1 //===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass tries to expand memcmp() calls into optimally-sized loads and
10 // compares for the target.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/Analysis/TargetLibraryInfo.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/CodeGen/TargetLowering.h"
20 #include "llvm/CodeGen/TargetPassConfig.h"
21 #include "llvm/CodeGen/TargetSubtargetInfo.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/InitializePasses.h"
24 
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "expandmemcmp"
28 
29 STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
30 STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
31 STATISTIC(NumMemCmpGreaterThanMax,
32           "Number of memcmp calls with size greater than max size");
33 STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
34 
35 static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock(
36     "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
37     cl::desc("The number of loads per basic block for inline expansion of "
38              "memcmp that is only being compared against zero."));
39 
40 static cl::opt<unsigned> MaxLoadsPerMemcmp(
41     "max-loads-per-memcmp", cl::Hidden,
42     cl::desc("Set maximum number of loads used in expanded memcmp"));
43 
44 static cl::opt<unsigned> MaxLoadsPerMemcmpOptSize(
45     "max-loads-per-memcmp-opt-size", cl::Hidden,
46     cl::desc("Set maximum number of loads used in expanded memcmp for -Os/Oz"));
47 
48 namespace {
49 
50 
51 // This class provides helper functions to expand a memcmp library call into an
52 // inline expansion.
53 class MemCmpExpansion {
54   struct ResultBlock {
55     BasicBlock *BB = nullptr;
56     PHINode *PhiSrc1 = nullptr;
57     PHINode *PhiSrc2 = nullptr;
58 
59     ResultBlock() = default;
60   };
61 
62   CallInst *const CI;
63   ResultBlock ResBlock;
64   const uint64_t Size;
65   unsigned MaxLoadSize;
66   uint64_t NumLoadsNonOneByte;
67   const uint64_t NumLoadsPerBlockForZeroCmp;
68   std::vector<BasicBlock *> LoadCmpBlocks;
69   BasicBlock *EndBlock;
70   PHINode *PhiRes;
71   const bool IsUsedForZeroCmp;
72   const DataLayout &DL;
73   IRBuilder<> Builder;
74   // Represents the decomposition in blocks of the expansion. For example,
75   // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
76   // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {32, 1}.
77   struct LoadEntry {
78     LoadEntry(unsigned LoadSize, uint64_t Offset)
79         : LoadSize(LoadSize), Offset(Offset) {
80     }
81 
82     // The size of the load for this block, in bytes.
83     unsigned LoadSize;
84     // The offset of this load from the base pointer, in bytes.
85     uint64_t Offset;
86   };
87   using LoadEntryVector = SmallVector<LoadEntry, 8>;
88   LoadEntryVector LoadSequence;
89 
90   void createLoadCmpBlocks();
91   void createResultBlock();
92   void setupResultBlockPHINodes();
93   void setupEndBlockPHINodes();
94   Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex);
95   void emitLoadCompareBlock(unsigned BlockIndex);
96   void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
97                                          unsigned &LoadIndex);
98   void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned OffsetBytes);
99   void emitMemCmpResultBlock();
100   Value *getMemCmpExpansionZeroCase();
101   Value *getMemCmpEqZeroOneBlock();
102   Value *getMemCmpOneBlock();
103   Value *getPtrToElementAtOffset(Value *Source, Type *LoadSizeType,
104                                  uint64_t OffsetBytes);
105 
106   static LoadEntryVector
107   computeGreedyLoadSequence(uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
108                             unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte);
109   static LoadEntryVector
110   computeOverlappingLoadSequence(uint64_t Size, unsigned MaxLoadSize,
111                                  unsigned MaxNumLoads,
112                                  unsigned &NumLoadsNonOneByte);
113 
114 public:
115   MemCmpExpansion(CallInst *CI, uint64_t Size,
116                   const TargetTransformInfo::MemCmpExpansionOptions &Options,
117                   const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout);
118 
119   unsigned getNumBlocks();
120   uint64_t getNumLoads() const { return LoadSequence.size(); }
121 
122   Value *getMemCmpExpansion();
123 };
124 
125 MemCmpExpansion::LoadEntryVector MemCmpExpansion::computeGreedyLoadSequence(
126     uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
127     const unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte) {
128   NumLoadsNonOneByte = 0;
129   LoadEntryVector LoadSequence;
130   uint64_t Offset = 0;
131   while (Size && !LoadSizes.empty()) {
132     const unsigned LoadSize = LoadSizes.front();
133     const uint64_t NumLoadsForThisSize = Size / LoadSize;
134     if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) {
135       // Do not expand if the total number of loads is larger than what the
136       // target allows. Note that it's important that we exit before completing
137       // the expansion to avoid using a ton of memory to store the expansion for
138       // large sizes.
139       return {};
140     }
141     if (NumLoadsForThisSize > 0) {
142       for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) {
143         LoadSequence.push_back({LoadSize, Offset});
144         Offset += LoadSize;
145       }
146       if (LoadSize > 1)
147         ++NumLoadsNonOneByte;
148       Size = Size % LoadSize;
149     }
150     LoadSizes = LoadSizes.drop_front();
151   }
152   return LoadSequence;
153 }
154 
155 MemCmpExpansion::LoadEntryVector
156 MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size,
157                                                 const unsigned MaxLoadSize,
158                                                 const unsigned MaxNumLoads,
159                                                 unsigned &NumLoadsNonOneByte) {
160   // These are already handled by the greedy approach.
161   if (Size < 2 || MaxLoadSize < 2)
162     return {};
163 
164   // We try to do as many non-overlapping loads as possible starting from the
165   // beginning.
166   const uint64_t NumNonOverlappingLoads = Size / MaxLoadSize;
167   assert(NumNonOverlappingLoads && "there must be at least one load");
168   // There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with
169   // an overlapping load.
170   Size = Size - NumNonOverlappingLoads * MaxLoadSize;
171   // Bail if we do not need an overloapping store, this is already handled by
172   // the greedy approach.
173   if (Size == 0)
174     return {};
175   // Bail if the number of loads (non-overlapping + potential overlapping one)
176   // is larger than the max allowed.
177   if ((NumNonOverlappingLoads + 1) > MaxNumLoads)
178     return {};
179 
180   // Add non-overlapping loads.
181   LoadEntryVector LoadSequence;
182   uint64_t Offset = 0;
183   for (uint64_t I = 0; I < NumNonOverlappingLoads; ++I) {
184     LoadSequence.push_back({MaxLoadSize, Offset});
185     Offset += MaxLoadSize;
186   }
187 
188   // Add the last overlapping load.
189   assert(Size > 0 && Size < MaxLoadSize && "broken invariant");
190   LoadSequence.push_back({MaxLoadSize, Offset - (MaxLoadSize - Size)});
191   NumLoadsNonOneByte = 1;
192   return LoadSequence;
193 }
194 
195 // Initialize the basic block structure required for expansion of memcmp call
196 // with given maximum load size and memcmp size parameter.
197 // This structure includes:
198 // 1. A list of load compare blocks - LoadCmpBlocks.
199 // 2. An EndBlock, split from original instruction point, which is the block to
200 // return from.
201 // 3. ResultBlock, block to branch to for early exit when a
202 // LoadCmpBlock finds a difference.
203 MemCmpExpansion::MemCmpExpansion(
204     CallInst *const CI, uint64_t Size,
205     const TargetTransformInfo::MemCmpExpansionOptions &Options,
206     const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout)
207     : CI(CI), Size(Size), MaxLoadSize(0), NumLoadsNonOneByte(0),
208       NumLoadsPerBlockForZeroCmp(Options.NumLoadsPerBlock),
209       IsUsedForZeroCmp(IsUsedForZeroCmp), DL(TheDataLayout), Builder(CI) {
210   assert(Size > 0 && "zero blocks");
211   // Scale the max size down if the target can load more bytes than we need.
212   llvm::ArrayRef<unsigned> LoadSizes(Options.LoadSizes);
213   while (!LoadSizes.empty() && LoadSizes.front() > Size) {
214     LoadSizes = LoadSizes.drop_front();
215   }
216   assert(!LoadSizes.empty() && "cannot load Size bytes");
217   MaxLoadSize = LoadSizes.front();
218   // Compute the decomposition.
219   unsigned GreedyNumLoadsNonOneByte = 0;
220   LoadSequence = computeGreedyLoadSequence(Size, LoadSizes, Options.MaxNumLoads,
221                                            GreedyNumLoadsNonOneByte);
222   NumLoadsNonOneByte = GreedyNumLoadsNonOneByte;
223   assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
224   // If we allow overlapping loads and the load sequence is not already optimal,
225   // use overlapping loads.
226   if (Options.AllowOverlappingLoads &&
227       (LoadSequence.empty() || LoadSequence.size() > 2)) {
228     unsigned OverlappingNumLoadsNonOneByte = 0;
229     auto OverlappingLoads = computeOverlappingLoadSequence(
230         Size, MaxLoadSize, Options.MaxNumLoads, OverlappingNumLoadsNonOneByte);
231     if (!OverlappingLoads.empty() &&
232         (LoadSequence.empty() ||
233          OverlappingLoads.size() < LoadSequence.size())) {
234       LoadSequence = OverlappingLoads;
235       NumLoadsNonOneByte = OverlappingNumLoadsNonOneByte;
236     }
237   }
238   assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
239 }
240 
241 unsigned MemCmpExpansion::getNumBlocks() {
242   if (IsUsedForZeroCmp)
243     return getNumLoads() / NumLoadsPerBlockForZeroCmp +
244            (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0);
245   return getNumLoads();
246 }
247 
248 void MemCmpExpansion::createLoadCmpBlocks() {
249   for (unsigned i = 0; i < getNumBlocks(); i++) {
250     BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
251                                         EndBlock->getParent(), EndBlock);
252     LoadCmpBlocks.push_back(BB);
253   }
254 }
255 
256 void MemCmpExpansion::createResultBlock() {
257   ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
258                                    EndBlock->getParent(), EndBlock);
259 }
260 
261 /// Return a pointer to an element of type `LoadSizeType` at offset
262 /// `OffsetBytes`.
263 Value *MemCmpExpansion::getPtrToElementAtOffset(Value *Source,
264                                                 Type *LoadSizeType,
265                                                 uint64_t OffsetBytes) {
266   if (OffsetBytes > 0) {
267     auto *ByteType = Type::getInt8Ty(CI->getContext());
268     Source = Builder.CreateConstGEP1_64(
269         ByteType, Builder.CreateBitCast(Source, ByteType->getPointerTo()),
270         OffsetBytes);
271   }
272   return Builder.CreateBitCast(Source, LoadSizeType->getPointerTo());
273 }
274 
275 // This function creates the IR instructions for loading and comparing 1 byte.
276 // It loads 1 byte from each source of the memcmp parameters with the given
277 // GEPIndex. It then subtracts the two loaded values and adds this result to the
278 // final phi node for selecting the memcmp result.
279 void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex,
280                                                unsigned OffsetBytes) {
281   Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
282   Type *LoadSizeType = Type::getInt8Ty(CI->getContext());
283   Value *Source1 =
284       getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType, OffsetBytes);
285   Value *Source2 =
286       getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType, OffsetBytes);
287 
288   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
289   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
290 
291   LoadSrc1 = Builder.CreateZExt(LoadSrc1, Type::getInt32Ty(CI->getContext()));
292   LoadSrc2 = Builder.CreateZExt(LoadSrc2, Type::getInt32Ty(CI->getContext()));
293   Value *Diff = Builder.CreateSub(LoadSrc1, LoadSrc2);
294 
295   PhiRes->addIncoming(Diff, LoadCmpBlocks[BlockIndex]);
296 
297   if (BlockIndex < (LoadCmpBlocks.size() - 1)) {
298     // Early exit branch if difference found to EndBlock. Otherwise, continue to
299     // next LoadCmpBlock,
300     Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
301                                     ConstantInt::get(Diff->getType(), 0));
302     BranchInst *CmpBr =
303         BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp);
304     Builder.Insert(CmpBr);
305   } else {
306     // The last block has an unconditional branch to EndBlock.
307     BranchInst *CmpBr = BranchInst::Create(EndBlock);
308     Builder.Insert(CmpBr);
309   }
310 }
311 
312 /// Generate an equality comparison for one or more pairs of loaded values.
313 /// This is used in the case where the memcmp() call is compared equal or not
314 /// equal to zero.
315 Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex,
316                                             unsigned &LoadIndex) {
317   assert(LoadIndex < getNumLoads() &&
318          "getCompareLoadPairs() called with no remaining loads");
319   std::vector<Value *> XorList, OrList;
320   Value *Diff = nullptr;
321 
322   const unsigned NumLoads =
323       std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp);
324 
325   // For a single-block expansion, start inserting before the memcmp call.
326   if (LoadCmpBlocks.empty())
327     Builder.SetInsertPoint(CI);
328   else
329     Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
330 
331   Value *Cmp = nullptr;
332   // If we have multiple loads per block, we need to generate a composite
333   // comparison using xor+or. The type for the combinations is the largest load
334   // type.
335   IntegerType *const MaxLoadType =
336       NumLoads == 1 ? nullptr
337                     : IntegerType::get(CI->getContext(), MaxLoadSize * 8);
338   for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) {
339     const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex];
340 
341     IntegerType *LoadSizeType =
342         IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
343 
344     Value *Source1 = getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType,
345                                              CurLoadEntry.Offset);
346     Value *Source2 = getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType,
347                                              CurLoadEntry.Offset);
348 
349     // Get a constant or load a value for each source address.
350     Value *LoadSrc1 = nullptr;
351     if (auto *Source1C = dyn_cast<Constant>(Source1))
352       LoadSrc1 = ConstantFoldLoadFromConstPtr(Source1C, LoadSizeType, DL);
353     if (!LoadSrc1)
354       LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
355 
356     Value *LoadSrc2 = nullptr;
357     if (auto *Source2C = dyn_cast<Constant>(Source2))
358       LoadSrc2 = ConstantFoldLoadFromConstPtr(Source2C, LoadSizeType, DL);
359     if (!LoadSrc2)
360       LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
361 
362     if (NumLoads != 1) {
363       if (LoadSizeType != MaxLoadType) {
364         LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
365         LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
366       }
367       // If we have multiple loads per block, we need to generate a composite
368       // comparison using xor+or.
369       Diff = Builder.CreateXor(LoadSrc1, LoadSrc2);
370       Diff = Builder.CreateZExt(Diff, MaxLoadType);
371       XorList.push_back(Diff);
372     } else {
373       // If there's only one load per block, we just compare the loaded values.
374       Cmp = Builder.CreateICmpNE(LoadSrc1, LoadSrc2);
375     }
376   }
377 
378   auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
379     std::vector<Value *> OutList;
380     for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
381       Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
382       OutList.push_back(Or);
383     }
384     if (InList.size() % 2 != 0)
385       OutList.push_back(InList.back());
386     return OutList;
387   };
388 
389   if (!Cmp) {
390     // Pairwise OR the XOR results.
391     OrList = pairWiseOr(XorList);
392 
393     // Pairwise OR the OR results until one result left.
394     while (OrList.size() != 1) {
395       OrList = pairWiseOr(OrList);
396     }
397 
398     assert(Diff && "Failed to find comparison diff");
399     Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
400   }
401 
402   return Cmp;
403 }
404 
405 void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
406                                                         unsigned &LoadIndex) {
407   Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex);
408 
409   BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
410                            ? EndBlock
411                            : LoadCmpBlocks[BlockIndex + 1];
412   // Early exit branch if difference found to ResultBlock. Otherwise,
413   // continue to next LoadCmpBlock or EndBlock.
414   BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
415   Builder.Insert(CmpBr);
416 
417   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
418   // since early exit to ResultBlock was not taken (no difference was found in
419   // any of the bytes).
420   if (BlockIndex == LoadCmpBlocks.size() - 1) {
421     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
422     PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
423   }
424 }
425 
426 // This function creates the IR intructions for loading and comparing using the
427 // given LoadSize. It loads the number of bytes specified by LoadSize from each
428 // source of the memcmp parameters. It then does a subtract to see if there was
429 // a difference in the loaded values. If a difference is found, it branches
430 // with an early exit to the ResultBlock for calculating which source was
431 // larger. Otherwise, it falls through to the either the next LoadCmpBlock or
432 // the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
433 // a special case through emitLoadCompareByteBlock. The special handling can
434 // simply subtract the loaded values and add it to the result phi node.
435 void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) {
436   // There is one load per block in this case, BlockIndex == LoadIndex.
437   const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex];
438 
439   if (CurLoadEntry.LoadSize == 1) {
440     MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex, CurLoadEntry.Offset);
441     return;
442   }
443 
444   Type *LoadSizeType =
445       IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
446   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
447   assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type");
448 
449   Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
450 
451   Value *Source1 = getPtrToElementAtOffset(CI->getArgOperand(0), LoadSizeType,
452                                            CurLoadEntry.Offset);
453   Value *Source2 = getPtrToElementAtOffset(CI->getArgOperand(1), LoadSizeType,
454                                            CurLoadEntry.Offset);
455 
456   // Load LoadSizeType from the base address.
457   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
458   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
459 
460   if (DL.isLittleEndian()) {
461     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
462                                                 Intrinsic::bswap, LoadSizeType);
463     LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
464     LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
465   }
466 
467   if (LoadSizeType != MaxLoadType) {
468     LoadSrc1 = Builder.CreateZExt(LoadSrc1, MaxLoadType);
469     LoadSrc2 = Builder.CreateZExt(LoadSrc2, MaxLoadType);
470   }
471 
472   // Add the loaded values to the phi nodes for calculating memcmp result only
473   // if result is not used in a zero equality.
474   if (!IsUsedForZeroCmp) {
475     ResBlock.PhiSrc1->addIncoming(LoadSrc1, LoadCmpBlocks[BlockIndex]);
476     ResBlock.PhiSrc2->addIncoming(LoadSrc2, LoadCmpBlocks[BlockIndex]);
477   }
478 
479   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, LoadSrc1, LoadSrc2);
480   BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
481                            ? EndBlock
482                            : LoadCmpBlocks[BlockIndex + 1];
483   // Early exit branch if difference found to ResultBlock. Otherwise, continue
484   // to next LoadCmpBlock or EndBlock.
485   BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
486   Builder.Insert(CmpBr);
487 
488   // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
489   // since early exit to ResultBlock was not taken (no difference was found in
490   // any of the bytes).
491   if (BlockIndex == LoadCmpBlocks.size() - 1) {
492     Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
493     PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
494   }
495 }
496 
497 // This function populates the ResultBlock with a sequence to calculate the
498 // memcmp result. It compares the two loaded source values and returns -1 if
499 // src1 < src2 and 1 if src1 > src2.
500 void MemCmpExpansion::emitMemCmpResultBlock() {
501   // Special case: if memcmp result is used in a zero equality, result does not
502   // need to be calculated and can simply return 1.
503   if (IsUsedForZeroCmp) {
504     BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
505     Builder.SetInsertPoint(ResBlock.BB, InsertPt);
506     Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
507     PhiRes->addIncoming(Res, ResBlock.BB);
508     BranchInst *NewBr = BranchInst::Create(EndBlock);
509     Builder.Insert(NewBr);
510     return;
511   }
512   BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
513   Builder.SetInsertPoint(ResBlock.BB, InsertPt);
514 
515   Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
516                                   ResBlock.PhiSrc2);
517 
518   Value *Res =
519       Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
520                            ConstantInt::get(Builder.getInt32Ty(), 1));
521 
522   BranchInst *NewBr = BranchInst::Create(EndBlock);
523   Builder.Insert(NewBr);
524   PhiRes->addIncoming(Res, ResBlock.BB);
525 }
526 
527 void MemCmpExpansion::setupResultBlockPHINodes() {
528   Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
529   Builder.SetInsertPoint(ResBlock.BB);
530   // Note: this assumes one load per block.
531   ResBlock.PhiSrc1 =
532       Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1");
533   ResBlock.PhiSrc2 =
534       Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2");
535 }
536 
537 void MemCmpExpansion::setupEndBlockPHINodes() {
538   Builder.SetInsertPoint(&EndBlock->front());
539   PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
540 }
541 
542 Value *MemCmpExpansion::getMemCmpExpansionZeroCase() {
543   unsigned LoadIndex = 0;
544   // This loop populates each of the LoadCmpBlocks with the IR sequence to
545   // handle multiple loads per block.
546   for (unsigned I = 0; I < getNumBlocks(); ++I) {
547     emitLoadCompareBlockMultipleLoads(I, LoadIndex);
548   }
549 
550   emitMemCmpResultBlock();
551   return PhiRes;
552 }
553 
554 /// A memcmp expansion that compares equality with 0 and only has one block of
555 /// load and compare can bypass the compare, branch, and phi IR that is required
556 /// in the general case.
557 Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() {
558   unsigned LoadIndex = 0;
559   Value *Cmp = getCompareLoadPairs(0, LoadIndex);
560   assert(LoadIndex == getNumLoads() && "some entries were not consumed");
561   return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
562 }
563 
564 /// A memcmp expansion that only has one block of load and compare can bypass
565 /// the compare, branch, and phi IR that is required in the general case.
566 Value *MemCmpExpansion::getMemCmpOneBlock() {
567   Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
568   Value *Source1 = CI->getArgOperand(0);
569   Value *Source2 = CI->getArgOperand(1);
570 
571   // Cast source to LoadSizeType*.
572   if (Source1->getType() != LoadSizeType)
573     Source1 = Builder.CreateBitCast(Source1, LoadSizeType->getPointerTo());
574   if (Source2->getType() != LoadSizeType)
575     Source2 = Builder.CreateBitCast(Source2, LoadSizeType->getPointerTo());
576 
577   // Load LoadSizeType from the base address.
578   Value *LoadSrc1 = Builder.CreateLoad(LoadSizeType, Source1);
579   Value *LoadSrc2 = Builder.CreateLoad(LoadSizeType, Source2);
580 
581   if (DL.isLittleEndian() && Size != 1) {
582     Function *Bswap = Intrinsic::getDeclaration(CI->getModule(),
583                                                 Intrinsic::bswap, LoadSizeType);
584     LoadSrc1 = Builder.CreateCall(Bswap, LoadSrc1);
585     LoadSrc2 = Builder.CreateCall(Bswap, LoadSrc2);
586   }
587 
588   if (Size < 4) {
589     // The i8 and i16 cases don't need compares. We zext the loaded values and
590     // subtract them to get the suitable negative, zero, or positive i32 result.
591     LoadSrc1 = Builder.CreateZExt(LoadSrc1, Builder.getInt32Ty());
592     LoadSrc2 = Builder.CreateZExt(LoadSrc2, Builder.getInt32Ty());
593     return Builder.CreateSub(LoadSrc1, LoadSrc2);
594   }
595 
596   // The result of memcmp is negative, zero, or positive, so produce that by
597   // subtracting 2 extended compare bits: sub (ugt, ult).
598   // If a target prefers to use selects to get -1/0/1, they should be able
599   // to transform this later. The inverse transform (going from selects to math)
600   // may not be possible in the DAG because the selects got converted into
601   // branches before we got there.
602   Value *CmpUGT = Builder.CreateICmpUGT(LoadSrc1, LoadSrc2);
603   Value *CmpULT = Builder.CreateICmpULT(LoadSrc1, LoadSrc2);
604   Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
605   Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
606   return Builder.CreateSub(ZextUGT, ZextULT);
607 }
608 
609 // This function expands the memcmp call into an inline expansion and returns
610 // the memcmp result.
611 Value *MemCmpExpansion::getMemCmpExpansion() {
612   // Create the basic block framework for a multi-block expansion.
613   if (getNumBlocks() != 1) {
614     BasicBlock *StartBlock = CI->getParent();
615     EndBlock = StartBlock->splitBasicBlock(CI, "endblock");
616     setupEndBlockPHINodes();
617     createResultBlock();
618 
619     // If return value of memcmp is not used in a zero equality, we need to
620     // calculate which source was larger. The calculation requires the
621     // two loaded source values of each load compare block.
622     // These will be saved in the phi nodes created by setupResultBlockPHINodes.
623     if (!IsUsedForZeroCmp) setupResultBlockPHINodes();
624 
625     // Create the number of required load compare basic blocks.
626     createLoadCmpBlocks();
627 
628     // Update the terminator added by splitBasicBlock to branch to the first
629     // LoadCmpBlock.
630     StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
631   }
632 
633   Builder.SetCurrentDebugLocation(CI->getDebugLoc());
634 
635   if (IsUsedForZeroCmp)
636     return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
637                                : getMemCmpExpansionZeroCase();
638 
639   if (getNumBlocks() == 1)
640     return getMemCmpOneBlock();
641 
642   for (unsigned I = 0; I < getNumBlocks(); ++I) {
643     emitLoadCompareBlock(I);
644   }
645 
646   emitMemCmpResultBlock();
647   return PhiRes;
648 }
649 
650 // This function checks to see if an expansion of memcmp can be generated.
651 // It checks for constant compare size that is less than the max inline size.
652 // If an expansion cannot occur, returns false to leave as a library call.
653 // Otherwise, the library call is replaced with a new IR instruction sequence.
654 /// We want to transform:
655 /// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
656 /// To:
657 /// loadbb:
658 ///  %0 = bitcast i32* %buffer2 to i8*
659 ///  %1 = bitcast i32* %buffer1 to i8*
660 ///  %2 = bitcast i8* %1 to i64*
661 ///  %3 = bitcast i8* %0 to i64*
662 ///  %4 = load i64, i64* %2
663 ///  %5 = load i64, i64* %3
664 ///  %6 = call i64 @llvm.bswap.i64(i64 %4)
665 ///  %7 = call i64 @llvm.bswap.i64(i64 %5)
666 ///  %8 = sub i64 %6, %7
667 ///  %9 = icmp ne i64 %8, 0
668 ///  br i1 %9, label %res_block, label %loadbb1
669 /// res_block:                                        ; preds = %loadbb2,
670 /// %loadbb1, %loadbb
671 ///  %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
672 ///  %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
673 ///  %10 = icmp ult i64 %phi.src1, %phi.src2
674 ///  %11 = select i1 %10, i32 -1, i32 1
675 ///  br label %endblock
676 /// loadbb1:                                          ; preds = %loadbb
677 ///  %12 = bitcast i32* %buffer2 to i8*
678 ///  %13 = bitcast i32* %buffer1 to i8*
679 ///  %14 = bitcast i8* %13 to i32*
680 ///  %15 = bitcast i8* %12 to i32*
681 ///  %16 = getelementptr i32, i32* %14, i32 2
682 ///  %17 = getelementptr i32, i32* %15, i32 2
683 ///  %18 = load i32, i32* %16
684 ///  %19 = load i32, i32* %17
685 ///  %20 = call i32 @llvm.bswap.i32(i32 %18)
686 ///  %21 = call i32 @llvm.bswap.i32(i32 %19)
687 ///  %22 = zext i32 %20 to i64
688 ///  %23 = zext i32 %21 to i64
689 ///  %24 = sub i64 %22, %23
690 ///  %25 = icmp ne i64 %24, 0
691 ///  br i1 %25, label %res_block, label %loadbb2
692 /// loadbb2:                                          ; preds = %loadbb1
693 ///  %26 = bitcast i32* %buffer2 to i8*
694 ///  %27 = bitcast i32* %buffer1 to i8*
695 ///  %28 = bitcast i8* %27 to i16*
696 ///  %29 = bitcast i8* %26 to i16*
697 ///  %30 = getelementptr i16, i16* %28, i16 6
698 ///  %31 = getelementptr i16, i16* %29, i16 6
699 ///  %32 = load i16, i16* %30
700 ///  %33 = load i16, i16* %31
701 ///  %34 = call i16 @llvm.bswap.i16(i16 %32)
702 ///  %35 = call i16 @llvm.bswap.i16(i16 %33)
703 ///  %36 = zext i16 %34 to i64
704 ///  %37 = zext i16 %35 to i64
705 ///  %38 = sub i64 %36, %37
706 ///  %39 = icmp ne i64 %38, 0
707 ///  br i1 %39, label %res_block, label %loadbb3
708 /// loadbb3:                                          ; preds = %loadbb2
709 ///  %40 = bitcast i32* %buffer2 to i8*
710 ///  %41 = bitcast i32* %buffer1 to i8*
711 ///  %42 = getelementptr i8, i8* %41, i8 14
712 ///  %43 = getelementptr i8, i8* %40, i8 14
713 ///  %44 = load i8, i8* %42
714 ///  %45 = load i8, i8* %43
715 ///  %46 = zext i8 %44 to i32
716 ///  %47 = zext i8 %45 to i32
717 ///  %48 = sub i32 %46, %47
718 ///  br label %endblock
719 /// endblock:                                         ; preds = %res_block,
720 /// %loadbb3
721 ///  %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
722 ///  ret i32 %phi.res
723 static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
724                          const TargetLowering *TLI, const DataLayout *DL) {
725   NumMemCmpCalls++;
726 
727   // Early exit from expansion if -Oz.
728   if (CI->getFunction()->hasMinSize())
729     return false;
730 
731   // Early exit from expansion if size is not a constant.
732   ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
733   if (!SizeCast) {
734     NumMemCmpNotConstant++;
735     return false;
736   }
737   const uint64_t SizeVal = SizeCast->getZExtValue();
738 
739   if (SizeVal == 0) {
740     return false;
741   }
742   // TTI call to check if target would like to expand memcmp. Also, get the
743   // available load sizes.
744   const bool IsUsedForZeroCmp = isOnlyUsedInZeroEqualityComparison(CI);
745   auto Options = TTI->enableMemCmpExpansion(CI->getFunction()->hasOptSize(),
746                                             IsUsedForZeroCmp);
747   if (!Options) return false;
748 
749   if (MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences())
750     Options.NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock;
751 
752   if (CI->getFunction()->hasOptSize() &&
753       MaxLoadsPerMemcmpOptSize.getNumOccurrences())
754     Options.MaxNumLoads = MaxLoadsPerMemcmpOptSize;
755 
756   if (!CI->getFunction()->hasOptSize() && MaxLoadsPerMemcmp.getNumOccurrences())
757     Options.MaxNumLoads = MaxLoadsPerMemcmp;
758 
759   MemCmpExpansion Expansion(CI, SizeVal, Options, IsUsedForZeroCmp, *DL);
760 
761   // Don't expand if this will require more loads than desired by the target.
762   if (Expansion.getNumLoads() == 0) {
763     NumMemCmpGreaterThanMax++;
764     return false;
765   }
766 
767   NumMemCmpInlined++;
768 
769   Value *Res = Expansion.getMemCmpExpansion();
770 
771   // Replace call with result of expansion and erase call.
772   CI->replaceAllUsesWith(Res);
773   CI->eraseFromParent();
774 
775   return true;
776 }
777 
778 
779 
780 class ExpandMemCmpPass : public FunctionPass {
781 public:
782   static char ID;
783 
784   ExpandMemCmpPass() : FunctionPass(ID) {
785     initializeExpandMemCmpPassPass(*PassRegistry::getPassRegistry());
786   }
787 
788   bool runOnFunction(Function &F) override {
789     if (skipFunction(F)) return false;
790 
791     auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
792     if (!TPC) {
793       return false;
794     }
795     const TargetLowering* TL =
796         TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering();
797 
798     const TargetLibraryInfo *TLI =
799         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
800     const TargetTransformInfo *TTI =
801         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
802     auto PA = runImpl(F, TLI, TTI, TL);
803     return !PA.areAllPreserved();
804   }
805 
806 private:
807   void getAnalysisUsage(AnalysisUsage &AU) const override {
808     AU.addRequired<TargetLibraryInfoWrapperPass>();
809     AU.addRequired<TargetTransformInfoWrapperPass>();
810     FunctionPass::getAnalysisUsage(AU);
811   }
812 
813   PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
814                             const TargetTransformInfo *TTI,
815                             const TargetLowering* TL);
816   // Returns true if a change was made.
817   bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
818                   const TargetTransformInfo *TTI, const TargetLowering* TL,
819                   const DataLayout& DL);
820 };
821 
822 bool ExpandMemCmpPass::runOnBlock(
823     BasicBlock &BB, const TargetLibraryInfo *TLI,
824     const TargetTransformInfo *TTI, const TargetLowering* TL,
825     const DataLayout& DL) {
826   for (Instruction& I : BB) {
827     CallInst *CI = dyn_cast<CallInst>(&I);
828     if (!CI) {
829       continue;
830     }
831     LibFunc Func;
832     if (TLI->getLibFunc(ImmutableCallSite(CI), Func) &&
833         (Func == LibFunc_memcmp || Func == LibFunc_bcmp) &&
834         expandMemCmp(CI, TTI, TL, &DL)) {
835       return true;
836     }
837   }
838   return false;
839 }
840 
841 
842 PreservedAnalyses ExpandMemCmpPass::runImpl(
843     Function &F, const TargetLibraryInfo *TLI, const TargetTransformInfo *TTI,
844     const TargetLowering* TL) {
845   const DataLayout& DL = F.getParent()->getDataLayout();
846   bool MadeChanges = false;
847   for (auto BBIt = F.begin(); BBIt != F.end();) {
848     if (runOnBlock(*BBIt, TLI, TTI, TL, DL)) {
849       MadeChanges = true;
850       // If changes were made, restart the function from the beginning, since
851       // the structure of the function was changed.
852       BBIt = F.begin();
853     } else {
854       ++BBIt;
855     }
856   }
857   return MadeChanges ? PreservedAnalyses::none() : PreservedAnalyses::all();
858 }
859 
860 } // namespace
861 
862 char ExpandMemCmpPass::ID = 0;
863 INITIALIZE_PASS_BEGIN(ExpandMemCmpPass, "expandmemcmp",
864                       "Expand memcmp() to load/stores", false, false)
865 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
866 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
867 INITIALIZE_PASS_END(ExpandMemCmpPass, "expandmemcmp",
868                     "Expand memcmp() to load/stores", false, false)
869 
870 FunctionPass *llvm::createExpandMemCmpPass() {
871   return new ExpandMemCmpPass();
872 }
873