs[i];
942 
943     if (OutInfo.Regs.size() > 1) {
944       LLVM_DEBUG(
945           dbgs() << "... Cannot handle arguments in multiple registers.\n");
946       return false;
947     }
948 
949     // Check if we copy the register, walking through copies from virtual
950     // registers. Note that getDefIgnoringCopies does not ignore copies from
951     // physical registers.
952     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
953     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
954       LLVM_DEBUG(
955           dbgs()
956           << "... Parameter was not copied into a VReg, cannot tail call.\n");
957       return false;
958     }
959 
960     // Got a copy. Verify that it's the same as the register we want.
961     Register CopyRHS = RegDef->getOperand(1).getReg();
962     if (CopyRHS != PhysReg) {
963       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
964                            "VReg, cannot tail call.\n");
965       return false;
966     }
967   }
968 
969   return true;
970 }
971 
972 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
973                                      MachineFunction &MF,
974                                      SmallVectorImpl<ArgInfo> &InArgs,
975                                      ValueAssigner &CalleeAssigner,
976                                      ValueAssigner &CallerAssigner) const {
977   const Function &F = MF.getFunction();
978   CallingConv::ID CalleeCC = Info.CallConv;
979   CallingConv::ID CallerCC = F.getCallingConv();
980 
981   if (CallerCC == CalleeCC)
982     return true;
983 
984   SmallVector<CCValAssign, 16> ArgLocs1;
985   CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
986   if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
987     return false;
988 
989   SmallVector<CCValAssign, 16> ArgLocs2;
990   CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
991   if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
992     return false;
993 
994   // We need the argument locations to match up exactly. If there's more in
995   // one than the other, then we are done.
996   if (ArgLocs1.size() != ArgLocs2.size())
997     return false;
998 
999   // Make sure that each location is passed in exactly the same way.
1000   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
1001     const CCValAssign &Loc1 = ArgLocs1[i];
1002     const CCValAssign &Loc2 = ArgLocs2[i];
1003 
1004     // We need both of them to be the same. So if one is a register and one
1005     // isn't, we're done.
1006     if (Loc1.isRegLoc() != Loc2.isRegLoc())
1007       return false;
1008 
1009     if (Loc1.isRegLoc()) {
1010       // If they don't have the same register location, we're done.
1011       if (Loc1.getLocReg() != Loc2.getLocReg())
1012         return false;
1013 
1014       // They matched, so we can move to the next ArgLoc.
1015       continue;
1016     }
1017 
1018     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1019     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1020       return false;
1021   }
1022 
1023   return true;
1024 }
1025 
1026 LLT CallLowering::ValueHandler::getStackValueStoreType(
1027     const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1028   const MVT ValVT = VA.getValVT();
1029   if (ValVT != MVT::iPTR) {
1030     LLT ValTy(ValVT);
1031 
1032     // We lost the pointeriness going through CCValAssign, so try to restore it
1033     // based on the flags.
1034     if (Flags.isPointer()) {
1035       LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1036                                ValTy.getScalarSizeInBits());
1037       if (ValVT.isVector())
1038         return LLT::vector(ValTy.getElementCount(), PtrTy);
1039       return PtrTy;
1040     }
1041 
1042     return ValTy;
1043   }
1044 
1045   unsigned AddrSpace = Flags.getPointerAddrSpace();
1046   return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1047 }
1048 
1049 void CallLowering::ValueHandler::copyArgumentMemory(
1050     const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1051     const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1052     const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1053     CCValAssign &VA) const {
1054   MachineFunction &MF = MIRBuilder.getMF();
1055   MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1056       SrcPtrInfo,
1057       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1058       SrcAlign);
1059 
1060   MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1061       DstPtrInfo,
1062       MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1063       MemSize, DstAlign);
1064 
1065   const LLT PtrTy = MRI.getType(DstPtr);
1066   const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1067 
1068   auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1069   MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1070 }
1071 
1072 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1073                                                     CCValAssign &VA,
1074                                                     unsigned MaxSizeBits) {
1075   LLT LocTy{VA.getLocVT()};
1076   LLT ValTy{VA.getValVT()};
1077 
1078   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1079     return ValReg;
1080 
1081   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1082     if (MaxSizeBits <= ValTy.getSizeInBits())
1083       return ValReg;
1084     LocTy = LLT::scalar(MaxSizeBits);
1085   }
1086 
1087   const LLT ValRegTy = MRI.getType(ValReg);
1088   if (ValRegTy.isPointer()) {
1089     // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1090     // we have to cast to do the extension.
1091     LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1092     ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1093   }
1094 
1095   switch (VA.getLocInfo()) {
1096   default: break;
1097   case CCValAssign::Full:
1098   case CCValAssign::BCvt:
1099     // FIXME: bitconverting between vector types may or may not be a
1100     // nop in big-endian situations.
1101     return ValReg;
1102   case CCValAssign::AExt: {
1103     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1104     return MIB.getReg(0);
1105   }
1106   case CCValAssign::SExt: {
1107     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1108     MIRBuilder.buildSExt(NewReg, ValReg);
1109     return NewReg;
1110   }
1111   case CCValAssign::ZExt: {
1112     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1113     MIRBuilder.buildZExt(NewReg, ValReg);
1114     return NewReg;
1115   }
1116   }
1117   llvm_unreachable("unable to extend register");
1118 }
1119 
1120 void CallLowering::ValueAssigner::anchor() {}
1121 
1122 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA,
1123                                                                 Register SrcReg,
1124                                                                 LLT NarrowTy) {
1125   switch (VA.getLocInfo()) {
1126   case CCValAssign::LocInfo::ZExt: {
1127     return MIRBuilder
1128         .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1129                          NarrowTy.getScalarSizeInBits())
1130         .getReg(0);
1131   }
1132   case CCValAssign::LocInfo::SExt: {
1133     return MIRBuilder
1134         .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1135                          NarrowTy.getScalarSizeInBits())
1136         .getReg(0);
1137     break;
1138   }
1139   default:
1140     return SrcReg;
1141   }
1142 }
1143 
1144 /// Check if we can use a basic COPY instruction between the two types.
1145 ///
1146 /// We're currently building on top of the infrastructure using MVT, which loses
1147 /// pointer information in the CCValAssign. We accept copies from physical
1148 /// registers that have been reported as integers if it's to an equivalent sized
1149 /// pointer LLT.
1150 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1151   if (SrcTy == DstTy)
1152     return true;
1153 
1154   if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1155     return false;
1156 
1157   SrcTy = SrcTy.getScalarType();
1158   DstTy = DstTy.getScalarType();
1159 
1160   return (SrcTy.isPointer() && DstTy.isScalar()) ||
1161          (DstTy.isScalar() && SrcTy.isPointer());
1162 }
1163 
1164 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg,
1165                                                           Register PhysReg,
1166                                                           CCValAssign &VA) {
1167   const MVT LocVT = VA.getLocVT();
1168   const LLT LocTy(LocVT);
1169   const LLT RegTy = MRI.getType(ValVReg);
1170 
1171   if (isCopyCompatibleType(RegTy, LocTy)) {
1172     MIRBuilder.buildCopy(ValVReg, PhysReg);
1173     return;
1174   }
1175 
1176   auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1177   auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1178   MIRBuilder.buildTrunc(ValVReg, Hint);
1179 }
1180