1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 16 #include "llvm/CodeGen/GlobalISel/Utils.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/MachineOperand.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Target/TargetMachine.h" 26 27 #define DEBUG_TYPE "call-lowering" 28 29 using namespace llvm; 30 31 void CallLowering::anchor() {} 32 33 /// Helper function which updates \p Flags when \p AttrFn returns true. 34 static void 35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 36 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 37 if (AttrFn(Attribute::SExt)) 38 Flags.setSExt(); 39 if (AttrFn(Attribute::ZExt)) 40 Flags.setZExt(); 41 if (AttrFn(Attribute::InReg)) 42 Flags.setInReg(); 43 if (AttrFn(Attribute::StructRet)) 44 Flags.setSRet(); 45 if (AttrFn(Attribute::Nest)) 46 Flags.setNest(); 47 if (AttrFn(Attribute::ByVal)) 48 Flags.setByVal(); 49 if (AttrFn(Attribute::Preallocated)) 50 Flags.setPreallocated(); 51 if (AttrFn(Attribute::InAlloca)) 52 Flags.setInAlloca(); 53 if (AttrFn(Attribute::Returned)) 54 Flags.setReturned(); 55 if (AttrFn(Attribute::SwiftSelf)) 56 Flags.setSwiftSelf(); 57 if (AttrFn(Attribute::SwiftAsync)) 58 Flags.setSwiftAsync(); 59 if (AttrFn(Attribute::SwiftError)) 60 Flags.setSwiftError(); 61 } 62 63 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 64 unsigned ArgIdx) const { 65 ISD::ArgFlagsTy Flags; 66 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 67 return Call.paramHasAttr(ArgIdx, Attr); 68 }); 69 return Flags; 70 } 71 72 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 73 const AttributeList &Attrs, 74 unsigned OpIdx) const { 75 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 76 return Attrs.hasAttribute(OpIdx, Attr); 77 }); 78 } 79 80 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 81 ArrayRef<Register> ResRegs, 82 ArrayRef<ArrayRef<Register>> ArgRegs, 83 Register SwiftErrorVReg, 84 std::function<unsigned()> GetCalleeReg) const { 85 CallLoweringInfo Info; 86 const DataLayout &DL = MIRBuilder.getDataLayout(); 87 MachineFunction &MF = MIRBuilder.getMF(); 88 bool CanBeTailCalled = CB.isTailCall() && 89 isInTailCallPosition(CB, MF.getTarget()) && 90 (MF.getFunction() 91 .getFnAttribute("disable-tail-calls") 92 .getValueAsString() != "true"); 93 94 CallingConv::ID CallConv = CB.getCallingConv(); 95 Type *RetTy = CB.getType(); 96 bool IsVarArg = CB.getFunctionType()->isVarArg(); 97 98 SmallVector<BaseArgInfo, 4> SplitArgs; 99 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 100 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 101 102 if (!Info.CanLowerReturn) { 103 // Callee requires sret demotion. 104 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 105 106 // The sret demotion isn't compatible with tail-calls, since the sret 107 // argument points into the caller's stack frame. 108 CanBeTailCalled = false; 109 } 110 111 // First step is to marshall all the function's parameters into the correct 112 // physregs and memory locations. Gather the sequence of argument types that 113 // we'll pass to the assigner function. 114 unsigned i = 0; 115 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 116 for (auto &Arg : CB.args()) { 117 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i), 118 i < NumFixedArgs}; 119 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 120 121 // If we have an explicit sret argument that is an Instruction, (i.e., it 122 // might point to function-local memory), we can't meaningfully tail-call. 123 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 124 CanBeTailCalled = false; 125 126 Info.OrigArgs.push_back(OrigArg); 127 ++i; 128 } 129 130 // Try looking through a bitcast from one function type to another. 131 // Commonly happens with calls to objc_msgSend(). 132 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 133 if (const Function *F = dyn_cast<Function>(CalleeV)) 134 Info.Callee = MachineOperand::CreateGA(F, 0); 135 else 136 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 137 138 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}}; 139 if (!Info.OrigRet.Ty->isVoidTy()) 140 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 141 142 Info.CB = &CB; 143 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 144 Info.CallConv = CallConv; 145 Info.SwiftErrorVReg = SwiftErrorVReg; 146 Info.IsMustTailCall = CB.isMustTailCall(); 147 Info.IsTailCall = CanBeTailCalled; 148 Info.IsVarArg = IsVarArg; 149 return lowerCall(MIRBuilder, Info); 150 } 151 152 template <typename FuncInfoTy> 153 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 154 const DataLayout &DL, 155 const FuncInfoTy &FuncInfo) const { 156 auto &Flags = Arg.Flags[0]; 157 const AttributeList &Attrs = FuncInfo.getAttributes(); 158 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 159 160 PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType()); 161 if (PtrTy) { 162 Flags.setPointer(); 163 Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace()); 164 } 165 166 Align MemAlign = DL.getABITypeAlign(Arg.Ty); 167 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 168 assert(OpIdx >= AttributeList::FirstArgIndex); 169 Type *ElementTy = PtrTy->getElementType(); 170 171 auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType(); 172 Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy)); 173 174 // For ByVal, alignment should be passed from FE. BE will guess if 175 // this info is not there but there are cases it cannot get right. 176 if (auto ParamAlign = 177 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 178 MemAlign = *ParamAlign; 179 else if ((ParamAlign = 180 FuncInfo.getParamAlign(OpIdx - AttributeList::FirstArgIndex))) 181 MemAlign = *ParamAlign; 182 else 183 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 184 } else if (OpIdx >= AttributeList::FirstArgIndex) { 185 if (auto ParamAlign = 186 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex)) 187 MemAlign = *ParamAlign; 188 } 189 Flags.setMemAlign(MemAlign); 190 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 191 192 // Don't try to use the returned attribute if the argument is marked as 193 // swiftself, since it won't be passed in x0. 194 if (Flags.isSwiftSelf()) 195 Flags.setReturned(false); 196 } 197 198 template void 199 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 200 const DataLayout &DL, 201 const Function &FuncInfo) const; 202 203 template void 204 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 205 const DataLayout &DL, 206 const CallBase &FuncInfo) const; 207 208 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 209 SmallVectorImpl<ArgInfo> &SplitArgs, 210 const DataLayout &DL, 211 CallingConv::ID CallConv, 212 SmallVectorImpl<uint64_t> *Offsets) const { 213 LLVMContext &Ctx = OrigArg.Ty->getContext(); 214 215 SmallVector<EVT, 4> SplitVTs; 216 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0); 217 218 if (SplitVTs.size() == 0) 219 return; 220 221 if (SplitVTs.size() == 1) { 222 // No splitting to do, but we want to replace the original type (e.g. [1 x 223 // double] -> double). 224 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 225 OrigArg.OrigArgIndex, OrigArg.Flags[0], 226 OrigArg.IsFixed, OrigArg.OrigValue); 227 return; 228 } 229 230 // Create one ArgInfo for each virtual register in the original ArgInfo. 231 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 232 233 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 234 OrigArg.Ty, CallConv, false, DL); 235 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 236 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 237 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex, 238 OrigArg.Flags[0], OrigArg.IsFixed); 239 if (NeedsRegBlock) 240 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 241 } 242 243 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 244 } 245 246 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 247 static MachineInstrBuilder 248 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 249 ArrayRef<Register> SrcRegs) { 250 MachineRegisterInfo &MRI = *B.getMRI(); 251 LLT LLTy = MRI.getType(DstRegs[0]); 252 LLT PartLLT = MRI.getType(SrcRegs[0]); 253 254 // Deal with v3s16 split into v2s16 255 LLT LCMTy = getLCMType(LLTy, PartLLT); 256 if (LCMTy == LLTy) { 257 // Common case where no padding is needed. 258 assert(DstRegs.size() == 1); 259 return B.buildConcatVectors(DstRegs[0], SrcRegs); 260 } 261 262 // We need to create an unmerge to the result registers, which may require 263 // widening the original value. 264 Register UnmergeSrcReg; 265 if (LCMTy != PartLLT) { 266 // e.g. A <3 x s16> value was split to <2 x s16> 267 // %register_value0:_(<2 x s16>) 268 // %register_value1:_(<2 x s16>) 269 // %undef:_(<2 x s16>) = G_IMPLICIT_DEF 270 // %concat:_<6 x s16>) = G_CONCAT_VECTORS %reg_value0, %reg_value1, %undef 271 // %dst_reg:_(<3 x s16>), %dead:_(<3 x s16>) = G_UNMERGE_VALUES %concat 272 const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits(); 273 Register Undef = B.buildUndef(PartLLT).getReg(0); 274 275 // Build vector of undefs. 276 SmallVector<Register, 8> WidenedSrcs(NumWide, Undef); 277 278 // Replace the first sources with the real registers. 279 std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin()); 280 UnmergeSrcReg = B.buildConcatVectors(LCMTy, WidenedSrcs).getReg(0); 281 } else { 282 // We don't need to widen anything if we're extracting a scalar which was 283 // promoted to a vector e.g. s8 -> v4s8 -> s8 284 assert(SrcRegs.size() == 1); 285 UnmergeSrcReg = SrcRegs[0]; 286 } 287 288 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 289 290 SmallVector<Register, 8> PadDstRegs(NumDst); 291 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 292 293 // Create the excess dead defs for the unmerge. 294 for (int I = DstRegs.size(); I != NumDst; ++I) 295 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 296 297 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); 298 } 299 300 /// Create a sequence of instructions to combine pieces split into register 301 /// typed values to the original IR value. \p OrigRegs contains the destination 302 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 303 /// with type \p PartLLT. This is used for incoming values (physregs to vregs). 304 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 305 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, 306 const ISD::ArgFlagsTy Flags) { 307 MachineRegisterInfo &MRI = *B.getMRI(); 308 309 if (PartLLT == LLTy) { 310 // We should have avoided introducing a new virtual register, and just 311 // directly assigned here. 312 assert(OrigRegs[0] == Regs[0]); 313 return; 314 } 315 316 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 && 317 Regs.size() == 1) { 318 B.buildBitcast(OrigRegs[0], Regs[0]); 319 return; 320 } 321 322 // A vector PartLLT needs extending to LLTy's element size. 323 // E.g. <2 x s64> = G_SEXT <2 x s32>. 324 if (PartLLT.isVector() == LLTy.isVector() && 325 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() && 326 (!PartLLT.isVector() || 327 PartLLT.getNumElements() == LLTy.getNumElements()) && 328 OrigRegs.size() == 1 && Regs.size() == 1) { 329 Register SrcReg = Regs[0]; 330 331 LLT LocTy = MRI.getType(SrcReg); 332 333 if (Flags.isSExt()) { 334 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 335 .getReg(0); 336 } else if (Flags.isZExt()) { 337 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits()) 338 .getReg(0); 339 } 340 341 // Sometimes pointers are passed zero extended. 342 LLT OrigTy = MRI.getType(OrigRegs[0]); 343 if (OrigTy.isPointer()) { 344 LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits()); 345 B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg)); 346 return; 347 } 348 349 B.buildTrunc(OrigRegs[0], SrcReg); 350 return; 351 } 352 353 if (!LLTy.isVector() && !PartLLT.isVector()) { 354 assert(OrigRegs.size() == 1); 355 LLT OrigTy = MRI.getType(OrigRegs[0]); 356 357 unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size(); 358 if (SrcSize == OrigTy.getSizeInBits()) 359 B.buildMerge(OrigRegs[0], Regs); 360 else { 361 auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs); 362 B.buildTrunc(OrigRegs[0], Widened); 363 } 364 365 return; 366 } 367 368 if (PartLLT.isVector()) { 369 assert(OrigRegs.size() == 1); 370 SmallVector<Register> CastRegs(Regs.begin(), Regs.end()); 371 372 // If PartLLT is a mismatched vector in both number of elements and element 373 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to 374 // have the same elt type, i.e. v4s32. 375 if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() && 376 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 && 377 Regs.size() == 1) { 378 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType()) 379 .changeElementCount(PartLLT.getElementCount() * 2); 380 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0); 381 PartLLT = NewTy; 382 } 383 384 if (LLTy.getScalarType() == PartLLT.getElementType()) { 385 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 386 } else { 387 unsigned I = 0; 388 LLT GCDTy = getGCDType(LLTy, PartLLT); 389 390 // We are both splitting a vector, and bitcasting its element types. Cast 391 // the source pieces into the appropriate number of pieces with the result 392 // element type. 393 for (Register SrcReg : CastRegs) 394 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0); 395 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs); 396 } 397 398 return; 399 } 400 401 assert(LLTy.isVector() && !PartLLT.isVector()); 402 403 LLT DstEltTy = LLTy.getElementType(); 404 405 // Pointer information was discarded. We'll need to coerce some register types 406 // to avoid violating type constraints. 407 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 408 409 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 410 411 if (DstEltTy == PartLLT) { 412 // Vector was trivially scalarized. 413 414 if (RealDstEltTy.isPointer()) { 415 for (Register Reg : Regs) 416 MRI.setType(Reg, RealDstEltTy); 417 } 418 419 B.buildBuildVector(OrigRegs[0], Regs); 420 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 421 // Deal with vector with 64-bit elements decomposed to 32-bit 422 // registers. Need to create intermediate 64-bit elements. 423 SmallVector<Register, 8> EltMerges; 424 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 425 426 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 427 428 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 429 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt)); 430 // Fix the type in case this is really a vector of pointers. 431 MRI.setType(Merge.getReg(0), RealDstEltTy); 432 EltMerges.push_back(Merge.getReg(0)); 433 Regs = Regs.drop_front(PartsPerElt); 434 } 435 436 B.buildBuildVector(OrigRegs[0], EltMerges); 437 } else { 438 // Vector was split, and elements promoted to a wider type. 439 // FIXME: Should handle floating point promotions. 440 LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT); 441 auto BV = B.buildBuildVector(BVType, Regs); 442 B.buildTrunc(OrigRegs[0], BV); 443 } 444 } 445 446 /// Create a sequence of instructions to expand the value in \p SrcReg (of type 447 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should 448 /// contain the type of scalar value extension if necessary. 449 /// 450 /// This is used for outgoing values (vregs to physregs) 451 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 452 Register SrcReg, LLT SrcTy, LLT PartTy, 453 unsigned ExtendOp = TargetOpcode::G_ANYEXT) { 454 // We could just insert a regular copy, but this is unreachable at the moment. 455 assert(SrcTy != PartTy && "identical part types shouldn't reach here"); 456 457 const unsigned PartSize = PartTy.getSizeInBits(); 458 459 if (PartTy.isVector() == SrcTy.isVector() && 460 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { 461 assert(DstRegs.size() == 1); 462 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); 463 return; 464 } 465 466 if (SrcTy.isVector() && !PartTy.isVector() && 467 PartSize > SrcTy.getElementType().getSizeInBits()) { 468 // Vector was scalarized, and the elements extended. 469 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 470 for (int i = 0, e = DstRegs.size(); i != e; ++i) 471 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 472 return; 473 } 474 475 LLT GCDTy = getGCDType(SrcTy, PartTy); 476 if (GCDTy == PartTy) { 477 // If this already evenly divisible, we can create a simple unmerge. 478 B.buildUnmerge(DstRegs, SrcReg); 479 return; 480 } 481 482 MachineRegisterInfo &MRI = *B.getMRI(); 483 LLT DstTy = MRI.getType(DstRegs[0]); 484 LLT LCMTy = getLCMType(SrcTy, PartTy); 485 486 const unsigned DstSize = DstTy.getSizeInBits(); 487 const unsigned SrcSize = SrcTy.getSizeInBits(); 488 unsigned CoveringSize = LCMTy.getSizeInBits(); 489 490 Register UnmergeSrc = SrcReg; 491 492 if (CoveringSize != SrcSize) { 493 // For scalars, it's common to be able to use a simple extension. 494 if (SrcTy.isScalar() && DstTy.isScalar()) { 495 CoveringSize = alignTo(SrcSize, DstSize); 496 LLT CoverTy = LLT::scalar(CoveringSize); 497 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0); 498 } else { 499 // Widen to the common type. 500 // FIXME: This should respect the extend type 501 Register Undef = B.buildUndef(SrcTy).getReg(0); 502 SmallVector<Register, 8> MergeParts(1, SrcReg); 503 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize) 504 MergeParts.push_back(Undef); 505 UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0); 506 } 507 } 508 509 // Unmerge to the original registers and pad with dead defs. 510 SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end()); 511 for (unsigned Size = DstSize * DstRegs.size(); Size != CoveringSize; 512 Size += DstSize) { 513 UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy)); 514 } 515 516 B.buildUnmerge(UnmergeResults, UnmergeSrc); 517 } 518 519 bool CallLowering::determineAndHandleAssignments( 520 ValueHandler &Handler, ValueAssigner &Assigner, 521 SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder, 522 CallingConv::ID CallConv, bool IsVarArg, Register ThisReturnReg) const { 523 MachineFunction &MF = MIRBuilder.getMF(); 524 const Function &F = MF.getFunction(); 525 SmallVector<CCValAssign, 16> ArgLocs; 526 527 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 528 if (!determineAssignments(Assigner, Args, CCInfo)) 529 return false; 530 531 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder, 532 ThisReturnReg); 533 } 534 535 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { 536 if (Flags.isSExt()) 537 return TargetOpcode::G_SEXT; 538 if (Flags.isZExt()) 539 return TargetOpcode::G_ZEXT; 540 return TargetOpcode::G_ANYEXT; 541 } 542 543 bool CallLowering::determineAssignments(ValueAssigner &Assigner, 544 SmallVectorImpl<ArgInfo> &Args, 545 CCState &CCInfo) const { 546 LLVMContext &Ctx = CCInfo.getContext(); 547 const CallingConv::ID CallConv = CCInfo.getCallingConv(); 548 549 unsigned NumArgs = Args.size(); 550 for (unsigned i = 0; i != NumArgs; ++i) { 551 EVT CurVT = EVT::getEVT(Args[i].Ty); 552 553 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT); 554 555 // If we need to split the type over multiple regs, check it's a scenario 556 // we currently support. 557 unsigned NumParts = 558 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT); 559 560 if (NumParts == 1) { 561 // Try to use the register type if we couldn't assign the VT. 562 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 563 Args[i].Flags[0], CCInfo)) 564 return false; 565 continue; 566 } 567 568 // For incoming arguments (physregs to vregs), we could have values in 569 // physregs (or memlocs) which we want to extract and copy to vregs. 570 // During this, we might have to deal with the LLT being split across 571 // multiple regs, so we have to record this information for later. 572 // 573 // If we have outgoing args, then we have the opposite case. We have a 574 // vreg with an LLT which we want to assign to a physical location, and 575 // we might have to record that the value has to be split later. 576 577 // We're handling an incoming arg which is split over multiple regs. 578 // E.g. passing an s128 on AArch64. 579 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 580 Args[i].Flags.clear(); 581 582 for (unsigned Part = 0; Part < NumParts; ++Part) { 583 ISD::ArgFlagsTy Flags = OrigFlags; 584 if (Part == 0) { 585 Flags.setSplit(); 586 } else { 587 Flags.setOrigAlign(Align(1)); 588 if (Part == NumParts - 1) 589 Flags.setSplitEnd(); 590 } 591 592 Args[i].Flags.push_back(Flags); 593 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i], 594 Args[i].Flags[Part], CCInfo)) { 595 // Still couldn't assign this smaller part type for some reason. 596 return false; 597 } 598 } 599 } 600 601 return true; 602 } 603 604 bool CallLowering::handleAssignments(ValueHandler &Handler, 605 SmallVectorImpl<ArgInfo> &Args, 606 CCState &CCInfo, 607 SmallVectorImpl<CCValAssign> &ArgLocs, 608 MachineIRBuilder &MIRBuilder, 609 Register ThisReturnReg) const { 610 MachineFunction &MF = MIRBuilder.getMF(); 611 MachineRegisterInfo &MRI = MF.getRegInfo(); 612 const Function &F = MF.getFunction(); 613 const DataLayout &DL = F.getParent()->getDataLayout(); 614 615 const unsigned NumArgs = Args.size(); 616 617 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) { 618 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 619 CCValAssign &VA = ArgLocs[j]; 620 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 621 622 if (VA.needsCustom()) { 623 unsigned NumArgRegs = 624 Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j)); 625 if (!NumArgRegs) 626 return false; 627 j += NumArgRegs; 628 continue; 629 } 630 631 const MVT ValVT = VA.getValVT(); 632 const MVT LocVT = VA.getLocVT(); 633 634 const LLT LocTy(LocVT); 635 const LLT ValTy(ValVT); 636 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy; 637 const EVT OrigVT = EVT::getEVT(Args[i].Ty); 638 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 639 640 // Expected to be multiple regs for a single incoming arg. 641 // There should be Regs.size() ArgLocs per argument. 642 // This should be the same as getNumRegistersForCallingConv 643 const unsigned NumParts = Args[i].Flags.size(); 644 645 // Now split the registers into the assigned types. 646 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end()); 647 648 if (NumParts != 1 || NewLLT != OrigTy) { 649 // If we can't directly assign the register, we need one or more 650 // intermediate values. 651 Args[i].Regs.resize(NumParts); 652 653 // For each split register, create and assign a vreg that will store 654 // the incoming component of the larger value. These will later be 655 // merged to form the final vreg. 656 for (unsigned Part = 0; Part < NumParts; ++Part) 657 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT); 658 } 659 660 assert((j + (NumParts - 1)) < ArgLocs.size() && 661 "Too many regs for number of args"); 662 663 // Coerce into outgoing value types before register assignment. 664 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) { 665 assert(Args[i].OrigRegs.size() == 1); 666 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, 667 ValTy, extendOpFromFlags(Args[i].Flags[0])); 668 } 669 670 for (unsigned Part = 0; Part < NumParts; ++Part) { 671 Register ArgReg = Args[i].Regs[Part]; 672 // There should be Regs.size() ArgLocs per argument. 673 VA = ArgLocs[j + Part]; 674 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; 675 676 if (VA.isMemLoc() && !Flags.isByVal()) { 677 // Individual pieces may have been spilled to the stack and others 678 // passed in registers. 679 680 // TODO: The memory size may be larger than the value we need to 681 // store. We may need to adjust the offset for big endian targets. 682 LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags); 683 684 MachinePointerInfo MPO; 685 Register StackAddr = Handler.getStackAddress( 686 MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags); 687 688 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA); 689 continue; 690 } 691 692 if (VA.isMemLoc() && Flags.isByVal()) { 693 assert(Args[i].Regs.size() == 1 && 694 "didn't expect split byval pointer"); 695 696 if (Handler.isIncomingArgumentHandler()) { 697 // We just need to copy the frame index value to the pointer. 698 MachinePointerInfo MPO; 699 Register StackAddr = Handler.getStackAddress( 700 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); 701 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); 702 } else { 703 // For outgoing byval arguments, insert the implicit copy byval 704 // implies, such that writes in the callee do not modify the caller's 705 // value. 706 uint64_t MemSize = Flags.getByValSize(); 707 int64_t Offset = VA.getLocMemOffset(); 708 709 MachinePointerInfo DstMPO; 710 Register StackAddr = 711 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); 712 713 MachinePointerInfo SrcMPO(Args[i].OrigValue); 714 if (!Args[i].OrigValue) { 715 // We still need to accurately track the stack address space if we 716 // don't know the underlying value. 717 const LLT PtrTy = MRI.getType(StackAddr); 718 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); 719 } 720 721 Align DstAlign = std::max(Flags.getNonZeroByValAlign(), 722 inferAlignFromPtrInfo(MF, DstMPO)); 723 724 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), 725 inferAlignFromPtrInfo(MF, SrcMPO)); 726 727 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], 728 DstMPO, DstAlign, SrcMPO, SrcAlign, 729 MemSize, VA); 730 } 731 continue; 732 } 733 734 assert(!VA.needsCustom() && "custom loc should have been handled already"); 735 736 if (i == 0 && ThisReturnReg.isValid() && 737 Handler.isIncomingArgumentHandler() && 738 isTypeIsValidForThisReturn(ValVT)) { 739 Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA); 740 continue; 741 } 742 743 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 744 } 745 746 // Now that all pieces have been assigned, re-pack the register typed values 747 // into the original value typed registers. 748 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) { 749 // Merge the split registers into the expected larger result vregs of 750 // the original call. 751 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 752 LocTy, Args[i].Flags[0]); 753 } 754 755 j += NumParts - 1; 756 } 757 758 return true; 759 } 760 761 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 762 ArrayRef<Register> VRegs, Register DemoteReg, 763 int FI) const { 764 MachineFunction &MF = MIRBuilder.getMF(); 765 MachineRegisterInfo &MRI = MF.getRegInfo(); 766 const DataLayout &DL = MF.getDataLayout(); 767 768 SmallVector<EVT, 4> SplitVTs; 769 SmallVector<uint64_t, 4> Offsets; 770 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 771 772 assert(VRegs.size() == SplitVTs.size()); 773 774 unsigned NumValues = SplitVTs.size(); 775 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 776 Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace()); 777 LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL); 778 779 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 780 781 for (unsigned I = 0; I < NumValues; ++I) { 782 Register Addr; 783 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 784 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 785 MRI.getType(VRegs[I]), 786 commonAlignment(BaseAlign, Offsets[I])); 787 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 788 } 789 } 790 791 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 792 ArrayRef<Register> VRegs, 793 Register DemoteReg) const { 794 MachineFunction &MF = MIRBuilder.getMF(); 795 MachineRegisterInfo &MRI = MF.getRegInfo(); 796 const DataLayout &DL = MF.getDataLayout(); 797 798 SmallVector<EVT, 4> SplitVTs; 799 SmallVector<uint64_t, 4> Offsets; 800 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 801 802 assert(VRegs.size() == SplitVTs.size()); 803 804 unsigned NumValues = SplitVTs.size(); 805 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 806 unsigned AS = DL.getAllocaAddrSpace(); 807 LLT OffsetLLTy = 808 getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL); 809 810 MachinePointerInfo PtrInfo(AS); 811 812 for (unsigned I = 0; I < NumValues; ++I) { 813 Register Addr; 814 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 815 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 816 MRI.getType(VRegs[I]), 817 commonAlignment(BaseAlign, Offsets[I])); 818 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 819 } 820 } 821 822 void CallLowering::insertSRetIncomingArgument( 823 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 824 MachineRegisterInfo &MRI, const DataLayout &DL) const { 825 unsigned AS = DL.getAllocaAddrSpace(); 826 DemoteReg = MRI.createGenericVirtualRegister( 827 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 828 829 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 830 831 SmallVector<EVT, 1> ValueVTs; 832 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 833 834 // NOTE: Assume that a pointer won't get split into more than one VT. 835 assert(ValueVTs.size() == 1); 836 837 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()), 838 ArgInfo::NoArgIndex); 839 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 840 DemoteArg.Flags[0].setSRet(); 841 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 842 } 843 844 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 845 const CallBase &CB, 846 CallLoweringInfo &Info) const { 847 const DataLayout &DL = MIRBuilder.getDataLayout(); 848 Type *RetTy = CB.getType(); 849 unsigned AS = DL.getAllocaAddrSpace(); 850 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 851 852 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 853 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 854 855 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 856 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS), 857 ArgInfo::NoArgIndex); 858 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 859 DemoteArg.Flags[0].setSRet(); 860 861 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 862 Info.DemoteStackIndex = FI; 863 Info.DemoteRegister = DemoteReg; 864 } 865 866 bool CallLowering::checkReturn(CCState &CCInfo, 867 SmallVectorImpl<BaseArgInfo> &Outs, 868 CCAssignFn *Fn) const { 869 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 870 MVT VT = MVT::getVT(Outs[I].Ty); 871 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 872 return false; 873 } 874 return true; 875 } 876 877 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 878 AttributeList Attrs, 879 SmallVectorImpl<BaseArgInfo> &Outs, 880 const DataLayout &DL) const { 881 LLVMContext &Context = RetTy->getContext(); 882 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 883 884 SmallVector<EVT, 4> SplitVTs; 885 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 886 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 887 888 for (EVT VT : SplitVTs) { 889 unsigned NumParts = 890 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 891 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 892 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 893 894 for (unsigned I = 0; I < NumParts; ++I) { 895 Outs.emplace_back(PartTy, Flags); 896 } 897 } 898 } 899 900 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 901 const auto &F = MF.getFunction(); 902 Type *ReturnType = F.getReturnType(); 903 CallingConv::ID CallConv = F.getCallingConv(); 904 905 SmallVector<BaseArgInfo, 4> SplitArgs; 906 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 907 MF.getDataLayout()); 908 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 909 } 910 911 bool CallLowering::parametersInCSRMatch( 912 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 913 const SmallVectorImpl<CCValAssign> &OutLocs, 914 const SmallVectorImpl<ArgInfo> &OutArgs) const { 915 for (unsigned i = 0; i < OutLocs.size(); ++i) { 916 auto &ArgLoc = OutLocs[i]; 917 // If it's not a register, it's fine. 918 if (!ArgLoc.isRegLoc()) 919 continue; 920 921 MCRegister PhysReg = ArgLoc.getLocReg(); 922 923 // Only look at callee-saved registers. 924 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 925 continue; 926 927 LLVM_DEBUG( 928 dbgs() 929 << "... Call has an argument passed in a callee-saved register.\n"); 930 931 // Check if it was copied from. 932 const ArgInfo &OutInfo = OutArgs[i]; 933 934 if (OutInfo.Regs.size() > 1) { 935 LLVM_DEBUG( 936 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 937 return false; 938 } 939 940 // Check if we copy the register, walking through copies from virtual 941 // registers. Note that getDefIgnoringCopies does not ignore copies from 942 // physical registers. 943 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 944 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 945 LLVM_DEBUG( 946 dbgs() 947 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 948 return false; 949 } 950 951 // Got a copy. Verify that it's the same as the register we want. 952 Register CopyRHS = RegDef->getOperand(1).getReg(); 953 if (CopyRHS != PhysReg) { 954 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 955 "VReg, cannot tail call.\n"); 956 return false; 957 } 958 } 959 960 return true; 961 } 962 963 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 964 MachineFunction &MF, 965 SmallVectorImpl<ArgInfo> &InArgs, 966 ValueAssigner &CalleeAssigner, 967 ValueAssigner &CallerAssigner) const { 968 const Function &F = MF.getFunction(); 969 CallingConv::ID CalleeCC = Info.CallConv; 970 CallingConv::ID CallerCC = F.getCallingConv(); 971 972 if (CallerCC == CalleeCC) 973 return true; 974 975 SmallVector<CCValAssign, 16> ArgLocs1; 976 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext()); 977 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1)) 978 return false; 979 980 SmallVector<CCValAssign, 16> ArgLocs2; 981 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext()); 982 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2)) 983 return false; 984 985 // We need the argument locations to match up exactly. If there's more in 986 // one than the other, then we are done. 987 if (ArgLocs1.size() != ArgLocs2.size()) 988 return false; 989 990 // Make sure that each location is passed in exactly the same way. 991 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 992 const CCValAssign &Loc1 = ArgLocs1[i]; 993 const CCValAssign &Loc2 = ArgLocs2[i]; 994 995 // We need both of them to be the same. So if one is a register and one 996 // isn't, we're done. 997 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 998 return false; 999 1000 if (Loc1.isRegLoc()) { 1001 // If they don't have the same register location, we're done. 1002 if (Loc1.getLocReg() != Loc2.getLocReg()) 1003 return false; 1004 1005 // They matched, so we can move to the next ArgLoc. 1006 continue; 1007 } 1008 1009 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 1010 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 1011 return false; 1012 } 1013 1014 return true; 1015 } 1016 1017 LLT CallLowering::ValueHandler::getStackValueStoreType( 1018 const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const { 1019 const MVT ValVT = VA.getValVT(); 1020 if (ValVT != MVT::iPTR) { 1021 LLT ValTy(ValVT); 1022 1023 // We lost the pointeriness going through CCValAssign, so try to restore it 1024 // based on the flags. 1025 if (Flags.isPointer()) { 1026 LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(), 1027 ValTy.getScalarSizeInBits()); 1028 if (ValVT.isVector()) 1029 return LLT::vector(ValTy.getElementCount(), PtrTy); 1030 return PtrTy; 1031 } 1032 1033 return ValTy; 1034 } 1035 1036 unsigned AddrSpace = Flags.getPointerAddrSpace(); 1037 return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace)); 1038 } 1039 1040 void CallLowering::ValueHandler::copyArgumentMemory( 1041 const ArgInfo &Arg, Register DstPtr, Register SrcPtr, 1042 const MachinePointerInfo &DstPtrInfo, Align DstAlign, 1043 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, 1044 CCValAssign &VA) const { 1045 MachineFunction &MF = MIRBuilder.getMF(); 1046 MachineMemOperand *SrcMMO = MF.getMachineMemOperand( 1047 SrcPtrInfo, 1048 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, 1049 SrcAlign); 1050 1051 MachineMemOperand *DstMMO = MF.getMachineMemOperand( 1052 DstPtrInfo, 1053 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, 1054 MemSize, DstAlign); 1055 1056 const LLT PtrTy = MRI.getType(DstPtr); 1057 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); 1058 1059 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); 1060 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); 1061 } 1062 1063 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 1064 CCValAssign &VA, 1065 unsigned MaxSizeBits) { 1066 LLT LocTy{VA.getLocVT()}; 1067 LLT ValTy{VA.getValVT()}; 1068 1069 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 1070 return ValReg; 1071 1072 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 1073 if (MaxSizeBits <= ValTy.getSizeInBits()) 1074 return ValReg; 1075 LocTy = LLT::scalar(MaxSizeBits); 1076 } 1077 1078 const LLT ValRegTy = MRI.getType(ValReg); 1079 if (ValRegTy.isPointer()) { 1080 // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so 1081 // we have to cast to do the extension. 1082 LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits()); 1083 ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0); 1084 } 1085 1086 switch (VA.getLocInfo()) { 1087 default: break; 1088 case CCValAssign::Full: 1089 case CCValAssign::BCvt: 1090 // FIXME: bitconverting between vector types may or may not be a 1091 // nop in big-endian situations. 1092 return ValReg; 1093 case CCValAssign::AExt: { 1094 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 1095 return MIB.getReg(0); 1096 } 1097 case CCValAssign::SExt: { 1098 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1099 MIRBuilder.buildSExt(NewReg, ValReg); 1100 return NewReg; 1101 } 1102 case CCValAssign::ZExt: { 1103 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1104 MIRBuilder.buildZExt(NewReg, ValReg); 1105 return NewReg; 1106 } 1107 } 1108 llvm_unreachable("unable to extend register"); 1109 } 1110 1111 void CallLowering::ValueAssigner::anchor() {} 1112 1113 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA, 1114 Register SrcReg, 1115 LLT NarrowTy) { 1116 switch (VA.getLocInfo()) { 1117 case CCValAssign::LocInfo::ZExt: { 1118 return MIRBuilder 1119 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1120 NarrowTy.getScalarSizeInBits()) 1121 .getReg(0); 1122 } 1123 case CCValAssign::LocInfo::SExt: { 1124 return MIRBuilder 1125 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1126 NarrowTy.getScalarSizeInBits()) 1127 .getReg(0); 1128 break; 1129 } 1130 default: 1131 return SrcReg; 1132 } 1133 } 1134 1135 /// Check if we can use a basic COPY instruction between the two types. 1136 /// 1137 /// We're currently building on top of the infrastructure using MVT, which loses 1138 /// pointer information in the CCValAssign. We accept copies from physical 1139 /// registers that have been reported as integers if it's to an equivalent sized 1140 /// pointer LLT. 1141 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) { 1142 if (SrcTy == DstTy) 1143 return true; 1144 1145 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1146 return false; 1147 1148 SrcTy = SrcTy.getScalarType(); 1149 DstTy = DstTy.getScalarType(); 1150 1151 return (SrcTy.isPointer() && DstTy.isScalar()) || 1152 (DstTy.isScalar() && SrcTy.isPointer()); 1153 } 1154 1155 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg, 1156 Register PhysReg, 1157 CCValAssign &VA) { 1158 const MVT LocVT = VA.getLocVT(); 1159 const LLT LocTy(LocVT); 1160 const LLT RegTy = MRI.getType(ValVReg); 1161 1162 if (isCopyCompatibleType(RegTy, LocTy)) { 1163 MIRBuilder.buildCopy(ValVReg, PhysReg); 1164 return; 1165 } 1166 1167 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); 1168 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy); 1169 MIRBuilder.buildTrunc(ValVReg, Hint); 1170 } 1171