1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
16 #include "llvm/CodeGen/GlobalISel/Utils.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/MachineOperand.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Target/TargetMachine.h"
26 
27 #define DEBUG_TYPE "call-lowering"
28 
29 using namespace llvm;
30 
31 void CallLowering::anchor() {}
32 
33 /// Helper function which updates \p Flags when \p AttrFn returns true.
34 static void
35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
36                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
37   if (AttrFn(Attribute::SExt))
38     Flags.setSExt();
39   if (AttrFn(Attribute::ZExt))
40     Flags.setZExt();
41   if (AttrFn(Attribute::InReg))
42     Flags.setInReg();
43   if (AttrFn(Attribute::StructRet))
44     Flags.setSRet();
45   if (AttrFn(Attribute::Nest))
46     Flags.setNest();
47   if (AttrFn(Attribute::ByVal))
48     Flags.setByVal();
49   if (AttrFn(Attribute::Preallocated))
50     Flags.setPreallocated();
51   if (AttrFn(Attribute::InAlloca))
52     Flags.setInAlloca();
53   if (AttrFn(Attribute::Returned))
54     Flags.setReturned();
55   if (AttrFn(Attribute::SwiftSelf))
56     Flags.setSwiftSelf();
57   if (AttrFn(Attribute::SwiftError))
58     Flags.setSwiftError();
59 }
60 
61 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
62                                                      unsigned ArgIdx) const {
63   ISD::ArgFlagsTy Flags;
64   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
65     return Call.paramHasAttr(ArgIdx, Attr);
66   });
67   return Flags;
68 }
69 
70 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
71                                              const AttributeList &Attrs,
72                                              unsigned OpIdx) const {
73   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
74     return Attrs.hasAttribute(OpIdx, Attr);
75   });
76 }
77 
78 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
79                              ArrayRef<Register> ResRegs,
80                              ArrayRef<ArrayRef<Register>> ArgRegs,
81                              Register SwiftErrorVReg,
82                              std::function<unsigned()> GetCalleeReg) const {
83   CallLoweringInfo Info;
84   const DataLayout &DL = MIRBuilder.getDataLayout();
85   MachineFunction &MF = MIRBuilder.getMF();
86   bool CanBeTailCalled = CB.isTailCall() &&
87                          isInTailCallPosition(CB, MF.getTarget()) &&
88                          (MF.getFunction()
89                               .getFnAttribute("disable-tail-calls")
90                               .getValueAsString() != "true");
91 
92   CallingConv::ID CallConv = CB.getCallingConv();
93   Type *RetTy = CB.getType();
94   bool IsVarArg = CB.getFunctionType()->isVarArg();
95 
96   SmallVector<BaseArgInfo, 4> SplitArgs;
97   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
98   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
99 
100   if (!Info.CanLowerReturn) {
101     // Callee requires sret demotion.
102     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
103 
104     // The sret demotion isn't compatible with tail-calls, since the sret
105     // argument points into the caller's stack frame.
106     CanBeTailCalled = false;
107   }
108 
109   // First step is to marshall all the function's parameters into the correct
110   // physregs and memory locations. Gather the sequence of argument types that
111   // we'll pass to the assigner function.
112   unsigned i = 0;
113   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
114   for (auto &Arg : CB.args()) {
115     ArgInfo OrigArg{ArgRegs[i], *Arg.get(), getAttributesForArgIdx(CB, i),
116                     i < NumFixedArgs};
117     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
118 
119     // If we have an explicit sret argument that is an Instruction, (i.e., it
120     // might point to function-local memory), we can't meaningfully tail-call.
121     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
122       CanBeTailCalled = false;
123 
124     Info.OrigArgs.push_back(OrigArg);
125     ++i;
126   }
127 
128   // Try looking through a bitcast from one function type to another.
129   // Commonly happens with calls to objc_msgSend().
130   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
131   if (const Function *F = dyn_cast<Function>(CalleeV))
132     Info.Callee = MachineOperand::CreateGA(F, 0);
133   else
134     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
135 
136   Info.OrigRet = ArgInfo{ResRegs, RetTy, ISD::ArgFlagsTy{}};
137   if (!Info.OrigRet.Ty->isVoidTy())
138     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
139 
140   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
141   Info.CallConv = CallConv;
142   Info.SwiftErrorVReg = SwiftErrorVReg;
143   Info.IsMustTailCall = CB.isMustTailCall();
144   Info.IsTailCall = CanBeTailCalled;
145   Info.IsVarArg = IsVarArg;
146   return lowerCall(MIRBuilder, Info);
147 }
148 
149 template <typename FuncInfoTy>
150 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
151                                const DataLayout &DL,
152                                const FuncInfoTy &FuncInfo) const {
153   auto &Flags = Arg.Flags[0];
154   const AttributeList &Attrs = FuncInfo.getAttributes();
155   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
156 
157   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
158     Type *ElementTy = cast<PointerType>(Arg.Ty)->getElementType();
159 
160     auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType();
161     Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy));
162 
163     // For ByVal, alignment should be passed from FE.  BE will guess if
164     // this info is not there but there are cases it cannot get right.
165     Align FrameAlign;
166     if (auto ParamAlign = FuncInfo.getParamAlign(OpIdx - 1))
167       FrameAlign = *ParamAlign;
168     else
169       FrameAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
170     Flags.setByValAlign(FrameAlign);
171   }
172   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
173 
174   // Don't try to use the returned attribute if the argument is marked as
175   // swiftself, since it won't be passed in x0.
176   if (Flags.isSwiftSelf())
177     Flags.setReturned(false);
178 }
179 
180 template void
181 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
182                                     const DataLayout &DL,
183                                     const Function &FuncInfo) const;
184 
185 template void
186 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
187                                     const DataLayout &DL,
188                                     const CallBase &FuncInfo) const;
189 
190 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg,
191                                      SmallVectorImpl<ArgInfo> &SplitArgs,
192                                      const DataLayout &DL,
193                                      CallingConv::ID CallConv) const {
194   LLVMContext &Ctx = OrigArg.Ty->getContext();
195 
196   SmallVector<EVT, 4> SplitVTs;
197   SmallVector<uint64_t, 4> Offsets;
198   ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0);
199 
200   if (SplitVTs.size() == 0)
201     return;
202 
203   if (SplitVTs.size() == 1) {
204     // No splitting to do, but we want to replace the original type (e.g. [1 x
205     // double] -> double).
206     SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
207                            OrigArg.Flags[0], OrigArg.IsFixed,
208                            OrigArg.OrigValue);
209     return;
210   }
211 
212   // Create one ArgInfo for each virtual register in the original ArgInfo.
213   assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
214 
215   bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
216       OrigArg.Ty, CallConv, false);
217   for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
218     Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
219     SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0],
220                            OrigArg.IsFixed);
221     if (NeedsRegBlock)
222       SplitArgs.back().Flags[0].setInConsecutiveRegs();
223   }
224 
225   SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
226 }
227 
228 void CallLowering::unpackRegs(ArrayRef<Register> DstRegs, Register SrcReg,
229                               Type *PackedTy,
230                               MachineIRBuilder &MIRBuilder) const {
231   assert(DstRegs.size() > 1 && "Nothing to unpack");
232 
233   const DataLayout &DL = MIRBuilder.getDataLayout();
234 
235   SmallVector<LLT, 8> LLTs;
236   SmallVector<uint64_t, 8> Offsets;
237   computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
238   assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch");
239 
240   for (unsigned i = 0; i < DstRegs.size(); ++i)
241     MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]);
242 }
243 
244 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
245 static MachineInstrBuilder
246 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
247                             ArrayRef<Register> SrcRegs) {
248   MachineRegisterInfo &MRI = *B.getMRI();
249   LLT LLTy = MRI.getType(DstRegs[0]);
250   LLT PartLLT = MRI.getType(SrcRegs[0]);
251 
252   // Deal with v3s16 split into v2s16
253   LLT LCMTy = getLCMType(LLTy, PartLLT);
254   if (LCMTy == LLTy) {
255     // Common case where no padding is needed.
256     assert(DstRegs.size() == 1);
257     return B.buildConcatVectors(DstRegs[0], SrcRegs);
258   }
259 
260   // We need to create an unmerge to the result registers, which may require
261   // widening the original value.
262   Register UnmergeSrcReg;
263   if (LCMTy != PartLLT) {
264     // e.g. A <3 x s16> value was split to <2 x s16>
265     // %register_value0:_(<2 x s16>)
266     // %register_value1:_(<2 x s16>)
267     // %undef:_(<2 x s16>) = G_IMPLICIT_DEF
268     // %concat:_<6 x s16>) = G_CONCAT_VECTORS %reg_value0, %reg_value1, %undef
269     // %dst_reg:_(<3 x s16>), %dead:_(<3 x s16>) = G_UNMERGE_VALUES %concat
270     const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
271     Register Undef = B.buildUndef(PartLLT).getReg(0);
272 
273     // Build vector of undefs.
274     SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);
275 
276     // Replace the first sources with the real registers.
277     std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());
278     UnmergeSrcReg = B.buildConcatVectors(LCMTy, WidenedSrcs).getReg(0);
279   } else {
280     // We don't need to widen anything if we're extracting a scalar which was
281     // promoted to a vector e.g. s8 -> v4s8 -> s8
282     assert(SrcRegs.size() == 1);
283     UnmergeSrcReg = SrcRegs[0];
284   }
285 
286   int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
287 
288   SmallVector<Register, 8> PadDstRegs(NumDst);
289   std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());
290 
291   // Create the excess dead defs for the unmerge.
292   for (int I = DstRegs.size(); I != NumDst; ++I)
293     PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
294 
295   return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
296 }
297 
298 /// Create a sequence of instructions to combine pieces split into register
299 /// typed values to the original IR value. \p OrigRegs contains the destination
300 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces
301 /// with type \p PartLLT. This is used for incoming values (physregs to vregs).
302 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs,
303                               ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT) {
304   MachineRegisterInfo &MRI = *B.getMRI();
305 
306   // We could just insert a regular copy, but this is unreachable at the moment.
307   assert(LLTy != PartLLT && "identical part types shouldn't reach here");
308 
309   if (PartLLT.isVector() == LLTy.isVector() &&
310       PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits()) {
311     assert(OrigRegs.size() == 1 && Regs.size() == 1);
312     B.buildTrunc(OrigRegs[0], Regs[0]);
313     return;
314   }
315 
316   if (!LLTy.isVector() && !PartLLT.isVector()) {
317     assert(OrigRegs.size() == 1);
318     LLT OrigTy = MRI.getType(OrigRegs[0]);
319 
320     unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size();
321     if (SrcSize == OrigTy.getSizeInBits())
322       B.buildMerge(OrigRegs[0], Regs);
323     else {
324       auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
325       B.buildTrunc(OrigRegs[0], Widened);
326     }
327 
328     return;
329   }
330 
331   if (PartLLT.isVector()) {
332     assert(OrigRegs.size() == 1 &&
333            LLTy.getScalarType() == PartLLT.getElementType());
334     mergeVectorRegsToResultRegs(B, OrigRegs, Regs);
335     return;
336   }
337 
338   assert(LLTy.isVector() && !PartLLT.isVector());
339 
340   LLT DstEltTy = LLTy.getElementType();
341 
342   // Pointer information was discarded. We'll need to coerce some register types
343   // to avoid violating type constraints.
344   LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
345 
346   assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
347 
348   if (DstEltTy == PartLLT) {
349     // Vector was trivially scalarized.
350 
351     if (RealDstEltTy.isPointer()) {
352       for (Register Reg : Regs)
353         MRI.setType(Reg, RealDstEltTy);
354     }
355 
356     B.buildBuildVector(OrigRegs[0], Regs);
357   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
358     // Deal with vector with 64-bit elements decomposed to 32-bit
359     // registers. Need to create intermediate 64-bit elements.
360     SmallVector<Register, 8> EltMerges;
361     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
362 
363     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
364 
365     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
366       auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
367       // Fix the type in case this is really a vector of pointers.
368       MRI.setType(Merge.getReg(0), RealDstEltTy);
369       EltMerges.push_back(Merge.getReg(0));
370       Regs = Regs.drop_front(PartsPerElt);
371     }
372 
373     B.buildBuildVector(OrigRegs[0], EltMerges);
374   } else {
375     // Vector was split, and elements promoted to a wider type.
376     // FIXME: Should handle floating point promotions.
377     LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
378     auto BV = B.buildBuildVector(BVType, Regs);
379     B.buildTrunc(OrigRegs[0], BV);
380   }
381 }
382 
383 /// Create a sequence of instructions to expand the value in \p SrcReg (of type
384 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
385 /// contain the type of scalar value extension if necessary.
386 ///
387 /// This is used for outgoing values (vregs to physregs)
388 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs,
389                             Register SrcReg, LLT SrcTy, LLT PartTy,
390                             unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
391   // We could just insert a regular copy, but this is unreachable at the moment.
392   assert(SrcTy != PartTy && "identical part types shouldn't reach here");
393 
394   const unsigned PartSize = PartTy.getSizeInBits();
395 
396   if (PartTy.isVector() == SrcTy.isVector() &&
397       PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
398     assert(DstRegs.size() == 1);
399     B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
400     return;
401   }
402 
403   if (SrcTy.isVector() && !PartTy.isVector() &&
404       PartSize > SrcTy.getElementType().getSizeInBits()) {
405     // Vector was scalarized, and the elements extended.
406     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
407     for (int i = 0, e = DstRegs.size(); i != e; ++i)
408       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
409     return;
410   }
411 
412   LLT GCDTy = getGCDType(SrcTy, PartTy);
413   if (GCDTy == PartTy) {
414     // If this already evenly divisible, we can create a simple unmerge.
415     B.buildUnmerge(DstRegs, SrcReg);
416     return;
417   }
418 
419   MachineRegisterInfo &MRI = *B.getMRI();
420   LLT DstTy = MRI.getType(DstRegs[0]);
421   LLT LCMTy = getLCMType(SrcTy, PartTy);
422 
423   const unsigned LCMSize = LCMTy.getSizeInBits();
424   const unsigned DstSize = DstTy.getSizeInBits();
425   const unsigned SrcSize = SrcTy.getSizeInBits();
426 
427   Register UnmergeSrc = SrcReg;
428   if (LCMSize != SrcSize) {
429     // Widen to the common type.
430     Register Undef = B.buildUndef(SrcTy).getReg(0);
431     SmallVector<Register, 8> MergeParts(1, SrcReg);
432     for (unsigned Size = SrcSize; Size != LCMSize; Size += SrcSize)
433       MergeParts.push_back(Undef);
434 
435     UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0);
436   }
437 
438   // Unmerge to the original registers and pad with dead defs.
439   SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end());
440   for (unsigned Size = DstSize * DstRegs.size(); Size != LCMSize;
441        Size += DstSize) {
442     UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy));
443   }
444 
445   B.buildUnmerge(UnmergeResults, UnmergeSrc);
446 }
447 
448 bool CallLowering::handleAssignments(MachineIRBuilder &MIRBuilder,
449                                      SmallVectorImpl<ArgInfo> &Args,
450                                      ValueHandler &Handler,
451                                      CallingConv::ID CallConv, bool IsVarArg,
452                                      Register ThisReturnReg) const {
453   MachineFunction &MF = MIRBuilder.getMF();
454   const Function &F = MF.getFunction();
455   SmallVector<CCValAssign, 16> ArgLocs;
456 
457   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
458   return handleAssignments(CCInfo, ArgLocs, MIRBuilder, Args, Handler,
459                            ThisReturnReg);
460 }
461 
462 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) {
463   if (Flags.isSExt())
464     return TargetOpcode::G_SEXT;
465   if (Flags.isZExt())
466     return TargetOpcode::G_ZEXT;
467   return TargetOpcode::G_ANYEXT;
468 }
469 
470 bool CallLowering::handleAssignments(CCState &CCInfo,
471                                      SmallVectorImpl<CCValAssign> &ArgLocs,
472                                      MachineIRBuilder &MIRBuilder,
473                                      SmallVectorImpl<ArgInfo> &Args,
474                                      ValueHandler &Handler,
475                                      Register ThisReturnReg) const {
476   MachineFunction &MF = MIRBuilder.getMF();
477   MachineRegisterInfo &MRI = MF.getRegInfo();
478   const Function &F = MF.getFunction();
479   const DataLayout &DL = F.getParent()->getDataLayout();
480 
481   unsigned NumArgs = Args.size();
482   for (unsigned i = 0; i != NumArgs; ++i) {
483     EVT CurVT = EVT::getEVT(Args[i].Ty);
484     if (CurVT.isSimple() &&
485         !Handler.assignArg(i, CurVT.getSimpleVT(), CurVT.getSimpleVT(),
486                            CCValAssign::Full, Args[i], Args[i].Flags[0],
487                            CCInfo))
488       continue;
489 
490     MVT NewVT = TLI->getRegisterTypeForCallingConv(
491         F.getContext(), CCInfo.getCallingConv(), EVT(CurVT));
492 
493     // If we need to split the type over multiple regs, check it's a scenario
494     // we currently support.
495     unsigned NumParts = TLI->getNumRegistersForCallingConv(
496         F.getContext(), CCInfo.getCallingConv(), CurVT);
497 
498     if (NumParts == 1) {
499       // Try to use the register type if we couldn't assign the VT.
500       if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i],
501                             Args[i].Flags[0], CCInfo))
502         return false;
503 
504       // If we couldn't directly assign this part, some casting may be
505       // necessary. Create the new register, but defer inserting the conversion
506       // instructions.
507       assert(Args[i].OrigRegs.empty());
508       Args[i].OrigRegs.push_back(Args[i].Regs[0]);
509       assert(Args[i].Regs.size() == 1);
510 
511       const LLT VATy(NewVT);
512       Args[i].Regs[0] = MRI.createGenericVirtualRegister(VATy);
513       continue;
514     }
515 
516     const LLT NewLLT(NewVT);
517 
518     // For incoming arguments (physregs to vregs), we could have values in
519     // physregs (or memlocs) which we want to extract and copy to vregs.
520     // During this, we might have to deal with the LLT being split across
521     // multiple regs, so we have to record this information for later.
522     //
523     // If we have outgoing args, then we have the opposite case. We have a
524     // vreg with an LLT which we want to assign to a physical location, and
525     // we might have to record that the value has to be split later.
526     if (Handler.isIncomingArgumentHandler()) {
527       // We're handling an incoming arg which is split over multiple regs.
528       // E.g. passing an s128 on AArch64.
529       ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
530       Args[i].OrigRegs.push_back(Args[i].Regs[0]);
531       Args[i].Regs.clear();
532       Args[i].Flags.clear();
533       // For each split register, create and assign a vreg that will store
534       // the incoming component of the larger value. These will later be
535       // merged to form the final vreg.
536       for (unsigned Part = 0; Part < NumParts; ++Part) {
537         Register Reg = MRI.createGenericVirtualRegister(NewLLT);
538         ISD::ArgFlagsTy Flags = OrigFlags;
539         if (Part == 0) {
540           Flags.setSplit();
541         } else {
542           Flags.setOrigAlign(Align(1));
543           if (Part == NumParts - 1)
544             Flags.setSplitEnd();
545         }
546         Args[i].Regs.push_back(Reg);
547         Args[i].Flags.push_back(Flags);
548         if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i],
549                               Args[i].Flags[Part], CCInfo)) {
550           // Still couldn't assign this smaller part type for some reason.
551           return false;
552         }
553       }
554     } else {
555       assert(Args[i].Regs.size() == 1);
556 
557       // This type is passed via multiple registers in the calling convention.
558       // We need to extract the individual parts.
559       assert(Args[i].OrigRegs.empty());
560       Args[i].OrigRegs.push_back(Args[i].Regs[0]);
561 
562       ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
563       // We're going to replace the regs and flags with the split ones.
564       Args[i].Regs.clear();
565       Args[i].Flags.clear();
566       for (unsigned PartIdx = 0; PartIdx < NumParts; ++PartIdx) {
567         ISD::ArgFlagsTy Flags = OrigFlags;
568         if (PartIdx == 0) {
569           Flags.setSplit();
570         } else {
571           Flags.setOrigAlign(Align(1));
572           if (PartIdx == NumParts - 1)
573             Flags.setSplitEnd();
574         }
575 
576         // TODO: Also check if there is a valid extension that preserves the
577         // bits. However currently this call lowering doesn't support non-exact
578         // split parts, so that can't be tested.
579         if (OrigFlags.isReturned() &&
580             (NumParts * NewVT.getSizeInBits() != CurVT.getSizeInBits())) {
581           Flags.setReturned(false);
582         }
583 
584         Register NewReg = MRI.createGenericVirtualRegister(NewLLT);
585 
586         Args[i].Regs.push_back(NewReg);
587         Args[i].Flags.push_back(Flags);
588         if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full,
589                               Args[i], Args[i].Flags[PartIdx], CCInfo))
590           return false;
591       }
592     }
593   }
594 
595   for (unsigned i = 0, e = Args.size(), j = 0; i != e; ++i, ++j) {
596     assert(j < ArgLocs.size() && "Skipped too many arg locs");
597 
598     CCValAssign &VA = ArgLocs[j];
599     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
600 
601     if (VA.needsCustom()) {
602       unsigned NumArgRegs =
603           Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j));
604       if (!NumArgRegs)
605         return false;
606       j += NumArgRegs;
607       continue;
608     }
609 
610     EVT VAVT = VA.getValVT();
611     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
612     const LLT VATy(VAVT.getSimpleVT());
613 
614     // Expected to be multiple regs for a single incoming arg.
615     // There should be Regs.size() ArgLocs per argument.
616     unsigned NumArgRegs = Args[i].Regs.size();
617     assert((j + (NumArgRegs - 1)) < ArgLocs.size() &&
618            "Too many regs for number of args");
619 
620     // Coerce into outgoing value types before register assignment.
621     if (!Handler.isIncomingArgumentHandler() && OrigTy != VATy) {
622       assert(Args[i].OrigRegs.size() == 1);
623       buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
624                       VATy, extendOpFromFlags(Args[i].Flags[0]));
625     }
626 
627     for (unsigned Part = 0; Part < NumArgRegs; ++Part) {
628       Register ArgReg = Args[i].Regs[Part];
629       // There should be Regs.size() ArgLocs per argument.
630       VA = ArgLocs[j + Part];
631       const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
632 
633       if (VA.isMemLoc() && !Flags.isByVal()) {
634         // Individual pieces may have been spilled to the stack and others
635         // passed in registers.
636 
637         // FIXME: Use correct address space for pointer size
638         EVT LocVT = VA.getValVT();
639         unsigned MemSize = LocVT == MVT::iPTR ? DL.getPointerSize()
640                                               : LocVT.getStoreSize();
641         unsigned Offset = VA.getLocMemOffset();
642         MachinePointerInfo MPO;
643         Register StackAddr =
644             Handler.getStackAddress(MemSize, Offset, MPO, Flags);
645         Handler.assignValueToAddress(Args[i], Part, StackAddr, MemSize, MPO,
646                                      VA);
647         continue;
648       }
649 
650       if (VA.isMemLoc() && Flags.isByVal()) {
651         assert(Args[i].Regs.size() == 1 &&
652                "didn't expect split byval pointer");
653 
654         if (Handler.isIncomingArgumentHandler()) {
655           // We just need to copy the frame index value to the pointer.
656           MachinePointerInfo MPO;
657           Register StackAddr = Handler.getStackAddress(
658               Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
659           MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
660         } else {
661           // For outgoing byval arguments, insert the implicit copy byval
662           // implies, such that writes in the callee do not modify the caller's
663           // value.
664           uint64_t MemSize = Flags.getByValSize();
665           int64_t Offset = VA.getLocMemOffset();
666 
667           MachinePointerInfo DstMPO;
668           Register StackAddr =
669               Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
670 
671           MachinePointerInfo SrcMPO(Args[i].OrigValue);
672           if (!Args[i].OrigValue) {
673             // We still need to accurately track the stack address space if we
674             // don't know the underlying value.
675             const LLT PtrTy = MRI.getType(StackAddr);
676             SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
677           }
678 
679           Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
680                                     inferAlignFromPtrInfo(MF, DstMPO));
681 
682           Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
683                                     inferAlignFromPtrInfo(MF, SrcMPO));
684 
685           Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
686                                      DstMPO, DstAlign, SrcMPO, SrcAlign,
687                                      MemSize, VA);
688         }
689         continue;
690       }
691 
692       assert(!VA.needsCustom() && "custom loc should have been handled already");
693 
694       if (i == 0 && ThisReturnReg.isValid() &&
695           Handler.isIncomingArgumentHandler() &&
696           isTypeIsValidForThisReturn(VAVT)) {
697         Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA);
698         continue;
699       }
700 
701       Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
702     }
703 
704     // Now that all pieces have been assigned, re-pack the register typed values
705     // into the original value typed registers.
706     if (Handler.isIncomingArgumentHandler() && OrigTy != VATy) {
707       // Merge the split registers into the expected larger result vregs of
708       // the original call.
709       buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
710                         VATy);
711     }
712 
713     j += NumArgRegs - 1;
714   }
715 
716   return true;
717 }
718 
719 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
720                                    ArrayRef<Register> VRegs, Register DemoteReg,
721                                    int FI) const {
722   MachineFunction &MF = MIRBuilder.getMF();
723   MachineRegisterInfo &MRI = MF.getRegInfo();
724   const DataLayout &DL = MF.getDataLayout();
725 
726   SmallVector<EVT, 4> SplitVTs;
727   SmallVector<uint64_t, 4> Offsets;
728   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
729 
730   assert(VRegs.size() == SplitVTs.size());
731 
732   unsigned NumValues = SplitVTs.size();
733   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
734   Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
735   LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
736 
737   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
738 
739   for (unsigned I = 0; I < NumValues; ++I) {
740     Register Addr;
741     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
742     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
743                                         MRI.getType(VRegs[I]).getSizeInBytes(),
744                                         commonAlignment(BaseAlign, Offsets[I]));
745     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
746   }
747 }
748 
749 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
750                                     ArrayRef<Register> VRegs,
751                                     Register DemoteReg) const {
752   MachineFunction &MF = MIRBuilder.getMF();
753   MachineRegisterInfo &MRI = MF.getRegInfo();
754   const DataLayout &DL = MF.getDataLayout();
755 
756   SmallVector<EVT, 4> SplitVTs;
757   SmallVector<uint64_t, 4> Offsets;
758   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
759 
760   assert(VRegs.size() == SplitVTs.size());
761 
762   unsigned NumValues = SplitVTs.size();
763   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
764   unsigned AS = DL.getAllocaAddrSpace();
765   LLT OffsetLLTy =
766       getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
767 
768   MachinePointerInfo PtrInfo(AS);
769 
770   for (unsigned I = 0; I < NumValues; ++I) {
771     Register Addr;
772     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
773     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
774                                         MRI.getType(VRegs[I]).getSizeInBytes(),
775                                         commonAlignment(BaseAlign, Offsets[I]));
776     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
777   }
778 }
779 
780 void CallLowering::insertSRetIncomingArgument(
781     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
782     MachineRegisterInfo &MRI, const DataLayout &DL) const {
783   unsigned AS = DL.getAllocaAddrSpace();
784   DemoteReg = MRI.createGenericVirtualRegister(
785       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
786 
787   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
788 
789   SmallVector<EVT, 1> ValueVTs;
790   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
791 
792   // NOTE: Assume that a pointer won't get split into more than one VT.
793   assert(ValueVTs.size() == 1);
794 
795   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()));
796   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
797   DemoteArg.Flags[0].setSRet();
798   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
799 }
800 
801 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
802                                               const CallBase &CB,
803                                               CallLoweringInfo &Info) const {
804   const DataLayout &DL = MIRBuilder.getDataLayout();
805   Type *RetTy = CB.getType();
806   unsigned AS = DL.getAllocaAddrSpace();
807   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
808 
809   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
810       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
811 
812   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
813   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS));
814   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
815   DemoteArg.Flags[0].setSRet();
816 
817   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
818   Info.DemoteStackIndex = FI;
819   Info.DemoteRegister = DemoteReg;
820 }
821 
822 bool CallLowering::checkReturn(CCState &CCInfo,
823                                SmallVectorImpl<BaseArgInfo> &Outs,
824                                CCAssignFn *Fn) const {
825   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
826     MVT VT = MVT::getVT(Outs[I].Ty);
827     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
828       return false;
829   }
830   return true;
831 }
832 
833 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
834                                  AttributeList Attrs,
835                                  SmallVectorImpl<BaseArgInfo> &Outs,
836                                  const DataLayout &DL) const {
837   LLVMContext &Context = RetTy->getContext();
838   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
839 
840   SmallVector<EVT, 4> SplitVTs;
841   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
842   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
843 
844   for (EVT VT : SplitVTs) {
845     unsigned NumParts =
846         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
847     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
848     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
849 
850     for (unsigned I = 0; I < NumParts; ++I) {
851       Outs.emplace_back(PartTy, Flags);
852     }
853   }
854 }
855 
856 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
857   const auto &F = MF.getFunction();
858   Type *ReturnType = F.getReturnType();
859   CallingConv::ID CallConv = F.getCallingConv();
860 
861   SmallVector<BaseArgInfo, 4> SplitArgs;
862   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
863                 MF.getDataLayout());
864   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
865 }
866 
867 bool CallLowering::analyzeArgInfo(CCState &CCState,
868                                   SmallVectorImpl<ArgInfo> &Args,
869                                   CCAssignFn &AssignFnFixed,
870                                   CCAssignFn &AssignFnVarArg) const {
871   for (unsigned i = 0, e = Args.size(); i < e; ++i) {
872     MVT VT = MVT::getVT(Args[i].Ty);
873     CCAssignFn &Fn = Args[i].IsFixed ? AssignFnFixed : AssignFnVarArg;
874     if (Fn(i, VT, VT, CCValAssign::Full, Args[i].Flags[0], CCState)) {
875       // Bail out on anything we can't handle.
876       LLVM_DEBUG(dbgs() << "Cannot analyze " << EVT(VT).getEVTString()
877                         << " (arg number = " << i << "\n");
878       return false;
879     }
880   }
881   return true;
882 }
883 
884 bool CallLowering::parametersInCSRMatch(
885     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
886     const SmallVectorImpl<CCValAssign> &OutLocs,
887     const SmallVectorImpl<ArgInfo> &OutArgs) const {
888   for (unsigned i = 0; i < OutLocs.size(); ++i) {
889     auto &ArgLoc = OutLocs[i];
890     // If it's not a register, it's fine.
891     if (!ArgLoc.isRegLoc())
892       continue;
893 
894     MCRegister PhysReg = ArgLoc.getLocReg();
895 
896     // Only look at callee-saved registers.
897     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
898       continue;
899 
900     LLVM_DEBUG(
901         dbgs()
902         << "... Call has an argument passed in a callee-saved register.\n");
903 
904     // Check if it was copied from.
905     const ArgInfo &OutInfo = OutArgs[i];
906 
907     if (OutInfo.Regs.size() > 1) {
908       LLVM_DEBUG(
909           dbgs() << "... Cannot handle arguments in multiple registers.\n");
910       return false;
911     }
912 
913     // Check if we copy the register, walking through copies from virtual
914     // registers. Note that getDefIgnoringCopies does not ignore copies from
915     // physical registers.
916     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
917     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
918       LLVM_DEBUG(
919           dbgs()
920           << "... Parameter was not copied into a VReg, cannot tail call.\n");
921       return false;
922     }
923 
924     // Got a copy. Verify that it's the same as the register we want.
925     Register CopyRHS = RegDef->getOperand(1).getReg();
926     if (CopyRHS != PhysReg) {
927       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
928                            "VReg, cannot tail call.\n");
929       return false;
930     }
931   }
932 
933   return true;
934 }
935 
936 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
937                                      MachineFunction &MF,
938                                      SmallVectorImpl<ArgInfo> &InArgs,
939                                      CCAssignFn &CalleeAssignFnFixed,
940                                      CCAssignFn &CalleeAssignFnVarArg,
941                                      CCAssignFn &CallerAssignFnFixed,
942                                      CCAssignFn &CallerAssignFnVarArg) const {
943   const Function &F = MF.getFunction();
944   CallingConv::ID CalleeCC = Info.CallConv;
945   CallingConv::ID CallerCC = F.getCallingConv();
946 
947   if (CallerCC == CalleeCC)
948     return true;
949 
950   SmallVector<CCValAssign, 16> ArgLocs1;
951   CCState CCInfo1(CalleeCC, false, MF, ArgLocs1, F.getContext());
952   if (!analyzeArgInfo(CCInfo1, InArgs, CalleeAssignFnFixed,
953                       CalleeAssignFnVarArg))
954     return false;
955 
956   SmallVector<CCValAssign, 16> ArgLocs2;
957   CCState CCInfo2(CallerCC, false, MF, ArgLocs2, F.getContext());
958   if (!analyzeArgInfo(CCInfo2, InArgs, CallerAssignFnFixed,
959                       CalleeAssignFnVarArg))
960     return false;
961 
962   // We need the argument locations to match up exactly. If there's more in
963   // one than the other, then we are done.
964   if (ArgLocs1.size() != ArgLocs2.size())
965     return false;
966 
967   // Make sure that each location is passed in exactly the same way.
968   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
969     const CCValAssign &Loc1 = ArgLocs1[i];
970     const CCValAssign &Loc2 = ArgLocs2[i];
971 
972     // We need both of them to be the same. So if one is a register and one
973     // isn't, we're done.
974     if (Loc1.isRegLoc() != Loc2.isRegLoc())
975       return false;
976 
977     if (Loc1.isRegLoc()) {
978       // If they don't have the same register location, we're done.
979       if (Loc1.getLocReg() != Loc2.getLocReg())
980         return false;
981 
982       // They matched, so we can move to the next ArgLoc.
983       continue;
984     }
985 
986     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
987     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
988       return false;
989   }
990 
991   return true;
992 }
993 
994 void CallLowering::ValueHandler::copyArgumentMemory(
995     const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
996     const MachinePointerInfo &DstPtrInfo, Align DstAlign,
997     const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
998     CCValAssign &VA) const {
999   MachineFunction &MF = MIRBuilder.getMF();
1000   MachineMemOperand *SrcMMO = MF.getMachineMemOperand(
1001       SrcPtrInfo,
1002       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize,
1003       SrcAlign);
1004 
1005   MachineMemOperand *DstMMO = MF.getMachineMemOperand(
1006       DstPtrInfo,
1007       MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable,
1008       MemSize, DstAlign);
1009 
1010   const LLT PtrTy = MRI.getType(DstPtr);
1011   const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1012 
1013   auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1014   MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1015 }
1016 
1017 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
1018                                                     CCValAssign &VA,
1019                                                     unsigned MaxSizeBits) {
1020   LLT LocTy{VA.getLocVT()};
1021   LLT ValTy = MRI.getType(ValReg);
1022   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1023     return ValReg;
1024 
1025   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1026     if (MaxSizeBits <= ValTy.getSizeInBits())
1027       return ValReg;
1028     LocTy = LLT::scalar(MaxSizeBits);
1029   }
1030 
1031   switch (VA.getLocInfo()) {
1032   default: break;
1033   case CCValAssign::Full:
1034   case CCValAssign::BCvt:
1035     // FIXME: bitconverting between vector types may or may not be a
1036     // nop in big-endian situations.
1037     return ValReg;
1038   case CCValAssign::AExt: {
1039     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1040     return MIB.getReg(0);
1041   }
1042   case CCValAssign::SExt: {
1043     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1044     MIRBuilder.buildSExt(NewReg, ValReg);
1045     return NewReg;
1046   }
1047   case CCValAssign::ZExt: {
1048     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1049     MIRBuilder.buildZExt(NewReg, ValReg);
1050     return NewReg;
1051   }
1052   }
1053   llvm_unreachable("unable to extend register");
1054 }
1055 
1056 void CallLowering::ValueHandler::anchor() {}
1057 
1058 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA,
1059                                                                 Register SrcReg,
1060                                                                 LLT NarrowTy) {
1061   switch (VA.getLocInfo()) {
1062   case CCValAssign::LocInfo::ZExt: {
1063     return MIRBuilder
1064         .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1065                          NarrowTy.getScalarSizeInBits())
1066         .getReg(0);
1067   }
1068   case CCValAssign::LocInfo::SExt: {
1069     return MIRBuilder
1070         .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1071                          NarrowTy.getScalarSizeInBits())
1072         .getReg(0);
1073     break;
1074   }
1075   default:
1076     return SrcReg;
1077   }
1078 }
1079 
1080 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg,
1081                                                           Register PhysReg,
1082                                                           CCValAssign &VA) {
1083   const LLT LocTy(VA.getLocVT());
1084   const LLT ValTy = MRI.getType(ValVReg);
1085 
1086   if (ValTy.getSizeInBits() == LocTy.getSizeInBits()) {
1087     MIRBuilder.buildCopy(ValVReg, PhysReg);
1088     return;
1089   }
1090 
1091   auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1092   auto Hint = buildExtensionHint(VA, Copy.getReg(0), ValTy);
1093   MIRBuilder.buildTrunc(ValVReg, Hint);
1094 }
1095