1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 16 #include "llvm/CodeGen/GlobalISel/Utils.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/MachineOperand.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Target/TargetMachine.h" 26 27 #define DEBUG_TYPE "call-lowering" 28 29 using namespace llvm; 30 31 void CallLowering::anchor() {} 32 33 /// Helper function which updates \p Flags when \p AttrFn returns true. 34 static void 35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 36 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 37 if (AttrFn(Attribute::SExt)) 38 Flags.setSExt(); 39 if (AttrFn(Attribute::ZExt)) 40 Flags.setZExt(); 41 if (AttrFn(Attribute::InReg)) 42 Flags.setInReg(); 43 if (AttrFn(Attribute::StructRet)) 44 Flags.setSRet(); 45 if (AttrFn(Attribute::Nest)) 46 Flags.setNest(); 47 if (AttrFn(Attribute::ByVal)) 48 Flags.setByVal(); 49 if (AttrFn(Attribute::Preallocated)) 50 Flags.setPreallocated(); 51 if (AttrFn(Attribute::InAlloca)) 52 Flags.setInAlloca(); 53 if (AttrFn(Attribute::Returned)) 54 Flags.setReturned(); 55 if (AttrFn(Attribute::SwiftSelf)) 56 Flags.setSwiftSelf(); 57 if (AttrFn(Attribute::SwiftAsync)) 58 Flags.setSwiftAsync(); 59 if (AttrFn(Attribute::SwiftError)) 60 Flags.setSwiftError(); 61 } 62 63 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 64 unsigned ArgIdx) const { 65 ISD::ArgFlagsTy Flags; 66 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 67 return Call.paramHasAttr(ArgIdx, Attr); 68 }); 69 return Flags; 70 } 71 72 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 73 const AttributeList &Attrs, 74 unsigned OpIdx) const { 75 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 76 return Attrs.hasAttribute(OpIdx, Attr); 77 }); 78 } 79 80 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 81 ArrayRef<Register> ResRegs, 82 ArrayRef<ArrayRef<Register>> ArgRegs, 83 Register SwiftErrorVReg, 84 std::function<unsigned()> GetCalleeReg) const { 85 CallLoweringInfo Info; 86 const DataLayout &DL = MIRBuilder.getDataLayout(); 87 MachineFunction &MF = MIRBuilder.getMF(); 88 bool CanBeTailCalled = CB.isTailCall() && 89 isInTailCallPosition(CB, MF.getTarget()) && 90 (MF.getFunction() 91 .getFnAttribute("disable-tail-calls") 92 .getValueAsString() != "true"); 93 94 CallingConv::ID CallConv = CB.getCallingConv(); 95 Type *RetTy = CB.getType(); 96 bool IsVarArg = CB.getFunctionType()->isVarArg(); 97 98 SmallVector<BaseArgInfo, 4> SplitArgs; 99 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 100 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 101 102 if (!Info.CanLowerReturn) { 103 // Callee requires sret demotion. 104 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 105 106 // The sret demotion isn't compatible with tail-calls, since the sret 107 // argument points into the caller's stack frame. 108 CanBeTailCalled = false; 109 } 110 111 // First step is to marshall all the function's parameters into the correct 112 // physregs and memory locations. Gather the sequence of argument types that 113 // we'll pass to the assigner function. 114 unsigned i = 0; 115 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 116 for (auto &Arg : CB.args()) { 117 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i), 118 i < NumFixedArgs}; 119 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 120 121 // If we have an explicit sret argument that is an Instruction, (i.e., it 122 // might point to function-local memory), we can't meaningfully tail-call. 123 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 124 CanBeTailCalled = false; 125 126 Info.OrigArgs.push_back(OrigArg); 127 ++i; 128 } 129 130 // Try looking through a bitcast from one function type to another. 131 // Commonly happens with calls to objc_msgSend(). 132 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 133 if (const Function *F = dyn_cast<Function>(CalleeV)) 134 Info.Callee = MachineOperand::CreateGA(F, 0); 135 else 136 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 137 138 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}}; 139 if (!Info.OrigRet.Ty->isVoidTy()) 140 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 141 142 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 143 Info.CallConv = CallConv; 144 Info.SwiftErrorVReg = SwiftErrorVReg; 145 Info.IsMustTailCall = CB.isMustTailCall(); 146 Info.IsTailCall = CanBeTailCalled; 147 Info.IsVarArg = IsVarArg; 148 return lowerCall(MIRBuilder, Info); 149 } 150 151 template <typename FuncInfoTy> 152 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 153 const DataLayout &DL, 154 const FuncInfoTy &FuncInfo) const { 155 auto &Flags = Arg.Flags[0]; 156 const AttributeList &Attrs = FuncInfo.getAttributes(); 157 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 158 159 PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType()); 160 if (PtrTy) { 161 Flags.setPointer(); 162 Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace()); 163 } 164 165 Align MemAlign = DL.getABITypeAlign(Arg.Ty); 166 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 167 assert(OpIdx >= AttributeList::FirstArgIndex); 168 Type *ElementTy = PtrTy->getElementType(); 169 170 auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType(); 171 Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy)); 172 173 // For ByVal, alignment should be passed from FE. BE will guess if 174 // this info is not there but there are cases it cannot get right. 175 if (auto ParamAlign = 176 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 177 MemAlign = *ParamAlign; 178 else if ((ParamAlign = 179 FuncInfo.getParamAlign(OpIdx - AttributeList::FirstArgIndex))) 180 MemAlign = *ParamAlign; 181 else 182 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 183 } else if (OpIdx >= AttributeList::FirstArgIndex) { 184 if (auto ParamAlign = 185 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 186 MemAlign = *ParamAlign; 187 } 188 Flags.setMemAlign(MemAlign); 189 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 190 191 // Don't try to use the returned attribute if the argument is marked as 192 // swiftself, since it won't be passed in x0. 193 if (Flags.isSwiftSelf()) 194 Flags.setReturned(false); 195 } 196 197 template void 198 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 199 const DataLayout &DL, 200 const Function &FuncInfo) const; 201 202 template void 203 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 204 const DataLayout &DL, 205 const CallBase &FuncInfo) const; 206 207 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 208 SmallVectorImpl<ArgInfo> &SplitArgs, 209 const DataLayout &DL, 210 CallingConv::ID CallConv, 211 SmallVectorImpl<uint64_t> *Offsets) const { 212 LLVMContext &Ctx = OrigArg.Ty->getContext(); 213 214 SmallVector<EVT, 4> SplitVTs; 215 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0); 216 217 if (SplitVTs.size() == 0) 218 return; 219 220 if (SplitVTs.size() == 1) { 221 // No splitting to do, but we want to replace the original type (e.g. [1 x 222 // double] -> double). 223 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 224 OrigArg.OrigArgIndex, OrigArg.Flags[0], 225 OrigArg.IsFixed, OrigArg.OrigValue); 226 return; 227 } 228 229 // Create one ArgInfo for each virtual register in the original ArgInfo. 230 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 231 232 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 233 OrigArg.Ty, CallConv, false, DL); 234 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 235 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 236 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex, 237 OrigArg.Flags[0], OrigArg.IsFixed); 238 if (NeedsRegBlock) 239 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 240 } 241 242 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 243 } 244 245 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 246 static MachineInstrBuilder 247 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 248 ArrayRef<Register> SrcRegs) { 249 MachineRegisterInfo &MRI = *B.getMRI(); 250 LLT LLTy = MRI.getType(DstRegs[0]); 251 LLT PartLLT = MRI.getType(SrcRegs[0]); 252 253 // Deal with v3s16 split into v2s16 254 LLT LCMTy = getLCMType(LLTy, PartLLT); 255 if (LCMTy == LLTy) { 256 // Common case where no padding is needed. 257 assert(DstRegs.size() == 1); 258 return B.buildConcatVectors(DstRegs[0], SrcRegs); 259 } 260 261 // We need to create an unmerge to the result registers, which may require 262 // widening the original value. 263 Register UnmergeSrcReg; 264 if (LCMTy != PartLLT) { 265 // e.g. A <3 x s16> value was split to <2 x s16> 266 // %register_value0:_(<2 x s16>) 267 // %register_value1:_(<2 x s16>) 268 // %undef:_(<2 x s16>) = G_IMPLICIT_DEF 269 // %concat:_<6 x s16>) = G_CONCAT_VECTORS %reg_value0, %reg_value1, %undef 270 // %dst_reg:_(<3 x s16>), %dead:_(<3 x s16>) = G_UNMERGE_VALUES %concat 271 const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits(); 272 Register Undef = B.buildUndef(PartLLT).getReg(0); 273 274 // Build vector of undefs. 275 SmallVector<Register, 8> WidenedSrcs(NumWide, Undef); 276 277 // Replace the first sources with the real registers. 278 std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin()); 279 UnmergeSrcReg = B.buildConcatVectors(LCMTy, WidenedSrcs).getReg(0); 280 } else { 281 // We don't need to widen anything if we're extracting a scalar which was 282 // promoted to a vector e.g. s8 -> v4s8 -> s8 283 assert(SrcRegs.size() == 1); 284 UnmergeSrcReg = SrcRegs[0]; 285 } 286 287 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 288 289 SmallVector<Register, 8> PadDstRegs(NumDst); 290 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 291 292 // Create the excess dead defs for the unmerge. 293 for (int I = DstRegs.size(); I != NumDst; ++I) 294 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 295 296 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); 297 } 298 299 /// Create a sequence of instructions to combine pieces split into register 300 /// typed values to the original IR value. \p OrigRegs contains the destination 301 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 302 /// with type \p PartLLT. This is used for incoming values (physregs to vregs). 303 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 304 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, 305 const ISD::ArgFlagsTy Flags) { 306 MachineRegisterInfo &MRI = *B.getMRI(); 307 308 if (PartLLT == LLTy) { 309 // We should have avoided introducing a new virtual register, and just 310 // directly assigned here. 311 assert(OrigRegs[0] == Regs[0]); 312 return; 313 } 314 315 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 && 316 Regs.size() == 1) { 317 B.buildBitcast(OrigRegs[0], Regs[0]); 318 return; 319 } 320 321 // A vector PartLLT needs extending to LLTy's element size. 322 // E.g. <2 x s64> = G_SEXT <2 x s32>. 323 if (PartLLT.isVector() == LLTy.isVector() && 324 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() && 325 (!PartLLT.isVector() || 326 PartLLT.getNumElements() == LLTy.getNumElements()) && 327 OrigRegs.size() == 1 && Regs.size() == 1) { 328 Register SrcReg = Regs[0]; 329 330 LLT LocTy = MRI.getType(SrcReg); 331 332 if (Flags.isSExt()) { 333 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 334 .getReg(0); 335 } else if (Flags.isZExt()) { 336 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 337 .getReg(0); 338 } 339 340 // Sometimes pointers are passed zero extended. 341 LLT OrigTy = MRI.getType(OrigRegs[0]); 342 if (OrigTy.isPointer()) { 343 LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits()); 344 B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg)); 345 return; 346 } 347 348 B.buildTrunc(OrigRegs[0], SrcReg); 349 return; 350 } 351 352 if (!LLTy.isVector() && !PartLLT.isVector()) { 353 assert(OrigRegs.size() == 1); 354 LLT OrigTy = MRI.getType(OrigRegs[0]); 355 356 unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size(); 357 if (SrcSize == OrigTy.getSizeInBits()) 358 B.buildMerge(OrigRegs[0], Regs); 359 else { 360 auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs); 361 B.buildTrunc(OrigRegs[0], Widened); 362 } 363 364 return; 365 } 366 367 if (PartLLT.isVector()) { 368 assert(OrigRegs.size() == 1); 369 SmallVector<Register> CastRegs(Regs.begin(), Regs.end()); 370 371 // If PartLLT is a mismatched vector in both number of elements and element 372 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to 373 // have the same elt type, i.e. v4s32. 374 if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() && 375 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 && 376 Regs.size() == 1) { 377 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType()) 378 .changeElementCount(PartLLT.getElementCount() * 2); 379 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0); 380 PartLLT = NewTy; 381 } 382 383 if (LLTy.getScalarType() == PartLLT.getElementType()) { 384 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 385 } else { 386 unsigned I = 0; 387 LLT GCDTy = getGCDType(LLTy, PartLLT); 388 389 // We are both splitting a vector, and bitcasting its element types. Cast 390 // the source pieces into the appropriate number of pieces with the result 391 // element type. 392 for (Register SrcReg : CastRegs) 393 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0); 394 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 395 } 396 397 return; 398 } 399 400 assert(LLTy.isVector() && !PartLLT.isVector()); 401 402 LLT DstEltTy = LLTy.getElementType(); 403 404 // Pointer information was discarded. We'll need to coerce some register types 405 // to avoid violating type constraints. 406 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 407 408 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 409 410 if (DstEltTy == PartLLT) { 411 // Vector was trivially scalarized. 412 413 if (RealDstEltTy.isPointer()) { 414 for (Register Reg : Regs) 415 MRI.setType(Reg, RealDstEltTy); 416 } 417 418 B.buildBuildVector(OrigRegs[0], Regs); 419 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 420 // Deal with vector with 64-bit elements decomposed to 32-bit 421 // registers. Need to create intermediate 64-bit elements. 422 SmallVector<Register, 8> EltMerges; 423 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 424 425 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 426 427 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 428 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt)); 429 // Fix the type in case this is really a vector of pointers. 430 MRI.setType(Merge.getReg(0), RealDstEltTy); 431 EltMerges.push_back(Merge.getReg(0)); 432 Regs = Regs.drop_front(PartsPerElt); 433 } 434 435 B.buildBuildVector(OrigRegs[0], EltMerges); 436 } else { 437 // Vector was split, and elements promoted to a wider type. 438 // FIXME: Should handle floating point promotions. 439 LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT); 440 auto BV = B.buildBuildVector(BVType, Regs); 441 B.buildTrunc(OrigRegs[0], BV); 442 } 443 } 444 445 /// Create a sequence of instructions to expand the value in \p SrcReg (of type 446 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should 447 /// contain the type of scalar value extension if necessary. 448 /// 449 /// This is used for outgoing values (vregs to physregs) 450 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 451 Register SrcReg, LLT SrcTy, LLT PartTy, 452 unsigned ExtendOp = TargetOpcode::G_ANYEXT) { 453 // We could just insert a regular copy, but this is unreachable at the moment. 454 assert(SrcTy != PartTy && "identical part types shouldn't reach here"); 455 456 const unsigned PartSize = PartTy.getSizeInBits(); 457 458 if (PartTy.isVector() == SrcTy.isVector() && 459 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { 460 assert(DstRegs.size() == 1); 461 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); 462 return; 463 } 464 465 if (SrcTy.isVector() && !PartTy.isVector() && 466 PartSize > SrcTy.getElementType().getSizeInBits()) { 467 // Vector was scalarized, and the elements extended. 468 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 469 for (int i = 0, e = DstRegs.size(); i != e; ++i) 470 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 471 return; 472 } 473 474 LLT GCDTy = getGCDType(SrcTy, PartTy); 475 if (GCDTy == PartTy) { 476 // If this already evenly divisible, we can create a simple unmerge. 477 B.buildUnmerge(DstRegs, SrcReg); 478 return; 479 } 480 481 MachineRegisterInfo &MRI = *B.getMRI(); 482 LLT DstTy = MRI.getType(DstRegs[0]); 483 LLT LCMTy = getLCMType(SrcTy, PartTy); 484 485 const unsigned DstSize = DstTy.getSizeInBits(); 486 const unsigned SrcSize = SrcTy.getSizeInBits(); 487 unsigned CoveringSize = LCMTy.getSizeInBits(); 488 489 Register UnmergeSrc = SrcReg; 490 491 if (CoveringSize != SrcSize) { 492 // For scalars, it's common to be able to use a simple extension. 493 if (SrcTy.isScalar() && DstTy.isScalar()) { 494 CoveringSize = alignTo(SrcSize, DstSize); 495 LLT CoverTy = LLT::scalar(CoveringSize); 496 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0); 497 } else { 498 // Widen to the common type. 499 // FIXME: This should respect the extend type 500 Register Undef = B.buildUndef(SrcTy).getReg(0); 501 SmallVector<Register, 8> MergeParts(1, SrcReg); 502 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize) 503 MergeParts.push_back(Undef); 504 UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0); 505 } 506 } 507 508 // Unmerge to the original registers and pad with dead defs. 509 SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end()); 510 for (unsigned Size = DstSize * DstRegs.size(); Size != CoveringSize; 511 Size += DstSize) { 512 UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy)); 513 } 514 515 B.buildUnmerge(UnmergeResults, UnmergeSrc); 516 } 517 518 bool CallLowering::determineAndHandleAssignments( 519 ValueHandler &Handler, ValueAssigner &Assigner, 520 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder, 521 CallingConv::ID CallConv, bool IsVarArg, Register ThisReturnReg) const { 522 MachineFunction &MF = MIRBuilder.getMF(); 523 const Function &F = MF.getFunction(); 524 SmallVector<CCValAssign, 16> ArgLocs; 525 526 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 527 if (!determineAssignments(Assigner, Args, CCInfo)) 528 return false; 529 530 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder, 531 ThisReturnReg); 532 } 533 534 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { 535 if (Flags.isSExt()) 536 return TargetOpcode::G_SEXT; 537 if (Flags.isZExt()) 538 return TargetOpcode::G_ZEXT; 539 return TargetOpcode::G_ANYEXT; 540 } 541 542 bool CallLowering::determineAssignments(ValueAssigner &Assigner, 543 SmallVectorImpl<ArgInfo> &Args, 544 CCState &CCInfo) const { 545 LLVMContext &Ctx = CCInfo.getContext(); 546 const CallingConv::ID CallConv = CCInfo.getCallingConv(); 547 548 unsigned NumArgs = Args.size(); 549 for (unsigned i = 0; i != NumArgs; ++i) { 550 EVT CurVT = EVT::getEVT(Args[i].Ty); 551 552 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT); 553 554 // If we need to split the type over multiple regs, check it's a scenario 555 // we currently support. 556 unsigned NumParts = 557 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT); 558 559 if (NumParts == 1) { 560 // Try to use the register type if we couldn't assign the VT. 561 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 562 Args[i].Flags[0], CCInfo)) 563 return false; 564 continue; 565 } 566 567 // For incoming arguments (physregs to vregs), we could have values in 568 // physregs (or memlocs) which we want to extract and copy to vregs. 569 // During this, we might have to deal with the LLT being split across 570 // multiple regs, so we have to record this information for later. 571 // 572 // If we have outgoing args, then we have the opposite case. We have a 573 // vreg with an LLT which we want to assign to a physical location, and 574 // we might have to record that the value has to be split later. 575 576 // We're handling an incoming arg which is split over multiple regs. 577 // E.g. passing an s128 on AArch64. 578 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 579 Args[i].Flags.clear(); 580 581 for (unsigned Part = 0; Part < NumParts; ++Part) { 582 ISD::ArgFlagsTy Flags = OrigFlags; 583 if (Part == 0) { 584 Flags.setSplit(); 585 } else { 586 Flags.setOrigAlign(Align(1)); 587 if (Part == NumParts - 1) 588 Flags.setSplitEnd(); 589 } 590 591 if (!Assigner.isIncomingArgumentHandler()) { 592 // TODO: Also check if there is a valid extension that preserves the 593 // bits. However currently this call lowering doesn't support non-exact 594 // split parts, so that can't be tested. 595 if (OrigFlags.isReturned() && 596 (NumParts * NewVT.getSizeInBits() != CurVT.getSizeInBits())) { 597 Flags.setReturned(false); 598 } 599 } 600 601 Args[i].Flags.push_back(Flags); 602 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 603 Args[i].Flags[Part], CCInfo)) { 604 // Still couldn't assign this smaller part type for some reason. 605 return false; 606 } 607 } 608 } 609 610 return true; 611 } 612 613 bool CallLowering::handleAssignments(ValueHandler &Handler, 614 SmallVectorImpl<ArgInfo> &Args, 615 CCState &CCInfo, 616 SmallVectorImpl<CCValAssign> &ArgLocs, 617 MachineIRBuilder &MIRBuilder, 618 Register ThisReturnReg) const { 619 MachineFunction &MF = MIRBuilder.getMF(); 620 MachineRegisterInfo &MRI = MF.getRegInfo(); 621 const Function &F = MF.getFunction(); 622 const DataLayout &DL = F.getParent()->getDataLayout(); 623 624 const unsigned NumArgs = Args.size(); 625 626 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { 627 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 628 CCValAssign &VA = ArgLocs[j]; 629 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 630 631 if (VA.needsCustom()) { 632 unsigned NumArgRegs = 633 Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j)); 634 if (!NumArgRegs) 635 return false; 636 j += NumArgRegs; 637 continue; 638 } 639 640 const MVT ValVT = VA.getValVT(); 641 const MVT LocVT = VA.getLocVT(); 642 643 const LLT LocTy(LocVT); 644 const LLT ValTy(ValVT); 645 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy; 646 const EVT OrigVT = EVT::getEVT(Args[i].Ty); 647 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 648 649 // Expected to be multiple regs for a single incoming arg. 650 // There should be Regs.size() ArgLocs per argument. 651 // This should be the same as getNumRegistersForCallingConv 652 const unsigned NumParts = Args[i].Flags.size(); 653 654 // Now split the registers into the assigned types. 655 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); 656 657 if (NumParts != 1 || NewLLT != OrigTy) { 658 // If we can't directly assign the register, we need one or more 659 // intermediate values. 660 Args[i].Regs.resize(NumParts); 661 662 // For each split register, create and assign a vreg that will store 663 // the incoming component of the larger value. These will later be 664 // merged to form the final vreg. 665 for (unsigned Part = 0; Part < NumParts; ++Part) 666 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); 667 } 668 669 assert((j + (NumParts - 1)) < ArgLocs.size() && 670 "Too many regs for number of args"); 671 672 // Coerce into outgoing value types before register assignment. 673 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) { 674 assert(Args[i].OrigRegs.size() == 1); 675 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, 676 ValTy, extendOpFromFlags(Args[i].Flags[0])); 677 } 678 679 for (unsigned Part = 0; Part < NumParts; ++Part) { 680 Register ArgReg = Args[i].Regs[Part]; 681 // There should be Regs.size() ArgLocs per argument. 682 VA = ArgLocs[j + Part]; 683 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; 684 685 if (VA.isMemLoc() && !Flags.isByVal()) { 686 // Individual pieces may have been spilled to the stack and others 687 // passed in registers. 688 689 // TODO: The memory size may be larger than the value we need to 690 // store. We may need to adjust the offset for big endian targets. 691 LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags); 692 693 MachinePointerInfo MPO; 694 Register StackAddr = Handler.getStackAddress( 695 MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags); 696 697 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA); 698 continue; 699 } 700 701 if (VA.isMemLoc() && Flags.isByVal()) { 702 assert(Args[i].Regs.size() == 1 && 703 "didn't expect split byval pointer"); 704 705 if (Handler.isIncomingArgumentHandler()) { 706 // We just need to copy the frame index value to the pointer. 707 MachinePointerInfo MPO; 708 Register StackAddr = Handler.getStackAddress( 709 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); 710 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); 711 } else { 712 // For outgoing byval arguments, insert the implicit copy byval 713 // implies, such that writes in the callee do not modify the caller's 714 // value. 715 uint64_t MemSize = Flags.getByValSize(); 716 int64_t Offset = VA.getLocMemOffset(); 717 718 MachinePointerInfo DstMPO; 719 Register StackAddr = 720 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); 721 722 MachinePointerInfo SrcMPO(Args[i].OrigValue); 723 if (!Args[i].OrigValue) { 724 // We still need to accurately track the stack address space if we 725 // don't know the underlying value. 726 const LLT PtrTy = MRI.getType(StackAddr); 727 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); 728 } 729 730 Align DstAlign = std::max(Flags.getNonZeroByValAlign(), 731 inferAlignFromPtrInfo(MF, DstMPO)); 732 733 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), 734 inferAlignFromPtrInfo(MF, SrcMPO)); 735 736 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], 737 DstMPO, DstAlign, SrcMPO, SrcAlign, 738 MemSize, VA); 739 } 740 continue; 741 } 742 743 assert(!VA.needsCustom() && "custom loc should have been handled already"); 744 745 if (i == 0 && ThisReturnReg.isValid() && 746 Handler.isIncomingArgumentHandler() && 747 isTypeIsValidForThisReturn(ValVT)) { 748 Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA); 749 continue; 750 } 751 752 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 753 } 754 755 // Now that all pieces have been assigned, re-pack the register typed values 756 // into the original value typed registers. 757 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) { 758 // Merge the split registers into the expected larger result vregs of 759 // the original call. 760 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 761 LocTy, Args[i].Flags[0]); 762 } 763 764 j += NumParts - 1; 765 } 766 767 return true; 768 } 769 770 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 771 ArrayRef<Register> VRegs, Register DemoteReg, 772 int FI) const { 773 MachineFunction &MF = MIRBuilder.getMF(); 774 MachineRegisterInfo &MRI = MF.getRegInfo(); 775 const DataLayout &DL = MF.getDataLayout(); 776 777 SmallVector<EVT, 4> SplitVTs; 778 SmallVector<uint64_t, 4> Offsets; 779 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 780 781 assert(VRegs.size() == SplitVTs.size()); 782 783 unsigned NumValues = SplitVTs.size(); 784 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 785 Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace()); 786 LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL); 787 788 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 789 790 for (unsigned I = 0; I < NumValues; ++I) { 791 Register Addr; 792 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 793 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 794 MRI.getType(VRegs[I]).getSizeInBytes(), 795 commonAlignment(BaseAlign, Offsets[I])); 796 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 797 } 798 } 799 800 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 801 ArrayRef<Register> VRegs, 802 Register DemoteReg) const { 803 MachineFunction &MF = MIRBuilder.getMF(); 804 MachineRegisterInfo &MRI = MF.getRegInfo(); 805 const DataLayout &DL = MF.getDataLayout(); 806 807 SmallVector<EVT, 4> SplitVTs; 808 SmallVector<uint64_t, 4> Offsets; 809 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 810 811 assert(VRegs.size() == SplitVTs.size()); 812 813 unsigned NumValues = SplitVTs.size(); 814 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 815 unsigned AS = DL.getAllocaAddrSpace(); 816 LLT OffsetLLTy = 817 getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL); 818 819 MachinePointerInfo PtrInfo(AS); 820 821 for (unsigned I = 0; I < NumValues; ++I) { 822 Register Addr; 823 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 824 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 825 MRI.getType(VRegs[I]).getSizeInBytes(), 826 commonAlignment(BaseAlign, Offsets[I])); 827 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 828 } 829 } 830 831 void CallLowering::insertSRetIncomingArgument( 832 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 833 MachineRegisterInfo &MRI, const DataLayout &DL) const { 834 unsigned AS = DL.getAllocaAddrSpace(); 835 DemoteReg = MRI.createGenericVirtualRegister( 836 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 837 838 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 839 840 SmallVector<EVT, 1> ValueVTs; 841 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 842 843 // NOTE: Assume that a pointer won't get split into more than one VT. 844 assert(ValueVTs.size() == 1); 845 846 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()), 847 ArgInfo::NoArgIndex); 848 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 849 DemoteArg.Flags[0].setSRet(); 850 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 851 } 852 853 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 854 const CallBase &CB, 855 CallLoweringInfo &Info) const { 856 const DataLayout &DL = MIRBuilder.getDataLayout(); 857 Type *RetTy = CB.getType(); 858 unsigned AS = DL.getAllocaAddrSpace(); 859 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 860 861 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 862 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 863 864 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 865 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS), 866 ArgInfo::NoArgIndex); 867 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 868 DemoteArg.Flags[0].setSRet(); 869 870 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 871 Info.DemoteStackIndex = FI; 872 Info.DemoteRegister = DemoteReg; 873 } 874 875 bool CallLowering::checkReturn(CCState &CCInfo, 876 SmallVectorImpl<BaseArgInfo> &Outs, 877 CCAssignFn *Fn) const { 878 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 879 MVT VT = MVT::getVT(Outs[I].Ty); 880 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 881 return false; 882 } 883 return true; 884 } 885 886 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 887 AttributeList Attrs, 888 SmallVectorImpl<BaseArgInfo> &Outs, 889 const DataLayout &DL) const { 890 LLVMContext &Context = RetTy->getContext(); 891 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 892 893 SmallVector<EVT, 4> SplitVTs; 894 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 895 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 896 897 for (EVT VT : SplitVTs) { 898 unsigned NumParts = 899 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 900 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 901 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 902 903 for (unsigned I = 0; I < NumParts; ++I) { 904 Outs.emplace_back(PartTy, Flags); 905 } 906 } 907 } 908 909 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 910 const auto &F = MF.getFunction(); 911 Type *ReturnType = F.getReturnType(); 912 CallingConv::ID CallConv = F.getCallingConv(); 913 914 SmallVector<BaseArgInfo, 4> SplitArgs; 915 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 916 MF.getDataLayout()); 917 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 918 } 919 920 bool CallLowering::parametersInCSRMatch( 921 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 922 const SmallVectorImpl<CCValAssign> &OutLocs, 923 const SmallVectorImpl<ArgInfo> &OutArgs) const { 924 for (unsigned i = 0; i < OutLocs.size(); ++i) { 925 auto &ArgLoc = OutLocs[i]; 926 // If it's not a register, it's fine. 927 if (!ArgLoc.isRegLoc()) 928 continue; 929 930 MCRegister PhysReg = ArgLoc.getLocReg(); 931 932 // Only look at callee-saved registers. 933 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 934 continue; 935 936 LLVM_DEBUG( 937 dbgs() 938 << "... Call has an argument passed in a callee-saved register.\n"); 939 940 // Check if it was copied from. 941 const ArgInfo &OutInfo = OutArgs[i]; 942 943 if (OutInfo.Regs.size() > 1) { 944 LLVM_DEBUG( 945 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 946 return false; 947 } 948 949 // Check if we copy the register, walking through copies from virtual 950 // registers. Note that getDefIgnoringCopies does not ignore copies from 951 // physical registers. 952 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 953 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 954 LLVM_DEBUG( 955 dbgs() 956 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 957 return false; 958 } 959 960 // Got a copy. Verify that it's the same as the register we want. 961 Register CopyRHS = RegDef->getOperand(1).getReg(); 962 if (CopyRHS != PhysReg) { 963 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 964 "VReg, cannot tail call.\n"); 965 return false; 966 } 967 } 968 969 return true; 970 } 971 972 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 973 MachineFunction &MF, 974 SmallVectorImpl<ArgInfo> &InArgs, 975 ValueAssigner &CalleeAssigner, 976 ValueAssigner &CallerAssigner) const { 977 const Function &F = MF.getFunction(); 978 CallingConv::ID CalleeCC = Info.CallConv; 979 CallingConv::ID CallerCC = F.getCallingConv(); 980 981 if (CallerCC == CalleeCC) 982 return true; 983 984 SmallVector<CCValAssign, 16> ArgLocs1; 985 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext()); 986 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1)) 987 return false; 988 989 SmallVector<CCValAssign, 16> ArgLocs2; 990 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext()); 991 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2)) 992 return false; 993 994 // We need the argument locations to match up exactly. If there's more in 995 // one than the other, then we are done. 996 if (ArgLocs1.size() != ArgLocs2.size()) 997 return false; 998 999 // Make sure that each location is passed in exactly the same way. 1000 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 1001 const CCValAssign &Loc1 = ArgLocs1[i]; 1002 const CCValAssign &Loc2 = ArgLocs2[i]; 1003 1004 // We need both of them to be the same. So if one is a register and one 1005 // isn't, we're done. 1006 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 1007 return false; 1008 1009 if (Loc1.isRegLoc()) { 1010 // If they don't have the same register location, we're done. 1011 if (Loc1.getLocReg() != Loc2.getLocReg()) 1012 return false; 1013 1014 // They matched, so we can move to the next ArgLoc. 1015 continue; 1016 } 1017 1018 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 1019 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 1020 return false; 1021 } 1022 1023 return true; 1024 } 1025 1026 LLT CallLowering::ValueHandler::getStackValueStoreType( 1027 const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { 1028 const MVT ValVT = VA.getValVT(); 1029 if (ValVT != MVT::iPTR) { 1030 LLT ValTy(ValVT); 1031 1032 // We lost the pointeriness going through CCValAssign, so try to restore it 1033 // based on the flags. 1034 if (Flags.isPointer()) { 1035 LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(), 1036 ValTy.getScalarSizeInBits()); 1037 if (ValVT.isVector()) 1038 return LLT::vector(ValTy.getElementCount(), PtrTy); 1039 return PtrTy; 1040 } 1041 1042 return ValTy; 1043 } 1044 1045 unsigned AddrSpace = Flags.getPointerAddrSpace(); 1046 return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace)); 1047 } 1048 1049 void CallLowering::ValueHandler::copyArgumentMemory( 1050 const ArgInfo &Arg, Register DstPtr, Register SrcPtr, 1051 const MachinePointerInfo &DstPtrInfo, Align DstAlign, 1052 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, 1053 CCValAssign &VA) const { 1054 MachineFunction &MF = MIRBuilder.getMF(); 1055 MachineMemOperand *SrcMMO = MF.getMachineMemOperand( 1056 SrcPtrInfo, 1057 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, 1058 SrcAlign); 1059 1060 MachineMemOperand *DstMMO = MF.getMachineMemOperand( 1061 DstPtrInfo, 1062 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, 1063 MemSize, DstAlign); 1064 1065 const LLT PtrTy = MRI.getType(DstPtr); 1066 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); 1067 1068 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); 1069 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); 1070 } 1071 1072 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 1073 CCValAssign &VA, 1074 unsigned MaxSizeBits) { 1075 LLT LocTy{VA.getLocVT()}; 1076 LLT ValTy{VA.getValVT()}; 1077 1078 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 1079 return ValReg; 1080 1081 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 1082 if (MaxSizeBits <= ValTy.getSizeInBits()) 1083 return ValReg; 1084 LocTy = LLT::scalar(MaxSizeBits); 1085 } 1086 1087 const LLT ValRegTy = MRI.getType(ValReg); 1088 if (ValRegTy.isPointer()) { 1089 // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so 1090 // we have to cast to do the extension. 1091 LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits()); 1092 ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0); 1093 } 1094 1095 switch (VA.getLocInfo()) { 1096 default: break; 1097 case CCValAssign::Full: 1098 case CCValAssign::BCvt: 1099 // FIXME: bitconverting between vector types may or may not be a 1100 // nop in big-endian situations. 1101 return ValReg; 1102 case CCValAssign::AExt: { 1103 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 1104 return MIB.getReg(0); 1105 } 1106 case CCValAssign::SExt: { 1107 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1108 MIRBuilder.buildSExt(NewReg, ValReg); 1109 return NewReg; 1110 } 1111 case CCValAssign::ZExt: { 1112 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1113 MIRBuilder.buildZExt(NewReg, ValReg); 1114 return NewReg; 1115 } 1116 } 1117 llvm_unreachable("unable to extend register"); 1118 } 1119 1120 void CallLowering::ValueAssigner::anchor() {} 1121 1122 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA, 1123 Register SrcReg, 1124 LLT NarrowTy) { 1125 switch (VA.getLocInfo()) { 1126 case CCValAssign::LocInfo::ZExt: { 1127 return MIRBuilder 1128 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1129 NarrowTy.getScalarSizeInBits()) 1130 .getReg(0); 1131 } 1132 case CCValAssign::LocInfo::SExt: { 1133 return MIRBuilder 1134 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1135 NarrowTy.getScalarSizeInBits()) 1136 .getReg(0); 1137 break; 1138 } 1139 default: 1140 return SrcReg; 1141 } 1142 } 1143 1144 /// Check if we can use a basic COPY instruction between the two types. 1145 /// 1146 /// We're currently building on top of the infrastructure using MVT, which loses 1147 /// pointer information in the CCValAssign. We accept copies from physical 1148 /// registers that have been reported as integers if it's to an equivalent sized 1149 /// pointer LLT. 1150 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) { 1151 if (SrcTy == DstTy) 1152 return true; 1153 1154 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1155 return false; 1156 1157 SrcTy = SrcTy.getScalarType(); 1158 DstTy = DstTy.getScalarType(); 1159 1160 return (SrcTy.isPointer() && DstTy.isScalar()) || 1161 (DstTy.isScalar() && SrcTy.isPointer()); 1162 } 1163 1164 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg, 1165 Register PhysReg, 1166 CCValAssign &VA) { 1167 const MVT LocVT = VA.getLocVT(); 1168 const LLT LocTy(LocVT); 1169 const LLT RegTy = MRI.getType(ValVReg); 1170 1171 if (isCopyCompatibleType(RegTy, LocTy)) { 1172 MIRBuilder.buildCopy(ValVReg, PhysReg); 1173 return; 1174 } 1175 1176 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); 1177 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy); 1178 MIRBuilder.buildTrunc(ValVReg, Hint); 1179 } 1180