1 //===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass tries to expand memcmp() calls into optimally-sized loads and
10 // compares for the target.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
17 #include "llvm/Analysis/ProfileSummaryInfo.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/CodeGen/TargetLowering.h"
22 #include "llvm/CodeGen/TargetPassConfig.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/InitializePasses.h"
26 #include "llvm/Transforms/Utils/SizeOpts.h"
27 
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "expandmemcmp"
31 
32 STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
33 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
34 STATISTIC(NumMemCmpGreaterThanMax,
35           "Number of memcmp calls with size greater than max size");
36 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
37 
38 static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock(
39     "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
40     cl::desc("The number of loads per basic block for inline expansion of "
41              "memcmp that is only being compared against zero."));
42 
43 static cl::opt<unsigned> MaxLoadsPerMemcmp(
44     "max-loads-per-memcmp", cl::Hidden,
45     cl::desc("Set maximum number of loads used in expanded memcmp"));
46 
47 static cl::opt<unsigned> MaxLoadsPerMemcmpOptSize(
48     "max-loads-per-memcmp-opt-size", cl::Hidden,
49     cl::desc("Set maximum number of loads used in expanded memcmp for -Os/Oz"));
50 
51 namespace {
52 
53 
54 // This class provides helper functions to expand a memcmp library call into an
55 // inline expansion.
56 class MemCmpExpansion {
57   struct ResultBlock {
58     BasicBlock *BB = nullptr;
59     PHINode *PhiSrc1 = nullptr;
60     PHINode *PhiSrc2 = nullptr;
61 
62     ResultBlock() = default;
63   };
64 
65   CallInst *const CI;
66   ResultBlock ResBlock;
67   const uint64_t Size;
68   unsigned MaxLoadSize;
69   uint64_t NumLoadsNonOneByte;
70   const uint64_t NumLoadsPerBlockForZeroCmp;
71   std::vector<BasicBlock *> LoadCmpBlocks;
72   BasicBlock *EndBlock;
73   PHINode *PhiRes;
74   const bool IsUsedForZeroCmp;
75   const DataLayout &DL;
76   IRBuilder<> Builder;
77   // Represents the decomposition in blocks of the expansion. For example,
78   // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
79   // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {1, 32}.
80   struct LoadEntry {
81     LoadEntry(unsigned LoadSize, uint64_t Offset)
82         : LoadSize(LoadSize), Offset(Offset) {
83     }
84 
85     // The size of the load for this block, in bytes.
86     unsigned LoadSize;
87     // The offset of this load from the base pointer, in bytes.
88     uint64_t Offset;
89   };
90   using LoadEntryVector = SmallVector<LoadEntry, 8>;
91   LoadEntryVector LoadSequence;
92 
93   void createLoadCmpBlocks();
94   void createResultBlock();
95   void setupResultBlockPHINodes();
96   void setupEndBlockPHINodes();
97   Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex);
98   void emitLoadCompareBlock(unsigned BlockIndex);
99   void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
100                                          unsigned &LoadIndex);
101   void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned OffsetBytes);
102   void emitMemCmpResultBlock();
103   Value *getMemCmpExpansionZeroCase();
104   Value *getMemCmpEqZeroOneBlock();
105   Value *getMemCmpOneBlock();
106   struct LoadPair {
107     Value *Lhs = nullptr;
108     Value *Rhs = nullptr;
109   };
110   LoadPair getLoadPair(Type *LoadSizeType, bool NeedsBSwap, Type *CmpSizeType,
111                        unsigned OffsetBytes);
112 
113   static LoadEntryVector
114   computeGreedyLoadSequence(uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
115                             unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte);
116   static LoadEntryVector
117   computeOverlappingLoadSequence(uint64_t Size, unsigned MaxLoadSize,
118                                  unsigned MaxNumLoads,
119                                  unsigned &NumLoadsNonOneByte);
120 
121 public:
122   MemCmpExpansion(CallInst *CI, uint64_t Size,
123                   const TargetTransformInfo::MemCmpExpansionOptions &Options,
124                   const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout);
125 
126   unsigned getNumBlocks();
127   uint64_t getNumLoads() const { return LoadSequence.size(); }
128 
129   Value *getMemCmpExpansion();
130 };
131 
132 MemCmpExpansion::LoadEntryVector MemCmpExpansion::computeGreedyLoadSequence(
133     uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
134     const unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte) {
135   NumLoadsNonOneByte = 0;
136   LoadEntryVector LoadSequence;
137   uint64_t Offset = 0;
138   while (Size && !LoadSizes.empty()) {
139     const unsigned LoadSize = LoadSizes.front();
140     const uint64_t NumLoadsForThisSize = Size / LoadSize;
141     if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) {
142       // Do not expand if the total number of loads is larger than what the
143       // target allows. Note that it's important that we exit before completing
144       // the expansion to avoid using a ton of memory to store the expansion for
145       // large sizes.
146       return {};
147     }
148     if (NumLoadsForThisSize > 0) {
149       for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) {
150         LoadSequence.push_back({LoadSize, Offset});
151         Offset += LoadSize;
152       }
153       if (LoadSize > 1)
154         ++NumLoadsNonOneByte;
155       Size = Size % LoadSize;
156     }
157     LoadSizes = LoadSizes.drop_front();
158   }
159   return LoadSequence;
160 }
161 
162 MemCmpExpansion::LoadEntryVector
163 MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size,
164                                                 const unsigned MaxLoadSize,
165                                                 const unsigned MaxNumLoads,
166                                                 unsigned &NumLoadsNonOneByte) {
167   // These are already handled by the greedy approach.
168   if (Size < 2 || MaxLoadSize < 2)
169     return {};
170 
171   // We try to do as many non-overlapping loads as possible starting from the
172   // beginning.
173   const uint64_t NumNonOverlappingLoads = Size / MaxLoadSize;
174   assert(NumNonOverlappingLoads && "there must be at least one load");
175   // There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with
176   // an overlapping load.
177   Size = Size - NumNonOverlappingLoads * MaxLoadSize;
178   // Bail if we do not need an overloapping store, this is already handled by
179   // the greedy approach.
180   if (Size == 0)
181     return {};
182   // Bail if the number of loads (non-overlapping + potential overlapping one)
183   // is larger than the max allowed.
184   if ((NumNonOverlappingLoads + 1) > MaxNumLoads)
185     return {};
186 
187   // Add non-overlapping loads.
188   LoadEntryVector LoadSequence;
189   uint64_t Offset = 0;
190   for (uint64_t I = 0; I < NumNonOverlappingLoads; ++I) {
191     LoadSequence.push_back({MaxLoadSize, Offset});
192     Offset += MaxLoadSize;
193   }
194 
195   // Add the last overlapping load.
196   assert(Size > 0 && Size < MaxLoadSize && "broken invariant");
197   LoadSequence.push_back({MaxLoadSize, Offset - (MaxLoadSize - Size)});
198   NumLoadsNonOneByte = 1;
199   return LoadSequence;
200 }
201 
202 // Initialize the basic block structure required for expansion of memcmp call
203 // with given maximum load size and memcmp size parameter.
204 // This structure includes:
205 // 1. A list of load compare blocks - LoadCmpBlocks.
206 // 2. An EndBlock, split from original instruction point, which is the block to
207 // return from.
208 // 3. ResultBlock, block to branch to for early exit when a
209 // LoadCmpBlock finds a difference.
210 MemCmpExpansion::MemCmpExpansion(
211     CallInst *const CI, uint64_t Size,
212     const TargetTransformInfo::MemCmpExpansionOptions &Options,
213     const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout)
214     : CI(CI), Size(Size), MaxLoadSize(0), NumLoadsNonOneByte(0),
215       NumLoadsPerBlockForZeroCmp(Options.NumLoadsPerBlock),
216       IsUsedForZeroCmp(IsUsedForZeroCmp), DL(TheDataLayout), Builder(CI) {
217   assert(Size > 0 && "zero blocks");
218   // Scale the max size down if the target can load more bytes than we need.
219   llvm::ArrayRef<unsigned> LoadSizes(Options.LoadSizes);
220   while (!LoadSizes.empty() && LoadSizes.front() > Size) {
221     LoadSizes = LoadSizes.drop_front();
222   }
223   assert(!LoadSizes.empty() && "cannot load Size bytes");
224   MaxLoadSize = LoadSizes.front();
225   // Compute the decomposition.
226   unsigned GreedyNumLoadsNonOneByte = 0;
227   LoadSequence = computeGreedyLoadSequence(Size, LoadSizes, Options.MaxNumLoads,
228                                            GreedyNumLoadsNonOneByte);
229   NumLoadsNonOneByte = GreedyNumLoadsNonOneByte;
230   assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
231   // If we allow overlapping loads and the load sequence is not already optimal,
232   // use overlapping loads.
233   if (Options.AllowOverlappingLoads &&
234       (LoadSequence.empty() || LoadSequence.size() > 2)) {
235     unsigned OverlappingNumLoadsNonOneByte = 0;
236     auto OverlappingLoads = computeOverlappingLoadSequence(
237         Size, MaxLoadSize, Options.MaxNumLoads, OverlappingNumLoadsNonOneByte);
238     if (!OverlappingLoads.empty() &&
239         (LoadSequence.empty() ||
240          OverlappingLoads.size() < LoadSequence.size())) {
241       LoadSequence = OverlappingLoads;
242       NumLoadsNonOneByte = OverlappingNumLoadsNonOneByte;
243     }
244   }
245   assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
246 }
247 
248 unsigned MemCmpExpansion::getNumBlocks() {
249   if (IsUsedForZeroCmp)
250     return getNumLoads() / NumLoadsPerBlockForZeroCmp +
251            (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0);
252   return getNumLoads();
253 }
254 
255 void MemCmpExpansion::createLoadCmpBlocks() {
256   for (unsigned i = 0; i < getNumBlocks(); i++) {
257     BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
258                                         EndBlock->getParent(), EndBlock);
259     LoadCmpBlocks.push_back(BB);
260   }
261 }
262 
263 void MemCmpExpansion::createResultBlock() {
264   ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
265                                    EndBlock->getParent(), EndBlock);
266 }
267 
268 MemCmpExpansion::LoadPair MemCmpExpansion::getLoadPair(Type *LoadSizeType,
269                                                        bool NeedsBSwap,
270                                                        Type *CmpSizeType,
271                                                        unsigned OffsetBytes) {
272   // Get the memory source at offset `OffsetBytes`.
273   Value *LhsSource = CI->getArgOperand(0);
274   Value *RhsSource = CI->getArgOperand(1);
275   if (OffsetBytes > 0) {
276     auto *ByteType = Type::getInt8Ty(CI->getContext());
277     LhsSource = Builder.CreateConstGEP1_64(
278         ByteType, Builder.CreateBitCast(LhsSource, ByteType->getPointerTo()),
279         OffsetBytes);
280     RhsSource = Builder.CreateConstGEP1_64(
281         ByteType, Builder.CreateBitCast(RhsSource, ByteType->getPointerTo()),
282         OffsetBytes);
283   }
284   LhsSource = Builder.CreateBitCast(LhsSource, LoadSizeType->getPointerTo());
285   RhsSource = Builder.CreateBitCast(RhsSource, LoadSizeType->getPointerTo());
286 
287   // Create a constant or a load from the source.
288   Value *Lhs = nullptr;
289   if (auto *C = dyn_cast<Constant>(LhsSource))
290     Lhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL);
291   if (!Lhs)
292     Lhs = Builder.CreateLoad(LoadSizeType, LhsSource);
293 
294   Value *Rhs = nullptr;
295   if (auto *C = dyn_cast<Constant>(RhsSource))
296     Rhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL);
297   if (!Rhs)
298     Rhs = Builder.CreateLoad(LoadSizeType, RhsSource);
299 
300   // Swap bytes if required.
301   if (NeedsBSwap) {
302     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
303                                                 Intrinsic::bswap, LoadSizeType);
304     Lhs = Builder.CreateCall(Bswap, Lhs);
305     Rhs = Builder.CreateCall(Bswap, Rhs);
306   }
307 
308   // Zero extend if required.
309   if (CmpSizeType != nullptr && CmpSizeType != LoadSizeType) {
310     Lhs = Builder.CreateZExt(Lhs, CmpSizeType);
311     Rhs = Builder.CreateZExt(Rhs, CmpSizeType);
312   }
313   return {Lhs, Rhs};
314 }
315 
316 // This function creates the IR instructions for loading and comparing 1 byte.
317 // It loads 1 byte from each source of the memcmp parameters with the given
318 // GEPIndex. It then subtracts the two loaded values and adds this result to the
319 // final phi node for selecting the memcmp result.
320 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex,
321                                                unsigned OffsetBytes) {
322   Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
323   const LoadPair Loads =
324       getLoadPair(Type::getInt8Ty(CI->getContext()), /*NeedsBSwap=*/false,
325                   Type::getInt32Ty(CI->getContext()), OffsetBytes);
326   Value *Diff = Builder.CreateSub(Loads.Lhs, Loads.Rhs);
327 
328   PhiRes->addIncoming(Diff, LoadCmpBlocks[BlockIndex]);
329 
330   if (BlockIndex < (LoadCmpBlocks.size() - 1)) {
331     // Early exit branch if difference found to EndBlock. Otherwise, continue to
332     // next LoadCmpBlock,
333     Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
334                                     ConstantInt::get(Diff->getType(), 0));
335     BranchInst *CmpBr =
336         BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp);
337     Builder.Insert(CmpBr);
338   } else {
339     // The last block has an unconditional branch to EndBlock.
340     BranchInst *CmpBr = BranchInst::Create(EndBlock);
341     Builder.Insert(CmpBr);
342   }
343 }
344 
345 /// Generate an equality comparison for one or more pairs of loaded values.
346 /// This is used in the case where the memcmp() call is compared equal or not
347 /// equal to zero.
348 Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex,
349                                             unsigned &LoadIndex) {
350   assert(LoadIndex < getNumLoads() &&
351          "getCompareLoadPairs() called with no remaining loads");
352   std::vector<Value *> XorList, OrList;
353   Value *Diff = nullptr;
354 
355   const unsigned NumLoads =
356       std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp);
357 
358   // For a single-block expansion, start inserting before the memcmp call.
359   if (LoadCmpBlocks.empty())
360     Builder.SetInsertPoint(CI);
361   else
362     Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
363 
364   Value *Cmp = nullptr;
365   // If we have multiple loads per block, we need to generate a composite
366   // comparison using xor+or. The type for the combinations is the largest load
367   // type.
368   IntegerType *const MaxLoadType =
369       NumLoads == 1 ? nullptr
370                     : IntegerType::get(CI->getContext(), MaxLoadSize * 8);
371   for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) {
372     const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex];
373     const LoadPair Loads = getLoadPair(
374         IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8),
375         /*NeedsBSwap=*/false, MaxLoadType, CurLoadEntry.Offset);
376 
377     if (NumLoads != 1) {
378       // If we have multiple loads per block, we need to generate a composite
379       // comparison using xor+or.
380       Diff = Builder.CreateXor(Loads.Lhs, Loads.Rhs);
381       Diff = Builder.CreateZExt(Diff, MaxLoadType);
382       XorList.push_back(Diff);
383     } else {
384       // If there's only one load per block, we just compare the loaded values.
385       Cmp = Builder.CreateICmpNE(Loads.Lhs, Loads.Rhs);
386     }
387   }
388 
389   auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
390     std::vector<Value *> OutList;
391     for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
392       Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
393       OutList.push_back(Or);
394     }
395     if (InList.size() % 2 != 0)
396       OutList.push_back(InList.back());
397     return OutList;
398   };
399 
400   if (!Cmp) {
401     // Pairwise OR the XOR results.
402     OrList = pairWiseOr(XorList);
403 
404     // Pairwise OR the OR results until one result left.
405     while (OrList.size() != 1) {
406       OrList = pairWiseOr(OrList);
407     }
408 
409     assert(Diff && "Failed to find comparison diff");
410     Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
411   }
412 
413   return Cmp;
414 }
415 
416 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
417                                                         unsigned &LoadIndex) {
418   Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex);
419 
420   BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
421                            ? EndBlock
422                            : LoadCmpBlocks[BlockIndex + 1];
423   // Early exit branch if difference found to ResultBlock. Otherwise,
424   // continue to next LoadCmpBlock or EndBlock.
425   BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
426   Builder.Insert(CmpBr);
427 
428   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
429   // since early exit to ResultBlock was not taken (no difference was found in
430   // any of the bytes).
431   if (BlockIndex == LoadCmpBlocks.size() - 1) {
432     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
433     PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
434   }
435 }
436 
437 // This function creates the IR intructions for loading and comparing using the
438 // given LoadSize. It loads the number of bytes specified by LoadSize from each
439 // source of the memcmp parameters. It then does a subtract to see if there was
440 // a difference in the loaded values. If a difference is found, it branches
441 // with an early exit to the ResultBlock for calculating which source was
442 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or
443 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
444 // a special case through emitLoadCompareByteBlock. The special handling can
445 // simply subtract the loaded values and add it to the result phi node.
446 void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) {
447   // There is one load per block in this case, BlockIndex == LoadIndex.
448   const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex];
449 
450   if (CurLoadEntry.LoadSize == 1) {
451     MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex, CurLoadEntry.Offset);
452     return;
453   }
454 
455   Type *LoadSizeType =
456       IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
457   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
458   assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type");
459 
460   Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
461 
462   const LoadPair Loads =
463       getLoadPair(LoadSizeType, /*NeedsBSwap=*/DL.isLittleEndian(), MaxLoadType,
464                   CurLoadEntry.Offset);
465 
466   // Add the loaded values to the phi nodes for calculating memcmp result only
467   // if result is not used in a zero equality.
468   if (!IsUsedForZeroCmp) {
469     ResBlock.PhiSrc1->addIncoming(Loads.Lhs, LoadCmpBlocks[BlockIndex]);
470     ResBlock.PhiSrc2->addIncoming(Loads.Rhs, LoadCmpBlocks[BlockIndex]);
471   }
472 
473   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Loads.Lhs, Loads.Rhs);
474   BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
475                            ? EndBlock
476                            : LoadCmpBlocks[BlockIndex + 1];
477   // Early exit branch if difference found to ResultBlock. Otherwise, continue
478   // to next LoadCmpBlock or EndBlock.
479   BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
480   Builder.Insert(CmpBr);
481 
482   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
483   // since early exit to ResultBlock was not taken (no difference was found in
484   // any of the bytes).
485   if (BlockIndex == LoadCmpBlocks.size() - 1) {
486     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
487     PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
488   }
489 }
490 
491 // This function populates the ResultBlock with a sequence to calculate the
492 // memcmp result. It compares the two loaded source values and returns -1 if
493 // src1 < src2 and 1 if src1 > src2.
494 void MemCmpExpansion::emitMemCmpResultBlock() {
495   // Special case: if memcmp result is used in a zero equality, result does not
496   // need to be calculated and can simply return 1.
497   if (IsUsedForZeroCmp) {
498     BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
499     Builder.SetInsertPoint(ResBlock.BB, InsertPt);
500     Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
501     PhiRes->addIncoming(Res, ResBlock.BB);
502     BranchInst *NewBr = BranchInst::Create(EndBlock);
503     Builder.Insert(NewBr);
504     return;
505   }
506   BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
507   Builder.SetInsertPoint(ResBlock.BB, InsertPt);
508 
509   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
510                                   ResBlock.PhiSrc2);
511 
512   Value *Res =
513       Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
514                            ConstantInt::get(Builder.getInt32Ty(), 1));
515 
516   BranchInst *NewBr = BranchInst::Create(EndBlock);
517   Builder.Insert(NewBr);
518   PhiRes->addIncoming(Res, ResBlock.BB);
519 }
520 
521 void MemCmpExpansion::setupResultBlockPHINodes() {
522   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
523   Builder.SetInsertPoint(ResBlock.BB);
524   // Note: this assumes one load per block.
525   ResBlock.PhiSrc1 =
526       Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1");
527   ResBlock.PhiSrc2 =
528       Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2");
529 }
530 
531 void MemCmpExpansion::setupEndBlockPHINodes() {
532   Builder.SetInsertPoint(&EndBlock->front());
533   PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
534 }
535 
536 Value *MemCmpExpansion::getMemCmpExpansionZeroCase() {
537   unsigned LoadIndex = 0;
538   // This loop populates each of the LoadCmpBlocks with the IR sequence to
539   // handle multiple loads per block.
540   for (unsigned I = 0; I < getNumBlocks(); ++I) {
541     emitLoadCompareBlockMultipleLoads(I, LoadIndex);
542   }
543 
544   emitMemCmpResultBlock();
545   return PhiRes;
546 }
547 
548 /// A memcmp expansion that compares equality with 0 and only has one block of
549 /// load and compare can bypass the compare, branch, and phi IR that is required
550 /// in the general case.
551 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() {
552   unsigned LoadIndex = 0;
553   Value *Cmp = getCompareLoadPairs(0, LoadIndex);
554   assert(LoadIndex == getNumLoads() && "some entries were not consumed");
555   return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
556 }
557 
558 /// A memcmp expansion that only has one block of load and compare can bypass
559 /// the compare, branch, and phi IR that is required in the general case.
560 Value *MemCmpExpansion::getMemCmpOneBlock() {
561   Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
562   bool NeedsBSwap = DL.isLittleEndian() && Size != 1;
563 
564   // The i8 and i16 cases don't need compares. We zext the loaded values and
565   // subtract them to get the suitable negative, zero, or positive i32 result.
566   if (Size < 4) {
567     const LoadPair Loads =
568         getLoadPair(LoadSizeType, NeedsBSwap, Builder.getInt32Ty(),
569                     /*Offset*/ 0);
570     return Builder.CreateSub(Loads.Lhs, Loads.Rhs);
571   }
572 
573   const LoadPair Loads = getLoadPair(LoadSizeType, NeedsBSwap, LoadSizeType,
574                                      /*Offset*/ 0);
575   // The result of memcmp is negative, zero, or positive, so produce that by
576   // subtracting 2 extended compare bits: sub (ugt, ult).
577   // If a target prefers to use selects to get -1/0/1, they should be able
578   // to transform this later. The inverse transform (going from selects to math)
579   // may not be possible in the DAG because the selects got converted into
580   // branches before we got there.
581   Value *CmpUGT = Builder.CreateICmpUGT(Loads.Lhs, Loads.Rhs);
582   Value *CmpULT = Builder.CreateICmpULT(Loads.Lhs, Loads.Rhs);
583   Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
584   Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
585   return Builder.CreateSub(ZextUGT, ZextULT);
586 }
587 
588 // This function expands the memcmp call into an inline expansion and returns
589 // the memcmp result.
590 Value *MemCmpExpansion::getMemCmpExpansion() {
591   // Create the basic block framework for a multi-block expansion.
592   if (getNumBlocks() != 1) {
593     BasicBlock *StartBlock = CI->getParent();
594     EndBlock = StartBlock->splitBasicBlock(CI, "endblock");
595     setupEndBlockPHINodes();
596     createResultBlock();
597 
598     // If return value of memcmp is not used in a zero equality, we need to
599     // calculate which source was larger. The calculation requires the
600     // two loaded source values of each load compare block.
601     // These will be saved in the phi nodes created by setupResultBlockPHINodes.
602     if (!IsUsedForZeroCmp) setupResultBlockPHINodes();
603 
604     // Create the number of required load compare basic blocks.
605     createLoadCmpBlocks();
606 
607     // Update the terminator added by splitBasicBlock to branch to the first
608     // LoadCmpBlock.
609     StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
610   }
611 
612   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
613 
614   if (IsUsedForZeroCmp)
615     return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
616                                : getMemCmpExpansionZeroCase();
617 
618   if (getNumBlocks() == 1)
619     return getMemCmpOneBlock();
620 
621   for (unsigned I = 0; I < getNumBlocks(); ++I) {
622     emitLoadCompareBlock(I);
623   }
624 
625   emitMemCmpResultBlock();
626   return PhiRes;
627 }
628 
629 // This function checks to see if an expansion of memcmp can be generated.
630 // It checks for constant compare size that is less than the max inline size.
631 // If an expansion cannot occur, returns false to leave as a library call.
632 // Otherwise, the library call is replaced with a new IR instruction sequence.
633 /// We want to transform:
634 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
635 /// To:
636 /// loadbb:
637 ///  %0 = bitcast i32* %buffer2 to i8*
638 ///  %1 = bitcast i32* %buffer1 to i8*
639 ///  %2 = bitcast i8* %1 to i64*
640 ///  %3 = bitcast i8* %0 to i64*
641 ///  %4 = load i64, i64* %2
642 ///  %5 = load i64, i64* %3
643 ///  %6 = call i64 @llvm.bswap.i64(i64 %4)
644 ///  %7 = call i64 @llvm.bswap.i64(i64 %5)
645 ///  %8 = sub i64 %6, %7
646 ///  %9 = icmp ne i64 %8, 0
647 ///  br i1 %9, label %res_block, label %loadbb1
648 /// res_block:                                        ; preds = %loadbb2,
649 /// %loadbb1, %loadbb
650 ///  %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
651 ///  %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
652 ///  %10 = icmp ult i64 %phi.src1, %phi.src2
653 ///  %11 = select i1 %10, i32 -1, i32 1
654 ///  br label %endblock
655 /// loadbb1:                                          ; preds = %loadbb
656 ///  %12 = bitcast i32* %buffer2 to i8*
657 ///  %13 = bitcast i32* %buffer1 to i8*
658 ///  %14 = bitcast i8* %13 to i32*
659 ///  %15 = bitcast i8* %12 to i32*
660 ///  %16 = getelementptr i32, i32* %14, i32 2
661 ///  %17 = getelementptr i32, i32* %15, i32 2
662 ///  %18 = load i32, i32* %16
663 ///  %19 = load i32, i32* %17
664 ///  %20 = call i32 @llvm.bswap.i32(i32 %18)
665 ///  %21 = call i32 @llvm.bswap.i32(i32 %19)
666 ///  %22 = zext i32 %20 to i64
667 ///  %23 = zext i32 %21 to i64
668 ///  %24 = sub i64 %22, %23
669 ///  %25 = icmp ne i64 %24, 0
670 ///  br i1 %25, label %res_block, label %loadbb2
671 /// loadbb2:                                          ; preds = %loadbb1
672 ///  %26 = bitcast i32* %buffer2 to i8*
673 ///  %27 = bitcast i32* %buffer1 to i8*
674 ///  %28 = bitcast i8* %27 to i16*
675 ///  %29 = bitcast i8* %26 to i16*
676 ///  %30 = getelementptr i16, i16* %28, i16 6
677 ///  %31 = getelementptr i16, i16* %29, i16 6
678 ///  %32 = load i16, i16* %30
679 ///  %33 = load i16, i16* %31
680 ///  %34 = call i16 @llvm.bswap.i16(i16 %32)
681 ///  %35 = call i16 @llvm.bswap.i16(i16 %33)
682 ///  %36 = zext i16 %34 to i64
683 ///  %37 = zext i16 %35 to i64
684 ///  %38 = sub i64 %36, %37
685 ///  %39 = icmp ne i64 %38, 0
686 ///  br i1 %39, label %res_block, label %loadbb3
687 /// loadbb3:                                          ; preds = %loadbb2
688 ///  %40 = bitcast i32* %buffer2 to i8*
689 ///  %41 = bitcast i32* %buffer1 to i8*
690 ///  %42 = getelementptr i8, i8* %41, i8 14
691 ///  %43 = getelementptr i8, i8* %40, i8 14
692 ///  %44 = load i8, i8* %42
693 ///  %45 = load i8, i8* %43
694 ///  %46 = zext i8 %44 to i32
695 ///  %47 = zext i8 %45 to i32
696 ///  %48 = sub i32 %46, %47
697 ///  br label %endblock
698 /// endblock:                                         ; preds = %res_block,
699 /// %loadbb3
700 ///  %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
701 ///  ret i32 %phi.res
702 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
703                          const TargetLowering *TLI, const DataLayout *DL,
704                          ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
705   NumMemCmpCalls++;
706 
707   // Early exit from expansion if -Oz.
708   if (CI->getFunction()->hasMinSize())
709     return false;
710 
711   // Early exit from expansion if size is not a constant.
712   ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
713   if (!SizeCast) {
714     NumMemCmpNotConstant++;
715     return false;
716   }
717   const uint64_t SizeVal = SizeCast->getZExtValue();
718 
719   if (SizeVal == 0) {
720     return false;
721   }
722   // TTI call to check if target would like to expand memcmp. Also, get the
723   // available load sizes.
724   const bool IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI);
725   bool OptForSize = CI->getFunction()->hasOptSize() ||
726                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
727   auto Options = TTI->enableMemCmpExpansion(OptForSize,
728                                             IsUsedForZeroCmp);
729   if (!Options) return false;
730 
731   if (MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences())
732     Options.NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock;
733 
734   if (OptForSize &&
735       MaxLoadsPerMemcmpOptSize.getNumOccurrences())
736     Options.MaxNumLoads = MaxLoadsPerMemcmpOptSize;
737 
738   if (!OptForSize && MaxLoadsPerMemcmp.getNumOccurrences())
739     Options.MaxNumLoads = MaxLoadsPerMemcmp;
740 
741   MemCmpExpansion Expansion(CI, SizeVal, Options, IsUsedForZeroCmp, *DL);
742 
743   // Don't expand if this will require more loads than desired by the target.
744   if (Expansion.getNumLoads() == 0) {
745     NumMemCmpGreaterThanMax++;
746     return false;
747   }
748 
749   NumMemCmpInlined++;
750 
751   Value *Res = Expansion.getMemCmpExpansion();
752 
753   // Replace call with result of expansion and erase call.
754   CI->replaceAllUsesWith(Res);
755   CI->eraseFromParent();
756 
757   return true;
758 }
759 
760 
761 
762 class ExpandMemCmpPass : public FunctionPass {
763 public:
764   static char ID;
765 
766   ExpandMemCmpPass() : FunctionPass(ID) {
767     initializeExpandMemCmpPassPass(*PassRegistry::getPassRegistry());
768   }
769 
770   bool runOnFunction(Function &F) override {
771     if (skipFunction(F)) return false;
772 
773     auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
774     if (!TPC) {
775       return false;
776     }
777     const TargetLowering* TL =
778         TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering();
779 
780     const TargetLibraryInfo *TLI =
781         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
782     const TargetTransformInfo *TTI =
783         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
784     auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
785     auto *BFI = (PSI && PSI->hasProfileSummary()) ?
786            &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
787            nullptr;
788     auto PA = runImpl(F, TLI, TTI, TL, PSI, BFI);
789     return !PA.areAllPreserved();
790   }
791 
792 private:
793   void getAnalysisUsage(AnalysisUsage &AU) const override {
794     AU.addRequired<TargetLibraryInfoWrapperPass>();
795     AU.addRequired<TargetTransformInfoWrapperPass>();
796     AU.addRequired<ProfileSummaryInfoWrapperPass>();
797     LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
798     FunctionPass::getAnalysisUsage(AU);
799   }
800 
801   PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
802                             const TargetTransformInfo *TTI,
803                             const TargetLowering* TL,
804                             ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI);
805   // Returns true if a change was made.
806   bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
807                   const TargetTransformInfo *TTI, const TargetLowering* TL,
808                   const DataLayout& DL, ProfileSummaryInfo *PSI,
809                   BlockFrequencyInfo *BFI);
810 };
811 
812 bool ExpandMemCmpPass::runOnBlock(
813     BasicBlock &BB, const TargetLibraryInfo *TLI,
814     const TargetTransformInfo *TTI, const TargetLowering* TL,
815     const DataLayout& DL, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
816   for (Instruction& I : BB) {
817     CallInst *CI = dyn_cast<CallInst>(&I);
818     if (!CI) {
819       continue;
820     }
821     LibFunc Func;
822     if (TLI->getLibFunc(ImmutableCallSite(CI), Func) &&
823         (Func == LibFunc_memcmp || Func == LibFunc_bcmp) &&
824         expandMemCmp(CI, TTI, TL, &DL, PSI, BFI)) {
825       return true;
826     }
827   }
828   return false;
829 }
830 
831 
832 PreservedAnalyses ExpandMemCmpPass::runImpl(
833     Function &F, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI,
834     const TargetLowering* TL, ProfileSummaryInfo *PSI,
835     BlockFrequencyInfo *BFI) {
836   const DataLayout& DL = F.getParent()->getDataLayout();
837   bool MadeChanges = false;
838   for (auto BBIt = F.begin(); BBIt != F.end();) {
839     if (runOnBlock(*BBIt, TLI, TTI, TL, DL, PSI, BFI)) {
840       MadeChanges = true;
841       // If changes were made, restart the function from the beginning, since
842       // the structure of the function was changed.
843       BBIt = F.begin();
844     } else {
845       ++BBIt;
846     }
847   }
848   return MadeChanges ? PreservedAnalyses::none() : PreservedAnalyses::all();
849 }
850 
851 } // namespace
852 
853 char ExpandMemCmpPass::ID = 0;
854 INITIALIZE_PASS_BEGIN(ExpandMemCmpPass, "expandmemcmp",
855                       "Expand memcmp() to load/stores", false, false)
856 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
857 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
858 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
859 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
860 INITIALIZE_PASS_END(ExpandMemCmpPass, "expandmemcmp",
861                     "Expand memcmp() to load/stores", false, false)
862 
863 FunctionPass *llvm::createExpandMemCmpPass() {
864   return new ExpandMemCmpPass();
865 }
866