1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements some simple delegations needed for call lowering. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/Analysis.h" 15 #include "llvm/CodeGen/GlobalISel/CallLowering.h" 16 #include "llvm/CodeGen/GlobalISel/Utils.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/MachineOperand.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetLowering.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Target/TargetMachine.h" 26 27 #define DEBUG_TYPE "call-lowering" 28 29 using namespace llvm; 30 31 void CallLowering::anchor() {} 32 33 /// Helper function which updates \p Flags when \p AttrFn returns true. 34 static void 35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, 36 const std::function<bool(Attribute::AttrKind)> &AttrFn) { 37 if (AttrFn(Attribute::SExt)) 38 Flags.setSExt(); 39 if (AttrFn(Attribute::ZExt)) 40 Flags.setZExt(); 41 if (AttrFn(Attribute::InReg)) 42 Flags.setInReg(); 43 if (AttrFn(Attribute::StructRet)) 44 Flags.setSRet(); 45 if (AttrFn(Attribute::Nest)) 46 Flags.setNest(); 47 if (AttrFn(Attribute::ByVal)) 48 Flags.setByVal(); 49 if (AttrFn(Attribute::Preallocated)) 50 Flags.setPreallocated(); 51 if (AttrFn(Attribute::InAlloca)) 52 Flags.setInAlloca(); 53 if (AttrFn(Attribute::Returned)) 54 Flags.setReturned(); 55 if (AttrFn(Attribute::SwiftSelf)) 56 Flags.setSwiftSelf(); 57 if (AttrFn(Attribute::SwiftError)) 58 Flags.setSwiftError(); 59 } 60 61 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call, 62 unsigned ArgIdx) const { 63 ISD::ArgFlagsTy Flags; 64 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) { 65 return Call.paramHasAttr(ArgIdx, Attr); 66 }); 67 return Flags; 68 } 69 70 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, 71 const AttributeList &Attrs, 72 unsigned OpIdx) const { 73 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) { 74 return Attrs.hasAttribute(OpIdx, Attr); 75 }); 76 } 77 78 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB, 79 ArrayRef<Register> ResRegs, 80 ArrayRef<ArrayRef<Register>> ArgRegs, 81 Register SwiftErrorVReg, 82 std::function<unsigned()> GetCalleeReg) const { 83 CallLoweringInfo Info; 84 const DataLayout &DL = MIRBuilder.getDataLayout(); 85 MachineFunction &MF = MIRBuilder.getMF(); 86 bool CanBeTailCalled = CB.isTailCall() && 87 isInTailCallPosition(CB, MF.getTarget()) && 88 (MF.getFunction() 89 .getFnAttribute("disable-tail-calls") 90 .getValueAsString() != "true"); 91 92 CallingConv::ID CallConv = CB.getCallingConv(); 93 Type *RetTy = CB.getType(); 94 bool IsVarArg = CB.getFunctionType()->isVarArg(); 95 96 SmallVector<BaseArgInfo, 4> SplitArgs; 97 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL); 98 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg); 99 100 if (!Info.CanLowerReturn) { 101 // Callee requires sret demotion. 102 insertSRetOutgoingArgument(MIRBuilder, CB, Info); 103 104 // The sret demotion isn't compatible with tail-calls, since the sret 105 // argument points into the caller's stack frame. 106 CanBeTailCalled = false; 107 } 108 109 // First step is to marshall all the function's parameters into the correct 110 // physregs and memory locations. Gather the sequence of argument types that 111 // we'll pass to the assigner function. 112 unsigned i = 0; 113 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams(); 114 for (auto &Arg : CB.args()) { 115 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), getAttributesForArgIdx(CB, i), 116 i < NumFixedArgs}; 117 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB); 118 119 // If we have an explicit sret argument that is an Instruction, (i.e., it 120 // might point to function-local memory), we can't meaningfully tail-call. 121 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg)) 122 CanBeTailCalled = false; 123 124 Info.OrigArgs.push_back(OrigArg); 125 ++i; 126 } 127 128 // Try looking through a bitcast from one function type to another. 129 // Commonly happens with calls to objc_msgSend(). 130 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts(); 131 if (const Function *F = dyn_cast<Function>(CalleeV)) 132 Info.Callee = MachineOperand::CreateGA(F, 0); 133 else 134 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false); 135 136 Info.OrigRet = ArgInfo{ResRegs, RetTy, ISD::ArgFlagsTy{}}; 137 if (!Info.OrigRet.Ty->isVoidTy()) 138 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB); 139 140 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees); 141 Info.CallConv = CallConv; 142 Info.SwiftErrorVReg = SwiftErrorVReg; 143 Info.IsMustTailCall = CB.isMustTailCall(); 144 Info.IsTailCall = CanBeTailCalled; 145 Info.IsVarArg = IsVarArg; 146 return lowerCall(MIRBuilder, Info); 147 } 148 149 template <typename FuncInfoTy> 150 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx, 151 const DataLayout &DL, 152 const FuncInfoTy &FuncInfo) const { 153 auto &Flags = Arg.Flags[0]; 154 const AttributeList &Attrs = FuncInfo.getAttributes(); 155 addArgFlagsFromAttributes(Flags, Attrs, OpIdx); 156 157 Align MemAlign; 158 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 159 Type *ElementTy = cast<PointerType>(Arg.Ty)->getElementType(); 160 161 auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType(); 162 Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy)); 163 164 // For ByVal, alignment should be passed from FE. BE will guess if 165 // this info is not there but there are cases it cannot get right. 166 if (auto ParamAlign = FuncInfo.getParamStackAlign(OpIdx - 1)) 167 MemAlign = *ParamAlign; 168 else if ((ParamAlign = FuncInfo.getParamAlign(OpIdx - 1))) 169 MemAlign = *ParamAlign; 170 else 171 MemAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL)); 172 } else if (auto ParamAlign = FuncInfo.getParamStackAlign(OpIdx - 1)) { 173 MemAlign = *ParamAlign; 174 } else { 175 MemAlign = Align(DL.getABITypeAlign(Arg.Ty)); 176 } 177 Flags.setMemAlign(MemAlign); 178 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty)); 179 180 // Don't try to use the returned attribute if the argument is marked as 181 // swiftself, since it won't be passed in x0. 182 if (Flags.isSwiftSelf()) 183 Flags.setReturned(false); 184 } 185 186 template void 187 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 188 const DataLayout &DL, 189 const Function &FuncInfo) const; 190 191 template void 192 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx, 193 const DataLayout &DL, 194 const CallBase &FuncInfo) const; 195 196 void CallLowering::splitToValueTypes(const ArgInfo &OrigArg, 197 SmallVectorImpl<ArgInfo> &SplitArgs, 198 const DataLayout &DL, 199 CallingConv::ID CallConv) const { 200 LLVMContext &Ctx = OrigArg.Ty->getContext(); 201 202 SmallVector<EVT, 4> SplitVTs; 203 SmallVector<uint64_t, 4> Offsets; 204 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0); 205 206 if (SplitVTs.size() == 0) 207 return; 208 209 if (SplitVTs.size() == 1) { 210 // No splitting to do, but we want to replace the original type (e.g. [1 x 211 // double] -> double). 212 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx), 213 OrigArg.Flags[0], OrigArg.IsFixed, 214 OrigArg.OrigValue); 215 return; 216 } 217 218 // Create one ArgInfo for each virtual register in the original ArgInfo. 219 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch"); 220 221 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 222 OrigArg.Ty, CallConv, false); 223 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) { 224 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx); 225 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0], 226 OrigArg.IsFixed); 227 if (NeedsRegBlock) 228 SplitArgs.back().Flags[0].setInConsecutiveRegs(); 229 } 230 231 SplitArgs.back().Flags[0].setInConsecutiveRegsLast(); 232 } 233 234 void CallLowering::unpackRegs(ArrayRef<Register> DstRegs, Register SrcReg, 235 Type *PackedTy, 236 MachineIRBuilder &MIRBuilder) const { 237 assert(DstRegs.size() > 1 && "Nothing to unpack"); 238 239 const DataLayout &DL = MIRBuilder.getDataLayout(); 240 241 SmallVector<LLT, 8> LLTs; 242 SmallVector<uint64_t, 8> Offsets; 243 computeValueLLTs(DL, *PackedTy, LLTs, &Offsets); 244 assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch"); 245 246 for (unsigned i = 0; i < DstRegs.size(); ++i) 247 MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]); 248 } 249 250 /// Pack values \p SrcRegs to cover the vector type result \p DstRegs. 251 static MachineInstrBuilder 252 mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 253 ArrayRef<Register> SrcRegs) { 254 MachineRegisterInfo &MRI = *B.getMRI(); 255 LLT LLTy = MRI.getType(DstRegs[0]); 256 LLT PartLLT = MRI.getType(SrcRegs[0]); 257 258 // Deal with v3s16 split into v2s16 259 LLT LCMTy = getLCMType(LLTy, PartLLT); 260 if (LCMTy == LLTy) { 261 // Common case where no padding is needed. 262 assert(DstRegs.size() == 1); 263 return B.buildConcatVectors(DstRegs[0], SrcRegs); 264 } 265 266 // We need to create an unmerge to the result registers, which may require 267 // widening the original value. 268 Register UnmergeSrcReg; 269 if (LCMTy != PartLLT) { 270 // e.g. A <3 x s16> value was split to <2 x s16> 271 // %register_value0:_(<2 x s16>) 272 // %register_value1:_(<2 x s16>) 273 // %undef:_(<2 x s16>) = G_IMPLICIT_DEF 274 // %concat:_<6 x s16>) = G_CONCAT_VECTORS %reg_value0, %reg_value1, %undef 275 // %dst_reg:_(<3 x s16>), %dead:_(<3 x s16>) = G_UNMERGE_VALUES %concat 276 const int NumWide = LCMTy.getSizeInBits() / PartLLT.getSizeInBits(); 277 Register Undef = B.buildUndef(PartLLT).getReg(0); 278 279 // Build vector of undefs. 280 SmallVector<Register, 8> WidenedSrcs(NumWide, Undef); 281 282 // Replace the first sources with the real registers. 283 std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin()); 284 UnmergeSrcReg = B.buildConcatVectors(LCMTy, WidenedSrcs).getReg(0); 285 } else { 286 // We don't need to widen anything if we're extracting a scalar which was 287 // promoted to a vector e.g. s8 -> v4s8 -> s8 288 assert(SrcRegs.size() == 1); 289 UnmergeSrcReg = SrcRegs[0]; 290 } 291 292 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits(); 293 294 SmallVector<Register, 8> PadDstRegs(NumDst); 295 std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin()); 296 297 // Create the excess dead defs for the unmerge. 298 for (int I = DstRegs.size(); I != NumDst; ++I) 299 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy); 300 301 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg); 302 } 303 304 /// Create a sequence of instructions to combine pieces split into register 305 /// typed values to the original IR value. \p OrigRegs contains the destination 306 /// value registers of type \p LLTy, and \p Regs contains the legalized pieces 307 /// with type \p PartLLT. This is used for incoming values (physregs to vregs). 308 static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef<Register> OrigRegs, 309 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT) { 310 MachineRegisterInfo &MRI = *B.getMRI(); 311 312 // We could just insert a regular copy, but this is unreachable at the moment. 313 assert(LLTy != PartLLT && "identical part types shouldn't reach here"); 314 315 if (PartLLT.isVector() == LLTy.isVector() && 316 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits()) { 317 assert(OrigRegs.size() == 1 && Regs.size() == 1); 318 B.buildTrunc(OrigRegs[0], Regs[0]); 319 return; 320 } 321 322 if (!LLTy.isVector() && !PartLLT.isVector()) { 323 assert(OrigRegs.size() == 1); 324 LLT OrigTy = MRI.getType(OrigRegs[0]); 325 326 unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size(); 327 if (SrcSize == OrigTy.getSizeInBits()) 328 B.buildMerge(OrigRegs[0], Regs); 329 else { 330 auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs); 331 B.buildTrunc(OrigRegs[0], Widened); 332 } 333 334 return; 335 } 336 337 if (PartLLT.isVector()) { 338 assert(OrigRegs.size() == 1 && 339 LLTy.getScalarType() == PartLLT.getElementType()); 340 mergeVectorRegsToResultRegs(B, OrigRegs, Regs); 341 return; 342 } 343 344 assert(LLTy.isVector() && !PartLLT.isVector()); 345 346 LLT DstEltTy = LLTy.getElementType(); 347 348 // Pointer information was discarded. We'll need to coerce some register types 349 // to avoid violating type constraints. 350 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType(); 351 352 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits()); 353 354 if (DstEltTy == PartLLT) { 355 // Vector was trivially scalarized. 356 357 if (RealDstEltTy.isPointer()) { 358 for (Register Reg : Regs) 359 MRI.setType(Reg, RealDstEltTy); 360 } 361 362 B.buildBuildVector(OrigRegs[0], Regs); 363 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) { 364 // Deal with vector with 64-bit elements decomposed to 32-bit 365 // registers. Need to create intermediate 64-bit elements. 366 SmallVector<Register, 8> EltMerges; 367 int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits(); 368 369 assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0); 370 371 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) { 372 auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt)); 373 // Fix the type in case this is really a vector of pointers. 374 MRI.setType(Merge.getReg(0), RealDstEltTy); 375 EltMerges.push_back(Merge.getReg(0)); 376 Regs = Regs.drop_front(PartsPerElt); 377 } 378 379 B.buildBuildVector(OrigRegs[0], EltMerges); 380 } else { 381 // Vector was split, and elements promoted to a wider type. 382 // FIXME: Should handle floating point promotions. 383 LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT); 384 auto BV = B.buildBuildVector(BVType, Regs); 385 B.buildTrunc(OrigRegs[0], BV); 386 } 387 } 388 389 /// Create a sequence of instructions to expand the value in \p SrcReg (of type 390 /// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should 391 /// contain the type of scalar value extension if necessary. 392 /// 393 /// This is used for outgoing values (vregs to physregs) 394 static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef<Register> DstRegs, 395 Register SrcReg, LLT SrcTy, LLT PartTy, 396 unsigned ExtendOp = TargetOpcode::G_ANYEXT) { 397 // We could just insert a regular copy, but this is unreachable at the moment. 398 assert(SrcTy != PartTy && "identical part types shouldn't reach here"); 399 400 const unsigned PartSize = PartTy.getSizeInBits(); 401 402 if (PartTy.isVector() == SrcTy.isVector() && 403 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) { 404 assert(DstRegs.size() == 1); 405 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg}); 406 return; 407 } 408 409 if (SrcTy.isVector() && !PartTy.isVector() && 410 PartSize > SrcTy.getElementType().getSizeInBits()) { 411 // Vector was scalarized, and the elements extended. 412 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg); 413 for (int i = 0, e = DstRegs.size(); i != e; ++i) 414 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i)); 415 return; 416 } 417 418 LLT GCDTy = getGCDType(SrcTy, PartTy); 419 if (GCDTy == PartTy) { 420 // If this already evenly divisible, we can create a simple unmerge. 421 B.buildUnmerge(DstRegs, SrcReg); 422 return; 423 } 424 425 MachineRegisterInfo &MRI = *B.getMRI(); 426 LLT DstTy = MRI.getType(DstRegs[0]); 427 LLT LCMTy = getLCMType(SrcTy, PartTy); 428 429 const unsigned LCMSize = LCMTy.getSizeInBits(); 430 const unsigned DstSize = DstTy.getSizeInBits(); 431 const unsigned SrcSize = SrcTy.getSizeInBits(); 432 433 Register UnmergeSrc = SrcReg; 434 if (LCMSize != SrcSize) { 435 // Widen to the common type. 436 Register Undef = B.buildUndef(SrcTy).getReg(0); 437 SmallVector<Register, 8> MergeParts(1, SrcReg); 438 for (unsigned Size = SrcSize; Size != LCMSize; Size += SrcSize) 439 MergeParts.push_back(Undef); 440 441 UnmergeSrc = B.buildMerge(LCMTy, MergeParts).getReg(0); 442 } 443 444 // Unmerge to the original registers and pad with dead defs. 445 SmallVector<Register, 8> UnmergeResults(DstRegs.begin(), DstRegs.end()); 446 for (unsigned Size = DstSize * DstRegs.size(); Size != LCMSize; 447 Size += DstSize) { 448 UnmergeResults.push_back(MRI.createGenericVirtualRegister(DstTy)); 449 } 450 451 B.buildUnmerge(UnmergeResults, UnmergeSrc); 452 } 453 454 bool CallLowering::handleAssignments(MachineIRBuilder &MIRBuilder, 455 SmallVectorImpl<ArgInfo> &Args, 456 ValueHandler &Handler, 457 CallingConv::ID CallConv, bool IsVarArg, 458 Register ThisReturnReg) const { 459 MachineFunction &MF = MIRBuilder.getMF(); 460 const Function &F = MF.getFunction(); 461 SmallVector<CCValAssign, 16> ArgLocs; 462 463 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext()); 464 return handleAssignments(CCInfo, ArgLocs, MIRBuilder, Args, Handler, 465 ThisReturnReg); 466 } 467 468 static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags) { 469 if (Flags.isSExt()) 470 return TargetOpcode::G_SEXT; 471 if (Flags.isZExt()) 472 return TargetOpcode::G_ZEXT; 473 return TargetOpcode::G_ANYEXT; 474 } 475 476 bool CallLowering::handleAssignments(CCState &CCInfo, 477 SmallVectorImpl<CCValAssign> &ArgLocs, 478 MachineIRBuilder &MIRBuilder, 479 SmallVectorImpl<ArgInfo> &Args, 480 ValueHandler &Handler, 481 Register ThisReturnReg) const { 482 MachineFunction &MF = MIRBuilder.getMF(); 483 MachineRegisterInfo &MRI = MF.getRegInfo(); 484 const Function &F = MF.getFunction(); 485 const DataLayout &DL = F.getParent()->getDataLayout(); 486 487 unsigned NumArgs = Args.size(); 488 for (unsigned i = 0; i != NumArgs; ++i) { 489 EVT CurVT = EVT::getEVT(Args[i].Ty); 490 if (CurVT.isSimple() && 491 !Handler.assignArg(i, CurVT.getSimpleVT(), CurVT.getSimpleVT(), 492 CCValAssign::Full, Args[i], Args[i].Flags[0], 493 CCInfo)) 494 continue; 495 496 MVT NewVT = TLI->getRegisterTypeForCallingConv( 497 F.getContext(), CCInfo.getCallingConv(), EVT(CurVT)); 498 499 // If we need to split the type over multiple regs, check it's a scenario 500 // we currently support. 501 unsigned NumParts = TLI->getNumRegistersForCallingConv( 502 F.getContext(), CCInfo.getCallingConv(), CurVT); 503 504 if (NumParts == 1) { 505 // Try to use the register type if we couldn't assign the VT. 506 if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i], 507 Args[i].Flags[0], CCInfo)) 508 return false; 509 510 // If we couldn't directly assign this part, some casting may be 511 // necessary. Create the new register, but defer inserting the conversion 512 // instructions. 513 assert(Args[i].OrigRegs.empty()); 514 Args[i].OrigRegs.push_back(Args[i].Regs[0]); 515 assert(Args[i].Regs.size() == 1); 516 517 const LLT VATy(NewVT); 518 Args[i].Regs[0] = MRI.createGenericVirtualRegister(VATy); 519 continue; 520 } 521 522 const LLT NewLLT(NewVT); 523 524 // For incoming arguments (physregs to vregs), we could have values in 525 // physregs (or memlocs) which we want to extract and copy to vregs. 526 // During this, we might have to deal with the LLT being split across 527 // multiple regs, so we have to record this information for later. 528 // 529 // If we have outgoing args, then we have the opposite case. We have a 530 // vreg with an LLT which we want to assign to a physical location, and 531 // we might have to record that the value has to be split later. 532 if (Handler.isIncomingArgumentHandler()) { 533 // We're handling an incoming arg which is split over multiple regs. 534 // E.g. passing an s128 on AArch64. 535 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 536 Args[i].OrigRegs.push_back(Args[i].Regs[0]); 537 Args[i].Regs.clear(); 538 Args[i].Flags.clear(); 539 // For each split register, create and assign a vreg that will store 540 // the incoming component of the larger value. These will later be 541 // merged to form the final vreg. 542 for (unsigned Part = 0; Part < NumParts; ++Part) { 543 Register Reg = MRI.createGenericVirtualRegister(NewLLT); 544 ISD::ArgFlagsTy Flags = OrigFlags; 545 if (Part == 0) { 546 Flags.setSplit(); 547 } else { 548 Flags.setOrigAlign(Align(1)); 549 if (Part == NumParts - 1) 550 Flags.setSplitEnd(); 551 } 552 Args[i].Regs.push_back(Reg); 553 Args[i].Flags.push_back(Flags); 554 if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i], 555 Args[i].Flags[Part], CCInfo)) { 556 // Still couldn't assign this smaller part type for some reason. 557 return false; 558 } 559 } 560 } else { 561 assert(Args[i].Regs.size() == 1); 562 563 // This type is passed via multiple registers in the calling convention. 564 // We need to extract the individual parts. 565 assert(Args[i].OrigRegs.empty()); 566 Args[i].OrigRegs.push_back(Args[i].Regs[0]); 567 568 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0]; 569 // We're going to replace the regs and flags with the split ones. 570 Args[i].Regs.clear(); 571 Args[i].Flags.clear(); 572 for (unsigned PartIdx = 0; PartIdx < NumParts; ++PartIdx) { 573 ISD::ArgFlagsTy Flags = OrigFlags; 574 if (PartIdx == 0) { 575 Flags.setSplit(); 576 } else { 577 Flags.setOrigAlign(Align(1)); 578 if (PartIdx == NumParts - 1) 579 Flags.setSplitEnd(); 580 } 581 582 // TODO: Also check if there is a valid extension that preserves the 583 // bits. However currently this call lowering doesn't support non-exact 584 // split parts, so that can't be tested. 585 if (OrigFlags.isReturned() && 586 (NumParts * NewVT.getSizeInBits() != CurVT.getSizeInBits())) { 587 Flags.setReturned(false); 588 } 589 590 Register NewReg = MRI.createGenericVirtualRegister(NewLLT); 591 592 Args[i].Regs.push_back(NewReg); 593 Args[i].Flags.push_back(Flags); 594 if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, 595 Args[i], Args[i].Flags[PartIdx], CCInfo)) 596 return false; 597 } 598 } 599 } 600 601 for (unsigned i = 0, e = Args.size(), j = 0; i != e; ++i, ++j) { 602 assert(j < ArgLocs.size() && "Skipped too many arg locs"); 603 604 CCValAssign &VA = ArgLocs[j]; 605 assert(VA.getValNo() == i && "Location doesn't correspond to current arg"); 606 607 if (VA.needsCustom()) { 608 unsigned NumArgRegs = 609 Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j)); 610 if (!NumArgRegs) 611 return false; 612 j += NumArgRegs; 613 continue; 614 } 615 616 EVT VAVT = VA.getValVT(); 617 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL); 618 const LLT VATy(VAVT.getSimpleVT()); 619 620 // Expected to be multiple regs for a single incoming arg. 621 // There should be Regs.size() ArgLocs per argument. 622 unsigned NumArgRegs = Args[i].Regs.size(); 623 assert((j + (NumArgRegs - 1)) < ArgLocs.size() && 624 "Too many regs for number of args"); 625 626 // Coerce into outgoing value types before register assignment. 627 if (!Handler.isIncomingArgumentHandler() && OrigTy != VATy) { 628 assert(Args[i].OrigRegs.size() == 1); 629 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy, 630 VATy, extendOpFromFlags(Args[i].Flags[0])); 631 } 632 633 for (unsigned Part = 0; Part < NumArgRegs; ++Part) { 634 Register ArgReg = Args[i].Regs[Part]; 635 // There should be Regs.size() ArgLocs per argument. 636 VA = ArgLocs[j + Part]; 637 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part]; 638 639 if (VA.isMemLoc() && !Flags.isByVal()) { 640 // Individual pieces may have been spilled to the stack and others 641 // passed in registers. 642 643 // FIXME: Use correct address space for pointer size 644 EVT LocVT = VA.getValVT(); 645 unsigned MemSize = LocVT == MVT::iPTR ? DL.getPointerSize() 646 : LocVT.getStoreSize(); 647 unsigned Offset = VA.getLocMemOffset(); 648 MachinePointerInfo MPO; 649 Register StackAddr = 650 Handler.getStackAddress(MemSize, Offset, MPO, Flags); 651 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemSize, MPO, 652 VA); 653 continue; 654 } 655 656 if (VA.isMemLoc() && Flags.isByVal()) { 657 assert(Args[i].Regs.size() == 1 && 658 "didn't expect split byval pointer"); 659 660 if (Handler.isIncomingArgumentHandler()) { 661 // We just need to copy the frame index value to the pointer. 662 MachinePointerInfo MPO; 663 Register StackAddr = Handler.getStackAddress( 664 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags); 665 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr); 666 } else { 667 // For outgoing byval arguments, insert the implicit copy byval 668 // implies, such that writes in the callee do not modify the caller's 669 // value. 670 uint64_t MemSize = Flags.getByValSize(); 671 int64_t Offset = VA.getLocMemOffset(); 672 673 MachinePointerInfo DstMPO; 674 Register StackAddr = 675 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags); 676 677 MachinePointerInfo SrcMPO(Args[i].OrigValue); 678 if (!Args[i].OrigValue) { 679 // We still need to accurately track the stack address space if we 680 // don't know the underlying value. 681 const LLT PtrTy = MRI.getType(StackAddr); 682 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace()); 683 } 684 685 Align DstAlign = std::max(Flags.getNonZeroByValAlign(), 686 inferAlignFromPtrInfo(MF, DstMPO)); 687 688 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(), 689 inferAlignFromPtrInfo(MF, SrcMPO)); 690 691 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0], 692 DstMPO, DstAlign, SrcMPO, SrcAlign, 693 MemSize, VA); 694 } 695 continue; 696 } 697 698 assert(!VA.needsCustom() && "custom loc should have been handled already"); 699 700 if (i == 0 && ThisReturnReg.isValid() && 701 Handler.isIncomingArgumentHandler() && 702 isTypeIsValidForThisReturn(VAVT)) { 703 Handler.assignValueToReg(Args[i].Regs[i], ThisReturnReg, VA); 704 continue; 705 } 706 707 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA); 708 } 709 710 // Now that all pieces have been assigned, re-pack the register typed values 711 // into the original value typed registers. 712 if (Handler.isIncomingArgumentHandler() && OrigTy != VATy) { 713 // Merge the split registers into the expected larger result vregs of 714 // the original call. 715 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy, 716 VATy); 717 } 718 719 j += NumArgRegs - 1; 720 } 721 722 return true; 723 } 724 725 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, 726 ArrayRef<Register> VRegs, Register DemoteReg, 727 int FI) const { 728 MachineFunction &MF = MIRBuilder.getMF(); 729 MachineRegisterInfo &MRI = MF.getRegInfo(); 730 const DataLayout &DL = MF.getDataLayout(); 731 732 SmallVector<EVT, 4> SplitVTs; 733 SmallVector<uint64_t, 4> Offsets; 734 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 735 736 assert(VRegs.size() == SplitVTs.size()); 737 738 unsigned NumValues = SplitVTs.size(); 739 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 740 Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace()); 741 LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL); 742 743 MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); 744 745 for (unsigned I = 0; I < NumValues; ++I) { 746 Register Addr; 747 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 748 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 749 MRI.getType(VRegs[I]).getSizeInBytes(), 750 commonAlignment(BaseAlign, Offsets[I])); 751 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO); 752 } 753 } 754 755 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, 756 ArrayRef<Register> VRegs, 757 Register DemoteReg) const { 758 MachineFunction &MF = MIRBuilder.getMF(); 759 MachineRegisterInfo &MRI = MF.getRegInfo(); 760 const DataLayout &DL = MF.getDataLayout(); 761 762 SmallVector<EVT, 4> SplitVTs; 763 SmallVector<uint64_t, 4> Offsets; 764 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0); 765 766 assert(VRegs.size() == SplitVTs.size()); 767 768 unsigned NumValues = SplitVTs.size(); 769 Align BaseAlign = DL.getPrefTypeAlign(RetTy); 770 unsigned AS = DL.getAllocaAddrSpace(); 771 LLT OffsetLLTy = 772 getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL); 773 774 MachinePointerInfo PtrInfo(AS); 775 776 for (unsigned I = 0; I < NumValues; ++I) { 777 Register Addr; 778 MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]); 779 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 780 MRI.getType(VRegs[I]).getSizeInBytes(), 781 commonAlignment(BaseAlign, Offsets[I])); 782 MIRBuilder.buildStore(VRegs[I], Addr, *MMO); 783 } 784 } 785 786 void CallLowering::insertSRetIncomingArgument( 787 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg, 788 MachineRegisterInfo &MRI, const DataLayout &DL) const { 789 unsigned AS = DL.getAllocaAddrSpace(); 790 DemoteReg = MRI.createGenericVirtualRegister( 791 LLT::pointer(AS, DL.getPointerSizeInBits(AS))); 792 793 Type *PtrTy = PointerType::get(F.getReturnType(), AS); 794 795 SmallVector<EVT, 1> ValueVTs; 796 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs); 797 798 // NOTE: Assume that a pointer won't get split into more than one VT. 799 assert(ValueVTs.size() == 1); 800 801 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext())); 802 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F); 803 DemoteArg.Flags[0].setSRet(); 804 SplitArgs.insert(SplitArgs.begin(), DemoteArg); 805 } 806 807 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, 808 const CallBase &CB, 809 CallLoweringInfo &Info) const { 810 const DataLayout &DL = MIRBuilder.getDataLayout(); 811 Type *RetTy = CB.getType(); 812 unsigned AS = DL.getAllocaAddrSpace(); 813 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 814 815 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject( 816 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false); 817 818 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0); 819 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS)); 820 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB); 821 DemoteArg.Flags[0].setSRet(); 822 823 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg); 824 Info.DemoteStackIndex = FI; 825 Info.DemoteRegister = DemoteReg; 826 } 827 828 bool CallLowering::checkReturn(CCState &CCInfo, 829 SmallVectorImpl<BaseArgInfo> &Outs, 830 CCAssignFn *Fn) const { 831 for (unsigned I = 0, E = Outs.size(); I < E; ++I) { 832 MVT VT = MVT::getVT(Outs[I].Ty); 833 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo)) 834 return false; 835 } 836 return true; 837 } 838 839 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy, 840 AttributeList Attrs, 841 SmallVectorImpl<BaseArgInfo> &Outs, 842 const DataLayout &DL) const { 843 LLVMContext &Context = RetTy->getContext(); 844 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 845 846 SmallVector<EVT, 4> SplitVTs; 847 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs); 848 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex); 849 850 for (EVT VT : SplitVTs) { 851 unsigned NumParts = 852 TLI->getNumRegistersForCallingConv(Context, CallConv, VT); 853 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT); 854 Type *PartTy = EVT(RegVT).getTypeForEVT(Context); 855 856 for (unsigned I = 0; I < NumParts; ++I) { 857 Outs.emplace_back(PartTy, Flags); 858 } 859 } 860 } 861 862 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const { 863 const auto &F = MF.getFunction(); 864 Type *ReturnType = F.getReturnType(); 865 CallingConv::ID CallConv = F.getCallingConv(); 866 867 SmallVector<BaseArgInfo, 4> SplitArgs; 868 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs, 869 MF.getDataLayout()); 870 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg()); 871 } 872 873 bool CallLowering::analyzeArgInfo(CCState &CCState, 874 SmallVectorImpl<ArgInfo> &Args, 875 CCAssignFn &AssignFnFixed, 876 CCAssignFn &AssignFnVarArg) const { 877 for (unsigned i = 0, e = Args.size(); i < e; ++i) { 878 MVT VT = MVT::getVT(Args[i].Ty); 879 CCAssignFn &Fn = Args[i].IsFixed ? AssignFnFixed : AssignFnVarArg; 880 if (Fn(i, VT, VT, CCValAssign::Full, Args[i].Flags[0], CCState)) { 881 // Bail out on anything we can't handle. 882 LLVM_DEBUG(dbgs() << "Cannot analyze " << EVT(VT).getEVTString() 883 << " (arg number = " << i << "\n"); 884 return false; 885 } 886 } 887 return true; 888 } 889 890 bool CallLowering::parametersInCSRMatch( 891 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, 892 const SmallVectorImpl<CCValAssign> &OutLocs, 893 const SmallVectorImpl<ArgInfo> &OutArgs) const { 894 for (unsigned i = 0; i < OutLocs.size(); ++i) { 895 auto &ArgLoc = OutLocs[i]; 896 // If it's not a register, it's fine. 897 if (!ArgLoc.isRegLoc()) 898 continue; 899 900 MCRegister PhysReg = ArgLoc.getLocReg(); 901 902 // Only look at callee-saved registers. 903 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg)) 904 continue; 905 906 LLVM_DEBUG( 907 dbgs() 908 << "... Call has an argument passed in a callee-saved register.\n"); 909 910 // Check if it was copied from. 911 const ArgInfo &OutInfo = OutArgs[i]; 912 913 if (OutInfo.Regs.size() > 1) { 914 LLVM_DEBUG( 915 dbgs() << "... Cannot handle arguments in multiple registers.\n"); 916 return false; 917 } 918 919 // Check if we copy the register, walking through copies from virtual 920 // registers. Note that getDefIgnoringCopies does not ignore copies from 921 // physical registers. 922 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI); 923 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) { 924 LLVM_DEBUG( 925 dbgs() 926 << "... Parameter was not copied into a VReg, cannot tail call.\n"); 927 return false; 928 } 929 930 // Got a copy. Verify that it's the same as the register we want. 931 Register CopyRHS = RegDef->getOperand(1).getReg(); 932 if (CopyRHS != PhysReg) { 933 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into " 934 "VReg, cannot tail call.\n"); 935 return false; 936 } 937 } 938 939 return true; 940 } 941 942 bool CallLowering::resultsCompatible(CallLoweringInfo &Info, 943 MachineFunction &MF, 944 SmallVectorImpl<ArgInfo> &InArgs, 945 CCAssignFn &CalleeAssignFnFixed, 946 CCAssignFn &CalleeAssignFnVarArg, 947 CCAssignFn &CallerAssignFnFixed, 948 CCAssignFn &CallerAssignFnVarArg) const { 949 const Function &F = MF.getFunction(); 950 CallingConv::ID CalleeCC = Info.CallConv; 951 CallingConv::ID CallerCC = F.getCallingConv(); 952 953 if (CallerCC == CalleeCC) 954 return true; 955 956 SmallVector<CCValAssign, 16> ArgLocs1; 957 CCState CCInfo1(CalleeCC, false, MF, ArgLocs1, F.getContext()); 958 if (!analyzeArgInfo(CCInfo1, InArgs, CalleeAssignFnFixed, 959 CalleeAssignFnVarArg)) 960 return false; 961 962 SmallVector<CCValAssign, 16> ArgLocs2; 963 CCState CCInfo2(CallerCC, false, MF, ArgLocs2, F.getContext()); 964 if (!analyzeArgInfo(CCInfo2, InArgs, CallerAssignFnFixed, 965 CalleeAssignFnVarArg)) 966 return false; 967 968 // We need the argument locations to match up exactly. If there's more in 969 // one than the other, then we are done. 970 if (ArgLocs1.size() != ArgLocs2.size()) 971 return false; 972 973 // Make sure that each location is passed in exactly the same way. 974 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) { 975 const CCValAssign &Loc1 = ArgLocs1[i]; 976 const CCValAssign &Loc2 = ArgLocs2[i]; 977 978 // We need both of them to be the same. So if one is a register and one 979 // isn't, we're done. 980 if (Loc1.isRegLoc() != Loc2.isRegLoc()) 981 return false; 982 983 if (Loc1.isRegLoc()) { 984 // If they don't have the same register location, we're done. 985 if (Loc1.getLocReg() != Loc2.getLocReg()) 986 return false; 987 988 // They matched, so we can move to the next ArgLoc. 989 continue; 990 } 991 992 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match. 993 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset()) 994 return false; 995 } 996 997 return true; 998 } 999 1000 void CallLowering::ValueHandler::copyArgumentMemory( 1001 const ArgInfo &Arg, Register DstPtr, Register SrcPtr, 1002 const MachinePointerInfo &DstPtrInfo, Align DstAlign, 1003 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, 1004 CCValAssign &VA) const { 1005 MachineFunction &MF = MIRBuilder.getMF(); 1006 MachineMemOperand *SrcMMO = MF.getMachineMemOperand( 1007 SrcPtrInfo, 1008 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable, MemSize, 1009 SrcAlign); 1010 1011 MachineMemOperand *DstMMO = MF.getMachineMemOperand( 1012 DstPtrInfo, 1013 MachineMemOperand::MOStore | MachineMemOperand::MODereferenceable, 1014 MemSize, DstAlign); 1015 1016 const LLT PtrTy = MRI.getType(DstPtr); 1017 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits()); 1018 1019 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize); 1020 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO); 1021 } 1022 1023 Register CallLowering::ValueHandler::extendRegister(Register ValReg, 1024 CCValAssign &VA, 1025 unsigned MaxSizeBits) { 1026 LLT LocTy{VA.getLocVT()}; 1027 LLT ValTy = MRI.getType(ValReg); 1028 if (LocTy.getSizeInBits() == ValTy.getSizeInBits()) 1029 return ValReg; 1030 1031 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) { 1032 if (MaxSizeBits <= ValTy.getSizeInBits()) 1033 return ValReg; 1034 LocTy = LLT::scalar(MaxSizeBits); 1035 } 1036 1037 switch (VA.getLocInfo()) { 1038 default: break; 1039 case CCValAssign::Full: 1040 case CCValAssign::BCvt: 1041 // FIXME: bitconverting between vector types may or may not be a 1042 // nop in big-endian situations. 1043 return ValReg; 1044 case CCValAssign::AExt: { 1045 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg); 1046 return MIB.getReg(0); 1047 } 1048 case CCValAssign::SExt: { 1049 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1050 MIRBuilder.buildSExt(NewReg, ValReg); 1051 return NewReg; 1052 } 1053 case CCValAssign::ZExt: { 1054 Register NewReg = MRI.createGenericVirtualRegister(LocTy); 1055 MIRBuilder.buildZExt(NewReg, ValReg); 1056 return NewReg; 1057 } 1058 } 1059 llvm_unreachable("unable to extend register"); 1060 } 1061 1062 void CallLowering::ValueHandler::anchor() {} 1063 1064 Register CallLowering::IncomingValueHandler::buildExtensionHint(CCValAssign &VA, 1065 Register SrcReg, 1066 LLT NarrowTy) { 1067 switch (VA.getLocInfo()) { 1068 case CCValAssign::LocInfo::ZExt: { 1069 return MIRBuilder 1070 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1071 NarrowTy.getScalarSizeInBits()) 1072 .getReg(0); 1073 } 1074 case CCValAssign::LocInfo::SExt: { 1075 return MIRBuilder 1076 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg, 1077 NarrowTy.getScalarSizeInBits()) 1078 .getReg(0); 1079 break; 1080 } 1081 default: 1082 return SrcReg; 1083 } 1084 } 1085 1086 void CallLowering::IncomingValueHandler::assignValueToReg(Register ValVReg, 1087 Register PhysReg, 1088 CCValAssign &VA) { 1089 const LLT LocTy(VA.getLocVT()); 1090 const LLT ValTy = MRI.getType(ValVReg); 1091 1092 if (ValTy.getSizeInBits() == LocTy.getSizeInBits()) { 1093 MIRBuilder.buildCopy(ValVReg, PhysReg); 1094 return; 1095 } 1096 1097 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg); 1098 auto Hint = buildExtensionHint(VA, Copy.getReg(0), ValTy); 1099 MIRBuilder.buildTrunc(ValVReg, Hint); 1100 } 1101