1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
17 #include "llvm/CodeGen/GlobalISel/Utils.h"
18 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
19 #include "llvm/CodeGen/MachineOperand.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Target/TargetMachine.h"
27 
28 #define DEBUG_TYPE "call-lowering"
29 
30 using namespace llvm;
31 
32 void CallLowering::anchor() {}
33 
34 /// Helper function which updates \p Flags when \p AttrFn returns true.
35 static void
36 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
37                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
38   if (AttrFn(Attribute::SExt))
39     Flags.setSExt();
40   if (AttrFn(Attribute::ZExt))
41     Flags.setZExt();
42   if (AttrFn(Attribute::InReg))
43     Flags.setInReg();
44   if (AttrFn(Attribute::StructRet))
45     Flags.setSRet();
46   if (AttrFn(Attribute::Nest))
47     Flags.setNest();
48   if (AttrFn(Attribute::ByVal))
49     Flags.setByVal();
50   if (AttrFn(Attribute::Preallocated))
51     Flags.setPreallocated();
52   if (AttrFn(Attribute::InAlloca))
53     Flags.setInAlloca();
54   if (AttrFn(Attribute::Returned))
55     Flags.setReturned();
56   if (AttrFn(Attribute::SwiftSelf))
57     Flags.setSwiftSelf();
58   if (AttrFn(Attribute::SwiftAsync))
59     Flags.setSwiftAsync();
60   if (AttrFn(Attribute::SwiftError))
61     Flags.setSwiftError();
62 }
63 
64 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
65                                                      unsigned ArgIdx) const {
66   ISD::ArgFlagsTy Flags;
67   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
68     return Call.paramHasAttr(ArgIdx, Attr);
69   });
70   return Flags;
71 }
72 
73 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
74                                              const AttributeList &Attrs,
75                                              unsigned OpIdx) const {
76   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
77     return Attrs.hasAttributeAtIndex(OpIdx, Attr);
78   });
79 }
80 
81 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
82                              ArrayRef<Register> ResRegs,
83                              ArrayRef<ArrayRef<Register>> ArgRegs,
84                              Register SwiftErrorVReg,
85                              std::function<unsigned()> GetCalleeReg) const {
86   CallLoweringInfo Info;
87   const DataLayout &DL = MIRBuilder.getDataLayout();
88   MachineFunction &MF = MIRBuilder.getMF();
89   bool CanBeTailCalled = CB.isTailCall() &&
90                          isInTailCallPosition(CB, MF.getTarget()) &&
91                          (MF.getFunction()
92                               .getFnAttribute("disable-tail-calls")
93                               .getValueAsString() != "true");
94 
95   CallingConv::ID CallConv = CB.getCallingConv();
96   Type *RetTy = CB.getType();
97   bool IsVarArg = CB.getFunctionType()->isVarArg();
98 
99   SmallVector<BaseArgInfo, 4> SplitArgs;
100   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
101   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
102 
103   if (!Info.CanLowerReturn) {
104     // Callee requires sret demotion.
105     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
106 
107     // The sret demotion isn't compatible with tail-calls, since the sret
108     // argument points into the caller's stack frame.
109     CanBeTailCalled = false;
110   }
111 
112   // First step is to marshall all the function's parameters into the correct
113   // physregs and memory locations. Gather the sequence of argument types that
114   // we'll pass to the assigner function.
115   unsigned i = 0;
116   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
117   for (auto &Arg : CB.args()) {
118     ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
119                     i < NumFixedArgs};
120     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
121 
122     // If we have an explicit sret argument that is an Instruction, (i.e., it
123     // might point to function-local memory), we can't meaningfully tail-call.
124     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
125       CanBeTailCalled = false;
126 
127     Info.OrigArgs.push_back(OrigArg);
128     ++i;
129   }
130 
131   // Try looking through a bitcast from one function type to another.
132   // Commonly happens with calls to objc_msgSend().
133   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
134   if (const Function *F = dyn_cast<Function>(CalleeV))
135     Info.Callee = MachineOperand::CreateGA(F, 0);
136   else
137     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
138 
139   Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}};
140   if (!Info.OrigRet.Ty->isVoidTy())
141     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
142 
143   Info.CB = &CB;
144   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
145   Info.CallConv = CallConv;
146   Info.SwiftErrorVReg = SwiftErrorVReg;
147   Info.IsMustTailCall = CB.isMustTailCall();
148   Info.IsTailCall = CanBeTailCalled;
149   Info.IsVarArg = IsVarArg;
150   return lowerCall(MIRBuilder, Info);
151 }
152 
153 template <typename FuncInfoTy>
154 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
155                                const DataLayout &DL,
156                                const FuncInfoTy &FuncInfo) const {
157   auto &Flags = Arg.Flags[0];
158   const AttributeList &Attrs = FuncInfo.getAttributes();
159   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
160 
161   PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
162   if (PtrTy) {
163     Flags.setPointer();
164     Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
165   }
166 
167   Align MemAlign = DL.getABITypeAlign(Arg.Ty);
168   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
169     assert(OpIdx >= AttributeList::FirstArgIndex);
170     unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
171 
172     Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
173     if (!ElementTy)
174       ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
175     if (!ElementTy)
176       ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
177     assert(ElementTy && "Must have byval, inalloca or preallocated type");
178     Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
179 
180     // For ByVal, alignment should be passed from FE.  BE will guess if
181     // this info is not there but there are cases it cannot get right.
182     if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
183       MemAlign = *ParamAlign;
184     else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
185       MemAlign = *ParamAlign;
186     else
187       MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
188   } else if (OpIdx >= AttributeList::FirstArgIndex) {
189     if (auto ParamAlign =
190             FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
191       MemAlign = *ParamAlign;
192   }
193   Flags.setMemAlign(MemAlign);
194   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
195 
196   // Don't try to use the returned attribute if the argument is marked as
197   // swiftself, since it won't be passed in x0.
198   if (Flags.isSwiftSelf())
199     Flags.setReturned(false);
200 }
201 
202 template void
203 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
204                                     const DataLayout &DL,
205                                     const Function &FuncInfo) const;
206 
207 template void
208 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
209                                     const DataLayout &DL,
210                                     const CallBase &FuncInfo) const;
211 
212 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
213                                      SmallVectorImpl<ArgInfo> &SplitArgs,
214                                      const DataLayout &DL,
215                                      CallingConv::ID CallConv,
216                                      SmallVectorImpl<uint64_t> *Offsets) const {
217   LLVMContext &Ctx = OrigArg.Ty->getContext();
218 
219   SmallVector<EVT, 4> SplitVTs;
220   ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
221 
222   if (SplitVTs.size() == 0)
223     return;
224 
225   if (SplitVTs.size() == 1) {
226     // No splitting to do, but we want to replace the original type (e.g. [1 x
227     // double] -> double).
228     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
229                            OrigArg.OrigArgIndex, OrigArg.Flags[0],
230                            OrigArg.IsFixed, OrigArg.OrigValue);
231     return;
232   }
233 
234   // Create one ArgInfo for each virtual register in the original ArgInfo.
235   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
236 
237   bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
238       OrigArg.Ty, CallConv, false, DL);
239   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
240     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
241     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
242                            OrigArg.Flags[0], OrigArg.IsFixed);
243     if (NeedsRegBlock)
244       SplitArgs.back().Flags[0].setInConsecutiveRegs();
245   }
246 
247   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
248 }
249 
250 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
251 static MachineInstrBuilder
252 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
253                             ArrayRef<Register> SrcRegs) {
254   MachineRegisterInfo &MRI = *B.getMRI();
255   LLT LLTy = MRI.getType(DstRegs[0]);
256   LLT PartLLT = MRI.getType(SrcRegs[0]);
257 
258   // Deal with v3s16 split into v2s16
259   LLT LCMTy = getCoverTy(LLTy, PartLLT);
260   if (LCMTy == LLTy) {
261     // Common case where no padding is needed.
262     assert(DstRegs.size() == 1);
263     return B.buildConcatVectors(DstRegs[0], SrcRegs);
264   }
265 
266   // We need to create an unmerge to the result registers, which may require
267   // widening the original value.
268   Register UnmergeSrcReg;
269   if (LCMTy != PartLLT) {
270     assert(DstRegs.size() == 1);
271     return B.buildDeleteTrailingVectorElements(DstRegs[0],
272                                                B.buildMerge(LCMTy, SrcRegs));
273   } else {
274     // We don't need to widen anything if we're extracting a scalar which was
275     // promoted to a vector e.g. s8 -> v4s8 -> s8
276     assert(SrcRegs.size() == 1);
277     UnmergeSrcReg = SrcRegs[0];
278   }
279 
280   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
281 
282   SmallVector<Register, 8> PadDstRegs(NumDst);
283   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
284 
285   // Create the excess dead defs for the unmerge.
286   for (int I = DstRegs.size(); I != NumDst; ++I)
287     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
288 
289   if (PadDstRegs.size() == 1)
290     return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
291   return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
292 }
293 
294 /// Create a sequence of instructions to combine pieces split into register
295 /// typed values to the original IR value. \p OrigRegs contains the destination
296 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
297 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
298 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
299                               ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
300                               const ISD::ArgFlagsTy Flags) {
301   MachineRegisterInfo &MRI = *B.getMRI();
302 
303   if (PartLLT == LLTy) {
304     // We should have avoided introducing a new virtual register, and just
305     // directly assigned here.
306     assert(OrigRegs[0] == Regs[0]);
307     return;
308   }
309 
310   if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
311       Regs.size() == 1) {
312     B.buildBitcast(OrigRegs[0], Regs[0]);
313     return;
314   }
315 
316   // A vector PartLLT needs extending to LLTy's element size.
317   // E.g. <2 x s64> = G_SEXT <2 x s32>.
318   if (PartLLT.isVector() == LLTy.isVector() &&
319       PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
320       (!PartLLT.isVector() ||
321        PartLLT.getNumElements() == LLTy.getNumElements()) &&
322       OrigRegs.size() == 1 && Regs.size() == 1) {
323     Register SrcReg = Regs[0];
324 
325     LLT LocTy = MRI.getType(SrcReg);
326 
327     if (Flags.isSExt()) {
328       SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
329                    .getReg(0);
330     } else if (Flags.isZExt()) {
331       SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
332                    .getReg(0);
333     }
334 
335     // Sometimes pointers are passed zero extended.
336     LLT OrigTy = MRI.getType(OrigRegs[0]);
337     if (OrigTy.isPointer()) {
338       LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
339       B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
340       return;
341     }
342 
343     B.buildTrunc(OrigRegs[0], SrcReg);
344     return;
345   }
346 
347   if (!LLTy.isVector() && !PartLLT.isVector()) {
348     assert(OrigRegs.size() == 1);
349     LLT OrigTy = MRI.getType(OrigRegs[0]);
350 
351     unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size();
352     if (SrcSize == OrigTy.getSizeInBits())
353       B.buildMerge(OrigRegs[0], Regs);
354     else {
355       auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
356       B.buildTrunc(OrigRegs[0], Widened);
357     }
358 
359     return;
360   }
361 
362   if (PartLLT.isVector()) {
363     assert(OrigRegs.size() == 1);
364     SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
365 
366     // If PartLLT is a mismatched vector in both number of elements and element
367     // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
368     // have the same elt type, i.e. v4s32.
369     if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() &&
370         PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
371         Regs.size() == 1) {
372       LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
373                       .changeElementCount(PartLLT.getElementCount() * 2);
374       CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
375       PartLLT = NewTy;
376     }
377 
378     if (LLTy.getScalarType() == PartLLT.getElementType()) {
379       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
380     } else {
381       unsigned I = 0;
382       LLT GCDTy = getGCDType(LLTy, PartLLT);
383 
384       // We are both splitting a vector, and bitcasting its element types. Cast
385       // the source pieces into the appropriate number of pieces with the result
386       // element type.
387       for (Register SrcReg : CastRegs)
388         CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
389       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
390     }
391 
392     return;
393   }
394 
395   assert(LLTy.isVector() && !PartLLT.isVector());
396 
397   LLT DstEltTy = LLTy.getElementType();
398 
399   // Pointer information was discarded. We'll need to coerce some register types
400   // to avoid violating type constraints.
401   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
402 
403   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
404 
405   if (DstEltTy == PartLLT) {
406     // Vector was trivially scalarized.
407 
408     if (RealDstEltTy.isPointer()) {
409       for (Register Reg : Regs)
410         MRI.setType(Reg, RealDstEltTy);
411     }
412 
413     B.buildBuildVector(OrigRegs[0], Regs);
414   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
415     // Deal with vector with 64-bit elements decomposed to 32-bit
416     // registers. Need to create intermediate 64-bit elements.
417     SmallVector<Register, 8> EltMerges;
418     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
419 
420     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
421 
422     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
423       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
424       // Fix the type in case this is really a vector of pointers.
425       MRI.setType(Merge.getReg(0), RealDstEltTy);
426       EltMerges.push_back(Merge.getReg(0));
427       Regs = Regs.drop_front(PartsPerElt);
428     }
429 
430     B.buildBuildVector(OrigRegs[0], EltMerges);
431   } else {
432     // Vector was split, and elements promoted to a wider type.
433     // FIXME: Should handle floating point promotions.
434     LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT);
435     auto BV = B.buildBuildVector(BVType, Regs);
436     B.buildTrunc(OrigRegs[0], BV);
437   }
438 }
439 
440 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
441 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
442 /// contain the type of scalar value extension if necessary.
443 ///
444 /// This is used for outgoing values (vregs to physregs)
445 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
446                             Register SrcReg, LLT SrcTy, LLT PartTy,
447                             unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
448   // We could just insert a regular copy, but this is unreachable at the moment.
449   assert(SrcTy != PartTy && "identical part types shouldn't reach here");
450 
451   const unsigned PartSize = PartTy.getSizeInBits();
452 
453   if (PartTy.isVector() == SrcTy.isVector() &&
454       PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
455     assert(DstRegs.size() == 1);
456     B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
457     return;
458   }
459 
460   if (SrcTy.isVector() && !PartTy.isVector() &&
461       PartSize > SrcTy.getElementType().getSizeInBits()) {
462     // Vector was scalarized, and the elements extended.
463     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
464     for (int i = 0, e = DstRegs.size(); i != e; ++i)
465       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
466     return;
467   }
468 
469   LLT GCDTy = getGCDType(SrcTy, PartTy);
470   if (GCDTy == PartTy) {
471     // If this already evenly divisible, we can create a simple unmerge.
472     B.buildUnmerge(DstRegs, SrcReg);
473     return;
474   }
475 
476   MachineRegisterInfo &MRI = *B.getMRI();
477   LLT DstTy = MRI.getType(DstRegs[0]);
478   LLT LCMTy = getCoverTy(SrcTy, PartTy);
479 
480   const unsigned DstSize = DstTy.getSizeInBits();
481   const unsigned SrcSize = SrcTy.getSizeInBits();
482   unsigned CoveringSize = LCMTy.getSizeInBits();
483 
484   Register UnmergeSrc = SrcReg;
485 
486   if (!LCMTy.isVector() && CoveringSize != SrcSize) {
487     // For scalars, it's common to be able to use a simple extension.
488     if (SrcTy.isScalar() && DstTy.isScalar()) {
489       CoveringSize = alignTo(SrcSize, DstSize);
490       LLT CoverTy = LLT::scalar(CoveringSize);
491       UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
492     } else {
493       // Widen to the common type.
494       // FIXME: This should respect the extend type
495       Register Undef = B.buildUndef(SrcTy).getReg(0);
496       SmallVector<Register, 8> MergeParts(1, SrcReg);
497       for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
498         MergeParts.push_back(Undef);
499       UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
500     }
501   }
502 
503   if (LCMTy.isVector() && CoveringSize != SrcSize)
504     UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
505 
506   B.buildUnmerge(DstRegs, UnmergeSrc);
507 }
508 
509 bool CallLowering::determineAndHandleAssignments(
510     ValueHandler &Handler, ValueAssigner &Assigner,
511     SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
512     CallingConv::ID CallConv, bool IsVarArg, Register ThisReturnReg) const {
513   MachineFunction &MF = MIRBuilder.getMF();
514   const Function &F = MF.getFunction();
515   SmallVector<CCValAssign, 16> ArgLocs;
516 
517   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
518   if (!determineAssignments(Assigner, Args, CCInfo))
519     return false;
520 
521   return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
522                            ThisReturnReg);
523 }
524 
525 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
526   if (Flags.isSExt())
527     return TargetOpcode::G_SEXT;
528   if (Flags.isZExt())
529     return TargetOpcode::G_ZEXT;
530   return TargetOpcode::G_ANYEXT;
531 }
532 
533 bool CallLowering::determineAssignments(ValueAssigner &Assigner,
534                                         SmallVectorImpl<ArgInfo> &Args,
535                                         CCState &CCInfo) const {
536   LLVMContext &Ctx = CCInfo.getContext();
537   const CallingConv::ID CallConv = CCInfo.getCallingConv();
538 
539   unsigned NumArgs = Args.size();
540   for (unsigned i = 0; i != NumArgs; ++i) {
541     EVT CurVT = EVT::getEVT(Args[i].Ty);
542 
543     MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
544 
545     // If we need to split the type over multiple regs, check it's a scenario
546     // we currently support.
547     unsigned NumParts =
548         TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
549 
550     if (NumParts == 1) {
551       // Try to use the register type if we couldn't assign the VT.
552       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
553                              Args[i].Flags[0], CCInfo))
554         return false;
555       continue;
556     }
557 
558     // For incoming arguments (physregs to vregs), we could have values in
559     // physregs (or memlocs) which we want to extract and copy to vregs.
560     // During this, we might have to deal with the LLT being split across
561     // multiple regs, so we have to record this information for later.
562     //
563     // If we have outgoing args, then we have the opposite case. We have a
564     // vreg with an LLT which we want to assign to a physical location, and
565     // we might have to record that the value has to be split later.
566 
567     // We're handling an incoming arg which is split over multiple regs.
568     // E.g. passing an s128 on AArch64.
569     ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
570     Args[i].Flags.clear();
571 
572     for (unsigned Part = 0; Part < NumParts; ++Part) {
573       ISD::ArgFlagsTy Flags = OrigFlags;
574       if (Part == 0) {
575         Flags.setSplit();
576       } else {
577         Flags.setOrigAlign(Align(1));
578         if (Part == NumParts - 1)
579           Flags.setSplitEnd();
580       }
581 
582       Args[i].Flags.push_back(Flags);
583       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
584                              Args[i].Flags[Part], CCInfo)) {
585         // Still couldn't assign this smaller part type for some reason.
586         return false;
587       }
588     }
589   }
590 
591   return true;
592 }
593 
594 bool CallLowering::handleAssignments(ValueHandler &Handler,
595                                      SmallVectorImpl<ArgInfo> &Args,
596                                      CCState &CCInfo,
597                                      SmallVectorImpl<CCValAssign> &ArgLocs,
598                                      MachineIRBuilder &MIRBuilder,
599                                      Register ThisReturnReg) const {
600   MachineFunction &MF = MIRBuilder.getMF();
601   MachineRegisterInfo &MRI = MF.getRegInfo();
602   const Function &F = MF.getFunction();
603   const DataLayout &DL = F.getParent()->getDataLayout();
604 
605   const unsigned NumArgs = Args.size();
606 
607   // Stores thunks for outgoing register assignments. This is used so we delay
608   // generating register copies until mem loc assignments are done. We do this
609   // so that if the target is using the delayed stack protector feature, we can
610   // find the split point of the block accurately. E.g. if we have:
611   // G_STORE %val, %memloc
612   // $x0 = COPY %foo
613   // $x1 = COPY %bar
614   // CALL func
615   // ... then the split point for the block will correctly be at, and including,
616   // the copy to $x0. If instead the G_STORE instruction immediately precedes
617   // the CALL, then we'd prematurely choose the CALL as the split point, thus
618   // generating a split block with a CALL that uses undefined physregs.
619   SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
620 
621   for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
622     assert(j < ArgLocs.size() && "Skipped too many arg locs");
623     CCValAssign &VA = ArgLocs[j];
624     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
625 
626     if (VA.needsCustom()) {
627       std::function<void()> Thunk;
628       unsigned NumArgRegs = Handler.assignCustomValue(
629           Args[i], makeArrayRef(ArgLocs).slice(j), &Thunk);
630       if (Thunk)
631         DelayedOutgoingRegAssignments.emplace_back(Thunk);
632       if (!NumArgRegs)
633         return false;
634       j += NumArgRegs;
635       continue;
636     }
637 
638     const MVT ValVT = VA.getValVT();
639     const MVT LocVT = VA.getLocVT();
640 
641     const LLT LocTy(LocVT);
642     const LLT ValTy(ValVT);
643     const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
644     const EVT OrigVT = EVT::getEVT(Args[i].Ty);
645     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
646 
647     // Expected to be multiple regs for a single incoming arg.
648     // There should be Regs.size() ArgLocs per argument.
649     // This should be the same as getNumRegistersForCallingConv
650     const unsigned NumParts = Args[i].Flags.size();
651 
652     // Now split the registers into the assigned types.
653     Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
654 
655     if (NumParts != 1 || NewLLT != OrigTy) {
656       // If we can't directly assign the register, we need one or more
657       // intermediate values.
658       Args[i].Regs.resize(NumParts);
659 
660       // For each split register, create and assign a vreg that will store
661       // the incoming component of the larger value. These will later be
662       // merged to form the final vreg.
663       for (unsigned Part = 0; Part < NumParts; ++Part)
664         Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
665     }
666 
667     assert((j + (NumParts - 1)) < ArgLocs.size() &&
668            "Too many regs for number of args");
669 
670     // Coerce into outgoing value types before register assignment.
671     if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
672       assert(Args[i].OrigRegs.size() == 1);
673       buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
674                       ValTy, extendOpFromFlags(Args[i].Flags[0]));
675     }
676 
677     for (unsigned Part = 0; Part < NumParts; ++Part) {
678       Register ArgReg = Args[i].Regs[Part];
679       // There should be Regs.size() ArgLocs per argument.
680       VA = ArgLocs[j + Part];
681       const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
682 
683       if (VA.isMemLoc() && !Flags.isByVal()) {
684         // Individual pieces may have been spilled to the stack and others
685         // passed in registers.
686 
687         // TODO: The memory size may be larger than the value we need to
688         // store. We may need to adjust the offset for big endian targets.
689         LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
690 
691         MachinePointerInfo MPO;
692         Register StackAddr = Handler.getStackAddress(
693             MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags);
694 
695         Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
696         continue;
697       }
698 
699       if (VA.isMemLoc() && Flags.isByVal()) {
700         assert(Args[i].Regs.size() == 1 &&
701                "didn't expect split byval pointer");
702 
703         if (Handler.isIncomingArgumentHandler()) {
704           // We just need to copy the frame index value to the pointer.
705           MachinePointerInfo MPO;
706           Register StackAddr = Handler.getStackAddress(
707               Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
708           MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
709         } else {
710           // For outgoing byval arguments, insert the implicit copy byval
711           // implies, such that writes in the callee do not modify the caller's
712           // value.
713           uint64_t MemSize = Flags.getByValSize();
714           int64_t Offset = VA.getLocMemOffset();
715 
716           MachinePointerInfo DstMPO;
717           Register StackAddr =
718               Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
719 
720           MachinePointerInfo SrcMPO(Args[i].OrigValue);
721           if (!Args[i].OrigValue) {
722             // We still need to accurately track the stack address space if we
723             // don't know the underlying value.
724             const LLT PtrTy = MRI.getType(StackAddr);
725             SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
726           }
727 
728           Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
729                                     inferAlignFromPtrInfo(MF, DstMPO));
730 
731           Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
732                                     inferAlignFromPtrInfo(MF, SrcMPO));
733 
734           Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
735                                      DstMPO, DstAlign, SrcMPO, SrcAlign,
736                                      MemSize, VA);
737         }
738         continue;
739       }
740 
741       assert(!VA.needsCustom() && "custom loc should have been handled already");
742 
743       if (i == 0 && ThisReturnReg.isValid() &&
744           Handler.isIncomingArgumentHandler() &&
745           isTypeIsValidForThisReturn(ValVT)) {
746         Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA);
747         continue;
748       }
749 
750       if (Handler.isIncomingArgumentHandler())
751         Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
752       else {
753         DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
754           Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
755         });
756       }
757     }
758 
759     // Now that all pieces have been assigned, re-pack the register typed values
760     // into the original value typed registers.
761     if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
762       // Merge the split registers into the expected larger result vregs of
763       // the original call.
764       buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
765                         LocTy, Args[i].Flags[0]);
766     }
767 
768     j += NumParts - 1;
769   }
770   for (auto &Fn : DelayedOutgoingRegAssignments)
771     Fn();
772 
773   return true;
774 }
775 
776 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
777                                    ArrayRef<Register> VRegs, Register DemoteReg,
778                                    int FI) const {
779   MachineFunction &MF = MIRBuilder.getMF();
780   MachineRegisterInfo &MRI = MF.getRegInfo();
781   const DataLayout &DL = MF.getDataLayout();
782 
783   SmallVector<EVT, 4> SplitVTs;
784   SmallVector<uint64_t, 4> Offsets;
785   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
786 
787   assert(VRegs.size() == SplitVTs.size());
788 
789   unsigned NumValues = SplitVTs.size();
790   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
791   Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
792   LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
793 
794   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
795 
796   for (unsigned I = 0; I < NumValues; ++I) {
797     Register Addr;
798     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
799     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
800                                         MRI.getType(VRegs[I]),
801                                         commonAlignment(BaseAlign, Offsets[I]));
802     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
803   }
804 }
805 
806 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
807                                     ArrayRef<Register> VRegs,
808                                     Register DemoteReg) const {
809   MachineFunction &MF = MIRBuilder.getMF();
810   MachineRegisterInfo &MRI = MF.getRegInfo();
811   const DataLayout &DL = MF.getDataLayout();
812 
813   SmallVector<EVT, 4> SplitVTs;
814   SmallVector<uint64_t, 4> Offsets;
815   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
816 
817   assert(VRegs.size() == SplitVTs.size());
818 
819   unsigned NumValues = SplitVTs.size();
820   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
821   unsigned AS = DL.getAllocaAddrSpace();
822   LLT OffsetLLTy =
823       getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
824 
825   MachinePointerInfo PtrInfo(AS);
826 
827   for (unsigned I = 0; I < NumValues; ++I) {
828     Register Addr;
829     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
830     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
831                                         MRI.getType(VRegs[I]),
832                                         commonAlignment(BaseAlign, Offsets[I]));
833     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
834   }
835 }
836 
837 void CallLowering::insertSRetIncomingArgument(
838     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
839     MachineRegisterInfo &MRI, const DataLayout &DL) const {
840   unsigned AS = DL.getAllocaAddrSpace();
841   DemoteReg = MRI.createGenericVirtualRegister(
842       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
843 
844   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
845 
846   SmallVector<EVT, 1> ValueVTs;
847   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
848 
849   // NOTE: Assume that a pointer won't get split into more than one VT.
850   assert(ValueVTs.size() == 1);
851 
852   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
853                     ArgInfo::NoArgIndex);
854   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
855   DemoteArg.Flags[0].setSRet();
856   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
857 }
858 
859 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
860                                               const CallBase &CB,
861                                               CallLoweringInfo &Info) const {
862   const DataLayout &DL = MIRBuilder.getDataLayout();
863   Type *RetTy = CB.getType();
864   unsigned AS = DL.getAllocaAddrSpace();
865   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
866 
867   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
868       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
869 
870   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
871   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
872                     ArgInfo::NoArgIndex);
873   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
874   DemoteArg.Flags[0].setSRet();
875 
876   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
877   Info.DemoteStackIndex = FI;
878   Info.DemoteRegister = DemoteReg;
879 }
880 
881 bool CallLowering::checkReturn(CCState &CCInfo,
882                                SmallVectorImpl<BaseArgInfo> &Outs,
883                                CCAssignFn *Fn) const {
884   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
885     MVT VT = MVT::getVT(Outs[I].Ty);
886     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
887       return false;
888   }
889   return true;
890 }
891 
892 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
893                                  AttributeList Attrs,
894                                  SmallVectorImpl<BaseArgInfo> &Outs,
895                                  const DataLayout &DL) const {
896   LLVMContext &Context = RetTy->getContext();
897   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
898 
899   SmallVector<EVT, 4> SplitVTs;
900   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
901   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
902 
903   for (EVT VT : SplitVTs) {
904     unsigned NumParts =
905         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
906     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
907     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
908 
909     for (unsigned I = 0; I < NumParts; ++I) {
910       Outs.emplace_back(PartTy, Flags);
911     }
912   }
913 }
914 
915 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
916   const auto &F = MF.getFunction();
917   Type *ReturnType = F.getReturnType();
918   CallingConv::ID CallConv = F.getCallingConv();
919 
920   SmallVector<BaseArgInfo, 4> SplitArgs;
921   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
922                 MF.getDataLayout());
923   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
924 }
925 
926 bool CallLowering::parametersInCSRMatch(
927     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
928     const SmallVectorImpl<CCValAssign> &OutLocs,
929     const SmallVectorImpl<ArgInfo> &OutArgs) const {
930   for (unsigned i = 0; i < OutLocs.size(); ++i) {
931     auto &ArgLoc = OutLocs[i];
932     // If it's not a register, it's fine.
933     if (!ArgLoc.isRegLoc())
934       continue;
935 
936     MCRegister PhysReg = ArgLoc.getLocReg();
937 
938     // Only look at callee-saved registers.
939     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
940       continue;
941 
942     LLVM_DEBUG(
943         dbgs()
944         << "... Call has an argument passed in a callee-saved register.\n");
945 
946     // Check if it was copied from.
947     const ArgInfo &OutInfo = OutArgs[i];
948 
949     if (OutInfo.Regs.size() > 1) {
950       LLVM_DEBUG(
951           dbgs() << "... Cannot handle arguments in multiple registers.\n");
952       return false;
953     }
954 
955     // Check if we copy the register, walking through copies from virtual
956     // registers. Note that getDefIgnoringCopies does not ignore copies from
957     // physical registers.
958     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
959     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
960       LLVM_DEBUG(
961           dbgs()
962           << "... Parameter was not copied into a VReg, cannot tail call.\n");
963       return false;
964     }
965 
966     // Got a copy. Verify that it's the same as the register we want.
967     Register CopyRHS = RegDef->getOperand(1).getReg();
968     if (CopyRHS != PhysReg) {
969       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
970                            "VReg, cannot tail call.\n");
971       return false;
972     }
973   }
974 
975   return true;
976 }
977 
978 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
979                                      MachineFunction &MF,
980                                      SmallVectorImpl<ArgInfo> &InArgs,
981                                      ValueAssigner &CalleeAssigner,
982                                      ValueAssigner &CallerAssigner) const {
983   const Function &F = MF.getFunction();
984   CallingConv::ID CalleeCC = Info.CallConv;
985   CallingConv::ID CallerCC = F.getCallingConv();
986 
987   if (CallerCC == CalleeCC)
988     return true;
989 
990   SmallVector<CCValAssign, 16> ArgLocs1;
991   CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
992   if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
993     return false;
994 
995   SmallVector<CCValAssign, 16> ArgLocs2;
996   CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
997   if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
998     return false;
999 
1000   // We need the argument locations to match up exactly. If there's more in
1001   // one than the other, then we are done.
1002   if (ArgLocs1.size() != ArgLocs2.size())
1003     return false;
1004 
1005   // Make sure that each location is passed in exactly the same way.
1006   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
1007     const CCValAssign &Loc1 = ArgLocs1[i];
1008     const CCValAssign &Loc2 = ArgLocs2[i];
1009 
1010     // We need both of them to be the same. So if one is a register and one
1011     // isn't, we're done.
1012     if (Loc1.isRegLoc() != Loc2.isRegLoc())
1013       return false;
1014 
1015     if (Loc1.isRegLoc()) {
1016       // If they don't have the same register location, we're done.
1017       if (Loc1.getLocReg() != Loc2.getLocReg())
1018         return false;
1019 
1020       // They matched, so we can move to the next ArgLoc.
1021       continue;
1022     }
1023 
1024     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1025     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1026       return false;
1027   }
1028 
1029   return true;
1030 }
1031 
1032 LLT CallLowering::ValueHandler::getStackValueStoreType(
1033     const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1034   const MVT ValVT = VA.getValVT();
1035   if (ValVT != MVT::iPTR) {
1036     LLT ValTy(ValVT);
1037 
1038     // We lost the pointeriness going through CCValAssign, so try to restore it
1039     // based on the flags.
1040     if (Flags.isPointer()) {
1041       LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1042                                ValTy.getScalarSizeInBits());
1043       if (ValVT.isVector())
1044         return LLT::vector(ValTy.getElementCount(), PtrTy);
1045       return PtrTy;
1046     }
1047 
1048     return ValTy;
1049   }
1050 
1051   unsigned AddrSpace = Flags.getPointerAddrSpace();
1052   return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1053 }
1054 
1055 void CallLowering::ValueHandler::copyArgumentMemory(
1056     const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1057     const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1058     const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1059     CCValAssign &VA) const {
1060   MachineFunction &MF = MIRBuilder.getMF();
1061   MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1062       SrcPtrInfo,
1063       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1064       SrcAlign);
1065 
1066   MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1067       DstPtrInfo,
1068       MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1069       MemSize, DstAlign);
1070 
1071   const LLT PtrTy = MRI.getType(DstPtr);
1072   const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1073 
1074   auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1075   MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1076 }
1077 
1078 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1079                                                     CCValAssign &VA,
1080                                                     unsigned MaxSizeBits) {
1081   LLT LocTy{VA.getLocVT()};
1082   LLT ValTy{VA.getValVT()};
1083 
1084   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1085     return ValReg;
1086 
1087   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1088     if (MaxSizeBits <= ValTy.getSizeInBits())
1089       return ValReg;
1090     LocTy = LLT::scalar(MaxSizeBits);
1091   }
1092 
1093   const LLT ValRegTy = MRI.getType(ValReg);
1094   if (ValRegTy.isPointer()) {
1095     // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1096     // we have to cast to do the extension.
1097     LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1098     ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1099   }
1100 
1101   switch (VA.getLocInfo()) {
1102   default: break;
1103   case CCValAssign::Full:
1104   case CCValAssign::BCvt:
1105     // FIXME: bitconverting between vector types may or may not be a
1106     // nop in big-endian situations.
1107     return ValReg;
1108   case CCValAssign::AExt: {
1109     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1110     return MIB.getReg(0);
1111   }
1112   case CCValAssign::SExt: {
1113     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1114     MIRBuilder.buildSExt(NewReg, ValReg);
1115     return NewReg;
1116   }
1117   case CCValAssign::ZExt: {
1118     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1119     MIRBuilder.buildZExt(NewReg, ValReg);
1120     return NewReg;
1121   }
1122   }
1123   llvm_unreachable("unable to extend register");
1124 }
1125 
1126 void CallLowering::ValueAssigner::anchor() {}
1127 
1128 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA,
1129                                                                 Register SrcReg,
1130                                                                 LLT NarrowTy) {
1131   switch (VA.getLocInfo()) {
1132   case CCValAssign::LocInfo::ZExt: {
1133     return MIRBuilder
1134         .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1135                          NarrowTy.getScalarSizeInBits())
1136         .getReg(0);
1137   }
1138   case CCValAssign::LocInfo::SExt: {
1139     return MIRBuilder
1140         .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1141                          NarrowTy.getScalarSizeInBits())
1142         .getReg(0);
1143     break;
1144   }
1145   default:
1146     return SrcReg;
1147   }
1148 }
1149 
1150 /// Check if we can use a basic COPY instruction between the two types.
1151 ///
1152 /// We're currently building on top of the infrastructure using MVT, which loses
1153 /// pointer information in the CCValAssign. We accept copies from physical
1154 /// registers that have been reported as integers if it's to an equivalent sized
1155 /// pointer LLT.
1156 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1157   if (SrcTy == DstTy)
1158     return true;
1159 
1160   if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1161     return false;
1162 
1163   SrcTy = SrcTy.getScalarType();
1164   DstTy = DstTy.getScalarType();
1165 
1166   return (SrcTy.isPointer() && DstTy.isScalar()) ||
1167          (DstTy.isScalar() && SrcTy.isPointer());
1168 }
1169 
1170 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg,
1171                                                           Register PhysReg,
1172                                                           CCValAssign VA) {
1173   const MVT LocVT = VA.getLocVT();
1174   const LLT LocTy(LocVT);
1175   const LLT RegTy = MRI.getType(ValVReg);
1176 
1177   if (isCopyCompatibleType(RegTy, LocTy)) {
1178     MIRBuilder.buildCopy(ValVReg, PhysReg);
1179     return;
1180   }
1181 
1182   auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1183   auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1184   MIRBuilder.buildTrunc(ValVReg, Hint);
1185 }
1186