1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
16 #include "llvm/CodeGen/GlobalISel/Utils.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/MachineOperand.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Target/TargetMachine.h"
26 
27 #define DEBUG_TYPE "call-lowering"
28 
29 using namespace llvm;
30 
31 void CallLowering::anchor() {}
32 
33 /// Helper function which updates \p Flags when \p AttrFn returns true.
34 static void
35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
36                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
37   if (AttrFn(Attribute::SExt))
38     Flags.setSExt();
39   if (AttrFn(Attribute::ZExt))
40     Flags.setZExt();
41   if (AttrFn(Attribute::InReg))
42     Flags.setInReg();
43   if (AttrFn(Attribute::StructRet))
44     Flags.setSRet();
45   if (AttrFn(Attribute::Nest))
46     Flags.setNest();
47   if (AttrFn(Attribute::ByVal))
48     Flags.setByVal();
49   if (AttrFn(Attribute::Preallocated))
50     Flags.setPreallocated();
51   if (AttrFn(Attribute::InAlloca))
52     Flags.setInAlloca();
53   if (AttrFn(Attribute::Returned))
54     Flags.setReturned();
55   if (AttrFn(Attribute::SwiftSelf))
56     Flags.setSwiftSelf();
57   if (AttrFn(Attribute::SwiftAsync))
58     Flags.setSwiftAsync();
59   if (AttrFn(Attribute::SwiftError))
60     Flags.setSwiftError();
61 }
62 
63 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
64                                                      unsigned ArgIdx) const {
65   ISD::ArgFlagsTy Flags;
66   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
67     return Call.paramHasAttr(ArgIdx, Attr);
68   });
69   return Flags;
70 }
71 
72 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
73                                              const AttributeList &Attrs,
74                                              unsigned OpIdx) const {
75   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
76     return Attrs.hasAttribute(OpIdx, Attr);
77   });
78 }
79 
80 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
81                              ArrayRef<Register> ResRegs,
82                              ArrayRef<ArrayRef<Register>> ArgRegs,
83                              Register SwiftErrorVReg,
84                              std::function<unsigned()> GetCalleeReg) const {
85   CallLoweringInfo Info;
86   const DataLayout &DL = MIRBuilder.getDataLayout();
87   MachineFunction &MF = MIRBuilder.getMF();
88   bool CanBeTailCalled = CB.isTailCall() &&
89                          isInTailCallPosition(CB, MF.getTarget()) &&
90                          (MF.getFunction()
91                               .getFnAttribute("disable-tail-calls")
92                               .getValueAsString() != "true");
93 
94   CallingConv::ID CallConv = CB.getCallingConv();
95   Type *RetTy = CB.getType();
96   bool IsVarArg = CB.getFunctionType()->isVarArg();
97 
98   SmallVector<BaseArgInfo, 4> SplitArgs;
99   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
100   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
101 
102   if (!Info.CanLowerReturn) {
103     // Callee requires sret demotion.
104     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
105 
106     // The sret demotion isn't compatible with tail-calls, since the sret
107     // argument points into the caller's stack frame.
108     CanBeTailCalled = false;
109   }
110 
111   // First step is to marshall all the function's parameters into the correct
112   // physregs and memory locations. Gather the sequence of argument types that
113   // we'll pass to the assigner function.
114   unsigned i = 0;
115   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
116   for (auto &Arg : CB.args()) {
117     ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i),
118                     i < NumFixedArgs};
119     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
120 
121     // If we have an explicit sret argument that is an Instruction, (i.e., it
122     // might point to function-local memory), we can't meaningfully tail-call.
123     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
124       CanBeTailCalled = false;
125 
126     Info.OrigArgs.push_back(OrigArg);
127     ++i;
128   }
129 
130   // Try looking through a bitcast from one function type to another.
131   // Commonly happens with calls to objc_msgSend().
132   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
133   if (const Function *F = dyn_cast<Function>(CalleeV))
134     Info.Callee = MachineOperand::CreateGA(F, 0);
135   else
136     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
137 
138   Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, ISD::ArgFlagsTy{}};
139   if (!Info.OrigRet.Ty->isVoidTy())
140     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
141 
142   Info.CB = &CB;
143   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
144   Info.CallConv = CallConv;
145   Info.SwiftErrorVReg = SwiftErrorVReg;
146   Info.IsMustTailCall = CB.isMustTailCall();
147   Info.IsTailCall = CanBeTailCalled;
148   Info.IsVarArg = IsVarArg;
149   return lowerCall(MIRBuilder, Info);
150 }
151 
152 template <typename FuncInfoTy>
153 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
154                                const DataLayout &DL,
155                                const FuncInfoTy &FuncInfo) const {
156   auto &Flags = Arg.Flags[0];
157   const AttributeList &Attrs = FuncInfo.getAttributes();
158   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
159 
160   PointerType *PtrTy = dyn_cast<PointerType>(Arg.Ty->getScalarType());
161   if (PtrTy) {
162     Flags.setPointer();
163     Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
164   }
165 
166   Align MemAlign = DL.getABITypeAlign(Arg.Ty);
167   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
168     assert(OpIdx >= AttributeList::FirstArgIndex);
169     Type *ElementTy = PtrTy->getElementType();
170 
171     auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType();
172     Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy));
173 
174     // For ByVal, alignment should be passed from FE.  BE will guess if
175     // this info is not there but there are cases it cannot get right.
176     if (auto ParamAlign =
177             FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
178       MemAlign = *ParamAlign;
179     else if ((ParamAlign =
180                   FuncInfo.getParamAlign(OpIdx - AttributeList::FirstArgIndex)))
181       MemAlign = *ParamAlign;
182     else
183       MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
184   } else if (OpIdx >= AttributeList::FirstArgIndex) {
185     if (auto ParamAlign =
186             FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
187       MemAlign = *ParamAlign;
188   }
189   Flags.setMemAlign(MemAlign);
190   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
191 
192   // Don't try to use the returned attribute if the argument is marked as
193   // swiftself, since it won't be passed in x0.
194   if (Flags.isSwiftSelf())
195     Flags.setReturned(false);
196 }
197 
198 template void
199 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
200                                     const DataLayout &DL,
201                                     const Function &FuncInfo) const;
202 
203 template void
204 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
205                                     const DataLayout &DL,
206                                     const CallBase &FuncInfo) const;
207 
208 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
209                                      SmallVectorImpl<ArgInfo> &SplitArgs,
210                                      const DataLayout &DL,
211                                      CallingConv::ID CallConv,
212                                      SmallVectorImpl<uint64_t> *Offsets) const {
213   LLVMContext &Ctx = OrigArg.Ty->getContext();
214 
215   SmallVector<EVT, 4> SplitVTs;
216   ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
217 
218   if (SplitVTs.size() == 0)
219     return;
220 
221   if (SplitVTs.size() == 1) {
222     // No splitting to do, but we want to replace the original type (e.g. [1 x
223     // double] -> double).
224     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
225                            OrigArg.OrigArgIndex, OrigArg.Flags[0],
226                            OrigArg.IsFixed, OrigArg.OrigValue);
227     return;
228   }
229 
230   // Create one ArgInfo for each virtual register in the original ArgInfo.
231   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
232 
233   bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
234       OrigArg.Ty, CallConv, false, DL);
235   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
236     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
237     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
238                            OrigArg.Flags[0], OrigArg.IsFixed);
239     if (NeedsRegBlock)
240       SplitArgs.back().Flags[0].setInConsecutiveRegs();
241   }
242 
243   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
244 }
245 
246 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
247 static MachineInstrBuilder
248 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
249                             ArrayRef<Register> SrcRegs) {
250   MachineRegisterInfo &MRI = *B.getMRI();
251   LLT LLTy = MRI.getType(DstRegs[0]);
252   LLT PartLLT = MRI.getType(SrcRegs[0]);
253 
254   // Deal with v3s16 split into v2s16
255   LLT LCMTy = getLCMType(LLTy, PartLLT);
256   if (LCMTy == LLTy) {
257     // Common case where no padding is needed.
258     assert(DstRegs.size() == 1);
259     return B.buildConcatVectors(DstRegs[0], SrcRegs);
260   }
261 
262   // We need to create an unmerge to the result registers, which may require
263   // widening the original value.
264   Register UnmergeSrcReg;
265   if (LCMTy != PartLLT) {
266     // e.g. A <3 x s16> value was split to <2 x s16>
267     // %register_value0:_(<2 x s16>)
268     // %register_value1:_(<2 x s16>)
269     // %undef:_(<2 x s16>) = G_IMPLICIT_DEF
270     // %concat:_<6 x s16>) = G_CONCAT_VECTORS %reg_value0, %reg_value1, %undef
271     // %dst_reg:_(<3 x s16>), %dead:_(<3 x s16>) = G_UNMERGE_VALUES %concat
272     const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
273     Register Undef = B.buildUndef(PartLLT).getReg(0);
274 
275     // Build vector of undefs.
276     SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);
277 
278     // Replace the first sources with the real registers.
279     std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());
280     UnmergeSrcReg = B.buildConcatVectors(LCMTy, WidenedSrcs).getReg(0);
281   } else {
282     // We don't need to widen anything if we're extracting a scalar which was
283     // promoted to a vector e.g. s8 -> v4s8 -> s8
284     assert(SrcRegs.size() == 1);
285     UnmergeSrcReg = SrcRegs[0];
286   }
287 
288   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
289 
290   SmallVector<Register, 8> PadDstRegs(NumDst);
291   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
292 
293   // Create the excess dead defs for the unmerge.
294   for (int I = DstRegs.size(); I != NumDst; ++I)
295     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
296 
297   return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
298 }
299 
300 /// Create a sequence of instructions to combine pieces split into register
301 /// typed values to the original IR value. \p OrigRegs contains the destination
302 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
303 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
304 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
305                               ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
306                               const ISD::ArgFlagsTy Flags) {
307   MachineRegisterInfo &MRI = *B.getMRI();
308 
309   if (PartLLT == LLTy) {
310     // We should have avoided introducing a new virtual register, and just
311     // directly assigned here.
312     assert(OrigRegs[0] == Regs[0]);
313     return;
314   }
315 
316   if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
317       Regs.size() == 1) {
318     B.buildBitcast(OrigRegs[0], Regs[0]);
319     return;
320   }
321 
322   // A vector PartLLT needs extending to LLTy's element size.
323   // E.g. <2 x s64> = G_SEXT <2 x s32>.
324   if (PartLLT.isVector() == LLTy.isVector() &&
325       PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
326       (!PartLLT.isVector() ||
327        PartLLT.getNumElements() == LLTy.getNumElements()) &&
328       OrigRegs.size() == 1 && Regs.size() == 1) {
329     Register SrcReg = Regs[0];
330 
331     LLT LocTy = MRI.getType(SrcReg);
332 
333     if (Flags.isSExt()) {
334       SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
335                    .getReg(0);
336     } else if (Flags.isZExt()) {
337       SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
338                    .getReg(0);
339     }
340 
341     // Sometimes pointers are passed zero extended.
342     LLT OrigTy = MRI.getType(OrigRegs[0]);
343     if (OrigTy.isPointer()) {
344       LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
345       B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
346       return;
347     }
348 
349     B.buildTrunc(OrigRegs[0], SrcReg);
350     return;
351   }
352 
353   if (!LLTy.isVector() && !PartLLT.isVector()) {
354     assert(OrigRegs.size() == 1);
355     LLT OrigTy = MRI.getType(OrigRegs[0]);
356 
357     unsigned SrcSize = PartLLT.getSizeInBits().getFixedSize() * Regs.size();
358     if (SrcSize == OrigTy.getSizeInBits())
359       B.buildMerge(OrigRegs[0], Regs);
360     else {
361       auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
362       B.buildTrunc(OrigRegs[0], Widened);
363     }
364 
365     return;
366   }
367 
368   if (PartLLT.isVector()) {
369     assert(OrigRegs.size() == 1);
370     SmallVector<Register> CastRegs(Regs.begin(), Regs.end());
371 
372     // If PartLLT is a mismatched vector in both number of elements and element
373     // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
374     // have the same elt type, i.e. v4s32.
375     if (PartLLT.getSizeInBits() > LLTy.getSizeInBits() &&
376         PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
377         Regs.size() == 1) {
378       LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
379                       .changeElementCount(PartLLT.getElementCount() * 2);
380       CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
381       PartLLT = NewTy;
382     }
383 
384     if (LLTy.getScalarType() == PartLLT.getElementType()) {
385       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
386     } else {
387       unsigned I = 0;
388       LLT GCDTy = getGCDType(LLTy, PartLLT);
389 
390       // We are both splitting a vector, and bitcasting its element types. Cast
391       // the source pieces into the appropriate number of pieces with the result
392       // element type.
393       for (Register SrcReg : CastRegs)
394         CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
395       mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
396     }
397 
398     return;
399   }
400 
401   assert(LLTy.isVector() && !PartLLT.isVector());
402 
403   LLT DstEltTy = LLTy.getElementType();
404 
405   // Pointer information was discarded. We'll need to coerce some register types
406   // to avoid violating type constraints.
407   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
408 
409   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
410 
411   if (DstEltTy == PartLLT) {
412     // Vector was trivially scalarized.
413 
414     if (RealDstEltTy.isPointer()) {
415       for (Register Reg : Regs)
416         MRI.setType(Reg, RealDstEltTy);
417     }
418 
419     B.buildBuildVector(OrigRegs[0], Regs);
420   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
421     // Deal with vector with 64-bit elements decomposed to 32-bit
422     // registers. Need to create intermediate 64-bit elements.
423     SmallVector<Register, 8> EltMerges;
424     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
425 
426     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
427 
428     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
429       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
430       // Fix the type in case this is really a vector of pointers.
431       MRI.setType(Merge.getReg(0), RealDstEltTy);
432       EltMerges.push_back(Merge.getReg(0));
433       Regs = Regs.drop_front(PartsPerElt);
434     }
435 
436     B.buildBuildVector(OrigRegs[0], EltMerges);
437   } else {
438     // Vector was split, and elements promoted to a wider type.
439     // FIXME: Should handle floating point promotions.
440     LLT BVType = LLT::fixed_vector(LLTy.getNumElements(), PartLLT);
441     auto BV = B.buildBuildVector(BVType, Regs);
442     B.buildTrunc(OrigRegs[0], BV);
443   }
444 }
445 
446 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
447 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
448 /// contain the type of scalar value extension if necessary.
449 ///
450 /// This is used for outgoing values (vregs to physregs)
451 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
452                             Register SrcReg, LLT SrcTy, LLT PartTy,
453                             unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
454   // We could just insert a regular copy, but this is unreachable at the moment.
455   assert(SrcTy != PartTy && "identical part types shouldn't reach here");
456 
457   const unsigned PartSize = PartTy.getSizeInBits();
458 
459   if (PartTy.isVector() == SrcTy.isVector() &&
460       PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
461     assert(DstRegs.size() == 1);
462     B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
463     return;
464   }
465 
466   if (SrcTy.isVector() && !PartTy.isVector() &&
467       PartSize > SrcTy.getElementType().getSizeInBits()) {
468     // Vector was scalarized, and the elements extended.
469     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
470     for (int i = 0, e = DstRegs.size(); i != e; ++i)
471       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
472     return;
473   }
474 
475   LLT GCDTy = getGCDType(SrcTy, PartTy);
476   if (GCDTy == PartTy) {
477     // If this already evenly divisible, we can create a simple unmerge.
478     B.buildUnmerge(DstRegs, SrcReg);
479     return;
480   }
481 
482   MachineRegisterInfo &MRI = *B.getMRI();
483   LLT DstTy = MRI.getType(DstRegs[0]);
484   LLT LCMTy = getLCMType(SrcTy, PartTy);
485 
486   const unsigned DstSize = DstTy.getSizeInBits();
487   const unsigned SrcSize = SrcTy.getSizeInBits();
488   unsigned CoveringSize = LCMTy.getSizeInBits();
489 
490   Register UnmergeSrc = SrcReg;
491 
492   if (CoveringSize != SrcSize) {
493     // For scalars, it's common to be able to use a simple extension.
494     if (SrcTy.isScalar() && DstTy.isScalar()) {
495       CoveringSize = alignTo(SrcSize, DstSize);
496       LLT CoverTy = LLT::scalar(CoveringSize);
497       UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
498     } else {
499       // Widen to the common type.
500       // FIXME: This should respect the extend type
501       Register Undef = B.buildUndef(SrcTy).getReg(0);
502       SmallVector<Register, 8> MergeParts(1, SrcReg);
503       for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
504         MergeParts.push_back(Undef);
505       UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
506     }
507   }
508 
509   // Unmerge to the original registers and pad with dead defs.
510   SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end());
511   for (unsigned Size = DstSize * DstRegs.size(); Size != CoveringSize;
512        Size += DstSize) {
513     UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy));
514   }
515 
516   B.buildUnmerge(UnmergeResults, UnmergeSrc);
517 }
518 
519 bool CallLowering::determineAndHandleAssignments(
520     ValueHandler &Handler, ValueAssigner &Assigner,
521     SmallVectorImpl<ArgInfo> &Args, MachineIRBuilder &MIRBuilder,
522     CallingConv::ID CallConv, bool IsVarArg, Register ThisReturnReg) const {
523   MachineFunction &MF = MIRBuilder.getMF();
524   const Function &F = MF.getFunction();
525   SmallVector<CCValAssign, 16> ArgLocs;
526 
527   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
528   if (!determineAssignments(Assigner, Args, CCInfo))
529     return false;
530 
531   return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
532                            ThisReturnReg);
533 }
534 
535 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
536   if (Flags.isSExt())
537     return TargetOpcode::G_SEXT;
538   if (Flags.isZExt())
539     return TargetOpcode::G_ZEXT;
540   return TargetOpcode::G_ANYEXT;
541 }
542 
543 bool CallLowering::determineAssignments(ValueAssigner &Assigner,
544                                         SmallVectorImpl<ArgInfo> &Args,
545                                         CCState &CCInfo) const {
546   LLVMContext &Ctx = CCInfo.getContext();
547   const CallingConv::ID CallConv = CCInfo.getCallingConv();
548 
549   unsigned NumArgs = Args.size();
550   for (unsigned i = 0; i != NumArgs; ++i) {
551     EVT CurVT = EVT::getEVT(Args[i].Ty);
552 
553     MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
554 
555     // If we need to split the type over multiple regs, check it's a scenario
556     // we currently support.
557     unsigned NumParts =
558         TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
559 
560     if (NumParts == 1) {
561       // Try to use the register type if we couldn't assign the VT.
562       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
563                              Args[i].Flags[0], CCInfo))
564         return false;
565       continue;
566     }
567 
568     // For incoming arguments (physregs to vregs), we could have values in
569     // physregs (or memlocs) which we want to extract and copy to vregs.
570     // During this, we might have to deal with the LLT being split across
571     // multiple regs, so we have to record this information for later.
572     //
573     // If we have outgoing args, then we have the opposite case. We have a
574     // vreg with an LLT which we want to assign to a physical location, and
575     // we might have to record that the value has to be split later.
576 
577     // We're handling an incoming arg which is split over multiple regs.
578     // E.g. passing an s128 on AArch64.
579     ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
580     Args[i].Flags.clear();
581 
582     for (unsigned Part = 0; Part < NumParts; ++Part) {
583       ISD::ArgFlagsTy Flags = OrigFlags;
584       if (Part == 0) {
585         Flags.setSplit();
586       } else {
587         Flags.setOrigAlign(Align(1));
588         if (Part == NumParts - 1)
589           Flags.setSplitEnd();
590       }
591 
592       Args[i].Flags.push_back(Flags);
593       if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
594                              Args[i].Flags[Part], CCInfo)) {
595         // Still couldn't assign this smaller part type for some reason.
596         return false;
597       }
598     }
599   }
600 
601   return true;
602 }
603 
604 bool CallLowering::handleAssignments(ValueHandler &Handler,
605                                      SmallVectorImpl<ArgInfo> &Args,
606                                      CCState &CCInfo,
607                                      SmallVectorImpl<CCValAssign> &ArgLocs,
608                                      MachineIRBuilder &MIRBuilder,
609                                      Register ThisReturnReg) const {
610   MachineFunction &MF = MIRBuilder.getMF();
611   MachineRegisterInfo &MRI = MF.getRegInfo();
612   const Function &F = MF.getFunction();
613   const DataLayout &DL = F.getParent()->getDataLayout();
614 
615   const unsigned NumArgs = Args.size();
616 
617   for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
618     assert(j < ArgLocs.size() && "Skipped too many arg locs");
619     CCValAssign &VA = ArgLocs[j];
620     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
621 
622     if (VA.needsCustom()) {
623       unsigned NumArgRegs =
624           Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j));
625       if (!NumArgRegs)
626         return false;
627       j += NumArgRegs;
628       continue;
629     }
630 
631     const MVT ValVT = VA.getValVT();
632     const MVT LocVT = VA.getLocVT();
633 
634     const LLT LocTy(LocVT);
635     const LLT ValTy(ValVT);
636     const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
637     const EVT OrigVT = EVT::getEVT(Args[i].Ty);
638     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
639 
640     // Expected to be multiple regs for a single incoming arg.
641     // There should be Regs.size() ArgLocs per argument.
642     // This should be the same as getNumRegistersForCallingConv
643     const unsigned NumParts = Args[i].Flags.size();
644 
645     // Now split the registers into the assigned types.
646     Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
647 
648     if (NumParts != 1 || NewLLT != OrigTy) {
649       // If we can't directly assign the register, we need one or more
650       // intermediate values.
651       Args[i].Regs.resize(NumParts);
652 
653       // For each split register, create and assign a vreg that will store
654       // the incoming component of the larger value. These will later be
655       // merged to form the final vreg.
656       for (unsigned Part = 0; Part < NumParts; ++Part)
657         Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
658     }
659 
660     assert((j + (NumParts - 1)) < ArgLocs.size() &&
661            "Too many regs for number of args");
662 
663     // Coerce into outgoing value types before register assignment.
664     if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy) {
665       assert(Args[i].OrigRegs.size() == 1);
666       buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
667                       ValTy, extendOpFromFlags(Args[i].Flags[0]));
668     }
669 
670     for (unsigned Part = 0; Part < NumParts; ++Part) {
671       Register ArgReg = Args[i].Regs[Part];
672       // There should be Regs.size() ArgLocs per argument.
673       VA = ArgLocs[j + Part];
674       const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
675 
676       if (VA.isMemLoc() && !Flags.isByVal()) {
677         // Individual pieces may have been spilled to the stack and others
678         // passed in registers.
679 
680         // TODO: The memory size may be larger than the value we need to
681         // store. We may need to adjust the offset for big endian targets.
682         LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
683 
684         MachinePointerInfo MPO;
685         Register StackAddr = Handler.getStackAddress(
686             MemTy.getSizeInBytes(), VA.getLocMemOffset(), MPO, Flags);
687 
688         Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO, VA);
689         continue;
690       }
691 
692       if (VA.isMemLoc() && Flags.isByVal()) {
693         assert(Args[i].Regs.size() == 1 &&
694                "didn't expect split byval pointer");
695 
696         if (Handler.isIncomingArgumentHandler()) {
697           // We just need to copy the frame index value to the pointer.
698           MachinePointerInfo MPO;
699           Register StackAddr = Handler.getStackAddress(
700               Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
701           MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
702         } else {
703           // For outgoing byval arguments, insert the implicit copy byval
704           // implies, such that writes in the callee do not modify the caller's
705           // value.
706           uint64_t MemSize = Flags.getByValSize();
707           int64_t Offset = VA.getLocMemOffset();
708 
709           MachinePointerInfo DstMPO;
710           Register StackAddr =
711               Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
712 
713           MachinePointerInfo SrcMPO(Args[i].OrigValue);
714           if (!Args[i].OrigValue) {
715             // We still need to accurately track the stack address space if we
716             // don't know the underlying value.
717             const LLT PtrTy = MRI.getType(StackAddr);
718             SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
719           }
720 
721           Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
722                                     inferAlignFromPtrInfo(MF, DstMPO));
723 
724           Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
725                                     inferAlignFromPtrInfo(MF, SrcMPO));
726 
727           Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
728                                      DstMPO, DstAlign, SrcMPO, SrcAlign,
729                                      MemSize, VA);
730         }
731         continue;
732       }
733 
734       assert(!VA.needsCustom() && "custom loc should have been handled already");
735 
736       if (i == 0 && ThisReturnReg.isValid() &&
737           Handler.isIncomingArgumentHandler() &&
738           isTypeIsValidForThisReturn(ValVT)) {
739         Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA);
740         continue;
741       }
742 
743       Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
744     }
745 
746     // Now that all pieces have been assigned, re-pack the register typed values
747     // into the original value typed registers.
748     if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT) {
749       // Merge the split registers into the expected larger result vregs of
750       // the original call.
751       buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
752                         LocTy, Args[i].Flags[0]);
753     }
754 
755     j += NumParts - 1;
756   }
757 
758   return true;
759 }
760 
761 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
762                                    ArrayRef<Register> VRegs, Register DemoteReg,
763                                    int FI) const {
764   MachineFunction &MF = MIRBuilder.getMF();
765   MachineRegisterInfo &MRI = MF.getRegInfo();
766   const DataLayout &DL = MF.getDataLayout();
767 
768   SmallVector<EVT, 4> SplitVTs;
769   SmallVector<uint64_t, 4> Offsets;
770   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
771 
772   assert(VRegs.size() == SplitVTs.size());
773 
774   unsigned NumValues = SplitVTs.size();
775   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
776   Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
777   LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
778 
779   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
780 
781   for (unsigned I = 0; I < NumValues; ++I) {
782     Register Addr;
783     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
784     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
785                                         MRI.getType(VRegs[I]),
786                                         commonAlignment(BaseAlign, Offsets[I]));
787     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
788   }
789 }
790 
791 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
792                                     ArrayRef<Register> VRegs,
793                                     Register DemoteReg) const {
794   MachineFunction &MF = MIRBuilder.getMF();
795   MachineRegisterInfo &MRI = MF.getRegInfo();
796   const DataLayout &DL = MF.getDataLayout();
797 
798   SmallVector<EVT, 4> SplitVTs;
799   SmallVector<uint64_t, 4> Offsets;
800   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
801 
802   assert(VRegs.size() == SplitVTs.size());
803 
804   unsigned NumValues = SplitVTs.size();
805   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
806   unsigned AS = DL.getAllocaAddrSpace();
807   LLT OffsetLLTy =
808       getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
809 
810   MachinePointerInfo PtrInfo(AS);
811 
812   for (unsigned I = 0; I < NumValues; ++I) {
813     Register Addr;
814     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
815     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
816                                         MRI.getType(VRegs[I]),
817                                         commonAlignment(BaseAlign, Offsets[I]));
818     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
819   }
820 }
821 
822 void CallLowering::insertSRetIncomingArgument(
823     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
824     MachineRegisterInfo &MRI, const DataLayout &DL) const {
825   unsigned AS = DL.getAllocaAddrSpace();
826   DemoteReg = MRI.createGenericVirtualRegister(
827       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
828 
829   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
830 
831   SmallVector<EVT, 1> ValueVTs;
832   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
833 
834   // NOTE: Assume that a pointer won't get split into more than one VT.
835   assert(ValueVTs.size() == 1);
836 
837   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
838                     ArgInfo::NoArgIndex);
839   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
840   DemoteArg.Flags[0].setSRet();
841   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
842 }
843 
844 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
845                                               const CallBase &CB,
846                                               CallLoweringInfo &Info) const {
847   const DataLayout &DL = MIRBuilder.getDataLayout();
848   Type *RetTy = CB.getType();
849   unsigned AS = DL.getAllocaAddrSpace();
850   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
851 
852   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
853       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
854 
855   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
856   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS),
857                     ArgInfo::NoArgIndex);
858   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
859   DemoteArg.Flags[0].setSRet();
860 
861   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
862   Info.DemoteStackIndex = FI;
863   Info.DemoteRegister = DemoteReg;
864 }
865 
866 bool CallLowering::checkReturn(CCState &CCInfo,
867                                SmallVectorImpl<BaseArgInfo> &Outs,
868                                CCAssignFn *Fn) const {
869   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
870     MVT VT = MVT::getVT(Outs[I].Ty);
871     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
872       return false;
873   }
874   return true;
875 }
876 
877 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
878                                  AttributeList Attrs,
879                                  SmallVectorImpl<BaseArgInfo> &Outs,
880                                  const DataLayout &DL) const {
881   LLVMContext &Context = RetTy->getContext();
882   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
883 
884   SmallVector<EVT, 4> SplitVTs;
885   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
886   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
887 
888   for (EVT VT : SplitVTs) {
889     unsigned NumParts =
890         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
891     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
892     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
893 
894     for (unsigned I = 0; I < NumParts; ++I) {
895       Outs.emplace_back(PartTy, Flags);
896     }
897   }
898 }
899 
900 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
901   const auto &F = MF.getFunction();
902   Type *ReturnType = F.getReturnType();
903   CallingConv::ID CallConv = F.getCallingConv();
904 
905   SmallVector<BaseArgInfo, 4> SplitArgs;
906   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
907                 MF.getDataLayout());
908   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
909 }
910 
911 bool CallLowering::parametersInCSRMatch(
912     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
913     const SmallVectorImpl<CCValAssign> &OutLocs,
914     const SmallVectorImpl<ArgInfo> &OutArgs) const {
915   for (unsigned i = 0; i < OutLocs.size(); ++i) {
916     auto &ArgLoc = OutLocs[i];
917     // If it's not a register, it's fine.
918     if (!ArgLoc.isRegLoc())
919       continue;
920 
921     MCRegister PhysReg = ArgLoc.getLocReg();
922 
923     // Only look at callee-saved registers.
924     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
925       continue;
926 
927     LLVM_DEBUG(
928         dbgs()
929         << "... Call has an argument passed in a callee-saved register.\n");
930 
931     // Check if it was copied from.
932     const ArgInfo &OutInfo = OutArgs[i];
933 
934     if (OutInfo.Regs.size() > 1) {
935       LLVM_DEBUG(
936           dbgs() << "... Cannot handle arguments in multiple registers.\n");
937       return false;
938     }
939 
940     // Check if we copy the register, walking through copies from virtual
941     // registers. Note that getDefIgnoringCopies does not ignore copies from
942     // physical registers.
943     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
944     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
945       LLVM_DEBUG(
946           dbgs()
947           << "... Parameter was not copied into a VReg, cannot tail call.\n");
948       return false;
949     }
950 
951     // Got a copy. Verify that it's the same as the register we want.
952     Register CopyRHS = RegDef->getOperand(1).getReg();
953     if (CopyRHS != PhysReg) {
954       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
955                            "VReg, cannot tail call.\n");
956       return false;
957     }
958   }
959 
960   return true;
961 }
962 
963 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
964                                      MachineFunction &MF,
965                                      SmallVectorImpl<ArgInfo> &InArgs,
966                                      ValueAssigner &CalleeAssigner,
967                                      ValueAssigner &CallerAssigner) const {
968   const Function &F = MF.getFunction();
969   CallingConv::ID CalleeCC = Info.CallConv;
970   CallingConv::ID CallerCC = F.getCallingConv();
971 
972   if (CallerCC == CalleeCC)
973     return true;
974 
975   SmallVector<CCValAssign, 16> ArgLocs1;
976   CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
977   if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
978     return false;
979 
980   SmallVector<CCValAssign, 16> ArgLocs2;
981   CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
982   if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
983     return false;
984 
985   // We need the argument locations to match up exactly. If there's more in
986   // one than the other, then we are done.
987   if (ArgLocs1.size() != ArgLocs2.size())
988     return false;
989 
990   // Make sure that each location is passed in exactly the same way.
991   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
992     const CCValAssign &Loc1 = ArgLocs1[i];
993     const CCValAssign &Loc2 = ArgLocs2[i];
994 
995     // We need both of them to be the same. So if one is a register and one
996     // isn't, we're done.
997     if (Loc1.isRegLoc() != Loc2.isRegLoc())
998       return false;
999 
1000     if (Loc1.isRegLoc()) {
1001       // If they don't have the same register location, we're done.
1002       if (Loc1.getLocReg() != Loc2.getLocReg())
1003         return false;
1004 
1005       // They matched, so we can move to the next ArgLoc.
1006       continue;
1007     }
1008 
1009     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1010     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1011       return false;
1012   }
1013 
1014   return true;
1015 }
1016 
1017 LLT CallLowering::ValueHandler::getStackValueStoreType(
1018     const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1019   const MVT ValVT = VA.getValVT();
1020   if (ValVT != MVT::iPTR) {
1021     LLT ValTy(ValVT);
1022 
1023     // We lost the pointeriness going through CCValAssign, so try to restore it
1024     // based on the flags.
1025     if (Flags.isPointer()) {
1026       LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1027                                ValTy.getScalarSizeInBits());
1028       if (ValVT.isVector())
1029         return LLT::vector(ValTy.getElementCount(), PtrTy);
1030       return PtrTy;
1031     }
1032 
1033     return ValTy;
1034   }
1035 
1036   unsigned AddrSpace = Flags.getPointerAddrSpace();
1037   return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1038 }
1039 
1040 void CallLowering::ValueHandler::copyArgumentMemory(
1041     const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1042     const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1043     const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1044     CCValAssign &VA) const {
1045   MachineFunction &MF = MIRBuilder.getMF();
1046   MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1047       SrcPtrInfo,
1048       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1049       SrcAlign);
1050 
1051   MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1052       DstPtrInfo,
1053       MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1054       MemSize, DstAlign);
1055 
1056   const LLT PtrTy = MRI.getType(DstPtr);
1057   const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1058 
1059   auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1060   MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1061 }
1062 
1063 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1064                                                     CCValAssign &VA,
1065                                                     unsigned MaxSizeBits) {
1066   LLT LocTy{VA.getLocVT()};
1067   LLT ValTy{VA.getValVT()};
1068 
1069   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1070     return ValReg;
1071 
1072   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1073     if (MaxSizeBits <= ValTy.getSizeInBits())
1074       return ValReg;
1075     LocTy = LLT::scalar(MaxSizeBits);
1076   }
1077 
1078   const LLT ValRegTy = MRI.getType(ValReg);
1079   if (ValRegTy.isPointer()) {
1080     // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1081     // we have to cast to do the extension.
1082     LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1083     ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1084   }
1085 
1086   switch (VA.getLocInfo()) {
1087   default: break;
1088   case CCValAssign::Full:
1089   case CCValAssign::BCvt:
1090     // FIXME: bitconverting between vector types may or may not be a
1091     // nop in big-endian situations.
1092     return ValReg;
1093   case CCValAssign::AExt: {
1094     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1095     return MIB.getReg(0);
1096   }
1097   case CCValAssign::SExt: {
1098     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1099     MIRBuilder.buildSExt(NewReg, ValReg);
1100     return NewReg;
1101   }
1102   case CCValAssign::ZExt: {
1103     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1104     MIRBuilder.buildZExt(NewReg, ValReg);
1105     return NewReg;
1106   }
1107   }
1108   llvm_unreachable("unable to extend register");
1109 }
1110 
1111 void CallLowering::ValueAssigner::anchor() {}
1112 
1113 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA,
1114                                                                 Register SrcReg,
1115                                                                 LLT NarrowTy) {
1116   switch (VA.getLocInfo()) {
1117   case CCValAssign::LocInfo::ZExt: {
1118     return MIRBuilder
1119         .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1120                          NarrowTy.getScalarSizeInBits())
1121         .getReg(0);
1122   }
1123   case CCValAssign::LocInfo::SExt: {
1124     return MIRBuilder
1125         .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1126                          NarrowTy.getScalarSizeInBits())
1127         .getReg(0);
1128     break;
1129   }
1130   default:
1131     return SrcReg;
1132   }
1133 }
1134 
1135 /// Check if we can use a basic COPY instruction between the two types.
1136 ///
1137 /// We're currently building on top of the infrastructure using MVT, which loses
1138 /// pointer information in the CCValAssign. We accept copies from physical
1139 /// registers that have been reported as integers if it's to an equivalent sized
1140 /// pointer LLT.
1141 static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1142   if (SrcTy == DstTy)
1143     return true;
1144 
1145   if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1146     return false;
1147 
1148   SrcTy = SrcTy.getScalarType();
1149   DstTy = DstTy.getScalarType();
1150 
1151   return (SrcTy.isPointer() && DstTy.isScalar()) ||
1152          (DstTy.isScalar() && SrcTy.isPointer());
1153 }
1154 
1155 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg,
1156                                                           Register PhysReg,
1157                                                           CCValAssign &VA) {
1158   const MVT LocVT = VA.getLocVT();
1159   const LLT LocTy(LocVT);
1160   const LLT RegTy = MRI.getType(ValVReg);
1161 
1162   if (isCopyCompatibleType(RegTy, LocTy)) {
1163     MIRBuilder.buildCopy(ValVReg, PhysReg);
1164     return;
1165   }
1166 
1167   auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1168   auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1169   MIRBuilder.buildTrunc(ValVReg, Hint);
1170 }
1171