1 //===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass tries to expand memcmp() calls into optimally-sized loads and
10 // compares for the target.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/DomTreeUpdater.h"
17 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
18 #include "llvm/Analysis/ProfileSummaryInfo.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/TargetPassConfig.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/InitializePasses.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include "llvm/Transforms/Utils/SizeOpts.h"
31
32 using namespace llvm;
33
34 namespace llvm {
35 class TargetLowering;
36 }
37
38 #define DEBUG_TYPE "expandmemcmp"
39
40 STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
41 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
42 STATISTIC(NumMemCmpGreaterThanMax,
43 "Number of memcmp calls with size greater than max size");
44 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
45
46 static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock(
47 "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
48 cl::desc("The number of loads per basic block for inline expansion of "
49 "memcmp that is only being compared against zero."));
50
51 static cl::opt<unsigned> MaxLoadsPerMemcmp(
52 "max-loads-per-memcmp", cl::Hidden,
53 cl::desc("Set maximum number of loads used in expanded memcmp"));
54
55 static cl::opt<unsigned> MaxLoadsPerMemcmpOptSize(
56 "max-loads-per-memcmp-opt-size", cl::Hidden,
57 cl::desc("Set maximum number of loads used in expanded memcmp for -Os/Oz"));
58
59 namespace {
60
61
62 // This class provides helper functions to expand a memcmp library call into an
63 // inline expansion.
64 class MemCmpExpansion {
65 struct ResultBlock {
66 BasicBlock *BB = nullptr;
67 PHINode *PhiSrc1 = nullptr;
68 PHINode *PhiSrc2 = nullptr;
69
70 ResultBlock() = default;
71 };
72
73 CallInst *const CI;
74 ResultBlock ResBlock;
75 const uint64_t Size;
76 unsigned MaxLoadSize = 0;
77 uint64_t NumLoadsNonOneByte = 0;
78 const uint64_t NumLoadsPerBlockForZeroCmp;
79 std::vector<BasicBlock *> LoadCmpBlocks;
80 BasicBlock *EndBlock;
81 PHINode *PhiRes;
82 const bool IsUsedForZeroCmp;
83 const DataLayout &DL;
84 DomTreeUpdater *DTU;
85 IRBuilder<> Builder;
86 // Represents the decomposition in blocks of the expansion. For example,
87 // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
88 // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {1, 32}.
89 struct LoadEntry {
LoadEntry__anone23f4d030111::MemCmpExpansion::LoadEntry90 LoadEntry(unsigned LoadSize, uint64_t Offset)
91 : LoadSize(LoadSize), Offset(Offset) {
92 }
93
94 // The size of the load for this block, in bytes.
95 unsigned LoadSize;
96 // The offset of this load from the base pointer, in bytes.
97 uint64_t Offset;
98 };
99 using LoadEntryVector = SmallVector<LoadEntry, 8>;
100 LoadEntryVector LoadSequence;
101
102 void createLoadCmpBlocks();
103 void createResultBlock();
104 void setupResultBlockPHINodes();
105 void setupEndBlockPHINodes();
106 Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex);
107 void emitLoadCompareBlock(unsigned BlockIndex);
108 void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
109 unsigned &LoadIndex);
110 void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned OffsetBytes);
111 void emitMemCmpResultBlock();
112 Value *getMemCmpExpansionZeroCase();
113 Value *getMemCmpEqZeroOneBlock();
114 Value *getMemCmpOneBlock();
115 struct LoadPair {
116 Value *Lhs = nullptr;
117 Value *Rhs = nullptr;
118 };
119 LoadPair getLoadPair(Type *LoadSizeType, bool NeedsBSwap, Type *CmpSizeType,
120 unsigned OffsetBytes);
121
122 static LoadEntryVector
123 computeGreedyLoadSequence(uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
124 unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte);
125 static LoadEntryVector
126 computeOverlappingLoadSequence(uint64_t Size, unsigned MaxLoadSize,
127 unsigned MaxNumLoads,
128 unsigned &NumLoadsNonOneByte);
129
130 public:
131 MemCmpExpansion(CallInst *CI, uint64_t Size,
132 const TargetTransformInfo::MemCmpExpansionOptions &Options,
133 const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout,
134 DomTreeUpdater *DTU);
135
136 unsigned getNumBlocks();
getNumLoads() const137 uint64_t getNumLoads() const { return LoadSequence.size(); }
138
139 Value *getMemCmpExpansion();
140 };
141
computeGreedyLoadSequence(uint64_t Size,llvm::ArrayRef<unsigned> LoadSizes,const unsigned MaxNumLoads,unsigned & NumLoadsNonOneByte)142 MemCmpExpansion::LoadEntryVector MemCmpExpansion::computeGreedyLoadSequence(
143 uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
144 const unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte) {
145 NumLoadsNonOneByte = 0;
146 LoadEntryVector LoadSequence;
147 uint64_t Offset = 0;
148 while (Size && !LoadSizes.empty()) {
149 const unsigned LoadSize = LoadSizes.front();
150 const uint64_t NumLoadsForThisSize = Size / LoadSize;
151 if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) {
152 // Do not expand if the total number of loads is larger than what the
153 // target allows. Note that it's important that we exit before completing
154 // the expansion to avoid using a ton of memory to store the expansion for
155 // large sizes.
156 return {};
157 }
158 if (NumLoadsForThisSize > 0) {
159 for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) {
160 LoadSequence.push_back({LoadSize, Offset});
161 Offset += LoadSize;
162 }
163 if (LoadSize > 1)
164 ++NumLoadsNonOneByte;
165 Size = Size % LoadSize;
166 }
167 LoadSizes = LoadSizes.drop_front();
168 }
169 return LoadSequence;
170 }
171
172 MemCmpExpansion::LoadEntryVector
computeOverlappingLoadSequence(uint64_t Size,const unsigned MaxLoadSize,const unsigned MaxNumLoads,unsigned & NumLoadsNonOneByte)173 MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size,
174 const unsigned MaxLoadSize,
175 const unsigned MaxNumLoads,
176 unsigned &NumLoadsNonOneByte) {
177 // These are already handled by the greedy approach.
178 if (Size < 2 || MaxLoadSize < 2)
179 return {};
180
181 // We try to do as many non-overlapping loads as possible starting from the
182 // beginning.
183 const uint64_t NumNonOverlappingLoads = Size / MaxLoadSize;
184 assert(NumNonOverlappingLoads && "there must be at least one load");
185 // There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with
186 // an overlapping load.
187 Size = Size - NumNonOverlappingLoads * MaxLoadSize;
188 // Bail if we do not need an overloapping store, this is already handled by
189 // the greedy approach.
190 if (Size == 0)
191 return {};
192 // Bail if the number of loads (non-overlapping + potential overlapping one)
193 // is larger than the max allowed.
194 if ((NumNonOverlappingLoads + 1) > MaxNumLoads)
195 return {};
196
197 // Add non-overlapping loads.
198 LoadEntryVector LoadSequence;
199 uint64_t Offset = 0;
200 for (uint64_t I = 0; I < NumNonOverlappingLoads; ++I) {
201 LoadSequence.push_back({MaxLoadSize, Offset});
202 Offset += MaxLoadSize;
203 }
204
205 // Add the last overlapping load.
206 assert(Size > 0 && Size < MaxLoadSize && "broken invariant");
207 LoadSequence.push_back({MaxLoadSize, Offset - (MaxLoadSize - Size)});
208 NumLoadsNonOneByte = 1;
209 return LoadSequence;
210 }
211
212 // Initialize the basic block structure required for expansion of memcmp call
213 // with given maximum load size and memcmp size parameter.
214 // This structure includes:
215 // 1. A list of load compare blocks - LoadCmpBlocks.
216 // 2. An EndBlock, split from original instruction point, which is the block to
217 // return from.
218 // 3. ResultBlock, block to branch to for early exit when a
219 // LoadCmpBlock finds a difference.
MemCmpExpansion(CallInst * const CI,uint64_t Size,const TargetTransformInfo::MemCmpExpansionOptions & Options,const bool IsUsedForZeroCmp,const DataLayout & TheDataLayout,DomTreeUpdater * DTU)220 MemCmpExpansion::MemCmpExpansion(
221 CallInst *const CI, uint64_t Size,
222 const TargetTransformInfo::MemCmpExpansionOptions &Options,
223 const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout,
224 DomTreeUpdater *DTU)
225 : CI(CI), Size(Size), NumLoadsPerBlockForZeroCmp(Options.NumLoadsPerBlock),
226 IsUsedForZeroCmp(IsUsedForZeroCmp), DL(TheDataLayout), DTU(DTU),
227 Builder(CI) {
228 assert(Size > 0 && "zero blocks");
229 // Scale the max size down if the target can load more bytes than we need.
230 llvm::ArrayRef<unsigned> LoadSizes(Options.LoadSizes);
231 while (!LoadSizes.empty() && LoadSizes.front() > Size) {
232 LoadSizes = LoadSizes.drop_front();
233 }
234 assert(!LoadSizes.empty() && "cannot load Size bytes");
235 MaxLoadSize = LoadSizes.front();
236 // Compute the decomposition.
237 unsigned GreedyNumLoadsNonOneByte = 0;
238 LoadSequence = computeGreedyLoadSequence(Size, LoadSizes, Options.MaxNumLoads,
239 GreedyNumLoadsNonOneByte);
240 NumLoadsNonOneByte = GreedyNumLoadsNonOneByte;
241 assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
242 // If we allow overlapping loads and the load sequence is not already optimal,
243 // use overlapping loads.
244 if (Options.AllowOverlappingLoads &&
245 (LoadSequence.empty() || LoadSequence.size() > 2)) {
246 unsigned OverlappingNumLoadsNonOneByte = 0;
247 auto OverlappingLoads = computeOverlappingLoadSequence(
248 Size, MaxLoadSize, Options.MaxNumLoads, OverlappingNumLoadsNonOneByte);
249 if (!OverlappingLoads.empty() &&
250 (LoadSequence.empty() ||
251 OverlappingLoads.size() < LoadSequence.size())) {
252 LoadSequence = OverlappingLoads;
253 NumLoadsNonOneByte = OverlappingNumLoadsNonOneByte;
254 }
255 }
256 assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
257 }
258
getNumBlocks()259 unsigned MemCmpExpansion::getNumBlocks() {
260 if (IsUsedForZeroCmp)
261 return getNumLoads() / NumLoadsPerBlockForZeroCmp +
262 (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0);
263 return getNumLoads();
264 }
265
createLoadCmpBlocks()266 void MemCmpExpansion::createLoadCmpBlocks() {
267 for (unsigned i = 0; i < getNumBlocks(); i++) {
268 BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
269 EndBlock->getParent(), EndBlock);
270 LoadCmpBlocks.push_back(BB);
271 }
272 }
273
createResultBlock()274 void MemCmpExpansion::createResultBlock() {
275 ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
276 EndBlock->getParent(), EndBlock);
277 }
278
getLoadPair(Type * LoadSizeType,bool NeedsBSwap,Type * CmpSizeType,unsigned OffsetBytes)279 MemCmpExpansion::LoadPair MemCmpExpansion::getLoadPair(Type *LoadSizeType,
280 bool NeedsBSwap,
281 Type *CmpSizeType,
282 unsigned OffsetBytes) {
283 // Get the memory source at offset `OffsetBytes`.
284 Value *LhsSource = CI->getArgOperand(0);
285 Value *RhsSource = CI->getArgOperand(1);
286 Align LhsAlign = LhsSource->getPointerAlignment(DL);
287 Align RhsAlign = RhsSource->getPointerAlignment(DL);
288 if (OffsetBytes > 0) {
289 auto *ByteType = Type::getInt8Ty(CI->getContext());
290 LhsSource = Builder.CreateConstGEP1_64(
291 ByteType, Builder.CreateBitCast(LhsSource, ByteType->getPointerTo()),
292 OffsetBytes);
293 RhsSource = Builder.CreateConstGEP1_64(
294 ByteType, Builder.CreateBitCast(RhsSource, ByteType->getPointerTo()),
295 OffsetBytes);
296 LhsAlign = commonAlignment(LhsAlign, OffsetBytes);
297 RhsAlign = commonAlignment(RhsAlign, OffsetBytes);
298 }
299 LhsSource = Builder.CreateBitCast(LhsSource, LoadSizeType->getPointerTo());
300 RhsSource = Builder.CreateBitCast(RhsSource, LoadSizeType->getPointerTo());
301
302 // Create a constant or a load from the source.
303 Value *Lhs = nullptr;
304 if (auto *C = dyn_cast<Constant>(LhsSource))
305 Lhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL);
306 if (!Lhs)
307 Lhs = Builder.CreateAlignedLoad(LoadSizeType, LhsSource, LhsAlign);
308
309 Value *Rhs = nullptr;
310 if (auto *C = dyn_cast<Constant>(RhsSource))
311 Rhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL);
312 if (!Rhs)
313 Rhs = Builder.CreateAlignedLoad(LoadSizeType, RhsSource, RhsAlign);
314
315 // Swap bytes if required.
316 if (NeedsBSwap) {
317 Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
318 Intrinsic::bswap, LoadSizeType);
319 Lhs = Builder.CreateCall(Bswap, Lhs);
320 Rhs = Builder.CreateCall(Bswap, Rhs);
321 }
322
323 // Zero extend if required.
324 if (CmpSizeType != nullptr && CmpSizeType != LoadSizeType) {
325 Lhs = Builder.CreateZExt(Lhs, CmpSizeType);
326 Rhs = Builder.CreateZExt(Rhs, CmpSizeType);
327 }
328 return {Lhs, Rhs};
329 }
330
331 // This function creates the IR instructions for loading and comparing 1 byte.
332 // It loads 1 byte from each source of the memcmp parameters with the given
333 // GEPIndex. It then subtracts the two loaded values and adds this result to the
334 // final phi node for selecting the memcmp result.
emitLoadCompareByteBlock(unsigned BlockIndex,unsigned OffsetBytes)335 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex,
336 unsigned OffsetBytes) {
337 BasicBlock *BB = LoadCmpBlocks[BlockIndex];
338 Builder.SetInsertPoint(BB);
339 const LoadPair Loads =
340 getLoadPair(Type::getInt8Ty(CI->getContext()), /*NeedsBSwap=*/false,
341 Type::getInt32Ty(CI->getContext()), OffsetBytes);
342 Value *Diff = Builder.CreateSub(Loads.Lhs, Loads.Rhs);
343
344 PhiRes->addIncoming(Diff, BB);
345
346 if (BlockIndex < (LoadCmpBlocks.size() - 1)) {
347 // Early exit branch if difference found to EndBlock. Otherwise, continue to
348 // next LoadCmpBlock,
349 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
350 ConstantInt::get(Diff->getType(), 0));
351 BranchInst *CmpBr =
352 BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp);
353 Builder.Insert(CmpBr);
354 if (DTU)
355 DTU->applyUpdates(
356 {{DominatorTree::Insert, BB, EndBlock},
357 {DominatorTree::Insert, BB, LoadCmpBlocks[BlockIndex + 1]}});
358 } else {
359 // The last block has an unconditional branch to EndBlock.
360 BranchInst *CmpBr = BranchInst::Create(EndBlock);
361 Builder.Insert(CmpBr);
362 if (DTU)
363 DTU->applyUpdates({{DominatorTree::Insert, BB, EndBlock}});
364 }
365 }
366
367 /// Generate an equality comparison for one or more pairs of loaded values.
368 /// This is used in the case where the memcmp() call is compared equal or not
369 /// equal to zero.
getCompareLoadPairs(unsigned BlockIndex,unsigned & LoadIndex)370 Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex,
371 unsigned &LoadIndex) {
372 assert(LoadIndex < getNumLoads() &&
373 "getCompareLoadPairs() called with no remaining loads");
374 std::vector<Value *> XorList, OrList;
375 Value *Diff = nullptr;
376
377 const unsigned NumLoads =
378 std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp);
379
380 // For a single-block expansion, start inserting before the memcmp call.
381 if (LoadCmpBlocks.empty())
382 Builder.SetInsertPoint(CI);
383 else
384 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
385
386 Value *Cmp = nullptr;
387 // If we have multiple loads per block, we need to generate a composite
388 // comparison using xor+or. The type for the combinations is the largest load
389 // type.
390 IntegerType *const MaxLoadType =
391 NumLoads == 1 ? nullptr
392 : IntegerType::get(CI->getContext(), MaxLoadSize * 8);
393 for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) {
394 const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex];
395 const LoadPair Loads = getLoadPair(
396 IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8),
397 /*NeedsBSwap=*/false, MaxLoadType, CurLoadEntry.Offset);
398
399 if (NumLoads != 1) {
400 // If we have multiple loads per block, we need to generate a composite
401 // comparison using xor+or.
402 Diff = Builder.CreateXor(Loads.Lhs, Loads.Rhs);
403 Diff = Builder.CreateZExt(Diff, MaxLoadType);
404 XorList.push_back(Diff);
405 } else {
406 // If there's only one load per block, we just compare the loaded values.
407 Cmp = Builder.CreateICmpNE(Loads.Lhs, Loads.Rhs);
408 }
409 }
410
411 auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
412 std::vector<Value *> OutList;
413 for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
414 Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
415 OutList.push_back(Or);
416 }
417 if (InList.size() % 2 != 0)
418 OutList.push_back(InList.back());
419 return OutList;
420 };
421
422 if (!Cmp) {
423 // Pairwise OR the XOR results.
424 OrList = pairWiseOr(XorList);
425
426 // Pairwise OR the OR results until one result left.
427 while (OrList.size() != 1) {
428 OrList = pairWiseOr(OrList);
429 }
430
431 assert(Diff && "Failed to find comparison diff");
432 Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
433 }
434
435 return Cmp;
436 }
437
emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,unsigned & LoadIndex)438 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
439 unsigned &LoadIndex) {
440 Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex);
441
442 BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
443 ? EndBlock
444 : LoadCmpBlocks[BlockIndex + 1];
445 // Early exit branch if difference found to ResultBlock. Otherwise,
446 // continue to next LoadCmpBlock or EndBlock.
447 BasicBlock *BB = Builder.GetInsertBlock();
448 BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
449 Builder.Insert(CmpBr);
450 if (DTU)
451 DTU->applyUpdates({{DominatorTree::Insert, BB, ResBlock.BB},
452 {DominatorTree::Insert, BB, NextBB}});
453
454 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
455 // since early exit to ResultBlock was not taken (no difference was found in
456 // any of the bytes).
457 if (BlockIndex == LoadCmpBlocks.size() - 1) {
458 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
459 PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
460 }
461 }
462
463 // This function creates the IR intructions for loading and comparing using the
464 // given LoadSize. It loads the number of bytes specified by LoadSize from each
465 // source of the memcmp parameters. It then does a subtract to see if there was
466 // a difference in the loaded values. If a difference is found, it branches
467 // with an early exit to the ResultBlock for calculating which source was
468 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or
469 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
470 // a special case through emitLoadCompareByteBlock. The special handling can
471 // simply subtract the loaded values and add it to the result phi node.
emitLoadCompareBlock(unsigned BlockIndex)472 void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) {
473 // There is one load per block in this case, BlockIndex == LoadIndex.
474 const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex];
475
476 if (CurLoadEntry.LoadSize == 1) {
477 MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex, CurLoadEntry.Offset);
478 return;
479 }
480
481 Type *LoadSizeType =
482 IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
483 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
484 assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type");
485
486 Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
487
488 const LoadPair Loads =
489 getLoadPair(LoadSizeType, /*NeedsBSwap=*/DL.isLittleEndian(), MaxLoadType,
490 CurLoadEntry.Offset);
491
492 // Add the loaded values to the phi nodes for calculating memcmp result only
493 // if result is not used in a zero equality.
494 if (!IsUsedForZeroCmp) {
495 ResBlock.PhiSrc1->addIncoming(Loads.Lhs, LoadCmpBlocks[BlockIndex]);
496 ResBlock.PhiSrc2->addIncoming(Loads.Rhs, LoadCmpBlocks[BlockIndex]);
497 }
498
499 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Loads.Lhs, Loads.Rhs);
500 BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
501 ? EndBlock
502 : LoadCmpBlocks[BlockIndex + 1];
503 // Early exit branch if difference found to ResultBlock. Otherwise, continue
504 // to next LoadCmpBlock or EndBlock.
505 BasicBlock *BB = Builder.GetInsertBlock();
506 BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
507 Builder.Insert(CmpBr);
508 if (DTU)
509 DTU->applyUpdates({{DominatorTree::Insert, BB, NextBB},
510 {DominatorTree::Insert, BB, ResBlock.BB}});
511
512 // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
513 // since early exit to ResultBlock was not taken (no difference was found in
514 // any of the bytes).
515 if (BlockIndex == LoadCmpBlocks.size() - 1) {
516 Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
517 PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
518 }
519 }
520
521 // This function populates the ResultBlock with a sequence to calculate the
522 // memcmp result. It compares the two loaded source values and returns -1 if
523 // src1 < src2 and 1 if src1 > src2.
emitMemCmpResultBlock()524 void MemCmpExpansion::emitMemCmpResultBlock() {
525 // Special case: if memcmp result is used in a zero equality, result does not
526 // need to be calculated and can simply return 1.
527 if (IsUsedForZeroCmp) {
528 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
529 Builder.SetInsertPoint(ResBlock.BB, InsertPt);
530 Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
531 PhiRes->addIncoming(Res, ResBlock.BB);
532 BranchInst *NewBr = BranchInst::Create(EndBlock);
533 Builder.Insert(NewBr);
534 if (DTU)
535 DTU->applyUpdates({{DominatorTree::Insert, ResBlock.BB, EndBlock}});
536 return;
537 }
538 BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
539 Builder.SetInsertPoint(ResBlock.BB, InsertPt);
540
541 Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
542 ResBlock.PhiSrc2);
543
544 Value *Res =
545 Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
546 ConstantInt::get(Builder.getInt32Ty(), 1));
547
548 PhiRes->addIncoming(Res, ResBlock.BB);
549 BranchInst *NewBr = BranchInst::Create(EndBlock);
550 Builder.Insert(NewBr);
551 if (DTU)
552 DTU->applyUpdates({{DominatorTree::Insert, ResBlock.BB, EndBlock}});
553 }
554
setupResultBlockPHINodes()555 void MemCmpExpansion::setupResultBlockPHINodes() {
556 Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
557 Builder.SetInsertPoint(ResBlock.BB);
558 // Note: this assumes one load per block.
559 ResBlock.PhiSrc1 =
560 Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1");
561 ResBlock.PhiSrc2 =
562 Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2");
563 }
564
setupEndBlockPHINodes()565 void MemCmpExpansion::setupEndBlockPHINodes() {
566 Builder.SetInsertPoint(&EndBlock->front());
567 PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
568 }
569
getMemCmpExpansionZeroCase()570 Value *MemCmpExpansion::getMemCmpExpansionZeroCase() {
571 unsigned LoadIndex = 0;
572 // This loop populates each of the LoadCmpBlocks with the IR sequence to
573 // handle multiple loads per block.
574 for (unsigned I = 0; I < getNumBlocks(); ++I) {
575 emitLoadCompareBlockMultipleLoads(I, LoadIndex);
576 }
577
578 emitMemCmpResultBlock();
579 return PhiRes;
580 }
581
582 /// A memcmp expansion that compares equality with 0 and only has one block of
583 /// load and compare can bypass the compare, branch, and phi IR that is required
584 /// in the general case.
getMemCmpEqZeroOneBlock()585 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() {
586 unsigned LoadIndex = 0;
587 Value *Cmp = getCompareLoadPairs(0, LoadIndex);
588 assert(LoadIndex == getNumLoads() && "some entries were not consumed");
589 return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
590 }
591
592 /// A memcmp expansion that only has one block of load and compare can bypass
593 /// the compare, branch, and phi IR that is required in the general case.
getMemCmpOneBlock()594 Value *MemCmpExpansion::getMemCmpOneBlock() {
595 Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
596 bool NeedsBSwap = DL.isLittleEndian() && Size != 1;
597
598 // The i8 and i16 cases don't need compares. We zext the loaded values and
599 // subtract them to get the suitable negative, zero, or positive i32 result.
600 if (Size < 4) {
601 const LoadPair Loads =
602 getLoadPair(LoadSizeType, NeedsBSwap, Builder.getInt32Ty(),
603 /*Offset*/ 0);
604 return Builder.CreateSub(Loads.Lhs, Loads.Rhs);
605 }
606
607 const LoadPair Loads = getLoadPair(LoadSizeType, NeedsBSwap, LoadSizeType,
608 /*Offset*/ 0);
609 // The result of memcmp is negative, zero, or positive, so produce that by
610 // subtracting 2 extended compare bits: sub (ugt, ult).
611 // If a target prefers to use selects to get -1/0/1, they should be able
612 // to transform this later. The inverse transform (going from selects to math)
613 // may not be possible in the DAG because the selects got converted into
614 // branches before we got there.
615 Value *CmpUGT = Builder.CreateICmpUGT(Loads.Lhs, Loads.Rhs);
616 Value *CmpULT = Builder.CreateICmpULT(Loads.Lhs, Loads.Rhs);
617 Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
618 Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
619 return Builder.CreateSub(ZextUGT, ZextULT);
620 }
621
622 // This function expands the memcmp call into an inline expansion and returns
623 // the memcmp result.
getMemCmpExpansion()624 Value *MemCmpExpansion::getMemCmpExpansion() {
625 // Create the basic block framework for a multi-block expansion.
626 if (getNumBlocks() != 1) {
627 BasicBlock *StartBlock = CI->getParent();
628 EndBlock = SplitBlock(StartBlock, CI, DTU, /*LI=*/nullptr,
629 /*MSSAU=*/nullptr, "endblock");
630 setupEndBlockPHINodes();
631 createResultBlock();
632
633 // If return value of memcmp is not used in a zero equality, we need to
634 // calculate which source was larger. The calculation requires the
635 // two loaded source values of each load compare block.
636 // These will be saved in the phi nodes created by setupResultBlockPHINodes.
637 if (!IsUsedForZeroCmp) setupResultBlockPHINodes();
638
639 // Create the number of required load compare basic blocks.
640 createLoadCmpBlocks();
641
642 // Update the terminator added by SplitBlock to branch to the first
643 // LoadCmpBlock.
644 StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
645 if (DTU)
646 DTU->applyUpdates({{DominatorTree::Insert, StartBlock, LoadCmpBlocks[0]},
647 {DominatorTree::Delete, StartBlock, EndBlock}});
648 }
649
650 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
651
652 if (IsUsedForZeroCmp)
653 return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
654 : getMemCmpExpansionZeroCase();
655
656 if (getNumBlocks() == 1)
657 return getMemCmpOneBlock();
658
659 for (unsigned I = 0; I < getNumBlocks(); ++I) {
660 emitLoadCompareBlock(I);
661 }
662
663 emitMemCmpResultBlock();
664 return PhiRes;
665 }
666
667 // This function checks to see if an expansion of memcmp can be generated.
668 // It checks for constant compare size that is less than the max inline size.
669 // If an expansion cannot occur, returns false to leave as a library call.
670 // Otherwise, the library call is replaced with a new IR instruction sequence.
671 /// We want to transform:
672 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
673 /// To:
674 /// loadbb:
675 /// %0 = bitcast i32* %buffer2 to i8*
676 /// %1 = bitcast i32* %buffer1 to i8*
677 /// %2 = bitcast i8* %1 to i64*
678 /// %3 = bitcast i8* %0 to i64*
679 /// %4 = load i64, i64* %2
680 /// %5 = load i64, i64* %3
681 /// %6 = call i64 @llvm.bswap.i64(i64 %4)
682 /// %7 = call i64 @llvm.bswap.i64(i64 %5)
683 /// %8 = sub i64 %6, %7
684 /// %9 = icmp ne i64 %8, 0
685 /// br i1 %9, label %res_block, label %loadbb1
686 /// res_block: ; preds = %loadbb2,
687 /// %loadbb1, %loadbb
688 /// %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
689 /// %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
690 /// %10 = icmp ult i64 %phi.src1, %phi.src2
691 /// %11 = select i1 %10, i32 -1, i32 1
692 /// br label %endblock
693 /// loadbb1: ; preds = %loadbb
694 /// %12 = bitcast i32* %buffer2 to i8*
695 /// %13 = bitcast i32* %buffer1 to i8*
696 /// %14 = bitcast i8* %13 to i32*
697 /// %15 = bitcast i8* %12 to i32*
698 /// %16 = getelementptr i32, i32* %14, i32 2
699 /// %17 = getelementptr i32, i32* %15, i32 2
700 /// %18 = load i32, i32* %16
701 /// %19 = load i32, i32* %17
702 /// %20 = call i32 @llvm.bswap.i32(i32 %18)
703 /// %21 = call i32 @llvm.bswap.i32(i32 %19)
704 /// %22 = zext i32 %20 to i64
705 /// %23 = zext i32 %21 to i64
706 /// %24 = sub i64 %22, %23
707 /// %25 = icmp ne i64 %24, 0
708 /// br i1 %25, label %res_block, label %loadbb2
709 /// loadbb2: ; preds = %loadbb1
710 /// %26 = bitcast i32* %buffer2 to i8*
711 /// %27 = bitcast i32* %buffer1 to i8*
712 /// %28 = bitcast i8* %27 to i16*
713 /// %29 = bitcast i8* %26 to i16*
714 /// %30 = getelementptr i16, i16* %28, i16 6
715 /// %31 = getelementptr i16, i16* %29, i16 6
716 /// %32 = load i16, i16* %30
717 /// %33 = load i16, i16* %31
718 /// %34 = call i16 @llvm.bswap.i16(i16 %32)
719 /// %35 = call i16 @llvm.bswap.i16(i16 %33)
720 /// %36 = zext i16 %34 to i64
721 /// %37 = zext i16 %35 to i64
722 /// %38 = sub i64 %36, %37
723 /// %39 = icmp ne i64 %38, 0
724 /// br i1 %39, label %res_block, label %loadbb3
725 /// loadbb3: ; preds = %loadbb2
726 /// %40 = bitcast i32* %buffer2 to i8*
727 /// %41 = bitcast i32* %buffer1 to i8*
728 /// %42 = getelementptr i8, i8* %41, i8 14
729 /// %43 = getelementptr i8, i8* %40, i8 14
730 /// %44 = load i8, i8* %42
731 /// %45 = load i8, i8* %43
732 /// %46 = zext i8 %44 to i32
733 /// %47 = zext i8 %45 to i32
734 /// %48 = sub i32 %46, %47
735 /// br label %endblock
736 /// endblock: ; preds = %res_block,
737 /// %loadbb3
738 /// %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
739 /// ret i32 %phi.res
expandMemCmp(CallInst * CI,const TargetTransformInfo * TTI,const TargetLowering * TLI,const DataLayout * DL,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI,DomTreeUpdater * DTU,const bool IsBCmp)740 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
741 const TargetLowering *TLI, const DataLayout *DL,
742 ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI,
743 DomTreeUpdater *DTU, const bool IsBCmp) {
744 NumMemCmpCalls++;
745
746 // Early exit from expansion if -Oz.
747 if (CI->getFunction()->hasMinSize())
748 return false;
749
750 // Early exit from expansion if size is not a constant.
751 ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
752 if (!SizeCast) {
753 NumMemCmpNotConstant++;
754 return false;
755 }
756 const uint64_t SizeVal = SizeCast->getZExtValue();
757
758 if (SizeVal == 0) {
759 return false;
760 }
761 // TTI call to check if target would like to expand memcmp. Also, get the
762 // available load sizes.
763 const bool IsUsedForZeroCmp =
764 IsBCmp || isOnlyUsedInZeroEqualityComparison(CI);
765 bool OptForSize = CI->getFunction()->hasOptSize() ||
766 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
767 auto Options = TTI->enableMemCmpExpansion(OptForSize,
768 IsUsedForZeroCmp);
769 if (!Options) return false;
770
771 if (MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences())
772 Options.NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock;
773
774 if (OptForSize &&
775 MaxLoadsPerMemcmpOptSize.getNumOccurrences())
776 Options.MaxNumLoads = MaxLoadsPerMemcmpOptSize;
777
778 if (!OptForSize && MaxLoadsPerMemcmp.getNumOccurrences())
779 Options.MaxNumLoads = MaxLoadsPerMemcmp;
780
781 MemCmpExpansion Expansion(CI, SizeVal, Options, IsUsedForZeroCmp, *DL, DTU);
782
783 // Don't expand if this will require more loads than desired by the target.
784 if (Expansion.getNumLoads() == 0) {
785 NumMemCmpGreaterThanMax++;
786 return false;
787 }
788
789 NumMemCmpInlined++;
790
791 Value *Res = Expansion.getMemCmpExpansion();
792
793 // Replace call with result of expansion and erase call.
794 CI->replaceAllUsesWith(Res);
795 CI->eraseFromParent();
796
797 return true;
798 }
799
800 class ExpandMemCmpPass : public FunctionPass {
801 public:
802 static char ID;
803
ExpandMemCmpPass()804 ExpandMemCmpPass() : FunctionPass(ID) {
805 initializeExpandMemCmpPassPass(*PassRegistry::getPassRegistry());
806 }
807
runOnFunction(Function & F)808 bool runOnFunction(Function &F) override {
809 if (skipFunction(F)) return false;
810
811 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
812 if (!TPC) {
813 return false;
814 }
815 const TargetLowering* TL =
816 TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering();
817
818 const TargetLibraryInfo *TLI =
819 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
820 const TargetTransformInfo *TTI =
821 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
822 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
823 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
824 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
825 nullptr;
826 DominatorTree *DT = nullptr;
827 if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>())
828 DT = &DTWP->getDomTree();
829 auto PA = runImpl(F, TLI, TTI, TL, PSI, BFI, DT);
830 return !PA.areAllPreserved();
831 }
832
833 private:
getAnalysisUsage(AnalysisUsage & AU) const834 void getAnalysisUsage(AnalysisUsage &AU) const override {
835 AU.addRequired<TargetLibraryInfoWrapperPass>();
836 AU.addRequired<TargetTransformInfoWrapperPass>();
837 AU.addRequired<ProfileSummaryInfoWrapperPass>();
838 AU.addPreserved<DominatorTreeWrapperPass>();
839 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
840 FunctionPass::getAnalysisUsage(AU);
841 }
842
843 PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
844 const TargetTransformInfo *TTI,
845 const TargetLowering *TL, ProfileSummaryInfo *PSI,
846 BlockFrequencyInfo *BFI, DominatorTree *DT);
847 // Returns true if a change was made.
848 bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
849 const TargetTransformInfo *TTI, const TargetLowering *TL,
850 const DataLayout &DL, ProfileSummaryInfo *PSI,
851 BlockFrequencyInfo *BFI, DomTreeUpdater *DTU);
852 };
853
runOnBlock(BasicBlock & BB,const TargetLibraryInfo * TLI,const TargetTransformInfo * TTI,const TargetLowering * TL,const DataLayout & DL,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI,DomTreeUpdater * DTU)854 bool ExpandMemCmpPass::runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
855 const TargetTransformInfo *TTI,
856 const TargetLowering *TL,
857 const DataLayout &DL, ProfileSummaryInfo *PSI,
858 BlockFrequencyInfo *BFI,
859 DomTreeUpdater *DTU) {
860 for (Instruction& I : BB) {
861 CallInst *CI = dyn_cast<CallInst>(&I);
862 if (!CI) {
863 continue;
864 }
865 LibFunc Func;
866 if (TLI->getLibFunc(*CI, Func) &&
867 (Func == LibFunc_memcmp || Func == LibFunc_bcmp) &&
868 expandMemCmp(CI, TTI, TL, &DL, PSI, BFI, DTU, Func == LibFunc_bcmp)) {
869 return true;
870 }
871 }
872 return false;
873 }
874
875 PreservedAnalyses
runImpl(Function & F,const TargetLibraryInfo * TLI,const TargetTransformInfo * TTI,const TargetLowering * TL,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI,DominatorTree * DT)876 ExpandMemCmpPass::runImpl(Function &F, const TargetLibraryInfo *TLI,
877 const TargetTransformInfo *TTI,
878 const TargetLowering *TL, ProfileSummaryInfo *PSI,
879 BlockFrequencyInfo *BFI, DominatorTree *DT) {
880 Optional<DomTreeUpdater> DTU;
881 if (DT)
882 DTU.emplace(DT, DomTreeUpdater::UpdateStrategy::Lazy);
883
884 const DataLayout& DL = F.getParent()->getDataLayout();
885 bool MadeChanges = false;
886 for (auto BBIt = F.begin(); BBIt != F.end();) {
887 if (runOnBlock(*BBIt, TLI, TTI, TL, DL, PSI, BFI,
888 DTU ? DTU.getPointer() : nullptr)) {
889 MadeChanges = true;
890 // If changes were made, restart the function from the beginning, since
891 // the structure of the function was changed.
892 BBIt = F.begin();
893 } else {
894 ++BBIt;
895 }
896 }
897 if (MadeChanges)
898 for (BasicBlock &BB : F)
899 SimplifyInstructionsInBlock(&BB);
900 if (!MadeChanges)
901 return PreservedAnalyses::all();
902 PreservedAnalyses PA;
903 PA.preserve<DominatorTreeAnalysis>();
904 return PA;
905 }
906
907 } // namespace
908
909 char ExpandMemCmpPass::ID = 0;
910 INITIALIZE_PASS_BEGIN(ExpandMemCmpPass, "expandmemcmp",
911 "Expand memcmp() to load/stores", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)912 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
913 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
914 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
915 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
916 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
917 INITIALIZE_PASS_END(ExpandMemCmpPass, "expandmemcmp",
918 "Expand memcmp() to load/stores", false, false)
919
920 FunctionPass *llvm::createExpandMemCmpPass() {
921 return new ExpandMemCmpPass();
922 }
923