1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 16 #include "llvm/CodeGen/GlobalISel/Utils.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/MachineOperand.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Target/TargetMachine.h" 26 27 #define DEBUG_TYPE "call-lowering" 28 29 using namespace llvm; 30 31 void CallLowering::anchor() {} 32 33 /// Helper function which updates \p Flags when \p AttrFn returns true. 34 static void 35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 36 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 37 if (AttrFn(Attribute::SExt)) 38 Flags.setSExt(); 39 if (AttrFn(Attribute::ZExt)) 40 Flags.setZExt(); 41 if (AttrFn(Attribute::InReg)) 42 Flags.setInReg(); 43 if (AttrFn(Attribute::StructRet)) 44 Flags.setSRet(); 45 if (AttrFn(Attribute::Nest)) 46 Flags.setNest(); 47 if (AttrFn(Attribute::ByVal)) 48 Flags.setByVal(); 49 if (AttrFn(Attribute::Preallocated)) 50 Flags.setPreallocated(); 51 if (AttrFn(Attribute::InAlloca)) 52 Flags.setInAlloca(); 53 if (AttrFn(Attribute::Returned)) 54 Flags.setReturned(); 55 if (AttrFn(Attribute::SwiftSelf)) 56 Flags.setSwiftSelf(); 57 if (AttrFn(Attribute::SwiftError)) 58 Flags.setSwiftError(); 59 } 60 61 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 62 unsigned ArgIdx) const { 63 ISD::ArgFlagsTy Flags; 64 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 65 return Call.paramHasAttr(ArgIdx, Attr); 66 }); 67 return Flags; 68 } 69 70 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 71 const AttributeList &Attrs, 72 unsigned OpIdx) const { 73 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 74 return Attrs.hasAttribute(OpIdx, Attr); 75 }); 76 } 77 78 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 79 ArrayRef<Register> ResRegs, 80 ArrayRef<ArrayRef<Register>> ArgRegs, 81 Register SwiftErrorVReg, 82 std::function<unsigned()> GetCalleeReg) const { 83 CallLoweringInfo Info; 84 const DataLayout &DL = MIRBuilder.getDataLayout(); 85 MachineFunction &MF = MIRBuilder.getMF(); 86 bool CanBeTailCalled = CB.isTailCall() && 87 isInTailCallPosition(CB, MF.getTarget()) && 88 (MF.getFunction() 89 .getFnAttribute("disable-tail-calls") 90 .getValueAsString() != "true"); 91 92 CallingConv::ID CallConv = CB.getCallingConv(); 93 Type *RetTy = CB.getType(); 94 bool IsVarArg = CB.getFunctionType()->isVarArg(); 95 96 SmallVector<BaseArgInfo, 4> SplitArgs; 97 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 98 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 99 100 if (!Info.CanLowerReturn) { 101 // Callee requires sret demotion. 102 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 103 104 // The sret demotion isn't compatible with tail-calls, since the sret 105 // argument points into the caller's stack frame. 106 CanBeTailCalled = false; 107 } 108 109 // First step is to marshall all the function's parameters into the correct 110 // physregs and memory locations. Gather the sequence of argument types that 111 // we'll pass to the assigner function. 112 unsigned i = 0; 113 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 114 for (auto &Arg : CB.args()) { 115 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), getAttributesForArgIdx(CB, i), 116 i < NumFixedArgs}; 117 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 118 119 // If we have an explicit sret argument that is an Instruction, (i.e., it 120 // might point to function-local memory), we can't meaningfully tail-call. 121 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 122 CanBeTailCalled = false; 123 124 Info.OrigArgs.push_back(OrigArg); 125 ++i; 126 } 127 128 // Try looking through a bitcast from one function type to another. 129 // Commonly happens with calls to objc_msgSend(). 130 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 131 if (const Function *F = dyn_cast<Function>(CalleeV)) 132 Info.Callee = MachineOperand::CreateGA(F, 0); 133 else 134 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 135 136 Info.OrigRet = ArgInfo{ResRegs, RetTy, ISD::ArgFlagsTy{}}; 137 if (!Info.OrigRet.Ty->isVoidTy()) 138 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 139 140 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 141 Info.CallConv = CallConv; 142 Info.SwiftErrorVReg = SwiftErrorVReg; 143 Info.IsMustTailCall = CB.isMustTailCall(); 144 Info.IsTailCall = CanBeTailCalled; 145 Info.IsVarArg = IsVarArg; 146 return lowerCall(MIRBuilder, Info); 147 } 148 149 template <typename FuncInfoTy> 150 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 151 const DataLayout &DL, 152 const FuncInfoTy &FuncInfo) const { 153 auto &Flags = Arg.Flags[0]; 154 const AttributeList &Attrs = FuncInfo.getAttributes(); 155 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 156 157 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 158 Type *ElementTy = cast<PointerType>(Arg.Ty)->getElementType(); 159 160 auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType(); 161 Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy)); 162 163 // For ByVal, alignment should be passed from FE. BE will guess if 164 // this info is not there but there are cases it cannot get right. 165 Align FrameAlign; 166 if (auto ParamAlign = FuncInfo.getParamAlign(OpIdx - 1)) 167 FrameAlign = *ParamAlign; 168 else 169 FrameAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 170 Flags.setByValAlign(FrameAlign); 171 } 172 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 173 174 // Don't try to use the returned attribute if the argument is marked as 175 // swiftself, since it won't be passed in x0. 176 if (Flags.isSwiftSelf()) 177 Flags.setReturned(false); 178 } 179 180 template void 181 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 182 const DataLayout &DL, 183 const Function &FuncInfo) const; 184 185 template void 186 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 187 const DataLayout &DL, 188 const CallBase &FuncInfo) const; 189 190 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 191 SmallVectorImpl<ArgInfo> &SplitArgs, 192 const DataLayout &DL, 193 CallingConv::ID CallConv) const { 194 LLVMContext &Ctx = OrigArg.Ty->getContext(); 195 196 SmallVector<EVT, 4> SplitVTs; 197 SmallVector<uint64_t, 4> Offsets; 198 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0); 199 200 if (SplitVTs.size() == 0) 201 return; 202 203 if (SplitVTs.size() == 1) { 204 // No splitting to do, but we want to replace the original type (e.g. [1 x 205 // double] -> double). 206 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 207 OrigArg.Flags[0], OrigArg.IsFixed, 208 OrigArg.OrigValue); 209 return; 210 } 211 212 // Create one ArgInfo for each virtual register in the original ArgInfo. 213 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 214 215 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 216 OrigArg.Ty, CallConv, false); 217 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 218 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 219 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0], 220 OrigArg.IsFixed); 221 if (NeedsRegBlock) 222 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 223 } 224 225 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 226 } 227 228 void CallLowering::unpackRegs(ArrayRef<Register> DstRegs, Register SrcReg, 229 Type *PackedTy, 230 MachineIRBuilder &MIRBuilder) const { 231 assert(DstRegs.size() > 1 && "Nothing to unpack"); 232 233 const DataLayout &DL = MIRBuilder.getDataLayout(); 234 235 SmallVector<LLT, 8> LLTs; 236 SmallVector<uint64_t, 8> Offsets; 237 computeValueLLTs(DL, *PackedTy, LLTs, &Offsets); 238 assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch"); 239 240 for (unsigned i = 0; i < DstRegs.size(); ++i) 241 MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]); 242 } 243 244 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 245 static MachineInstrBuilder 246 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 247 ArrayRef<Register> SrcRegs) { 248 MachineRegisterInfo &MRI = *B.getMRI(); 249 LLT LLTy = MRI.getType(DstRegs[0]); 250 LLT PartLLT = MRI.getType(SrcRegs[0]); 251 252 // Deal with v3s16 split into v2s16 253 LLT LCMTy = getLCMType(LLTy, PartLLT); 254 if (LCMTy == LLTy) { 255 // Common case where no padding is needed. 256 assert(DstRegs.size() == 1); 257 return B.buildConcatVectors(DstRegs[0], SrcRegs); 258 } 259 260 // We need to create an unmerge to the result registers, which may require 261 // widening the original value. 262 Register UnmergeSrcReg; 263 if (LCMTy != PartLLT) { 264 // e.g. A <3 x s16> value was split to <2 x s16> 265 // %register_value0:_(<2 x s16>) 266 // %register_value1:_(<2 x s16>) 267 // %undef:_(<2 x s16>) = G_IMPLICIT_DEF 268 // %concat:_<6 x s16>) = G_CONCAT_VECTORS %reg_value0, %reg_value1, %undef 269 // %dst_reg:_(<3 x s16>), %dead:_(<3 x s16>) = G_UNMERGE_VALUES %concat 270 const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits(); 271 Register Undef = B.buildUndef(PartLLT).getReg(0); 272 273 // Build vector of undefs. 274 SmallVector<Register, 8> WidenedSrcs(NumWide, Undef); 275 276 // Replace the first sources with the real registers. 277 std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin()); 278 UnmergeSrcReg = B.buildConcatVectors(LCMTy, WidenedSrcs).getReg(0); 279 } else { 280 // We don't need to widen anything if we're extracting a scalar which was 281 // promoted to a vector e.g. s8 -> v4s8 -> s8 282 assert(SrcRegs.size() == 1); 283 UnmergeSrcReg = SrcRegs[0]; 284 } 285 286 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 287 288 SmallVector<Register, 8> PadDstRegs(NumDst); 289 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 290 291 // Create the excess dead defs for the unmerge. 292 for (int I = DstRegs.size(); I != NumDst; ++I) 293 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 294 295 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); 296 } 297 298 /// Create a sequence of instructions to combine pieces split into register 299 /// typed values to the original IR value. \p OrigRegs contains the destination 300 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 301 /// with type \p PartLLT. This is used for incoming values (physregs to vregs). 302 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 303 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT) { 304 MachineRegisterInfo &MRI = *B.getMRI(); 305 306 // We could just insert a regular copy, but this is unreachable at the moment. 307 assert(LLTy != PartLLT && "identical part types shouldn't reach here"); 308 309 if (PartLLT.isVector() == LLTy.isVector() && 310 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits()) { 311 assert(OrigRegs.size() == 1 && Regs.size() == 1); 312 B.buildTrunc(OrigRegs[0], Regs[0]); 313 return; 314 } 315 316 if (!LLTy.isVector() && !PartLLT.isVector()) { 317 assert(OrigRegs.size() == 1); 318 LLT OrigTy = MRI.getType(OrigRegs[0]); 319 320 unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size(); 321 if (SrcSize == OrigTy.getSizeInBits()) 322 B.buildMerge(OrigRegs[0], Regs); 323 else { 324 auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs); 325 B.buildTrunc(OrigRegs[0], Widened); 326 } 327 328 return; 329 } 330 331 if (PartLLT.isVector()) { 332 assert(OrigRegs.size() == 1 && 333 LLTy.getScalarType() == PartLLT.getElementType()); 334 mergeVectorRegsToResultRegs(B, OrigRegs, Regs); 335 return; 336 } 337 338 assert(LLTy.isVector() && !PartLLT.isVector()); 339 340 LLT DstEltTy = LLTy.getElementType(); 341 342 // Pointer information was discarded. We'll need to coerce some register types 343 // to avoid violating type constraints. 344 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 345 346 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 347 348 if (DstEltTy == PartLLT) { 349 // Vector was trivially scalarized. 350 351 if (RealDstEltTy.isPointer()) { 352 for (Register Reg : Regs) 353 MRI.setType(Reg, RealDstEltTy); 354 } 355 356 B.buildBuildVector(OrigRegs[0], Regs); 357 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 358 // Deal with vector with 64-bit elements decomposed to 32-bit 359 // registers. Need to create intermediate 64-bit elements. 360 SmallVector<Register, 8> EltMerges; 361 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 362 363 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 364 365 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 366 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt)); 367 // Fix the type in case this is really a vector of pointers. 368 MRI.setType(Merge.getReg(0), RealDstEltTy); 369 EltMerges.push_back(Merge.getReg(0)); 370 Regs = Regs.drop_front(PartsPerElt); 371 } 372 373 B.buildBuildVector(OrigRegs[0], EltMerges); 374 } else { 375 // Vector was split, and elements promoted to a wider type. 376 // FIXME: Should handle floating point promotions. 377 LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT); 378 auto BV = B.buildBuildVector(BVType, Regs); 379 B.buildTrunc(OrigRegs[0], BV); 380 } 381 } 382 383 /// Create a sequence of instructions to expand the value in \p SrcReg (of type 384 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should 385 /// contain the type of scalar value extension if necessary. 386 /// 387 /// This is used for outgoing values (vregs to physregs) 388 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 389 Register SrcReg, LLT SrcTy, LLT PartTy, 390 unsigned ExtendOp = TargetOpcode::G_ANYEXT) { 391 // We could just insert a regular copy, but this is unreachable at the moment. 392 assert(SrcTy != PartTy && "identical part types shouldn't reach here"); 393 394 const unsigned PartSize = PartTy.getSizeInBits(); 395 396 if (PartTy.isVector() == SrcTy.isVector() && 397 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { 398 assert(DstRegs.size() == 1); 399 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); 400 return; 401 } 402 403 if (SrcTy.isVector() && !PartTy.isVector() && 404 PartSize > SrcTy.getElementType().getSizeInBits()) { 405 // Vector was scalarized, and the elements extended. 406 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 407 for (int i = 0, e = DstRegs.size(); i != e; ++i) 408 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 409 return; 410 } 411 412 LLT GCDTy = getGCDType(SrcTy, PartTy); 413 if (GCDTy == PartTy) { 414 // If this already evenly divisible, we can create a simple unmerge. 415 B.buildUnmerge(DstRegs, SrcReg); 416 return; 417 } 418 419 MachineRegisterInfo &MRI = *B.getMRI(); 420 LLT DstTy = MRI.getType(DstRegs[0]); 421 LLT LCMTy = getLCMType(SrcTy, PartTy); 422 423 const unsigned LCMSize = LCMTy.getSizeInBits(); 424 const unsigned DstSize = DstTy.getSizeInBits(); 425 const unsigned SrcSize = SrcTy.getSizeInBits(); 426 427 Register UnmergeSrc = SrcReg; 428 if (LCMSize != SrcSize) { 429 // Widen to the common type. 430 Register Undef = B.buildUndef(SrcTy).getReg(0); 431 SmallVector<Register, 8> MergeParts(1, SrcReg); 432 for (unsigned Size = SrcSize; Size != LCMSize; Size += SrcSize) 433 MergeParts.push_back(Undef); 434 435 UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0); 436 } 437 438 // Unmerge to the original registers and pad with dead defs. 439 SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end()); 440 for (unsigned Size = DstSize * DstRegs.size(); Size != LCMSize; 441 Size += DstSize) { 442 UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy)); 443 } 444 445 B.buildUnmerge(UnmergeResults, UnmergeSrc); 446 } 447 448 bool CallLowering::handleAssignments(MachineIRBuilder &MIRBuilder, 449 SmallVectorImpl<ArgInfo> &Args, 450 ValueHandler &Handler, 451 CallingConv::ID CallConv, bool IsVarArg, 452 Register ThisReturnReg) const { 453 MachineFunction &MF = MIRBuilder.getMF(); 454 const Function &F = MF.getFunction(); 455 SmallVector<CCValAssign, 16> ArgLocs; 456 457 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 458 return handleAssignments(CCInfo, ArgLocs, MIRBuilder, Args, Handler, 459 ThisReturnReg); 460 } 461 462 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { 463 if (Flags.isSExt()) 464 return TargetOpcode::G_SEXT; 465 if (Flags.isZExt()) 466 return TargetOpcode::G_ZEXT; 467 return TargetOpcode::G_ANYEXT; 468 } 469 470 bool CallLowering::handleAssignments(CCState &CCInfo, 471 SmallVectorImpl<CCValAssign> &ArgLocs, 472 MachineIRBuilder &MIRBuilder, 473 SmallVectorImpl<ArgInfo> &Args, 474 ValueHandler &Handler, 475 Register ThisReturnReg) const { 476 MachineFunction &MF = MIRBuilder.getMF(); 477 MachineRegisterInfo &MRI = MF.getRegInfo(); 478 const Function &F = MF.getFunction(); 479 const DataLayout &DL = F.getParent()->getDataLayout(); 480 481 unsigned NumArgs = Args.size(); 482 for (unsigned i = 0; i != NumArgs; ++i) { 483 EVT CurVT = EVT::getEVT(Args[i].Ty); 484 if (CurVT.isSimple() && 485 !Handler.assignArg(i, CurVT.getSimpleVT(), CurVT.getSimpleVT(), 486 CCValAssign::Full, Args[i], Args[i].Flags[0], 487 CCInfo)) 488 continue; 489 490 MVT NewVT = TLI->getRegisterTypeForCallingConv( 491 F.getContext(), CCInfo.getCallingConv(), EVT(CurVT)); 492 493 // If we need to split the type over multiple regs, check it's a scenario 494 // we currently support. 495 unsigned NumParts = TLI->getNumRegistersForCallingConv( 496 F.getContext(), CCInfo.getCallingConv(), CurVT); 497 498 if (NumParts == 1) { 499 // Try to use the register type if we couldn't assign the VT. 500 if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i], 501 Args[i].Flags[0], CCInfo)) 502 return false; 503 504 // If we couldn't directly assign this part, some casting may be 505 // necessary. Create the new register, but defer inserting the conversion 506 // instructions. 507 assert(Args[i].OrigRegs.empty()); 508 Args[i].OrigRegs.push_back(Args[i].Regs[0]); 509 assert(Args[i].Regs.size() == 1); 510 511 const LLT VATy(NewVT); 512 Args[i].Regs[0] = MRI.createGenericVirtualRegister(VATy); 513 continue; 514 } 515 516 const LLT NewLLT(NewVT); 517 518 // For incoming arguments (physregs to vregs), we could have values in 519 // physregs (or memlocs) which we want to extract and copy to vregs. 520 // During this, we might have to deal with the LLT being split across 521 // multiple regs, so we have to record this information for later. 522 // 523 // If we have outgoing args, then we have the opposite case. We have a 524 // vreg with an LLT which we want to assign to a physical location, and 525 // we might have to record that the value has to be split later. 526 if (Handler.isIncomingArgumentHandler()) { 527 // We're handling an incoming arg which is split over multiple regs. 528 // E.g. passing an s128 on AArch64. 529 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 530 Args[i].OrigRegs.push_back(Args[i].Regs[0]); 531 Args[i].Regs.clear(); 532 Args[i].Flags.clear(); 533 // For each split register, create and assign a vreg that will store 534 // the incoming component of the larger value. These will later be 535 // merged to form the final vreg. 536 for (unsigned Part = 0; Part < NumParts; ++Part) { 537 Register Reg = MRI.createGenericVirtualRegister(NewLLT); 538 ISD::ArgFlagsTy Flags = OrigFlags; 539 if (Part == 0) { 540 Flags.setSplit(); 541 } else { 542 Flags.setOrigAlign(Align(1)); 543 if (Part == NumParts - 1) 544 Flags.setSplitEnd(); 545 } 546 Args[i].Regs.push_back(Reg); 547 Args[i].Flags.push_back(Flags); 548 if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i], 549 Args[i].Flags[Part], CCInfo)) { 550 // Still couldn't assign this smaller part type for some reason. 551 return false; 552 } 553 } 554 } else { 555 assert(Args[i].Regs.size() == 1); 556 557 // This type is passed via multiple registers in the calling convention. 558 // We need to extract the individual parts. 559 assert(Args[i].OrigRegs.empty()); 560 Args[i].OrigRegs.push_back(Args[i].Regs[0]); 561 562 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 563 // We're going to replace the regs and flags with the split ones. 564 Args[i].Regs.clear(); 565 Args[i].Flags.clear(); 566 for (unsigned PartIdx = 0; PartIdx < NumParts; ++PartIdx) { 567 ISD::ArgFlagsTy Flags = OrigFlags; 568 if (PartIdx == 0) { 569 Flags.setSplit(); 570 } else { 571 Flags.setOrigAlign(Align(1)); 572 if (PartIdx == NumParts - 1) 573 Flags.setSplitEnd(); 574 } 575 576 // TODO: Also check if there is a valid extension that preserves the 577 // bits. However currently this call lowering doesn't support non-exact 578 // split parts, so that can't be tested. 579 if (OrigFlags.isReturned() && 580 (NumParts * NewVT.getSizeInBits() != CurVT.getSizeInBits())) { 581 Flags.setReturned(false); 582 } 583 584 Register NewReg = MRI.createGenericVirtualRegister(NewLLT); 585 586 Args[i].Regs.push_back(NewReg); 587 Args[i].Flags.push_back(Flags); 588 if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, 589 Args[i], Args[i].Flags[PartIdx], CCInfo)) 590 return false; 591 } 592 } 593 } 594 595 for (unsigned i = 0, e = Args.size(), j = 0; i != e; ++i, ++j) { 596 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 597 598 CCValAssign &VA = ArgLocs[j]; 599 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 600 601 if (VA.needsCustom()) { 602 unsigned NumArgRegs = 603 Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j)); 604 if (!NumArgRegs) 605 return false; 606 j += NumArgRegs; 607 continue; 608 } 609 610 EVT VAVT = VA.getValVT(); 611 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 612 const LLT VATy(VAVT.getSimpleVT()); 613 614 // Expected to be multiple regs for a single incoming arg. 615 // There should be Regs.size() ArgLocs per argument. 616 unsigned NumArgRegs = Args[i].Regs.size(); 617 assert((j + (NumArgRegs - 1)) < ArgLocs.size() && 618 "Too many regs for number of args"); 619 620 // Coerce into outgoing value types before register assignment. 621 if (!Handler.isIncomingArgumentHandler() && OrigTy != VATy) { 622 assert(Args[i].OrigRegs.size() == 1); 623 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, 624 VATy, extendOpFromFlags(Args[i].Flags[0])); 625 } 626 627 for (unsigned Part = 0; Part < NumArgRegs; ++Part) { 628 Register ArgReg = Args[i].Regs[Part]; 629 // There should be Regs.size() ArgLocs per argument. 630 VA = ArgLocs[j + Part]; 631 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; 632 633 if (VA.isMemLoc() && !Flags.isByVal()) { 634 // Individual pieces may have been spilled to the stack and others 635 // passed in registers. 636 637 // FIXME: Use correct address space for pointer size 638 EVT LocVT = VA.getValVT(); 639 unsigned MemSize = LocVT == MVT::iPTR ? DL.getPointerSize() 640 : LocVT.getStoreSize(); 641 unsigned Offset = VA.getLocMemOffset(); 642 MachinePointerInfo MPO; 643 Register StackAddr = 644 Handler.getStackAddress(MemSize, Offset, MPO, Flags); 645 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemSize, MPO, 646 VA); 647 continue; 648 } 649 650 if (VA.isMemLoc() && Flags.isByVal()) { 651 assert(Args[i].Regs.size() == 1 && 652 "didn't expect split byval pointer"); 653 654 if (Handler.isIncomingArgumentHandler()) { 655 // We just need to copy the frame index value to the pointer. 656 MachinePointerInfo MPO; 657 Register StackAddr = Handler.getStackAddress( 658 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); 659 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); 660 } else { 661 // For outgoing byval arguments, insert the implicit copy byval 662 // implies, such that writes in the callee do not modify the caller's 663 // value. 664 uint64_t MemSize = Flags.getByValSize(); 665 int64_t Offset = VA.getLocMemOffset(); 666 667 MachinePointerInfo DstMPO; 668 Register StackAddr = 669 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); 670 671 MachinePointerInfo SrcMPO(Args[i].OrigValue); 672 if (!Args[i].OrigValue) { 673 // We still need to accurately track the stack address space if we 674 // don't know the underlying value. 675 const LLT PtrTy = MRI.getType(StackAddr); 676 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); 677 } 678 679 Align DstAlign = std::max(Flags.getNonZeroByValAlign(), 680 inferAlignFromPtrInfo(MF, DstMPO)); 681 682 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), 683 inferAlignFromPtrInfo(MF, SrcMPO)); 684 685 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], 686 DstMPO, DstAlign, SrcMPO, SrcAlign, 687 MemSize, VA); 688 } 689 continue; 690 } 691 692 assert(!VA.needsCustom() && "custom loc should have been handled already"); 693 694 if (i == 0 && ThisReturnReg.isValid() && 695 Handler.isIncomingArgumentHandler() && 696 isTypeIsValidForThisReturn(VAVT)) { 697 Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA); 698 continue; 699 } 700 701 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 702 } 703 704 // Now that all pieces have been assigned, re-pack the register typed values 705 // into the original value typed registers. 706 if (Handler.isIncomingArgumentHandler() && OrigTy != VATy) { 707 // Merge the split registers into the expected larger result vregs of 708 // the original call. 709 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 710 VATy); 711 } 712 713 j += NumArgRegs - 1; 714 } 715 716 return true; 717 } 718 719 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 720 ArrayRef<Register> VRegs, Register DemoteReg, 721 int FI) const { 722 MachineFunction &MF = MIRBuilder.getMF(); 723 MachineRegisterInfo &MRI = MF.getRegInfo(); 724 const DataLayout &DL = MF.getDataLayout(); 725 726 SmallVector<EVT, 4> SplitVTs; 727 SmallVector<uint64_t, 4> Offsets; 728 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 729 730 assert(VRegs.size() == SplitVTs.size()); 731 732 unsigned NumValues = SplitVTs.size(); 733 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 734 Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace()); 735 LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL); 736 737 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 738 739 for (unsigned I = 0; I < NumValues; ++I) { 740 Register Addr; 741 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 742 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 743 MRI.getType(VRegs[I]).getSizeInBytes(), 744 commonAlignment(BaseAlign, Offsets[I])); 745 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 746 } 747 } 748 749 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 750 ArrayRef<Register> VRegs, 751 Register DemoteReg) const { 752 MachineFunction &MF = MIRBuilder.getMF(); 753 MachineRegisterInfo &MRI = MF.getRegInfo(); 754 const DataLayout &DL = MF.getDataLayout(); 755 756 SmallVector<EVT, 4> SplitVTs; 757 SmallVector<uint64_t, 4> Offsets; 758 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 759 760 assert(VRegs.size() == SplitVTs.size()); 761 762 unsigned NumValues = SplitVTs.size(); 763 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 764 unsigned AS = DL.getAllocaAddrSpace(); 765 LLT OffsetLLTy = 766 getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL); 767 768 MachinePointerInfo PtrInfo(AS); 769 770 for (unsigned I = 0; I < NumValues; ++I) { 771 Register Addr; 772 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 773 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 774 MRI.getType(VRegs[I]).getSizeInBytes(), 775 commonAlignment(BaseAlign, Offsets[I])); 776 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 777 } 778 } 779 780 void CallLowering::insertSRetIncomingArgument( 781 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 782 MachineRegisterInfo &MRI, const DataLayout &DL) const { 783 unsigned AS = DL.getAllocaAddrSpace(); 784 DemoteReg = MRI.createGenericVirtualRegister( 785 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 786 787 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 788 789 SmallVector<EVT, 1> ValueVTs; 790 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 791 792 // NOTE: Assume that a pointer won't get split into more than one VT. 793 assert(ValueVTs.size() == 1); 794 795 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext())); 796 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 797 DemoteArg.Flags[0].setSRet(); 798 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 799 } 800 801 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 802 const CallBase &CB, 803 CallLoweringInfo &Info) const { 804 const DataLayout &DL = MIRBuilder.getDataLayout(); 805 Type *RetTy = CB.getType(); 806 unsigned AS = DL.getAllocaAddrSpace(); 807 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 808 809 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 810 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 811 812 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 813 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS)); 814 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 815 DemoteArg.Flags[0].setSRet(); 816 817 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 818 Info.DemoteStackIndex = FI; 819 Info.DemoteRegister = DemoteReg; 820 } 821 822 bool CallLowering::checkReturn(CCState &CCInfo, 823 SmallVectorImpl<BaseArgInfo> &Outs, 824 CCAssignFn *Fn) const { 825 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 826 MVT VT = MVT::getVT(Outs[I].Ty); 827 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 828 return false; 829 } 830 return true; 831 } 832 833 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 834 AttributeList Attrs, 835 SmallVectorImpl<BaseArgInfo> &Outs, 836 const DataLayout &DL) const { 837 LLVMContext &Context = RetTy->getContext(); 838 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 839 840 SmallVector<EVT, 4> SplitVTs; 841 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 842 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 843 844 for (EVT VT : SplitVTs) { 845 unsigned NumParts = 846 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 847 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 848 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 849 850 for (unsigned I = 0; I < NumParts; ++I) { 851 Outs.emplace_back(PartTy, Flags); 852 } 853 } 854 } 855 856 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 857 const auto &F = MF.getFunction(); 858 Type *ReturnType = F.getReturnType(); 859 CallingConv::ID CallConv = F.getCallingConv(); 860 861 SmallVector<BaseArgInfo, 4> SplitArgs; 862 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 863 MF.getDataLayout()); 864 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 865 } 866 867 bool CallLowering::analyzeArgInfo(CCState &CCState, 868 SmallVectorImpl<ArgInfo> &Args, 869 CCAssignFn &AssignFnFixed, 870 CCAssignFn &AssignFnVarArg) const { 871 for (unsigned i = 0, e = Args.size(); i < e; ++i) { 872 MVT VT = MVT::getVT(Args[i].Ty); 873 CCAssignFn &Fn = Args[i].IsFixed ? AssignFnFixed : AssignFnVarArg; 874 if (Fn(i, VT, VT, CCValAssign::Full, Args[i].Flags[0], CCState)) { 875 // Bail out on anything we can't handle. 876 LLVM_DEBUG(dbgs() << "Cannot analyze " << EVT(VT).getEVTString() 877 << " (arg number = " << i << "\n"); 878 return false; 879 } 880 } 881 return true; 882 } 883 884 bool CallLowering::parametersInCSRMatch( 885 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 886 const SmallVectorImpl<CCValAssign> &OutLocs, 887 const SmallVectorImpl<ArgInfo> &OutArgs) const { 888 for (unsigned i = 0; i < OutLocs.size(); ++i) { 889 auto &ArgLoc = OutLocs[i]; 890 // If it's not a register, it's fine. 891 if (!ArgLoc.isRegLoc()) 892 continue; 893 894 MCRegister PhysReg = ArgLoc.getLocReg(); 895 896 // Only look at callee-saved registers. 897 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 898 continue; 899 900 LLVM_DEBUG( 901 dbgs() 902 << "... Call has an argument passed in a callee-saved register.\n"); 903 904 // Check if it was copied from. 905 const ArgInfo &OutInfo = OutArgs[i]; 906 907 if (OutInfo.Regs.size() > 1) { 908 LLVM_DEBUG( 909 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 910 return false; 911 } 912 913 // Check if we copy the register, walking through copies from virtual 914 // registers. Note that getDefIgnoringCopies does not ignore copies from 915 // physical registers. 916 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 917 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 918 LLVM_DEBUG( 919 dbgs() 920 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 921 return false; 922 } 923 924 // Got a copy. Verify that it's the same as the register we want. 925 Register CopyRHS = RegDef->getOperand(1).getReg(); 926 if (CopyRHS != PhysReg) { 927 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 928 "VReg, cannot tail call.\n"); 929 return false; 930 } 931 } 932 933 return true; 934 } 935 936 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 937 MachineFunction &MF, 938 SmallVectorImpl<ArgInfo> &InArgs, 939 CCAssignFn &CalleeAssignFnFixed, 940 CCAssignFn &CalleeAssignFnVarArg, 941 CCAssignFn &CallerAssignFnFixed, 942 CCAssignFn &CallerAssignFnVarArg) const { 943 const Function &F = MF.getFunction(); 944 CallingConv::ID CalleeCC = Info.CallConv; 945 CallingConv::ID CallerCC = F.getCallingConv(); 946 947 if (CallerCC == CalleeCC) 948 return true; 949 950 SmallVector<CCValAssign, 16> ArgLocs1; 951 CCState CCInfo1(CalleeCC, false, MF, ArgLocs1, F.getContext()); 952 if (!analyzeArgInfo(CCInfo1, InArgs, CalleeAssignFnFixed, 953 CalleeAssignFnVarArg)) 954 return false; 955 956 SmallVector<CCValAssign, 16> ArgLocs2; 957 CCState CCInfo2(CallerCC, false, MF, ArgLocs2, F.getContext()); 958 if (!analyzeArgInfo(CCInfo2, InArgs, CallerAssignFnFixed, 959 CalleeAssignFnVarArg)) 960 return false; 961 962 // We need the argument locations to match up exactly. If there's more in 963 // one than the other, then we are done. 964 if (ArgLocs1.size() != ArgLocs2.size()) 965 return false; 966 967 // Make sure that each location is passed in exactly the same way. 968 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 969 const CCValAssign &Loc1 = ArgLocs1[i]; 970 const CCValAssign &Loc2 = ArgLocs2[i]; 971 972 // We need both of them to be the same. So if one is a register and one 973 // isn't, we're done. 974 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 975 return false; 976 977 if (Loc1.isRegLoc()) { 978 // If they don't have the same register location, we're done. 979 if (Loc1.getLocReg() != Loc2.getLocReg()) 980 return false; 981 982 // They matched, so we can move to the next ArgLoc. 983 continue; 984 } 985 986 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 987 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 988 return false; 989 } 990 991 return true; 992 } 993 994 void CallLowering::ValueHandler::copyArgumentMemory( 995 const ArgInfo &Arg, Register DstPtr, Register SrcPtr, 996 const MachinePointerInfo &DstPtrInfo, Align DstAlign, 997 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, 998 CCValAssign &VA) const { 999 MachineFunction &MF = MIRBuilder.getMF(); 1000 MachineMemOperand *SrcMMO = MF.getMachineMemOperand( 1001 SrcPtrInfo, 1002 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, 1003 SrcAlign); 1004 1005 MachineMemOperand *DstMMO = MF.getMachineMemOperand( 1006 DstPtrInfo, 1007 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, 1008 MemSize, DstAlign); 1009 1010 const LLT PtrTy = MRI.getType(DstPtr); 1011 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); 1012 1013 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); 1014 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); 1015 } 1016 1017 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 1018 CCValAssign &VA, 1019 unsigned MaxSizeBits) { 1020 LLT LocTy{VA.getLocVT()}; 1021 LLT ValTy = MRI.getType(ValReg); 1022 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 1023 return ValReg; 1024 1025 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 1026 if (MaxSizeBits <= ValTy.getSizeInBits()) 1027 return ValReg; 1028 LocTy = LLT::scalar(MaxSizeBits); 1029 } 1030 1031 switch (VA.getLocInfo()) { 1032 default: break; 1033 case CCValAssign::Full: 1034 case CCValAssign::BCvt: 1035 // FIXME: bitconverting between vector types may or may not be a 1036 // nop in big-endian situations. 1037 return ValReg; 1038 case CCValAssign::AExt: { 1039 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 1040 return MIB.getReg(0); 1041 } 1042 case CCValAssign::SExt: { 1043 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1044 MIRBuilder.buildSExt(NewReg, ValReg); 1045 return NewReg; 1046 } 1047 case CCValAssign::ZExt: { 1048 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1049 MIRBuilder.buildZExt(NewReg, ValReg); 1050 return NewReg; 1051 } 1052 } 1053 llvm_unreachable("unable to extend register"); 1054 } 1055 1056 void CallLowering::ValueHandler::anchor() {} 1057 1058 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA, 1059 Register SrcReg, 1060 LLT NarrowTy) { 1061 switch (VA.getLocInfo()) { 1062 case CCValAssign::LocInfo::ZExt: { 1063 return MIRBuilder 1064 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1065 NarrowTy.getScalarSizeInBits()) 1066 .getReg(0); 1067 } 1068 case CCValAssign::LocInfo::SExt: { 1069 return MIRBuilder 1070 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1071 NarrowTy.getScalarSizeInBits()) 1072 .getReg(0); 1073 break; 1074 } 1075 default: 1076 return SrcReg; 1077 } 1078 } 1079 1080 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg, 1081 Register PhysReg, 1082 CCValAssign &VA) { 1083 const LLT LocTy(VA.getLocVT()); 1084 const LLT ValTy = MRI.getType(ValVReg); 1085 1086 if (ValTy.getSizeInBits() == LocTy.getSizeInBits()) { 1087 MIRBuilder.buildCopy(ValVReg, PhysReg); 1088 return; 1089 } 1090 1091 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); 1092 auto Hint = buildExtensionHint(VA, Copy.getReg(0), ValTy); 1093 MIRBuilder.buildTrunc(ValVReg, Hint); 1094 } 1095