1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 16 #include "llvm/CodeGen/GlobalISel/Utils.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/MachineOperand.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Target/TargetMachine.h" 26 27 #define DEBUG_TYPE "call-lowering" 28 29 using namespace llvm; 30 31 void CallLowering::anchor() {} 32 33 /// Helper function which updates \p Flags when \p AttrFn returns true. 34 static void 35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 36 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 37 if (AttrFn(Attribute::SExt)) 38 Flags.setSExt(); 39 if (AttrFn(Attribute::ZExt)) 40 Flags.setZExt(); 41 if (AttrFn(Attribute::InReg)) 42 Flags.setInReg(); 43 if (AttrFn(Attribute::StructRet)) 44 Flags.setSRet(); 45 if (AttrFn(Attribute::Nest)) 46 Flags.setNest(); 47 if (AttrFn(Attribute::ByVal)) 48 Flags.setByVal(); 49 if (AttrFn(Attribute::Preallocated)) 50 Flags.setPreallocated(); 51 if (AttrFn(Attribute::InAlloca)) 52 Flags.setInAlloca(); 53 if (AttrFn(Attribute::Returned)) 54 Flags.setReturned(); 55 if (AttrFn(Attribute::SwiftSelf)) 56 Flags.setSwiftSelf(); 57 if (AttrFn(Attribute::SwiftAsync)) 58 Flags.setSwiftAsync(); 59 if (AttrFn(Attribute::SwiftError)) 60 Flags.setSwiftError(); 61 } 62 63 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 64 unsigned ArgIdx) const { 65 ISD::ArgFlagsTy Flags; 66 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 67 return Call.paramHasAttr(ArgIdx, Attr); 68 }); 69 return Flags; 70 } 71 72 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 73 const AttributeList &Attrs, 74 unsigned OpIdx) const { 75 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 76 return Attrs.hasAttribute(OpIdx, Attr); 77 }); 78 } 79 80 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 81 ArrayRef<Register> ResRegs, 82 ArrayRef<ArrayRef<Register>> ArgRegs, 83 Register SwiftErrorVReg, 84 std::function<unsigned()> GetCalleeReg) const { 85 CallLoweringInfo Info; 86 const DataLayout &DL = MIRBuilder.getDataLayout(); 87 MachineFunction &MF = MIRBuilder.getMF(); 88 bool CanBeTailCalled = CB.isTailCall() && 89 isInTailCallPosition(CB, MF.getTarget()) && 90 (MF.getFunction() 91 .getFnAttribute("disable-tail-calls") 92 .getValueAsString() != "true"); 93 94 CallingConv::ID CallConv = CB.getCallingConv(); 95 Type *RetTy = CB.getType(); 96 bool IsVarArg = CB.getFunctionType()->isVarArg(); 97 98 SmallVector<BaseArgInfo, 4> SplitArgs; 99 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 100 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 101 102 if (!Info.CanLowerReturn) { 103 // Callee requires sret demotion. 104 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 105 106 // The sret demotion isn't compatible with tail-calls, since the sret 107 // argument points into the caller's stack frame. 108 CanBeTailCalled = false; 109 } 110 111 // First step is to marshall all the function's parameters into the correct 112 // physregs and memory locations. Gather the sequence of argument types that 113 // we'll pass to the assigner function. 114 unsigned i = 0; 115 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 116 for (auto &Arg : CB.args()) { 117 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i), 118 i < NumFixedArgs}; 119 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 120 121 // If we have an explicit sret argument that is an Instruction, (i.e., it 122 // might point to function-local memory), we can't meaningfully tail-call. 123 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 124 CanBeTailCalled = false; 125 126 Info.OrigArgs.push_back(OrigArg); 127 ++i; 128 } 129 130 // Try looking through a bitcast from one function type to another. 131 // Commonly happens with calls to objc_msgSend(). 132 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 133 if (const Function *F = dyn_cast<Function>(CalleeV)) 134 Info.Callee = MachineOperand::CreateGA(F, 0); 135 else 136 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 137 138 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}}; 139 if (!Info.OrigRet.Ty->isVoidTy()) 140 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 141 142 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 143 Info.CallConv = CallConv; 144 Info.SwiftErrorVReg = SwiftErrorVReg; 145 Info.IsMustTailCall = CB.isMustTailCall(); 146 Info.IsTailCall = CanBeTailCalled; 147 Info.IsVarArg = IsVarArg; 148 return lowerCall(MIRBuilder, Info); 149 } 150 151 template <typename FuncInfoTy> 152 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 153 const DataLayout &DL, 154 const FuncInfoTy &FuncInfo) const { 155 auto &Flags = Arg.Flags[0]; 156 const AttributeList &Attrs = FuncInfo.getAttributes(); 157 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 158 159 Align MemAlign = DL.getABITypeAlign(Arg.Ty); 160 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 161 assert(OpIdx >= AttributeList::FirstArgIndex); 162 Type *ElementTy = cast<PointerType>(Arg.Ty)->getElementType(); 163 164 auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType(); 165 Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy)); 166 167 // For ByVal, alignment should be passed from FE. BE will guess if 168 // this info is not there but there are cases it cannot get right. 169 if (auto ParamAlign = 170 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 171 MemAlign = *ParamAlign; 172 else if ((ParamAlign = 173 FuncInfo.getParamAlign(OpIdx - AttributeList::FirstArgIndex))) 174 MemAlign = *ParamAlign; 175 else 176 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 177 } else if (OpIdx >= AttributeList::FirstArgIndex) { 178 if (auto ParamAlign = 179 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 180 MemAlign = *ParamAlign; 181 } 182 Flags.setMemAlign(MemAlign); 183 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 184 185 // Don't try to use the returned attribute if the argument is marked as 186 // swiftself, since it won't be passed in x0. 187 if (Flags.isSwiftSelf()) 188 Flags.setReturned(false); 189 } 190 191 template void 192 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 193 const DataLayout &DL, 194 const Function &FuncInfo) const; 195 196 template void 197 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 198 const DataLayout &DL, 199 const CallBase &FuncInfo) const; 200 201 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 202 SmallVectorImpl<ArgInfo> &SplitArgs, 203 const DataLayout &DL, 204 CallingConv::ID CallConv) const { 205 LLVMContext &Ctx = OrigArg.Ty->getContext(); 206 207 SmallVector<EVT, 4> SplitVTs; 208 SmallVector<uint64_t, 4> Offsets; 209 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0); 210 211 if (SplitVTs.size() == 0) 212 return; 213 214 if (SplitVTs.size() == 1) { 215 // No splitting to do, but we want to replace the original type (e.g. [1 x 216 // double] -> double). 217 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 218 OrigArg.OrigArgIndex, OrigArg.Flags[0], 219 OrigArg.IsFixed, OrigArg.OrigValue); 220 return; 221 } 222 223 // Create one ArgInfo for each virtual register in the original ArgInfo. 224 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 225 226 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 227 OrigArg.Ty, CallConv, false, DL); 228 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 229 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 230 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex, 231 OrigArg.Flags[0], OrigArg.IsFixed); 232 if (NeedsRegBlock) 233 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 234 } 235 236 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 237 } 238 239 void CallLowering::unpackRegs(ArrayRef<Register> DstRegs, Register SrcReg, 240 Type *PackedTy, 241 MachineIRBuilder &MIRBuilder) const { 242 assert(DstRegs.size() > 1 && "Nothing to unpack"); 243 244 const DataLayout &DL = MIRBuilder.getDataLayout(); 245 246 SmallVector<LLT, 8> LLTs; 247 SmallVector<uint64_t, 8> Offsets; 248 computeValueLLTs(DL, *PackedTy, LLTs, &Offsets); 249 assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch"); 250 251 for (unsigned i = 0; i < DstRegs.size(); ++i) 252 MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]); 253 } 254 255 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 256 static MachineInstrBuilder 257 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 258 ArrayRef<Register> SrcRegs) { 259 MachineRegisterInfo &MRI = *B.getMRI(); 260 LLT LLTy = MRI.getType(DstRegs[0]); 261 LLT PartLLT = MRI.getType(SrcRegs[0]); 262 263 // Deal with v3s16 split into v2s16 264 LLT LCMTy = getLCMType(LLTy, PartLLT); 265 if (LCMTy == LLTy) { 266 // Common case where no padding is needed. 267 assert(DstRegs.size() == 1); 268 return B.buildConcatVectors(DstRegs[0], SrcRegs); 269 } 270 271 // We need to create an unmerge to the result registers, which may require 272 // widening the original value. 273 Register UnmergeSrcReg; 274 if (LCMTy != PartLLT) { 275 // e.g. A <3 x s16> value was split to <2 x s16> 276 // %register_value0:_(<2 x s16>) 277 // %register_value1:_(<2 x s16>) 278 // %undef:_(<2 x s16>) = G_IMPLICIT_DEF 279 // %concat:_<6 x s16>) = G_CONCAT_VECTORS %reg_value0, %reg_value1, %undef 280 // %dst_reg:_(<3 x s16>), %dead:_(<3 x s16>) = G_UNMERGE_VALUES %concat 281 const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits(); 282 Register Undef = B.buildUndef(PartLLT).getReg(0); 283 284 // Build vector of undefs. 285 SmallVector<Register, 8> WidenedSrcs(NumWide, Undef); 286 287 // Replace the first sources with the real registers. 288 std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin()); 289 UnmergeSrcReg = B.buildConcatVectors(LCMTy, WidenedSrcs).getReg(0); 290 } else { 291 // We don't need to widen anything if we're extracting a scalar which was 292 // promoted to a vector e.g. s8 -> v4s8 -> s8 293 assert(SrcRegs.size() == 1); 294 UnmergeSrcReg = SrcRegs[0]; 295 } 296 297 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 298 299 SmallVector<Register, 8> PadDstRegs(NumDst); 300 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 301 302 // Create the excess dead defs for the unmerge. 303 for (int I = DstRegs.size(); I != NumDst; ++I) 304 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 305 306 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); 307 } 308 309 /// Create a sequence of instructions to combine pieces split into register 310 /// typed values to the original IR value. \p OrigRegs contains the destination 311 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 312 /// with type \p PartLLT. This is used for incoming values (physregs to vregs). 313 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 314 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, 315 const ISD::ArgFlagsTy Flags) { 316 MachineRegisterInfo &MRI = *B.getMRI(); 317 318 if (PartLLT == LLTy) { 319 // We should have avoided introducing a new virtual register, and just 320 // directly assigned here. 321 assert(OrigRegs[0] == Regs[0]); 322 return; 323 } 324 325 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 && 326 Regs.size() == 1) { 327 B.buildBitcast(OrigRegs[0], Regs[0]); 328 return; 329 } 330 331 // A vector PartLLT needs extending to LLTy's element size. 332 // E.g. <2 x s64> = G_SEXT <2 x s32>. 333 if (PartLLT.isVector() == LLTy.isVector() && 334 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() && 335 (!PartLLT.isVector() || 336 PartLLT.getNumElements() == LLTy.getNumElements()) && 337 OrigRegs.size() == 1 && Regs.size() == 1) { 338 Register SrcReg = Regs[0]; 339 340 LLT LocTy = MRI.getType(SrcReg); 341 342 if (Flags.isSExt()) { 343 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 344 .getReg(0); 345 } else if (Flags.isZExt()) { 346 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 347 .getReg(0); 348 } 349 350 B.buildTrunc(OrigRegs[0], SrcReg); 351 return; 352 } 353 354 if (!LLTy.isVector() && !PartLLT.isVector()) { 355 assert(OrigRegs.size() == 1); 356 LLT OrigTy = MRI.getType(OrigRegs[0]); 357 358 unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size(); 359 if (SrcSize == OrigTy.getSizeInBits()) 360 B.buildMerge(OrigRegs[0], Regs); 361 else { 362 auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs); 363 B.buildTrunc(OrigRegs[0], Widened); 364 } 365 366 return; 367 } 368 369 if (PartLLT.isVector()) { 370 assert(OrigRegs.size() == 1); 371 SmallVector<Register> CastRegs(Regs.begin(), Regs.end()); 372 373 // If PartLLT is a mismatched vector in both number of elements and element 374 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to 375 // have the same elt type, i.e. v4s32. 376 if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() && 377 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 && 378 Regs.size() == 1) { 379 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType()) 380 .changeElementCount(PartLLT.getElementCount() * 2); 381 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0); 382 PartLLT = NewTy; 383 } 384 385 if (LLTy.getScalarType() == PartLLT.getElementType()) { 386 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 387 } else { 388 unsigned I = 0; 389 LLT GCDTy = getGCDType(LLTy, PartLLT); 390 391 // We are both splitting a vector, and bitcasting its element types. Cast 392 // the source pieces into the appropriate number of pieces with the result 393 // element type. 394 for (Register SrcReg : CastRegs) 395 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0); 396 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 397 } 398 399 return; 400 } 401 402 assert(LLTy.isVector() && !PartLLT.isVector()); 403 404 LLT DstEltTy = LLTy.getElementType(); 405 406 // Pointer information was discarded. We'll need to coerce some register types 407 // to avoid violating type constraints. 408 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 409 410 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 411 412 if (DstEltTy == PartLLT) { 413 // Vector was trivially scalarized. 414 415 if (RealDstEltTy.isPointer()) { 416 for (Register Reg : Regs) 417 MRI.setType(Reg, RealDstEltTy); 418 } 419 420 B.buildBuildVector(OrigRegs[0], Regs); 421 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 422 // Deal with vector with 64-bit elements decomposed to 32-bit 423 // registers. Need to create intermediate 64-bit elements. 424 SmallVector<Register, 8> EltMerges; 425 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 426 427 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 428 429 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 430 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt)); 431 // Fix the type in case this is really a vector of pointers. 432 MRI.setType(Merge.getReg(0), RealDstEltTy); 433 EltMerges.push_back(Merge.getReg(0)); 434 Regs = Regs.drop_front(PartsPerElt); 435 } 436 437 B.buildBuildVector(OrigRegs[0], EltMerges); 438 } else { 439 // Vector was split, and elements promoted to a wider type. 440 // FIXME: Should handle floating point promotions. 441 LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT); 442 auto BV = B.buildBuildVector(BVType, Regs); 443 B.buildTrunc(OrigRegs[0], BV); 444 } 445 } 446 447 /// Create a sequence of instructions to expand the value in \p SrcReg (of type 448 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should 449 /// contain the type of scalar value extension if necessary. 450 /// 451 /// This is used for outgoing values (vregs to physregs) 452 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 453 Register SrcReg, LLT SrcTy, LLT PartTy, 454 unsigned ExtendOp = TargetOpcode::G_ANYEXT) { 455 // We could just insert a regular copy, but this is unreachable at the moment. 456 assert(SrcTy != PartTy && "identical part types shouldn't reach here"); 457 458 const unsigned PartSize = PartTy.getSizeInBits(); 459 460 if (PartTy.isVector() == SrcTy.isVector() && 461 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { 462 assert(DstRegs.size() == 1); 463 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); 464 return; 465 } 466 467 if (SrcTy.isVector() && !PartTy.isVector() && 468 PartSize > SrcTy.getElementType().getSizeInBits()) { 469 // Vector was scalarized, and the elements extended. 470 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 471 for (int i = 0, e = DstRegs.size(); i != e; ++i) 472 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 473 return; 474 } 475 476 LLT GCDTy = getGCDType(SrcTy, PartTy); 477 if (GCDTy == PartTy) { 478 // If this already evenly divisible, we can create a simple unmerge. 479 B.buildUnmerge(DstRegs, SrcReg); 480 return; 481 } 482 483 MachineRegisterInfo &MRI = *B.getMRI(); 484 LLT DstTy = MRI.getType(DstRegs[0]); 485 LLT LCMTy = getLCMType(SrcTy, PartTy); 486 487 const unsigned DstSize = DstTy.getSizeInBits(); 488 const unsigned SrcSize = SrcTy.getSizeInBits(); 489 unsigned CoveringSize = LCMTy.getSizeInBits(); 490 491 Register UnmergeSrc = SrcReg; 492 493 if (CoveringSize != SrcSize) { 494 // For scalars, it's common to be able to use a simple extension. 495 if (SrcTy.isScalar() && DstTy.isScalar()) { 496 CoveringSize = alignTo(SrcSize, DstSize); 497 LLT CoverTy = LLT::scalar(CoveringSize); 498 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0); 499 } else { 500 // Widen to the common type. 501 // FIXME: This should respect the extend type 502 Register Undef = B.buildUndef(SrcTy).getReg(0); 503 SmallVector<Register, 8> MergeParts(1, SrcReg); 504 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize) 505 MergeParts.push_back(Undef); 506 UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0); 507 } 508 } 509 510 // Unmerge to the original registers and pad with dead defs. 511 SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end()); 512 for (unsigned Size = DstSize * DstRegs.size(); Size != CoveringSize; 513 Size += DstSize) { 514 UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy)); 515 } 516 517 B.buildUnmerge(UnmergeResults, UnmergeSrc); 518 } 519 520 bool CallLowering::determineAndHandleAssignments( 521 ValueHandler &Handler, ValueAssigner &Assigner, 522 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder, 523 CallingConv::ID CallConv, bool IsVarArg, Register ThisReturnReg) const { 524 MachineFunction &MF = MIRBuilder.getMF(); 525 const Function &F = MF.getFunction(); 526 SmallVector<CCValAssign, 16> ArgLocs; 527 528 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 529 if (!determineAssignments(Assigner, Args, CCInfo)) 530 return false; 531 532 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder, 533 ThisReturnReg); 534 } 535 536 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { 537 if (Flags.isSExt()) 538 return TargetOpcode::G_SEXT; 539 if (Flags.isZExt()) 540 return TargetOpcode::G_ZEXT; 541 return TargetOpcode::G_ANYEXT; 542 } 543 544 bool CallLowering::determineAssignments(ValueAssigner &Assigner, 545 SmallVectorImpl<ArgInfo> &Args, 546 CCState &CCInfo) const { 547 LLVMContext &Ctx = CCInfo.getContext(); 548 const CallingConv::ID CallConv = CCInfo.getCallingConv(); 549 550 unsigned NumArgs = Args.size(); 551 for (unsigned i = 0; i != NumArgs; ++i) { 552 EVT CurVT = EVT::getEVT(Args[i].Ty); 553 554 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT); 555 556 // If we need to split the type over multiple regs, check it's a scenario 557 // we currently support. 558 unsigned NumParts = 559 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT); 560 561 if (NumParts == 1) { 562 // Try to use the register type if we couldn't assign the VT. 563 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 564 Args[i].Flags[0], CCInfo)) 565 return false; 566 continue; 567 } 568 569 // For incoming arguments (physregs to vregs), we could have values in 570 // physregs (or memlocs) which we want to extract and copy to vregs. 571 // During this, we might have to deal with the LLT being split across 572 // multiple regs, so we have to record this information for later. 573 // 574 // If we have outgoing args, then we have the opposite case. We have a 575 // vreg with an LLT which we want to assign to a physical location, and 576 // we might have to record that the value has to be split later. 577 578 // We're handling an incoming arg which is split over multiple regs. 579 // E.g. passing an s128 on AArch64. 580 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 581 Args[i].Flags.clear(); 582 583 for (unsigned Part = 0; Part < NumParts; ++Part) { 584 ISD::ArgFlagsTy Flags = OrigFlags; 585 if (Part == 0) { 586 Flags.setSplit(); 587 } else { 588 Flags.setOrigAlign(Align(1)); 589 if (Part == NumParts - 1) 590 Flags.setSplitEnd(); 591 } 592 593 if (!Assigner.isIncomingArgumentHandler()) { 594 // TODO: Also check if there is a valid extension that preserves the 595 // bits. However currently this call lowering doesn't support non-exact 596 // split parts, so that can't be tested. 597 if (OrigFlags.isReturned() && 598 (NumParts * NewVT.getSizeInBits() != CurVT.getSizeInBits())) { 599 Flags.setReturned(false); 600 } 601 } 602 603 Args[i].Flags.push_back(Flags); 604 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 605 Args[i].Flags[Part], CCInfo)) { 606 // Still couldn't assign this smaller part type for some reason. 607 return false; 608 } 609 } 610 } 611 612 return true; 613 } 614 615 bool CallLowering::handleAssignments(ValueHandler &Handler, 616 SmallVectorImpl<ArgInfo> &Args, 617 CCState &CCInfo, 618 SmallVectorImpl<CCValAssign> &ArgLocs, 619 MachineIRBuilder &MIRBuilder, 620 Register ThisReturnReg) const { 621 MachineFunction &MF = MIRBuilder.getMF(); 622 MachineRegisterInfo &MRI = MF.getRegInfo(); 623 const Function &F = MF.getFunction(); 624 const DataLayout &DL = F.getParent()->getDataLayout(); 625 626 const unsigned NumArgs = Args.size(); 627 628 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { 629 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 630 CCValAssign &VA = ArgLocs[j]; 631 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 632 633 if (VA.needsCustom()) { 634 unsigned NumArgRegs = 635 Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j)); 636 if (!NumArgRegs) 637 return false; 638 j += NumArgRegs; 639 continue; 640 } 641 642 const MVT ValVT = VA.getValVT(); 643 const MVT LocVT = VA.getLocVT(); 644 645 const LLT LocTy(LocVT); 646 const LLT ValTy(ValVT); 647 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy; 648 const EVT OrigVT = EVT::getEVT(Args[i].Ty); 649 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 650 651 // Expected to be multiple regs for a single incoming arg. 652 // There should be Regs.size() ArgLocs per argument. 653 // This should be the same as getNumRegistersForCallingConv 654 const unsigned NumParts = Args[i].Flags.size(); 655 656 // Now split the registers into the assigned types. 657 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); 658 659 if (NumParts != 1 || NewLLT != OrigTy) { 660 // If we can't directly assign the register, we need one or more 661 // intermediate values. 662 Args[i].Regs.resize(NumParts); 663 664 // For each split register, create and assign a vreg that will store 665 // the incoming component of the larger value. These will later be 666 // merged to form the final vreg. 667 for (unsigned Part = 0; Part < NumParts; ++Part) 668 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); 669 } 670 671 assert((j + (NumParts - 1)) < ArgLocs.size() && 672 "Too many regs for number of args"); 673 674 // Coerce into outgoing value types before register assignment. 675 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) { 676 assert(Args[i].OrigRegs.size() == 1); 677 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, 678 ValTy, extendOpFromFlags(Args[i].Flags[0])); 679 } 680 681 for (unsigned Part = 0; Part < NumParts; ++Part) { 682 Register ArgReg = Args[i].Regs[Part]; 683 // There should be Regs.size() ArgLocs per argument. 684 VA = ArgLocs[j + Part]; 685 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; 686 687 if (VA.isMemLoc() && !Flags.isByVal()) { 688 // Individual pieces may have been spilled to the stack and others 689 // passed in registers. 690 691 // TODO: The memory size may be larger than the value we need to 692 // store. We may need to adjust the offset for big endian targets. 693 LLT MemTy = Handler.getStackValueStoreType(DL, VA); 694 695 MachinePointerInfo MPO; 696 Register StackAddr = Handler.getStackAddress( 697 MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags); 698 699 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA); 700 continue; 701 } 702 703 if (VA.isMemLoc() && Flags.isByVal()) { 704 assert(Args[i].Regs.size() == 1 && 705 "didn't expect split byval pointer"); 706 707 if (Handler.isIncomingArgumentHandler()) { 708 // We just need to copy the frame index value to the pointer. 709 MachinePointerInfo MPO; 710 Register StackAddr = Handler.getStackAddress( 711 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); 712 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); 713 } else { 714 // For outgoing byval arguments, insert the implicit copy byval 715 // implies, such that writes in the callee do not modify the caller's 716 // value. 717 uint64_t MemSize = Flags.getByValSize(); 718 int64_t Offset = VA.getLocMemOffset(); 719 720 MachinePointerInfo DstMPO; 721 Register StackAddr = 722 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); 723 724 MachinePointerInfo SrcMPO(Args[i].OrigValue); 725 if (!Args[i].OrigValue) { 726 // We still need to accurately track the stack address space if we 727 // don't know the underlying value. 728 const LLT PtrTy = MRI.getType(StackAddr); 729 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); 730 } 731 732 Align DstAlign = std::max(Flags.getNonZeroByValAlign(), 733 inferAlignFromPtrInfo(MF, DstMPO)); 734 735 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), 736 inferAlignFromPtrInfo(MF, SrcMPO)); 737 738 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], 739 DstMPO, DstAlign, SrcMPO, SrcAlign, 740 MemSize, VA); 741 } 742 continue; 743 } 744 745 assert(!VA.needsCustom() && "custom loc should have been handled already"); 746 747 if (i == 0 && ThisReturnReg.isValid() && 748 Handler.isIncomingArgumentHandler() && 749 isTypeIsValidForThisReturn(ValVT)) { 750 Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA); 751 continue; 752 } 753 754 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 755 } 756 757 // Now that all pieces have been assigned, re-pack the register typed values 758 // into the original value typed registers. 759 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) { 760 // Merge the split registers into the expected larger result vregs of 761 // the original call. 762 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 763 LocTy, Args[i].Flags[0]); 764 } 765 766 j += NumParts - 1; 767 } 768 769 return true; 770 } 771 772 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 773 ArrayRef<Register> VRegs, Register DemoteReg, 774 int FI) const { 775 MachineFunction &MF = MIRBuilder.getMF(); 776 MachineRegisterInfo &MRI = MF.getRegInfo(); 777 const DataLayout &DL = MF.getDataLayout(); 778 779 SmallVector<EVT, 4> SplitVTs; 780 SmallVector<uint64_t, 4> Offsets; 781 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 782 783 assert(VRegs.size() == SplitVTs.size()); 784 785 unsigned NumValues = SplitVTs.size(); 786 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 787 Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace()); 788 LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL); 789 790 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 791 792 for (unsigned I = 0; I < NumValues; ++I) { 793 Register Addr; 794 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 795 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 796 MRI.getType(VRegs[I]).getSizeInBytes(), 797 commonAlignment(BaseAlign, Offsets[I])); 798 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 799 } 800 } 801 802 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 803 ArrayRef<Register> VRegs, 804 Register DemoteReg) const { 805 MachineFunction &MF = MIRBuilder.getMF(); 806 MachineRegisterInfo &MRI = MF.getRegInfo(); 807 const DataLayout &DL = MF.getDataLayout(); 808 809 SmallVector<EVT, 4> SplitVTs; 810 SmallVector<uint64_t, 4> Offsets; 811 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 812 813 assert(VRegs.size() == SplitVTs.size()); 814 815 unsigned NumValues = SplitVTs.size(); 816 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 817 unsigned AS = DL.getAllocaAddrSpace(); 818 LLT OffsetLLTy = 819 getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL); 820 821 MachinePointerInfo PtrInfo(AS); 822 823 for (unsigned I = 0; I < NumValues; ++I) { 824 Register Addr; 825 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 826 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 827 MRI.getType(VRegs[I]).getSizeInBytes(), 828 commonAlignment(BaseAlign, Offsets[I])); 829 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 830 } 831 } 832 833 void CallLowering::insertSRetIncomingArgument( 834 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 835 MachineRegisterInfo &MRI, const DataLayout &DL) const { 836 unsigned AS = DL.getAllocaAddrSpace(); 837 DemoteReg = MRI.createGenericVirtualRegister( 838 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 839 840 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 841 842 SmallVector<EVT, 1> ValueVTs; 843 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 844 845 // NOTE: Assume that a pointer won't get split into more than one VT. 846 assert(ValueVTs.size() == 1); 847 848 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()), 849 ArgInfo::NoArgIndex); 850 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 851 DemoteArg.Flags[0].setSRet(); 852 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 853 } 854 855 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 856 const CallBase &CB, 857 CallLoweringInfo &Info) const { 858 const DataLayout &DL = MIRBuilder.getDataLayout(); 859 Type *RetTy = CB.getType(); 860 unsigned AS = DL.getAllocaAddrSpace(); 861 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 862 863 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 864 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 865 866 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 867 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS), 868 ArgInfo::NoArgIndex); 869 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 870 DemoteArg.Flags[0].setSRet(); 871 872 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 873 Info.DemoteStackIndex = FI; 874 Info.DemoteRegister = DemoteReg; 875 } 876 877 bool CallLowering::checkReturn(CCState &CCInfo, 878 SmallVectorImpl<BaseArgInfo> &Outs, 879 CCAssignFn *Fn) const { 880 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 881 MVT VT = MVT::getVT(Outs[I].Ty); 882 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 883 return false; 884 } 885 return true; 886 } 887 888 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 889 AttributeList Attrs, 890 SmallVectorImpl<BaseArgInfo> &Outs, 891 const DataLayout &DL) const { 892 LLVMContext &Context = RetTy->getContext(); 893 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 894 895 SmallVector<EVT, 4> SplitVTs; 896 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 897 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 898 899 for (EVT VT : SplitVTs) { 900 unsigned NumParts = 901 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 902 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 903 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 904 905 for (unsigned I = 0; I < NumParts; ++I) { 906 Outs.emplace_back(PartTy, Flags); 907 } 908 } 909 } 910 911 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 912 const auto &F = MF.getFunction(); 913 Type *ReturnType = F.getReturnType(); 914 CallingConv::ID CallConv = F.getCallingConv(); 915 916 SmallVector<BaseArgInfo, 4> SplitArgs; 917 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 918 MF.getDataLayout()); 919 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 920 } 921 922 bool CallLowering::parametersInCSRMatch( 923 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 924 const SmallVectorImpl<CCValAssign> &OutLocs, 925 const SmallVectorImpl<ArgInfo> &OutArgs) const { 926 for (unsigned i = 0; i < OutLocs.size(); ++i) { 927 auto &ArgLoc = OutLocs[i]; 928 // If it's not a register, it's fine. 929 if (!ArgLoc.isRegLoc()) 930 continue; 931 932 MCRegister PhysReg = ArgLoc.getLocReg(); 933 934 // Only look at callee-saved registers. 935 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 936 continue; 937 938 LLVM_DEBUG( 939 dbgs() 940 << "... Call has an argument passed in a callee-saved register.\n"); 941 942 // Check if it was copied from. 943 const ArgInfo &OutInfo = OutArgs[i]; 944 945 if (OutInfo.Regs.size() > 1) { 946 LLVM_DEBUG( 947 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 948 return false; 949 } 950 951 // Check if we copy the register, walking through copies from virtual 952 // registers. Note that getDefIgnoringCopies does not ignore copies from 953 // physical registers. 954 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 955 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 956 LLVM_DEBUG( 957 dbgs() 958 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 959 return false; 960 } 961 962 // Got a copy. Verify that it's the same as the register we want. 963 Register CopyRHS = RegDef->getOperand(1).getReg(); 964 if (CopyRHS != PhysReg) { 965 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 966 "VReg, cannot tail call.\n"); 967 return false; 968 } 969 } 970 971 return true; 972 } 973 974 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 975 MachineFunction &MF, 976 SmallVectorImpl<ArgInfo> &InArgs, 977 ValueAssigner &CalleeAssigner, 978 ValueAssigner &CallerAssigner) const { 979 const Function &F = MF.getFunction(); 980 CallingConv::ID CalleeCC = Info.CallConv; 981 CallingConv::ID CallerCC = F.getCallingConv(); 982 983 if (CallerCC == CalleeCC) 984 return true; 985 986 SmallVector<CCValAssign, 16> ArgLocs1; 987 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext()); 988 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1)) 989 return false; 990 991 SmallVector<CCValAssign, 16> ArgLocs2; 992 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext()); 993 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2)) 994 return false; 995 996 // We need the argument locations to match up exactly. If there's more in 997 // one than the other, then we are done. 998 if (ArgLocs1.size() != ArgLocs2.size()) 999 return false; 1000 1001 // Make sure that each location is passed in exactly the same way. 1002 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 1003 const CCValAssign &Loc1 = ArgLocs1[i]; 1004 const CCValAssign &Loc2 = ArgLocs2[i]; 1005 1006 // We need both of them to be the same. So if one is a register and one 1007 // isn't, we're done. 1008 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 1009 return false; 1010 1011 if (Loc1.isRegLoc()) { 1012 // If they don't have the same register location, we're done. 1013 if (Loc1.getLocReg() != Loc2.getLocReg()) 1014 return false; 1015 1016 // They matched, so we can move to the next ArgLoc. 1017 continue; 1018 } 1019 1020 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 1021 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 1022 return false; 1023 } 1024 1025 return true; 1026 } 1027 1028 LLT CallLowering::ValueHandler::getStackValueStoreType( 1029 const DataLayout &DL, const CCValAssign &VA) const { 1030 const MVT ValVT = VA.getValVT(); 1031 if (ValVT != MVT::iPTR) 1032 return LLT(ValVT); 1033 1034 /// FIXME: We need to get the correct pointer address space. 1035 return LLT::pointer(0, DL.getPointerSize(0)); 1036 } 1037 1038 void CallLowering::ValueHandler::copyArgumentMemory( 1039 const ArgInfo &Arg, Register DstPtr, Register SrcPtr, 1040 const MachinePointerInfo &DstPtrInfo, Align DstAlign, 1041 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, 1042 CCValAssign &VA) const { 1043 MachineFunction &MF = MIRBuilder.getMF(); 1044 MachineMemOperand *SrcMMO = MF.getMachineMemOperand( 1045 SrcPtrInfo, 1046 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, 1047 SrcAlign); 1048 1049 MachineMemOperand *DstMMO = MF.getMachineMemOperand( 1050 DstPtrInfo, 1051 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, 1052 MemSize, DstAlign); 1053 1054 const LLT PtrTy = MRI.getType(DstPtr); 1055 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); 1056 1057 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); 1058 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); 1059 } 1060 1061 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 1062 CCValAssign &VA, 1063 unsigned MaxSizeBits) { 1064 LLT LocTy{VA.getLocVT()}; 1065 LLT ValTy{VA.getValVT()}; 1066 1067 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 1068 return ValReg; 1069 1070 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 1071 if (MaxSizeBits <= ValTy.getSizeInBits()) 1072 return ValReg; 1073 LocTy = LLT::scalar(MaxSizeBits); 1074 } 1075 1076 switch (VA.getLocInfo()) { 1077 default: break; 1078 case CCValAssign::Full: 1079 case CCValAssign::BCvt: 1080 // FIXME: bitconverting between vector types may or may not be a 1081 // nop in big-endian situations. 1082 return ValReg; 1083 case CCValAssign::AExt: { 1084 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 1085 return MIB.getReg(0); 1086 } 1087 case CCValAssign::SExt: { 1088 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1089 MIRBuilder.buildSExt(NewReg, ValReg); 1090 return NewReg; 1091 } 1092 case CCValAssign::ZExt: { 1093 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1094 MIRBuilder.buildZExt(NewReg, ValReg); 1095 return NewReg; 1096 } 1097 } 1098 llvm_unreachable("unable to extend register"); 1099 } 1100 1101 void CallLowering::ValueAssigner::anchor() {} 1102 1103 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA, 1104 Register SrcReg, 1105 LLT NarrowTy) { 1106 switch (VA.getLocInfo()) { 1107 case CCValAssign::LocInfo::ZExt: { 1108 return MIRBuilder 1109 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1110 NarrowTy.getScalarSizeInBits()) 1111 .getReg(0); 1112 } 1113 case CCValAssign::LocInfo::SExt: { 1114 return MIRBuilder 1115 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1116 NarrowTy.getScalarSizeInBits()) 1117 .getReg(0); 1118 break; 1119 } 1120 default: 1121 return SrcReg; 1122 } 1123 } 1124 1125 /// Check if we can use a basic COPY instruction between the two types. 1126 /// 1127 /// We're currently building on top of the infrastructure using MVT, which loses 1128 /// pointer information in the CCValAssign. We accept copies from physical 1129 /// registers that have been reported as integers if it's to an equivalent sized 1130 /// pointer LLT. 1131 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) { 1132 if (SrcTy == DstTy) 1133 return true; 1134 1135 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1136 return false; 1137 1138 SrcTy = SrcTy.getScalarType(); 1139 DstTy = DstTy.getScalarType(); 1140 1141 return (SrcTy.isPointer() && DstTy.isScalar()) || 1142 (DstTy.isScalar() && SrcTy.isPointer()); 1143 } 1144 1145 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg, 1146 Register PhysReg, 1147 CCValAssign &VA) { 1148 const MVT LocVT = VA.getLocVT(); 1149 const LLT LocTy(LocVT); 1150 const LLT RegTy = MRI.getType(ValVReg); 1151 1152 if (isCopyCompatibleType(RegTy, LocTy)) { 1153 MIRBuilder.buildCopy(ValVReg, PhysReg); 1154 return; 1155 } 1156 1157 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); 1158 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy); 1159 MIRBuilder.buildTrunc(ValVReg, Hint); 1160 } 1161