1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 16 #include "llvm/CodeGen/GlobalISel/Utils.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/MachineOperand.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Target/TargetMachine.h" 26 27 #define DEBUG_TYPE "call-lowering" 28 29 using namespace llvm; 30 31 void CallLowering::anchor() {} 32 33 /// Helper function which updates \p Flags when \p AttrFn returns true. 34 static void 35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 36 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 37 if (AttrFn(Attribute::SExt)) 38 Flags.setSExt(); 39 if (AttrFn(Attribute::ZExt)) 40 Flags.setZExt(); 41 if (AttrFn(Attribute::InReg)) 42 Flags.setInReg(); 43 if (AttrFn(Attribute::StructRet)) 44 Flags.setSRet(); 45 if (AttrFn(Attribute::Nest)) 46 Flags.setNest(); 47 if (AttrFn(Attribute::ByVal)) 48 Flags.setByVal(); 49 if (AttrFn(Attribute::Preallocated)) 50 Flags.setPreallocated(); 51 if (AttrFn(Attribute::InAlloca)) 52 Flags.setInAlloca(); 53 if (AttrFn(Attribute::Returned)) 54 Flags.setReturned(); 55 if (AttrFn(Attribute::SwiftSelf)) 56 Flags.setSwiftSelf(); 57 if (AttrFn(Attribute::SwiftAsync)) 58 Flags.setSwiftAsync(); 59 if (AttrFn(Attribute::SwiftError)) 60 Flags.setSwiftError(); 61 } 62 63 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 64 unsigned ArgIdx) const { 65 ISD::ArgFlagsTy Flags; 66 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 67 return Call.paramHasAttr(ArgIdx, Attr); 68 }); 69 return Flags; 70 } 71 72 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 73 const AttributeList &Attrs, 74 unsigned OpIdx) const { 75 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 76 return Attrs.hasAttribute(OpIdx, Attr); 77 }); 78 } 79 80 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 81 ArrayRef<Register> ResRegs, 82 ArrayRef<ArrayRef<Register>> ArgRegs, 83 Register SwiftErrorVReg, 84 std::function<unsigned()> GetCalleeReg) const { 85 CallLoweringInfo Info; 86 const DataLayout &DL = MIRBuilder.getDataLayout(); 87 MachineFunction &MF = MIRBuilder.getMF(); 88 bool CanBeTailCalled = CB.isTailCall() && 89 isInTailCallPosition(CB, MF.getTarget()) && 90 (MF.getFunction() 91 .getFnAttribute("disable-tail-calls") 92 .getValueAsString() != "true"); 93 94 CallingConv::ID CallConv = CB.getCallingConv(); 95 Type *RetTy = CB.getType(); 96 bool IsVarArg = CB.getFunctionType()->isVarArg(); 97 98 SmallVector<BaseArgInfo, 4> SplitArgs; 99 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 100 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 101 102 if (!Info.CanLowerReturn) { 103 // Callee requires sret demotion. 104 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 105 106 // The sret demotion isn't compatible with tail-calls, since the sret 107 // argument points into the caller's stack frame. 108 CanBeTailCalled = false; 109 } 110 111 // First step is to marshall all the function's parameters into the correct 112 // physregs and memory locations. Gather the sequence of argument types that 113 // we'll pass to the assigner function. 114 unsigned i = 0; 115 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 116 for (auto &Arg : CB.args()) { 117 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), getAttributesForArgIdx(CB, i), 118 i < NumFixedArgs}; 119 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 120 121 // If we have an explicit sret argument that is an Instruction, (i.e., it 122 // might point to function-local memory), we can't meaningfully tail-call. 123 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 124 CanBeTailCalled = false; 125 126 Info.OrigArgs.push_back(OrigArg); 127 ++i; 128 } 129 130 // Try looking through a bitcast from one function type to another. 131 // Commonly happens with calls to objc_msgSend(). 132 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 133 if (const Function *F = dyn_cast<Function>(CalleeV)) 134 Info.Callee = MachineOperand::CreateGA(F, 0); 135 else 136 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 137 138 Info.OrigRet = ArgInfo{ResRegs, RetTy, ISD::ArgFlagsTy{}}; 139 if (!Info.OrigRet.Ty->isVoidTy()) 140 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 141 142 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 143 Info.CallConv = CallConv; 144 Info.SwiftErrorVReg = SwiftErrorVReg; 145 Info.IsMustTailCall = CB.isMustTailCall(); 146 Info.IsTailCall = CanBeTailCalled; 147 Info.IsVarArg = IsVarArg; 148 return lowerCall(MIRBuilder, Info); 149 } 150 151 template <typename FuncInfoTy> 152 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 153 const DataLayout &DL, 154 const FuncInfoTy &FuncInfo) const { 155 auto &Flags = Arg.Flags[0]; 156 const AttributeList &Attrs = FuncInfo.getAttributes(); 157 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 158 159 Align MemAlign = DL.getABITypeAlign(Arg.Ty); 160 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 161 assert(OpIdx >= AttributeList::FirstArgIndex); 162 Type *ElementTy = cast<PointerType>(Arg.Ty)->getElementType(); 163 164 auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType(); 165 Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy)); 166 167 // For ByVal, alignment should be passed from FE. BE will guess if 168 // this info is not there but there are cases it cannot get right. 169 if (auto ParamAlign = 170 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 171 MemAlign = *ParamAlign; 172 else if ((ParamAlign = 173 FuncInfo.getParamAlign(OpIdx - AttributeList::FirstArgIndex))) 174 MemAlign = *ParamAlign; 175 else 176 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 177 } else if (OpIdx >= AttributeList::FirstArgIndex) { 178 if (auto ParamAlign = 179 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 180 MemAlign = *ParamAlign; 181 } 182 Flags.setMemAlign(MemAlign); 183 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 184 185 // Don't try to use the returned attribute if the argument is marked as 186 // swiftself, since it won't be passed in x0. 187 if (Flags.isSwiftSelf()) 188 Flags.setReturned(false); 189 } 190 191 template void 192 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 193 const DataLayout &DL, 194 const Function &FuncInfo) const; 195 196 template void 197 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 198 const DataLayout &DL, 199 const CallBase &FuncInfo) const; 200 201 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 202 SmallVectorImpl<ArgInfo> &SplitArgs, 203 const DataLayout &DL, 204 CallingConv::ID CallConv) const { 205 LLVMContext &Ctx = OrigArg.Ty->getContext(); 206 207 SmallVector<EVT, 4> SplitVTs; 208 SmallVector<uint64_t, 4> Offsets; 209 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0); 210 211 if (SplitVTs.size() == 0) 212 return; 213 214 if (SplitVTs.size() == 1) { 215 // No splitting to do, but we want to replace the original type (e.g. [1 x 216 // double] -> double). 217 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 218 OrigArg.Flags[0], OrigArg.IsFixed, 219 OrigArg.OrigValue); 220 return; 221 } 222 223 // Create one ArgInfo for each virtual register in the original ArgInfo. 224 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 225 226 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 227 OrigArg.Ty, CallConv, false, DL); 228 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 229 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 230 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0], 231 OrigArg.IsFixed); 232 if (NeedsRegBlock) 233 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 234 } 235 236 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 237 } 238 239 void CallLowering::unpackRegs(ArrayRef<Register> DstRegs, Register SrcReg, 240 Type *PackedTy, 241 MachineIRBuilder &MIRBuilder) const { 242 assert(DstRegs.size() > 1 && "Nothing to unpack"); 243 244 const DataLayout &DL = MIRBuilder.getDataLayout(); 245 246 SmallVector<LLT, 8> LLTs; 247 SmallVector<uint64_t, 8> Offsets; 248 computeValueLLTs(DL, *PackedTy, LLTs, &Offsets); 249 assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch"); 250 251 for (unsigned i = 0; i < DstRegs.size(); ++i) 252 MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]); 253 } 254 255 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 256 static MachineInstrBuilder 257 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 258 ArrayRef<Register> SrcRegs) { 259 MachineRegisterInfo &MRI = *B.getMRI(); 260 LLT LLTy = MRI.getType(DstRegs[0]); 261 LLT PartLLT = MRI.getType(SrcRegs[0]); 262 263 // Deal with v3s16 split into v2s16 264 LLT LCMTy = getLCMType(LLTy, PartLLT); 265 if (LCMTy == LLTy) { 266 // Common case where no padding is needed. 267 assert(DstRegs.size() == 1); 268 return B.buildConcatVectors(DstRegs[0], SrcRegs); 269 } 270 271 // We need to create an unmerge to the result registers, which may require 272 // widening the original value. 273 Register UnmergeSrcReg; 274 if (LCMTy != PartLLT) { 275 // e.g. A <3 x s16> value was split to <2 x s16> 276 // %register_value0:_(<2 x s16>) 277 // %register_value1:_(<2 x s16>) 278 // %undef:_(<2 x s16>) = G_IMPLICIT_DEF 279 // %concat:_<6 x s16>) = G_CONCAT_VECTORS %reg_value0, %reg_value1, %undef 280 // %dst_reg:_(<3 x s16>), %dead:_(<3 x s16>) = G_UNMERGE_VALUES %concat 281 const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits(); 282 Register Undef = B.buildUndef(PartLLT).getReg(0); 283 284 // Build vector of undefs. 285 SmallVector<Register, 8> WidenedSrcs(NumWide, Undef); 286 287 // Replace the first sources with the real registers. 288 std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin()); 289 UnmergeSrcReg = B.buildConcatVectors(LCMTy, WidenedSrcs).getReg(0); 290 } else { 291 // We don't need to widen anything if we're extracting a scalar which was 292 // promoted to a vector e.g. s8 -> v4s8 -> s8 293 assert(SrcRegs.size() == 1); 294 UnmergeSrcReg = SrcRegs[0]; 295 } 296 297 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 298 299 SmallVector<Register, 8> PadDstRegs(NumDst); 300 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 301 302 // Create the excess dead defs for the unmerge. 303 for (int I = DstRegs.size(); I != NumDst; ++I) 304 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 305 306 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); 307 } 308 309 /// Create a sequence of instructions to combine pieces split into register 310 /// typed values to the original IR value. \p OrigRegs contains the destination 311 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 312 /// with type \p PartLLT. This is used for incoming values (physregs to vregs). 313 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 314 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, 315 const ISD::ArgFlagsTy Flags) { 316 MachineRegisterInfo &MRI = *B.getMRI(); 317 318 if (PartLLT == LLTy) { 319 // We should have avoided introducing a new virtual register, and just 320 // directly assigned here. 321 assert(OrigRegs[0] == Regs[0]); 322 return; 323 } 324 325 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 && 326 Regs.size() == 1) { 327 B.buildBitcast(OrigRegs[0], Regs[0]); 328 return; 329 } 330 331 // A vector PartLLT needs extending to LLTy's element size. 332 // E.g. <2 x s64> = G_SEXT <2 x s32>. 333 if (PartLLT.isVector() == LLTy.isVector() && 334 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() && 335 (!PartLLT.isVector() || 336 PartLLT.getNumElements() == LLTy.getNumElements()) && 337 OrigRegs.size() == 1 && Regs.size() == 1) { 338 Register SrcReg = Regs[0]; 339 340 LLT LocTy = MRI.getType(SrcReg); 341 342 if (Flags.isSExt()) { 343 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 344 .getReg(0); 345 } else if (Flags.isZExt()) { 346 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 347 .getReg(0); 348 } 349 350 B.buildTrunc(OrigRegs[0], SrcReg); 351 return; 352 } 353 354 if (!LLTy.isVector() && !PartLLT.isVector()) { 355 assert(OrigRegs.size() == 1); 356 LLT OrigTy = MRI.getType(OrigRegs[0]); 357 358 unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size(); 359 if (SrcSize == OrigTy.getSizeInBits()) 360 B.buildMerge(OrigRegs[0], Regs); 361 else { 362 auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs); 363 B.buildTrunc(OrigRegs[0], Widened); 364 } 365 366 return; 367 } 368 369 if (PartLLT.isVector()) { 370 assert(OrigRegs.size() == 1); 371 SmallVector<Register> CastRegs(Regs.begin(), Regs.end()); 372 373 // If PartLLT is a mismatched vector in both number of elements and element 374 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to 375 // have the same elt type, i.e. v4s32. 376 if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() && 377 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 && 378 Regs.size() == 1) { 379 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType()) 380 .changeElementCount(PartLLT.getElementCount() * 2); 381 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0); 382 PartLLT = NewTy; 383 } 384 385 if (LLTy.getScalarType() == PartLLT.getElementType()) { 386 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 387 } else { 388 unsigned I = 0; 389 LLT GCDTy = getGCDType(LLTy, PartLLT); 390 391 // We are both splitting a vector, and bitcasting its element types. Cast 392 // the source pieces into the appropriate number of pieces with the result 393 // element type. 394 for (Register SrcReg : CastRegs) 395 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0); 396 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 397 } 398 399 return; 400 } 401 402 assert(LLTy.isVector() && !PartLLT.isVector()); 403 404 LLT DstEltTy = LLTy.getElementType(); 405 406 // Pointer information was discarded. We'll need to coerce some register types 407 // to avoid violating type constraints. 408 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 409 410 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 411 412 if (DstEltTy == PartLLT) { 413 // Vector was trivially scalarized. 414 415 if (RealDstEltTy.isPointer()) { 416 for (Register Reg : Regs) 417 MRI.setType(Reg, RealDstEltTy); 418 } 419 420 B.buildBuildVector(OrigRegs[0], Regs); 421 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 422 // Deal with vector with 64-bit elements decomposed to 32-bit 423 // registers. Need to create intermediate 64-bit elements. 424 SmallVector<Register, 8> EltMerges; 425 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 426 427 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 428 429 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 430 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt)); 431 // Fix the type in case this is really a vector of pointers. 432 MRI.setType(Merge.getReg(0), RealDstEltTy); 433 EltMerges.push_back(Merge.getReg(0)); 434 Regs = Regs.drop_front(PartsPerElt); 435 } 436 437 B.buildBuildVector(OrigRegs[0], EltMerges); 438 } else { 439 // Vector was split, and elements promoted to a wider type. 440 // FIXME: Should handle floating point promotions. 441 LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT); 442 auto BV = B.buildBuildVector(BVType, Regs); 443 B.buildTrunc(OrigRegs[0], BV); 444 } 445 } 446 447 /// Create a sequence of instructions to expand the value in \p SrcReg (of type 448 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should 449 /// contain the type of scalar value extension if necessary. 450 /// 451 /// This is used for outgoing values (vregs to physregs) 452 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 453 Register SrcReg, LLT SrcTy, LLT PartTy, 454 unsigned ExtendOp = TargetOpcode::G_ANYEXT) { 455 // We could just insert a regular copy, but this is unreachable at the moment. 456 assert(SrcTy != PartTy && "identical part types shouldn't reach here"); 457 458 const unsigned PartSize = PartTy.getSizeInBits(); 459 460 if (PartTy.isVector() == SrcTy.isVector() && 461 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { 462 assert(DstRegs.size() == 1); 463 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); 464 return; 465 } 466 467 if (SrcTy.isVector() && !PartTy.isVector() && 468 PartSize > SrcTy.getElementType().getSizeInBits()) { 469 // Vector was scalarized, and the elements extended. 470 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 471 for (int i = 0, e = DstRegs.size(); i != e; ++i) 472 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 473 return; 474 } 475 476 LLT GCDTy = getGCDType(SrcTy, PartTy); 477 if (GCDTy == PartTy) { 478 // If this already evenly divisible, we can create a simple unmerge. 479 B.buildUnmerge(DstRegs, SrcReg); 480 return; 481 } 482 483 MachineRegisterInfo &MRI = *B.getMRI(); 484 LLT DstTy = MRI.getType(DstRegs[0]); 485 LLT LCMTy = getLCMType(SrcTy, PartTy); 486 487 const unsigned LCMSize = LCMTy.getSizeInBits(); 488 const unsigned DstSize = DstTy.getSizeInBits(); 489 const unsigned SrcSize = SrcTy.getSizeInBits(); 490 491 Register UnmergeSrc = SrcReg; 492 if (LCMSize != SrcSize) { 493 // Widen to the common type. 494 Register Undef = B.buildUndef(SrcTy).getReg(0); 495 SmallVector<Register, 8> MergeParts(1, SrcReg); 496 for (unsigned Size = SrcSize; Size != LCMSize; Size += SrcSize) 497 MergeParts.push_back(Undef); 498 499 UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0); 500 } 501 502 // Unmerge to the original registers and pad with dead defs. 503 SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end()); 504 for (unsigned Size = DstSize * DstRegs.size(); Size != LCMSize; 505 Size += DstSize) { 506 UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy)); 507 } 508 509 B.buildUnmerge(UnmergeResults, UnmergeSrc); 510 } 511 512 bool CallLowering::determineAndHandleAssignments( 513 ValueHandler &Handler, ValueAssigner &Assigner, 514 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder, 515 CallingConv::ID CallConv, bool IsVarArg, Register ThisReturnReg) const { 516 MachineFunction &MF = MIRBuilder.getMF(); 517 const Function &F = MF.getFunction(); 518 SmallVector<CCValAssign, 16> ArgLocs; 519 520 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 521 if (!determineAssignments(Assigner, Args, CCInfo)) 522 return false; 523 524 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder, 525 ThisReturnReg); 526 } 527 528 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { 529 if (Flags.isSExt()) 530 return TargetOpcode::G_SEXT; 531 if (Flags.isZExt()) 532 return TargetOpcode::G_ZEXT; 533 return TargetOpcode::G_ANYEXT; 534 } 535 536 bool CallLowering::determineAssignments(ValueAssigner &Assigner, 537 SmallVectorImpl<ArgInfo> &Args, 538 CCState &CCInfo) const { 539 LLVMContext &Ctx = CCInfo.getContext(); 540 const CallingConv::ID CallConv = CCInfo.getCallingConv(); 541 542 unsigned NumArgs = Args.size(); 543 for (unsigned i = 0; i != NumArgs; ++i) { 544 EVT CurVT = EVT::getEVT(Args[i].Ty); 545 546 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT); 547 548 // If we need to split the type over multiple regs, check it's a scenario 549 // we currently support. 550 unsigned NumParts = 551 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT); 552 553 if (NumParts == 1) { 554 // Try to use the register type if we couldn't assign the VT. 555 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 556 Args[i].Flags[0], CCInfo)) 557 return false; 558 continue; 559 } 560 561 // For incoming arguments (physregs to vregs), we could have values in 562 // physregs (or memlocs) which we want to extract and copy to vregs. 563 // During this, we might have to deal with the LLT being split across 564 // multiple regs, so we have to record this information for later. 565 // 566 // If we have outgoing args, then we have the opposite case. We have a 567 // vreg with an LLT which we want to assign to a physical location, and 568 // we might have to record that the value has to be split later. 569 570 // We're handling an incoming arg which is split over multiple regs. 571 // E.g. passing an s128 on AArch64. 572 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 573 Args[i].Flags.clear(); 574 575 for (unsigned Part = 0; Part < NumParts; ++Part) { 576 ISD::ArgFlagsTy Flags = OrigFlags; 577 if (Part == 0) { 578 Flags.setSplit(); 579 } else { 580 Flags.setOrigAlign(Align(1)); 581 if (Part == NumParts - 1) 582 Flags.setSplitEnd(); 583 } 584 585 if (!Assigner.isIncomingArgumentHandler()) { 586 // TODO: Also check if there is a valid extension that preserves the 587 // bits. However currently this call lowering doesn't support non-exact 588 // split parts, so that can't be tested. 589 if (OrigFlags.isReturned() && 590 (NumParts * NewVT.getSizeInBits() != CurVT.getSizeInBits())) { 591 Flags.setReturned(false); 592 } 593 } 594 595 Args[i].Flags.push_back(Flags); 596 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 597 Args[i].Flags[Part], CCInfo)) { 598 // Still couldn't assign this smaller part type for some reason. 599 return false; 600 } 601 } 602 } 603 604 return true; 605 } 606 607 bool CallLowering::handleAssignments(ValueHandler &Handler, 608 SmallVectorImpl<ArgInfo> &Args, 609 CCState &CCInfo, 610 SmallVectorImpl<CCValAssign> &ArgLocs, 611 MachineIRBuilder &MIRBuilder, 612 Register ThisReturnReg) const { 613 MachineFunction &MF = MIRBuilder.getMF(); 614 MachineRegisterInfo &MRI = MF.getRegInfo(); 615 const Function &F = MF.getFunction(); 616 const DataLayout &DL = F.getParent()->getDataLayout(); 617 618 const unsigned NumArgs = Args.size(); 619 620 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { 621 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 622 CCValAssign &VA = ArgLocs[j]; 623 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 624 625 if (VA.needsCustom()) { 626 unsigned NumArgRegs = 627 Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j)); 628 if (!NumArgRegs) 629 return false; 630 j += NumArgRegs; 631 continue; 632 } 633 634 const MVT ValVT = VA.getValVT(); 635 const MVT LocVT = VA.getLocVT(); 636 637 const LLT LocTy(LocVT); 638 const LLT ValTy(ValVT); 639 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy; 640 const EVT OrigVT = EVT::getEVT(Args[i].Ty); 641 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 642 643 // Expected to be multiple regs for a single incoming arg. 644 // There should be Regs.size() ArgLocs per argument. 645 // This should be the same as getNumRegistersForCallingConv 646 const unsigned NumParts = Args[i].Flags.size(); 647 648 // Now split the registers into the assigned types. 649 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); 650 651 if (NumParts != 1 || NewLLT != OrigTy) { 652 // If we can't directly assign the register, we need one or more 653 // intermediate values. 654 Args[i].Regs.resize(NumParts); 655 656 // For each split register, create and assign a vreg that will store 657 // the incoming component of the larger value. These will later be 658 // merged to form the final vreg. 659 for (unsigned Part = 0; Part < NumParts; ++Part) 660 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); 661 } 662 663 assert((j + (NumParts - 1)) < ArgLocs.size() && 664 "Too many regs for number of args"); 665 666 // Coerce into outgoing value types before register assignment. 667 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) { 668 assert(Args[i].OrigRegs.size() == 1); 669 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, 670 ValTy, extendOpFromFlags(Args[i].Flags[0])); 671 } 672 673 for (unsigned Part = 0; Part < NumParts; ++Part) { 674 Register ArgReg = Args[i].Regs[Part]; 675 // There should be Regs.size() ArgLocs per argument. 676 VA = ArgLocs[j + Part]; 677 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; 678 679 if (VA.isMemLoc() && !Flags.isByVal()) { 680 // Individual pieces may have been spilled to the stack and others 681 // passed in registers. 682 683 // TODO: The memory size may be larger than the value we need to 684 // store. We may need to adjust the offset for big endian targets. 685 LLT MemTy = Handler.getStackValueStoreType(DL, VA); 686 687 MachinePointerInfo MPO; 688 Register StackAddr = Handler.getStackAddress( 689 MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags); 690 691 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA); 692 continue; 693 } 694 695 if (VA.isMemLoc() && Flags.isByVal()) { 696 assert(Args[i].Regs.size() == 1 && 697 "didn't expect split byval pointer"); 698 699 if (Handler.isIncomingArgumentHandler()) { 700 // We just need to copy the frame index value to the pointer. 701 MachinePointerInfo MPO; 702 Register StackAddr = Handler.getStackAddress( 703 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); 704 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); 705 } else { 706 // For outgoing byval arguments, insert the implicit copy byval 707 // implies, such that writes in the callee do not modify the caller's 708 // value. 709 uint64_t MemSize = Flags.getByValSize(); 710 int64_t Offset = VA.getLocMemOffset(); 711 712 MachinePointerInfo DstMPO; 713 Register StackAddr = 714 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); 715 716 MachinePointerInfo SrcMPO(Args[i].OrigValue); 717 if (!Args[i].OrigValue) { 718 // We still need to accurately track the stack address space if we 719 // don't know the underlying value. 720 const LLT PtrTy = MRI.getType(StackAddr); 721 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); 722 } 723 724 Align DstAlign = std::max(Flags.getNonZeroByValAlign(), 725 inferAlignFromPtrInfo(MF, DstMPO)); 726 727 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), 728 inferAlignFromPtrInfo(MF, SrcMPO)); 729 730 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], 731 DstMPO, DstAlign, SrcMPO, SrcAlign, 732 MemSize, VA); 733 } 734 continue; 735 } 736 737 assert(!VA.needsCustom() && "custom loc should have been handled already"); 738 739 if (i == 0 && ThisReturnReg.isValid() && 740 Handler.isIncomingArgumentHandler() && 741 isTypeIsValidForThisReturn(ValVT)) { 742 Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA); 743 continue; 744 } 745 746 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 747 } 748 749 // Now that all pieces have been assigned, re-pack the register typed values 750 // into the original value typed registers. 751 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) { 752 // Merge the split registers into the expected larger result vregs of 753 // the original call. 754 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 755 LocTy, Args[i].Flags[0]); 756 } 757 758 j += NumParts - 1; 759 } 760 761 return true; 762 } 763 764 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 765 ArrayRef<Register> VRegs, Register DemoteReg, 766 int FI) const { 767 MachineFunction &MF = MIRBuilder.getMF(); 768 MachineRegisterInfo &MRI = MF.getRegInfo(); 769 const DataLayout &DL = MF.getDataLayout(); 770 771 SmallVector<EVT, 4> SplitVTs; 772 SmallVector<uint64_t, 4> Offsets; 773 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 774 775 assert(VRegs.size() == SplitVTs.size()); 776 777 unsigned NumValues = SplitVTs.size(); 778 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 779 Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace()); 780 LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL); 781 782 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 783 784 for (unsigned I = 0; I < NumValues; ++I) { 785 Register Addr; 786 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 787 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 788 MRI.getType(VRegs[I]).getSizeInBytes(), 789 commonAlignment(BaseAlign, Offsets[I])); 790 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 791 } 792 } 793 794 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 795 ArrayRef<Register> VRegs, 796 Register DemoteReg) const { 797 MachineFunction &MF = MIRBuilder.getMF(); 798 MachineRegisterInfo &MRI = MF.getRegInfo(); 799 const DataLayout &DL = MF.getDataLayout(); 800 801 SmallVector<EVT, 4> SplitVTs; 802 SmallVector<uint64_t, 4> Offsets; 803 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 804 805 assert(VRegs.size() == SplitVTs.size()); 806 807 unsigned NumValues = SplitVTs.size(); 808 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 809 unsigned AS = DL.getAllocaAddrSpace(); 810 LLT OffsetLLTy = 811 getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL); 812 813 MachinePointerInfo PtrInfo(AS); 814 815 for (unsigned I = 0; I < NumValues; ++I) { 816 Register Addr; 817 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 818 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 819 MRI.getType(VRegs[I]).getSizeInBytes(), 820 commonAlignment(BaseAlign, Offsets[I])); 821 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 822 } 823 } 824 825 void CallLowering::insertSRetIncomingArgument( 826 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 827 MachineRegisterInfo &MRI, const DataLayout &DL) const { 828 unsigned AS = DL.getAllocaAddrSpace(); 829 DemoteReg = MRI.createGenericVirtualRegister( 830 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 831 832 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 833 834 SmallVector<EVT, 1> ValueVTs; 835 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 836 837 // NOTE: Assume that a pointer won't get split into more than one VT. 838 assert(ValueVTs.size() == 1); 839 840 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext())); 841 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 842 DemoteArg.Flags[0].setSRet(); 843 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 844 } 845 846 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 847 const CallBase &CB, 848 CallLoweringInfo &Info) const { 849 const DataLayout &DL = MIRBuilder.getDataLayout(); 850 Type *RetTy = CB.getType(); 851 unsigned AS = DL.getAllocaAddrSpace(); 852 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 853 854 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 855 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 856 857 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 858 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS)); 859 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 860 DemoteArg.Flags[0].setSRet(); 861 862 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 863 Info.DemoteStackIndex = FI; 864 Info.DemoteRegister = DemoteReg; 865 } 866 867 bool CallLowering::checkReturn(CCState &CCInfo, 868 SmallVectorImpl<BaseArgInfo> &Outs, 869 CCAssignFn *Fn) const { 870 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 871 MVT VT = MVT::getVT(Outs[I].Ty); 872 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 873 return false; 874 } 875 return true; 876 } 877 878 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 879 AttributeList Attrs, 880 SmallVectorImpl<BaseArgInfo> &Outs, 881 const DataLayout &DL) const { 882 LLVMContext &Context = RetTy->getContext(); 883 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 884 885 SmallVector<EVT, 4> SplitVTs; 886 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 887 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 888 889 for (EVT VT : SplitVTs) { 890 unsigned NumParts = 891 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 892 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 893 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 894 895 for (unsigned I = 0; I < NumParts; ++I) { 896 Outs.emplace_back(PartTy, Flags); 897 } 898 } 899 } 900 901 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 902 const auto &F = MF.getFunction(); 903 Type *ReturnType = F.getReturnType(); 904 CallingConv::ID CallConv = F.getCallingConv(); 905 906 SmallVector<BaseArgInfo, 4> SplitArgs; 907 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 908 MF.getDataLayout()); 909 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 910 } 911 912 bool CallLowering::parametersInCSRMatch( 913 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 914 const SmallVectorImpl<CCValAssign> &OutLocs, 915 const SmallVectorImpl<ArgInfo> &OutArgs) const { 916 for (unsigned i = 0; i < OutLocs.size(); ++i) { 917 auto &ArgLoc = OutLocs[i]; 918 // If it's not a register, it's fine. 919 if (!ArgLoc.isRegLoc()) 920 continue; 921 922 MCRegister PhysReg = ArgLoc.getLocReg(); 923 924 // Only look at callee-saved registers. 925 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 926 continue; 927 928 LLVM_DEBUG( 929 dbgs() 930 << "... Call has an argument passed in a callee-saved register.\n"); 931 932 // Check if it was copied from. 933 const ArgInfo &OutInfo = OutArgs[i]; 934 935 if (OutInfo.Regs.size() > 1) { 936 LLVM_DEBUG( 937 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 938 return false; 939 } 940 941 // Check if we copy the register, walking through copies from virtual 942 // registers. Note that getDefIgnoringCopies does not ignore copies from 943 // physical registers. 944 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 945 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 946 LLVM_DEBUG( 947 dbgs() 948 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 949 return false; 950 } 951 952 // Got a copy. Verify that it's the same as the register we want. 953 Register CopyRHS = RegDef->getOperand(1).getReg(); 954 if (CopyRHS != PhysReg) { 955 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 956 "VReg, cannot tail call.\n"); 957 return false; 958 } 959 } 960 961 return true; 962 } 963 964 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 965 MachineFunction &MF, 966 SmallVectorImpl<ArgInfo> &InArgs, 967 ValueAssigner &CalleeAssigner, 968 ValueAssigner &CallerAssigner) const { 969 const Function &F = MF.getFunction(); 970 CallingConv::ID CalleeCC = Info.CallConv; 971 CallingConv::ID CallerCC = F.getCallingConv(); 972 973 if (CallerCC == CalleeCC) 974 return true; 975 976 SmallVector<CCValAssign, 16> ArgLocs1; 977 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext()); 978 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1)) 979 return false; 980 981 SmallVector<CCValAssign, 16> ArgLocs2; 982 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext()); 983 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2)) 984 return false; 985 986 // We need the argument locations to match up exactly. If there's more in 987 // one than the other, then we are done. 988 if (ArgLocs1.size() != ArgLocs2.size()) 989 return false; 990 991 // Make sure that each location is passed in exactly the same way. 992 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 993 const CCValAssign &Loc1 = ArgLocs1[i]; 994 const CCValAssign &Loc2 = ArgLocs2[i]; 995 996 // We need both of them to be the same. So if one is a register and one 997 // isn't, we're done. 998 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 999 return false; 1000 1001 if (Loc1.isRegLoc()) { 1002 // If they don't have the same register location, we're done. 1003 if (Loc1.getLocReg() != Loc2.getLocReg()) 1004 return false; 1005 1006 // They matched, so we can move to the next ArgLoc. 1007 continue; 1008 } 1009 1010 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 1011 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 1012 return false; 1013 } 1014 1015 return true; 1016 } 1017 1018 LLT CallLowering::ValueHandler::getStackValueStoreType( 1019 const DataLayout &DL, const CCValAssign &VA) const { 1020 const MVT ValVT = VA.getValVT(); 1021 if (ValVT != MVT::iPTR) 1022 return LLT(ValVT); 1023 1024 /// FIXME: We need to get the correct pointer address space. 1025 return LLT::pointer(0, DL.getPointerSize(0)); 1026 } 1027 1028 void CallLowering::ValueHandler::copyArgumentMemory( 1029 const ArgInfo &Arg, Register DstPtr, Register SrcPtr, 1030 const MachinePointerInfo &DstPtrInfo, Align DstAlign, 1031 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, 1032 CCValAssign &VA) const { 1033 MachineFunction &MF = MIRBuilder.getMF(); 1034 MachineMemOperand *SrcMMO = MF.getMachineMemOperand( 1035 SrcPtrInfo, 1036 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, 1037 SrcAlign); 1038 1039 MachineMemOperand *DstMMO = MF.getMachineMemOperand( 1040 DstPtrInfo, 1041 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, 1042 MemSize, DstAlign); 1043 1044 const LLT PtrTy = MRI.getType(DstPtr); 1045 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); 1046 1047 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); 1048 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); 1049 } 1050 1051 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 1052 CCValAssign &VA, 1053 unsigned MaxSizeBits) { 1054 LLT LocTy{VA.getLocVT()}; 1055 LLT ValTy{VA.getValVT()}; 1056 1057 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 1058 return ValReg; 1059 1060 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 1061 if (MaxSizeBits <= ValTy.getSizeInBits()) 1062 return ValReg; 1063 LocTy = LLT::scalar(MaxSizeBits); 1064 } 1065 1066 switch (VA.getLocInfo()) { 1067 default: break; 1068 case CCValAssign::Full: 1069 case CCValAssign::BCvt: 1070 // FIXME: bitconverting between vector types may or may not be a 1071 // nop in big-endian situations. 1072 return ValReg; 1073 case CCValAssign::AExt: { 1074 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 1075 return MIB.getReg(0); 1076 } 1077 case CCValAssign::SExt: { 1078 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1079 MIRBuilder.buildSExt(NewReg, ValReg); 1080 return NewReg; 1081 } 1082 case CCValAssign::ZExt: { 1083 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1084 MIRBuilder.buildZExt(NewReg, ValReg); 1085 return NewReg; 1086 } 1087 } 1088 llvm_unreachable("unable to extend register"); 1089 } 1090 1091 void CallLowering::ValueAssigner::anchor() {} 1092 1093 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA, 1094 Register SrcReg, 1095 LLT NarrowTy) { 1096 switch (VA.getLocInfo()) { 1097 case CCValAssign::LocInfo::ZExt: { 1098 return MIRBuilder 1099 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1100 NarrowTy.getScalarSizeInBits()) 1101 .getReg(0); 1102 } 1103 case CCValAssign::LocInfo::SExt: { 1104 return MIRBuilder 1105 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1106 NarrowTy.getScalarSizeInBits()) 1107 .getReg(0); 1108 break; 1109 } 1110 default: 1111 return SrcReg; 1112 } 1113 } 1114 1115 /// Check if we can use a basic COPY instruction between the two types. 1116 /// 1117 /// We're currently building on top of the infrastructure using MVT, which loses 1118 /// pointer information in the CCValAssign. We accept copies from physical 1119 /// registers that have been reported as integers if it's to an equivalent sized 1120 /// pointer LLT. 1121 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) { 1122 if (SrcTy == DstTy) 1123 return true; 1124 1125 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1126 return false; 1127 1128 SrcTy = SrcTy.getScalarType(); 1129 DstTy = DstTy.getScalarType(); 1130 1131 return (SrcTy.isPointer() && DstTy.isScalar()) || 1132 (DstTy.isScalar() && SrcTy.isPointer()); 1133 } 1134 1135 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg, 1136 Register PhysReg, 1137 CCValAssign &VA) { 1138 const MVT LocVT = VA.getLocVT(); 1139 const LLT LocTy(LocVT); 1140 const LLT RegTy = MRI.getType(ValVReg); 1141 1142 if (isCopyCompatibleType(RegTy, LocTy)) { 1143 MIRBuilder.buildCopy(ValVReg, PhysReg); 1144 return; 1145 } 1146 1147 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); 1148 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy); 1149 MIRBuilder.buildTrunc(ValVReg, Hint); 1150 } 1151