1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 17 #include "llvm/CodeGen/GlobalISel/Utils.h" 18 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 19 #include "llvm/CodeGen/MachineOperand.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLowering.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/Target/TargetMachine.h" 27 28 #define DEBUG_TYPE "call-lowering" 29 30 using namespace llvm; 31 32 void CallLowering::anchor() {} 33 34 /// Helper function which updates \p Flags when \p AttrFn returns true. 35 static void 36 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 37 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 38 if (AttrFn(Attribute::SExt)) 39 Flags.setSExt(); 40 if (AttrFn(Attribute::ZExt)) 41 Flags.setZExt(); 42 if (AttrFn(Attribute::InReg)) 43 Flags.setInReg(); 44 if (AttrFn(Attribute::StructRet)) 45 Flags.setSRet(); 46 if (AttrFn(Attribute::Nest)) 47 Flags.setNest(); 48 if (AttrFn(Attribute::ByVal)) 49 Flags.setByVal(); 50 if (AttrFn(Attribute::Preallocated)) 51 Flags.setPreallocated(); 52 if (AttrFn(Attribute::InAlloca)) 53 Flags.setInAlloca(); 54 if (AttrFn(Attribute::Returned)) 55 Flags.setReturned(); 56 if (AttrFn(Attribute::SwiftSelf)) 57 Flags.setSwiftSelf(); 58 if (AttrFn(Attribute::SwiftAsync)) 59 Flags.setSwiftAsync(); 60 if (AttrFn(Attribute::SwiftError)) 61 Flags.setSwiftError(); 62 } 63 64 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 65 unsigned ArgIdx) const { 66 ISD::ArgFlagsTy Flags; 67 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 68 return Call.paramHasAttr(ArgIdx, Attr); 69 }); 70 return Flags; 71 } 72 73 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 74 const AttributeList &Attrs, 75 unsigned OpIdx) const { 76 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 77 return Attrs.hasAttributeAtIndex(OpIdx, Attr); 78 }); 79 } 80 81 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 82 ArrayRef<Register> ResRegs, 83 ArrayRef<ArrayRef<Register>> ArgRegs, 84 Register SwiftErrorVReg, 85 std::function<unsigned()> GetCalleeReg) const { 86 CallLoweringInfo Info; 87 const DataLayout &DL = MIRBuilder.getDataLayout(); 88 MachineFunction &MF = MIRBuilder.getMF(); 89 bool CanBeTailCalled = CB.isTailCall() && 90 isInTailCallPosition(CB, MF.getTarget()) && 91 (MF.getFunction() 92 .getFnAttribute("disable-tail-calls") 93 .getValueAsString() != "true"); 94 95 CallingConv::ID CallConv = CB.getCallingConv(); 96 Type *RetTy = CB.getType(); 97 bool IsVarArg = CB.getFunctionType()->isVarArg(); 98 99 SmallVector<BaseArgInfo, 4> SplitArgs; 100 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 101 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 102 103 if (!Info.CanLowerReturn) { 104 // Callee requires sret demotion. 105 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 106 107 // The sret demotion isn't compatible with tail-calls, since the sret 108 // argument points into the caller's stack frame. 109 CanBeTailCalled = false; 110 } 111 112 // First step is to marshall all the function's parameters into the correct 113 // physregs and memory locations. Gather the sequence of argument types that 114 // we'll pass to the assigner function. 115 unsigned i = 0; 116 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 117 for (auto &Arg : CB.args()) { 118 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i), 119 i < NumFixedArgs}; 120 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 121 122 // If we have an explicit sret argument that is an Instruction, (i.e., it 123 // might point to function-local memory), we can't meaningfully tail-call. 124 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 125 CanBeTailCalled = false; 126 127 Info.OrigArgs.push_back(OrigArg); 128 ++i; 129 } 130 131 // Try looking through a bitcast from one function type to another. 132 // Commonly happens with calls to objc_msgSend(). 133 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 134 if (const Function *F = dyn_cast<Function>(CalleeV)) 135 Info.Callee = MachineOperand::CreateGA(F, 0); 136 else 137 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 138 139 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}}; 140 if (!Info.OrigRet.Ty->isVoidTy()) 141 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 142 143 Info.CB = &CB; 144 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 145 Info.CallConv = CallConv; 146 Info.SwiftErrorVReg = SwiftErrorVReg; 147 Info.IsMustTailCall = CB.isMustTailCall(); 148 Info.IsTailCall = CanBeTailCalled; 149 Info.IsVarArg = IsVarArg; 150 return lowerCall(MIRBuilder, Info); 151 } 152 153 template <typename FuncInfoTy> 154 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 155 const DataLayout &DL, 156 const FuncInfoTy &FuncInfo) const { 157 auto &Flags = Arg.Flags[0]; 158 const AttributeList &Attrs = FuncInfo.getAttributes(); 159 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 160 161 PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType()); 162 if (PtrTy) { 163 Flags.setPointer(); 164 Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace()); 165 } 166 167 Align MemAlign = DL.getABITypeAlign(Arg.Ty); 168 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 169 assert(OpIdx >= AttributeList::FirstArgIndex); 170 unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex; 171 172 Type *ElementTy = FuncInfo.getParamByValType(ParamIdx); 173 if (!ElementTy) 174 ElementTy = FuncInfo.getParamInAllocaType(ParamIdx); 175 if (!ElementTy) 176 ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx); 177 assert(ElementTy && "Must have byval, inalloca or preallocated type"); 178 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 179 180 // For ByVal, alignment should be passed from FE. BE will guess if 181 // this info is not there but there are cases it cannot get right. 182 if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx)) 183 MemAlign = *ParamAlign; 184 else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx))) 185 MemAlign = *ParamAlign; 186 else 187 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 188 } else if (OpIdx >= AttributeList::FirstArgIndex) { 189 if (auto ParamAlign = 190 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 191 MemAlign = *ParamAlign; 192 } 193 Flags.setMemAlign(MemAlign); 194 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 195 196 // Don't try to use the returned attribute if the argument is marked as 197 // swiftself, since it won't be passed in x0. 198 if (Flags.isSwiftSelf()) 199 Flags.setReturned(false); 200 } 201 202 template void 203 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 204 const DataLayout &DL, 205 const Function &FuncInfo) const; 206 207 template void 208 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 209 const DataLayout &DL, 210 const CallBase &FuncInfo) const; 211 212 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 213 SmallVectorImpl<ArgInfo> &SplitArgs, 214 const DataLayout &DL, 215 CallingConv::ID CallConv, 216 SmallVectorImpl<uint64_t> *Offsets) const { 217 LLVMContext &Ctx = OrigArg.Ty->getContext(); 218 219 SmallVector<EVT, 4> SplitVTs; 220 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0); 221 222 if (SplitVTs.size() == 0) 223 return; 224 225 if (SplitVTs.size() == 1) { 226 // No splitting to do, but we want to replace the original type (e.g. [1 x 227 // double] -> double). 228 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 229 OrigArg.OrigArgIndex, OrigArg.Flags[0], 230 OrigArg.IsFixed, OrigArg.OrigValue); 231 return; 232 } 233 234 // Create one ArgInfo for each virtual register in the original ArgInfo. 235 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 236 237 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 238 OrigArg.Ty, CallConv, false, DL); 239 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 240 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 241 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex, 242 OrigArg.Flags[0], OrigArg.IsFixed); 243 if (NeedsRegBlock) 244 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 245 } 246 247 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 248 } 249 250 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 251 static MachineInstrBuilder 252 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 253 ArrayRef<Register> SrcRegs) { 254 MachineRegisterInfo &MRI = *B.getMRI(); 255 LLT LLTy = MRI.getType(DstRegs[0]); 256 LLT PartLLT = MRI.getType(SrcRegs[0]); 257 258 // Deal with v3s16 split into v2s16 259 LLT LCMTy = getCoverTy(LLTy, PartLLT); 260 if (LCMTy == LLTy) { 261 // Common case where no padding is needed. 262 assert(DstRegs.size() == 1); 263 return B.buildConcatVectors(DstRegs[0], SrcRegs); 264 } 265 266 // We need to create an unmerge to the result registers, which may require 267 // widening the original value. 268 Register UnmergeSrcReg; 269 if (LCMTy != PartLLT) { 270 assert(DstRegs.size() == 1); 271 return B.buildDeleteTrailingVectorElements(DstRegs[0], 272 B.buildMerge(LCMTy, SrcRegs)); 273 } else { 274 // We don't need to widen anything if we're extracting a scalar which was 275 // promoted to a vector e.g. s8 -> v4s8 -> s8 276 assert(SrcRegs.size() == 1); 277 UnmergeSrcReg = SrcRegs[0]; 278 } 279 280 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 281 282 SmallVector<Register, 8> PadDstRegs(NumDst); 283 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 284 285 // Create the excess dead defs for the unmerge. 286 for (int I = DstRegs.size(); I != NumDst; ++I) 287 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 288 289 if (PadDstRegs.size() == 1) 290 return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg); 291 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); 292 } 293 294 /// Create a sequence of instructions to combine pieces split into register 295 /// typed values to the original IR value. \p OrigRegs contains the destination 296 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 297 /// with type \p PartLLT. This is used for incoming values (physregs to vregs). 298 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 299 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, 300 const ISD::ArgFlagsTy Flags) { 301 MachineRegisterInfo &MRI = *B.getMRI(); 302 303 if (PartLLT == LLTy) { 304 // We should have avoided introducing a new virtual register, and just 305 // directly assigned here. 306 assert(OrigRegs[0] == Regs[0]); 307 return; 308 } 309 310 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 && 311 Regs.size() == 1) { 312 B.buildBitcast(OrigRegs[0], Regs[0]); 313 return; 314 } 315 316 // A vector PartLLT needs extending to LLTy's element size. 317 // E.g. <2 x s64> = G_SEXT <2 x s32>. 318 if (PartLLT.isVector() == LLTy.isVector() && 319 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() && 320 (!PartLLT.isVector() || 321 PartLLT.getNumElements() == LLTy.getNumElements()) && 322 OrigRegs.size() == 1 && Regs.size() == 1) { 323 Register SrcReg = Regs[0]; 324 325 LLT LocTy = MRI.getType(SrcReg); 326 327 if (Flags.isSExt()) { 328 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 329 .getReg(0); 330 } else if (Flags.isZExt()) { 331 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 332 .getReg(0); 333 } 334 335 // Sometimes pointers are passed zero extended. 336 LLT OrigTy = MRI.getType(OrigRegs[0]); 337 if (OrigTy.isPointer()) { 338 LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits()); 339 B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg)); 340 return; 341 } 342 343 B.buildTrunc(OrigRegs[0], SrcReg); 344 return; 345 } 346 347 if (!LLTy.isVector() && !PartLLT.isVector()) { 348 assert(OrigRegs.size() == 1); 349 LLT OrigTy = MRI.getType(OrigRegs[0]); 350 351 unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size(); 352 if (SrcSize == OrigTy.getSizeInBits()) 353 B.buildMerge(OrigRegs[0], Regs); 354 else { 355 auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs); 356 B.buildTrunc(OrigRegs[0], Widened); 357 } 358 359 return; 360 } 361 362 if (PartLLT.isVector()) { 363 assert(OrigRegs.size() == 1); 364 SmallVector<Register> CastRegs(Regs.begin(), Regs.end()); 365 366 // If PartLLT is a mismatched vector in both number of elements and element 367 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to 368 // have the same elt type, i.e. v4s32. 369 if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() && 370 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 && 371 Regs.size() == 1) { 372 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType()) 373 .changeElementCount(PartLLT.getElementCount() * 2); 374 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0); 375 PartLLT = NewTy; 376 } 377 378 if (LLTy.getScalarType() == PartLLT.getElementType()) { 379 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 380 } else { 381 unsigned I = 0; 382 LLT GCDTy = getGCDType(LLTy, PartLLT); 383 384 // We are both splitting a vector, and bitcasting its element types. Cast 385 // the source pieces into the appropriate number of pieces with the result 386 // element type. 387 for (Register SrcReg : CastRegs) 388 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0); 389 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 390 } 391 392 return; 393 } 394 395 assert(LLTy.isVector() && !PartLLT.isVector()); 396 397 LLT DstEltTy = LLTy.getElementType(); 398 399 // Pointer information was discarded. We'll need to coerce some register types 400 // to avoid violating type constraints. 401 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 402 403 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 404 405 if (DstEltTy == PartLLT) { 406 // Vector was trivially scalarized. 407 408 if (RealDstEltTy.isPointer()) { 409 for (Register Reg : Regs) 410 MRI.setType(Reg, RealDstEltTy); 411 } 412 413 B.buildBuildVector(OrigRegs[0], Regs); 414 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 415 // Deal with vector with 64-bit elements decomposed to 32-bit 416 // registers. Need to create intermediate 64-bit elements. 417 SmallVector<Register, 8> EltMerges; 418 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 419 420 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 421 422 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 423 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt)); 424 // Fix the type in case this is really a vector of pointers. 425 MRI.setType(Merge.getReg(0), RealDstEltTy); 426 EltMerges.push_back(Merge.getReg(0)); 427 Regs = Regs.drop_front(PartsPerElt); 428 } 429 430 B.buildBuildVector(OrigRegs[0], EltMerges); 431 } else { 432 // Vector was split, and elements promoted to a wider type. 433 // FIXME: Should handle floating point promotions. 434 LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT); 435 auto BV = B.buildBuildVector(BVType, Regs); 436 B.buildTrunc(OrigRegs[0], BV); 437 } 438 } 439 440 /// Create a sequence of instructions to expand the value in \p SrcReg (of type 441 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should 442 /// contain the type of scalar value extension if necessary. 443 /// 444 /// This is used for outgoing values (vregs to physregs) 445 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 446 Register SrcReg, LLT SrcTy, LLT PartTy, 447 unsigned ExtendOp = TargetOpcode::G_ANYEXT) { 448 // We could just insert a regular copy, but this is unreachable at the moment. 449 assert(SrcTy != PartTy && "identical part types shouldn't reach here"); 450 451 const unsigned PartSize = PartTy.getSizeInBits(); 452 453 if (PartTy.isVector() == SrcTy.isVector() && 454 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { 455 assert(DstRegs.size() == 1); 456 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); 457 return; 458 } 459 460 if (SrcTy.isVector() && !PartTy.isVector() && 461 PartSize > SrcTy.getElementType().getSizeInBits()) { 462 // Vector was scalarized, and the elements extended. 463 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 464 for (int i = 0, e = DstRegs.size(); i != e; ++i) 465 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 466 return; 467 } 468 469 LLT GCDTy = getGCDType(SrcTy, PartTy); 470 if (GCDTy == PartTy) { 471 // If this already evenly divisible, we can create a simple unmerge. 472 B.buildUnmerge(DstRegs, SrcReg); 473 return; 474 } 475 476 MachineRegisterInfo &MRI = *B.getMRI(); 477 LLT DstTy = MRI.getType(DstRegs[0]); 478 LLT LCMTy = getCoverTy(SrcTy, PartTy); 479 480 const unsigned DstSize = DstTy.getSizeInBits(); 481 const unsigned SrcSize = SrcTy.getSizeInBits(); 482 unsigned CoveringSize = LCMTy.getSizeInBits(); 483 484 Register UnmergeSrc = SrcReg; 485 486 if (!LCMTy.isVector() && CoveringSize != SrcSize) { 487 // For scalars, it's common to be able to use a simple extension. 488 if (SrcTy.isScalar() && DstTy.isScalar()) { 489 CoveringSize = alignTo(SrcSize, DstSize); 490 LLT CoverTy = LLT::scalar(CoveringSize); 491 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0); 492 } else { 493 // Widen to the common type. 494 // FIXME: This should respect the extend type 495 Register Undef = B.buildUndef(SrcTy).getReg(0); 496 SmallVector<Register, 8> MergeParts(1, SrcReg); 497 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize) 498 MergeParts.push_back(Undef); 499 UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0); 500 } 501 } 502 503 if (LCMTy.isVector() && CoveringSize != SrcSize) 504 UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0); 505 506 B.buildUnmerge(DstRegs, UnmergeSrc); 507 } 508 509 bool CallLowering::determineAndHandleAssignments( 510 ValueHandler &Handler, ValueAssigner &Assigner, 511 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder, 512 CallingConv::ID CallConv, bool IsVarArg, Register ThisReturnReg) const { 513 MachineFunction &MF = MIRBuilder.getMF(); 514 const Function &F = MF.getFunction(); 515 SmallVector<CCValAssign, 16> ArgLocs; 516 517 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 518 if (!determineAssignments(Assigner, Args, CCInfo)) 519 return false; 520 521 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder, 522 ThisReturnReg); 523 } 524 525 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { 526 if (Flags.isSExt()) 527 return TargetOpcode::G_SEXT; 528 if (Flags.isZExt()) 529 return TargetOpcode::G_ZEXT; 530 return TargetOpcode::G_ANYEXT; 531 } 532 533 bool CallLowering::determineAssignments(ValueAssigner &Assigner, 534 SmallVectorImpl<ArgInfo> &Args, 535 CCState &CCInfo) const { 536 LLVMContext &Ctx = CCInfo.getContext(); 537 const CallingConv::ID CallConv = CCInfo.getCallingConv(); 538 539 unsigned NumArgs = Args.size(); 540 for (unsigned i = 0; i != NumArgs; ++i) { 541 EVT CurVT = EVT::getEVT(Args[i].Ty); 542 543 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT); 544 545 // If we need to split the type over multiple regs, check it's a scenario 546 // we currently support. 547 unsigned NumParts = 548 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT); 549 550 if (NumParts == 1) { 551 // Try to use the register type if we couldn't assign the VT. 552 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 553 Args[i].Flags[0], CCInfo)) 554 return false; 555 continue; 556 } 557 558 // For incoming arguments (physregs to vregs), we could have values in 559 // physregs (or memlocs) which we want to extract and copy to vregs. 560 // During this, we might have to deal with the LLT being split across 561 // multiple regs, so we have to record this information for later. 562 // 563 // If we have outgoing args, then we have the opposite case. We have a 564 // vreg with an LLT which we want to assign to a physical location, and 565 // we might have to record that the value has to be split later. 566 567 // We're handling an incoming arg which is split over multiple regs. 568 // E.g. passing an s128 on AArch64. 569 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 570 Args[i].Flags.clear(); 571 572 for (unsigned Part = 0; Part < NumParts; ++Part) { 573 ISD::ArgFlagsTy Flags = OrigFlags; 574 if (Part == 0) { 575 Flags.setSplit(); 576 } else { 577 Flags.setOrigAlign(Align(1)); 578 if (Part == NumParts - 1) 579 Flags.setSplitEnd(); 580 } 581 582 Args[i].Flags.push_back(Flags); 583 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 584 Args[i].Flags[Part], CCInfo)) { 585 // Still couldn't assign this smaller part type for some reason. 586 return false; 587 } 588 } 589 } 590 591 return true; 592 } 593 594 bool CallLowering::handleAssignments(ValueHandler &Handler, 595 SmallVectorImpl<ArgInfo> &Args, 596 CCState &CCInfo, 597 SmallVectorImpl<CCValAssign> &ArgLocs, 598 MachineIRBuilder &MIRBuilder, 599 Register ThisReturnReg) const { 600 MachineFunction &MF = MIRBuilder.getMF(); 601 MachineRegisterInfo &MRI = MF.getRegInfo(); 602 const Function &F = MF.getFunction(); 603 const DataLayout &DL = F.getParent()->getDataLayout(); 604 605 const unsigned NumArgs = Args.size(); 606 607 // Stores thunks for outgoing register assignments. This is used so we delay 608 // generating register copies until mem loc assignments are done. We do this 609 // so that if the target is using the delayed stack protector feature, we can 610 // find the split point of the block accurately. E.g. if we have: 611 // G_STORE %val, %memloc 612 // $x0 = COPY %foo 613 // $x1 = COPY %bar 614 // CALL func 615 // ... then the split point for the block will correctly be at, and including, 616 // the copy to $x0. If instead the G_STORE instruction immediately precedes 617 // the CALL, then we'd prematurely choose the CALL as the split point, thus 618 // generating a split block with a CALL that uses undefined physregs. 619 SmallVector<std::function<void()>> DelayedOutgoingRegAssignments; 620 621 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { 622 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 623 CCValAssign &VA = ArgLocs[j]; 624 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 625 626 if (VA.needsCustom()) { 627 std::function<void()> Thunk; 628 unsigned NumArgRegs = Handler.assignCustomValue( 629 Args[i], makeArrayRef(ArgLocs).slice(j), &Thunk); 630 if (Thunk) 631 DelayedOutgoingRegAssignments.emplace_back(Thunk); 632 if (!NumArgRegs) 633 return false; 634 j += NumArgRegs; 635 continue; 636 } 637 638 const MVT ValVT = VA.getValVT(); 639 const MVT LocVT = VA.getLocVT(); 640 641 const LLT LocTy(LocVT); 642 const LLT ValTy(ValVT); 643 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy; 644 const EVT OrigVT = EVT::getEVT(Args[i].Ty); 645 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 646 647 // Expected to be multiple regs for a single incoming arg. 648 // There should be Regs.size() ArgLocs per argument. 649 // This should be the same as getNumRegistersForCallingConv 650 const unsigned NumParts = Args[i].Flags.size(); 651 652 // Now split the registers into the assigned types. 653 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); 654 655 if (NumParts != 1 || NewLLT != OrigTy) { 656 // If we can't directly assign the register, we need one or more 657 // intermediate values. 658 Args[i].Regs.resize(NumParts); 659 660 // For each split register, create and assign a vreg that will store 661 // the incoming component of the larger value. These will later be 662 // merged to form the final vreg. 663 for (unsigned Part = 0; Part < NumParts; ++Part) 664 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); 665 } 666 667 assert((j + (NumParts - 1)) < ArgLocs.size() && 668 "Too many regs for number of args"); 669 670 // Coerce into outgoing value types before register assignment. 671 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) { 672 assert(Args[i].OrigRegs.size() == 1); 673 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, 674 ValTy, extendOpFromFlags(Args[i].Flags[0])); 675 } 676 677 for (unsigned Part = 0; Part < NumParts; ++Part) { 678 Register ArgReg = Args[i].Regs[Part]; 679 // There should be Regs.size() ArgLocs per argument. 680 VA = ArgLocs[j + Part]; 681 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; 682 683 if (VA.isMemLoc() && !Flags.isByVal()) { 684 // Individual pieces may have been spilled to the stack and others 685 // passed in registers. 686 687 // TODO: The memory size may be larger than the value we need to 688 // store. We may need to adjust the offset for big endian targets. 689 LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags); 690 691 MachinePointerInfo MPO; 692 Register StackAddr = Handler.getStackAddress( 693 MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags); 694 695 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA); 696 continue; 697 } 698 699 if (VA.isMemLoc() && Flags.isByVal()) { 700 assert(Args[i].Regs.size() == 1 && 701 "didn't expect split byval pointer"); 702 703 if (Handler.isIncomingArgumentHandler()) { 704 // We just need to copy the frame index value to the pointer. 705 MachinePointerInfo MPO; 706 Register StackAddr = Handler.getStackAddress( 707 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); 708 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); 709 } else { 710 // For outgoing byval arguments, insert the implicit copy byval 711 // implies, such that writes in the callee do not modify the caller's 712 // value. 713 uint64_t MemSize = Flags.getByValSize(); 714 int64_t Offset = VA.getLocMemOffset(); 715 716 MachinePointerInfo DstMPO; 717 Register StackAddr = 718 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); 719 720 MachinePointerInfo SrcMPO(Args[i].OrigValue); 721 if (!Args[i].OrigValue) { 722 // We still need to accurately track the stack address space if we 723 // don't know the underlying value. 724 const LLT PtrTy = MRI.getType(StackAddr); 725 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); 726 } 727 728 Align DstAlign = std::max(Flags.getNonZeroByValAlign(), 729 inferAlignFromPtrInfo(MF, DstMPO)); 730 731 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), 732 inferAlignFromPtrInfo(MF, SrcMPO)); 733 734 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], 735 DstMPO, DstAlign, SrcMPO, SrcAlign, 736 MemSize, VA); 737 } 738 continue; 739 } 740 741 assert(!VA.needsCustom() && "custom loc should have been handled already"); 742 743 if (i == 0 && ThisReturnReg.isValid() && 744 Handler.isIncomingArgumentHandler() && 745 isTypeIsValidForThisReturn(ValVT)) { 746 Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA); 747 continue; 748 } 749 750 if (Handler.isIncomingArgumentHandler()) 751 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 752 else { 753 DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() { 754 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 755 }); 756 } 757 } 758 759 // Now that all pieces have been assigned, re-pack the register typed values 760 // into the original value typed registers. 761 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) { 762 // Merge the split registers into the expected larger result vregs of 763 // the original call. 764 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 765 LocTy, Args[i].Flags[0]); 766 } 767 768 j += NumParts - 1; 769 } 770 for (auto &Fn : DelayedOutgoingRegAssignments) 771 Fn(); 772 773 return true; 774 } 775 776 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 777 ArrayRef<Register> VRegs, Register DemoteReg, 778 int FI) const { 779 MachineFunction &MF = MIRBuilder.getMF(); 780 MachineRegisterInfo &MRI = MF.getRegInfo(); 781 const DataLayout &DL = MF.getDataLayout(); 782 783 SmallVector<EVT, 4> SplitVTs; 784 SmallVector<uint64_t, 4> Offsets; 785 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 786 787 assert(VRegs.size() == SplitVTs.size()); 788 789 unsigned NumValues = SplitVTs.size(); 790 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 791 Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace()); 792 LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL); 793 794 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 795 796 for (unsigned I = 0; I < NumValues; ++I) { 797 Register Addr; 798 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 799 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 800 MRI.getType(VRegs[I]), 801 commonAlignment(BaseAlign, Offsets[I])); 802 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 803 } 804 } 805 806 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 807 ArrayRef<Register> VRegs, 808 Register DemoteReg) const { 809 MachineFunction &MF = MIRBuilder.getMF(); 810 MachineRegisterInfo &MRI = MF.getRegInfo(); 811 const DataLayout &DL = MF.getDataLayout(); 812 813 SmallVector<EVT, 4> SplitVTs; 814 SmallVector<uint64_t, 4> Offsets; 815 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 816 817 assert(VRegs.size() == SplitVTs.size()); 818 819 unsigned NumValues = SplitVTs.size(); 820 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 821 unsigned AS = DL.getAllocaAddrSpace(); 822 LLT OffsetLLTy = 823 getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL); 824 825 MachinePointerInfo PtrInfo(AS); 826 827 for (unsigned I = 0; I < NumValues; ++I) { 828 Register Addr; 829 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 830 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 831 MRI.getType(VRegs[I]), 832 commonAlignment(BaseAlign, Offsets[I])); 833 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 834 } 835 } 836 837 void CallLowering::insertSRetIncomingArgument( 838 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 839 MachineRegisterInfo &MRI, const DataLayout &DL) const { 840 unsigned AS = DL.getAllocaAddrSpace(); 841 DemoteReg = MRI.createGenericVirtualRegister( 842 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 843 844 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 845 846 SmallVector<EVT, 1> ValueVTs; 847 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 848 849 // NOTE: Assume that a pointer won't get split into more than one VT. 850 assert(ValueVTs.size() == 1); 851 852 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()), 853 ArgInfo::NoArgIndex); 854 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 855 DemoteArg.Flags[0].setSRet(); 856 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 857 } 858 859 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 860 const CallBase &CB, 861 CallLoweringInfo &Info) const { 862 const DataLayout &DL = MIRBuilder.getDataLayout(); 863 Type *RetTy = CB.getType(); 864 unsigned AS = DL.getAllocaAddrSpace(); 865 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 866 867 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 868 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 869 870 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 871 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS), 872 ArgInfo::NoArgIndex); 873 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 874 DemoteArg.Flags[0].setSRet(); 875 876 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 877 Info.DemoteStackIndex = FI; 878 Info.DemoteRegister = DemoteReg; 879 } 880 881 bool CallLowering::checkReturn(CCState &CCInfo, 882 SmallVectorImpl<BaseArgInfo> &Outs, 883 CCAssignFn *Fn) const { 884 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 885 MVT VT = MVT::getVT(Outs[I].Ty); 886 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 887 return false; 888 } 889 return true; 890 } 891 892 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 893 AttributeList Attrs, 894 SmallVectorImpl<BaseArgInfo> &Outs, 895 const DataLayout &DL) const { 896 LLVMContext &Context = RetTy->getContext(); 897 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 898 899 SmallVector<EVT, 4> SplitVTs; 900 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 901 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 902 903 for (EVT VT : SplitVTs) { 904 unsigned NumParts = 905 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 906 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 907 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 908 909 for (unsigned I = 0; I < NumParts; ++I) { 910 Outs.emplace_back(PartTy, Flags); 911 } 912 } 913 } 914 915 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 916 const auto &F = MF.getFunction(); 917 Type *ReturnType = F.getReturnType(); 918 CallingConv::ID CallConv = F.getCallingConv(); 919 920 SmallVector<BaseArgInfo, 4> SplitArgs; 921 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 922 MF.getDataLayout()); 923 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 924 } 925 926 bool CallLowering::parametersInCSRMatch( 927 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 928 const SmallVectorImpl<CCValAssign> &OutLocs, 929 const SmallVectorImpl<ArgInfo> &OutArgs) const { 930 for (unsigned i = 0; i < OutLocs.size(); ++i) { 931 auto &ArgLoc = OutLocs[i]; 932 // If it's not a register, it's fine. 933 if (!ArgLoc.isRegLoc()) 934 continue; 935 936 MCRegister PhysReg = ArgLoc.getLocReg(); 937 938 // Only look at callee-saved registers. 939 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 940 continue; 941 942 LLVM_DEBUG( 943 dbgs() 944 << "... Call has an argument passed in a callee-saved register.\n"); 945 946 // Check if it was copied from. 947 const ArgInfo &OutInfo = OutArgs[i]; 948 949 if (OutInfo.Regs.size() > 1) { 950 LLVM_DEBUG( 951 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 952 return false; 953 } 954 955 // Check if we copy the register, walking through copies from virtual 956 // registers. Note that getDefIgnoringCopies does not ignore copies from 957 // physical registers. 958 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 959 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 960 LLVM_DEBUG( 961 dbgs() 962 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 963 return false; 964 } 965 966 // Got a copy. Verify that it's the same as the register we want. 967 Register CopyRHS = RegDef->getOperand(1).getReg(); 968 if (CopyRHS != PhysReg) { 969 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 970 "VReg, cannot tail call.\n"); 971 return false; 972 } 973 } 974 975 return true; 976 } 977 978 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 979 MachineFunction &MF, 980 SmallVectorImpl<ArgInfo> &InArgs, 981 ValueAssigner &CalleeAssigner, 982 ValueAssigner &CallerAssigner) const { 983 const Function &F = MF.getFunction(); 984 CallingConv::ID CalleeCC = Info.CallConv; 985 CallingConv::ID CallerCC = F.getCallingConv(); 986 987 if (CallerCC == CalleeCC) 988 return true; 989 990 SmallVector<CCValAssign, 16> ArgLocs1; 991 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext()); 992 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1)) 993 return false; 994 995 SmallVector<CCValAssign, 16> ArgLocs2; 996 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext()); 997 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2)) 998 return false; 999 1000 // We need the argument locations to match up exactly. If there's more in 1001 // one than the other, then we are done. 1002 if (ArgLocs1.size() != ArgLocs2.size()) 1003 return false; 1004 1005 // Make sure that each location is passed in exactly the same way. 1006 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 1007 const CCValAssign &Loc1 = ArgLocs1[i]; 1008 const CCValAssign &Loc2 = ArgLocs2[i]; 1009 1010 // We need both of them to be the same. So if one is a register and one 1011 // isn't, we're done. 1012 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 1013 return false; 1014 1015 if (Loc1.isRegLoc()) { 1016 // If they don't have the same register location, we're done. 1017 if (Loc1.getLocReg() != Loc2.getLocReg()) 1018 return false; 1019 1020 // They matched, so we can move to the next ArgLoc. 1021 continue; 1022 } 1023 1024 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 1025 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 1026 return false; 1027 } 1028 1029 return true; 1030 } 1031 1032 LLT CallLowering::ValueHandler::getStackValueStoreType( 1033 const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { 1034 const MVT ValVT = VA.getValVT(); 1035 if (ValVT != MVT::iPTR) { 1036 LLT ValTy(ValVT); 1037 1038 // We lost the pointeriness going through CCValAssign, so try to restore it 1039 // based on the flags. 1040 if (Flags.isPointer()) { 1041 LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(), 1042 ValTy.getScalarSizeInBits()); 1043 if (ValVT.isVector()) 1044 return LLT::vector(ValTy.getElementCount(), PtrTy); 1045 return PtrTy; 1046 } 1047 1048 return ValTy; 1049 } 1050 1051 unsigned AddrSpace = Flags.getPointerAddrSpace(); 1052 return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace)); 1053 } 1054 1055 void CallLowering::ValueHandler::copyArgumentMemory( 1056 const ArgInfo &Arg, Register DstPtr, Register SrcPtr, 1057 const MachinePointerInfo &DstPtrInfo, Align DstAlign, 1058 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, 1059 CCValAssign &VA) const { 1060 MachineFunction &MF = MIRBuilder.getMF(); 1061 MachineMemOperand *SrcMMO = MF.getMachineMemOperand( 1062 SrcPtrInfo, 1063 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, 1064 SrcAlign); 1065 1066 MachineMemOperand *DstMMO = MF.getMachineMemOperand( 1067 DstPtrInfo, 1068 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, 1069 MemSize, DstAlign); 1070 1071 const LLT PtrTy = MRI.getType(DstPtr); 1072 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); 1073 1074 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); 1075 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); 1076 } 1077 1078 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 1079 CCValAssign &VA, 1080 unsigned MaxSizeBits) { 1081 LLT LocTy{VA.getLocVT()}; 1082 LLT ValTy{VA.getValVT()}; 1083 1084 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 1085 return ValReg; 1086 1087 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 1088 if (MaxSizeBits <= ValTy.getSizeInBits()) 1089 return ValReg; 1090 LocTy = LLT::scalar(MaxSizeBits); 1091 } 1092 1093 const LLT ValRegTy = MRI.getType(ValReg); 1094 if (ValRegTy.isPointer()) { 1095 // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so 1096 // we have to cast to do the extension. 1097 LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits()); 1098 ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0); 1099 } 1100 1101 switch (VA.getLocInfo()) { 1102 default: break; 1103 case CCValAssign::Full: 1104 case CCValAssign::BCvt: 1105 // FIXME: bitconverting between vector types may or may not be a 1106 // nop in big-endian situations. 1107 return ValReg; 1108 case CCValAssign::AExt: { 1109 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 1110 return MIB.getReg(0); 1111 } 1112 case CCValAssign::SExt: { 1113 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1114 MIRBuilder.buildSExt(NewReg, ValReg); 1115 return NewReg; 1116 } 1117 case CCValAssign::ZExt: { 1118 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1119 MIRBuilder.buildZExt(NewReg, ValReg); 1120 return NewReg; 1121 } 1122 } 1123 llvm_unreachable("unable to extend register"); 1124 } 1125 1126 void CallLowering::ValueAssigner::anchor() {} 1127 1128 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA, 1129 Register SrcReg, 1130 LLT NarrowTy) { 1131 switch (VA.getLocInfo()) { 1132 case CCValAssign::LocInfo::ZExt: { 1133 return MIRBuilder 1134 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1135 NarrowTy.getScalarSizeInBits()) 1136 .getReg(0); 1137 } 1138 case CCValAssign::LocInfo::SExt: { 1139 return MIRBuilder 1140 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1141 NarrowTy.getScalarSizeInBits()) 1142 .getReg(0); 1143 break; 1144 } 1145 default: 1146 return SrcReg; 1147 } 1148 } 1149 1150 /// Check if we can use a basic COPY instruction between the two types. 1151 /// 1152 /// We're currently building on top of the infrastructure using MVT, which loses 1153 /// pointer information in the CCValAssign. We accept copies from physical 1154 /// registers that have been reported as integers if it's to an equivalent sized 1155 /// pointer LLT. 1156 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) { 1157 if (SrcTy == DstTy) 1158 return true; 1159 1160 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1161 return false; 1162 1163 SrcTy = SrcTy.getScalarType(); 1164 DstTy = DstTy.getScalarType(); 1165 1166 return (SrcTy.isPointer() && DstTy.isScalar()) || 1167 (DstTy.isScalar() && SrcTy.isPointer()); 1168 } 1169 1170 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg, 1171 Register PhysReg, 1172 CCValAssign VA) { 1173 const MVT LocVT = VA.getLocVT(); 1174 const LLT LocTy(LocVT); 1175 const LLT RegTy = MRI.getType(ValVReg); 1176 1177 if (isCopyCompatibleType(RegTy, LocTy)) { 1178 MIRBuilder.buildCopy(ValVReg, PhysReg); 1179 return; 1180 } 1181 1182 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); 1183 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy); 1184 MIRBuilder.buildTrunc(ValVReg, Hint); 1185 } 1186