1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
16 #include "llvm/CodeGen/GlobalISel/Utils.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/MachineOperand.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Target/TargetMachine.h"
26 
27 #define DEBUG_TYPE "call-lowering"
28 
29 using namespace llvm;
30 
31 void CallLowering::anchor() {}
32 
33 /// Helper function which updates \p Flags when \p AttrFn returns true.
34 static void
35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
36                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
37   if (AttrFn(Attribute::SExt))
38     Flags.setSExt();
39   if (AttrFn(Attribute::ZExt))
40     Flags.setZExt();
41   if (AttrFn(Attribute::InReg))
42     Flags.setInReg();
43   if (AttrFn(Attribute::StructRet))
44     Flags.setSRet();
45   if (AttrFn(Attribute::Nest))
46     Flags.setNest();
47   if (AttrFn(Attribute::ByVal))
48     Flags.setByVal();
49   if (AttrFn(Attribute::Preallocated))
50     Flags.setPreallocated();
51   if (AttrFn(Attribute::InAlloca))
52     Flags.setInAlloca();
53   if (AttrFn(Attribute::Returned))
54     Flags.setReturned();
55   if (AttrFn(Attribute::SwiftSelf))
56     Flags.setSwiftSelf();
57   if (AttrFn(Attribute::SwiftError))
58     Flags.setSwiftError();
59 }
60 
61 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
62                                                      unsigned ArgIdx) const {
63   ISD::ArgFlagsTy Flags;
64   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
65     return Call.paramHasAttr(ArgIdx, Attr);
66   });
67   return Flags;
68 }
69 
70 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
71                                              const AttributeList &Attrs,
72                                              unsigned OpIdx) const {
73   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
74     return Attrs.hasAttribute(OpIdx, Attr);
75   });
76 }
77 
78 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
79                              ArrayRef<Register> ResRegs,
80                              ArrayRef<ArrayRef<Register>> ArgRegs,
81                              Register SwiftErrorVReg,
82                              std::function<unsigned()> GetCalleeReg) const {
83   CallLoweringInfo Info;
84   const DataLayout &DL = MIRBuilder.getDataLayout();
85   MachineFunction &MF = MIRBuilder.getMF();
86   bool CanBeTailCalled = CB.isTailCall() &&
87                          isInTailCallPosition(CB, MF.getTarget()) &&
88                          (MF.getFunction()
89                               .getFnAttribute("disable-tail-calls")
90                               .getValueAsString() != "true");
91 
92   CallingConv::ID CallConv = CB.getCallingConv();
93   Type *RetTy = CB.getType();
94   bool IsVarArg = CB.getFunctionType()->isVarArg();
95 
96   SmallVector<BaseArgInfo, 4> SplitArgs;
97   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
98   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
99 
100   if (!Info.CanLowerReturn) {
101     // Callee requires sret demotion.
102     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
103 
104     // The sret demotion isn't compatible with tail-calls, since the sret
105     // argument points into the caller's stack frame.
106     CanBeTailCalled = false;
107   }
108 
109   // First step is to marshall all the function's parameters into the correct
110   // physregs and memory locations. Gather the sequence of argument types that
111   // we'll pass to the assigner function.
112   unsigned i = 0;
113   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
114   for (auto &Arg : CB.args()) {
115     ArgInfo OrigArg{ArgRegs[i], Arg->getType(), getAttributesForArgIdx(CB, i),
116                     i < NumFixedArgs};
117     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
118 
119     // If we have an explicit sret argument that is an Instruction, (i.e., it
120     // might point to function-local memory), we can't meaningfully tail-call.
121     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
122       CanBeTailCalled = false;
123 
124     Info.OrigArgs.push_back(OrigArg);
125     ++i;
126   }
127 
128   // Try looking through a bitcast from one function type to another.
129   // Commonly happens with calls to objc_msgSend().
130   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
131   if (const Function *F = dyn_cast<Function>(CalleeV))
132     Info.Callee = MachineOperand::CreateGA(F, 0);
133   else
134     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
135 
136   Info.OrigRet = ArgInfo{ResRegs, RetTy, ISD::ArgFlagsTy{}};
137   if (!Info.OrigRet.Ty->isVoidTy())
138     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
139 
140   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
141   Info.CallConv = CallConv;
142   Info.SwiftErrorVReg = SwiftErrorVReg;
143   Info.IsMustTailCall = CB.isMustTailCall();
144   Info.IsTailCall = CanBeTailCalled;
145   Info.IsVarArg = IsVarArg;
146   return lowerCall(MIRBuilder, Info);
147 }
148 
149 template <typename FuncInfoTy>
150 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
151                                const DataLayout &DL,
152                                const FuncInfoTy &FuncInfo) const {
153   auto &Flags = Arg.Flags[0];
154   const AttributeList &Attrs = FuncInfo.getAttributes();
155   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
156 
157   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
158     Type *ElementTy = cast<PointerType>(Arg.Ty)->getElementType();
159 
160     auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType();
161     Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy));
162 
163     // For ByVal, alignment should be passed from FE.  BE will guess if
164     // this info is not there but there are cases it cannot get right.
165     Align FrameAlign;
166     if (auto ParamAlign = FuncInfo.getParamAlign(OpIdx - 2))
167       FrameAlign = *ParamAlign;
168     else
169       FrameAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
170     Flags.setByValAlign(FrameAlign);
171   }
172   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
173 
174   // Don't try to use the returned attribute if the argument is marked as
175   // swiftself, since it won't be passed in x0.
176   if (Flags.isSwiftSelf())
177     Flags.setReturned(false);
178 }
179 
180 template void
181 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
182                                     const DataLayout &DL,
183                                     const Function &FuncInfo) const;
184 
185 template void
186 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
187                                     const DataLayout &DL,
188                                     const CallBase &FuncInfo) const;
189 
190 Register CallLowering::packRegs(ArrayRef<Register> SrcRegs, Type *PackedTy,
191                                 MachineIRBuilder &MIRBuilder) const {
192   assert(SrcRegs.size() > 1 && "Nothing to pack");
193 
194   const DataLayout &DL = MIRBuilder.getMF().getDataLayout();
195   MachineRegisterInfo *MRI = MIRBuilder.getMRI();
196 
197   LLT PackedLLT = getLLTForType(*PackedTy, DL);
198 
199   SmallVector<LLT, 8> LLTs;
200   SmallVector<uint64_t, 8> Offsets;
201   computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
202   assert(LLTs.size() == SrcRegs.size() && "Regs / types mismatch");
203 
204   Register Dst = MRI->createGenericVirtualRegister(PackedLLT);
205   MIRBuilder.buildUndef(Dst);
206   for (unsigned i = 0; i < SrcRegs.size(); ++i) {
207     Register NewDst = MRI->createGenericVirtualRegister(PackedLLT);
208     MIRBuilder.buildInsert(NewDst, Dst, SrcRegs[i], Offsets[i]);
209     Dst = NewDst;
210   }
211 
212   return Dst;
213 }
214 
215 void CallLowering::unpackRegs(ArrayRef<Register> DstRegs, Register SrcReg,
216                               Type *PackedTy,
217                               MachineIRBuilder &MIRBuilder) const {
218   assert(DstRegs.size() > 1 && "Nothing to unpack");
219 
220   const DataLayout &DL = MIRBuilder.getDataLayout();
221 
222   SmallVector<LLT, 8> LLTs;
223   SmallVector<uint64_t, 8> Offsets;
224   computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
225   assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch");
226 
227   for (unsigned i = 0; i < DstRegs.size(); ++i)
228     MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]);
229 }
230 
231 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
232 static MachineInstrBuilder
233 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
234                             ArrayRef<Register> SrcRegs) {
235   MachineRegisterInfo &MRI = *B.getMRI();
236   LLT LLTy = MRI.getType(DstRegs[0]);
237   LLT PartLLT = MRI.getType(SrcRegs[0]);
238 
239   // Deal with v3s16 split into v2s16
240   LLT LCMTy = getLCMType(LLTy, PartLLT);
241   if (LCMTy == LLTy) {
242     // Common case where no padding is needed.
243     assert(DstRegs.size() == 1);
244     return B.buildConcatVectors(DstRegs[0], SrcRegs);
245   }
246 
247   const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
248   Register Undef = B.buildUndef(PartLLT).getReg(0);
249 
250   // Build vector of undefs.
251   SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);
252 
253   // Replace the first sources with the real registers.
254   std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());
255 
256   auto Widened = B.buildConcatVectors(LCMTy, WidenedSrcs);
257   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
258 
259   SmallVector<Register, 8> PadDstRegs(NumDst);
260   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
261 
262   // Create the excess dead defs for the unmerge.
263   for (int I = DstRegs.size(); I != NumDst; ++I)
264     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
265 
266   return B.buildUnmerge(PadDstRegs, Widened);
267 }
268 
269 /// Create a sequence of instructions to combine pieces split into register
270 /// typed values to the original IR value. \p OrigRegs contains the destination
271 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
272 /// with type \p PartLLT.
273 static void buildCopyToParts(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
274                              ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT) {
275   MachineRegisterInfo &MRI = *B.getMRI();
276 
277   if (!LLTy.isVector() && !PartLLT.isVector()) {
278     assert(OrigRegs.size() == 1);
279     LLT OrigTy = MRI.getType(OrigRegs[0]);
280 
281     unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size();
282     if (SrcSize == OrigTy.getSizeInBits())
283       B.buildMerge(OrigRegs[0], Regs);
284     else {
285       auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
286       B.buildTrunc(OrigRegs[0], Widened);
287     }
288 
289     return;
290   }
291 
292   if (LLTy.isVector() && PartLLT.isVector()) {
293     assert(OrigRegs.size() == 1);
294     assert(LLTy.getElementType() == PartLLT.getElementType());
295     mergeVectorRegsToResultRegs(B, OrigRegs, Regs);
296     return;
297   }
298 
299   assert(LLTy.isVector() && !PartLLT.isVector());
300 
301   LLT DstEltTy = LLTy.getElementType();
302 
303   // Pointer information was discarded. We'll need to coerce some register types
304   // to avoid violating type constraints.
305   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
306 
307   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
308 
309   if (DstEltTy == PartLLT) {
310     // Vector was trivially scalarized.
311 
312     if (RealDstEltTy.isPointer()) {
313       for (Register Reg : Regs)
314         MRI.setType(Reg, RealDstEltTy);
315     }
316 
317     B.buildBuildVector(OrigRegs[0], Regs);
318   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
319     // Deal with vector with 64-bit elements decomposed to 32-bit
320     // registers. Need to create intermediate 64-bit elements.
321     SmallVector<Register, 8> EltMerges;
322     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
323 
324     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
325 
326     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
327       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
328       // Fix the type in case this is really a vector of pointers.
329       MRI.setType(Merge.getReg(0), RealDstEltTy);
330       EltMerges.push_back(Merge.getReg(0));
331       Regs = Regs.drop_front(PartsPerElt);
332     }
333 
334     B.buildBuildVector(OrigRegs[0], EltMerges);
335   } else {
336     // Vector was split, and elements promoted to a wider type.
337     // FIXME: Should handle floating point promotions.
338     LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
339     auto BV = B.buildBuildVector(BVType, Regs);
340     B.buildTrunc(OrigRegs[0], BV);
341   }
342 }
343 
344 bool CallLowering::handleAssignments(MachineIRBuilder &MIRBuilder,
345                                      SmallVectorImpl<ArgInfo> &Args,
346                                      ValueHandler &Handler,
347                                      CallingConv::ID CallConv, bool IsVarArg,
348                                      Register ThisReturnReg) const {
349   MachineFunction &MF = MIRBuilder.getMF();
350   const Function &F = MF.getFunction();
351   SmallVector<CCValAssign, 16> ArgLocs;
352 
353   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
354   return handleAssignments(CCInfo, ArgLocs, MIRBuilder, Args, Handler,
355                            ThisReturnReg);
356 }
357 
358 bool CallLowering::handleAssignments(CCState &CCInfo,
359                                      SmallVectorImpl<CCValAssign> &ArgLocs,
360                                      MachineIRBuilder &MIRBuilder,
361                                      SmallVectorImpl<ArgInfo> &Args,
362                                      ValueHandler &Handler,
363                                      Register ThisReturnReg) const {
364   MachineFunction &MF = MIRBuilder.getMF();
365   const Function &F = MF.getFunction();
366   const DataLayout &DL = F.getParent()->getDataLayout();
367 
368   unsigned NumArgs = Args.size();
369   for (unsigned i = 0; i != NumArgs; ++i) {
370     EVT CurVT = EVT::getEVT(Args[i].Ty);
371     if (CurVT.isSimple() &&
372         !Handler.assignArg(i, CurVT.getSimpleVT(), CurVT.getSimpleVT(),
373                            CCValAssign::Full, Args[i], Args[i].Flags[0],
374                            CCInfo))
375       continue;
376 
377     MVT NewVT = TLI->getRegisterTypeForCallingConv(
378         F.getContext(), CCInfo.getCallingConv(), EVT(CurVT));
379 
380     // If we need to split the type over multiple regs, check it's a scenario
381     // we currently support.
382     unsigned NumParts = TLI->getNumRegistersForCallingConv(
383         F.getContext(), CCInfo.getCallingConv(), CurVT);
384 
385     if (NumParts == 1) {
386       // Try to use the register type if we couldn't assign the VT.
387       if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i],
388                             Args[i].Flags[0], CCInfo))
389         return false;
390       continue;
391     }
392 
393     assert(NumParts > 1);
394 
395     // For incoming arguments (physregs to vregs), we could have values in
396     // physregs (or memlocs) which we want to extract and copy to vregs.
397     // During this, we might have to deal with the LLT being split across
398     // multiple regs, so we have to record this information for later.
399     //
400     // If we have outgoing args, then we have the opposite case. We have a
401     // vreg with an LLT which we want to assign to a physical location, and
402     // we might have to record that the value has to be split later.
403     if (Handler.isIncomingArgumentHandler()) {
404       // We're handling an incoming arg which is split over multiple regs.
405       // E.g. passing an s128 on AArch64.
406       ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
407       Args[i].OrigRegs.push_back(Args[i].Regs[0]);
408       Args[i].Regs.clear();
409       Args[i].Flags.clear();
410       LLT NewLLT = getLLTForMVT(NewVT);
411       // For each split register, create and assign a vreg that will store
412       // the incoming component of the larger value. These will later be
413       // merged to form the final vreg.
414       for (unsigned Part = 0; Part < NumParts; ++Part) {
415         Register Reg =
416             MIRBuilder.getMRI()->createGenericVirtualRegister(NewLLT);
417         ISD::ArgFlagsTy Flags = OrigFlags;
418         if (Part == 0) {
419           Flags.setSplit();
420         } else {
421           Flags.setOrigAlign(Align(1));
422           if (Part == NumParts - 1)
423             Flags.setSplitEnd();
424         }
425         Args[i].Regs.push_back(Reg);
426         Args[i].Flags.push_back(Flags);
427         if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i],
428                               Args[i].Flags[Part], CCInfo)) {
429           // Still couldn't assign this smaller part type for some reason.
430           return false;
431         }
432       }
433     } else {
434       // This type is passed via multiple registers in the calling convention.
435       // We need to extract the individual parts.
436       Register LargeReg = Args[i].Regs[0];
437       LLT SmallTy = LLT::scalar(NewVT.getSizeInBits());
438       auto Unmerge = MIRBuilder.buildUnmerge(SmallTy, LargeReg);
439       assert(Unmerge->getNumOperands() == NumParts + 1);
440       ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
441       // We're going to replace the regs and flags with the split ones.
442       Args[i].Regs.clear();
443       Args[i].Flags.clear();
444       for (unsigned PartIdx = 0; PartIdx < NumParts; ++PartIdx) {
445         ISD::ArgFlagsTy Flags = OrigFlags;
446         if (PartIdx == 0) {
447           Flags.setSplit();
448         } else {
449           Flags.setOrigAlign(Align(1));
450           if (PartIdx == NumParts - 1)
451             Flags.setSplitEnd();
452         }
453 
454         // TODO: Also check if there is a valid extension that preserves the
455         // bits. However currently this call lowering doesn't support non-exact
456         // split parts, so that can't be tested.
457         if (OrigFlags.isReturned() &&
458             (NumParts * NewVT.getSizeInBits() != CurVT.getSizeInBits())) {
459           Flags.setReturned(false);
460         }
461 
462         Args[i].Regs.push_back(Unmerge.getReg(PartIdx));
463         Args[i].Flags.push_back(Flags);
464         if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full,
465                               Args[i], Args[i].Flags[PartIdx], CCInfo))
466           return false;
467       }
468     }
469   }
470 
471   for (unsigned i = 0, e = Args.size(), j = 0; i != e; ++i, ++j) {
472     assert(j < ArgLocs.size() && "Skipped too many arg locs");
473 
474     CCValAssign &VA = ArgLocs[j];
475     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
476 
477     if (VA.needsCustom()) {
478       unsigned NumArgRegs =
479           Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j));
480       if (!NumArgRegs)
481         return false;
482       j += NumArgRegs;
483       continue;
484     }
485 
486     // FIXME: Pack registers if we have more than one.
487     Register ArgReg = Args[i].Regs[0];
488 
489     EVT OrigVT = EVT::getEVT(Args[i].Ty);
490     EVT VAVT = VA.getValVT();
491     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
492     const LLT VATy(VAVT.getSimpleVT());
493 
494     // Expected to be multiple regs for a single incoming arg.
495     // There should be Regs.size() ArgLocs per argument.
496     unsigned NumArgRegs = Args[i].Regs.size();
497 
498     assert((j + (NumArgRegs - 1)) < ArgLocs.size() &&
499            "Too many regs for number of args");
500     for (unsigned Part = 0; Part < NumArgRegs; ++Part) {
501       // There should be Regs.size() ArgLocs per argument.
502       VA = ArgLocs[j + Part];
503       if (VA.isMemLoc()) {
504         // Individual pieces may have been spilled to the stack and others
505         // passed in registers.
506 
507         // FIXME: Use correct address space for pointer size
508         EVT LocVT = VA.getValVT();
509         unsigned MemSize = LocVT == MVT::iPTR ? DL.getPointerSize()
510                                               : LocVT.getStoreSize();
511         unsigned Offset = VA.getLocMemOffset();
512         MachinePointerInfo MPO;
513         Register StackAddr = Handler.getStackAddress(MemSize, Offset, MPO);
514         Handler.assignValueToAddress(Args[i], Part, StackAddr, MemSize, MPO,
515                                      VA);
516         continue;
517       }
518 
519       assert(VA.isRegLoc() && "custom loc should have been handled already");
520 
521       if (i == 0 && ThisReturnReg.isValid() &&
522           Handler.isIncomingArgumentHandler() &&
523           isTypeIsValidForThisReturn(VAVT)) {
524         Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA);
525         continue;
526       }
527 
528       // GlobalISel does not currently work for scalable vectors.
529       if (OrigVT.getFixedSizeInBits() >= VAVT.getFixedSizeInBits() ||
530           !Handler.isIncomingArgumentHandler()) {
531         // This is an argument that might have been split. There should be
532         // Regs.size() ArgLocs per argument.
533 
534         // Insert the argument copies. If VAVT < OrigVT, we'll insert the merge
535         // to the original register after handling all of the parts.
536         Handler.assignValueToReg(Args[i].Regs[Part], VA.getLocReg(), VA);
537         continue;
538       }
539 
540       // This ArgLoc covers multiple pieces, so we need to split it.
541       Register NewReg =
542         MIRBuilder.getMRI()->createGenericVirtualRegister(VATy);
543       Handler.assignValueToReg(NewReg, VA.getLocReg(), VA);
544       // If it's a vector type, we either need to truncate the elements
545       // or do an unmerge to get the lower block of elements.
546       if (VATy.isVector() &&
547           VATy.getNumElements() > OrigVT.getVectorNumElements()) {
548         // Just handle the case where the VA type is 2 * original type.
549         if (VATy.getNumElements() != OrigVT.getVectorNumElements() * 2) {
550           LLVM_DEBUG(dbgs()
551                      << "Incoming promoted vector arg has too many elts");
552           return false;
553         }
554         auto Unmerge = MIRBuilder.buildUnmerge({OrigTy, OrigTy}, {NewReg});
555         MIRBuilder.buildCopy(ArgReg, Unmerge.getReg(0));
556       } else {
557         MIRBuilder.buildTrunc(ArgReg, {NewReg}).getReg(0);
558       }
559     }
560 
561     // Now that all pieces have been handled, re-pack any arguments into any
562     // wider, original registers.
563     if (Handler.isIncomingArgumentHandler()) {
564       // Merge the split registers into the expected larger result vregs of
565       // the original call.
566 
567       if (OrigTy != VATy && !Args[i].OrigRegs.empty()) {
568         buildCopyToParts(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
569                          VATy);
570       }
571     }
572 
573     j += NumArgRegs - 1;
574   }
575 
576   return true;
577 }
578 
579 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
580                                    ArrayRef<Register> VRegs, Register DemoteReg,
581                                    int FI) const {
582   MachineFunction &MF = MIRBuilder.getMF();
583   MachineRegisterInfo &MRI = MF.getRegInfo();
584   const DataLayout &DL = MF.getDataLayout();
585 
586   SmallVector<EVT, 4> SplitVTs;
587   SmallVector<uint64_t, 4> Offsets;
588   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
589 
590   assert(VRegs.size() == SplitVTs.size());
591 
592   unsigned NumValues = SplitVTs.size();
593   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
594   Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
595   LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
596 
597   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
598 
599   for (unsigned I = 0; I < NumValues; ++I) {
600     Register Addr;
601     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
602     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
603                                         MRI.getType(VRegs[I]).getSizeInBytes(),
604                                         commonAlignment(BaseAlign, Offsets[I]));
605     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
606   }
607 }
608 
609 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
610                                     ArrayRef<Register> VRegs,
611                                     Register DemoteReg) const {
612   MachineFunction &MF = MIRBuilder.getMF();
613   MachineRegisterInfo &MRI = MF.getRegInfo();
614   const DataLayout &DL = MF.getDataLayout();
615 
616   SmallVector<EVT, 4> SplitVTs;
617   SmallVector<uint64_t, 4> Offsets;
618   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
619 
620   assert(VRegs.size() == SplitVTs.size());
621 
622   unsigned NumValues = SplitVTs.size();
623   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
624   unsigned AS = DL.getAllocaAddrSpace();
625   LLT OffsetLLTy =
626       getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
627 
628   MachinePointerInfo PtrInfo(AS);
629 
630   for (unsigned I = 0; I < NumValues; ++I) {
631     Register Addr;
632     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
633     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
634                                         MRI.getType(VRegs[I]).getSizeInBytes(),
635                                         commonAlignment(BaseAlign, Offsets[I]));
636     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
637   }
638 }
639 
640 void CallLowering::insertSRetIncomingArgument(
641     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
642     MachineRegisterInfo &MRI, const DataLayout &DL) const {
643   unsigned AS = DL.getAllocaAddrSpace();
644   DemoteReg = MRI.createGenericVirtualRegister(
645       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
646 
647   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
648 
649   SmallVector<EVT, 1> ValueVTs;
650   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
651 
652   // NOTE: Assume that a pointer won't get split into more than one VT.
653   assert(ValueVTs.size() == 1);
654 
655   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()));
656   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
657   DemoteArg.Flags[0].setSRet();
658   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
659 }
660 
661 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
662                                               const CallBase &CB,
663                                               CallLoweringInfo &Info) const {
664   const DataLayout &DL = MIRBuilder.getDataLayout();
665   Type *RetTy = CB.getType();
666   unsigned AS = DL.getAllocaAddrSpace();
667   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
668 
669   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
670       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
671 
672   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
673   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS));
674   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
675   DemoteArg.Flags[0].setSRet();
676 
677   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
678   Info.DemoteStackIndex = FI;
679   Info.DemoteRegister = DemoteReg;
680 }
681 
682 bool CallLowering::checkReturn(CCState &CCInfo,
683                                SmallVectorImpl<BaseArgInfo> &Outs,
684                                CCAssignFn *Fn) const {
685   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
686     MVT VT = MVT::getVT(Outs[I].Ty);
687     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
688       return false;
689   }
690   return true;
691 }
692 
693 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
694                                  AttributeList Attrs,
695                                  SmallVectorImpl<BaseArgInfo> &Outs,
696                                  const DataLayout &DL) const {
697   LLVMContext &Context = RetTy->getContext();
698   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
699 
700   SmallVector<EVT, 4> SplitVTs;
701   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
702   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
703 
704   for (EVT VT : SplitVTs) {
705     unsigned NumParts =
706         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
707     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
708     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
709 
710     for (unsigned I = 0; I < NumParts; ++I) {
711       Outs.emplace_back(PartTy, Flags);
712     }
713   }
714 }
715 
716 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
717   const auto &F = MF.getFunction();
718   Type *ReturnType = F.getReturnType();
719   CallingConv::ID CallConv = F.getCallingConv();
720 
721   SmallVector<BaseArgInfo, 4> SplitArgs;
722   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
723                 MF.getDataLayout());
724   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
725 }
726 
727 bool CallLowering::analyzeArgInfo(CCState &CCState,
728                                   SmallVectorImpl<ArgInfo> &Args,
729                                   CCAssignFn &AssignFnFixed,
730                                   CCAssignFn &AssignFnVarArg) const {
731   for (unsigned i = 0, e = Args.size(); i < e; ++i) {
732     MVT VT = MVT::getVT(Args[i].Ty);
733     CCAssignFn &Fn = Args[i].IsFixed ? AssignFnFixed : AssignFnVarArg;
734     if (Fn(i, VT, VT, CCValAssign::Full, Args[i].Flags[0], CCState)) {
735       // Bail out on anything we can't handle.
736       LLVM_DEBUG(dbgs() << "Cannot analyze " << EVT(VT).getEVTString()
737                         << " (arg number = " << i << "\n");
738       return false;
739     }
740   }
741   return true;
742 }
743 
744 bool CallLowering::parametersInCSRMatch(
745     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
746     const SmallVectorImpl<CCValAssign> &OutLocs,
747     const SmallVectorImpl<ArgInfo> &OutArgs) const {
748   for (unsigned i = 0; i < OutLocs.size(); ++i) {
749     auto &ArgLoc = OutLocs[i];
750     // If it's not a register, it's fine.
751     if (!ArgLoc.isRegLoc())
752       continue;
753 
754     MCRegister PhysReg = ArgLoc.getLocReg();
755 
756     // Only look at callee-saved registers.
757     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
758       continue;
759 
760     LLVM_DEBUG(
761         dbgs()
762         << "... Call has an argument passed in a callee-saved register.\n");
763 
764     // Check if it was copied from.
765     const ArgInfo &OutInfo = OutArgs[i];
766 
767     if (OutInfo.Regs.size() > 1) {
768       LLVM_DEBUG(
769           dbgs() << "... Cannot handle arguments in multiple registers.\n");
770       return false;
771     }
772 
773     // Check if we copy the register, walking through copies from virtual
774     // registers. Note that getDefIgnoringCopies does not ignore copies from
775     // physical registers.
776     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
777     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
778       LLVM_DEBUG(
779           dbgs()
780           << "... Parameter was not copied into a VReg, cannot tail call.\n");
781       return false;
782     }
783 
784     // Got a copy. Verify that it's the same as the register we want.
785     Register CopyRHS = RegDef->getOperand(1).getReg();
786     if (CopyRHS != PhysReg) {
787       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
788                            "VReg, cannot tail call.\n");
789       return false;
790     }
791   }
792 
793   return true;
794 }
795 
796 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
797                                      MachineFunction &MF,
798                                      SmallVectorImpl<ArgInfo> &InArgs,
799                                      CCAssignFn &CalleeAssignFnFixed,
800                                      CCAssignFn &CalleeAssignFnVarArg,
801                                      CCAssignFn &CallerAssignFnFixed,
802                                      CCAssignFn &CallerAssignFnVarArg) const {
803   const Function &F = MF.getFunction();
804   CallingConv::ID CalleeCC = Info.CallConv;
805   CallingConv::ID CallerCC = F.getCallingConv();
806 
807   if (CallerCC == CalleeCC)
808     return true;
809 
810   SmallVector<CCValAssign, 16> ArgLocs1;
811   CCState CCInfo1(CalleeCC, false, MF, ArgLocs1, F.getContext());
812   if (!analyzeArgInfo(CCInfo1, InArgs, CalleeAssignFnFixed,
813                       CalleeAssignFnVarArg))
814     return false;
815 
816   SmallVector<CCValAssign, 16> ArgLocs2;
817   CCState CCInfo2(CallerCC, false, MF, ArgLocs2, F.getContext());
818   if (!analyzeArgInfo(CCInfo2, InArgs, CallerAssignFnFixed,
819                       CalleeAssignFnVarArg))
820     return false;
821 
822   // We need the argument locations to match up exactly. If there's more in
823   // one than the other, then we are done.
824   if (ArgLocs1.size() != ArgLocs2.size())
825     return false;
826 
827   // Make sure that each location is passed in exactly the same way.
828   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
829     const CCValAssign &Loc1 = ArgLocs1[i];
830     const CCValAssign &Loc2 = ArgLocs2[i];
831 
832     // We need both of them to be the same. So if one is a register and one
833     // isn't, we're done.
834     if (Loc1.isRegLoc() != Loc2.isRegLoc())
835       return false;
836 
837     if (Loc1.isRegLoc()) {
838       // If they don't have the same register location, we're done.
839       if (Loc1.getLocReg() != Loc2.getLocReg())
840         return false;
841 
842       // They matched, so we can move to the next ArgLoc.
843       continue;
844     }
845 
846     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
847     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
848       return false;
849   }
850 
851   return true;
852 }
853 
854 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
855                                                     CCValAssign &VA,
856                                                     unsigned MaxSizeBits) {
857   LLT LocTy{VA.getLocVT()};
858   LLT ValTy = MRI.getType(ValReg);
859   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
860     return ValReg;
861 
862   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
863     if (MaxSizeBits <= ValTy.getSizeInBits())
864       return ValReg;
865     LocTy = LLT::scalar(MaxSizeBits);
866   }
867 
868   switch (VA.getLocInfo()) {
869   default: break;
870   case CCValAssign::Full:
871   case CCValAssign::BCvt:
872     // FIXME: bitconverting between vector types may or may not be a
873     // nop in big-endian situations.
874     return ValReg;
875   case CCValAssign::AExt: {
876     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
877     return MIB.getReg(0);
878   }
879   case CCValAssign::SExt: {
880     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
881     MIRBuilder.buildSExt(NewReg, ValReg);
882     return NewReg;
883   }
884   case CCValAssign::ZExt: {
885     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
886     MIRBuilder.buildZExt(NewReg, ValReg);
887     return NewReg;
888   }
889   }
890   llvm_unreachable("unable to extend register");
891 }
892 
893 void CallLowering::ValueHandler::anchor() {}
894